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ABSTRACT

The high degree of variance of crime rates across space (and across time) is one of the
oldest puzzles in the social sciences (see Quetelet (1835)). Our empirical work strongly suggests
that this variance is not the result of observed or unobserved geographic attributes. This paper
presents a model where social interactions create enough covariance across individuals to explain
the high cross-city variance of crime rates. This model provides a natural index of social
interactions which can compare the degree of social interaction across crimes, across geographic
units and across time. Our index gives similar results for different data samples and suggests that
the amount of social interactions are highest in petty crimes (such as larceny and auto theft),
moderate in more serious crimes (assault, burglary and robbery) and almost negligible in murder
and rape. The index of social interactions is also applied to non-criminal choices and we find

that there is substantial interaction in schooling choice.
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Quelquefois aussi le crime prend sa source dans l'esprit
d'imitation, que I'homme posséde 4 un haut degré et qu'il
manifeste en toutes choses. A. Quetelet, Du Systeme Social

I. Introduction

There are seven serious crimes per one hundred citizens per year in the
United States; this figure is more than double the serious crime rate of 1970.1
23% of African-American males aged 20-29 are currently under correctional
supervision (i.e. in jail, on parole or on probation). One, admittedly alarmist,
estimate of the total damage from crime in the U.S. is $425 billion.2 In several
1993 surveys, crime was listed as America's largest social problem.? The study
of crime has obvious policy relevance. Moreover, since criminal activity is so
omnipresent and violent crime has such a vast history, the study of crime is
intrinsically important to social science.

The modern economics literature on crime éssentially follows from Becker's
(1968)'s model of rational criminal activity. In this model, crime results
when the benefits of crime to a criminal outweigh the cost of potential
punishment. A long empirical literature (e.g. Ehrlich (1975), Levitt (1994))
followed testing of one of the comparative statics that falls naturally out of
Becker's model: higher levels of deterrence produce lower quantities of
crime.4 Much of the economics literature's focus on the relevance of
deterrence seems to be a rebuttal of the even larger sociological and
psychological literatures on “deviant behavior” which often claim that
rationality and deterrence do little to explain levels of crime.’

1FBI uniform crime reports shows a per capita crime rate of .067 in 1985 and .0773 in 1986. These
can be compared with a per capita crime of .032 in 1970. We will use the uniform crime reports,
not victimization studies, throughout this paper, due to lack of data availability of
vicitimization studies with sufficient geographical information. Victimization studies are
generally seen as more accurate, and changes in reporting practices, may account for some of the
intertemporal variation in crime rates. However, there does not seem to any evidence to suggest
cross sectional variation declines substantially when victimization studies are used.

2This estimate is from Business Week, December 13, 1993.

3The Chicago Tribune, September 10, 1994, reported that in a mid-July, 1994, New York
Times/CBS News Poll, crime was listed as the nation's most important problem. Further survey
results are described in U.S. News and World Report, February 7, 1994.

4There is also an extensive literature on crime's relation to economic opportunity, e.g Freeman
1991).

‘S‘Wilson and Herrnstein (1980) provide a valuable introduction to these literatures.
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We believe that the most puzzling aspect of crime is not its overall level, or
that level's relationship (or non-relationship) with the observed quantities of
deterrence.¢ Rather, following Quetelet (1835), we believe that the most
inexplicable aspect of crime is its large variance across time and space. The
media trumpets the astounding rise in crime since the 1960s, but there are
also cases where criminal activity seems to have fallen dramatically over
time. From 1933 to 1961, homicide rates fell in half in the United States.”
Lane (1979) documents an equally substantial drop in homicides in
Philadelphia over the late 19th century.

As large as the intertemporal differences in crime rates are, these differences
are dwarfed by the differences in crime across space. There is a wide spectrum
of average homicide rates across nations ranging from 11.7 homicides per
million in Sweden to 105.3 homicides-per million in the United States in
1980.8 Within the United States cities range widely in their crime rates from
.008 serious crimes per capita for Ridgewood Village, New Jersey, to .384
serious crimes per capita for nearby Atlantic City.? Even within a single city,
the diversity across sub-city units can be astounding; the 123rd precinct of
New York City has 2.16 crimes per hundred citizens while the 1st district had
20.59 crimes per hundred citizens.

If agents' decisions are independent, then city crime levels represent averages
of large numbers of independent decisions. Elementary statistics tells us that
these averages should be free of the effects of random idiosyncratic error
terms and they should be close to the expected population mean. The great
differences in crime rates across space must be explained by sufficiently
different economic conditions (or levels of deterrence) in the different areas.

6n part these topics are less puzzling to us because of the extensive work that has been done on
them.
7 From pre-1960 data, or for international comparisons, homicides provide the only reliably
uniform definition of crime. Archer and Gartner (1984) provide an excellent discussion of cross-
national crime studies.
8Because of the recession, 1980 was a particular bad year for US. homicide rates. Typical rates
are between 98-100 homicides per million per year.

9As we will discuss later, Atlantic City's crimes per capita is particular high because its
population does not include much of the large tourist population that enters the city but that is
not counted as part of the city's population. The highest crime levels in a non-tourist city is
Portland, Oregon, with .169 serious crimes per capita.
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Indeed poor, inner city precincts generally have more crime than precincts in
middle class Staten Island. However, even casual empiricism suggests that
differences in observable local area characteristics can account for little of the
variation in crime rates across cities in the U.S. or across precincts in New

York city.

East Point, Georgia has a crime rate of 9.2 crimes per hundred. El Dorado,
Arkansas, has a crime rate of 3.9 crimes per hundred. East Point has lower
unemployment, a better educated populace, less poverty and higher income
per capita. The 51st precinct of New York City has 4.6 crimes per hundred
citizens while the wealthier 49th district has 11.6 crimes per capita. How can
the radical differences in the crime rates of these areas be accounted for by
their underlying economies? More rigorously, we generally find that less
than 30% of the variation in c'ross-city’ or cross-precinct crime rates can be
explained by differences in local area attributes.10

The basic requirement for justifying a high variance of crime rates across
space (over and above the variance predicted by cross-sectional differences in
local conditions) is a positive covariance across agents' decisions about crime.
When one agent's decision to become a criminal positively affects his
neighbor's decision to enter a life of crime, then there is no reason why an
aggregate figure (such as urban crime levels) should be close to the population
mean of that figure. Positive interactions across agents' decisions to become
criminals predict that cities' crime rates will differ from the rates predicted by
the cities' basic characteristics, and that crime rates will differ substantially
across locations. Our empirical results support the existence of these positive
interactions and comfortably reject the possibility that decisions about crime
are independent within a local area.ll

10The regressions that produce these results will be discussed later in the paper. In general we
find that controlling for local area attributes brings us an R? of between 25-30% for New York
City precincts and slightly over 30% for cities across the U.S. in 1985. Cross-city regressions in
1970 yield somewhat higher R?'s, but still the remaining variance is far to high to be
compatible with a model where agent's decisions about crime are independent.

110ur work on this area is supportive of the findings of Case and Katz (1992) who find local
interactions using a survey of Boston youth.



In order to make sense of the covariance across agents that we find in the
data, we present two models that build on the previous work on social
interactions and crime (e.g. Sah (1990), and Murphy, Shleifer and Vishny
(1993)). Previous work has shown that positive interactions can produce high
variances of crime rates across cities, and has presented candidate
mechanisms for explaining these interactions. However, most of this work
tends to predict a finite number (usually two) of distinct distributions of crime
rates over space (which does not seem to be supported in the data).12 This
work also does not present a measure of the degree of social interactions that
can be used in either hypothesis testing or in cross-crime, cross-space and
cross-time comparisons.1® QOur models predict distributions that are similar
to those in the data.1* Moreover, our models give us estimable parameters
that provide us with a natural index of the degree of social interaction.

This paper presents two models where agents are arranged on a lattice and
agents' decisions to participate in crime are a function of their own attributes
and of their neighbors' decisions about criminal activities.!> In these models,
the population is divided into two classes of agents: (1) agents who influence
and are influenced by their neighbors and (2) agents who influence their
neighbors, but who are not themselves influenceable ("fixed agents"). When
we examine the limiting distributions of crime rates that are determined by
these models, we find that the variance across localities will be a function of
the number of fixed agents.

Fixed agents lower the degree of interactions across agents and hence decrease
the expected variance of crime rates across cities. In the extreme this is
obvious, as all agents become fixed, criminal decisions lose their
interdependence and crime rates become the average of independent

12The one major example of a prior model of multiple equilibria that is empirically fit in the
crime area is Smith and Wright (1993) which does indeed find two distinct distributions in
their data. )

13These comments are not criticisms of the earlier models which were not motivated as
empirical models, but rather to illustrate how social interactions can be generated and how
they can effect the variance of crime rates over space.

141n part our ability to fit the data better comes about because we have an extra degree of
freedom, the percentage of fixed agents, in our model.

15These model are derived from the voter models (see Kindermann and Snell (1980)). Many of
our results are related to the discussion in Scheinkman and Woodford (1993).
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decisions.1® Both models provide the same critical result: the variance of
crime rates (times the square root of population) across a sample of cities is
equal to a nonlinear function of the proportion of fixed agents in each city
time the variance of crime rates (weighted by the square root of population)
that one would expect if all decisions were independent times.17

We use this fact empirically and estimate for a variety of crimes in the U.S.
the proportion of fixed agents predicted by the variance of crime rates across
cities. This proportion of fixed agents provides us with an index of the degree
of social interaction, and we can ask how the level of social interaction
changes across crimes or over time. The number of fixed agents can be
interpreted in many ways: (1) the expected distance between two fixed agents
is the expected size of a group with positive social interactions, so the number
of fixed agents determines the average social group size, (2) fixed agents can be
viewed as agents who do not observe their neighbors actions, so the number
of fixed agents may reflect the share of the population that is not connected to
their neighbors, and (3) the number of fixed agents can just be seen as a
metaphor for the forces that slow social interaction. Forces that slow social
interaction among potential criminals can include strong pareAnts, or formal
schooling, or any force that provides information that counters criminal
influences.

The empirical section of the study presents this index of interactions for a
variety of different crimes in the U.S. in 1985, in 1970 and across New York
City in 1985. In all-three samples, we find a high degree of interaction for
larceny and auto theft. Our data shows moderate (but still large) levels of
interaction for assault, burglary and robbery. There are very low levels of
social interaction for arson, murder and rape. While there is some difference
in these measures over time (the level of social interaction seems to have
risen between 1970 and 1985), overall we find that the levels of interaction are
fairly similar across the three samples. We believe that this similarity (which

161n fact, fixed agents determine the variance of crime rates not so much because they are
uninfluenced by their neighbors, but rather because they break the chains of influence within
the locality. Fixed agents serve as “circuit breakers” in the transmission of criminal tendencies.
17 we assume, as least until Table 5, that there is the same number of fixed agents in each city.
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does not hold for the mean levels of these crimes) supports the usefulness
and reliability of our methodology.

In a further test of our methodology, we apply it to the percent of a city which
was female; that percentage should presumably not be a decision variable
determined by social interactions. With a trivial correction for the
heterogeneity in the cities' attractiveness to the different sexes, we found no
social interactions in this variable. We also used our methodology to
examine schooling, which displayed substantial quantities of social
interactions. Qur methodology, in principle, can be used to test for cross-
individual effects in many variables beyond crime.

We also present a variety of improvements in the basic methodology. We
allow for repeat offenders. We estimate the amount of cross-city variance
that can be explained by variance in the underlying characteristics of cities and
give lower bounds on the amount of social interaction that must be
occurring. We allow the proportion of fixed agents (the degree of interaction)
“to fluctuate with city characteristics. We find that for serious crimes in
general, for larceny and for auto theft, the degree of social interactions is
larger in those communities where families are less intact. Finally, we show
that several of the usual interaction mechanisms are only dimly supported by
the data. The mechanism of congestion in law enforcement is particularly
unsupported by cross-city or cross-precinct evidence.

2. Previous Literature and Positive Interactions

A number of models already explain why seemingly identical cities can have
different levels of crime (or rent-seeking more generally). Sah (1990)
represents a benchmark version of the existing models explaining the puzzle
of high cross-sectional variance in crime. In this work, a large number of
criminals congest the law enforcement mechanism. Police cannot arrest
more than a fixed number of criminals, so when there is too much crime, the
probability of being arrested goes down. As this happens, the cost of being a
criminal also falls. Two (or more) equilibria can result: one equilibria with
high crime levels and low probabilities of arrest and the other equilibria with
low crime levels and a high probability of arrest.



Several other versions of this basic model also exist. Murphy, Shleifer and
Vishny (1992) suggest an alternative mechanism where high levels of
criminal (or rent-seeking) behavior crowd out legal activities. As the number
of criminals rise, the returns from not being a criminal falls because legal
revenues are stolen by criminals. Again, two equilibria can result. In one
equilibria, agents follow legal activities primarily and the returns from legal
activities are high. In the second equilibria, agents are primarily rent-seekers
taking from the legal workers, thus making the returns from legal activities
low and inducing agents to prefer crime.

Alternative models can generate multiple equilibria if the non-criminals are
involved in disciplining the criminals,18 or in deciding (with their votes) the
amount spent on crime prevention. As the number of non-criminals falls,
the amount of resources allocated to preventing crime also falls and it
becomes more advantageous to follow a life of crime. Multiple equilibria also
can result if crime is stopped because crime is stigmatizing; as the number of
criminals rise, the average criminal becomes a “normal” member of society.
As crime rises, the stigma from crime falls and it becomes more attractive to
commit crimes.19 Stigma may also work if higher levels of crime stigmatize
an area and make outside employers less likely to hire the residents of a
particular city; that lack of hiring then lowers the cost and increases the
quantity of crime in the area.20

While the multiple equilibria models do generate more variance across
locations then do models with totally independent decisions, these models -
have some severe problems as empirical tools. Taken literally, the models
predict that there will be two stable equilibria (or possible some other small,
finite number of equilibria) and urban crime rates will be grouped around
two primary points. Empirically, these models predict that the data should be

18jacobs (1961) is a primary advocate of the critical role of civilian policing in limiting urban
crime. 4

19 Glaeser (1992) presents multiple equilibria models based on stigma.

20There are also many possible negative interactions, most classically standard competition for
a scarce resource (victims) may mean that more criminals lowers the returns to criminal
activity. However, these negative interactions would lower, not raise, the observed variance
of crime rates.



clustered into two primary distributions, and that once we allow the data to
come from two distributions, we should find little excess variance. A quick
inspection of crime rates in Figures 2, 3 and 4 shows that the distribution of
crime rates certainly do not suggest that cities to end up in one of a few
possible equilibria.2l  Also, as we will show in Table 6, there is still a great
deal of excess variance once we have allowed the crime rates to come from
two (or more) distributions.

In order to create more empirically palatable models, we will assume that the
social interaction occurs at the very local level: each agent's decisions are
influenced mainly by their neighbors' decisions. The multiple equilibria
models have the complementarity work through the neighborhood average.
By focusing on local rather than global interactions and by assuming that
there exists a fraction of the population that does not respond to interactions,
we will avoid the empirically unpalatable situation of predicting that cities'
will converge to a few distinct equilibria. Instead, our models will simply
predict a large variance of urban crime rates.

Rather than focus on the form of the interactions (as the multiple equilibria
models do), we will assume a positive interaction across criminals and then
focus on getting a more empirically plausible model. The current evidence
(Case and Katz (1992), Crane (1990)) confirms a positive interaction across
agents, but it is not conclusive about the form of the interaction. Most of the
popular interactions (congestion in law enforcement, crowding out of legal
activities) do not seem to fit the US. data well (as we will show in Table 7).

Of course, moving from a global interactions model to a local interactions
model immediately suggests different justifications for the interaction. The
traditional stories of interactions (congestion of law enforcement, elimination
of legal opportunities) tend to be best suited for models of global interaction
(although they could create local interactions as well). Justifications for local
interactions must focus on agent-to-agent-interactions. Among other things,

21n these figures, the crime rates (especially for 1970) look leptokurtotic and in fact the
distributions of crime have non-Normal degrees of skewness and kurtosis. These features of the
distributions occur to a large extent because of the relationship between crime rates and city
size, and because city sizes are famously leptokurtotic (i.e. Zipf's law holds).



local interactions can plausibly come from: (1) information flows about the
returns to crime or about how to be a criminal, (2) inputs from family
members that determine the costs of crime or the taste for crime, (3) peer
group approval or (4) the importance of monitoring by very proximate
neighbors for deterrence (and those neighbors don't monitor when they are
themselves criminals). We will remain slightly agnostic throughout the
model and until Table 7 in the empirical work on the form of the positive
interactions.  Ultimately this paper dwells on measuring the presence of
social interactions and their influence on crime, not on determining the exact

form of social interactions.
3. Model

In this section we will present two similar but slightly different models. In
the first model, agents' decisions will be determined randomly and local
interactions will be modeled as a heightened propensity to engage in crime.
In the second model, maximization will appear more plainly. Both models
will suggest the same index of social interaction and the same interpretation
of that index.

Model One -- Social Interactions and the Propensity to Commit Crimes

We present here a model that is capable of generating the high variability of
crime incidence that we observe in the data. We assume that each agent is
indexed by an integer i, and that each agent can choose one of two actions
{1,0}. Action 1 will be interpreted as committing a crime. Although a dynamic
model will be presented, we are really only interested in the properties of its
stationary distribution. The dynamics are described only to allow us to
compute properties of the stationary distribution.

At time 0, each agent chooses an action independently and the probability that
an agent chooses action 1 is p. With probability = > 0, an agent i belongs to a
set S of fixed agents. These agents will not change their action over time. The
probability of being fixed is independent across agents.
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The remaining agents will change their actions occasionally to conform to the
choices made by their neighbors (this is the social interaction). The neighbors
of an agent i are the agents in N(i )={i -1,/ +1}. Associated with each agent i
¢S, (i.e., all non-fixed agents) there is an independent Poisson process with
mean time 1. At each epoch of the Poisson process associated with i, the
action of the agent i changes to that of one of its neighbors with equal
probability. This defines stochastic processes a;, for each integer i. Shift to the
neighbors' actions are not explicitly the result of maximizing behavior, but
they can be seen as reflecting the gains from following one's neighbors. In the
next model, we will show that this equivalent in its long run behavior to a
model based on maximizing behavior.

For the given parameters (p,rn), there is a limit measure u(p,m). More
precisely, given an n, there exists a limit measure p,(p,n) defined over
configurations of { a;:li1< n}, and if m>n, the measure induced over the
configurations of {a;:1it< n} by pu(p,x) agrees with p,(p,n). Further, the
measure p(p,m) is invariant.

To see this, first consider the measure p(p,) given the set S and the a; for
each i € S. Given any integer i ¢ S, we write i- for the largest element of S
which is less than i, and i+ for the smallest element of S which is greater
than i. In other words, i- and i+ are the elements of S that "bracket" i. If
a; =a; then as t—eoo it is easy to see that a/ — a; , with probability one. If an
interval of non-fixed agents is bracketed by two fixed agents, both choosing
action 1, then in the limit, all of the non-fixed agents in that interval will also

choose action 1.

Hence p(p,m) assigns probability one (conditional on i- ,i+€ S, and a] =4 ) to
the set of configurations in which a; is constant for i- <j < i4. If a #a;', then it
is again easy to see that with probability approaching one, as t—oo, if o/ =a}
then for any i- <j< i, a;=q;. This result just means that on an interval of
non-fixed agents between two fixed agents, the agents' states are “sorted,” and
only one agent (at a point in time -- this agent will not be fixed) will have a
neighbor that takes an action different than his own. Everyone else (at a
point in time) will have neighbors doing exactly what they are doing. Hence

i1



u(p,m) assigns probability one to the set of configurations that are sorted in
this way.

One can use elementary Markov chain arguments to show further that if i-
and it are consecutive points of S, with say a/ =0 and a =1, and i+ - i. =
then the probability that p(p,n) assigns (again, conditional on i. ,i+€ S, and
a} =0 and 4] =1) to the configurations in which actions 0 is chosen exactly by
agents j, i- <f <i-+l - 1, in the interval [i- ,i+], equals 1/1 .

As we mentioned above, we are really interested in the properties of the
stationary distribution p(p,x). We will therefore drop the time superscript ¢
with the understanding that we are examining the properties of the stationary
distribution. It is apparent from the dynamics that the average number of
agents in a group that take a particular action does not change with the
number of agents in the group. Hence, using the distribution p(p x), for any
n, the expected number of agents lil<n that chooses action 1 is p(2n+1). The
presence of "fixed" agents guarantees that if j<i, as |j-i| —o0, then with a
probability that tends exponentially to zero, the action chosen by j is
independent of that chosen by i. Hence central limit behavior results,22
which means that:

1

‘/E;ITT'%;,(ai —p)—)N[O,OJ], (31)
and further,
o’ = var(a,) + 22 cov(a,,a;) (3.2)

i>0

We know that var(ag)=p(1-p). The computation of the covariance terms in
(3.2) is elementary but lengthy, and we leave it for an appendix (available
upon request). The important fact that we will use later is that

o’ = f(x)p(l - p) (3.3)

22 gee, for example, White (1984), Theorem 5.19, page 124.
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where, f(1)=1, f'(n)<1 and, limg—0 {(x)=00.23 In Figure 1, f(rn) is plotted next to
the f(n) that is generated by the next model. We also know that the variance
of the appropriate normalized sum will converge to 62 at a speed of at least
1/n. '

The term f(n) results from the presence of local interaction. If no imitators
are present this term equals one and the variance is p(1-p). As the number of
“stuck" agents approaches 0, the term goes to o0, and unanimity prevails.
With unanimity the model can only produce a small finite number of
stationary equilibria and there is little gain from complicating the basic
multiple equilibria models. The primary modeling gain of our approach is
the ability to generate a wide range of variances, through the introduction of a
portion of the population that is fixed.

An Aside on Voter Models and Unanimity

The reader familiar with the literature on voter models (e.g., Kindermann
and Snell (1980)), will recognize that except for the presence of some agents
who are “"stuck" at their initial action i.e. those i € S, this is exactly a one
dimensional voter model. Our perturbation of the basic voter model (adding
fixed agents) is however important, since standard one dimensional voter
models have stationary distributions that exhibit unanimity, which means
that the models predict even more variance than we see in the data. This
unanimity property is also present if we consider a lattice in two dimensions,
where each agent is indexed by a pair of integers (i, j), and a neighbor of an
agent is any agent (i, j#1) or (i1, j).

Unanimity, however, disappears in higher dimensions. In dimension three,
i.e. where each agent is indexed by a triple (i, j, k), non-degenerate stationary
distributions exist. Under any invariant distribution, the number of agents
that chooses action one in a cube of population 1,24 (when divided by n5/)
converges to a normal random variable (c.f. Bransom and Griffeath (1979)).
The constant of normalization here is n5% as opposed to the usual square root

23A good approximation for f(n), especially for values of >.025, is f(r)=1.88/x -.88.
24The cube, therefore, has size n'A.
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of the number of random variables considered (which would be n!2in this
case). In our section on empirical results, we will show that this three-
dimensional voter model predicts, like the one and two dimensional models
without fixed agents, an even higher variance than that found in the data.2>

It is well known that voter models have a very distinct behavior on lattices of
dimension one or two vis-a-vis lattices of dimension three or greater
Numerical simulations in dimension two and three seem to show that in our
modified model the behavior is similar for dimension one, two and three.
However, our analytic calculations exposited above were done only for the
one-dimensional case.

One difference between models of one or two dimensions and models of
three dimensions is the predicted variance of crime rates across cities. For
one or two dimensional models (without fixed agents), as n grows large, per
capita crime rates still display positive variance (because these models predict
unanimity). In dimension three (without fixed agents), as n grows, the
variance of per capita crime rates go to zero (as they do with fixed agents in
the one-dimensional case). Thus, the number of dimensions can determine
the predicted variance across cities, and dimensionality provide an
alternative method (to fixed agents) of capturing greater or lesser degrees of
interaction and urban heterogeneity.26 While, we see in Table 2 that models
(without fixed agents) of dimensions one, two or three predict too much
variance to fit the data, it is possible that a model of some higher dimension
would generate the observed crime rates. However, the mathematics of such
a model would be much more complicated as little is known about voter
models in dimensions greater than three.

25The one and two dimensional voter models also predict too high of a variance when there are
no fixed agents.

261t is worth noting the strange result that higher dimension models have less variance, not
more, because they have more interaction. Low dimension models converge on a unanimous
outcome which produces the highest variance across cities. In three dimensions, unanimity is
avoided (because of the large number of interactions) and in fact the cross-city variance
declines.
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In the next section, we discuss a model with explicitly maximizing agents and
argue that the stationary version of this first model of local interactions can be
interpreted as a particular version of an optimizing model.

Model Two -- Maximizing Behavior and Social Interactions

In the previous model, agents' decisions were not explicitly derived from a
maximizing model. Here we present an alternative model with maximizing
actors that will generate the same statistical behavior as the first model.
Unfortunately, the cost of introducing maximization is that we are forced to
assume here each agent's imitation is unidirectional, i.e. when agents are
arranged on a line, each agent is influenced only by the agent on their right
not by the agent on their left. The modeling difficulties inherent with
mutual imitation (which we will comment on later) make this assumption
necessary.2’ "

As before, each agent is indexed by an integer i, each agent can choose one of
two actions {0,1}. Action 1 will be interpreted as committing a crime. The
utility of an agent i, depends on the action that he takes and also the action
taken by agent i-1.28 "

There are three types of agents in this model, indexed 0, 1 or 2. If an agent is of
type t € {0,1,2}, we write his utility as U.(aj, ai-1)- If an agent is of type 0 his
utility is maximized at a, = 0, independent of a..;. If an agent is of type 1 his
utility is maximized at a, = 1, independent of a..;. These two types of agents
are diehard lawbreakers (type 0 agents) and law abiders (type 1 agents); they
are far from the margin and will be uninfluenced by the actions of their
neighbor. These two types are analogous to the fixed agents in the previous
model.

27 we would prefer to be able to model bi-directional imitation.

8 This interconnection of utilities can be interpreted with any of our positive interaction
models. When agent i-1's criminal activity influences the arrest rate, or the return to legal
activities, it influences the utility of agent i and the utility agent i gets from criminal
activities. For example, agent i receive more utility from committing a crime if agent i-1 is a
criminal because agent i has learned how to steal more effectively from watching agent i-1.
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For Type 2 agents, we assume that Uz (1,1) > Uz (1,0) and U3 (0,0) > U3(0,1), i.e.
a Type 2 agent prefers to imitate his predecessor. This type of agent is
marginal enough in his decision to become a criminal that he will be
dependent on his neighbor's decision. Each agent i is of type 0 with
probability po and of type 1 with probability p;, and since po+p1 is the total
proportion of non-marginal (fixed) agents we will occasionally refer to po+p:
as 7 here as well. The probability of becoming type 0, 1 or 2 is independent
across agents. The most appealing interpretation of type is that each agent is
endowed with a different amount of a continuous attribute that determines
that net benefit from crime and that the types simply reflect cutoff points in
this continuously distributed attribute.29

Each agent observes the action chosen by his prédecessor. There is a unique
Nash equilibrium given the types of each agent: all strings of type 2 agents
uninterrupted by type 0 or type 1 agents will imitate the action of the type 1 or
type 0 agent that began the string. The remainder of this study examines the
distribution of these Nash equilibria across cities.

If each agent's action {a;} is thought of as a random variable that assumes the
values of 0 or 1, then the process {a;,-c0 <i< oo} is stationary. The presence

of agents of type 0 and 1 guarantees enough "mixing" so that the central !imit
behavior can be established. More precisely, we know that agent i and agent j
are independent conditional on the existence of an agent of type 0 or 1 in the
segment (i,j). The probability that there is no such agent in that interval goes
to zero exponentially as i-j goes to infinity. This fact gives us sufficient
conditions for central limit behavior.

29This continuous attribute could be the returns to a legal, alternative activity or the suffering
incurred by being arrested or the ability to commit crime or some weighted combination of all of
these attributes. Hence, the cutoff points, and the probabilities pp and p1, may depend on some
city characteristics. In fact, urban characteristics will jointly determine p and n. For example
higher employment levels will induce more agents who are always law abiders and fewer
agents who are always law breakers, since the opportunity cost of crime has risen. The
population percentage p will fall. However, the number of influenceable agents may rise or fall
depending on whether the rise in law abiders (who were presumably formally influenceable
agents) outweighs the fall in law breakers (who wiil not become influenceable agents).
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Following standard reasoning, consider the set of all agents i | <n. The
expected number of crimes per capita by these agents is denoted as p =p1/(po +
p1). Hence, again it must be true that3:

| 2
—_— i— p)—N|0, , 3.1
\V2n+1 ,,125‘1.(0 P [ ¢ ] o
and further, that,
o’ = var(a,) + ZZCOV(ao.a,-) (3-2)

i>0
Since a, follows a binomial distribution, var(a,) = p(1 - p).

To compute the covariance terms in (3.2), let A be the event that at least one
agent in the segment [0, i] is of the type 0 or 1. We know that conditional on
A, a; is independent of ag (since g; is determined exclusively by the value taken
by the agent of type 0 or 1 located between 0 and i). The probability that A
does not occur is given by (1-p, - p, Y. If A does not occur, then a;=a,.

Using this observation, we can rewrite (3.2):

o’=p(l—p)+22p(1—px1—po—p,)‘=p(x—p)[1+2"”°"’*1=”“‘”}t(z'”’ 3.2)

i>0 PoeT™h

The term 2(1-p, - p,)/(ps + p.), represents the covariance across agents and
results from the presence of imitation. If no type 2 agents are present
(p,+ p, =1), this term is null. As the probability that each agent is of type 2
approaches 1, (i.e. ® approaches zero) this term approaches co. Moreover, we
know that because the covariances are decaying exponentially the variance of
the left hand side of (3.2') converges to 62 at the rate at least 1/n.

If we chose to write f(n)=(2-nt)/x, the parallel between this solution and the
solution of the previous model becomes even clearer (except that now we
have a closed form solution for f(x)). With this model, as with the previous
model, the variance of crime rates (times the square root of population) across

30 Again see White (1984), Theorem 5.19, page 124.
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cities equals p(1-p) times a function of the proportion of the population that
does not react to outside influences. Figure 1 graphs this explicit functional
form for f(x) with numerical values found for f(r) in the previous model. As
the figure shows, the two different models yield almost identical estimates for
f(r) except at low (below .05) values of .31

In this model it is easy to transform the estimated f(rn) into an estimate of the
average size of an interdependent social group. As in the previous section
the average social group size is 1/n. Using the new formula for f(xn)), we find
that our estimate of the size of the social group is (f(7)+1)/2.

An Aside on Symmetric Imitation

If we wish to introduce more symmetric imitation i.e. the utility function of
agent i depends on the actions of agents i-1 and i+1, one natural assumption
is to assume that agents utilities depend on the sum of their neighbors’
actions. So we can write 5; =q, , +a,,,, and assume that the utility of agent i is
givenby u, (a,s;) where 7, is his type. In a bilateral model, we again assume
the existence of two fixed types of agents (again denoted type zero and one),
the utility of type 0 is maximized by action zero, and that of type 1 by action 1,
independently of s;. If we imagine as before that there is only one other type,
than it is natural to assume that for that type «,(0,0)>u,(1,0), «,(1,2)>«,(0,2),
and, for symmetry, u,(0,1)=u(1,1). In this case we are back exactly to the first

model!

If, however, we try to dispense with ties, it is necessary, again for reason of
symmetry, to use four types. Types 0 and 1 are as before, and both type 1t =3
and 1t = 4 satisfy u,(1,2)>u,(0,2) and «,(0,0)>u(1,0). Furthermore,
u;(0,1) > uy(1,1) and u,(1,1) > u,(0,1), i.e. when neighbors disagree, type 3 is more
inclined towards action 0 and type 4 towards action 1. In this case, however, it
is easy to see that there are a large number of Nash equilibria.

31in fact, our estimates of 1 will be in this low value region, so in fact, the choice of model will
determine significantly our estimate of . As a result, we believe it is reasonable to discuss
primarily the estimates of the f(n) variables and not emphasize too strongly the actual
estimates of .
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To see what can happen, take an interval consisting of types {0, 4, 3, 1}. It is
obvious that outcomes {0, 0, 0, 1} and {0, 1, 1, 1} are both Nash equilibria (in
fact there are many others). Because of the mutual positive interactions this
represents an exceedingly complicated coordination game where no simple
refinements apply and there is no way to satisfactorily characterize predicted
behavior. As a result we will simply avoid this more difficult model.

4. Empirical Framework

This framework is meant to discuss the issues involved in empirically
estimating f(r). In particular, we are interested in allowing for urban
heterogeneity in the costs and benefits of crime. The probability that any
single citizen in city j chooses to become a criminal is denoted p;*=p*(z;, ),
where the variables in the vector z; are observable urban characteristics
(population of the city, levels of urban schooling, local labor markets, etc.),
and the variables in the vector g are unobservable urban characteristics.32
Urban characteristics predict an individual's propensity to commit a crime
because they reflect the individual's own characteristics: an individual from a
high schooling city is, by definition, more likely to have high schooling.
More schooling may lower the propensity towards crime by raising the cost of
crime. Urban characteristics also determine the environment in which the
agent lives which may also affect the propensity for crime. It may be more
difficult or costly to commit crimes because the populace is well educated.
Aggregate data do not present us with any way to disentangle these two effects
so we will ignore the fact that local area characteristics affect crime rates for
two very different reasons.33 '

Our empirical work takes agents' decisions about migration as
predetermined. If criminals choose to live with other criminals, then our
results may overstate the effect of local influence on criminal behavior (and

32]¢ is certainly true that individual characteristics change the likelihood of being a criminal
far more than local area characteristics do, and this model is not inconsistent with that
statement. The p*(.,.) function gives us the probability that the agent is a criminal based only
on our information that the individual lives in town j. The individual information determines
whether this probability develops into a criminal outcome.

33 Case and Katz (1992) do a better job at disentangling the two effects with individual level
data, which is necessary to distinguish between these two different effects of urban
characteristics.
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understate the role of endogenous migration). We will return to this
question later, but the high percentage of criminals who are youths makes it
obvious that the majority of criminals do not have the opportunity to make
their own migration decisions (according to the 1991 Uniform Crime Reports
more than 50% of those arrested for property crimes are 21 or under).
Furthermore, locational sorting is itself evidence of positive interactions; if
criminal choice to live together, then there must be positive interactions.

We will let p; denote the actual amount of crime in each city, where
pPj=p(z;£;,w;). The term ; is meant to reflect the random shocks that may
make a city's crime rate differ from the crime rate that would be predicted
knowing all of the city's basic attributes. We assume that w;is independent of

(z5)-

This estimation framework is meant to decompose the gap between actual
crime rates and the crime rates that are predicted using observable
characteristics. The decomposition divides this gap into a portion related to
imperfect observation of the city's characteristics (the vector ¢;) and a portion
related to agents' deviating from their expected level of crime (the w; vector).
This decomposition will allow us to estimate the amount of social
interactions, since the quantity of social interactions (more precisely f(r)) has
been found in the previous section to determine how far a city's crime rate
will differ from the crime rate that would be predicted if all of the city's
characteristics were known.

Our basic strategy for the decomposition, which will enable us to estimate the
size of the interactions, is to assume a structure for the “error term" that
comes from missing city-level characteristics. Specifically, we assume that p;*,
the prediction given complete information on the city's characteristics) has a
standard logit functional form:

. e”

Pi=T¥e”

(4.1)

where v; is mean zero, finite variance, and v;.={;+g;, where both {; and ¢;, are
also mean zero, finite variance terms. {;is a function of the observables, z,
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and g is independent of these observables. If we denote as p, the prediction

of the city's crime rate based on z; then:34

. ﬁje"j ,
), = — 4.1
Pi l—ﬁj+[3jec’ ( )

We further assume that ¢ is a normally distributed error term with E(g; )=0,

and Var(g; )=A2. As we showed earlier, with either model of social

interactions:
var( p; —p}),fNj = f(m)p;(1-p;), (4.2)
and this convergence is at rate 1/N;.

From now on we take the vectors z; as fixed and all random variables indexed
by j will be considered as functions of (g;,w;). We will denote:

v =(p; = B;WN; =l(p; - p})+ (P} - pWN; (43)

Taking expectations conditioning on ¢; yields:

E(y;le;) = EI( p; ~p; [N, 16,1+ El(p; — p,)}|[N; Ig;] (4.4)
. . . - - ﬁ
U the f. hat E(p.le;)=p; e )=——L——:
sing the facts that E(p,l¢;) = p; and that E(pjlej) 5 1)
(1 .D)(e ' —1)
J ¥ '
E(y;le;)= 571 JN;. (4.4")

Again taking expectations conditioning on g; yields:

Var(y,le;) = Var{(p, ~ p)\N; le;1+ Varl(p; - B )N, le;1= Varl(p, - p})|[F, le;1(4.5)

&Y
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since (p; - p;) is a constant (and thus independent of w;) when we condition

on g. Using (4.5), (4.2) and the results of either model, (4.5) can be rewritten:
Var(y;\g;) = Varl(p; - p){[N; Ig;1= f(m)p;(1- p}) + O(N}") (45)
where O(N;1) refers to terms on the order of 1/N;which we shall ignore.
Using a standard result (see, e.g. Feller (1968)), it follows that:
Var(y;) = Var{ E(y;\g;)1+ E{Var(y,l¢;)] (4.6)

Since p, and JN . are deterministic functions of the z; vector, we know that:

( - p; )(e" -l) . (e? -1
Var[E(yIIEJ)]-—Var[ 5 *' \[—] pj(l—pj)zvaadm](4'7)

p;(e
Using (4.5'):
ElVar(y)e )= f(m)Elp; - p; 1= f(m)b; - B} - E(p; - b,)’] (4.8)
Combining (4.7) and (4.8) and using the fact that E(p; — p;)’ = _Var%le )

]

Var(y,) = (N, - f(m)p*(1 - ,)* Varl +(e D gy fnp -5 @46

1+ B, (e" - 1)

If we assume that €; is normally distributed then there exists a function that
maps the standard deviation of g (denoted A) and p; into the variance term in

(4.6"). Specifically, we will denote:

(e” - 1)

W)=V -
(A.p;) ar[l-f-ﬁj(e’—l)

] (4.9),



For empirice] implementation we can define:
1 =(p; = p;)’ N; - El(p; = ;) N;1= (p; = p;)’ N; = Var(y;) (4.9)

where p; will be mean zero and will reflect the extent to which we do not
perfectly observe the variance of crime levels. Using (4.6'),(4.9) and (4.10):

(P, = B, N; = b} (1= B, (N; — F(aN¥ Q. B)) +f(mp;A-p)+p;  (410)
This equation can be estimated when we have an approximation for ¥(A4,p;).

In particular, when we know that p,=p, i.e. the expectation of crime is

constant across cities and is equal to the aggregate average:
(p; - PY*N, = p*(1- p)*(N, — f(ANY(A,p)+ f(m)p(1 - p)+U; (4.10")
Estimating f(r) to minimize ¥ p;2, and taking p and A as known:

) I(p; = PPN, - p*(-pPN.Y(A,
f(”)=2‘,it(p, pYN, 21)( €> .1 @11
JIp(1-p)-p' (- p)"¥(4,p)]

where f(n) denotes our estimate of f(xr). Equation (4.11) makes it obvious
that different estimates of A will result is different estimates of the amount of
social interaction. In cases, where p;'s are known, as are A's, (4.11) becomes:

Y. [p;= BN, - Bi(1- B, N¥(A, p,)]
6= B} - B (1- B, ¥(4,p))

f(m)= (4.11')

We can estimate 2 fitting equation (4.10) and we can find estimates of both A

and f(m) simulataneously. In that case, our estimates of A hinge on the
correlation of Nj and (p; - p;)2N; (which comes from the fact that expectation

of the variance of y is independent of N but that the variance of the
expectation of y rises with N).3>

35The critical assumption for this estimation procedure to work is that A be essentially
independent of N.
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So far in our discussion, we have assumed that ¥ (A,p) is known (even if A is
not). In fact, no closed form solution for ¥ (A,p) to our knowledge exists. To
solve this problem we used simulations data and found a non-linear
approximation for W(A,p). Our simulations involved fixing 4,000 (A,p) pairs
and then generating 10,000 values of ¢; for each (A,p) pair. Given these
generated g's, we then estimated ¥(A,p) for each (A,p) pair.3¢ We fit our
sequence of W(A,p)'s by ordinary least squares to a polynomial containing (A,p)
terms-- this regression had an R2 of over 99%. We use this polynomial
approximation of ¥(A,p) throughout the empirical work.

5. Results

The data used in our estimation come from two sources: the FBI and the
New York City Police Department. The cross-city crime data are published by
the FBI under the Uniform Crime Reporting program. The data are compiled
from monthly reports submitted to the FBI by over 16,000 city, county, and
state law enforcement agencies. Our New York City data comes from 1993
reports of crimes by precinct. Both data sets detail crimes reported (and
verified), rather than arrest or survey data.

Obviously, these data may undercount the actual number of crimes
committed since many crimes are not reported. Our suspicion is that the
amount of under reporting will be higher in high crime areas, so that cross-
city variance is underestimated, but it is possible that under reporting is
greater in those areas without much crime. In that latter case, we would
observe a spuriously high cross-city (or cross-precinct) variance in crime
rates.37

The crimes' definitions are included in an Appendix which describes the
variables used in the study. We use not only crime rate data but also data
from City and County Data Books on urban characteristics. Our unit of

36By experimenting with different sample sizes and by repeating the simulations we are sure
than 10,000 observations is enough so that our estimate of ¥(A,p) (knowing (A,p) ) is quite
accurate.

37Levitt (1994) discusses the problems of using reported crimes more thoroughly.
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analysis throughout is the city, and the data books conveniently provide us
with city-level data (from the census) for both 1970 and 1985 (in some cases we
were forced to match 1980 data with 1985 and 1986 FBI data). For precinct
level data, we matched the police data with 1990 census data presented in the
New York Department of City Planning 1990 Census Data by Police Precinct.
This volume's mapping between precincts and census tracts may be less
precise than the exact mapping (between cities and cities) allowed by the
census and FBI data. |

Tables 1A-1E -- Means, Standard Deviations and the Sample’s Extremes

Tables 1A-1E presents a quick look at our data. Table 1A presents the five
cities with the most and least serious crimes per capita in 1985. Two of the
highest crime cities in the United States owe their position (in part at least) to
the Census definition of population which does not include the large tourist
populations of Atlantic City and West Palm Beach.38

While the high crime levels of Atlantic City and West Palm Beach are related
to their high tourist populations (because of undercounting of population or
because tourists attract criminals), Portland, Oregon is an éxtremely unusual
crime center. Portland has modest unemployment and high levels of
education. Still, Portland in 1980 had extremely high levels of serious crimes
(and has had high levels of crime from 1975 onward). Highland Park's crime
rate is more explicable. That city has high levels of unemployment, and
extremely high levels of female headed households. Miami is slightly less
explicable than Highland Park, but it too has low levels of human capital in
its population.

The five least crime ridden communities all share extremely low population
levels. This finding is related to the well-known positive correlation between

38 [f our goal in using crimes per capita is to reflect the number of crimes relative to the
population of potential victims, then as the measured populations of West Palm Beach and
Atlantic City fail to include their large tourist populations, then the measured crimes per
capita in those cities overstates the ratio of crimes to potential victims. If, instead, we are
interested in measuring the ratio of crimes to potential criminals (as we are in this study) as
long as the criminals come from among the long term residents (not the tourists), then the census
definition of population is appropriate.
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city-size and crime level.3 Most of these cities all have fairly high levels of
human capital and low levels of unemployment. The one exception to this
statement is Garfield, New Jersey, which manages to have the second lowest
crime rate with only 44.9% of its citizens being high school graduates.

Tables 1B-1E present means and standard deviations of our data sets. Table 1B
presents the means and standard deviations for 1985 cross-city data. The first
line of the data series shows that there are on average .067 serious crime per
capita per year in the U.S. More strikingly, the city with highest serious crime
rate has 62.9 times more serious crimes per capita than the city with the
lowest crime rate. For all of the other crime groupings, the minimum per
capita level is zero. The maximum crime rate for an individual crime is .2968

crimes per capita for larcenies.

Throughout this paper, when we examine individual crimes we will treat
these crimes as independent social phenomena, i.e. we will not examine the
whether higher murder rates relate higher levels of arson. Naturally, our
assumption of independence is incorrect in many cases and there is surely a
great deal of information to be gained by examining interactions across
crimes. When we examine serious crimes generally, we make the opposite
assumption and assume that criminal interactions work as strongly across
crimes as they do within crimes. Again, this extreme is also unrealistic and
we hope to create a more flexible mechanism for dealing with cross-crime
interactions in later work.

While the cross-city differences in crime rates are remafkable, there are also
dramatic cross-city differences in schooling, government expenditures and
almost every urban attribute. One response to the observed heterogeneity of
crime rates across cities is to belittle all of the cross city variance in attributes
and see them as “normal." Our reaction is to argue that this high degree of
variance suggests interactions in other variables besides crime and that the

39 This result may, in principle, also be related to cities with lower population levels having
more idiosyncratic features that we do not include in our basic regressions. That argument
suggests that it is more likely to see smaller cities at the tail of the distribution. Our later
works-suggests that empirically there is a positive link between crime rate variance and city
population, so that this explanation for five small cities being at the tail of the distribution is
unacceptable.
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previous models can be useful for examining social interactions in other
spheres as well (such as education?’). We will, in fact, attempt to use our
methodology briefly for non-criminal variables.

Table 1C gives cross city data for 1970. The mean level of reported crimes has
more than doubled between 1970 and 1985. The standard deviation of crime
rates across cities has risen by approximately 50%. The highest crime rate city
in 1970 has approximately 20 times more crimes per capita than the lowest
crime rate city in 1970. '

These numbers make it obvious that we need a model based index of
interactions. A naive empiricist might try to use some basic measure of
variance to measure the degree of interactions. But if we use standard
deviation divided by mean, to measure the degree of interaction we would
think that interactions had fallen, At the same time if we used the
comparison of the ratio of highest crime rate city to lowest crime rate city it
seems as if interactions have risen. It is impossible to choose the appropriate
measure of social interactions without a model that gives us a estimable
parameter that captures the degree of interaction.

Table 1D provides the cross-precinct data for New York City. The mean level
of crimes in New York is approximately the same as the mean level of crimes
for the nation. However, the definition of serious crimes differs between our
New York data and the cross-city data.#! For assaults, murders, rapes,
robberies and auto thefts, New York is well above the national average. For
larcenies and burglaries, New York is below the national average (primarily
because of the definitions of these crimes).

Cross precinct variation in New York is quite high. The safest precinct has
one tenth the serious crimes per capita of the most crime ridden precinct.
The ratio for larcenies between the most crime ridden precinct and the least
crime ridden precinct is over 300 to one. Of course, there is also a great deal of
variation across precincts in many underlying characteristics as well.

40There do in fact exist many models of local interactions outside of crime. Benabou (1994) is an
excellent example of interactions in the production of human capital.
41Fewer crimes are classified as serious in the New York data.
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Table 1E gives means and standard deviations for 1986 cross city data. This
data is remarkable in that there are substantial differences in national
averages between 1985 and 1986 -- auto thefts rose by 15% in a single year. The
differences at the city level are even more remarkable. These intertemporal
differences suggest further that there may be correlations across individual

decisions to engage in crime.42
Tables 2A and 2B-- Basic Results

Table 2A presents our basic results on the presence of social interactions. The
table is organized by crime beginning with the aggregate measure -- serious
crimes, which is the sum of the other crime variables. Within each crime
category we have evidence from the three data sources. The columns marked
1985 refer to the FBI cross-city data in 1985. The columns marked 1970 refer to
the same FBI cross-city data but for 1970. The columns marked NYC refer to
1993 data for New York City precincts. While the number of locations is
much smialler for NYC precincts (70 instead of 688), the average population of
the precincts is roughly equivalent to the average population of cities in the
cross-city sample. In Table 2A the sample size for 1985 cross-city data and
NYC data do not change across columns. The sample size for 1970 cross-city
data drops three times to a smaller sample of 541 cities because of data
availability (for murder, rape and larceny data).

The first column gives the average US. crime rate times one minus the
average crime rate for each row. This number is the variance of cross location
crime rates that would be expected if criminal decisions were independent
and if the expected proportion of criminals was constant across cities. This
number provides us with a benchmark predicted variance. 43

Since we are estimating the variance across cities from a finite sample of
cities, we are not surprised when the observed variance differs from the

42A high variance in aggregate crime levels would require correlations across cities as well as
across individuals.

43 More accurately, this number, p(1-p), is the predicted variance of cross city crime rates minus
U.S. average times the square root of city population.
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predicted variance. To gain confidence intervals around the predicted
variance, we will use the fact that a sum of squared, standardized normal
random variables follows a chi-squared distribution. Using this fact, and a
standard chi-squared distribution table, we know that the observed variance
of 70 independent units will lie between .61 and 1.49 times the true variance
(p{1-p)) 99% of the time. Higher group sizes yield smaller confidence
intervals. So an observed variance more than 1.5 times the predicted
variance allows us to reject the null hypothesis. Since the observed variance
is often over 1000 times the predicted variance and never less than twice the
predicted variance, we will refrain from further discussion of statistical
significance throughout the bulk of the remaining results.

The second column of Table 2A gives us the actual variance of crime rates
(times the square root of city population) across locations. The difference in
magnitude between the first and second columns is staggering for many of
the rows. The third column gives our estimate of f(x), which when A=0 is the
ratio of the second column to the first column. This ratio moves from a low
of 10 (for murders) to a high of 1313.8 for serious crimes generally. There are
several ratios of over 1000.

The high values of f(n) for serious crimes, relative to many other crimes, is
explained by two distinct forces. First, the bulk of serious crimes are larcenies
and f(r) values for larceny are extremely high. Second, the observed f(r) for
serious crimes is a function both of (1) the interactions within crimes and (2)
the interaction across individual crimes (i.e. the fact that more murders
decrease the costs of robbery). Since, the f(r) for serious crimes includes both
of these effects, while the f(x)'s for individual crimes includes only within
crime interactions, we would expect the f(r) for serious crimes generally to be
higher than a weighted average of the f(r)'s estimated for the individual
crimes. While, we are not seriously examining the interaction across crimes
here, this high level of f(r) suggests that there is a significant quantity of inter-
crime spillovers. :

The preceding analysis essentially assumes that there are no underlying
differences across communities in the propensity to engage in crimes. The
next two columns both allow heterogeneity in underlying community



characteristics. As discussed in the estimation framework section, as a
preliminary step before estimating A, we parametrize this heterogeneity by
assuming two extreme values of A which denotes the size of attribute
differences across cities. We use two potential values for A: .004 and .04. The
lower estimate of A corresponds to the amount of observed heterogeneity in

‘F qu -, If We assume that p* is the crime
1-p+ pe°
rate predicted by a city's observable attributes** and p is a constant across
cities, then we can estimate A. Our estimate of A found using this method,
which we feel is something of a reasonable lower bound, is .004. Our upper
bound, .04, was chosen (1) because it represents 10 times more urban
heterogeneity than we actually observe in the data and (2) it is significantly
larger than any of the estimated values of A that we find later in the paper.
We then reestimate f(x), allowing the variance of underlying propensities to
commit crimes to be that predicted with these different A values. The results
from these reestimations are in columns 5 and 6 of Table 2A.

observables. In the model, p*=

When we allow the variance of underlying propensities to commit crimes to
vary across cities to be non-zero, the results are basically unchanged for most
of the rows. Introducing this correction affects the results most for those
crimes that occur most often, because these corrections essentially deflate f(x)
by a number proportional to the average level of crime. Thus, the serious
crime figure is most affected because the raw level of serious crimes is much
higher than in the other variables. The other crime levels are much less
affected. Nevertheless, it is obvious that f(rn)'s are still wildly higher than
one. Furthermore, the basic levels of f(x) do not cﬁahge too much. The
estimated f(rn) for serious crimes moves from 1313.8 to 941.4 as we move A
from 0 to 0.04. The estimated f(x) for murder moves from 10 to 9.5 as we
move A from 0 to 0.04.

The rankings of crimes by social interactions seems to be relatively robust to
the value of A. For 1985, A=0, the ranking of crimes by social interaction is:
serious crimes, larceny, auto theft, burglary, robbery, assault, arson, rape and
murder. For 1985, A=0.04, the ranking of crimes by social interaction is:

44We used a standard logit estimation procedure.
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serious crimes, auto theft, larceny, robbery, burglary, assault, arson, rape and
murder. The correction for city-level attribute differences changes the order
of auto theft and larceny and robbery and burglary, but basically these lists are

very similar.

For 1970 data when A=0.04, the ranking of crimes by social interaction is:
serious crimes, auto theft, robbery, burglary, larceny, assault, rape and murder
(we have no arson numbers). Using 1970 numbers, only changed the order of
larceny. Figure 5 shows the correlation between f(rn) estimates for 1985 and
1970.

For New York city, when A=0.04, the ranking of crimes by social interaction is:
larceny, serious crimes, robbery, auto theft, assault, burglary, murder and rape.
Figure 6 shows the correlation between f(r) estimates from 1985 cross-city data
and from within New York data. The New York data has some difference in
its ranking of crimes by social interactions, but the magnitudes of the
estimated f(m)'s all remain the same (except for assault),4> and given the
severe differences between (1) New York and the rest of the country and (2)
the possibility for cross-district interactions (which would make comparison
between cross-district and cross-city data difficult), we are more surprised by
the similarities between the New York data and the cross-city data than we are
by any differences. In fact, we take the remarkable similarities between
estimates based on cross-city and estimates based on cross-precinct data as
evidence that many of the interactions that take place within a city take place
within the district, so that the appropriate interaction mechanisms must be
more local, and less aggregate, in character. k‘

The next column gives the A value necessary for us to believe that no
covariance across agents exists, which we denote as A*. These A* value can be
seen as an alternative measure of how strong social interactions are in a
particular crime. Higher A* values mean that it is less plausible that the
observed level of intercity variance can be rationalized by differences in the

45 The New York data shows substantially lower levels of interactions in assault than our
cross-city data. One explanation for this discrepancy is in the reporting or classification of
assaults. A second explanation is that there are cross-district interactions that show up in the
cross-city data but do not appear in the cross-district data.
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underlying propensity to commit crimes. Lower A* values make it more
likely that cross-city differences may just be differences in economic

conditions. These A* values seem to us quite high.

The final column in Table 2A gives the variance of city crime rates weighted
by population to the 5/6 not by population to the 1/2. The prediction of 3-
dimensional voter models (as discussed earlier) is that this number will be
close to the predicted cross-city variance, p(1-p). In fact, this variance is
usually far too low. The three dimensional voter models predict more cross-
city crime rate variance than we observe.46

Table 2B repeats the columns of Table 2A but for non-crime variables:
percentage female in a location and high school graduation rates in 1980 and
1970. We believed that percentage female was a good test of our
methodology. Individuals do not choose their sex and it is obvious that if the
model showed a high level of interdependence the model was not accurately
measuring the level of social interactions. In fact, using the uncorrected f(r)
measure, we do find a large number of interactions in percent female, but
once we allow even the slightest difference in communities ability to attract
women this interdependence disappears. The A* for women was .001, as
opposed to .14 for serious crimes. As soon as we even slightly correct for
hetefogeneity across cities, our f(n) measure yields the expected result: the
likelihood of being female in a population does not seem to rise as others
with the proportion female in one's neighborhood.

The variable, percentage of the population over age 25 that has graduated
from high school ("high school graduates"), seems to display more social
interactions than the percentage female variable. The level of interactions
among high school graduates in 1980 are roughly comparable to the
interactions among larceny perpetrators: f(r) is 1149.2, slightly higher than the
figure for robbery. However, the A* for high school graduates in 1980 is lower
than the estimated A*'s for all of our crime variables. Qur estimate of f(x) for
education substantially declined between 1970 and 1980 as the cross-city

46 It is possible that higher dimension models will match the observable variance, but as
mentioned earlier little is known about models of dimension greater than three.
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variance in high school graduates declined. Poorer cities (particularly the
South) acquired much more education over those years. We believe that
these numbers are merely suggestive of a method of producing alternative
evidence on education-based spillovers in location or production of
education.4”

Table 3 -- Repeat Offenders

One of the simpiifications in Table 2A is that we assume that each crime is
perpetrated by a different individual and reflects an agent's decision to enter a
life of crime (at least for that year). Agents frequently commit more than one
crime within a given year. These repeat crimes provide a degree of
correlation across crimes, because if an agent commits one crime, we expect
that he will commit more crimes. This effect would reveal itself as a social
interaction in Table 2A, that does not actually require any cross-individual
interactions. Of course, if we actually had data on criminals rather than
crimes this problem would be trivially handled, but since crime data is the
only data available it is necessary that we deflate our measures to allow for
the possibility that when someone is seen committing one crime it is more
likely that the individual will commit more crimes. »

More complicated and realistic models of multi-crime criminals are beyond
the scope of this paper, but we can make a simple correction assuming that
each criminal performs a fixed levels of crimes. Essentially this correction
means that we assume that p crimes in a city means that the city has p/R
criminals where R refers to the number of repeat offenses per criminal. This
correction uniformly lowers the estimated f(n)'s in our sample. The intuition
of this is simple; the adjustment roughly lowers p(1-p) by R (since the p? term
is negligible here), but it lowers the observed variance by RZ. As a result, the
observed variance and the predicted variance become much closer, and f(n)
decreases in magnitude.

471n education, social interactions could be occurring because as individuals become more
educated it becomes cheaper to acquire education (as in Benabou (1994)) or because educated
individuals like to live together. Disentangling the interactions that change the migration of
the educated and the interactions that determine educational must be left for later work.
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QOur estimates for the number of crimes per criminal come from various
sources. For the serious crimes, we took the value of 6.4 crimes per criminal
from a self-reported measure in the Rand Prison Inmate Survey. This
number, undoubtedly, is biased upwards since repeat criminals (we believe)
are more likely to be incarcerated.*® For serious crimes we also estimated
f(n)'s assuming 3 crimes per criminal and 10 crimes per criminal, to find a
range of possible estimates for f(r). For individual crimes, we used Blumstein
and Cohen's study of arrest records. This data may be underestimated since
only crimes where arrests were made are counted in the study; there may also
be overestimates since only arrested criminals are included in the study (and
arrested criminals are more likely to be repeat offenders).

The overall effect of these controls is to lower the estimated f(r)'s. Still the
smallest f(n) (with the most conservative A) is still 80.9, which indicates a
great deal of social interaction. These estimates are difficult to use given our
lack of knowledge about the structure of repeat offenders, and we take these
estimates as extreme lower bounds, but we do know that controlling for
repeat offenses fails to eliminate the huge variances across cities and that
most of our qualitative results are unchanged by controlling for crimes per
criminal. The ranking of crimes by the observed level of social interaction (at
any level of A) is: serious crimes (at 3 crimes per criminal), auto theft, assault,
robbery, burglary, and larceny. The primary changes in ranking are that
interactions in larcenies fall because of the high level of repeat offenders and
assaults show higher levels of social interaction.

Table 4 -- City Specific Characteristics

The previous tables have estimated f(n)'s using a postulated variance of
underlying city characteristics. Table 4 actually controls for a wide range of
urban characteristics and then looks at the variation left once the crime rates
have been orthogonalized with respect to the urban characteristics described
in the appendix.4? We included a variety of variables and we believe that the
endogeneity of many of these variables should mean that we have
overcorrected for city characteristics and that the variance in the fourth

48Although it is possible that the really repeat offenders avoid incarceration completely.
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column of Table 4 may be an underestimate of the true variance.>! Again, we

are trying to get an upper bound on the level of social interactions.

We again use our three basic data sets. We have included here also a row for
1986 cross-city data. For this data, we have included the 1985 crime rate of the
same city as an explanatory variable. Our view is that including this lagged
crime rate, which should eliminate the effect of any omitted urban
characteristics, is an extreme check on the presence of social interactions.
Since our model is about the choice to become a criminal, and since those
choices probably do not change from year to year, controlling for last year's
information about who chooses to become a criminal should leave us
observing underestimating the true cross-city variance to be explained by local

interactions. -

The fifth column of Table 4 gives the new estimates of f(x) when we
orthogonalize crime rates with reépect to these urban characteristics.
Unsurprisingly, the f(r) estimates are uniformly below those of Table 2 (when
A=0).51 The numbers for 1970 and 1985 data still reveal the same patterns as
Table 2. Figure 8 plots our estimated f(m)'s in this table against the f(r)
estimates from Table 2 when A=0. The crimes of murder (and to a lesser

degree rape) display almost no social interactions.

The 1986 data still reveals substantial social interactions for larceny and
serious crimes. Assault, auto theft, and burglary display f(r) estimates of over
30 for the 1986 data. Arson, murder, and rape show very little social
interactions at all once we control for the lagged crime rates. Our view is that
this data helps us conclude that for most of the common crimes, cross-city
differences in the propensity towards crime cannot be creating the large cross-
city variance in observed crime rates. However, arson, murder, and rape may

49We used a standard logit estimation for these predicted urban crime rates.

50Whenever crime influences a variable that we included as an explanatory variable, that
variable will display explanatory power and will lesson the variance of the residual crime
rate. However, the endogenous variable may not actually reflect an underlying difference in
urban propensities to crime, rather it reflects the outcome of criminal choices. Including the
endogenous variable causes the residual variance to be too low and the predicted variance to be
too high.

51n fact, one can prove that the f(r) estimates must fall us urban characteristics are included.
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in fact have little substantial social interactions once city level characteristics
have been adequately included in the regressions.>?

The last two columns of Table 4 go even further. Not only do we use
preliminary regressions, and work only with residuals from those
regressions, but we also estimate a A to account for the possibility of omitted
city characteristics (we estimate equation (4.10)). Qur identification of A
hinges on our model's prediction that (1) the variance of the gap between p*
and p is independent of population (so when this variance is weighted by the
square root of population, the variance rises with population) while (2) the
gap between p and p* when weighted by the square root of population should
by independent of population.>3

The estimates of A range from zero to .027. These estimates support the
premise that the variance is not ultimately accounted for by differences in
propensities across cities. The estimated f(m)'s are in the final column and
many of the qualitative results of earlier sections are essentially unchanged.
We also have standard errors bounding the f(n) estimates so we can again
note that most of these estimates are different from one. Again serious
crimes, burglary, larceny and auto theft are all crime rates displaying a large
amount of social interactions. Rape, murder and arson display much lower
levels of social interaction.

The ranking of crimes using this estimate of f(n) for 1985 data is now: serious
crimes, auto theft, larceny, burglary, assault, robbery, arson, rape and murder.
The ranking of crimes using our f(n) estimate for 1986 (holding 1985 crime
rates fixed) is: serious crimes, larceny, auto theft, burglary, assault, robbery,

52As discussed earlier, though, these differences are still statistically distinct from the case
where agents' decisions are independent.

53 A possible problem with this estimation occurs if A is itself a function of N. Following a
suggestion of Kevin Murphy, we checked for this possibility by using the A's associated with
the predicted values (i.e. we assumed p*= p and estimated A by looking at the gap between j 's
and the mean level of crime). We estimated separate A values within 10 population groupings
of cities and found that these values do not decline with population size within the first eight
groups. The two highest groups had somewhat lower A values. We then re-estimated our f(n)'s
for the smallest 80% of our cities (where we knew that A value would be constant across
populations if observables are distributed like unobservables) and found substantial f(r)
estimates for that subsample of the data.
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arson, rape and murder. Figure 7 shows the strong overall correlation
between these estimates of f(r) and the earlier estimates

Interpreting f(m)

In either model, f(xn) is a decreasing function of &, the number of fixed agents
in the community in our model. Of course, f(n) can simply be interpreted as
an index of social interaction. However, it is useful to gain some intuition
about what these results actually mean. One highly intuitive number to
discuss is 1/m, which in either model is the expected distance between two
fixed agents. This distance is the expected size of an unbroken line of
interconnected agents, or the expected size of a clique of interacting agents.
We find it useful to think about the clique sizes implied by the empirical
results. Viewed in this way, our empirical results can be seen as asking "how
big must social groupings be to justify the observed cross-city variance?”

Formally, under the second model f(r)=(2-r)/n or 1/n=(1+f(n))/2. Using this
formula, we can then translate our f(n) estimates into estimates about clique
size. In Table 2A, the values for f(r) tell us that the average clique size for
serious crimes in general ranges from 657 to 470 (for cross-city data).>* The
average clique size for robbery, burglary and assault are 192, 163 and 122
respectively for our largest value of A. The average clique size for murder is
estimated at five. From our most basic estimates, social interactions seem to
flow over large groups for lesser crimes, but for murder and rape social
interactions exist only within a unit the size of a modest family. In Table 3, if
we assume that there are 6.4 crimes per criminal and i=’0.04, the clique size
for serious crimes is 65. For auto theft in Table 3 the average clique size is still
over 102.5°

In Table 4, when we have controlled for city level characteristics and
estimated A, estimated clique sizes for larceny and auto theft are over 190.
Estimated clique sizes for robbery, assault and burglary are approximately 100.

>40f course, since the serious crimes estimate assumes perfect cross-crime interactions and the
other estimates assume no cross-crime interactions, the results are non-comparable.

35 We view our auto theft results as conditional support for the multiple equilibrium model of
automobile insurance advanced by Smith and Wright (1993).



Estimated clique size for arson is 17, rape is 8 and murder is 2. Using New
York city data (again controlling for precinct level characteristics but assuming
that A=0), estimated clique size for serious crimes generally is 162, larceny is
75, auto theft is 51, robbery is 27, burglary is 30, assault is 6, murder and rape
are one. Since the clique estimates for New York city data are approximately
one-half to one third of the clique estimates that allow interactions to flow
across districts, a rough estimate is that 40% of a clique lies within a single
district and 60% of relevant social interactions occur with individuals outside
the district.>¢

Finally, our estimates from the 1986 data, which are, we believe, extreme
lower bounds on'the power of social interactions, show that the minimum
clique size for assault, robbery and burglary lies between 25 and 35 actors.
Clique size for larceny auto thefts are higher (over 50, although measured
with a great deal more error). Our lower bound estimate of clique size for
murder is one and rape is two, suggesting that there may be no significant
social interactions in those crimes.

Geographic Clustering and the Age of Criminals

As mentioned previously, the observed social interactions could be
measuring both local influences on choices about crime and criminals’
moving into the same area. A full analysis of endogenous criminal
migration is beyond our data and the scope of this paper,57 but we believe that
the age of criminals provides us with a natural method of examining the
relative importance of migration and local influence. Adult criminals will
have had more time to migrate and are more likely to have chosen the
location they are inhabiting. Young agents (particularly those 18 and under)
have little ability to choose their location. If the observed social interactions
are the result of criminals' migrating, then we would expect the crimes
committed by older criminals to display higher rates of social interactions.>8

8|n fact, this calculation is rough and formal analysis requires a more fully specified model of
inter-district and intra-district social interactions.

57We believe that micro data enabling us to look at the criminal behavior of migrants would
enable us to separate these effects.

581f the migration effect worked primarily through non-criminals leaving high crime areas, we
would not expect to see these effects as strongly.
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Alternatively, if social influence is most important in the young (perhaps
because the young have less other information to contrast with peer
influence), the social influence model predicts that younger crimes display

more social interactions.

Figures 8 connects age with social interactions across the eight crimes we
observe. These Figures regress the f(n) estimates from Table 4 on the
percentage of individuals arrested for each crime who are 18 and under in
Figure 5.5 The correlation between social interaction and youthfulness is
strongly positive. While, we have only eight observations and other factors
could easily by driving this correlation, the results suggests that the
interactions we observe are more likely to be the result of local influence and
not the result of geographic clustering of criminals.

Table 5 -- The Level of Interactions and'City Characteristics

In the previous tables, we have assumed that f(r) is invariant across cities. In
fact, there are many reasons that we might believe the level of interactions
changes across cities. Urban characteristics drive the mean level of crime
rates, but they also may determine the extent to which agents interact and the
extent to which patterns of crime move across the city unit. In this table, we
extend the basic estimation used in equation (4.10). Both A and f(m) are
estimated in a cross-city regression. However, now we no longer estimate f(n)
as a constant but allow it to change across city characteristics.

In particular, we allow three city characteristics to influence the degree of
interactions: (1) percent nonwhite, (2) percent high school graduate and (3)
percent female headed household. The race variable was included because a
large, economically disadvantaged, minority may facilitate the social
interactions that can cause crime. Education and the presence of a nuclear
family may lessen the extent that neighbors provide valuable information
about crime. Education provides an alternative source of information about
the returns from criminal actions. Parents also may send messages that
interrupt the messages from one's neighbors. We assume that f(n) is a

59The results are unchanged if we look at the share of arrestees who are 24 and under.
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positive, linear function of urban characteristics (denoted X'f). Thus, we
estimate:

(p, = P,)*N, = B0 = B,)'(N, - Max{0,X; BDW(A. ;) +Max{0.X; B1p,(1 - p,)+4,(5.1)

where the X's are the city-level characteristics that determine the overall level
of interaction and again the p.'s represent the crime rates predicted in the

first stage regression.

Our basic regression for 1985 found that race basically failed to influence the
level of interactions except for murder and larceny, where bigger racial
minorities created lower levels of interactions.60 The level of education
lowered the degree of interaction for murder and robbery, but raised the
degree of interaction for larceny. The percent of female headed households
raised the levels of social interaction for murder, serious crimes generally,
burglary (at the 10% level) and larceny. The female-headed household
variable had the expected sign and suggests that parental influence provides
an alternative information source to peer effects. Perturbations of these basic
models did not change any results significantly; the basic estimates of A and
the average f(n) were robust to changes in the functional form and choice of
explanatory variables.

Since there is a wide degree of heterogeneity across samples and across time, it
is impossible to claim a victory for this methodology. It does seem true that a
decrease in two-parent households increases criminal interactions in 1985 for
larceny, auto theft and serious crimes. These results suggest that the presence
of parents may limit the social interactions that create waves of petty crime or
auto theft. However, this evidence is preliminary at best.

Tables 6A and 6B -- Multiple Equilibria Models

In the modeling section, we advanced the claimn that local interactive models
(of the sort we present) can better explain the data than a more traditional

600ur larceny numbers differ significantly in magnitude from our other figures. These results
seem to be correct and not the result of difficulty with our algorithm, but we are still somewhat
less accepting of their accuracy.
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multiple equilibria model such as Sah (1989) or Murphy, Shleifer and Vishny
(1993). In a sense this is unsurprising, since the general interactive models
have one extra degree of freedom and allow for results similar to those of the
more traditional multiple equilibria models as special cases. The ultimate
question for the utility of multiple equilibria models is whether they can
explain a significant portion of the unexplained cross-city variance in crime
rates. Tables 6a and 6b presents empirical evidence on this question.

Table 6A reestimates the variance of cross-city crime rates, but instead of
assuming that these crime rates come from a single distribution, this Table
assumes that the crime rates come from a mixture of normal distribution.
These normal distributions are assumed to have the same variance (except
for one row of the table) but they are allowed to have different means. This
formulation is meant to capture the idea that each city's level of crime can
come from one of several distributions. The goal is to see whether, once
we've allowed urban crime rates to come from two (or more distributions),
whether the remaining cross-city variance in crime rates is compatible with a
model! in which criminal decisions are independent across individuals.

Our methodology is based on the Dempster, Laird and Rubin (1977) EM
(Estimation and Maxiinization) algorithm. Basically we estimate the
distributions to maximize the likelihood function. Our primary finding is
that allowing for multiple means does lower the estimate of cross-city
variance, but not enough to eliminate the need for further explanations of
the high levels of variance. When we allow for two normal distributions, we
do find that the data can be split into two distributions, with 95.6% of the data
belonging to the low crime distribution and 4.4% of the data coming from the
high crime distribution. The mean crime rate for the low crime cities is .074
crimes per capita. The mean crime rate for the high crime distribution is .133
crimes per capita. The estimated variance for each of the two normals is 55.8
(rather than 96.9 for the one normal distribution).

In a way these results are supportive of a multiple equilibria model.
Allowing two equilibria eliminates more than 40% of the cross-city variance
to be explained. Unfortunately, the f(n) estimated from the remaining
variance is still over 750; there is still more than 750 times too much variance
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to be compatible with an independent decision model. When we allow even
more equilibria, the residual variance falls further but even with five distinct
distributions, the remaining variance is still over 350 times the variance
predicted by the independent model. With seven distributions, the
remaining variance is 175 times the variance of the independent model.

We also estimated the two equilibria model allowing variances (as well as
means) to differ across the two distributions being estimated. The results for
this estimation are also in Table 6B. Now the data gets grouped into one high
mean, high variance distribution and one low mean, low variance
distribution. However, even the vériance of the low mean, low variance,
distribution is incompatible with independent decision making.

Overall, we believe that allowing multiple equilibria is not an effective
method of explaining the high amount of cross-city variance in observed
crime rates. It is true that in the extreme we could eliminate all of the cross-
city variance by assuming a sufficiently large number of distributions that
urban crime rates are drawn from, but our data suggests that even a model
with five equilibria has a remaining variance 350 times the variance that we
would see in the case where decisions are independent. The intuition of the
multiple equilibria models, that we can explain high cross?city variance with
interactions, is surely right, but their actual structure seems incompatible
with the data.

Tables 7A and 7B -- Results on the Form of the Interaction

The previous results, and indeed the model, have been relatively vague
about the form of the interaction across individuals. This section finally
addresses possible forms of the positive interactions in crime. In general, we
will examine four possible forms of interaction: (1) arrest rates, (2) returns to
legal activities, (3) schooling and (4) parental stability. The theories behind all
of these effects are fairly straightforward. The arrest rate theory is Sah's
theory and it séys that if my neighbor engages in crime, it makes it harder for
the police to arrest me, so I will engage in more crime. The returns to legal
activities theory says that if my neighbor steals from businesses, then it makes
it harder for me to find a job in my neighborhood, so I will be more likely to
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become a criminal. The schooling theory says that criminals make it harder
to acquire education, because gangs make schools less productive, and with
less schooling I am more likely to become a criminal. The single-parent
family theory says that criminals are more likely to avoid family
responsibility and that children raised without parents are more likely to

become criminals.

If any of these four mechanisms lies behind the high variance of crime rates
across cities, then we would not expect to observe high crime rates once we
have controlled for those characteristics. However, as we showed in Table
Four, controlling for all urban characteristics still left a large amount of
unexplained urban crime. Still, one interpretation of our results is that the
measures of these variables are actual noisy measures of the true variables
and that if we had more accurate measures of the actual variable, the
unexplained variance would disappear. So, we will re-examine these
variables and when they actually are significantly related to observed crime
rates, we will ask how much measurement error there would have to be for
these mechanisms to actually explain the cross-city variance.

For serious crimes, and for the urban characteristics of (1) arrest rates, (2)
unemployment rates, (3) schooling and (4) female-headed households, we
have determined both the unconditional and conditional correlations
between these characteristics and serious crimes (for 1970, 1985 and NYC
precinct data). The conditional correlations are found by regressing both the
crime rates and the urban characteristics on a vector of characteristics
(population, population growth, four regional dummies and percent non-
white). '

The first potential interaction mechanism, arrest rates, is positively correlated
with crime across NYC precincts, which perhaps occurs because police
concentrate their resources more in high crime rate areas.®! Across cities in
1985 the correlation is -8% which means that arrest rates can explain less than

611n fact, if communities with higher crime rates hire more police officers and end up having
higher arrest rates (as a positive correlation between crime and arrest rates indicates), it means
that there is negative interaction term across individuals (which would eliminate cross-city
variance completely not exacerbate that variance).
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1% of the observed variation in crime rates. The strongest correlation
between arrest rates and crime rates is in 1970, but this correlation is only
-18% which still means that arrests are explaining less than 4% of crimes.
These results are supported by the partial correlations, which reduce the
explanatory power of the 1970 data. We must conclude that arrests play only a
marginal role in explaining cross-city crime variance.

We obtained not only arrest data, but also conviction data across cities and
again there is no correlation between the likelihood of being convicted and
rates of crime. The conviction data shows only a 5% correlation (for our 15
cities in this sample) between conviction rates and crime rates. While these
results are based on a small sample indeed, they do suggest that congestion in
the courts is also not a candidate mechanism for positive social interaction.

Schooling is also strongly correlated wi’th crime across cities. The correlation
of high school graduation rates with serious crime rates is -25% in 1970 and
-18% in 1986. Oddly across precincts in New York the correlation is positive.
When we look at correlations that condition on demographics (city
population, population growth and percent non-white) and regional
dummies the correlation between schooling and crime falls to -9% in 1970
and -5% in 1985. These weak correlations make us doubt that schooling is the
mechanism driving crime rates.

Unemployment rates are more correlated with crime rates. The range of
correlation is between 20% (across NYC districts) and 33% across cities in 1970
in the United States for unconditional correlations. For conditional
correlations, the 1985 correlation is 9% and the NYC precinct correlation is
negative. Only for the 1970 data do we see a conditional correlation remain
sizable at 20%.

Finally, the correlation between female headed households and serious
crimes is 59% in 1970, 42% in 1985 and- 22% across NYC precincts. The
corresponding conditional correlation coefficients are 33%, 32% and -10%
(across NYC precincts). While the conditional correlations are sizable and
there is no doubt that family structure is correlated with criminal behavior,
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the correlations are still far from explaining the bulk of the variance of crime

rates.

Since both single-headed households and unemployment display sizable
correlations, we will now ask how noisy our estimates of these variables
would have to be for these variables to actually be the mechanisms driving
criminal interactions. The noisiness could be that everything from keypunch
error, to transitory (irrelevant) changes in the economic characteristics, to the
fact that our variable is only a proxy for the correct variable. If a multiple
equilibria model held, it would mean that:

Pj=0+fZ;+v;, where Var(y, JN; )=p(1-p). (5.2)

Equation (5.2) means that once we have controlled for Z; (our true measure of
the social interaction mechanism) the remaining variance is on the order of
p(1-p) (where p is, as earlier, the population average crime rate) which would
be the variance if social interactions did not occur. Since Var(v; N )=p(1-p),
Var(v;) is on the order of 1/N;, which we know is small and which we will
ignore (as we did earlier) .

Wé observe Z;+§;, not Z;, where §; is some independent measurement error.62
For each of our measures of social interaction, we are interested in knowing
how close our measure is to the true aggregate interaction. Simple algebra,
and using that Var(v;)=0, tells us that:

Var(t)/Var(Z)= (1-R)/R2 (5.3)
where R? is the square of the correlation coefficient between Z; and P;.63

The conditional correlation between female headed households and crime
rates is 33% in 1985 (R2=.109). For this social variable to explain the cross-city
variance, the ratio of noise to signal, Var(§;)/Var(Z;), must be 8. For
unemployment in 1970, the correlation coefficient is 9% and the ratio must be

62 This methodology is similar to that used in Murphy and Topel (1990).
63In fact equation (5.3) is not in any way a new result but simply a convenient way of thinking
about the correlation coefficient.
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over 100. These two variables tell us that if either model of aggregate
interactions explains the bulk of crime rate variance, then our measures of
economic conditions or social problems must be extremely poorly correlated
with the relevant measures of these variables. However, this preliminary
evidence does suggest that if a simple mechanism exists it is much more
related to the social variable, female-headed households, than the more
straightforward labor market variable, unemployment.

There is a second requirement, beyond eliminating the large cross-city
variance, for a mechanism to be empirically palatable. This mechanism must
both cause and be caused by crime. In all of these interactive models, the
causality must be dual. While, in principle this interaction could be tested
using instrumental variables, we have so far been unable to find convincing
instruments with sufficient explanatory power for crime to test this
implication adequately. '

7. Conclusion

This paper has reexamined the extreme cross-city, and cross-precinct crime
variance and found that it is essentially incompatible with a model where
agents' decisions in a metropolis are independent. Our two models of social
interactions provide a framework for understanding the observed variance of
cross-city crime rates. More importantly, these models provide us with a
natural index of social interactions. This index comes from the presence of
"fixed" agents, or agents that do not themselves respond to their neighbor's
propensity towards crime. h

This model of fixed agents should not be taken literally. Instead, estimates of
the number of fixed agents should be taken as a measure of the degree of
interaction. Lesser or greater interaction could come from larger or smaller
social groups and the number of fixed agents in the models directly determine
the average size of a social group. More broadly, the amount of interaction
could come from the ease of communication across individuals. A fixed
agent can just be interpreted as an agent who does not see what his neighbor
is doing.



We applied this index of social interactions to criminal behavior in the
United States across cities and across precincts in New York. Even allowing
for a wide diversity in underlying characteristics across cities (even more than
is shown by observable characteristics), we found a large amount of social
interaction in criminal behavior. The cross-city variance is just too high to be
rationalized as the outcome of independent decisions to engage in crime --

there must be covariance across agents.

Our index showed that there is a wide range in the degree of interactions
across crimes, but that across data samples, the rough level of interactions
stayed constant for each crime. The estimates for average social group size
ranged from 1 to 5 for murder. Similarly low levels of social group size were
found for rape and arson. The average social group sizes for auto theft and
larceny were over 200 in most of our estimations. For robbery, assault and
burglary, estimated clique sizes was approximately 100.

Across crimes, we found that younger crimes have more social interactions.
Across cities, we found the higher levels of social interactions (for serious
crimes generally, for petty larceny and for auto theft) were found for cities
with more female headed households. While these results are highly
preliminary, we interpret them to mean that the average social interactions
among criminals are higher when there are not intact family units. The
presence of strong families interferes with the transmission of criminal

choices across individuals.

We looked for mechanisms through which these social interactions occurred
and found little conclusive evidence for any particular mechanism.
Undoubtedly the forms that social interactions can take are varied and may
include information, crowding of legal activities, and destruction of
prevailing social structures. The determination of the forms of these social
interactions must be left for future research. '
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Appendix: Variable Definitions

Serious crime

Murder

Rape

Robbery

Assault
Burglary
Larceny

Auto theft
Arson
Population, ;zll
samples

Regional dummies

Definition

The sum of Part 1 offenses defined under the FBI's
Uniform Cnime Reporting program. Part I offenses
include murder, rape, robbery, robbery, assault,
burglary, larceny, and auto theft. The NYC precinct
data exclude those Part ] crimes that are not felonies,
for example larcenies <$1000. Hence NYC data are
not fully comparable to cross city data. All NYC
precinct data are for 1993.

UCR definition: The willful and non-negligent killing
of one human being by another. Excludes
manslaughter by negligence and traffic fatalities.

The carnal knowledge of a female forcibly and against
her will. Excludes statutory rape.

The taking or attempt to take anything of value from the
care, custody, or control of a person by force or threat
of force. T

An unlawful attack by one person upon another for the
pupose of inflicting severe or aggravated bodily injury.

The untawful entry of a structure to commit a felony or
a theft.

The unlawful taking, carrying, leading, or riding away
of the property of another.

The theft or attempted theft of a motor vehicle.

Any willful or malicious burning or attempt to burn,
with or without attempt to defraud, a dwelling house,
public building, motor vehicle or aircraft, personal
property of another.

City population as defined by Bureau of the Census

Uses regions (North, South, Central, West) as defined
by Bureau of the Census

Source

FBI Uniform Crime
Reports; NYC Police
Dept.

FBI Uniform Crime
Reports; NY C Police
Dept.

FBI Uniform Crime

Reports; NY C Police
L

FBI Uniform Crime

Reports; NY C Police

Dept.

FBI Uniform Crime

Reports; NYC Police

Dept.

FBI Uniform Cnime

Reports; NYC Police
L

FBI Uniform Cnme

Reports; NYC Police

Dept.

FBI Uniform Crime

Reports; NYC Police
Lt

B! Uniform Crime
Reports

CPS; 1970 Census of
Pop; 1980 Census of
Pop;



Persons over age 25
with 12 or more
years school

Persons over age 25
with 4 or more years
college

Unemployment rate
Percent households
with female head

Percent persons
below poverty level

Percent owner
occupied housing
Property taxes per
capita :

Police per capita

Percent pop. non-
white

Definition

Civilian labor force unemployment rate. Standard
Labor Department definition

Female householder. No spouse present.

Owner occupied housing units / occupied housing units

Total property taxes collected during fiscal year
population =

Full time city law enforcement officers / population

Source
Census of Population

Census of Population

Bureau of Labor
Statistics

Bureau of the Census
Bureau of the Census

Bureau of the Census

Bureau of the Census

FBI

Bureau of the Census
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Figure 4: Serious Crimes Per Capita, 1993 New York Data

NYC Precinct Crime Rates, 1993
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Figure 5: f(r) Estimates from Cross City Data, 1985
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f(x) estimated from cross-city 1970 data,
lambda=0.04

y = 1.047x + 67.886, R-squared: .844
(.184)

The data for this figure come from Table 2A.
Crime data ultimately comes from the FBI Uniform Crime Reports.



Figure 6: f(n) Estimates from NYC and 1985 Cross-City Data
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f(rr) estimated from cross-city 1985 data, lambda=.04

y = .483x + 29.354, R-squared: .62
(.189)

f(n) estimates are from Table 2A.

Crime data ultimately comes from NYC precint data and the
FBI uniform crime reports.



f(r) estimated
from 1985 cross-
city data,
lambdais
estimated,

from Table 4.

Figure 7: f(n) Estimates, when lambda is estimated

and when lambda is fixed at 0.04.

800

i A

700
600

500 Larceny

O
400

300 Burglary
200 Assault D

O Robbery
100

Murder, Rape, Arson

Serious Crimes 7]

O Auto Theft

v . g

300

—T—r— —
0 100 200 400- 500

600

T

800

1 T v
700 900 1000

f(n) estimatéd from cross-city 1985 data,

lambda=.04, from Table 2A.
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The data for this figure come from Table 2A and Table 4 respectively.
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f(m) estimated
from U.S.
1985 data,
lambda is
estimated.

Figure 8: f(nr) Estimates and the Age of Criminals
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Table 1A: Five Highest and Five Lowest Crime Cities In the U.S.

Serious | Serious | % Fem.
Crimes {Crimes |Heads % HS
Pop. Per Cap.|Per Cap.|House. |Unemp. | Grads.
City 1986 1985 1970 1980 1986 1980
Atlantic City, NJ 35,980 384 .118 .407 .089 .481
West Palm Beach, FL | 68,570 .181 .047 219 .052 .657
H Portland, OR 387,870 |.169 061 178 088 7758 “
Highland Park, MI 25,620 .165 .098 453 .163 .566
Miami, FL 373,940 ].151 071 .237 .083 .500
| Shelton, CT 34840 [.019 .014 .090 .039 .736
Melrose, MA 28,790 .018 .016 .134 .028 832
" [Marlborough, MA 31,180 |.015 020 148 024 756
Garfield, NJ 26,350 012 .008 .160 .070 .449
Ridgewood Village, NJ | 24,850 .008 |-010 .100 .025 .908

Notes: Sample defined as U.S. cities > 25,000 people. Atlantic City and West Palm Beach have high crime rates in part
because the city population (the denominator) does not capture the fact that so many people visit these cities each year.



DATA
SERIES

Table 1B: Means and Standard Deviations, Cross City Data 1985

Standard I
Deviation

N Mean Min Max

Serious crimes per capita 658 |.0673 .0061 3838 0292
Murders per capita 658 |7.597E-5 0 7.795E-4 8.472E-5
Rapes per capita 658 |4.433E-4 0 .0024 3.507E-4
| Robberies per capita 658 [.0022 0 .0195 .0026
Assaults per capita 658 |.0034 0 0235 .0032
Burglaries per capita 658 1.0156 0 .0573 .0080
Larcenies per capita 658 1.0390 0 .2968 .0187 4l
Auto thefts per capita 658 1.0053 0 .0391 .0048
Arsons per capita 628 |5.248E4 0 .0053 5.105E4
1986 population 658 | 128598 24610 7262750 362340
lLPop. growth rate 1970-1986 658 |13.5% -31.5% 388% 36.6%
North (regional dummy) 658 |[.2067 0 1 4052
Fléouth (regional dummy) 658 |[.2796 0 1 4492
Central (regional dummy) 658 ].2690 0 1 4438
Persons over age 25 with 12 or 658 [68.4% 353% 96.4% 11.3%
more years school, 1980
| Persons over age 25 with 4 or more [658 [17.9% 4.7% 68.7% 9.5%
years college, 1980

Unemployment rate, 1986 658 |7.0% 0.7% 21.9% 3.1%
Percent households with female 658 |17.4% 6.2% 453% 6.0%
head, 1980

Percent persons below poverty 658 1123% 1.4% 36.4% 6.0%
level, 1979

Percent owner occupied housing 658 |57.3% 13.4% 92.0% 12.4%
Property taxes per capita, 1985 658 |170.29 1.48 1823.01 180.16
Police per capita, 1985 658 1.0018 .0008 .0113 .0007
Percent pop. non-white, 1980 658 |18.5% 0.6% 93.5% 16.7%

Note: Mcans and standard deviations arc intentionally show

figures shown in tables 2-7.

n as unweighted and hence are not directly comparable to



Table 1C: Means and Standard Deviations,

Cross Citx Data 1970

DATA - Standard
SERIES N Mean Min Max Deviation
Serious crimes per capita 617 1.0322 .0053 1286 .0167
|[Murders ‘per capita 617 |6.789E-5 0 4869E4 7.500E-5

" Rapes per capita 617 |1.779E-4 0 .0015 1.692E-4
Robberies per capita 617 }{.0014 1.995E-5 .0165 .0019
Assaults per capita 617 1.0016 2.712E-5 0128 .0016
Burglaries per capita 617 1.0123 .0012 .0438 .0070
Larcenies per capita 617 .0116 .0004 .0431 .0058

Auto thefts per capita 617 |.0052 .0003 .0473 .0046

1970 population 617 124895 25131 7894851 391567

Pop. growth rate 1970 617 ]35.0% -33.0% 2027% 121%

North (regional dummy) 617 1.2091 0 1 .4070

South (regional dummy) 617 |.2804 0 1 .4496
éentral (regional dummy) 617 |.2626 0 1 .4404
Persons over age 25 with 12 or 617 |56.4% 25.0% 90.0% 12.0%

more years school, 1970

Persons over age 25 with 4 or more 617 [12.1% 3.0% 46.0% 71.3%

years college, 1970

Unemployment rate, 1970 617 |4.1% 1.0% 12.0% 1.6%
“Percent households with female 617 [11.6% 4.0% 27.0% 4.0%

head, 1970

Percent persons below poverty 617 |11.9% 2.1% 45.4% 6.3%

level, 1970

Percent owner occupied housing 617 |588% 14.0% 93.0% 12.8%
Property taxes per capita, 1970 617 [69.71 4.00 1178.00 79.42 ji
Police per capita, 1970 617 ].0016 .0006 .0067 .0006 II
Percent pop. non-white, 1970 617 [11.6% 0.1% 73.9% 13.6% “

Note: Means and standard deviations are intentionally shown as unwei g

figures shown in tables 2-7.

hted and hence are not directly comparable to



Table 1D: Means and Standard Deviations, New York City Data

DATA Standard
SERIES N Mean Min Max Deviation
Serious crimes per capita 70 .0605 .0216 .2059 .0236
Murders per capita 70 .0003 0 .0011 .0003
Rapes per capita 70 .0004 2.897E-5 .0012 .0003
Robberies per capita 70 .0129 .0009 .0326 .0068
Assaults per capita 70 .0064 .0010 .0201 .0044
Burglaries per capita 70 .0139 .0049 .0278 .0045
Larcenies per capita 70 0119 .0031 1175 .0153
Auto thefts per capita 70 .0145 .0040 .0371 .0076 J
i

1990 population 70 100316 32978 221763 46046 ]I
Persons over age 25 with 12 or 70  ]65.7% 363% 95.2% 14.6%
more years school, 1990
Persons over age 25 with 4 or more |70 [218% |3.4% 66.1% 16.9%
years college, 1990
Unemployment rate, 1990 70 10.6% 3.5% 23.3% 5.0%
Percent households with female 70 |31.5% 6.8% 63.4% 15.5%
head, 1990
Percent persons below poverty 70 21.7% 3.8% 53.2% 13.7%
level, 1990
Percent pop. non-white, 1990 70 59.6% 9.7% 99.4% 31.1%

Note: Means and standard deviations are intentionally shown as unweighted and hence are not directly comparable to

figures shown in tables 2-7.



Table 1E: Means and Standard Deviations, Cross City Data, 1986

DATA Standard
SERIES N Mean Min Max Deviation
Serious crimes per capita 631 |.0728 .0088 3854 .0330
Murders per capita 631 |8.627E-5 0 8.575E-4 9.348E-5
Rapes per capita 631 |[.0005 0 .0031 .0004
Robberies per capita 631 [.0026 0 0225 .0029
Assaults per capita &1 [.0042 0 0308 0039 “
Burglaries per capita 631 ].0169 .0017 .0623 .0086
Larcenies per capita 631 |.0424 10061 2978 .0215
Auto thefts per capita 631 |.0061 .0006 .0408 .0055
“jrsons per capita 578 [.0006 0 .0048 .0005

Note: Means and standard deviations are intentionally shown as unweig

figures shown in tables 2-7.

hted and hence are not éirrectly comparable to



Table

2A: Variance and Decomposition

FDATA Variance | f(n) f(r) f(n) A Variance"
SERIES P(1-P) 1) A=0 A=.004 A=.04 f(r)=1 (2)
Serious 0.073 95.91 1313.8 1276.7 941.1 0.14 042
Crimes
| 1985, N=658
0.042 43.91 10455 10247 837.1 0.20 017
1970, N=617
0.053 30.48 575.1 553.9 363.2 0.11 021
NYC!, N=70 .
Murder 0.0001 0.001 10.0 99 9.5 0.70 0
1985, N=658
0.0001 0.001 10.0 10.0 9.5 0.72 0
1970, N=617
0.0003 0.006 20.0 19.9 188 0.63 0
NYC, N=70
Rape 0.0006 0.016 267 264 23.6 0.33 0
1985, N=658
0.0003 0.005 167 165 15.2 0.42 0
1970, N=617
0.0004 0.007 175 17.3 15.9 0.41 0
NYC, N=70
Robbery 0.0047 192 408.5 406.1 384.4 0.67 .0003
1985, N=658
0.0037 1.61 435.1 4333 416.7 0.94 10004
1970, N=617
0.011 3.75 3409 3365 296.9 031 10020
NYC, N=70 -
Assault 0.0048 129 26838 2663 244.1 0.43 0005
“ 1985, N=658
» 0.0025 0.337 134.8 133.6 1223 0.43 10001
1970, N=617
0.0054 1.52 2815 2793 259.9 0.52 10008
NYC, N=70
| Burglary 0.019 8.057 4241 4143 326.6 0.17 003
1985, N=658
0.016 7.25 453.1 4452 373.4 0.23 003
1970, N=617
0.013 1.46 112.3 107.1 60.2 0.09 008
NYC, N=70
Larceny 0.04 29.75 743.8 7233 538.9 0.14 015
1985, N=658
0.012 3.53 294.2 288.2 234.3 0.20 001
1970, N=617
0.01 11.23 1123.0 1119.0 1083.3 1.12 U8
INYC2, N=70




Table 2A: Variance and Decomposition, Continued

Data [Sample [f(n) f(n) f(n) A Sample
Series PQ1-P) Variance |)—=g A=.004 A=.04 f(m)=1 Variance
M (2)

Auto theft 0.008 521 6513 6472 610.3 0.63
1985, N=658

0.008 3.63 4538 4498 4139 045
1970, N=617

0.015 5.35 356.7 350.7 296.7 0.24 1003
NYC, N=70
Arson 0.00074 0.033 44.6 442 40.8 0.46 .0001
1985, N=628 | 1 L i
Table 2B: Variance and Decomposition, Other Variables

Data Sample | f(n) f(n) f(n) A* Sample

Series P(1-P) Variance |2=0 2=.004 A=.04 f()=1 Variance
(1) : (2)

# of Females 0.25 24.24 97.0 -28.0 -1163.6 0.00 .011

1970

N=617

High School 0.23 534 23217 2205.5 1149.2 0.08 26|

Graduates

1980, N=658

High School 0.22 1472.2 6691.8 6587.7 5642.4 0.24 .68

Graduates

1970, N=617

The first column gives number of crimes per capita in each sample minus that number per
capita squared. The second and seventh columns gives the variance of normalized crime
levels (described formally below) across cities or precincts.

P=population probability of crime, N;=population size,

Second Column:

# cities

2{— 2

Sample variance (1)= 2 [ (crime city; - P, .;*N;) * Ni] / # of cities)
i=1

Seventh Column:

# cities 5/6
2
Sample variance (2)= 2 [ (crime city; - P *N.)* ’\/ Ni] / # of cities
i=1
The third through fifth columns give the amount of local interaction (denoted f(r)) implied

by these means and variances for given A levels, where A is described in the text. The sixth
column gives the level of & for which there is no local interaction.



Table 3: Variance and Decomposition Controlling For
Crimes Per Criminal

DATA
SERIES

P@1-P)

Variance

(1)

f(m)
A=0

f(m)
A=.004

f(rm)
A=.04

Ax*
f(m)=1

Variance
(2)

Serious
Crimes
1985, N=658

Crime per=3

0.026

10.7

4115

398.2

278.1

0.12

.005 ﬂ

1985, N=658
Crime
per=6.4

0.012

23

191.7

185.5

130.0

0.12

.001

1985, N=658
Crime
per=10

0.0079

0.96

121.5

117.5

80.9

0.12

.0004

Robbery
1985, N=658
Crime
per=3.3

0.0014

0.16

114.3

113.6

107.1

0.63

.00005

Assault
1985, N=658
Crime
per=1.7

0.0028

0.0035

0.45

160.7

159.3

146.3

0.44

.0002

Burglary
1985, N=658
Crime
per=5.4

0.28

80.0

782} .

62.0

0.18

.00014

Larceny

1985, N=658

Crime
er=10.44

0.004

0.27

67.5

65.4

46.9

0.13

.0001

Auto Theft
1985, N=658
Crime
per=2.8

0.003

0.66

220.0

218.5

204.6

0.57

.0002

Crimes-per-criminal data is derived from two sources. For all serious crimes, the value of 6.4
is derived from a self-reported measure described in the Rand Prison Inmate Survey

(Chaiken, 1978). For individual crimes, data on crimes-per-criminal stems from Blumstein
and Cohen's (1979) study of arrest records.



Table 4: Variance and Decomposition Controlling For
City Specific Characteristics

Data Sample Variance ()

Series P(1-P) Variance (p-pWN A =0 i £(7)

Serious 0.073 95.91 49.6 932.3 .013 754.6

crimes (111.4) (.003) (118.2)

1985, N=658

1970 0.042 4391 13.7 5225 .004 4751

N=617 (41.3) (.001) (42.5)

NYC 0.053 30.48 15.4 324 T

N=70 (109)

1986 0.078 117 11.93 159.7 .0003 155.0

N=631 (53.7) (.0015) (58.5)

Murder 0.0001 .001 .0003 5.6 012 449

1985, N=658 (4) (.002) (.46)

ﬁ970 0.0001 .001 0.0002 40 02 4.0

N=617 (0.3) (0.3)

NYC 0.0003 .006 0.0005 1.34 T

N=70 (.24)

1986 0.00015 .0017 0.0002 2.62 .0005 2.58

]N=631 (.19) (.0009) (21l

ﬁl Rape 0.0006 016 0.0006 17.1 011 14.8

1985, N=658 (1.0) (.003) (1.2)

1970 0.0003 .005 0.0021 154 .005 14.6

N=617 (1.8) (.006) (2.0)

NYC 0.0004 .007 0.0008 1.16 T

N=70 (.33)

1986 0.0006 017 0.0024 4.8 .002 44

N=631 (0.4) (.001) (0.4)

Robbery 0.0047 1.92 0.28 155.0 02 155.0

1985, N=658 (13.2) (13.2)

1970 0.0037 1.61 153 111.0 02 111.0

N=617 (12.5) (12.5)

NYC 0.011 3.75 713 53.6 1

N=70 (13.5)

1986 0.005 2.00 141 522 02 52.2

N=631 (7.8) (7.8)

Assault 0.0048 1.29 67 2446 014 224.0

1985, N=658 (17.0) (-004) (18.0)

1970 0.0025 337 .0001 1154 .002 1131

N=617 (10.1) (.003) (10.6)

NYC 0.0054 1.52 0.112 13.4 L

N=70 (2.7)

1986 0.0056 1.66 0.286 574 0?2 58.3

N=631 (11.1) (12.1)




Table 4: Variance and Decomposition Controlling For
City Specific Characteristics, continued

Sample Variance f(7)
P@1-P) Variance (p- ﬁ)m A =0 i ()
Burglary 0.019 8.057 435 341.0 027 236
1985, N=658 (28.1) (.003) (30)
1970 0.016 7.25 3.03 297.6 .009 257
N=617 (25.1) (.002) (206)
NYC 0.013 1.46 83 61.1 !
N=70 ' (11.4)
1986 0.02 9.61 1.02 69.2 0011 639
N=631 (5.7) (.0007) (6.5)
Larceny 0.04 29.75 18.23 590 024 441
1985, N=658 (61) - (.005) (67)
1970 0.012 3.53 2.19 196.8 .005 186.4
N=617 17.7) (.002) (18.2)
NYC 0.01] . 11.23 34 150.0 L
N=70 4 (39.2)
1986 0.042 38.05 7.83 1465 .0005 1433
N=631 (89.1) (.0065) (100.5)
Auto Theft 0.008 5.21 1.82 509.7 .024 382.2
1985, N=658 , (39.5) (.004) (42.7)
11970 0.008 3.63 1.19 340.3 02 340.3
N=617 (31.1) (31.1)
NYC 0.015 5.35 1.501 . 102.1 !
N=70 (17.7)
1986 0.009 5.84 72 122.7 001} - 118.0
N=631 (9.2) (-0009) (10.2)
Arson 0.00074 .034 0.017 331 02 33.1
1985, N=628 . » (3.6) (3.6)
1986 0.00077 .035 0.006 11.7 .0001} - 11.7
N=578 (0.7) (.0009) (.8)

The first and second columns are the same as those in Table 2. The third column represents
the variance adjusted for observable city tendencies towards crime:

# cities

2(" 2
Variance= 2 [ (crime city; - PE*N;)* Ni] / # of cities (second column)
i=1

where PE;=predicted (based on OLS regressions controlling for current population, past
population growth, regional dummies, education rates, unemployment rates, feamle
headed households rates, povery levels, owner occupied housing rates, property taxes, police
per capita, and percent non-white and for 1986, 1985 crime rates). The fourth column is the
f(n) implied using that variance. The fifth and sixth columns are the estimated levels of X
and f(r).

1. Estimation of A for the New York City data sample is impossible because there is

insufficient cross-precinct population variance (the precincts were chosen to be of the same
s1ze).




Table 5: Variance and Decomposition,

Allowing f(n(z)) to Vary with City Characteristics

DATA Average Determinants of f(x)
SERIES A f(r) Percent Percent Percent R2
Intercept  nonwhite HS Grad Female HH

Serious .010 895 -1723 216 1010 9311 .09
Crimes (.003) (1192) (1048) (1291) (3251)
1985, N=658

.004 488 270 172 -133 1814 12
1970, N=617 |(.001) (366) (368) (450) (1583)
NYC, N=70 |.11 182 -3843 -1961 7673 -3183 17

(3498) (1752) (4272) (4079)

Murder 011 4.1 14.6 -8.2 -17.4 17.0 21
1985, N=658 | (.002) (4.9) (3.2) (6.0) (10.9)
Rape 012 14.7 18.9 -53 -6.3 7.5 20
1985, N=658 |(.003) (11.6) (8.7) (13.5) (27.2)
Robbery 02 176 563 -9.3 -385 -626 13
1985, N=658 (160) (106) (182) (344)
Assault 012 214 408 132 -290 -186 .16
1985, N=658 | (.004) (186) (162) (215) (479)
Burglary 024 267 -78 223 35 1283 17
1985, N=658 | (.004) (297) (256) (329) (797)
Larceny 030 95 -60,000 -12,000 36,000 138,000 .36
1985, N=658 | (.004) (10,000) (3,000) (7,000) (19,000)
Auto theft .023 361 399 151 -181 199 19
1985, N=658 | (.004) (442) (203) (508) (969)
Arson 02 36 23 -2 26 -22 .02
1985, N=658 (39 (26) (45) (97)

The averages were found by averaging the predicted values of f(r) over cities, weighting by

city population. The dependence of f(r) on city characteristics assumed a linear form where

f(r) is equal to X'B for X being a vector that includes a constant (to estimate the intercept)
and the city features. f(n) is constrained to be >0.

1. Estimating A is impossible for New York because of insufficient cross-precinct

population variation.




Table 6A: Reduction In Variance Implied By Fitting

Crime Rates to a Mutiple Equilibria Model
# o2 Ma ip M id Mo g He
means
1 959  |.0797
1.0
2 558  |.074 |.133
956 |.044
3 351|061  |.087 |.136
703 |.25¢  |.044
1 34.1 055  |.066 |.08  |.136
224|513 |.218 |04
5 285  [.054  |.067 |.088 [133  |216
348|391 |213 |04 |04
6 184 [.052 |071 [087 |11 14 41
450 |.30 16 05 03 - |.0015
7 143 |.051 |072 |08 |11 13 16 41
460 .29 15 06 03 01 0015

Notes: N=658 Data used are serious crimes in 1985 divided by the square root of
population. Uses EM algorithm (Dempster, Laird, Rubin, 1977) to separate the data into 2-7
normals with 2-7 means, but same variance. Mixing probabilities (i.e. the probability of
city; being in a given equilibrium) are shown in italics.

Table 6B: Estimation of Two Separate Normals
(Two Means, Two Variances)

# G2 G2 n n

me a b a b

ans

2 2421  |194 064 .096
78 22




Table 7A: Raw Correlations Between Crime Rates and
Sources of Social Interaction

Potential

%
HS Female | Convic-

Arrest |Grad. |Unemp.|Heads |tion

Rate Rate Rate House | Rate
Serious not
Crime Rate -.08 -.19 .26 42 available
1985
Serious
Crime Rate -.18 -.23 .33 .59 .05
1970
Serious
Crime Rate not
NYC Precincts .25 .03 .20 .22 available
1993

Notes: N=659 for 1985 cross city data. N=617 for 1970 data. N=70 for NYC precinct data. N=15 for conviction rate
correlation. Variable definitions and sources are in appendix. Each crime variable is correlated with corresponding

interaction variable (e.g. cross-city crime rate 1970 is correlated with 1970 arrest rate, NYC crime rate correlated with
NYC arrest rate, etc.)

Table 7B: Partial Correlations Between Crime Rates and Potential
Sources of Social Interaction-- After Controlling For Covariates

%
HS Female

Arrest | Grad. |Unemp.|Heads

Rate Rate Rate House
Serious
Crime Rate -.05 -.05 .09 .33
1985
Serious
Crime Rate -.11 -.05 .20 32
1970
Serious
Crime Rate .03 .32 -.12 -.10
NYC Precincts
1993

Notes: Uses the residuals from OLS re

gressions on population, population growth rate, 4 regional dummies, and percent
non-white.



