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ABSTRACT

This paper studies quarterly employment flows of approximately 10,000 large U.S.
manufacturing establishments during 1972:1-1980:4. After estimating the extent of short run
microeconomic substitution between employment and hours per worker (hours-week), we
construct measures of the path of the deviation between actual and desired employment based
on the observed behavior of establishments’ hours-week. These deviations are then used as the
state variables upon which units decide their employment adjustments (microeconomic policy).
Using this framework we obtain the following conclusions: (i) Microeconomic employment
adjustment policies are non-linear, with firms adjusting to large deviations proportionally more
than to small ones. (ii) Employment adjustments are often either large or nil, suggesting the
presence of non-convexities in the adjustment cost technologies. (iii) Between 60 and 90 percent
of aggregate employment fluctuations is due to changes in the cross sectional distribution of
employment deviations, while the remainder is due to changes in microeconomic policies. (iv)
The bulk of net aggregate employment fluctuations due to changes in the cross sectional
distribution is accounted for by aggregate shocks. This holds in spite of significant fluctuations
in the distribution of idiosyncratic shocks and the marked countercyclical nature of their second
moment (i.e. reallocation shocks). (v) Similarly, the bulk of net aggregate employment
fluctuations due to changes in microeconomic policies is accounted for by aggregate shocks. (vi)
Aggregate shocks are also the dominant source of job destruction, but account for less than half
of the fluctuations in job creation. (vii) A simple parametric version of the aggregate model
suggested by the microeconomic nonlinearities described above has a mean square error 50
percent lower than that of its linear counterpart.
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1 INTRODUCTION

Since adjusting employment is costly, in most periods establishments choose employment
levels different from what would be optimal in the absence of frictions. In the presence
of adjustment costs, establishments’ employment choices depend not only on current and
expected future conditions, but also on past employment decisions. At each point in time, an
establishment inherits the deviation between actual and “desired” employment levels left by
its incomplete adjustment during previous periods. New aggregate and idiosyncratic shocks
modify the deviation, and what is left of this deviation after the firm’s adjustment during the
current period is bequeathed to the next period. Following this chain of events methodically
for a large number of establishments can shed substantial light on many important aspects
of microeconomic and macroeconomic employment adjustment. This paper characterizes
and organizes U.S. manufacturing plant level employment data accordingly.?

We start by relating the changes in a plant’s deviation between actual and “desired”
employment to the fluctuations in the plant’s hours per worker. Conditional on these devia-
tions and actual employment adjustments, aggregate and idiosyncratic shocks are recovered
from simple “accounting” relationships. We then study the relation between the measures
of employment deviations, the nature of shocks, and subsequent employment adjustments.
We group our findings into three categories: () characterization of microeconomic adjust-
ment policies, (ii) decomposition of sources of aggregate net employment fluctuations, and
(i#t) decomposition of sources of gross employment flows.

Characterization of microeconomic adjustment policies:

The deviation between actual and desired employment is undoubtedly one of the main
state variables in any model of adjustment. We simplify our analysis substantially by
making this deviation the only state variable, besides calendar time, upon which plants
decide by how much to adjust their employment levels at each moment. We find that:

2There are several strands of literature related to this paper. On many aspects of the methodology and
qualitative findings, the paper is closely linked to the literature on aggregate dynamics in the presence of
fixed costs om microeconomic adjustment ((S,s) models). See, e.g., Blinder (1981), Caplin (1985), Caplin
and Spulber (1987), Caballero and Engel (1991), Bertola and Caballero (1990), Bar-llan and Blinder (1992),
Caplin and Leahy (1991), Caballero (1993), Hamermesh (1993), Caballero and Engel (1992,1993), Eberly
(1994), and Beaulieu (1991). Therze is a closely related literature that (like this paper) exploits plant level
data to investigate the importance of lumpy changes in plant level employment (see, e.g., Hamermesh (1989),
Davis and Haltiwanger (1992), and Bresnahan and Ramey {1994)). On the relative contribution of aggregate
and reallocation shocks to the business cycle, the antecedents of the paper include Lilien (1982), Abraham
and Katz (1986), Blanchard and Diamond (1989, 1990) and Davis and Haltiwanger (1990, 1994). The paper
is also obviously linked to the long literature on dynamic labor demand models - see Hamermesh (1993) for
a comprehensive discussion of the relevant literature.



(i.1) Firms are more likely to react (or react by more) to large employment deviations
than to small ones. For example, on average, about 70 percent of a 10 percent deviation
will remain one quarter later; while only 50 percent of a 50 percent deviation will go
beyond the current quarter. (i.2) Microeconomic employment adjustment is lumpy and
discontinuous. Most distributions of adjustments (conditional on initial deviations) are
bimodal: Invariably, one of the modes is at zero adjustment. Especially for large initial
deviations, the other mode is typically at one (full adjustment). These features are akin to
(S, s) type models.

Decomposition of sources of aggregate net employment fluctuations:

At any point in time, the change in aggregate employment is the result of the sum of
changes in employment across a large number of plants. In terms of our framework of analy-
sis, these microeconomic changes and their connection with the aggregate can be described
in two steps. The first one asks, conditional on microeconomic policy functions (which
relate adjustments to deviations), what are the employment deviations of establishments
just before adjustment? We summarize the answer to this question in a cross-sectional
distribution of employment deviations. The second step notes that a change in aggregate
employment is the result of the sum over the product of microeconomic policy functions
and cross sectional distribution of deviations. Mechanically, fluctuations in aggregate em-
ployment over time are due to fluctuations in microeconomic policy functions and in the
distribution of deviations. More interestingly, these fluctuations are in turn due to aggre-
gate and reallocation shocks, filtered through our self-contained framework encompassing

microeconomic policies and distributional dynamics. We find that:

(#i.1) Between 60 and 90 percent of U.S. aggregate manufacturing employment fluctuations
during the 1972:1-1980:4 period (our sample) is due to fluctuations in the cross-sectional
distribution of employment deviations. (#i.2) Fluctuations in the cross-sectional distribu-
tion accounting for the changes in aggregate employment are almost entirely driven by
aggregate shocks rather than by changes in the distribution of idiosyncratic shocks (re-
allocation shocks). This conclusion is reached despite the marked countercyclical nature
of the second moment of the distribution of idiosyncratic shocks. (4i.3) Similarly, more
than 90 percent of the fluctuations in microeconomic policies accounting for changes in
aggregate employment are driven by aggregate rather than reallocation shocks. Putting all
things together (shocks to distributions and to microeconomic policies), we conclude that
(#i.4) aggregate shocks account for more than 90 percent of net employment fluctuations.
(4i.5) The departure of the (nonlinear) microeconomic policies characterized in (i) from



the standard linear model (partial adjustment or quadratic adjustment cost model), plays
an important role in these decompositions. A simple parametric version of the aggregate
model suggested by the microeconomic nonlinearities described above has a Mean Square

Error 50 percent lower than that of its linear counterpart.

Decomposition of sources of gross employment flows fluctuations:

Microeconomic employment adjustments can be grouped in many different ways. Of
particular relevance is the construction of the gross flows leading to aggregate net employ-
ment changes. Adding over all those establishments that increase their employment levels
at any point in time yields aggregate job creation during that period. Adding over those
that reduce their employment levels, yields aggregate job destruction. Fluctuations in these
(gross) flows can be characterized in terms similar to those used above for net employment
changes. Doing so we find that:

(#41.1) About and at least half of fluctuations in job creation and destruction, respectively,
are due to changes in the cross-sectional distribution of employment deviations. (iii.2)
The bulk of fluctuations in gross flows is driven by aggregate shocks. (iii.3) Reallocation
shocks explain (substantially) more than half of fluctuations in microeconomic policies
leading to fluctuations in job creation while they explain (substantially) less than half of
fluctuations in job destruction. Putting all things together (shocks to distributions and to
microeconomic policies), we conclude that: (iii.5) Aggregate shocks account for about 40
percent of fluctuations in job creation and 90 percent of fluctuations in job destruction.

This introduction is followed by section 2, where we describe the basic framework and
construct and estimate the mapping from hours-week to establishments’ employment de-
viations. Section 3 characterizes microeconomic policies. Sections 4 and 5 decompose the
sources of fluctuations in net and gross employment flows. Section 6 concludes.

2 THE BASIC FRAMEWORK

In this section we describe the basic framework we use to structure our discussion of
the relation between the microeconomic features of the data and aggregate dynamics. In
doing so, we distinguish between identities that follow from the definitions we introduce
and theory-dependent statements. We present the issues in reverse order. In the first two
subsections we describe the relationship between microeconomic employment deviations
(i.e. the difference between actual and desired-frictionless employment) and aggregate em-
ployment dynamics, for given deviations. In the third subsection we describe the theory
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and measurement of these deviations.

2.1 “Accounting”

We start by defining z as a single index measuring the deviation between actual and desired
(log of) employment, e and e*:

(1) Zit = € 4—1 — e."'g,

where the subindices ¢ and ¢ denote firm ¢ and time ¢, respectively. Based on this measure
of employment deviation we build our “accounting” framework; the quotation marks reflect

the fact that z depends on e, which is a theoretical construct.

We define A(z,t) as the fraction of the employment deviation by which a firm with
deviation z during time period ¢ adjusts on average, and label it the “effective hazard”
function. This function can also be defined implicitly by noticing that the average (log of,
hereon) employment change by firms that are at z before adjusting is equal to —zA(z,t).

It is important to realize that the definition of A(z,t) is silent with respect to the way
in which the average adjustment of firms at z takes place. For example, this could be due
to all firms adjusting by a small fraction (as in convex adjustment costs models) or by a
few firms adjusting fully and most firms remaining inactive (as in non-convex adjustment
costs models). The distinction between these different forms of adjustment policies will be

discussed later in the paper.

The cross-sectional density of plants’ deviations at time ¢, evaluated at z, is denoted
by f(z,t), so that the fraction of firms with deviations between z and z + dz at time t is
(approximately) equal to f(z,t)dz.

The definitions of the effective hazard and cross-sectional density of employment devi-

ations permit us to define the variable AE; as:
(2) AE: = -/zA(z,t)f(z,t)dz.

If employment shares are independent of the position of firms in the space of employment
deviations — so that the average of firms’ employment growth rates is equal to the growth
rate of the aggregate — then AE; is equal to the rate of growth of aggregate employment:
E; — E,_,. We make this independence assumption and refer to AE; as the aggregate

change in employment (all variables are in logarithms).3

3This assumption is validated by the data: for our sample, aggregate quarterly employment growth has



2.2 Cross-sectional and aggregate fluctuations

From equation (2) we see that fluctuations in aggregate employment growth can be ex-
plained in terms of fluctuations in the effective hazard and in the cross-sectional density of
employment deviations. We will attempt to separate these two “sources” of fluctuations
in the empirical section. Yet it is important to emphasize at the outset that even if the
effective hazard remains unchanged, its shape plays a key role when mapping changes in the
cross-sectional density of deviations into aggregate employment, as well as when tracking
the evolution of this density. We briefly illustrate the latter below and then study in more
detail the mechanisms behind fluctuations in the cross-section of deviations.

2.2.1 On the shape of the effective hazard function

A basic conclusion emerging from the literature on aggregation of (5, s)-type models is
that the first moment of f(z,t) is not enough to capture the impact of cross-sectional
dynamics on aggregate employment, as would be the case with standard linear models
(e.g., quadratic-adjustment-costs model). More generally, it follows from equation (2) that
as long as the effective hazard function depends on z, aspects of f(z,t) other than its mean
influence aggregate dynamics.

For example, if the fraction of the deviation between actual and desired employment
that is closed on average grows with the extent of the employment deviation according to
A(2) = Ao + X222, with Mg > 0 and Az > 0, then equation (2) implies that:

AE; = —doMW(t) - M MP(2),

where Mz(i)(t) denotes the i** (non-central) moment of the cross-sectional distribution of

deviations at time ¢t. Or in terms of central moments (but for the first one),
(3) AE, = —Jops(t) = 3haa(£)o3(t) - Aam(t) - Mao2():(8),

where u,(t), 0,(t) and 9,(t) denote the mean, standard deviation and skewness coefficients
of the cross-sectional distribution of deviations at time t. In this simple example, higher
moments of the cross-sectional density of deviations affect the evolution of aggregate em-
ployment through mean-variance and variance-skewness interaction terms. We also have
that the first moment affects aggregate dynamics in a non-linear fashion.

a mean of 0.001 and a standard deviation of 0.023. Our AE; series computed from (2) has a mean of 0.002
and a standard deviation of 0.023. Moreover, the correlation between the two series is 0.96.



One of the main goals of this paper is to characterize the function A(z,t) empirically.
As emphasized above, doing so will not only shed light on the nature of microeconomic
adjustment, but it will also add a key piece of information for understanding aggregate
employment dynamics.

2.2.2 On the dynamics of the cross-section of employment deviations

The change in a firm’s deviation during period ¢, Az, can be decomposed into the sum of
three components:
(4) Az = Aejty - AE] - vy,

where Az, = z; — 241, and the last two terms represent a decomposition of the change in
desired employment, Ae},, into an economy-wide average change in desired employment,
AEZ, and a plant-specific (idiosyncratic) shock, vt (which by definition has zero mean when
averaged across plants for a specific time-period), so that:

(5) Ael = AE] + vy,

Since we are working in discrete time, it is important to make explicit the timing
convention for shocks and adjustments. We assume that each period starts with firms’
idiosyncratic shocks, continues with the aggregate shock, and ends with firms’ adjustments.
Associated to each of these events there is a cross-sectional density of deviations. The
density at the end of the previous period —that is, before any shock takes place at time
t— is denoted by fi(z,t — 1); firms’ corresponding deviations are denoted by 2}, ,. The
density that results after the idiosyncratic shock, vy, is denoted by f2(z,t). Next comes
the aggregate shock, Ej, which leads to deviations denoted by z;; and density f(z,t). At
the end of period ¢ firms adjust employment (by Ae;;) and hours (by Ah;). The resulting
density is fi(z,t), and the cycle begins again.

More explicitly, the evolution of the density of deviations during period t is affected
by three inputs: First, the initial density (final density of previous period) fi(z,t — 1) is
convolved with the density of idiosyncratic shocks. To accommodate our empirical findings,
we let the latter depend on initial deviations and denote it by g(v,?|z).* Thus:

(6) falt) = [ flz = 0,0~ oo, 2}z - v)dv.

*One source of correlation, perhaps the main one, between deviations and idiosyncratic shocks is (nega-
tive) serial correlation in the latter, mostly arising from transitory components due to seasonal factors.



Second, there is an aggregate shock that shifts all units by ~AE} in state-space, yielding
f(z,t). Finally, denoting by Z; and Z;; the random variables corresponding to f(z,t) and
fi(z,t), we have that Z,, = Z,(1 — J;), where J; denotes the fraction of its deviation by
which a firm adjusts. We denote the density of the latter by a(j, t|z), which satisfies the
constraint A(z,t) = [ ja(j,t|z)dj, and write down for later use the expression summarizing
this last step:

7 filz,t) = /%a (1 - u,tl%) f (z- t) du.

2.3 Measuring microeconomic deviations

The previous section is accounting, given a measure of z. In order to construct an estimate
of z we assume that the technology and wage schedules are such that if firms did not face
costs of adjusting their level of employment, they would always keep the same number of
hours per worker. On the other hand, if costs of adjusting employment are larger — at
least in the short run — than those of changing the number of hours per worker, then hours
per worker will be positively correlated with the degree of firms’ deviations.> Caballero and
Engel (1993) present a formal link, based on Bils (1987), between our z! and measures of

hours per worker. We borrow from them the expression:®

(8) Az}, = —0;Ahy,

which says that as the (log of) hours per worker in firm i at time t (h;) rises, the firm’s

labor-shortage increases.

Given the paths of {Ah;¢} and the parameter 8;;, as well as an initial value z};, we can
use equation (8) to trace the path of z;. Repeating these steps for all firms allows us to
provide empirical content to the decomposition of employment adjustment presented in the

previous sections.

® “When Cooper [Industries] had a surge in orders for the computer cables it makes, more than 2,000
workers were asked to work an additional two hours a day, on overtime pay. Only as a last resort has
Cooper recently begun to hire. [...] People got tired of working 10-hours days [...],” New York Times,
Sunday May 16, 1993.

®In their model firms’ production functions are Cobb-Douglas in hours per worker and employment.
Productivity and demand shocks follow independent random walks. Firms are competitive in the labor
market but face a (per hour) wage curve that is a function of the average number of hours worked. Adjusting
average hours is costless (see Sargent (1978) and Shapiro (1986)), yet adjusting employment is not. It
follows from these assumptions that a firm always chooses average hours to maximize its current profits,
conditional on its current empioyment level. Comparing the actual employment level with that which would
be optimal if employment could be adjusted costlessly leads to the following expression, where § depends
on the demand-elasticity, the elasticity of the output with respect to both inputs and the wage equation.



We estimate the values of the 8;;’s under a variety of assumptions about similarities and
differences across firms, sectors, seasons and time. Allowing for two-digit variation achieves
a reasonable compromise between precision and flexibility; we describe these results below.”
The availability of plant level quarterly data for hours per worker limits our sample to
1972:1-1980:4 (see the Appendix A for further details).

Combining the definition of deviations in equation (1) with equation (8), yields:

Aejr = —0itAhis + Aejy.

In principle, the only unobservable in this equation is the (exogenous) shock Ae}. In
practice, both employment and hours changes are likely to be measured with error — both
because of data-problems as well as theory-problems (e.g. omitted state variables, transitory
versus permanent shocks, etc.). Considering these factors, we rewrite the previous equation

in a standard regression format:
(9) Aeiy = const; + 0;:(—Ahie) + €q,

where ¢ is an error term corresponding to the exogenous shock Aef, and measurement
error terms, after removing two-digit effects. Estimating @ from this equation is likely to
yield downward biased estimates. There are two reasons for this: First, since hours are
used to accommodate part of frictionless shocks (Ae®*) when employment does not adjust
fully, changes in hours and the component of ¢ due to the frictionless shock are positively
correlated. Second, the measurement error in hours and changes in hours are also positively
correlated.

A partial solution to the first problem, which is due to adjustment costs, emerges from
the model itself. If firms’ employment adjustments are infrequent and large, then we can
use the observations of periods where an adjustment occurs, for in those episodes changes
in employment and hours should be one order of magnitude larger than €.® If there was no
measurement error in hours, this could be implemented by isolating the observations with
relatively large changes in hours. Measurement error makes this difficult since the sorting

"The overall results of the paper are robust to several modifications. In particular, to allowing for time
and/or seasonal effects.

*This is strictly true in continuous time if shocks have continuous sample paths. Here we are taking a
stand on the nature of adjustment costs: non-convex. This will be validated later by our finding on the
distributions of conditional adjustments (whose validity does not depend on our particular estimates of 8).
Also, even if adjustment costs are convex, but leading to an increasing effective hazard (which we will find),
using observations with large changes reduces the bias induced by adjustment costs.



device is correlated with the residual of the equation. Another imperfect sorting device is
to use observations with relatively large employment changes. This suffers from the same
problem of hours since employment is also likely to be measured with error. However, if
the measurement errors in employment and hours are not too correlated, it is possible to
reduce the selection bias substantially by using the intersection of both selection criteria;
that is, observations with large (in absolute value) changes in hours and employment. This
is what we do. We estimate the equation above using only observations with changes that
are larger than one standard deviation of the changes in employment and hours in each of
our groups (see below).

Solving the first problem does not remove the measurement error bias, however. In
order to reduce this problem we run a reverse regression (i.e., with Ah on the left hand
side) using the same observations. Due to the measurement error in employment, this
yields an upward biased estimate of §. It follows that there is a convex combination of the
downward biased estimate of 8, él, and the upward biased one, 52, that minimizes the mean
squared error. Calling this estimator §, we have:

0 = aby + (1 - a)by,

where a is chosen to minimize the mean squared error, under the assumption that mea-
surement error in employment and hours are uncorrelated and have equal variance, and
these in turn are equal to the variance of the signals. This configuration of parameters
yields a value of a of 0.67 for large samples (more than 200 observations) and a value of
a that approaches 1 as the sample size becomes sufficiently small (less than 40). Given
the specification emphasized in the main text of the paper with 20 estimated 8s (i.e., by
2-digit industry), the typical industry has a large number of observations so that the mean
a across industries equals 0.69.

The magnitude of the 20 estimated s (and the underlying 6,s and 8;s) are depicted in
Figure 2.1. The estimated s are fairly constant across sectors. The mean 8 is 1.20; it varies
from 0.93 in Apparel to 1.36 in Petroleum.? The sign of 8 is systematically positive, as
postulated above. That is, firms substitute hours per worker for employment: adjustments
in employment bring about adjustments of opposite signin hours per worker (remember that

the regressor is —Ah rather than Ah). This negative correlation is a robust and interesting

?These estimates are small when compared with those calibrated by Caballero and Engel (1993), using
the estimates for the marginal cost of an additional hour-week in Bils (1987). One possible explanation for
this difference is that here we are using establishment level data, where hours are substantially more volatile
(relative to employment) than at the two-digit level, which is the level of aggregation used by Bils.
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result in itself, for at the aggregate level the correlation between hours per worker and
employment growth is positive: 0.26. At the level of the firm, shocks are absorbed mainly
along one of the two margins, while at the aggregate level the response to a given shock is
shared by both margins.1?

Lastly, we need to construct estimates of the z})’s. We obtain these from the relation:
z}y = zh_y = 0;eAhy,

and the constraint that, for every plant, the sample-average of the deviation immediately
after adjustment is equal to a common constant, which without loss of generality we set
equal to zero. This leads to the following expressions for z};, zi¢, A€y, AE; and vj¢ in terms
of observables (the h;’s and e;’s):!!

e = Ou(hi - hir)

Zig = Z.'l,z - Qe
Aej, = Qe + 8, Ak;
. 1 . P

vie = Aef,— AEy,

where h; is the average (over t) of the h;;’s and N denotes the number of establishments.

3 CHARACTERIZING MICROECONOMIC POLICIES AND
HETEROGENEITY

In this section we characterize microeconomic policies and the evolution of the cross-
sectional distribution and its determinants, while in the next one we measure the impact
of these factors on aggregate dynamics. All the calculations below use a discretized state
space. The deviation index z takes values between —7.7 and 8.0 over an equally-spaced
grid with partitions of length 0.01.

Despite our concerns about measurement error when estimating 4, in this section we
describe our results as if measurement error played only a secondary role. In Appendix C we
show that most of our findings are robust to “reasonable” assumptions about measurement

19This is yet another manifestation of how misleading representative agent models can be.
!1See Appendix B for the derivations.
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error. Moreover, we show that measurement error tends to conceal rather than artificially
generate the features we find. That appendix considers two measurement error models. The
first (and simplest) assumes i.i.d. (Normal) measurement error on establishment level hours
and employment;'? the second considers measurement error in employment that generates
spurious negative correlation between hours and employment.

We briefly describe four implications —common to both sets of assumptions for mea-
surement error— that should be kept in mind when interpreting the results presented below.
(m.3i) If the effective hazard is smooth and increasing,!® the minimum value estimated for
the effective hazard will be upward biased while the maximum will be (almost) unbiased,
It follows that in this case the measured effective hazard will look less increasing than the
actual effective hazard.!* On the other hand, no bias arises when estimating a constant
effective hazard. (m.ii) The measured cross sectional distribution and the distribution of
idiosyncratic shocks are the convolution of the true distributions and a measurement er-
ror. (m.ist) If idiosyncratic shocks are serially uncorrelated, measured idiosyncratic shocks
are negatively serially correlated and positively correlated with pre-shock deviations (z!).
The latter correlation decreases as the magnitude of the variance of idiosyncratic shocks
increases. (m.iv) The distribution of conditional adjustments is a convolution of the true
distribution and a (complicated function of) measurement error. The bias in the location
of the conditional distributions of adjustments decreases (to zero) as the absolute value of
z increases. Measurement error cannot create a spurious spike at zero (no adjustment) nor
at —1 (full adjustment); rather it spreads out any spikes.

3.1 The effective hazard function

At each point in time, the effective hazard is constructed by dividing by z the average
change in employment of those that are at z just before employment adjustments take
place for all z # 0.!%

Average effective hazard

Figure 3.1 depicts the average (over quarters) empirical effective hazard - both the

12Both sources of measurement error (employment and hours) are assumed independent in this case.

13An effective hasard is increasing if the fraction of the deviation closed by a firm increases with the
absolute value of the deviation. Formally this means that A(s,t) is decreasing in z for negative z and
increasing for positive 2. The smoothness requirement is that the effective hazard’s derivative be continuous.

4]ts estimate will be upward biased for small (absolute) values of 3 and close to unbiased for large
(absolute) values of z.

13This highly non-parametric approach is feasible because of the large data set available; a more efficient,
but less parameter-free approach would be to run a locally linear regression of changes in employment
against 3.
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actual empirical hazard and the smoothed hazard using a cubic spline are shown. It is
apparent from this figure that the empirical effective hazard is increasing with respect to the
microeconomic deviations.!® As mentioned above, this type of microeconomic nonlinearity
is akin to (S, s) type models, and implies that aspects of the cross-sectional distribution of
deviations other than its first moment matter for aggregate dynamics. The effective hazard
is also fairly symmetric; that is, on average, establishments adjust to positive and negative
deviations alike.

The next step is to characterize the evolution of the effective hazard over our sample.
Since our data are quarterly and not seasonally adjusted, it is somewhat more revealing to
report the path of the hazard in two steps. In the first one we show the seasonal component

in isolation, while in the second one we show yearly averages.!”

Seasonal effective hazard

The solid lines in the panels of figure 3.2 illustrate the seasonal hazards, while the
dashed lines represent the average hazard (over all quarters).!® Several conclusions emerge
from this figure: First, the effective hazard is clearly increasing and fairly symmetric across
all seasons. Second, there is some mild variation across the seasons. For given deviations,
there is a higher than average propensity to destroy jobs during the first quarter; the
second quarter shows a substantially lower than average propensity to destroy jobs, the
third quarter shows slightly higher than average propensity to create and lower propensity
to destroy, while the fourth quarter shows lower than average propensities to create and
destroy jobs, particularly for establishments with large deviations. These patterns are
consistent with the observed seasonal properties of aggregate and idiosyncratic shocks. For
example, the second quarter’s lower destruction is consistent with the fact that second
quarter shocks are more transitory than shocks in other seasons, a fact we document later
in the paper. At the same time, aggregate shocks tend to be particularly bad in the second
quarter (in our sample, the average aggregate shock during the second quarter is —4% while
the overall average is 0.1%). This latter fact combined with the transitory nature of shocks,

18Given result (m.i) above, the true effective hazard is likely to be more increasing than that depicted in
Figure 3.1.

1"We report yearly averages rather than quarterly seasonmally adjusted hazards to save space. Most of
the relevant information is contained in the figures we present. For visual aid, we also smooth the effective
hazard with a cubic spline. In all of the statistical analysis and decomposition exercises that follow we use
the actual rather than the smoothed effective hazard, however. Also, notice that given the nonlinearity of
the model, using seasonally adjusted data directly may be less appropriate than in the case of linear models.

18The panel labeled first quarter in this figure refers to the hasard reflecting the employment changes
from the first to the second quarter; the second quarter refers to the changes from the second to the third
quarter; and so on.
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implies that during the second quarter the right arm of the hazard should be substantially
lower than average, while the left arm may be above or below average.

Cyclical effective hazard

The solid lines in figure 3.3 depict the annual averages of the quarterly effective hazards.
The dashed lines portray the sample average of these hazards. The effective hazard does
vary systematically over time. It shifts up from 1972 to 1975 and then shifts down from
1975 through 1979. The behavior of the hazard around the 1974-75 recession is particularly
interesting. The upward shift in the right arm of the effective hazard in both 1974 and 1975
occurred during the sharp downturn in late 1974 and early 1975. The upward shift in the left
arm in 1975 is due to the recovery phase of the 1974-75 recession. The latter is consistent
with the implications of standard search models: the high unemployment rate prevailing at
the end of the recession facilitates job creation (conditional on the deviations).!?

The bottom line of these three figures is clear: The effective hazard is increasing with
respect to the magnitude of firms’ deviations, it is fairly symmetric, it has a mild procycli-
cal/lower frequency pattern, and a mild seasonal pattern probably linked to the transitory
nature of seasonal shocks,

3.2 The cross-section of employment deviations

The cross-section of deviations is the endogenous result of aggregate and idiosyncratic
shocks filtered by the microeconomic policies. In this subsection we briefly characterize the
cross-sectional distribution, and then move on to describe its determinants. At each point

in time, the cross-section of deviations is the histogram of deviations z.

The average cross-section of deviations is depicted in figure 3.4 (located at the bottom
of figure 3.1). Two points are worth making. First, establishments spend a large fraction
of their time within plus/minus 30 percent of their target employment level.?® Second, the
average cross-sectional density is fairly symmetric, reflecting the symmetry of the hazard
and the trendless behavior of manufacturing employment over the period considered here.

The solid lines in figure 3.5 show the paths of the mean, standard deviation, skewness

19To be more precise, quarterly plots of the hazard (not shown) reveal that the big surge in destruction
occurs in the fourth quarter of 1974 and the first quarter of 1975 while the increase in creation occurs in

the last three quarters of 1975.
29Result (m.ii) suggests that the actual cross-section may be less spread-out than that depicted in Figure

3.4.
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and kurtosis coefficients of the cross-sectional density of deviations.3! The dashed lines show
business cycle clocks, corresponding to linear transformations of aggregate employment
growth. This figure shows that there is substantial movement in the different moments
of the cross-sectional distribution which, according to equations (2) and (3), suggests that
an important component of aggregate dynamics is missed by only looking at the average
deviation.

We turn next to the distributions of idiosyncratic shocks and adjustments.

3.3 The distribution of idiosyncratic shocks

At each point in time, the density of idiosyncratic shocks is the histogram of the estimated

v; ¢8, which correspond to:
Vit = AC“ - AE" + O“Ah“.

The distribution of idiosyncratic shocks plays an important role in shaping the dynamic
response of aggregate employment to aggregate shocks. In addition to a propagation mecha-
nism, changes in the distribution of idiosyncratic shocks may account directly for aggregate
employment changes. This is what is typically referred to as “reallocation” shocks.??

Reallocation shocks can be the result of changes in higher moments of the distribution of
idiosyncratic shocks — including its variance, which is the standard definition of reallocation
shocks. They can also reflect more subtle things, such as the presence of serial correlation
in idiosyncratic shocks, which would induce correlation between idiosyncratic shocks and
the position of firms in state space. We briefly characterize the behavior of some of these
factors. The solid lines in figure 3.6 illustrate the paths of the standard deviation and
skewness of idiosyncratic shocks, as well as of the correlation between these shocks and
21, the deviations at the beginning of the period.® The dashed lines depict business cycle
clocks, corresponding to linear transformations of aggregate employment growth.

There is no particular pattern in third moments but a clear increase in the second

moment during the 1974-76 period, including the recession and its recovery, and during

2175 reduce the number of figures we only show seasonally adjusted versions. The conclusions also hold
for the seasonally unadjusted series.

32Later we expand this definition to include reallocation micro-policy shocks. That is, given exogenous
shocks and deviations, establishments may choose to create and destroy more jobs.

3In the figure, all series are seasonally adjusted. Non-seasonally adjusted series lead to the same
conclusions.
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the second oil shock.2* There is also a non-negligible positive correlation between z; and
idiosyncratic shocks.3® This latter correlation fluctuates substantially; for example, it drops
dramatically in the downturn in 1975.%8

3.4 The distribution of adjustments

Average distribution of adjustments

Figure 3.7 shows the distribution of adjustments conditional on different ranges for the
deviations just before adjustments take place. The z-axes correspond to the ratio of actual
employment changes, divided by 2.27

Three observations stand out: First, there is always a mode at zero;?®:2? indicating that
a large number of establishments choose not to adjust, even in circumstances where their
deviations are large. This evidence supports the hypothesis that there is a non-convexity in
the adjustment technology of individual establishments. Second, as the deviations get large,
a second mode emerges at minus one.>® This reflects two aspects of the establishments’
adjustment technologies: (a) the effective hazard is increasing, which explains why the
second mode emerges more clearly for large deviations,3! and (b) lumpy and complete
adjustments are frequent among firms with large deviations, which suggests increasing
returns in the adjustment technologies. And third, although there is substantial dispersion
in the distribution of adjustments, the majority of plants adjust in the direction and within
the range indicated by the model.

4 PUTTING THINGS TOGETHER: AGGREGATE EMPLOYMENT
FLUCTUATIONS (NET FLOWS)

In this section we change the metric. Instead of describing the behavior of the different
factors considered above directly, we describe them in terms of their contribution to aggre-
gate employment fluctuations. We proceed in four steps: First, we decompose fluctuations

2 Result (m.iis) implies that the estimated values of the variance of idiosyncratic shocks may be biased
upwards. This bias has no effect on the pattern of this series.

35Result (m.iii) suggests that measurement error may be responsible for this.

2%In the presence of measurement error, this finding is consistent with there being no correlation between
v and z!. This follows from the fact that the largest variance of idiosyncratic shocks occurred around 1375
and result (m.is5).

?"Remember that a negative z denotes a shortage of employment.

2By zero we mean changes in employment of less than 5 percent of the deviations.

¥ Result (m.iv) implies that this finding is robust to measurement error.

3%Result (m.iv) shows that this finding is not due to measurement error.

31See result (m.iv).
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in aggregate employment into those that are due to changes in the effective hazard and
those that are due to changes in the cross-sectional distribution of deviations. Second, we
split changes in employment due to changes in the cross sectional distribution into those
that correspond to reallocation and to aggregate shocks. Third, we split changes in employ-
ment due to changes in the effective hazard into those that correspond to reallocation and
to aggregate microeconomic-policy-fluctuations. And fourth, we assess the impact of the
nonlinear nature of the effective hazard on the response of employment growth to aggregate
shocks.

4.1 Employment fluctuations due to changes in the effective hazard and
cross-sectional distribution

In this subsection we decompose changes in aggregate employment into those that are due to
fluctuations in (a) the effective hazard and (b) the cross-sectional distribution of deviations.
The components we wish to consider not only interact with each other, but they do so in
a highly non-linear fashion. Anything reminiscent of an Analysis of Variance is therefore
very difficult.

We have chosen the following strategy: Let A(z,t), A(z) and A*(z,t) denote the actual,
overall average and seasonal average (i.e., a different average for each season) effective
hazards, respectively. Similarly, let f(z,t), f(z) and f°(z,t) denote the actual, overall
average and seasonal average cross-sectional density of deviations immediately prior to
adjustment. It is now possible to construct the aggregate employment changes associated
to each possible combination of effective hazard and cross-sectional density described above
by substituting A(z,t) and f(z,t) in equation (2) by the appropriate combination:

AE! = - / 2A() () dz.

Thus, for example, the aggregate employment growth series implied by allowing for seasonal
variations in the effective hazard and no variation in the cross-sectional density is: AE;f =

- [2A%(2,t)f(2) dz.
To measure the proximity between the aggregate series constructed above and the actual
32

employment growth series we use the standard R? goodness-of-fit measure:
o*(AE! - AE)

2 —1 -
k=1 s1(AE)

32We note that this R? is not bounded from below by zero since there is no restriction of a zero covariance
between the predictions and residuals generated from these exercises.
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Table 1: Decomposition of Aggregate Employment Fluctuations

RZ
A(z) A%(z,t) A(z,t)
f(2) 0.00 0.09 0.47
f(z,t) | 003 0.16 0.51
f(z,t) | 077 090 1.00

It follows from Table 1 that changes in the cross-section distribution of deviations have
more impact on aggregate employment than variations in the effective hazard. From the
entry (2,2) of Table 1, we infer that seasonal changes (in both the hazard and the cross-
section) account for 16 percent of fluctuations in employment; we are interested in splitting
the remaining 84 percent between cyclical fluctuations in both sources. The last column of
Table 1 shows that when the actual effective hazard is used, 58 percent (49/84) of aggregate
employment fluctuations (not explained by seasonal effects) is accounted for by going from
the seasonal to the actual cross sectional distribution. And from the other end, the last
row reflects that about 88 percent (74/84) of aggregate employment fluctuations can be
explained without the need of cyclical fluctuations in the effective hazard.>® Thus, changes
in the cross sectional distribution account for at least 60 percent and as much as 90 percent
of fluctuations in employment growth. Given our decomposition, the remainder is due to
changes in the effective hazard.

The large importance of changes in the cross sectional distribution relative to that of
changes in microeconomic policies is even more apparent once we plot the actual path of
employment versus that which results from removing cyclical fluctuations in the effective
hazard. Figure 4.1a does so, using a solid line for the former and a dashed line for the
latter.34

Figure 4.1b highlights a fact that is otherwise hidden in figure 4.1a by the magnitude
of the 1974-75 recession. By reporting the employment changes corresponding to the first
row of the tables —i.e. by removing the fluctuations in the cross-sectional distribution—
one can see from Figure 4.1b that the change in the effective hazard did affect (negatively)
the downturn and (positively) the recovery phase of the recession as well as the response

33To obtain this number we first compute the contribution of hazard fluctuations, which is (1.00-0.90)/.84.
The contribution of the croes section distribution is the complement of this.

34In all of the remaining figures (4.1-5.1), the labeling of the quarterly tick marks on the horizontal axis
is such that the depicted growth rates reflect the forward rate of change. For example, the growth rate of
employment at the tick mark for 1974:4 reflects the employment change from the midpoint of the fourth
quarter of 1974 to the midpoint of the first quarter of 1975.

18



of the economy to the second oil shock. This systematic effect may be reflecting some
form of specification error in our equation measuring deviations, or it can also reflect true
changes in policy due to the role of omitted cyclical variables in microeconomic policies; in
particular, section 3 documented the upward shift on the creation side of the hazard during
the recovery phase of the 1974-75 recession, which is consistent with the implications of

models where matching costs are decreasing with respect to the unemployment rate.

4.2 Decomposing employment fluctuations due to changes in the cross-
sectional distribution

It is apparent from the previous subsection that, given the shape of the effective hazard, the
primary factor for understanding aggregate employment fluctuations lies in understanding
the main factors driving the cross-sectional distribution; this is the focus of this section.3®
It is important to notice that the discussion below is conditional on the path of the effective
hazard, while in the next section we decompose the effects of fluctuations in this hazard.

Aggregate versus reallocation shocks

Our procedure is well suited to shed light on the debate about the relative importance
of aggregate versus reallocation shocks for aggregate employment fluctuations.3®

Figure 3.6 suggests that the path of the standard deviation of idiosyncratic shocks is
highly correlated with aggregate shocks. Indeed, this is the case: the correlation between
these two series in our sample is —0.42.37 We show below, however, that once the path
of the distribution of idiosyncratic shocks is filtered through the cross-section of deviations
and effective hazard functions, reallocation shocks have almost no impact on aggregate net

employment fluctuations.3®

331t is very important to distinguish between the statement that fluctuations in the effective hazard do
not matter too much for aggregate employment fluctuations, which is what we showed in the previous
section, from the erroneous statement that the shape of the effective hazard does not matter for aggregate
employment dysamics. See section 4.4 and Caballero and Engel (1992, 1993) for evidence on the important
role of increasing hazards on aggregate employment dynamics.

3See e.g. Lilien (1982) and Abraham and Kats (1986).

37This large negative correlation points to one of the differences in methodology between that used here and
in related literature on the identification of aggregate and reallocation shocks. In Blanchard and Diamond
(1989, 1990) and Davis and Haltiwanger (1990, 1994), aggregate and reallocation shocks are identified in
part through the assumption of a zero covariance between the two types of shocks. Interestingly, in spite
of this, these other studies also find a small role for reallocation shocks in accounting for business cycle
fluctuations in employment growth and unemployment at short forecast horizons.

3%t is important to emphasize that this does not imply that the process of reallocation is unimportant in
accounting for aggregate fluctuations. The interaction of the nonlinear micro policies and the cross-sectional
heterogeneity with the aggregate shocks yields rich endogenous dynamics of reallocation over the course of
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In order to determine the impact of changes in the distribution of idiosyncratic shocks
on aggregate fluctuations, we find the cross-sectional distribution that would have resulted
immediately before firms adjust — f(z,%) in the notation of equation (2) — under a va-
riety of assumptions for the distribution of idiosyncratic shocks, and then compute the
corresponding changes in employment. We perform two types of experiments for each of
these scenarios: (¢) pseudo-static and (ii) dynamic. For the former, in the notation of
equation (6), we consider the actual fi(z,t) and substitute the distribution of idiosyncratic
shocks by various expressions to capture the impact on aggregate fluctuations of changes
in the distribution of idiosyncratic shocks. For the dynamic experiment, we take f;(z,1)
as given, but then use equations (6) and (7), together with the actual conditional dis-
tributions of adjustments and the corresponding distributions of idiosyncratic shocks, to
generate the sequence of cross-sectional distribution of deviations. The advantage of the
dynamic approach is that we can look at cumulative effects; its disadvantage is that the
effect of auxiliary assumptions and measurement error also accumulate.

Since equations (6) and (7) define identities, both elements in the first row of Table 2
should be equal to one in the absence of rounding errors and approximations; the numbers
obtained indicate that approximations have a negligible effect.3® The first column of Table 2
summarizes the pseudo-static results. The second and third row replace the actual cross-
section distribution of idiosyncratic shocks by its seasonal and overall average, respectively.
The conclusion we obtain from these rows is clear: conditional on the path of the effective
hazard, practically all the fluctuations in the cross-sectional distribution that are responsible
for aggregate employment fluctuations are directly attributable to aggregate rather than
reallocation shocks. v

Figure 4.2 provides an even starker illustration of the main finding reported in this
section. It shows that the aggregate employment growth series obtained by shutting down
seasonal and cyclical fluctuations in the distribution of idiosyncratic shocks is almost indis-

tinguishable from the actual employment growth series.

Essentially the same results are obtained with the dynamic experiments, where only the
initial cross section distribution is taken as given. The last column of table 2 is the dynamic
counterpart of the first column. Again, abstracting away from the correlation between

the cycle. The idea that aggregate shocks endogenously change the timing of reallocation has been the
recent focus in the theoretical literature examining the connection between business cycles and the process
of reallocation (see, e.g., Blanchard and Diamond (1990), Caballero and Hammour (1994a,b), Caballero
(1992), Davis and Haltiwanger (1990), Hall (1991), Mortensen (1992), Mortensen and Pissarides (1992)).

39The slightly larger error in the dynamic exercise is not surprising, since errors accumulate only in this
case.



Table 2: Decomposition of Aggregate Employment Fluctuations: Reallocation Shocks

pseudo-static | dynamic
R? R?
9(v,t|2) 1.00 0.99
g(v, 8]2), s.a. 0.95 0.94
g(v|2), s.u. 0.94 0.92

idiosyncratic shocks and the initial deviations, reallocation shocks play no meaningful role
on aggregate net employment fluctuations.

4.3 Decomposing employment fluctuations due to changes in the effec-
tive hazard

The previous section decomposed about three quarters*® of aggregate employment fluctu-
ations into aggregate and reallocation shocks. In this section we decompose the remainder
into reallocation and aggregate microeconomic policy shocks. One important obstacle to do
so, is that contrary to the case of fluctuations in the cross sectional distribution, the model
discussed in section 2 offers no natural way to identify reallocation and aggregate shocks.
Moreover, it is not unlikely that a large fraction of these fluctuations simply correspond to
specification error resulting from, among other things, omitted state variables. In spite of
this, we adopt the following simple convention: We associate reallocation microeconomic
policy shocks to symmetric shifts in the effective hazard relative to the seasonally adjusted
average hazard.

Based on the above convention, at any point in time, there is a unique decomposition
of the non-seasonal component of the effective hazard, A(z,t) — A’(z,t), into the sum of

reallocation, R(z,t), and aggregate, P(z,t), components:4!+42

(10) R(z,t) + P(z2,t) = A(zt) - A*(2,0),
(11) R(z,1) % [A(z,t) + A(=2,1) — A*(z,1) — A*(=2,1)]

19Strictly speaking, between 60 and 90 percent.

41 A*(z,t) was specified earlier. It is obtained by averaging A(z, t) over the time periods corresponding to
season s.

43The following decomposition is based on the fact that any function of real variable taking real values,
g9(z), can be decomposed in a unique way into the sum of an even, g.(z), and an odd, g.(z), with ge(z) =

L(9(z) + 9(~7)) and go(2) = ;(9(z) - 9(-2)).
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Applying the above decomposition we obtain rather stark results: Starting from the last row
of table 1, we can ask how much does R? increase by adding the reallocational component,
R(z,t), to the seasonal hazard: the answer is less than 0.01. Alternatively, we can ask how
much does R? increase by adding the aggregate component, P(z,t), to the seasonal hazard:
the answer is 0.09. Thus, aggregate shocks account for more than ninety percent of the
employment fluctuations arising from changes in the effective hazard.

Combining these results with those in the previous subsection yields an estimate of the
total contribution of aggregate and reallocation shocks. The contribution of reallocation
shocks is clearly small. Recomputing the last row of the static exercise in table 2, now re-
moving reallocation hazard shocks, we obtain an R? = 0.93, while recomputing the second
row (also removing reallocation hazard shocks) yields an R? = 0.95. Figure 4.3 illustrates
the actual path of employment growth (solid line) and the path of the same variable when
both sources of reallocation shocks (idiosyncratic shocks to desired employment and sym-
metric shifts in microeconomic policies) are removed (dashed line). The conclusion is quite
clear: aggregate shocks are the main contributor to net employment fluctuations in our

sample.

4.4 How much are higher moments adding?

Caballero and Engel (1992, 1993) and section 2 show that non-constant (over z) effective
hazards imply that properly specified aggregate equations should include higher moments
of the cross-sectional distribution of deviations on the right hand side. In terms of the
noncentral moments of the cross-sectional distribution just before adjustments take place

(i.e. after the idiosyncratic and aggregate shocks of the period), we have:43

K
(12) AEy = =Y AMEH(1).

i=0
Table 3 reports the results for different values of K. Column 1 corresponds to K = 0,
which is the standard partial adjustment model.# The fit is good, R? = 0.68, but this
is not surprising since M,(l)(t) includes the current aggregate shock which is the primary
driving force for current aggregate employment changes.

3Here we disregard fluctuations in the effective hazard.

“For this, note that M{V(t) = —(E; — Ee-1). Note, however, that since M{')(t) already includes the
current aggregate shock, running equation (12) yields a partial adjustment model that uses more informa-
tion than the standard aggregate time series version of it. Indeed, the residual of this equation has no
interpretation in terms of aggregate shocks. Rather, it corresponds to measurement and specification error.
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More interesting is the fact reported in columns 2 and 3: in spite of the relatively fast
adjustment, it is still possible to detect in aggregate data a role for higher moments of
the cross sectional distribution. Estimating a symmetric quadratic hazard model (K = 2
and A\; = 0) and a more general model with K = 5, brings the R? up to 0.76 and 0.82,
respectively. Such changes in R? correspond to reductions in mean square error (MSE) of
28 and 45 percent, respectively.

5 Putting things together: fluctuations in gross flows

Net aggregate employment changes result from the actions of many heterogeneous es-
tablishments. A particular grouping of these actions is by whether these convey increments
or reductions of employment at the corresponding establishments. This is what Davis and
Haltiwanger (1992) describe as job creation and destruction. Our framework is well suited
for analyzing this decomposition; a non-constant hazard, combined with movements in the
cross-sectional distribution of deviations, can yield rich and far from perfectly correlated
lives to both creation and destruction. This richness is necessary to match the behavior of
job flows in U.S. manufacturing.

Figure 5.1 depicts the job creation and destruction series for our sample. The general
features of these series are similar to those found by Davis and Haltiwanger for the entire
manufacturing sector. Quarterly job creation and destruction rates both average close to
5 percent. Job destruction is much more cyclically sensitive than job creation. The time
series variance of job destruction is more than three times larger than the variance of job

creation.

As before, A(z,t), A(z) and A*(z,t) denote the actual, overall average and seasonal
average of the effective hazard, respectively. And f(2,t), f(z) and f*(z,t) denote the actual,
overall average and seasonal average cross-sectional density of deviations immediately prior
to adjustment. It is now possible to construct aggregate job creation and destruction
associated to each possible combination of effective hazard and cross-sectional density:

scl =~ [ () 0)ds,

JD! = - /o * 2A()f() dz.

Similarly, by replacing f(z,t) by the cross-sectional density resulting from different assump-
tions about the distribution of idiosyncratic shocks (in both, pseudo-static and dynamic
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Table 3: Aggregate Regressions with Higher Moments

K=0 K=2 K=5

MM 0445 0419 0.337
(0.053) (0.048) (0.086)

-MP - - 0.010
- - (0.258)

-MP - 0.103  0.364

- (0.032) (0.116)

-M® - - 0.013
- - (0.042)
-M® - - -0.008
- - (0.003)
M9 - - -0.001
- - (0.001)
R? 068 076  0.82
R3 0.67 0.74 0.78

MSE/MSE(1) | 100 072 055

DW 1.95 2.29 1.97
All regressions include a constant. Standard errors in parentheses.
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experiments) it is possible to assess the importance of reallocation shocks for the time series

behavior of job creation and destruction.

5.1 Job creation
Table 4 decomposes fluctuations in job creation into microeconomic policy (effective haz-
ard) and cross-sectional distribution driven fluctuations. Abstracting from seasonal effects,

changes in the cross-sectional distribution and changes in microeconomic policy fluctuations
are about equally important in accounting for fluctuations in job creation.4’

Table 4: Decomposition of Fluctuations in Job Creation

R
A(z) A’(z,t) A(zt)
f(z) 0.00 0.30 0.66
fi(z,t)] 0.13  0.36 0.67
f(z,t) | 0.54  0.77 1.00

Table 5 shows the relative importance of reallocation shocks for fluctuations in job
creation due to changes in the cross sectional distribution of deviations. The first column
describes the results within the pseudo-static scenario while the second column does so
within the dynamic scenario. Comparing the first and last rows reveals that about 25
percent of fluctuations in job creation can be directly accounted for by reallocation shocks

in the static case and 21 percent in the dynamic case.‘®

Table 5: Decomposition of Fluctuations in Job Creation: Reallocation Shocks

pseudo-static | dynamic
R? R?
9(v,1|2) 1.00 0.95
g(v,8|2), s.a. 0.89 0.87
g(v|z), s.u. 0.75 0.79

As for effective hazard fluctuations, we find substantially more role for reallocation
shocks than in the case of net employment changes: Starting from the last row of table 4,

5Changes in microeconomic policies account for between 51 and 53 percent of aggregate fluctuations not
explained by seasonal effects.
46 About half of the contribution of reallocation shocks is associated with seasonal effects.
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we find that R? increases by 0.13 when R(z,t) is added to the seasonal hazard, while R?
only increases by less than 0.01 when P(z,t) is added to the seasonal hazard. These results
suggest that over 50 percent, and as much as 96 percent, of fluctuations in job creation

driven by fluctuations in microeconomic policies is due to reallocation shocks.

Combining the results above we can estimate the total contribution of aggregate and
reallocation shocks. Starting from the last row of the static exercise in table 5, if we also
remove reallocation hazard shocks, we obtain an R? = 0.36, while starting from the second
row yields an R? = 0.60. Thus, reallocation shocks seem to be slightly more important
than aggregate shocks for fluctuations in job creation.

5.2 Job Destruction

Table 6 decomposes fluctuations in job destruction into microeconomic policy and cross-
sectional distribution driven fluctuations. The results are similar to those for net employ-
ment changes; the bulk of fluctuations in job destruction is explained by changes in the
cross sectional distribution of deviations. Abstracting from seasonal effects, changes in mi-

croeconomic policies explain between 10 and 50 percent of fluctuations in job destruction.

Table 6: Decomposition of Fluctuations in Job Destruction

RZ
A(z) A’(z,t) A(zt)
f(2) 000 -0.02 048
f(z,t) | -0.01 0.05 0.52
f(z,t) | 082 0.89 1.00

Table 7 shows the role of reallocation shocks for fluctuations in job destruction due to
changes in the cross sectional distribution of deviations. The first column describes the
results within the pseudo-static scenario while the next column does so within the dynamic
scenario. Conclusions are similar to those for net employment changes. Comparing the first
and last rows reveals that about 8 percent of job destruction fluctuations can be directly

accounted for by reallocation shocks in the static case and 11 percent in the dynamic cases.’

As for effective hazard fluctuations, we find more role for reallocation shocks than in
the case of net employment changes: Starting from the last row of table 6, we find that R?

47Virtually all of the contribution of reallocation shocks is associated with seasonal effects.
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Table 7: Decomposition of Fluctuations in Job Destruction: Reallocation Shocks

pseudo-static | dynamic
R? R?
g(v,t|2) 1.00 1.00
g(v,8|2), s.a. 0.93 0.90
g(v|z), s.u. 0.92 0.89

increases by 0.06 when R(z,t) is added to the seasonal hazard, and by 0.10 when P(z,t)
is added to the seasonal hazard. These results suggest that between 10 and 50 percent of
fluctuations in job destruction driven by fluctuations in microeconomic policies is due to
reallocation shocks.

Combining the results above we can estimate the total contribution of aggregate and
reallocation shocks. Starting from either the second or third row of the static exercise in
table 7, if we remove reallocation hazard shocks we obtain an R? = 0.92. Thus, reallocation

shocks account for about 10 percent of fluctuations in job destruction.

6 CONCLUSION

In this paper we used a balanced panel of large plants in U.S. manufacturing industries to
study microeconomic employment adjustment and its aggregate implications. We used these
data to retrace the steps suggested by the literature on aggregation of (.5, s)-type models,
and in particular, to construct the path of the cross sectional distribution of deviations
between actual and desired employment, as well as the histograms of average adjustments
(effective hazards) at each point in time.

The microeconomic evidence is clearly supportive of the basic implications of (5, s)-type
models:*® substantial inaction, lumpy adjustments, and increasing effective hazard (i.e. the
expected fraction of the deviations bridged is an increasing function of the magnitude of
the deviations).

But we went beyond characterizing microeconomic policies and used these policies in
conjunction with our estimates of the cross sectional distributions of deviations and id-
iosyncratic shocks to study the contribution of several factors to aggregate employment
fluctuations. Doing so, we concluded that fluctuations in the cross sectional distribution

42See Hamermesh (1989) for an interesting case study documenting microeconomic lumpiness in employ-
ment adjustments.
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of deviations rather than in microeconomic policies accounted for the bulk of aggregate
employment fluctuations during our sample period (1972:1-1980:4). Perhaps more interest-
ingly, we found that very little of the fluctuations in the cross sectional distributions that
are reflected in aggregate employment fluctuations can be attributed directly to reallocation
shocks.

This does not mean that idiosyncratic shocks are small, that they do not matter for
aggregate employment fluctuations, or that their distribution does not vary over time (real-
location shocks). Quite the contrary, by far the dominant source of microeconomic employ-
ment changes is idiosyncratic shocks, these play a key role in mapping aggregate shocks into
actual employment responses, and the second moment of the distribution of these shocks
is clearly countercyclical. However, the latter fluctuations, once filtered by the interplay
between microeconomic policies and cross sectional heterogeneity, turn out to play only a
minor role in aggregate net employment fluctuations.

We also studied gross employment flows and found a larger role for reallocation shocks,
especially for job creation.

28



APPENDICES

A. DATA APPENDIX

The analysis in this paper is conducted using the Longitudinal Research Database (the
LRD). The LRD is a comprehensive probability sample of establishments in U.S. manu-
facturing industries. An establishment is defined as a single physical location engaged in
manufacturing activity. The LRD sampling frame encompasses all U.S. manufacturing es-
tablishments with five or more employees. These establishments account for more than 99
percent of manufacturing employment.

The LRD is based upon the quinquennial Census of Manufactures (CM) and the Annual
Survey of Manufactures (ASM). The LRD currently contains CM data for 300,000-400,000
plants in each year 1963, 1967, 1972, 1977, 1982, and 1987 and ASM data for a probability
sample of 50,000-70,000 plants in each year from 1972 to 1988. ASM panels are selected
from the manufacturing universe identified by the CM, commence two years after the CM,
and continue for five years. All large establishments (approximately 250 employees or more)
are in each ASM panel while plants with 5-249 employees are included in the ASM panel
with probabilities that increase with size. This implies that most small establishments are
not in consecutive ASM panels. New establishments are added to the panel as it ages
to incorporate births and to preserve the panel’s representative character. For further
information regarding the properties of the LRD sample, see Davis, Haltiwanger and Schuh
(1994).

Employment data in the form of total employment (annual only), production worker
employment, and total production worker hours are available at annual and quarterly fre-
quencies for each plant. This study exploits the quarterly production worker employment
and total production worker hours data. Quarterly production worker employment data
are available for payroll periods covering the 12th day of February, May, August, and
November.*® Quarterly production worker hour data reflect total hours by all production
workers for each quarter (January-March, April-June, July-September, October-December).
The total hours are all hours worked or paid for, except hours paid for vacations, holidays,
or sick leave. Note that the observation on the number of production workers per quar-
ter represents the midpoint of each quarter for which we measure total production worker

hours.

49See Davis, Haltiwanger, and Schuh (1994) for the procedure used to convert the March data on the
number of production workers in the original file to an estimate of the February number.
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The sample used for this study are all continuously operating establishments from 1972
to 1980.5% Specifically, all establishments with positive hours and positive employment
in all quarters from 1972 to 1980. The resulting sample size is 10025 which represents
between 1/5 and 1/7 of all of the establishments in the ASM. Since we have selected only
continuously operating establishments for the entire 1972-80 period, this implies that our
sample is essentially the large, continuing establishments. Recall that small establishments
(less than 250 employees) are typically not in consecutive ASM panels. Accordingly, the
typical establishment in our sample is much larger than the typical establishment from a
representative sample. In 1977, for example, the average establishment size in our sample
is 589 workers while for all plants the average establishment size is 58.

While our sample is not representative, the establishments in our sample constitute
approximately 33% of total manufacturing employment in a typical quarter. Further, the
time series properties of the quarterly growth rate of production worker employment for all
plants and the growth rate of production worker employment for our sample are very similar.
For the sample period 1972:1 to 1980:4, the mean quarterly growth rate for all plants is
0.00056 while for our sample the mean is (0.00052, the time series standard deviation for all
plants is 0.0231 while for our sample it is 0.0234, and the correlation between the growth
rate for all plants and the growth rate from our sample is 0.89.

The analysis in the paper uses the number of production workers to generate quarterly
establishment level employment growth rates. Quarterly hours per worker are computed

as total production worker hours divided by the number of production workers.
B. DATA CONSTRUCTION APPENDIX

In this appendix we provide a derivation for the expressions for the theoretical constructs

described in section 2 in terms of observable quantities (the k;; and the e;¢). We derive the

following expressions, mentioned at the end of that section:%!

(13) Z"l" = 0.';(71.‘—’!“)
(14) zie =z}, — Qe
(15) Ae;, = Aeir +0ilAh;
1 .
(16) AEf = WZAe“
(17) vie = Ael— AE;.

50We stop our sample period in 1980:4 because quarterly total production worker hours are imputed (i.e.,
not collected) for all establishments beginning in 1981 in non-Census years.
51Gee section 2 for definitions and notation.
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We begin by noting that, by definition:

(18) Zit = zilt—l_Ae:t’

(19) z,-", = Zzi+ eyt
We also have the expression which links deviations to hours-week:52
(20) A€l = Ay + 0Ahy,

where, for notational simplicity, we omit subindices for 6.

Given the expressions in (18), (19) and (20) and the definitions introduced in section 2,
we see that the only expression that requires a non-trivial derivation is (13). We derive it
next.

Substituting 2; in (19) by the expression in (18), and substituting AeJ, by the expression
in (20), leads to:

z-l', = zh_, — 00k,

(] st—

Applying this expression recursively leads to:

(21) zh = 2k = 0(hi ¢ = hio)-

Using the above expression to impose 2,7;0 z} = 0 we obtain:
z'-lo = 0(71,- - hi0).

Substituting this expression in (21) leads to (13).

C. MEASUREMENT ERROR APPENDIX

We consider two models of measurement error. In Model 1 we assume that:

(22) ey = ei+e€
(23) ?t = hit+€?n

where the superscript ° denotes the “observed” values of the corresponding variable, the
€5,’s are i.i.d. Normal with zero mean, the ¢%’s also are i.i.d. Normal with zero mean, and

the €%,’s and ¢%’s are independent.

525ee section 2.

31



In Model 2 we take into account that measurement errors in employment are likely to
generate spurious negative correlation between hours and employment since our measure
of hours-week is computed by dividing total hours by employment. This model assumes
that:%3

(24) e = €+ wi,
(25) % = hi—wi,

where the w;;’s are i.i.d. Normal with zero mean.54
Next we consider the main issues raised in section 3.

FEstimates of employment deviations

From Appendix B and (22), (23), (24) and (25) we have that:

zit — 0l — AeS, for Model 1,

(26) 5=
Zit 4+ (0 — Dwie + wie—y for Model 2.

It follows that the observed distribution of z is a convolution of the true distribution and
a zero mean distribution determined by measurement error.

Denoting by Var(z;) the sample variance of the z;’s (where z is a generic variable), we
have that:

(27) Var(0) = { Var(z) + 0203, + 202, for Model 1,

Var(z:) +[1 + (8 — 1)})o2  for Model 2,

where the o? terms are evident.
Proceeding in a similar way for the z},’s we also conclude that the observed distribution
is a convolution of the actual distribution with a zero mean distribution that is a linear

function of measurement error, and obtain:

Var(z}) + %02, for Model 1,

28 Var(z}*) =
(28) ar(z") {Var(z¢)+0’a?, for Model 2.

It follows that the observed series of z;:'s and z};’s will be more spread out than the

53Recall that all variables are in logs.
5¢The normality assumption can be relaxed to assuming a symmetric distributions for errors, the i.i.d.

assumption could also be relaxed to allow for weak dependence, both across firms or for a given firm over
time. This also holds for Model 1.
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actual series. The variance increases somewhat less for z}, yet since Var(z}) < Var(z)
(this follows from (18) and the assumption that the e follows a random walk) this is not
necessarily the case on a proportional basis.

Idiosyncratic shocks

From (17) and (15), and the fact that, due to the Law of Large Numbers, E;*° ~ E},
we have that:
(29) v = { vit + A, + A€l for Model 1,

v + (1 - O)Aw.-, for Model 2.

Thus the observed cross-section of idiosyncratic shocks will be a convolution of the true
cross-section and measurement error.
It follows that:

Var(ve) + 2V for Model 1,

30 Var(vg) =
(30) (v¢) { Var(v;) + 2(1 - 8)302  for Model 2,

where V = Var(e§; +08¢?). We conclude that observed idiosyncratic shocks will have a larger
variance than the true shocks.

Based on (29) and some algebra we may express the observed first-order serial correlation
of idiosyncratic shocks, p2 in terms of the actual first-order serial correlation, p,:

v =V
e for Model 1,

%% for Model 2.

It follows that, if idiosyncratic shocks are serially uncorrelated, measured idiosyncratic

(31) o =

shocks are negatively serially correlated.
A similar calculation for the correlation between idiosyncratic shocks and pre-shock
deviations leads to:

a(ve)o(s})p(v,s? )+‘2’3 A

(Var(ve) +2V 13 (Var(z)) #9207 ) for Model 1,

(32) plv,2') =

o(u)o(sd)p(v,2* )+8(8-1)02
(Var(e#2(0- 1301 P (varD) o7oTys  for Model 2.

We conclude that if there is no correlation between idiosyncratic shocks and pre-shock de-



viations, the data with measurement error will show positive correlation.>® The expressions
above also show that the size of the observed positive correlation is smaller for large values
of the variance of idiosyncratic shocks.

Effective hazard

The effective hazard evaluated at 2° is estimated by averaging (over i, for all firms with
deviation 2°) the (Aef,/2°)’s. This is equivalent to averaging the following expression:

z° + &t Aeie(2ie) + Y

33
o 2° Z¢ 2o’
where
h e
(34) ft't = 0€l¢ + Ae.e‘ for Model 1,
(1 -08)wic — wit—1 for Model 2,
and
(35) vie = A¢§, for Model 1,
Aw; for Model 2.

If in (33) we condition on £ = z, average over the values of Ae and then average with

respect to § we obtain:

1
(36) A%(2) = ZE[(z + §)A(z + &)l-
Using a Taylor expansion then leads to the main expression of this subsection:

(37) AO(Z) ~ A(Z)+ f [A’(z) A’I(Z)]

where tr6 denotes the variance of §;¢, so that:

(38) o= 902, +203,  for Model 1,
¢ (1+ (8 -1)%)02 for Model 2.

Equation (37) has many implications. First we have that if the actual effective hazard
is constant (as in a partial adjustment model), then the estimated hazard is an unbiased
estimate of the true hazard.

Next we focus our attention on the case of an increasing hazard (i.e. for A(z) increasing
with respect to the absolute value of z). We also assume that it is sufficiently smooth

55In the case of model 2 this requires that § > 1 which holds for most series.
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(continuous first derivative). It follows that A’(z)/z is positive for all z; thus the estimated
hazard is biased upwards for values of z where the true effective hazard is locally convex.
This will be the case for small values of z, since a smooth, increasing hazard necessarily is
convex near z = 0. Since A(z) is usually bounded from above (by one) we shall have that
for large values of z the bias tends to disappear. Of course, the variance of the estimates

will be larger than it would have been in the absence of measurement error.

Distribution of conditional jumps

It follows from (33) that the distribution of adjustments, conditional on an observed
deviation of z and on adjusting by a fraction of (Ae$/zit) = —a, is normal with mean -«
and variance c¢/z?, where c is a positive constant that depends on a, # and the variance of
measurement error. It follows, based on combining the latter with an argument similar to
that of the preceding subsection, that (i) the estimated distribution of conditional jumps is
a scale mixture of normal distributions, where the scaling kernel is not centered around the
true z but exhibits a bias similar to that derived earlier. This bias may be large for small
|z| and becomes negligible as |z| becomes large; (i) the additional variance introduced by
measurement error decreases with the magnitude of z; (i¢) if the conditional densities have
a spike at j = 0 (no adjustment) then the estimated conditional density will have local
maxima at j = 0. The maxima will be less spread out for large (absolute) values of z;
(iv) if the conditional densities have spikes at j = —1 (full adjustment) then the estimated
density will have a local maximum for j ~ —1. This maxima will be more notorious and

closer to j = —1 for larger (absolute) values of z.
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Figure 3.7
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Figure 4. 1a
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Figure 4.2
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Figure 4.3
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—— Gross Flows

Figure 5.1
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