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The continuous-time financial theory has developed extensive tools to price
derivative securities when the underlying traded asset(s) or non-traded factor(s) follow
stochastic differential equations. However, as a practical matter, how to specify an
appropriate stochastic differential equation is for the most part an unanswered question. For
example, many different continuous-time processes have been proposed to capture the
dynamics of the instantaneous spot interest rate. These models are generally mutually
exclusive and, when used to price derivative securities, generate significantly different
prices. This paper develops a simple methodology for testing their specification, and

evaluates various models for the short term spot interest rate.

A continuous-time model in finance typically rests on one or more stationary
diffusion processes {X;, t=0}, with dynamics represented by It6 stochastic differential

equations:
dX, =p(X,)dt + o(X,) dW, (1)

where {W,,t>0} is a standard Brownian motion. The functions p(-) and o’(") are
respectively the drift and the diffusion functions of the process. Most often they are
parametrized:

1(x) =p(x,8) and 6°(x) = 6 (x,0), where 6 € ©® c R¥. (2)

The choice of the parametric drift and diffusion families is often arbitrary. For
example, most interest rate models specify a linear mean-reverting drift,
1(x,0) =P (o — x), where the spot rate moves in the direction of its mean o at speed P.

The specification of the diffusion function, however, tends to vary widely. The Vasicek
(1977) model has o©?(x,0)=c?, while the Cox-Ingersoll-Ross (1985) model has

6’(x,8)=0’x and in the Courtadon (1982) model the diffusion function is
6’ (x,8) =0’ x*. Chan et al. (1992) utilized a discrete approximation to estimate the
constant-elasticity-of-variance model where 6°(x,8)=c’x"!. In the Constantinides
(1992) model, the resulting specification is of the form p(x,0) =0, +0c,x+0c2\/x——73
and 62 (x,8) = 62(x - 0,)’, while Duffie and Kan (1993) specify p(x,8)=p(c—x) and
6(x,0) = /0, + 0,x. Ait-Sahalia (1992b) developed an estimator designed to take into
account the discrete character of the data while maintaining the attractiveness of the

continuous-time model, and estimate nonparametrically the diffusion function.
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This far-from-exhaustive list (see also Table 2) shows that there is no shortage of
proposed models for the continuous-time dynamics of the spot rate. We therefore focus on
the following question: is it possible to distinguish between the various specifications? Or
equivalently: when is a given parametric model (2) a “good” model for short term interest
rate movements? For a given parametric model, the null hypothesis will therefore state that
there exist parameter values for which the parametric model considered is an acceptable
representation of the data. The alternative hypothesis, on the contrary, affirms that no

parameter values are capable of reproducing the true i and 62 functions.

One approach might be to attempt to choose among possible spot rate processes
based on how well they price specific liquid derivatives, for example bonds, swaps or
caps. Unfortunately this is often a difficult task in practice, and when at all feasible the
answer tends to vary with the specific derivatives selected. This approach also implicitly
assumes that the market prices these instruments correctly in the first place, so the resulting
process can hardly be used to try to detect and exploit market biases in relatively illiquid
markets. Furthermore, any such test is a joint test of the specification of the factor process,
here the spot rate, and the pricing model --in particular the specification of the market price

of spot rate risk. Any rejection is consequently hard to interpret.

It is therefore desirable to be able to test the specification of the actual spot rate
process without making use of observations on a collection of derivatives. The test statistic
in this paper is based on the following idea. An essential property of a diffusion process is
that it is entirely characterized by its first two continuous-time moments, the i and G2
functions2. So each parametric model for the u and 62 functions, such as the Cox-
Ingersoll-Ross model, will imply a certain family of density functions for the interest rate
observations. The test statistic is based on a comparison of the density implied by the
parametric model and a nonparametric estimator valid even if the parametric model is

misspecified.

We empirically test several one-factor diffusion models for the seven-day
Eurodollar deposit rate. We then identify the sources of the rejection of existing models.
The linearity of the drift imposed in the literature appears to be the main source of
misspecification. We find instead that the drift of the spot rate process is essentially zero as
long as the rate is between 4 and 17%, but pulls it strongly towards this middle region
whenever it escapes. This nonlinear mean-reversion effectively makes the process
stationary, even though it is locally non-stationary on most of its support. We also find that

the associated diffusion function is lower in the middle region, and higher at both extremes



--as opposed to the uniformly increasing pattern specified by the popular constant-

elasticity-of-variance (CEV) model.

The paper is organized as follows. Section 1 presents the test statistic based on the
unconditional information and gives its properties. Section 2 incorporates the conditional
information contained in the interest rate transitions. Section 3 describes how the basic
framework can be extended to regime switching models, multivariate diffusions and
diffusions with jumps. Section 4 tests spot rate models proposed in the literature and
determines a simple specification that cannot be rejected by the data. Section 5 summarizes
the results and concludes. Technical assumptions and proofs are in the Appendix.

1. Testing the Parametric Specification of Diffusion Processes
1.1 Null Hypothesis and Test Statistics

The main focus of the test is on models for the spot interest rate which belong to the
class of (P1) Markov processes of (P2) the univariate diffusion type, which are (P3)
strictly stationary. The Markov property P1 is fundamental for what follows. When a
model does not yield Markov dynamics, it is sometimes possible to redefine the state space
so that the Markov property holds [see e.g., Cox and Miller (1965) pages 18-19]. Property
P3 in particular precludes the p and 62 functions from depending directly on time in
addition to being functions of the state X3. Strict stationarity means that the joint
distributions of the process satisfy for every m, every 0<t;<...<ty,<eo and every Xi,...,.Xm
in the state space: P(X,l < Xpyeen X S xm) = P(X,]+A SXppen X a S xm). In particular,
applying this to m=1 and 2, the transition density of the process (the conditional density of
Xi+a given X;) can depend on A but not on t. And the process admits a stationary marginal
density4. Section 4 shows how to relax property P2 to cover multivariate diffusions and
diffusions with jumps, and P3 to cover regime switching models.

We further restrict attention (property P4) to models for the spot interest rate such
that zero and infinity are unattainable in finite expected time, starting from any point in the
interior of the state space (0,o0). We finally require (property P5) that classical asymptotic
theory be applicable to the discrete data generated by this continuous-time process, i.e.,
that the discrete data be mixing at a sufficiently fast rate. We give sufficient conditions on
the drift and diffusion in the Appendix to insure that the model considered is the unique

strong solution of (1) and satisfies P1-P5.
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Suppose for now under P1-P5 that the true process of the spot interest rate is the
unique strong solution of (1) for given “true” drift and diffusion functions (uo (),0} ())

Consider then a specific parametrization, that is, a joint parametric family:
PE{(“’(’G)’GZ (’e)) / 96(")} (3)

where O is a compact subset of RK. An example is the Cox-Ingersoll-Ross (1985) model
where P= { (1(x.0),0% (x,8)) = (B(o.—x),0°x ) / 0=(ap.0’)e @}. The question to
be addressed is the following: are there values of the parameters in @ for which this
parametric model is an acceptable representation of the true process, i.c., do the
functions (uo (),0% ()) belong to the parametric space P? Formally, our null and alternative

hypotheses are:

H,: 36,0/ p(.0,)=m,()and 6°(,0,) =0, ()
{ Hy: (ho()o3()) ¢P @

Except in special cases, it is quite difficult to estimate directly the drift and diffusion
functions. While the most common approach in the literatureS, discretization-based
methods encounter many problems: the discrete scheme is only an approximation to the
continuous-time model®, and in general the first and second conditional moments of the
data generated by the model (1)-(2) over discrete time intervals are not given by W and G2
respectively’. The approximation is valid only as the time interval shrinks to zero. It may
be difficult to justify for monthly, weekly or even daily observations of financial time
series: their intra-day volatility is often substantial. So while the functions L and 62 may be
correctly specified by (2) the discrete estimates obtained under the approximation that daily
observations represent a continuous record of observations would fail to reflect this
volatility. In light of this problem, one possible option would be to collect data sampled
very frequently. However, moving to transaction data, or other forms of high frequency
observations, introduces microstructure issues which then have to be addressed:
discreteness of price and therefore interest rate changes, price jumping from the bid to the
ask, asynchronous trading, etc. The diffusion model may not any longer be an adequate
model for these data or, at least, these effects would need to be modeled explicitly.

For these reasons it is difficult to envision a direct way of testing (4). We will be
looking for a characterization of the process (1) equivalent to (3), but which relies on
quantities that can actually be estimated under the constraints imposed by the discrete data.
Under the assumptions made, the i and 62 functions of the process will characterize

uniquely its marginal (or unconditional) and transitional (or conditional) densities over



discrete time intervals. The joint parametrizations for i and 62 adopted in the literature
indeed imply specific forms for the densities of the process. For example, the Ornstein-
Uhlenbeck process dX, =B(0L—Xl)dt+ydW, specified by Vasicek (1977) generates
Gaussian marginal and transitional densities. The square-root process
dX, =B(o - X, )dt + ¥X?dW, used by Cox, Ingersoll and Ross (1985) yields a Gamma
marginal and non-central chi-squared transitional densities [Feller (1951)].

More generally, any parametrization P of 1 and 62 corresponds to a parametrization

of the marginal and transitional densities:
M ={(r(.0),p(:1-.0)) / (1(-8),0°(.0))P,8 <O} 5)

where 7(x,0) is the marginal density at x and p(s,y |t,x,0) the transition probability
density from x at time t to y at time s. This is the conditional density that X=y given X;=x.
While the direct estimation of | and 62 with discrete data is problematic, the estimation of
the densities explicitly take into account the discreteness of the data. The basic idea of the
paper is to use the mapping between the drift and diffusion on the one hand, and the

marginal and transitional densities on the other, to test the model's specification.

We start by concentrating on the marginal density. The marginal density
corresponding to the pair (U,02) is8:

n(x,9)=%exp{j %du} (6)

Xo

where the process is distributed on D=(§,i) with —c0 <X <X < +oo (for example our
interest rate process has D=(0,+0)). The choice of the lower bound of integration in the
interior of D is irrelevant. It is absorbed in the normalization constant £(8) determined to

insure that the density integrates to one.

Define Iy to be the space of density functions of the form (6) corresponding to
pairs (1,02) in P, I1,, = { n(-0) / (u(-,e),02 (~8))eP,B€e 9}, and let the true marginal
ij; (2|,t0(u)/0'(2,(u))du}. Formally, we
test in this section the null versus alternative hypothesis that:
{ Hyo: 36,€0/ n(.6,)=m,(")
Hy,: m,() Ty

density of the process be m,(x)= (&O/og(x))exp

(7



It is necessary that Hyo be true for Hy to be true. If the true density m,(-) were
known, we could simply check to see if it belonged to the proposed parametric class. Since
it is unknown, we must estimate it, and do so with an estimator that does not already
assume that the null hypothesis is correct (otherwise there is obviously no way of testing
it). We use for that purpose a nonparametric estimator --that is, free of all parametric
assumptions regarding i and 62-- which will converge to the true density whether or not
the parametric model (3) is correctly specified. Now consider a parametric estimator of the
implied density 7:(-,(-)0). It will converge to the true density only if the model is correctly
specified. Therefore the parametric and nonparametric density estimators should be close
together if the parametric model is correct, and far from each other otherwise. A measure of
distance M between the two density estimates provides a natural statistic to test the null
hypothesis of correct parametric specification®. We suggest to test H, vs. H, using the
distance measure between the densities:

M= min [ ((0.8) - (u))’ m,(u)du = min E[(v(X,0) - m,(X))’] ®)

The distance M weighs the difference between the parametric and the nonparametric
estimators according to their relevance, putting more weight on values of the process more
likely to appear (7,(u) high). Similarly when the density is very low, that is for interest
rate regions not likely to be visited, differences in the true density and the implied
parametric density are not penalized heavily (other distance measures could be used as
well). From the discussion above, under the null hypothesis M is small, while it is large

under the alternative:

Under the Null Under the Alternative
(Parametric Model (Parametric Model
Correctly Specified) Misspecified)
Parametric Density Estimator Consistent Inconsistent
Nonparametric Density Estimator Consistent Consistent
Distance (Parametric , Nonparametric) Approximately zero Large

The proposed test statistic is the (properly normalized) sample analog!? of (8):

M =nh min—) (n(5;.8) - 7o(5;))’ (9)

0e® n ol

where ,(-) is a nonparametric estimator of the density function with bandwidth h, and

nh, is a normalizing constant. The null hypothesis is therefore rejected when the test



statistic M is large enough. The test statistic has a minimum-distance flavor. It considers
the scenario that is the most favorable to the parametric model, to maximize power,

evaluating the distance between the densities at the “best possible” parametric estimator:

n
A

8,, = argmin iz (n(ri,e)—ﬁo(q))z. (10)

8e® ns;;,

The identification of the parameter vector is discussed in the Appendix [see
assumption AOQ]. Before investigating the distribution of the test statistic and its other

properties, we next describe the nonparametric estimator ft,(-) of the density function.
1.2 Nonparametric Estimation of the Density

The data used to form these density estimators consists of discrete observations of
the short interest rate {r,,...,rn} sampled at interval A (for example A=1 day). These
discrete data are used to estimate the continuous density of the process without replacing
the continuous-time model with a discrete approximation. The asymptotic properties of the
estimators are derived for an expanding sampling period, i.e., the interest rate is observed
over an increasingly long period of time. Our method does not require that the sampling

interval A be small: for example weekly or monthly data could be used as well.

The nonparametric kernel estimator of the marginal density is given by:

n 1o | u-r

M,(u)=—) —K : 11
oW=1 Xy [ 0 ] (1)

where K(.) is the kernel function and h, the bandwidth. Silverman (1986) provides an

introduction to kernel estimation, while Scott (1992) contains more details. One can think
of (11) as being a “smooth histogram.” Regularity conditions and restrictions on the choice

of the kernel and bandwidth are given in the Appendix.
1.3 Distribution of the Test Statistics

It is shown in the Appendix that under Hg, the estimated parameter éM has the

distribution:

n"{6,, -8,} —>N(0, Q) (12)
with Q,, and a consistent estimator given in the Appendix.

The test statistic M is distributed as:

b,V {M-E, } —>N(0, V,) 13)



with Ey, Vy given in the Appendix.

To test the null hypothesis at the level o, we would therefore use the critical region:
- . A A 12
Reject H, when M > &(a) =E,, +h!? zl_a/{VM} (14)
where consistent estimators of Ey; and Vy are given by:
bl _ tee 2 1 n A
g, =( [k (x)dx) WAL
~ toof poo 2 1 nooa
V,, 52“ {j K(u)K(u+x)du} dx)(—z, T, ))
00 —ca n 1=

This test is locally strictly unbiased. Any other consistent estimates of Ey and V,
could be used. Set z,_,=1.96 to obtain a test at the 95% level. For the Gaussian kernel

(15)

I-o

K(u)=exp(—u2/2)/\/ﬁ, the two kernel constants are (J.: K2(x)dx)=1/(2ﬁ) and

+o0 +oo 2
U {j_ K(u)K(u+x)du} dx)=1/(2«,/21t). The optimal bandwidth can be set in the

172

_ -1/5 _ n = 2 .
form h, =c,n™", where c, -c[ E i=l(ri r) /n] . The constant c is chosen by cross-
validation to minimize the integrated square error of the estimator. This completes the

description of the marginal-based test.

2. Exploiting the Information Contained in the Transitions of
the Process

The stationary marginal density of the process does not summarize all the
information available in the data. For our specification test, it is clear that a rejection based
on the marginal density (M large) already invalidates the candidate parametrization of the
drift and the diffusion, and we need not go any further. While the empirical results of this
paper suggest that it is unlikely in practice, we could possibly be unable to reject an
inadequate parametrization based on the marginal density alone. For that reason, it is
worthwhile to examine the transitions of the process over finite intervals of time,
corresponding to the sampled data (say, daily). Hansen and Scheinkman (1995) proposed
to estimate diffusion processes based on moment conditions which must be satisfied over
time intervals by arbitrary functions. Their method, along with an extension of the method
of Ait-Sahalia (1992b), is implemented empirically by Conley et al. (1995). We treat the
Markovian character of the process as a maintained hypothesis, so there is no need to look
at transitions over time intervals longer than the sampled frequency of the data (say, two-
day when daily data are available)!!.
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We propose to exploit stationarity by combining the forward and backward
equations characterizing the transitional density p,(s,y|t,x) in a way that eliminates the
time derivatives of pg --which are unobservable with discrete data. Consider the forward

Kolmogorov equation, with the natural initial condition (x and t are fixed)!2:

Ipo(s.yltx) 9 1 9

Js E)y( 1(y,8)po(s.y It, x))+5§( 2(v,0)po(s.y 1t,x)) (16)

for all y in the interior of the domain of the diffusion D= (5,‘)(), and s such that s>t. The

backward equation (y and s are fixed) is!3:
2

M n(x, 6)———(p0(s yltx))+ ;c (x,0)— J 7(Po(s,y 16,x)). (17)

ot ox’

for all x in D and t such that 0<t<s.

Unfortunately, these two equations cannot be used as such to estimate the
parameters because their left-hand-side contains the derivative of the transition density with
respect to time. There is clearly no way to estimate this derivative without observations on
interest rate changes over small intervals of time. The idea here is to work around this
problem by getting rid of the time derivatives with the following trick. By stationarity:
Po(s,y1t,x)=py(s—t,y10,x)=po(s—t,yIx), and therefore: dp,/ds=-9dp,/ot.
Combining the two equations then yields (with A = s-t) what we might call the “transition
discrepancy":

m(A,y,x,O)E{%;—;(Gz(y,e)po(&ylx» - E?—y(u(y,e)po(A,yIX))}

(18)

2

()}

which, for every (x,y) in D? and A>0, must be zero at =0, under the null of correct

— {p(x,e)a%(po(A,ylx)) + ;0' (x, 9) 9

parametric specification!4.

The essential fact is that m(A,y,x,6,) =0 must hold for every time interval A, not
just small ones. Let A be the time interval between successive observations in the data
(r,r.,), i=1,...,n (for example A=1 day). A simple consistent method to estimate 8, based
on the transition data for intervals of length A is to solve:

0e®@

T = min j E {m(A,y,%,0)}" po(A,y,x) dx dy. (19)

where py(A,y,x) is the joint density of observations separated by a time interval A (while
Po(A,y | x) is the conditional density).



10

The normalized sample analog is our transition-based test statistic:

T=nh® min Y {(Ar,,.5.0)) 20)

8e® n P

where m(A,y,x,0) is analogous to (18) except that the unknown joint and transition

densities have been replaced by their kernel estimators:

A — l Y L X1 y— 5,
po(A,y,x)—{ni=1 th( i JK( - )} o
Po(Ay! x) = f)o(A,y,x)/fto(x)

The asymptotic distribution of the test statistic based on the transition densities is:

b {T-E,} —5 N(0, V;) (22)
where E, V. and their consistent estimators are given in the Appendix.

The transition-based test can be derived as in (14). Additionally, it can be noted that
0, = argming g T provides a consistent (under the null of correct specification) and

asymptotically normal estimator of the drift and diffusion parameters.

3. Extensions

Recent papers in the term structure literature have modeled discrete regime shifts in
the spot interest rate process [e.g., Hamilton (1988), Naik-Lee (1993), Gray (1994) and
Das (1994)]. These models typically posit a spot interest rate process which can shift
randomly between two or more regimes: for example, a “normal” low-mean regime and an
exceptional high-mean regime [e.g., 1980-82 in the US]. They typically keep the same pu
and o2 functions, but with different parameter values for each regime. This makes the
process time-inhomogenous, and therefore violates property P3. The rigorous estimation

of such processes is difficult.

A simpler modeling alternative can be implemented to capture some of the same
economic effects, without introducing different drift and diffusion functions. A process
switching randomly between say two possible regimes will have a bimodal marginal
density, with: (i) the relative height of each mode reflecting the amount of time spent by the
process in each regime, and (ii) the relative peakness of each mode reflecting the volatility

of the corresponding regime.

Consider the typical configuration in Figures 1-abc for a basic diffusion of the type
(1). The density in Figure la is bimodal. Instead of two separate pairs (drift,diffusion)
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with linear drift for each regime, the regime-switching effect can be modeled by a diffusion
process with a “two-regime potential” drift function (Figure 1b). The type of density in
Figure la would be the product of a kernel estimator with a bandwidth set lower than is
optimal to artificially emphasize the multimodality (i.e., the multiplicity of regimes). The
specification of the diffusion function in Figure 1c is a simple CEV function, for illustrative
purposes. This specification of this model is as readily testable as any other diffusion of the
type (1).

In other words, instead of two separate linear drift functions which results in a
discontinuous global drift, we could specify a single continuous but nonlinear drift
function which preserves time-homogeneity. The mean-time spent in each regime is easily
computed, as well as the probability of switching from one regime to the other [see
Gardiner (1990), 9.1]. These can then be used to calibrate the model to the empirical

observations on regime switches.

We finally note that the test can be extended to cover multivariate diffusions and
jump-diffusion models. Indeed both classes of models are characterized by forward and
backward equations that are straightforward extensions of (16)-(17). The extension to
jump-diffusion presents no fundamental difficulty. However, the extension to multivariate
diffusions is likely to be more difficult to implement in practice due to the “curse of
dimensionality.” This refers to the fact that nonparametric kernel estimators converge at a
speed which decreases as the dimensionality of the problem increases, in contrast to
parametric estimators which always converge at speed root-n. Estimating nonparametrically

higher-dimensional densities therefore requires larger sample sizes.

4. Empirical Tests of Spot Rate Models
4.1 The Data

The short term rate used is the seven-day Eurodollar deposit spot rate, bid-ask
midpoint. The n=5505 observations are daily from 6/1/1973 to 2/25/1995. Weekends and
holidays have not been treated specifically (Monday is taken as the next day after Friday).
Whereas weekend effects have been documented for stock prices [e.g., French and Roll
(1986)], there does not seem to be a conclusive weekend effect in money market
instruments!5. Table 1 reports the descriptive statistics. Dickey-Fuller nonstationarity tests
have been conducted, and the presence of a unit root is rejected, both for the full period and
the subperiod 1983-94. Since the test is known to have low power, even a slight rejection

means that existence of a unit root is unlikely.
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A time-series plot of the data is provided in Figure 2. Due to the shift in monetary
policy, the 1980-82 years are characterized by substantially higher interest rate levels than
the rest of the sample period. There exists evidence!6 that the parameters of a linear drift-
CEV diffusion are different during the 1980-82 than the rest of the sample [e.g., Bliss and
Smith (1994)]. More precisely, the evidence means that this particular parametrization is
not time-homogenous. For example, the mean « of the process with drift
u(r,0) = B(o — r) estimated over 1980-82 is significantly higher than the mean estimated
on the rest of the sample. As we shall see, a better functional dependence of the drift on the
spot rate --with no time-varying parameters-- can capture the dynamics of the process since
the shift is associated with higher interest rate levels. Misspecified models, like linear drift

with CEV diffusion, will mask nonlinearities as changes in parameters.

Two additional series have also been used to check the robustness of the results.
The other proxies for the spot rate are the overnight yield for Federal Funds, computed
daily by the Federal Reserve Bank of New York [source: Telerate Systems Inc.], and the
one-month continuously-compounded bond-equivalent yield on Treasury bills [source:
Bank of America]. All three series produce qualitatively similar results, with the provision
that one-month rates tend to exhibit substantially less short-term volatility than one week

rates, which in turn are more stable than overnight rates!7.

Choosing a seven-day rate --such as the seven-day Eurodollar-- as the underlying
factor for pricing derivatives is a necessary compromise between: (i) literally taking an
“instantaneous” rate that does not already embed the result of a pricing operator and (ii)
avoiding some of the spurious microstructure effects associated with overnight rates. For
example, the second Wednesday settlement effect in the Federal Funds market creates a
spike in the raw Federal Funds data that has to be smoothed [see Hamilton (1994)]. More
generally short-term supply and demand effects in overnight markets can create excess
volatility at the short end of the yield curve that is often irrelevant for the rest of the curve.

4.2 Parametric Specifications of the Short Rate Process

The drift-diffusion parametrization considered for the empirical test is:

{u(r,e) =0, +0,r+o,r’+0,/r (23)

6*(r,0) =P + Byr +B,r™

The parametrization (23) nests the single-factor diffusion models considered in
Table 2. This general parametric model allows for departures from linearity in the drift, and

at the same time sufficient variability in the shapes of the diffusion function. The parameter
vector is: 0 = (ao,a,,az,a3,Bo,Bl,Bz,B3)' . The implied marginal density is given by (6).
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Natural restrictions have to be imposed on the parameter values to satisfy

requirements P1-P5 from Section 2, and are derived in the Appendix. They are:

Bo=0 (and B>0 if Pp=0 and 0<Ps<1, or B;>0 if Bo=0 and P3>1) (24a2)
B,>0 if either B3>1 or B;=0, and ;>0 if either 0<Ps<1 or B,=0 (24b)
0,<0 and o1<0 if o;=0 (24¢)
o3>0 and 2032P¢20, or 03=0, 0,p>0, Bo=0, B3>1 and 20,p>p;>0 (24d)

Restriction (24a) (resp. (24b)) is necessary for o2 to be positive in the
neighborhood of the zero (resp. infinity) boundary. (24c) insures that the drift is mean-
reverting at high interest rate values. It is sufficient here to make infinity unattainable. (24d)

guarantees that zero is unattainable.
4.3 Results of the Specification Test

The results of the test are in Table 2. First, models that are strictly more
parsimonious than (23) are rejected even by the marginal-density-based test. Second, the
estimated y and 62 functions of the spot rate have features that had not been previously
documented. The ability to reject non-trivial parametric models such as linear drift with
CEYV diffusion against a nonparametric alternative suggests that the power of the test is

significant at the sample sizes considered.

Figures 3-abc correspond to the model obtained under the restriction that the drift be
linear mean-reverting (o, = o, = 0) with a CEV diffusion (B, =, =0) under (24). This
model is rejected at the 95% level. The rejection is not surprising given the nonparametric
shape of the diffusion found in Ait-Sahalia (1992b) when the drift is linear. A CEV
diffusion function constrains the volatility to be uniformly increasing. In a less constrained
model the diffusion function is found to be non-monotonic, whether the drift is linear [Ait-
Sahalia (1992b)] or not (Figure 4c).

We find strong evidence in the data that CEV diffusions are not a perfect match for
linear drifts. There are two reasons for this. First the behavior of the diffusion for large
values of the spot rate constrains the parameter B3 . The shape of the marginal density
requires a relatively low rate of growth of the diffusion as the interest rate grows (P
small), because of the slow mean-reversion effect imposed by a linear drift. A rapidly
increasing diffusion function would generate a probability of large values, given the
linearity of the drift, that would be higher than observed in the data. The second constraint
is due to the unattainability of zero. This on the contrary imposes a fast rate of decay of the
diffusion as interest rates become close to zero (B3 large). The CEV specification obviously

has B3 constant, and these two effects are incompatible in the data.
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This incompatibility is exemplified by the comparison of the Vasicek, Cox-
Ingersoll-Ross and Courtadon models. In the Vasicek model (B3=0), zero is attainable, and
the model is easily rejected but by a smaller margin than the Courtadon model (B3=2). The
best fit is provided by the Cox-Ingersoll-Ross model (B3=1), which is a compromise

between these two competing effects.
4.4 A Nonlinear Spot Rate Model

The empirical evidence so far suggests that misspecification of the models in the
literature is caused jointly by the linearity of the drift and the CEV specification of the
diffusion. We now relax these two assumptions and examine the features of the resulting
model. Figures 4-abc plot respectively the density (r), drift (u) and diffusion (62)
functions corresponding to the most parsimonious model that cannot be rejected at the 95%
level. The drift and diffusion are as (23), unconstrained other than (24). The first
interesting feature of Figure 4b is that in the middle region of the rate spectrum (4 to 17%)
the drift is essentially zero. In this region, the spot rate is locally nonstationary as it behaves
like a random walk, with no drift and a non-zero diffusion component. This explains why
it is difficult, on relatively short time periods, to reject the existence of a unit root in time
series of spot rates. This finding is consistent with the insights of the literature on vector
autoregressions in macroeconomics where it is common to model high frequency interest

rate data as nonstationary [e.g., Stock and Watson (1993) page 800].

However the second finding is that the nonlinear mean-reverting drift pulls the rate
back strongly into this middle region whenever it wanders outside (for example below 4%
in 1993-early 1994 or above 17% in 1981-82). This makes the process globally stationary.
Overall, the process estimated from the data is very similar to the target band model used in
the exchange rate literature: a Brownian motion with two reflecting barriers. We would

obviously expect a different result in a hyperinflationary economy.

The diffusion function in Figure 4c is larger when far away from the central region
4-17%. 1t has long been thought that the volatility of the spot rate should increase with the
level of the rate: beyond avoiding negative nominal rates, this was one of the rationales for
the Cox-Ingersoll-Ross specification compared to Vasicek's. The finding here is that the
spot rate is more volatile --albeit less so-- also when below its long-term mean. This
documents yet another aspect of the process. Loosely speaking, markets may become more
nervous outside the central region, at both ends of the interest rate spectrum. Market
participants may expect the Federal Reserve to credibly return the short-term interest rate to

its middle range at some point, but are uncertain about the precise timing of the
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intervention. This rather speculative interpretation would also be consistent with the strong

pull-back drift of Figure 4b at either end of the spectrum.
We also report results for the 1983-95 subsample (Figures 5-abc). The shapes of

the drift and diffusion functions are remarkably similar to the full 1973-95 sample,
although shifted to the left by the absence of high interest rates observed during this period.
The parameter estimates corresponding to all these configurations are in Table 3.

4.5. Transition Densities

Figure 6a reports the nonparametric estimate of the joint density of the spot rate at
one day intervals --the basic input for the method proposed in Section 2. The joint density
brings some interesting information regarding the interest rate process. Most of the mass is
around the 45-degree line, since most day-to-day changes are small. Intuitively, the
strength of the drift can then be read from the steepness of the off-diagonal slopes. The
unconstrained model (23) is not rejected by the transition-based test. To see how close the
answer from the two tests can be, Figure 6b reports the transition discrepancy
(r.5,,) P rh(A,r I éM) defined in (18)-(20) and evaluated under the unconstrained

i?Ti+A i?7i+A?
parametrization (23)-(24) at the parameter values (10) estimated in the course of running the
marginal density test. Figure 6¢ plots the transition discrepancy for the linear drift - CEV
diffusion model, also evaluated at the parameters estimated from the marginal test. From
(20) and (22), large discrepancies lead to rejection of a given model. We find that the
magnitude of the discrepancy in Figure 6c is significantly larger than that of Figure 6b.
Like the marginal-based test, the transition-based test does reject the linear drift-CEV

diffusion model, but not the general parametric model.
4.6. A Discrete Look at Nonlinearities in the Drift

Figures 7-ab show estimates of the | and 62 functions obtained from discretizing
the continuous-time moments in (23). Feasible generalized least squares is a two-stage
estimator, where residuals are computed from a first-stage ordinary least squares

regression of the spot rate change. The specification of the regression is the crude
discretization of the drift in (23): E[r,, -1 I5]=04+(ct, = 1)r, + 0,17 + 0, /1,. The

2

-,; from this first-stage regression are then regressed by nonlinear least

squared residuals €

squares, with a discretization of the diffusion in (23): E[ef+l I r(] =B, +B,r, +B,r>.

The second stage regression for the drift uses the fitted values from the diffusion
regression to form the weighting matrix for the generalized least squares estimation of the

discretized drift. The resulting FGLS drift parameters are in Figure 7a, along with a scatter
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plot of the actual spot rate changes. To avoid cluttering the graphs, each point in Figures 7-
abc represents 50 daily observations. Figure 7b reports the fitted values from the diffusion

equation next to a scatter plot of the first-stage squared residuals. Figure 7c reports the

first-stage residuals scaled by the fitted standard errors (€, ,, / \[ [30 + ﬁ,r[ + [:’tzr[é’ ). This plot
shows that the heteroskedasticity apparent in Figure 7b is removed by the FGLS
procedure: the scaled residuals in Figure 7c are essentially white noise. A Chow test to
detect parameter shifts between the 1980-82 period and the rest of the sample does not
reject the null hypothesis of parameter equality. The same test for the linear drift - CEV
diffusion model rejects the null, emphasizing again the misspecification of this

parametrization.

This FGLS estimation would be asymptotically efficient if the discretized moments
were exact. But this is not the case with a crude discretization, and the difference
introduces a discretization bias --likely to be less severe with daily data than monthly data.
In general, there are no closed-form expressions available for the moments of r; givenr;
so no better discretization can be proposed!8. For this reason, this section is provided only
for comparison purposes with the other results in the literature [e.g., Chan et al. (1992)].
The test of the continuous time model with discrete data test in this paper, and the
nonparametric estimation of the diffusion in Ait-Sahalia (1992b), both take explicitly into
account the effect of estimating a continuous-time model sampled at a discrete frequency

and do not suffer from discretization bias.

5. Conclusions

Stochastic differential equations are a powerful tool in the hands of finance
theorists. But it is often hard to justify on empirical grounds the particular specifications
being adopted in any given model. This paper provides a first step in that direction. Many
other processes of interest in finance, for example stock returns or exchange rates, could be

subjected to the same type of inquiry.

We test the specification of parametric interest rate models by examining how
closely the parametric model can reproduce features of its nonparametric counterpart. We
examine the sources of the rejection of the models tested. We propose a simple model that
captures well the dynamics of the spot rate. This model has the appealing feature of being a
random walk for middle values of the spot rate, while still being globally stationary. The
paper provides evidence of nonlinear effects in the dynamics of the spot interest rate.
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The results in this paper can be generalized. For example, certain situations may
dictate the choice of the distance metric between the parametric and nonparametric densities.
We may be particularly interested in how the model performs in the tails of the distribution.
Then the class of distance metrics r&gl f ((u,8) - 1t0(u))2 ®,(u)du can be used where
the weighting function @y is chosen to emphasize the tails (as opposed to wg=mg which has
the opposite effect). As another example, if the current spot rate level is r; and we are
interested in the performance of the model over the next few weeks, it may be natural to

minimize the distance Igllen Jj {m(A,y,r,,G)}2 pO(A,y,rt)dy, i.e., conditioning on the

current value.
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Appendix

Assumptions

Assumption AO: The parameter space ©cRK is compact. In a neighborhood of the
true parameter 09, m(x,0) is twice continuously differentiable in 6,

E[(9n(x,6)/06)(0n(x,6)/06 )] has full rank and 0°m(x,0)/96,30; is bounded in absolute

value for all 0 in ©, x in D, i and ).

This assumption insures the identifiability of 8y in the parametric class of densities
considered. The relative scale of u and 62 is arbitrary and 6y is defined to incorporate only
the identified parameters. For identification purposes, 3 can be neither O (unless ¢o=0)

nor 1 (unless B1=0) .

We first impose constraints on the signs of the parameters to insure that:
6?(,8)>0onDand lim,_,, u(x,0)>0, lim__,, u(x,0)<0. In particular for model (23)

it is necessary that: (i) 0p<0 (and o;<0 if 0;=0); (i) €320 (and >0 if ®€3=0); (iii) fo=0
(and B,>0 if Bo=0 and 0<P3<1, or B;>0 if Bo=0 and B3>1); (iv) B»>0 if B3>1 or §,=0;
(v) B1>0 if 0<Bs<! or B,=0.

Assumption Al: For every 0 in ©:
(1) The drift and the diffusion functions are twice continuously differentiable in x on
D=(0,%0), and 62>0 on (0,).

(i) The integral of m(v,8) = (l/oz(v,e)) exp{—jE [2 u(u,ﬂ)/oz(u,ﬂ)]du}, the speed
measure M, converges at both boundaries of D.

(iii) The integral of s(v,0) Eexp{jE [2u(u,9)/02(u,9)]du}, the scale measure S,
diverges at both boundaries of D.

In Al(i1)-(iii), € is fixed in D and its particular choice is irrelevant. A1(i)-(ii)
guarantees that stochastic differential equation (1) admits a unique strong solution, which is
a Markov process with time-homogenous transition densities and a stationary marginal
density (note that (6) is proportional to the speed measure). A1(i)-(ii) is considerably less
restrictive than the global Lipschitz and growth conditions usually imposed on p and 62 to
obtain the existence and unicity of a solution. A1(i) implies local Lipschitz and growth
properties (on every compact in D) by the mean-value theorem. The local Lipschitz

condition is sufficient to insure strong uniqueness of the solution. For example in (23) any
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of the nonlinear  models (<0 and/or 03>0) or nonlinear 62 (with B3>1) fail the global
growth condition.

Al(iii) guarantees that starting from any point in the interior of the state space
D=(0,e0), the boundaries x =0 and X = +e cannot be attained in finite expected time. If in
addition we were to assume (iv): starting from either of the boundaries x =0 and X = +oo,
an interior point in D=(0,e) is reached in finite expected time, then the boundaries are
entrance boundaries. Otherwise, the process cannot restart from the boundaries and the
boundaries are natural!® (see Feller's classification of boundaries in Karlin and Taylor
(1981), Lemma 15.6.3 and Table 15.6.2). How the interest rate process would restart
from the boundaries is not particularly relevant from the economic standpoint, and we

therefore allow both type of behaviors.

We now derive the parameter restrictions imposed by Al on model (23). We first
examine the boundary behavior of the speed and scale measures near zero. When o3>0 and
Bo>0, 1(u,8)/0%(u,8) < (1/B, )0y /u) so m(v,8) e (1/B,)v***® and s(v,8) o< (1/v)’>"™.
Therefore in this case we require 20:32Bp>0. When o3>0 and Bg=0, Al is satisfied. The
only other admissible case is o3=0, 0¢>0, Bp=0, B3>1 and 20¢=P ;>0 (then
1(u,0)/6%(u,0) =< &ty /(B,u)). Note in particular that the Cox-Ingersoll-Ross model
satisfies A1 when 20,0>B, while the Vasicek model does not: Al(iii) is violated and zero

--as well as negative values-- are attainable.
Near infinity, if ;<0 and B3>1 then p(u,8)/0°(u,6)e<(at,u’)/(B,u™) so

s(v) o< exp(—(20c2/B2(3— B3))VH’3) and m(v,0)e (1/[32vﬁa )(l/s(v)) and Al is
satisfied?0,21. If a»<0 and 0<Ps<1, Al is satisfied. If o3=0, a;<0, and B3>1 then Al is
similarly satisfied since then s(v,8) o exp(—(2a,/B2(2— B,))v' P ) If 0,=0, 0t1<0 and

0<Ps<1, Al is satisfied since s(v,0) < exp(—(20L1 / B,)v).

The next assumption restricts the amount of dependence allowed in the discrete
interest rate observations, so classical asymptotic theory can be applied (P5).
Assumption A2: The observed data sequence {r.} is a strictly stationary B-mixing

sequence satisfying: k®pB(k)——-=—0 for some fixed & > I.

A condition on the drift and diffusion sufficient to insure that the discrete

observations will satisfy A2 is the following?2:

Assumption A2': Assume that:
(i) lim o(x,0)n(x,0)=0

x—0or x e
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(i) lim | o(x,8)/{2u(x,8) - o(x,6)[30(x,8)/ x|} | <eo.

x—0 or x— el

For the model (23), this condition is always satisfied under the parameter

restrictions already made.

Assumption A3:

(i) The true density 1 is positive on the interior of its support D and both &, and
n2 are in L*(D).
(ii) The initial random variable rg is distributed as .

(iii) The true drift and diffusion functions satisfy A1 and A2.

Note that under A1(1), Ty will be twice continuously differentiable on R. A3(i) is
required to derive that the asymptotic distributions of the test statistics. A3(ii) insures that

the process is initialized with the appropriate distribution to be stationary.

Assumption A4: The kernel function K(.) integrates to one and is of order23 r=2. K

is bounded, twice continuously differentiable on R. K and its derivatives are in L2(R).

The next assumption determines how fast the bandwidth h; should go to zero as the

sample size n increases.

Assumption AS5: To estimate the marginal density, the bandwidth is chosen such that

lim___h_/n"’ is a finite strictly positive constant.
noe g yp

The empirical results are obtained with a Gaussian kernel K(u) = exp(— u?/ 2) / N2m

of order r=2. The quality of density estimates is now widely recognized to be determined
primarily by the choice of the bandwidth rather than that of the kernel. The optimal

bandwidth here is h, =c, n™", where ¢, = ¢ times the standard deviation of the spot rate

time series {rl} The constant ¢ is chosen by cross-validation to minimize the integrated
square error of the estimator. In the empirical application, we find c=2.1 for the full 1973-
95 sample and c=3.5 for the subsample 1983-95. The results are qualitatively robust to the
choice of the kernel as well as small changes in the bandwidth parameter around the
optimal value. Monte Carlo experiments suggest that the use of the asymptotic distribution

in this setup is warranted (coverage probabilities are all higher than .85).

Assumption AS5': To estimate the joint density, the bandwidth is chosen such that
lim,__h,/n7""? is a finite strictly positive constant. To estimate its first (resp. second)

derivatives, set instead lim, ,_h_ /n™"® (resp. lim,_,_h_/n""'*) to be finite strictly

positive constants.
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The empirical results for the transition density are obtained with a product Gaussian

kernel, k(u,v)=K(u)K(v). The joint density is estimated with optimal bandwidth
h, =c, n""* where c, =c times the standard deviation of the spot rate time series {r,}.

The constant c is again chosen by cross-validation to minimize the integrated square error

of the estimator and the results are similarly robust.

Proofs
Proof of (12): In this proof and the next, Fo(.) will denote the cumulative density
function associated with the density mg(.). To obtain the limiting distribution of éM , wWe
define the functional:

©,,[F]= argmin jx (n(x,68) - no(x))zno(x)dx

6e© =
We need to compute the functional derivative of the Kx1 parameter vector Om(+).

The functional and its perturbation by H (with density h=H') around Fy are the implicit

solutions of the first order conditions:

an(x,GM[FO])( (

eulR])- no(x) T, (x)dx =0

T
T ,0,[F, +H
J- an(x ;([) ot ]) (n(x,@M[FO + H]) - (11:0 + h)(x))(no + h)(X)dX =0
where the gradients ——a ng);,e) are Kx1. To compute the Kx1 functional derivative ¢(Fo),

consider the expansion: ©,,[F, +H]=0[F,]+ f ¢[F,](u)h(u)du + O( e ) The L2

. 12
normofhis |h| . = {! |h(x)|2dx} . The derivative of @y is computed as:

olF. () ={! an(x @M[F an(xacz’ wlE]) )dx} an(u,a(ZM[Fo]) (0]
_ o) OT(x,8,) " on(u,8,)
- [ 20’ ] a6 ™

and therefore (p[F ] is continuous in Fg. The asymptotic distribution of 9 =0 [F ]
follows immediately from Ait-Sahalia (1992a): n'/z{GM —90}—) N(0,Qy), with

asymptotic variance given by:



22

Q,, = VAR (¢[F](x,) )++i{cov(<p[F] )(p[F](ka))+COV((p[F](ka),(p[F](xt))}.

k=

A consistent estimate of Q can be obtained by replacing in @[F](-) the unknown

parameter 6y by éM, and by truncating the infinite sum a-la Newey-West.

Proof of (13): We now need to compute a Taylor expansion for the functional M(:)

defined as:

M[F, ] = min j (1(x,8) — 74(x))" 7o (x) dx = j_‘( n(x,0u[F]) - ())zno(x)dx

It can easily be shown that under the null hypothesis the functional Taylor expansion of
M(-) has the form:

M[F, + H] =M, ]+ | {—j ¢[F, J(w)h(u)du - h(x )}ZRO(X)dHO(IIhNE)

=M[F,}+ [ [ 4F, Jx.y)dH(x)dH(y)+ O(| )

The linear term in the expansion is zero because under H,: m(x,68,)—m,(x)=0

Therefore the term driving the asymptotic distribution of A in the delta method will be
quadratic. Now the form of ¢[F](x,y) is {F](x,y)=g[F]l(x,y)+ mo(x)8,,(y) where the

functional g is continuous. When h is replaced by 7, — 7, by the continuous mapping
theorem, it can be shown that the term IXIX g[F](x,y)dH(x)dH(y) will converge at speed

n (to a sum of independent chi-squared distributions for iid data , a classical U-statistics

result, see e.g., Serfling (1980), Theorem B page 226-227; the speed of convergence is
still n with dependent data). However, when h is replaced by &,—m, the term

j j T, (x y)dH(x)dH(y) = r m,(x)h(x)*dx will converge (i) at the slower speed

nh_ and (ii) to a normal distribution (by extending to dependent data the result of Bickel
and Rosenblatt (1973) page 1073; it can be shown with the tools of Ait-Sahalia (1992a)
that the asymptotic distribution of this term is unchanged for dependent data).

Therefore, recalling that M[F,]=0, M=nh, M[IEO] converges at speed h™"* | and
to the same asymptotic distribution as nhnji {#,(x)- no(x)}zno(x)dx. The asymptotic

distribution is: h;"? {IOI - EM} —5N(0, V,,) where:
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B =[x x>dx)( [Rwe)
('L{L’ u+x)du} dx](f: ng(x)dx)

Proof of (22): This proof is similar to that of (13), albeit more complicated.
Compute an expansion of (19): T[FO]_—":Igliél jx jx {m(A,y,x,O)}2p0(A,y,x)dxdy at

Fo+H, with F now being the joint cdf of X; and X;,a. First replace the conditional density

appearing in m(.) with the joint and marginal densities and then expand
Po(A, ¥ I X) = po(A,y.x)/m,(x). Next note that:

0’ 0’c’(y,0) . _dc’(y.8) dh(A,y,x) 0’h(A,y,x)
W(cﬁ(y,ﬂ)h(A,y,x)): h(A,y,x) 3y +2 3y 3y +c>'2(y,9)a—y2

Higher order derivatives of h converge slower so only the last of the three terms on

the right-hand-side above contributes to the asymptotic distribution. Thus the term in the

expansion giving the asymptotic distribution of the T is:

0’h(A,y,x) 6%(x,0) 9°h(A,y,x) ?
1= ” {215 ) 9y?  2m(x) ox’ }p"(A’y”‘)d" dy

as the marginal density mo(.) also converges faster than the conditional density and its
derivatives.

Evaluated at h(A,y,x)=P,(A,y,X) — py(A,y,x), the term I gives the asymptotic
distribution of T=nh$1: h;'{T-E.} — N(0, V), where:

o[ T 02070} 2
ﬁ -2 (.[:K(X)K(”(X)dX)(f j— {02(y,9)02(x,9)}—p°n§g;x) dydx)

}2 pg(A’yl’xl)

o(x,)

dy,dx,dy,dx,

VT = J-:Jj {Y(x’y’x]’y"x2’Y2)

with:

'Y(x y,xl,y,,x2,y2 j j Y1’ )K(2)(Y)K(x) (xl’e)K(2)(x)K(Y)}'
.{0' y+¥,.0)K®(y+y,) K(x +x,) -6 (x +x,,8)K?(x + x, )K(y + y2)} dydx

To obtain consistent estimates of Ey and V; replace mg and pg by their kernel

estimates, B by its estimate, plug-in the kernel function K and evaluate the integrals.
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I Other papers considering a similar class of models are: Brenner at al. (1994), Broze et al. (1995), Koejdik
et al. (1995), Pagan et al. (1995), Pfann et al. (1995).

2 The continuous-time process therefore has the same characterization as a discrete-time Gaussian random
variable, even though its distribution is not necessarily Gaussian,

3 "Arbitrage-free" models of the term structure [e.g., Ho-Lee (1986), Hull-White (1990)] make some or all
the parameters functions of time. They are not meant to describe the time series properties of the short term
interest rate --which is the focus here-- but rather force the derivative pricing model to fit at a given instant
the underlying term structures of bond prices, volatilities, caps, etc. The functions of time change and must
be re-fitted continually to maintain the term structures’ fit.

4 A process can have time-homogenous transition densities and nevertheless not be stationary (for example
a Brownian motion).

5 See Melino (1994) for a review of the empirical literature.

6 The convergence of discrete approximations to the continuous-time model has been studied in the finance
literature by Nelson (1990), He (1990) and Nelson and Ramaswamy (1990). The approximation can only be
made exact in a few cases (typically when the likelihood function is known in closed form, see Wong
(1964) for a list).

7 For example, unless (3) specifies a linear drift function, the conditional mean of the process at date s
given where it was at date t depends on both the y and ¢ functions.

8 This equation for the density follows easily from the forward Kolmogorov equation [e.g., Karlin and
Taylor (1981), (15.6.22)].

% Comparing different types of estimators of a same quantity goes back to Hausman (1978) in the context
of parameters of simultaneous equations. Here we must use a nonparametric estimator because no consistent
parametric estimator is available if the model is misspecified. See also Bickel and Rosenblatt (1973).

10 Any other measure of the integral in (2.6) could be used: for example a Riemann sum

g (n(xj,e)—fto(xj))z fto(xj){xj,rl —xj} where the x;'s form a grid on (x,X).

1 As an aside, note that a simple test of the Markovian property of the data consists in examining whether
the two-day transitions can be derived from the one-day transitions (say A = one day) according to the
Chapman-Kolmogorov Equation. This equation can be found for example in Gardiner (1990), Section 3.2.1.
In particular, note that knowledge of the one-day transition density is enough to characterize the marginal

density since we have for all n: p(nA,ny)=J: p(A,ylz)p((n—I)A,zIx)dz, which can be iterated

recursively from p(A,y1z). Then by ergodicity lim,_,.. p(nA,y|z)=n(y).

12 gee e.g., Gardiner (1990), Chapter 5. The forward and backward equations cannot be solved explicitly for
the transition density, except in a small number of special cases [see Wong (1964) for a list]. The initial
condition for the forward equation at s=t is p(s,yls,x)=8(y-x). The boundary condition for an absorbing
barrier is: p(s,ylt,x)=0 when y is at the barrier x or X. For a reflecting barrier:

1(y.0)p(s.y! t,x)—(I/2)(8/8y)(02(y,9)p(s,y I t,x)) =0 when y is at the barrier. The marginal density & is
the only solution of (3.1) which does not depend on time (and integrates to one), hence (6).

13 The final condition for the backward equation at t=s is p(t,ylt,x)=8(y-x). The boundary condition for an
absorbing barrier is: p(s,ylt,x)=0 when x is at the barrier x or X. For a reflecting barrier:

dp(s,y It,x)/ox =0 when x is at the barrier, unless 6(.) vanishes there.
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14 There is a link between (3.3) and the second moment condition in Hansen and Scheinkman (1995). As
they show, their condition is equivalent to the fact that the conditional expectation operator and the
infinitesimal generator commute [for a proof of this fact, see e.g., Revuz and Yor (1988)]. Our condition is
also equivalent to this commutativity property. Indeed we have just shown that m(A,y,x,8,)=0 for all x and
y in D, so if we take an arbitrary twice-continuously differentiable function ¢(y,x) in L%(D?):

0= [[m(A.y.x,80)¢(y,x)dy dx

= H{%W(oz(y’ 89)Po{A.y | x))— aa_y(u()”eo)Po(A’)’ | X))}(P()”X)d)’ dx

2

._H{ (x, 90) (po(A ylx))+ ; o?(x, Go)aiz (po(A.y] x))}(p(y,x)dx dy

2

= H{l"z(yy"o)%yz’x)+ M(Y’Go)a—w(y’—x)}po(/&y I x)dy dx

2 dy dy

—H{%;—Z(cz(x,eo)(p(y,x))-a%( (x.80) (. x ))}po(A,ylx)dxdy

so by integrating twice by parts we recover the commutativity property.

15 The ratio of weekend to weekday mean and standard deviation of S&P500 returns are respectively -0.652
and 1.311 between 6/2/1973 and 12/30/1994. The corresponding numbers are 1.004 and 1.003 for the
seven-day Eurodollar rate.

16 Typically by Chow tests on a discrete approximation with monthly data.

17 Duffee (1994) documents the idiosyncratic variation of several short maturity yields and recommends the
adoption of Eurodollar yields instead of Treasury bill yields for the purpose of calibrating term structure
models.

18 Cases where closed-form expressions are available include the Vasicek [(1977), (25)-(26) p.185] and
Cox-Ingersoll-Ross [(1985), (19) p.392] models. Every model with a linear drift has the same conditional
mean, regardless of its diffusion [Ait-Sahalia (1992b), (2.4)].

19 It can be established that a process with entrance boundaries must have a stationary marginal distribution
(that is, A1(ii) is automatically satisfied) --and is also ergodic: that is, lim,_,, p(A,x | y,9) =n(x,0). It is
not necessary however to have entrance boundaries for the stationary distribution to exist. Natural
boundaries cannot be reached from the interior of the state space but the process cannot be started from
natural boundaries. A stationary distribution may or may not exist if both boundaries are natural (depending
upon whether A1(ii) is satisfied).

20 1t is counterintuitive at first that A1 is still satisfied when B3>3. The intuition provided by Conley et al.
(1995) is the following ("diffusion-induced-mean-reversion"): when o2 is large at high spot rate values,
moves to higher interest rate levels are more likely, but so are large downward moves following a large
upward move.

21 When B;>3 no restrictions on the drift coefficients are needed to satisfy Al. When P3=3, only 20,,<B, is
necessary. It is only when B1<3 that the leading term of the drift must be negative. We will however always
impose that either 0,<0 or o;<0 if 0,=0, that is, the process does mean-revert at high values of the spot
rate.

22Under this assumption, the conditional expectation operator is a contraction [Hansen and Scheinkman
(1995)] and then the desired mixing property of the discrete observations follows [see Ait-Sahalia (1992b)].
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23 The order of a kernel K(.) is defined as the integer r such that: j_t':xi K(x)dx=0 i=1,...,r—1, and:

[TX K)dx #0, [TIx I IK(x)ldx <o
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Table 1: Descriptive Statistics

Source Bank of America 7-Day Eurodollar
(Deposit Rate Midpoint Bid-Ask)

Frequency Daily
Sample Period 6/1/1973 - 2/25/1995
Sample Size 5505 observations
Type Continuously-Compounded Yield-to-Maturity

(annualized rate)

Spot Interest Rate First Difference of
Spot Interest Rate

Mean 0.08362 -0.0000035
Standard Deviation 0.03591 0.004063
Monthly p; 0.9389 0.02136
P2 0.8785 -0.00689
P3 0.8300 -0.01658
P4 0.8014 0.00242
Ps 0.7783 0.00858
Pé 0.7715 0.01573
p7 0.7361 0.00056
Augmented Daily -2.60
Dickey-Fuller
Hy: Reject at 90%
Nonstationary (critical value = -2.57)

In the table, the coefficient p; designates the autocorrelation of the series at lag i.
The augmented Dickey-Fuller test statistic is computed as ’cu = (f)/ ase((‘f)) in the model:
Ar, =pu+4r_ + z;q)j Ar,_, +u,, with p=5 lags (see e.g., Harvey (1993), section 5.4).
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Table 2: Tests of Parametric Specifications of the Continuous-
Time Spot Rate Process

Drift Function Diffusion Reference Test 95% 95 %
R(x,0) Function Stat. Crit. Result
62(x,0) M Value
oL, + 0, X B, Vasicek (1977) 15.09 2.28 Reject
(0 attainable)
oL, + 0L, X B,x Cox-Ingersoll-Ross 42.01 2.28 Reject
(1985)
Gibbons-Ramaswamy
(1993)
Pearson-Sun (1994)
o, + 0, X B,x> Brennan-Schwartz  129.49 2.28  Reject
2 (1979)
Courtadon (1982)
oL, + 0 X B, xP: Chan et al. (1992) 38.56 2.28 Reject
2 (0 unattainable: B3=>1)
Figures 3-abc
2 / B3 General Drift, 6.79 2.28 Reject
Oho + X+ X+ Ot X Bax CEV Diffusion
oy + 0 X +0,X° + 0 /X By +Bx +B,xP Genera;qgi‘i‘memc 2.28 ii‘}?:c(:t

73-95: Figures 4-abc 0.350
83-95: Figures 5-abc 0.289

Table 2 reports the value M of the M test statistic and the result of the test for a

sample of the models considered.



Table 3: Estimated Parameter Values for

Spot Rate Process
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the Continuous-Time

Estimated Linear Drift, Linear Drift, General General
Parameter CEV Diffusion CEV Diffusion, Parametric Parametric
Values 0 unattainable Model Model

1973-95 1983-95
6M Figures 3-abc  Figures 4-abc  Figures 5-abc
Figure 6c Figure 6b
pL(x,0) oo 2.935 103 1.224 10-3 -4.643 10-3 -5.652 103
o -3.688 10-2 -1.400 102 4.333 10-2 9.648 10-2
(0) constrained =0 constrained =0 -1.143 10! -5.349 10!
o3  constrained =0 constrained = 0 1.304 10-4 1.041 104
62(x,0) Bo constrained=0 constrained = 0 1.108 104 1.099 104
Bi  constrained =0 constrained = 0 -1.883 10-3 -2.007 10-3
B, 1.796 104 4902 10-4 9.681 10-3 1.329 10-2
B3 0.29 1.04 2.073 2.051
(unconstrained) constrained = 1
Test 13.15 38.56 0.350 0.289
Statistic
M

The estimated parameter vector reported in Table 3 is from (10). These parameter

values correspond to a spot rate which is continuously compounded, annualized and

expressed as a decimal number (0.07 for 7%). All the coefficients are significant at the

95% level. The table also indicates the parameter values corresponding to the relevant

figures. The relative scale of the drift and diffusion, /a2, is arbitrary. To report consistent

results across models we fix the scale by matching the average level of interest rate

volatility observed in the sample. The otherwise unconstrained estimates of the general

parametric model (23) reported in the last two columns of the table satisfy the parameter

restrictions (24).
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