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ABSTRACT

In this paper we argue that the relevant decision for the majority of US households is not
the fraction of assets to be held in interest bearing form, but whether to hold any of such assets
at all (we call this "the decision to adopt" the financial technology). We show that the key
variable governing the adoption decision is the product of the interest rate times the total amount
of assets. The implication is that, instead of studying money demand using time series and
looking at historical interest rate variations, we can look at a cross-section of households and
analyze variations in the amount of assets held. We can use this methodology to estimate the
interest elasticity of money demand at interest rates close to zero.

We find that (a) the elasticity of money demand is very small when the interest rate is
small, (b) the probability that a household holds any amount of interest bearing assets is
positively related to the level of financial assets, and (c) the cost of adopting financial
technologies is positively related to age and negatively related to the level of education. The
finding that the elasticity is very small for interest rates below S percent suggests that the welfare
costs of inflation are small.

We also find that at interest rates of 6 percent, the elasticity is close to 0.5. We find that
roughly one half of this elasticity can be attributed to the Baumol-Tobin or intensive margin and
half of it can be attributed to the new adopters or extensive margin. The intensive margin is less

important at lower interest rates and more important at higher interest rates.
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L. Introduction

How does inflation distort household behavior? A common answer to this question is given
by Allais (1947), Baumol (1952) and Tobin's (1956) inventory analysis. According to the story,
during periods of high inflation, consumers increase the number of financial transactions (“trips to the
bank™) so as to hold more of their purchasing power in the form of interest bearing assets and less
in the form of money.! The key of the model is that agents are able and do substitute money for
interest bearing assets so as to minimize the total cost of asset management. This may be a good
model of how households manage currency holdings - although little evidence is available on this
point - but it may not be a useful model of household demand deposit ownership. The reason is that,
for the story to work, households need to be able to substitute between money and alternative assets
that yield a superior return. The problem is that the majority of households in the United States do
not hold financial assets other than checking accounts. In Table 1, for example, we use data on asset
holdings of U.S. households as measured by the 1989 survey of consumer finances (SCF). We see
that 59 percent of total U.S. households do not hold any interest bearing assets and 53 percent of
those who hold checking accounts, do not hold any interest bearing assets.” Hence, if we think of

checking accounts as monetary assets (as most economists do when they think of M1 as money

" There are alternative theories of money demand. For example Sidrauski (1967 a, b)
introduces money in the utility function so inflation distorts the relative price between money and
the other consumption goods and affects utility. Another example is the model of transactions
demand for cash of Karni (1973), Kimbrough (1986), and McCallum and Goodfriend’s (1987).

In this theory, inflation leads people to use more time carrying out transactions because the use of
monetary assets (which are required to reduce the need to carry out such transactions) is
optimally reduced.

2 The 59 percent of households who do not hold any interest bearing assets hold 23
percent of the monetary assets (checking and savings accounts) in the United States, even though
they hold only 4 percent of total financial assets.



supply), then a straightforward interpretation of Baumol-Tobin’s inventory theory of money demand
cannot be applied, at least not for the majority of households.

The question is why don’t all these people hold any interest bearing assets. One possible
explanation is that there might be an initial setup cost before these assets can be used. For example,
it may be costly to learn about how they work or there may be a fixed cost of managing them (in fact,
the fixed management cost may be the reason why financial institutions supply these assets in
minimum-sized bundles.) The key point is that, in order to use these assets, households need to
“adopt the technology” and this adoption is costly.> In this paper we build a model of this discrete
decision and we estimate it using U.S. household data from the SCF. We show that, as predicted by
our model, a household's likelihood of purchasing interest bearing assets depends on the quantity of
their financial wealth. We also find that college educated people more readily purchase interest
bearing financial assets.

The realization that the adoption decision is important has a major implication: it allows us
to estimate the interest elasticity of household money demand at very small interest rates. We feel
that this is an interesting contribution of the paper because all of the analyses of social costs of
inflation are based on “out of sample” estimates of the interest elasticities of money demand. For
example, following Bailey (1956), Lucas (1994) uses the constant elasticity function M=y-A-R™,

(where vy is the level of income, A is a constant, and 1) is the constant interest rate elasticity) and

3 An alternative explanation for the existence of 59 percent of households with no
interest bearing assets can be found in the traditional Baumol-Tobin inventory model when the
integer constraints are taken into account: households who have no interest bearing assets are
those who optimally chose to “go to the bank” less than once. Under this interpretation, one
could say that the contribution of this paper is the theoretical and empirical exploration of the
implications of this first integer constraint.



estimates that the welfare cost of U.S. inflation is about 1% of GDP. His basic methodology consists
of integrating under a money demand function as depicted in Figure 1 (which has been taken from

Lucas (1994).)
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One of the things we can infer from Figure 1 is that a substantial fraction of the welfare cost
of having a 6 percent interest rate comes from the area under the money demand function associated
with values of the interest rate close to zero. However, and this can also be seen in Figure 1, the U.S.
nominal interest rate has never been near zero®. It follows that, in order to estimate the cost of
inflation, one must extrapolate people’s behavior when interest rates are very low, from observed
behavior at moderate and high interest rates. In his preferred empirical speciﬁcation, Lucas’s
extrapolation implies that the largest behavioral changes - and therefore the largest marginal
deadweight losses - occur at the lowest nominal interest rates (his preferred specification is the
constant interest elasticity money demand function with elasticity 0.5. Of the three money demand
functions depicted in Figure 1, Lucas chooses the one in the middle.)

Note that if one argued that, instead of shooting up to infinity, the money demand function
was almost horizontal when R was close to zero, then the measured welfare costs of inflation would
be a lot smaller. And the lack of data points near zero would make this conjecture as plausible as any
other. Hence, the true cost of inflation remains an open issue, and will remain so until we get good
estimates of the elasticity of money demand at interest rates near zero. Measuring this elasticity is

one of our goals in this paper.’

* The possible exception is the WWII period. In Figure 1, the smallest interest rates
observed correspond to this exceptional period. The degree of confidence we can put on this war
interest rates is, to say the least, limited.

5 As Lucas notes in his paper, the measured welfare cost of inflation critically hinges on
the interest rate elasticity at low interest rates. For example, he experiments with the money
demand function M¢=y-B-e*®, where B and £ are constants. The interest rate elasticity for this
alternative function is equal to £-R. Note that this elasticity goes to zero as R goes to zero, and it
increases with R. When Lucas uses this alternative demand function, the welfare costs drop from
the one percent of GDP mentioned above to 0.3 percent of GDP. He prefers the constant
elasticity formulation because of its superior fit on U.S. aggregate time-series data. Such data,
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In order to estimate the elasticity of money demand at low interest rates, we start by arguing
that the decision to adopt a financial technology is an important one. By the decision to adopt we
mean the decision to pay the fixed cost of learning about or managing interest bearing assets. In our
model, therefore, households have to decide whether to adopt the financial technology before they
choose how much of their wealth to hold in interest bearing form and how much in the form of
money. The interest elasticity of money demand, therefore, depends on two different margins:
the “intensive margin” of switching between money and interest bearing assets for people who use
interest bearing assets regularly (this the traditional Baumol-Tobin effect) and the “extensive margin”
resulting from changes in the fraction of people who choose to adopt interest bearing financial
technologies.®’

The nominal interest rate affects the extensive margin because it is part of the benefit of
adopting the financial technology: the higher the interest rate, the larger the incentive people will
have to adopt it. The key point is that the interest rate, R, affects the decision to adopt in the same
way as does the quantity of financial assets, A. The intuition for this is that the benefit of adopting

the financial technology is the total interest generated by the assets held in that form. This total

however, do not include many (or any) observations of low nominal interest rates.

8 We should note that, when the interest rates are small, the significant margin is the
extensive one because when interest rates are close zero, the gains of adopting are small so few
households will have adopted.

7 Barro (1970) also models the adoption of financial technologies and studies the
implications of his model for the interest elasticity of money demand. He estimates the
parameters of his model with time series data on hyperinflations. Hence, he focuses on the
interest rate elasticity at very large values of R whereas we estimate the same at very small
interest rates. We also depart from Barro by showing how the interest elasticity can be estimated
from cross-sectional data and by emphasizing the implications of our results for the welfare cost
of inflation.



interest, in turn, is the product of the interest rate, R, times the amount of assets, A. For example,
the gain to the consumer is close to zero if the product R-A is zero, independent of whether the
product is zero because R=0 (why adopt if the interest rate differential is negligible?) or because A=0
(why adopt if he has no assets to protect against inflation?). Hence, consumer behavior will be
similar when A is very small and when R is very small. This means that if we want to analyze
household behavior when the interest rate is very close to zero (that is, when their losses from not
adopting are small), we can investigate how the people with low amount of assets behave even if
interest rates are not close to zero because these are the people whose losses from not adopting are
small. In other words, given that the analysis of time-series evidence is bound to give NO
information on the elasticity of money demand near zero, we can find out about this interest rate
elasticity by looking at a cross-section of households and analyzing the behavior of the households
with small amounts of assets. If we conclude that people do not change their behavior when their
assets increase from 10 dollars to 100 dollars to 1,000 dollars to 5,000 dollars, if we see that a
substantial fraction on of people are willing to have 5,000 dollars in the form of money (or checking
accounts) before they decide to use interest bearing assets, then we will see that people are willing
to accept substantial interest losses before they decide to start using interest bearing assets. We will
in this case say that people do not react much to changes in the interest rates when the interest rates
are close to zero so the interest elasticity of money demand is small. In sum, by taking advantage of
the symmetry between R and A we are able to forecast the interest sensitivity of money demand for
interest rates that are outside of U.S. historical experience.

Our model also has strong refutable implications. We test the hypothesis that A and R affect

the adoption decision symmetrically and we are unable to reject it. We also predict that the interest



elasticity is practically zero for very low interest rates, 0.5 for moderate interest rates, and around one
for very high interest rates. The intuition for finding very small elasticities for small interest rates is
that, on one hand, when the interest rates are small, most people will not use interest bearing assets.
On the other hand, the marginal change in the number of adopters is small when the interest rates are
low (as it will be shown in Section III). Hence, the change in aggregate behavior will be small. This
is a very strong prediction which could be refuted by the data. Finally, we are able to use the
empirical estimates of the model to study how much of the interest sensitivity of money demand can
be attributed the “intensive margin” and how much to the “extensive margin”. To advance the main
result on this point, we find that the interest elasticity of household checking account demand is about
0.5. Of this overall elasticity we attribute a bit less than one half to the traditional intensive margin
and a bit more than one half to the extensive margin.

The rest of the paper is organized as follows. In Section II we present a simple static model
that highlights the main points of our argument. In Section III we describe the data sets from the
1989 and 1983 Survey of Consumer Finances. Section IV presents the estimates of the simple probit
when a constant fraction of interest bearing assets is assumed. We use these estimates to compute
the interest rate elasticity of household money demand derived from the adoption decision. In Section
V we amend the theory and we allow households to hold different fractions of their wealth in interest
bearing form, depending on their level of wealth and interest rates. Section VI presents the Tobit
estimates of the more general model. In Section VII we decompose the overall interest rate elasticity
into a Baumol-Tobin component (or intensive margin) and an adoption component (or extensive
margin). Section VIII introduces dynamic elements which are estimated in Section IX. The final

Section concludes.



I A Static Model of the Adoption of Financial Technologies
ILA  Setup

Consumers must decide whether or not to hold some of their financial assets in interest
bearing form. Let A, denote consumer i's financial assets - including non-interest bearing demand
deposits and interest bearing assets such as money market accounts, bonds, stocks, CDS, or mutual
fund shares. The benefit of interest bearing assets is the interest earned. In any period, a household
must pay a fixed cost in order make use of these interest bearing assets. If and when household i has
already decided to pay the cost and to use the financial technology, then he holds a fraction of his
overall financial assets in interest bearing form. In this section we assume that this fraction, which
we label o, is the same for all households so a=a.. In other words, we start with a model where,
once the financial technology has been adopted, households do not play the Baumol-Tobin game and
they keep a constant fraction of their wealth in interest bearing form. We relax this assumption in
Section V.*

Let R, denote the interest differential between "interest bearing” financial assets and

"monetary” assets such as demand deposits.” Holding constant the quantity of financial assets, the

8 1t should be intuitively clear that this assumption is quite innocuous when we focus our
attention to the behavior of money demand at low interest rates: when R is close to zero, then
nobody holds interest bearing assets. Hence, whether changes in R lead to large, small or no
changes in « is of little importance.

® We think that the interest rate differential between interest bearing financial assets and
monetary assets is proportional to the nominal interest rate on interest bearing assets: Let Ry be
the interest rate paid to interest bearing assets (equal to the real interest rate plus the expected
inflation rate) and R__ the interest paid to monetary assets. We imagine that a fraction, A, of the
monetary deposits, D, held by banks needs to be held (for legal or technological reasons) in the
form of reserve cash. The rest is lent at the rate R;. Thus, banks pay a total of R, ‘D in interest to
monetary accounts and receive a total of (1-A)-D-Ry dollars from lending. If there is free entry
into the business of offering monetary accounts, there will be no profits from these operations so

9



gain to consumer i of using the financial technology is the product R;a-A;. This is because, by
definition, no interest can be earned on financial assets unless the financial technology is adopted.
We suppose that there are two types of costs to adopting the financial technology. The first
is a fixed cost § which is incurred every period that the technology is used, regardless of the intensity
of the use of the technology (ie, independent of the quantity of financial assets that are held in interest
bearing form). This cost depends on a vector of household characteristics such as age, schooling, or
the distance from the nearest financial institution. The second is a variable cost which is proportional
to the quantity of assets held in interest bearing form. This could be, for example, a proportional fee

charged by the broker. We subsume this variable cost in the interest rate differential R.

II.B. Optimal Adoption

Interest-bearing assets will be used by household i with characteristics X; when the benefits,

R, A, exceed the cost y(X;). Hence, he will adopt if

R-o-A; > ¢, (X) (1)

Because our basic model has no startup costs,'® the decision to hold some interest bearing

assets at age t depends only on A, §, «, and R. Lagged variables do not affect the decision. It

the equality R -D=(1-A)-D-Rg will hold. This zero profit condition can be rewritten as Ry-
R, =A-R;. It follows that the interest rate differential, R=Ry-R,, is proportional to the nominal
interest rate Ry.

19'We will deal with dynamic considerations and startup costs in Sections VIII and IX.

10



doesn't matter whether A was expected to follow the life cycle path that it followed ex post.'!

IL.C. Cost Heterogeneity

We allow for the possibility that the fixed costs, {, , vary across consumers. We allow it to
vary with age and schooling, as well as with other characteristics such as distance between home and
the relevant financial institution, the health condition of the members of the household, or whether
the head of the family is retired or not. For example, older and less educated people may have less
(or perhaps more) ability to adopt financial technologies, and less healthy people may find it more

costly to engage in financial transactions. Costs are also allowed to have an idiosyncratic component.

Iny,(X) = B, + BX, with (Big=-n)/o~D, 2

where the vector X, reflects the relationship of costs with age and schooling and perhaps other
characteristics on the cost of adoption. The coefficient B, is the person-specific component of the
cost, which is independent of asset holdings, A, and household characteristics, X;. The variable (B,, -
n)/o is distributed according to the cumulative distribution function ®, which we will assume in our

empirical work to be the standard normal. The parameters pu and o can be interpreted as the mean

'!' Tt can be argued that the reason why a lot of people do not hold interest bearing assets
is that these assets are offered in “minimum-sized bundles”. In other words, one cannot purchase
a 20 cent certificate of deposit. Presumably, banks require these minimum deposit amounts
because they face a fixed cost. Hence, households hold interest-bearing assets if A > A, where
A,,;, is the minimum deposit requirement. Banks, in turn, choose A, ;, knowing that they face a
fixed cost of managing these accounts. Let us denote the fixed cost by faced by bank j by €, A
zero profit condition for the marginal accounts will ensure that the benefits, which are an
increasing function of the revenue generated by these accounts, R-A,;,, are equal to the costs, €;.
That is, f(R-A,;,) = €;. By inverting f() we get R°A_,, = "(ejs ;. This condition ensures that
households hold interest-bearing assets if A'R>{s;. Note the similarity between this, and condition
(1).

11



and standard deviation of B, .
The probability that household i with financial assets A, is holding interest bearing assets is:
Prob[ Rya:A; > ¢y(X) ] =
Prob[ B,y < nA;+InR;+In¢e; - B-X;] =

InA;, + nR, + Ine;, - BX, -

g

3

If we consider a population of households, each of which has assets A, and characteristics X (and we
assumed that « is the same for each of these households), then the fraction which hold interest bearing

assets is:

InA + InR +Ina - X - p
o

d(RIA,X) = cb( 4

where @ is the cumulative distribution function for the cost parameter 3, Note that d(RIA,X)
increases monotonically in R - more people use interest bearing assets when the interest differential
is higher.

Equation (3) illustrates an interesting feature of the model: holding constant «, the interest
rate and the quantity of assets have the same effect on the adoption of the financial technology. A
household with assets A/2 but facing an interest rate of 2R will, according to the model, make the

same adoption decisions as a household with assets A and facing an interest rate of R. This allows

12



us to use the cross-sectional data to make inferences about the behavior of households in economies
with very high (low) interest rates by looking at the behavior households with very high (low)
financial asset holdings. We believe this is an important advantage over time series studies which only
provide information about monetary behavior over range of interest rates that were experienced over

the time period being studied.

II.D. The Demand for Money and its Interest Elasticity

The average money demand from the household sector is the weighted sum of the demand
of adopters and non-adopters, where the weights are the fraction of households who adopt and the
fraction who don’t respectively. The demand for money by non-adopters is A, while the demand by
adopters is [1-a]A. Since the fraction of the population that has adopted is given by ®(-) and the
fraction that has not adopted by 1-®(+), the average demand for money by people with assets A, and

characteristics X is given by:

I(RIAX) =[1 - ®()]A + P(*)[1 -a]A

:A[l_aq)(lnA+lnR+lna—BX—p” (5)
(o}

If we graph this money demand as a function of the interest rate, we will note that its shape
is similar to the inverse of the shape of a cumulative distribution function, as displayed in Figure 2.
For low values of R, it is almost horizontal, it falls rapidly for intermediate values of R, and it

asymptotes zero for large values of R.

13



Constant Elasticity Demand Function

Our Money Demand Function

Figure 2: The shape of the money demand function.

By taking the derivative of the log of this money demand function with respect the log of the

interest rate, we get that the interest rate elasticity for this group is:

CRIAX) - - A 24flnA+ IR+ Ina-BX -p

I(RIA,X) O c

(6)
1 o _
= - % (@ '[dRIA,
e d®AD 0<l>( [d(RIA, X)])
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The first term above, 1/(1-ad), is monotonically increasing in R. It reflects the ratio of average A to
average money holdings. As R approaches zero, this term approaches 1. As R approaches infinity,
this term approaches 1/(1-a)>1. The second term, ad(®'[d)), reflects the change in the fraction of
adopters, @, that arise from a small increase in the interest rate. Remember that ¢ is the density

function corresponding to the cumulative distribution function ®. When plotted against R, the term

Legend

—— |(interest Elas| (Y1)
———— A/l term (right scale) (Y2)
'''''''''''' new adopters term (Y1)

Interest Elasticity, absolute value

Nominal Interest Rate (log scale)

Figure 3: Interest Elasticity of Money Demand

follows the shape of the density function for the cost term f3,, which is hill shaped for unimodal
distributions. The maximum is attained at the mode which, for a normal distribution ®, occurs at In
R=03X+p-InA-Ina Forvery small and very large values of R, this term approaches zero.
These two terms, together with their product the interest elasticity, are graphed below for the case
of a unimodal distribution.

The magnitudes above are hypothetical and will change with changes in the parameters of the
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model, but the shapes are not particular to the parameters shown. The interest elasticity is basically
a hill-shaped function of R, with its greatest magnitude at a nominal interest rate greater thanIn R =
B-X + p - In A - In & (which is shown as 1 in the figure above)."? The interest elasticity approaches
zero as R becomes very large or very small.”® This is because for large (small) R almost everybody
(nobody) has adopted so there is little behavioral change as a result of increasing (decreasing) R any
more.

We also see that the interest elasticity is a hill-shaped function of assets. Hence, a prediction
of the model is that, if governments tax money according to its interest elasticity (e.g., for Ramsey
considerations), then the nominal interest rates will follow a u-shaped pattern with economic
development. Very poor and very rich economies will have high nominal interest rates. Middle
economies - where middle is defined to be an economy where roughly half of the households have

adopted - will have the lowest nominal interest rates.

III. Data from the Survey of Consumer Finances

We estimate the parameters of our model with data from the 1989 SCF. We measure the
variable A as the dollar value of financial assets held by the household. These assets include checking

accounts, money market accounts, savings accounts, savings bonds, CDS, other bonds, mutual fund

2There can be multiple peaks of the interest elasticity as a function of R, but the single
peaked case seems to prevail for the parameters that we have tried.

PThis figure has been parameterized so that scale of the horizontal axis corresponds to
annual percentage points. So a 1 on the graph represents a nominal interest rate of 1% per year, a
10 represents 10 percent per year and so on. Thus, according to the parameters that we have
chosen, the hill-shaped relation between interest rates and elasticities will occur for reasonable
values of the interest rate. We estimate these parameters in later sections of the paper.
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shares, and equities. We think of "interest bearing assets" as those assets which pay a relatively high
rate of return and are somewhat substitutable for money - money market accounts, CDS, other bonds,
mutual fund shares, and equities. We define an adopter of the financial technology to be a household

which has a positive quantity of any of these "interest bearing" assets.'*

100,000 -}
10,000

1,000 -

financlal assats (§, 3 year MA)
8

Figure 4 Distribution of Financial Assets by Age

Figure 4 displays the 10th, 30th, 50th, 70th, and 90th percentiles of the financial asset
distribution for each age group.” We see that assets rise with age: median financial asset holdings

rise from $500 in the early twenties to $20,000 in the late seventies.'®

"“Pension and "social security” wealth are excluded because they entail little adoption costs
as they are usually provided by the firm with little effort on the part of the worker or household.

“Because we have relatively few sample households for any particular year of birth (e.g..,
we have 40 29-year-olds, 63 47-year-olds, and 41 71-year-olds), we compute our statistics for
each birth year and then display a weighted three year moving average in the figure. The weights
are the number of sample observations for the corresponding birth year.

'The y-axis is a log scale. The jagged pattern for the 10th percentile appears in the figure
because, for several age groups, more than 10% of households report zero financial assets.
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We have argued that households with RaeA greater than the cost, J, should have adopted.
Suppose, for example, that the cost { = Re2000 and that x% of age group t has more than 2000 in
financial assets. Then we predict that x% of that age group should have adopted. Figure 5 graphs
Centiles of the financial asset distribution corresponding to four dollar amounts: $1000, $2000,

$3000, and $4000. If the cost Y/aR is constant across age groups, then, by the reasoning above, we

0.80

0.60 -|

0.40 |

0.20

Figure 5 Centiles of the Financial Asset Distribution for four dollar amounts and
fraction of non-adopters

predict that the fraction of nonadopters should coincide with the centiles corresponding to J/aR
dollars in financial assets.

Figure S also displays the fraction of non-adopters for each age group. We note that the
fraction falls from more than 80 % of households in their 20s to close to 50% for households between
30 and 40 to close to 40% for households in their 50s. The fraction of nonadopters is fairly constant
after that age. Figure 5 shows two important properties of the data set. First, the decision to adopt
seems to follow a life-cycle pattern Second, the fraction of non-adopters follows the centiles

corresponding to the dollar amounts between $1000 and $4000. This suggests that the cost term Y(-)

18



is between 0R1000 and ¢R4000. For .~ 1 and R =0.05, this implies an annual cost of between $200
and $800. If the cost of using interest bearing assets were 10 or 40 hours per year and the value of

time were about $20/hour, Figure 5 suggests that household's decisions to purchase interest bearing

assets are rational.
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Financial Assets, log scale

Figure 6 Fraction Adopting vs. Financial Assets
(NOTE: Each point graphs a centile mean. Centiles are unweighted and of size 31 or 32)

In Figure 6 we plot the fraction of household that adopt the financial technology versus the

amount of financial assets they own. Each point in the figure represents the mean of a centile of the

financial asset distribution, with each centile containing roughly 31 households. We see that the

19



fraction of adopters is nil for the first 13 centiles. This suggests that a proportional change in the
level of assets (and, therefore, a proportional change in the benefits of adoption) when the level of
assets is small triggers a small, almost negligible, change in the fraction of households who adopt.
The same is true at the highest levels of assets: a proportional change in the level of assets for rich
households triggers no change in the fraction of adopters.

In this paper we will also use the asset data of the 1983 Survey of Consumer Finances. The
reason is that in a later section we will argue for the need of lagged values of A as an instrument for
A. We will also introduce dynamic elements to our model which will require the use of lagged values
of A as an additional explanatory variable in the probit estimates. Given that, of the 2847 households
that participated in the 1989 survey, 1343 also participated in the 1983 survey, we can use this
smaller sample in order to have household data at two points in time. We can therefore use the 1983

values of a variable as a lagged value of its 1989 counterpart.

IV.  Probit Estimates of the Static Model with Constant c.

Table 2 displays probit estimates of equation (1) using the 1989 Public Use Cross-Section
of the Survey of Consumer Finances. Column (1) has the log of financial assets as the sole
explanatory variable. The coefficient on In A is 0.661 (s.e.=0.022). Thus, the logarithm of financial
assets is a key explanatory variable for the probability of adoption of a financial technology. Under
the assumptions that @ is the standard normal distribution, that the costs are not a function of X ([3

= 0), and that « is independent of financial assets, the coefficient on In A is a consistent estimate of
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1/6" so we estimate 0=1/0.661= 1.51. Column (2) adds age and a dummy for college as explanatory
variables. Although the coefficient on age is negative (indicating that old people are less likely to
adopt) it is not statistically significant. The coefficient on college is positive and significant: people
with a college degree are more likely to adopt.'® The introduction of these two variables does not
alter the coefficient on In A much."”

Since we lack data for household-specific interest rates, we cannot in principle introduce the
interest rate, R, in our empirical analysis. However, if we assume that all households face the same
pre-tax interest rate differential (or that they face an interest rate that is uncorrelated with other
explanatory variables) we can use the marginal tax rate faced by each of the households to proxy for
the rate of return. The reason is that the relevant interest rate for the decision adopt, however, is the
interest rate differential net of taxes. We therefore compute the marginal tax rate for each family using

data on household income and using the 1989 income tax code and use the following interest rate:

InR:(1-t) = InR, + In(1-1) @)

k]

where T, is household’s i marginal income tax rate. Under the assumption of lack of correlation with

other explanatory variables, the term In R, will disappear into the error term and the term In(1-t)) will

'"In Section V, we allow for & to be a function of (A*R). In this case, the probit
coefficient on In A is no longer an estimate of 1/0, but the coefficient enters the computation of
the interest elasticity in the same way as 1/o.

18 We tried years of schooling instead of the college dummy. It never enters with a
statistically significant coefficient. We therefore report only the college dummy specifications.

'"We have experimented with non-linear terms for age, but they were not significant.
Hence, we dropped them from the analysis.
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capture the variation in the relevant interest rate differential.

Column (3) implements this idea empirically by estimating the same probit with the log of 1-t;
as an additional explanatory variable. The coefficient on In A is similar to the ones we estimated
before, 0.666 (s..=0.025), and the coefficient on college is positive and significant, 0.168
(s.e.=0.079). The new element is that the coefficient on In(1-t,) is 0.471 (s.e.=0.414). The test of
the hypothesis of identical coefficients for In A and In(1-t) cannot be rejected at the usual levels of
significance.

Column (4) introduces the log of household income as an additional explanatory variable. It
fails to be significant. Columns (5) introduces the distance of the home from a financial institution.
The rationale for this variable is that having the financial institutions could contribute to the cost of
adopting technology (if the costs were related to some kind of physical transportation). This variable
enters negatively (the farther away the financial institution is from the home, the less likely it is for
the household to adopt) but fails to matter significantly. Column (6) introduces a dummy variable
for poor health, which tries to capture the fact that a poor health may increase the costs of adopting
a financial technology. The variable is negative but not significant. Column (7) introduces a dummy
variable for retired people. The reason is that retired people may have more time to manage their
money and, as a result, they may confront a lower adaptation cost. We find that retired people are

less likely to adopt, although this is not significant.

Instrumental Variables
The probit estimates presented in Table 2 are subject to two types of potential problems.

First, financial assets may be measured with error. This means that differences across households in

22



the level of financial assets are partly the result of measurement error so we should not expect to see
a large behavioral response to a change in measured A even when the true behavioral response is
large. Second, A may respond to unobserved components of the cost () or benefits (R) of adoption.
For example, some households may face a rate of return on financial assets that is relatively high when
compared to the rate of return they face on nonfinancial assets such as their home or business. This
would encourage them to hold financial assets and, holding constant A, to adopt the financial
technology. A solution to both of these problems is to use instrumental variables. We propose some
instruments that are correlated with A but that we believe are uncorrelated with unobserved
components of ¥ or R and uncorrelated with measurement errors. These instruments are a lagged
value of A and an age polynomial. The correlation between age and A is 0.29. The correlation
between the value of A in 1989 and its corresponding 1983 value is 0.89.

Table 3 reports the instrumental-variables probit estimates which are suggested by our model
in the case that « is independent of R. Column (1) reports the results of the instrumental variables
estimation when only an age cubic polynomial is used as a predictor of In A 4, The coefficient on
In A, g declines slightly to 0.35 (s.e.=0.02) but remains positive and strongly significant.”

The next two columns use the 1983 as well as the 1989 SCF. In order to establish
comparability, in Column (2) we reestimate a probit without instrumental variables, but with the
sample of households that appear in both the surveys. Note that the sample size of the panel members
is 1342 rather than the 2847 households available for the 1989 survey. The coefficient on In A g,

is, 0.722 (s.e.=0.040), which slightly larger than the 0.67 we got for the full 1989 sample. When In

% If we include a linear age term in the second stage, the point estimate on In A is very
similar. The confidence interval on In A grows because age is the main predictor of In A in the
first stage.
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A, g5, is included as an instrument for In A4 (reported in Column (3)) the estimated coefficient on
In A g5 is 0.58 (s.6.=0.03), similar to that we estimate without instruments. Again, the coefficient is
slightly smaller but still significantly positive. The main message of the instrumental variables
estimation is, therefore, that the probit estimate of 0.67 might be slightly biased upwards because of
simultaneity bias. This bias, however, does not seem to be the main story behind the positive point
estimate.

Finally, see in Table 3 that the point estimates on college and In(1-t) are more sensitive,

although we cannot reject the hypothesis that the coefficient on In A, 44 and In(1-t) are the same.

Empirical Findings on Money Demand and its Interest Elasticity
We use the regression coefficient from Table 2 and equation (6) to compute the interest
elasticity for each financial asset decile of our sample. We repeat the formula for the interest elasticity

for convenience:

1 o -
RIA X) = - — OO ' [d(RAI
SRIAX) = - s 6(@7 [dRAIX))

Our calculations presume that the vector B = 0 and that ¢ is constant. Using our estimate of 0.66 for
1/0 from Table 2, we graph in Figure 7 the interest elasticity as a function of financial assets.

Two methods of calculation are used. The "restricted" method, whose results are displayed
as a solid line, assumes that that o is independent of financial assets and that d(RA) varies with RA
according to the normal distribution as implied by the theory. In this calculation, ¢ is set to its sample
median value of 0.8. The "unrestricted" method, for each financial asset centile, uses the centile

mean of « and the centile fraction adopting to allow d(RA) and & to vary with financial assets in a
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"nonparametric" way. The two methods yield similar computations.
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Figure 7 Estimate Interest Elasticities

Each data point is constructed from roughly 30 sample households. The crosses indicate the
number of U.S. households that are represented by each data point.?! We see that the bulk of U.S.

households have between $1,000 and $100,000 in financial assets, so the interest elasticity relevant

21149 of U.S. households are not represented because their sample counterparts (9% of
the sample) report zero financial assets.
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for most households is between 0.1 and 0.3. The mean interest elasticity is .13 (.19 for restricted
version).

The horizontal axis is labeled "Financial Assets*(R/R,q,)." Notice that A and R enter our
model symmetrically so Figure 7 can also be interpreted as a graph of the interest elasticity versus the
nominal interest rate. Because one tick on the horizontal axis represents a factor of ten, an increase
in the nominal interest rate by a factor of ten would shift the entire figure to the left by one tick.
Consider, for example, a person with $1,000 in financial assets in real terms. Let's hold fixed this
person's real financial assets and change the nominal interest rate. His elasticity would fall for lower
nominal interest rates. It would increase up to a point for higher nominal interest rates and then, after

roughly a factor of 10 increase in the nominal interest rate, begin to decrease.

V. Endogeneizing c.
V.A. Setup.

We have assumed up to now that, once they have adopted, households hold a constant
fraction, ¢, of their assets in interest bearing form. We want to relax now this assumption by
assuming that, conditional on holding interest-bearing assets, the fraction held in interest-bearing form
depends on the quantity of assets and on the interest rate. We settle on a functional form for this

dependence by supposing that the demand for money is given by:

a_ (1-Vv)A + VAL(A,R) if adopt

M A if not )
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where v represents an idiosyncratic component of the demand for money. The function L(A,R) takes
values between zero and one. We expect this function to be decreasing in R.

The variable v is assumed to be log-normally distributed, which implies that M* can be
negative. As in Tobin's (1958) analysis of automobile purchases, we assume that a negative m
means that the consumer holds no money and that he will not hold positive amounts without

inframarginal changes in his demand:

MY ifM?>0
M = 0 ifM?<0 (10)

According to our definitionof & = 1 - (MYA),

0 if adopt & M4 < 0
Ine = Inv + in[l - L(A,R)] if adopt & M? > 0 (an
unobserved if not adopt

We show the three possible cases above. In the first case, the consumer has adopted the financial
technology but he holds no money so the econometrician does not observe his desired money
demand. In the second case, the consumer has adopted and desired money demand is observed. In

the third case, the consumer has not adopted so In a cannot be observed.?

V.B Costs and Optimal Adoption

2We neglect the case where no financial assets of any kind are held.
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Interest-bearing assets will be used by household i when the benefits, R-a;A+;, exceed the cost

Pi(X):
adopt if: R-a.A; > §(X)
As in Section II, the cost of adoption varies with household characteristics such as age and
schooling:
Iy, (X) = B,y + B-X (12)
with
p a’ pOC,O
p i g
By lnv) ~ N | 7|, - (13)
H] |pogo, o,

The idiosyncratic cost B;, and the money demand parameter v are jointly independent of asset
holdings A, and X. B,;and In v are distributed according to a bivariate normal distribution.
The probability that household i with financial assets A, is holding interest bearing assets is:
Prob[ R, A, > Y (X) ] =
Prob[ B,o-Inv, < InA;+ InR +In [I-L(A,R)] - B-X] =

InA, + InR + In[1-L(A,R)] - BX - p
o

(14)

=
i

= Hp 7 My
‘/0[23 + oi - 2po,o0,

Q
"
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If we consider a population of households, each of which has characteristics X and has assets A, then

the fraction d(R | A,X) which hold interest bearing assets is:

nA + InR + In[1-L(A,R] - BX - p
ag

dRIA,X) = ©

In our empirical analysis we use the following functional form for L("):

SAN IR
1 +3AN IR

L(A,R) =

V.C A Tobit Model of In A.

Equation 11 and the cost specification of the last section deliver a model for In a:

0 iflnvlnyg -InA-InR-Infl ~-L(AR)] & Inv > -In[l - L(A,R)]
Ing = In[l -L{(A,R)] + Inv iflnvolny -inA-InR-In[1 -IL{A,R)] & Inv < -In[1 - L(A,R)]
unobserved iflnv<lny -InA-InR -In[1 - L(A,R)]

This is a very close cousin of the Tobit model with some differences:
6 The truncation rule depends on the independent variable (In A)

(i) The model is nonlinear in the parameters (because L({A,R) must be in (0,1))
(iii) It requires the numerical integration of bivariate normal.
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Item (i) is not a big problem - several popular statistics packages, such as STATA, include this
extension as part of their Tobit routine. Item (ii) requires a slight modification of the likelihood
function used by STATA and other packages to compute linear Tobits. See the Appendix for the
likelihood functions that we use.

Other than brute force quadrature, item (iii) can be handled in to ways. First, we can ignore
truncation at In & = 0, assuming that M*=0 at this point rather than M%<0. This may be an efficient

shortcut because less than 5% cases have In o = 0. Another solution is to set p = 0.7

V.D. The Demand for Money and its Interest Elasticity.

Average money holdings are now given by

KRIA, 0, X) = [1 - ®(-)]A + @(-)[1 - a]A
zAll_a(D(lnA+lnR+lna—BX—p” (18)
g

If we take the derivative of In /(-) with respect to In R we find the interest elasticity of money demand:

eRIA, X) =

] ! URA) + [1 - dRAN Y RA) 401 4RIA. 2]) - d ] 19)
TR A AR . H@"'d(RIA, 20]) - dRIA,X) YaRA)[1 - a(RA)]

2In the first case where the o = 1 corner is ignored, we estimate p ~ 0 so the assumption
of p = 0 may not be so bad.
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It is worth comparing this expression for the interest elasticity with Eq. 6, derived under the
assumption of a constant . The ¢/0 term corresponds to the previous elasticity. This term just
reflects the direct effect of the rate of interest on adoptions. The second term in the numerator is an
indirect effect of R on adoptions through changes in &.. The final term derives from the change in the
money demand of non-marginal adopters. Notice that the first two terms involve marginal adopters
and therefore they involve the density function ¢. These two terms go to zero as R becomes very
large or very small. The final term approaches zero for small R because almost nobody adopts at low
R so that sensitivity of & to R is largely irrelevant. For large R, however, almost everybody adopts.

The final term approaches 0 as R approaches infinity.**

VI. "Tobit" Estimates.

We now use the "Tobit" model to jointly estimate the parameters governing the adoption
decision and the parameters governing the quantity of money demanded conditional on adoption. The
results are reported in Table 4. The first four rows of the Table report the estimates of the
coefficients of he adoption equation. Columns (1) and (2) do not restrict the coefficients on In A,
In(1-1) and In(1-L(-)) to be the same, as predicted by the model. We estimate that the effect of In A

on adoption is quite similar to our probit estimates - the "Tobit" estimates are 0.66 or 0.67 as

*The limit of this final term depends somewhat on functional forms. For values of v
different from one, this elasticity will go to zero as long as L(*) tends to zero when R goes to
infinity, and the limit elasticity of L() with respect to R is finite. When v takes the value of one,
however, this elasticity tends to -y.

Because yo.(A,R) represents the elasticity of L(A,R) with respect to R, readers can easily
think about the case where y0.(A,R) is constant as R approaches infinity: one can see from the
equation that €(R) will approach this constant.
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compared to probit estimates of 0.67. We find this similarity because In A has only a small (although
statistically significant) effect on the fraction of assets that adopters hold in their checking accounts
and because the fraction has a small effect on the probability of adoption. The coefficient on age is
not significant and the college dummy is positive and statistically significant. In the third column we
restrict the coefficients to be the same. We estimate a value of 0.59 (s.e.=0.02) which, again, is not
very different from the estimates found in our simple probits. The null hypothesis that the coefficients
onIn A, In(1-7t), and In(1-L(A,R)) are equal cannot be rejected at the 95% confidence level.

The sixth and seventh rows of Table 4 report the estimates of the effects of In A and In(1-71)
on the fraction of assets hold in their checking accounts. When we exclude In(1-t) from the analysis
(Column 1), we find that the coefficient on In A is -0.17 (s.e.=0.05). The introduction of In(1-t) in
the estimation reduces the coefficient of In A to -0.24 (s.e.=0.05), while the coefficient on In(1-t) is
-1.55 (s.e.=0.53). The two coefficients change little when the estimation is restricted (see Column
3). Hence, we conclude that the interest rate has sizeable effects on the fraction of assets that
adopters hold in their checking accounts.

A possible interpretation of the negative effect of In R (as measured by In (1-t)) is that In (1-t)
is proxying for the level of income. One could argue that a good measure of the number of
transactions (which is the variable that belongs in the money demand function according to Baumol-
Tobin) is the level of income. If we exclude income and include its marginal tax rate, the latter will
capture the effects of the former. In Column (4) we include the log of income as an additional
explanatory variable for the adopter’s money demand function, and find that it has a positive sign,
although it is insignificant (0.03, s.e.=0.03). The variable In(1-T), on the other hand, remains negative

and significant, although the point estimate declines slightly. The coefficient on In A changes little.
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VII. Decomposing the overall Elasticity into intensive-margin and extensive-margin
components.

We now want to say whether the behavioral response to changes interest rates will tend to
arise from the intensive or extensive margins. The theory suggests that, when the product AR is low,
adoption is rare so any behavioral change in response to a change in R must come mainly from
marginal adopters (even if the adopters change their behavior substantially, their effect on aggregate
behavior will be small since they are few). When AR is high, on the other hand, most people have
adopted so their behavior will be an important determinant of aggregate behavior (and these are the
people who might be behaving according to the inventory model). In this section we decompose the
aggregate money demand elasticity at empirically interesting levels of A and R into marginal
adoptions and the behavioral change of adopters.

In order to decompose the overall elasticity into an intensive margin component and an
extensive margin component, we need to settle on a value of y. Given that our empirical estimates
do not pin down y with much precision, we will adopt an alternative strategy. We will consider four
values of y. We use y=0 (the case corresponding to a constant ¢), y=0.5 (which roughly
corresponds to the Baumol-Tobin model*®), y=1 (which is a reasonable intermediate value) and y=2
(which we consider to be an upper bound of the true y). For each of the values we use Equation
(19) to compute the elasticity associated with all interest rates between 0.1% and 1000%. Equation

(19) requires a value for 0 and «. Our empirical estimates indicate that 1/0=0.6. We set « to its

¥ This correspondence is not exact because the functional forms are different. The
Baumol-Tobin money demand function exhibits a constant interest elasticity at 0.5 while our
functional form does not.
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median sample value of 0.8. Finally, we choose a benchmark value for d(R): when R=5%, we assume
the household has a 50% adoption probability. Figure 8 displays the resulting elasticities. It also

displays the fraction of adopters corresponding to the case y = 0.

Legend
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Figure 8 Interest Elasticity as a function of the Nominal Interest Rate in the model with
endogenous ¢.

If there is no behavioral response to an interest rate change conditional on adopting (that is,
if y=0), then all of the aggregate response is from changes in the decision to adopt so all the elasticity
comes from the extensive margin. We see from the solid line that the aggregate household money

demand elasticity is about 0.3 at a 5% interest rate and increases to about 0.4 at about a 15% interest
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rate. The elasticity falls for larger interest rates. The dotted line displays the fraction of households
that have adopted for every interest rate when y=0.

The lines corresponding to higher values of y show that, even if y is as large as 2 our
predictions for the money demand elasticity are not so different for interest rates less than 20%/yr.
For higher interest rates, a sizable fraction of people adopt and the aggregate elasticity is a
combination of the elasticity of adopters and that resulting from marginal adoptions. Our estimates
are therefore more sensitive to y at these higher interest rates.

To decompose the overall elasticity between an extensive and an intensive margin, pick one
of the values of y, say y=1. Consider a 5% annual interest rate. The curve representing y=1
suggests that, at this interest rate, the overall elasticity is 0.5. The curve representing y=0 suggests
an elasticity of 0.3. That is, if there were no intensive margin the elasticity would be €=0.3 but, in
actuality it is €=0.5. Hence, we say that the overall interest rate elasticity of money demand is 0.5

and a bit more than one half of it is due to extensive margins.

VIII. Introducing Dynamic Elements.

The models of sections II and V were static in the sense that, at a point in time, everybody
is assumed to be able to pay a yearly cost and gain access to the financial technology. This assumption
seems inappropriate if the cost of adoption entails a startup component. For example, an important
component of the cost of adoption could be the “learning” that needs to take place before one can
use financial assets. This learning process is probably done once. Once learned, the technology can
be used without having to pay any further learning costs (this assumes no technological innovations

in the financial sector which need to be learned).
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When startup costs are important, new elements enter our analysis. For example, conditional
on assets, the young will be more likely to have adopted because they had a longer horizon when the
technology was introduced (or became cheap). This is a reason to expect a negative effect of age on
the likelihood of having adopted a new technology even when the cost of adoption is independent of
age. Non-monotonic lifetime profiles for assets introduce another effect of age on the probability of
adoption: for a given level of current assets, older people are more likely to have experienced a high
level of assets in the past. For this reason, we might expect age to be positively affect the probability
of adoption. Uncertainty about future asset holdings introduces another positive age effect. This is
because an additional term will in the equation (1) determining the optimal age of adoption - a term
which reflects the option value of waiting to adopt. The magnitude of the option value will depend
on the variance of future asset holdings and on the magnitude of future interest which might be
earned. We expect this option value of waiting to decline with age as there are fewer years to be
uncertain about.

Because financial asset holdings - and therefore the benefits of adopting - grow with age in
our data, we expect that there is not a strong incentive to "unadopt” the technology in order to avoid
the annual fixed cost {, for a given interest rate R. On the other hand, in a data set where, for
example, nominal interest rates have fallen substantially over time, we may expect to see households
who have paid the startup cost but who are not currently using the technology.

To see the potential importance of startup costs, in Table SA we report the fraction of

households that hold interest-bearing assets in 1983 and 1989. In 1983, 58.2 % of the households
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did hold interest bearing assets and 41.8% did not.® The corresponding numbers for 1989 were 60%
and 40%. A total of 50.4% of the sample held interest bearing-assets in both years while 32.3% did
not hold assets in either year. The interesting figure is that 13.4% of the households (115 out of 860)
who owned interest bearing assets in 1983 did not hold such assets in 1989. In other words, a
significant fraction of households “dropped” the financial technology between 1983 and 1989. A
possible explanation is, of course, that interest rates were much lower in 1989 than they were in 1983.
The benefits of using financial technologies were much lower so a substantial fraction of the
population decided not to use them, even though the startup costs had already been paid in 1983.
This finding suggests that, regardless of whether start up costs are important, the fact that so many
households stop using the financial technologies means that the yearly adoption costs (as we modeled
them in the first part of the paper) are empirically important.

Nevertheless, in this section we will introduce startup costs into our analysis. We conjecture
that, in the presence of such costs, the likelihood of adopting depends on “permanent” level of assets,
In A", which we measure as a weighted average of current and past log assets:

InA,” + InR + ne - BX - p
o (20)

InA,” = AlnA, + (1-A)InA4,_

This specification allows for assets to decline with age, but assumes that, holding constant age, the

26 These figures are unweighted because we do not have the sample weights for 1983,
Hence, 50.4% of the households in the sample hold assets in both periods. We don’t know what
fraction of the United States households these represent.
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whole path of past assets is summarized by In A, ;. Any other characteristics of the past path which
affect the likelihood of having adopted by age t are assumed to be uncorrelated with the other
variables of interest. The basic idea is that, holding constant current assets, households with high
assets in the past are more likely to have adopted. This effect arises because the high past level of
assets before generated enough extra interest to justify undertaking the startup cost and because
relatively high past assets suggest that the household's current level of assets may be temporarily low.

The parameter A will be large when asset holdings are very persistent. In the limiting case
where assets are independently distributed at each moment in time, A will be quite small because
current assets say little about the lifetime benefits of adopting. The parameter A will also depend on
the size of the startup cost relative to the other costs. For relatively small startup costs, decision rules
will approximate those under the static model and A will be close to 1. For large startup costs, lagged

assets will have an important effect on the current likelihood of having adopted.

IX. Estimates of the Dynamic Model

In Section VIII we showed that the key to the dynamic aspects of the model was to estimate
the probit with In A, as an explanatory variable. In practice, we can implement this idea by using
In A 4; as the lagged value of In A,y,. The results are reported in Table 6. Column (1) estimates the
probability of adoption in 1983 by using In A, age and a college dummy as the only explanatory
variables. The sample of households used in this regression is the panel of 1343 households who
participate both in the 1983 and 1989 surveys. The first thing we note is that the coefficient on In A
is 0.800 (s.e.= 0.044), which is a bit larger than the coefficient for 1989 found in Table 2 for the

larger sample of households. We also note that the age coefficient is now -0.005 (s.e.=0.004) and
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that the college coefficient is 0.261 (s.e.=0.123).]

Columns (2) mimics column (1) for 1989. This column is different from Table 2 because the
sample of households is n\ow smaller (1343 compared with the 2847 of Table 2). Despite the
differences in samples, the coefficient on In A is very similar [0.722 (s.e.=0.040)]. As mentioned
above, this coefficient is substantially higher than the corresponding coefficient for 1983. Unlike the
1983 regression, age coefficient for 1989 is not significant. An interesting point is that the college
variable is not significant for 1989, even though it was significant when we used the longer sample.

Column (3) uses the 1989 dependent variable with the 1989 In A, age and college. The key
to Column (3) is that it also includes In A 4, ( which we take as In A, in the theory of the previous
section). The coefficient on the In A 4, is 0.669 (s.e.=0.043). The lagged variable, In A, ,, has a
positive and significant coefficient, 0.106 (s.e.=0.031). Columns (4) and (5) add In(1-t) to the
estimates of columns (2) and (3) respectively. We note that the coefficients on In(1-t) are not
significant and the rest of the coefficients change little.

To compute the implied coefficient on In R, we need to know how In A 4, relates to In A, g;.
The autoregression coefficient, displayed in Table 5, is 0.832 (s.e.=0.015). Using this coefficient to
write In A 4, as a function of In A, 4, and plugging the result in the probit equation we see that the
“overall” coefficient on In A 4, would be 0.669+0.106/0.832 = 0.798.”7 This coefficient is a bit
higher than but not very different from the one we get in Column (2) of Table 6 for the panel sample
of households (which is 0.722 (s.e.=0.04).) The main lesson is, therefore, that extending the empirical

analysis to a dynamic setup yields very similar results to the static framework.

71 we use the coefficients of Column (5) instead, the implied coefficient is
0.672+0.107/0.83=0.801, which is still not too different from 0.722
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X. Conclusions

This paper explores some of the behavioral distortions created by inflation. We start by
pointing out that the distortion emphasized by inventory models of money demand - namely, the
substitution of interest-bearing assets for monetary assets - is not relevant for a majority of
households at current interest rates. The important decision is not the fraction of assets to be held in
interest bearing form but whether to hold any amount of interest bearing assets at all. We call this
decision the decision “fo adopt the financial technology” or the “extensive margin” decision.

The theoretical and empirical implications of this realization are interesting and important.
For example, the benefit of adopting the financial technology will typically be the amount of interest
income that would otherwise have been foregone. This foregone interest is usually related to R (the
nominal interest rate differential) times A (the amount of assets). Since the adoption decision will
involve the comparison of the benefits of adoption with the costs, this highlights an interesting feature
of our model: in the adoption decision, A and R matter in a multiplicative way. In other words, the
benefits of adopting a technology are small if R-A are small, whether that is because the interest rate
is small or the amount of assets are small. This result allows us to investigate the behavioral changes
of money holders at low interest rates by looking at the behavior of people whose assets are very
small. That is, we are able to explore the elasticity of money demand for interest rates close to zero,
even though interest rates have not been close to zero in recent U.S. experience.

Another prediction of our setup is that the probability that a household owns positive amounts
of interest bearing assets should be positively related to its financial wealth. All our empirical
estimates confirm this prediction.

Our model also predicts that the interest elasticity of money demand is very small when the
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interest rates are low. Intuitively, the reason is that, when the nominal interest rate is close to zero,
then the fraction of the population who decides to use interest bearing assets is negligible. Hence,
even though the interest elasticity of the households who use such assets is big, their weight in the
overall demand for money is so small that the aggregate effect is small. Any interest sensitivity
resulting from marginal adoption is also small at low interest rates when the density of the adoption
cost is small at very low costs. By making a normality assumption, we implicitly assume that the
density does approach zero. However, Figure 6 shows that our micro data are consistent with this
aspect of the normality assumption. Our prediction of low interest elasticity at low interest rates is
crucial, for example, for the evaluation of the welfare costs of inflation. The consumer surplus
approach applied by Bailey (1956), Lucas (1994) and others show that the welfare cost of inflation
hinges fundamentally on the money demand elasticity at low interest rates. The conclusion of our
model is, therefore, that the welfare cost of low inflation is low.

Our empirical estimates confirm the theoretical prediction that the interest elasticities of
money demand are very low for low interest rates. For example, for economies whose per capita
seigniorage is that is less than the United States in 1989 (per capita seigniorage is roughly the
product of the nominal interest rate and money per household) the interest elasticity is 0.2. Interest
elasticities are much higher for economies with higher intermediate levels of seigniorage. This
suggests that a lowering of the U.S. nominal interest rate from 5% to 1% would have a much smaller
welfare gain that lowering it from 9% to 5%.

We conclude this paper by highlighting some possible drawbacks of our methodology. First,
the policy prescriptions should be qualified by the fact that we study only households. Inventory

models may be more relevant for firms and firms' money demand elasticities may be large for a wide

41



range of interest rates.”® Foreigners also hold a fraction of the U.S. money supply so their behavioral
change must also be considered. It may also be undesirable from either a positive or a normative
point of view to use the consumer surplus approach to analyze the effects of policies on foreigners.
Uncertainty may be associated with high rates of inflation, but we - like Bailey (1956), Lucas (1994),
and others - have ignored this in our analysis. Our results therefore speak only to changes in the rate

of inflation which do not change inflation related uncertainty.

%See Mulligan (1994) for some micro evidence on these points.
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Appendix

Likelihood Functions Used in the Paper
Model I: "Tobit" model, ignoring & = 1 corner

Define II,; for each observation i that doesn't adopt and II;; for each observation that does adopt:

Ind, + InR - X + In l_LA,R _ .
InIl, = ln@(— 1 1 By [ (4,R)] By pv)
' ag

I, = n® Ind, + IR, - X,B, + n[1 -LAR)] -~y +w,  p Ine -In[1-LAR)] - p,
o ’l _ pz 1 _pz O'v
Ina - In[1 -L(4,R -
+lnd>[ Bl R "”) - Ino,
OV
0 = yo; + 0, - pa,o,
=pd _ %
pP=p— -~
The log likelihood function is:
L(p'p’ op’ pw Ov, pp p) = E ln ]]m + Z In H”
i1 doesn’t adopt i]i adopts

Model II: "Tobit" model, assuming p =0

Define II; for each observation i that doesn't adopt, II,; for each observation that adopts with
a<1, and II;; for each observation that adopts with a=1:

Ind, + InR, - X,B, + In[l -~L(4,R)] - pg + p
mnll,, = lnd)(— : -

g
ol = - Ino, + In® In4, + nR, - X,B, + 1n2[1 —zL(A,,Ri)] "My tw, g -l ;L(A;,R,)] - n,
a
ey oy -0, 0 - 0,
. 1n¢[ Ine, - In[1-L(4,R)] - pv)
UV

g
v

In4, + InR, - X, P, - In[l1-L(4,R
lnHz',ElnCD[n' - XB up]ﬂm[n[ (.,,)]+uv)




The log likelihood function is:

l’("'ll’oﬂ’"‘v’c'v’l?'l'p)E E lnnm + E lan * Z lnHZi

ii doesn't adopt i{i adopss, a<1 |4 adopts, & =1

Model III: Probit model with instrumental variables.
Consider the model:

d =1 ife < Px,
d =0 ifeg>xp

X, =x t0

i Z’Y + Ci
(8, n, C) ~ N(“y 2)

*®
1}

where X; is a scalar and z; is a vector.
The log likelihood of observing {d,, x;", z;} is:

L(“E’ 05’ p'cs o{? Bs Y, P) =

* 2
X - Z -
—Nlnoc - Ymon -1 ;__,'Y—Pc_
2 2 oc

Y Bzy - m;  p X - zY - Iy
id,=1 oé\ﬁ—p2 V1 -p? %

+ Ean _Bz'y_pé+ p x:—ziy_p:
i‘d'=0 OE \/1 - p2 ¢1 - p2 ot

e=e-B¢, {=C+n, p

corr(;:, z )

This can obviously be generalized to allow the means to be a linear function a vector of variables

as long as some of the z variables are excluded.



TABLE 1: PERCENT OF 1989 U. S. HOUSEHOLDS WITH INTEREST BEARING

FINANCIAL ASSETS

Have Interest Bearing Financial Assets?
Have Checking Account? No Yes Row Total
No 19% 7% 25%
Yes 40% 35% 75%
Column total 59% 42% 100%

Notes (1) A household is qualified as having a checking account if they have a nonzero balance

in a checking account which they do not designate as a money market account.
(2) "Interest Bearing Financial Assets" are money market accounts, CDS, other bonds,

mutual fund shares, and equities.



TABLE 2: STATIC MODEL WITH CONSTANT «
(PROBIT ESTIMATES)

0.661
(0.023)

-5.637

(0.200)

2842

0.666
(0.025)

-0.003
(0.002)

0.168
(0.079)

0.471
(0.414)

-5.466

(0.218)

2842

.

&)

0.666
(0.025)

-0.003
(0.002)

0.168
(0.079)

0.472
(0.414)

-0.0003
(0.0030)

-5.464

(0.219)

2842

(7

0.666
(0.026)

-0.0007
(0.0031)

0.167
(0.079)

0.561
(0.422)

-0.116
(0.107)

-5.519
(0.224)

2842

Note: Dependent variable in all columns is: “1" if household has ANY amount of interest
bearing assets and “0" otherwise. Standard Errors in Parenthesis.




TABLE 3: STATIC MODEL WITH CONSTANT o
(IV-PROBIT ESTIMATES)

(1) (3)
0.35 0.58
(0.02) (0.03)
0.04 -0.74
(0.30) (0.52)

- 0.006
(0.003)
-0.14 0.037
(0.06) (0.094)
age polynomial log(A g53), age
polynomial
2842 1342

Note: Dependent variable in all columns is: “1" if household has ANY amount of interest
bearing assets and “0" otherwise. Standard Errors in Parenthesis. The first column uses the full
1989 sample of households. The second and third columns use the panel sample of households
that responded to both the 1983 and 1989 surveys.



TABLE 4: STATIC MODEL WITH ENDOGENOUS ¢
(TOBIT ESTIMATES)

(1) 3)
0.66 0.59
(0.02) (0.02)
0.59
(0.02)
0 0.59
(0.02)
-0.00 -0.00
(0.00) (0.00)
0.15 0.20
(0.08) (0.08)
-0.17 -0.21
(0.05) (0.05)
-1.23
(0.45)
unrestricted restricted
2847 2842

Note: Dependent variable in all columns is: “1" if household has ANY amount of interest
bearing assets and “0" otherwise. Standard Errors in Parenthesis. The first 5 rows refer to the
equation reflecting the adoption decision. The following three rows relate to the intensive margin
decision.



TABLE 5A: PERCENTAGE OF HOUSEHOLDS WITH INTEREST BEARING ASSETS

IN 1983 AND 1989

Have Interest Bearing Assets in 1989?

Have Interest Bearing Yes No Row Total
Assets in 19837

Yes 745 (50.4%) 115 (7.8%) 860 (58.2 %)
No 142 (9.6 %) 477 (32.2%) 619 (41.8 %)
Column total 887 (60 %) 592 (40 %) 1479 (100%)

TABLE 5B: AUTOREGRESSION OF ASSETS AND INCOME (1983-1989)

(0.153) (0.015)

2.076 0.832

2.405 0.825

(0.216) (0.021)

0.58




TABLE 6: DYNAMIC MODEL
(PROBIT ESTIMATES)

0.800 0.106 0.107
(0.044) (0.031) (0.032)
-0.005
(0.004)

0.261
(0.123)

0.722 0.669 0.722 0.672
(0.040) (0.043) (0.041) (0.044)
-0.002 -0.005 -0.002 -0.006
(0.004) (0.004) (0.004) (0.004)

0.103 0.033 0.100 0.042
(0.121) (0.123) (0.124) (0.127)

-0.027 0.271
(0.662) (0.673)

-6.553 -6.214 -6.456 -6.214 -6.385

(0.375) (0.358) (0.375) (0.394) (0.405)
1343 1343 1343 1343 1343

Note: Dependent variable in all columns is: “1" if household has ANY amount of interest bearing
assets and “0" otherwise. For column (1), the dependent variable applies to 1983. For columns
(2) through (5), it applies to 1989. Standard Errors in Parenthesis.



