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In models with irreversible investment, increasing uncertainty about prices has been shown
to increase the required rate of return (hurdle rate) and delay investment (e.g., Pindyck, 1988),
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"The certainty of what each individual ought
to pay ig, in taxation, a matter of so great
importance, that a very considerable degree of
ineguality it appears ... is not near so great
an evil as a very small degree of
uncertainty.®

- Adam Smith, The Wealth of Nations

I. Introduction

It is often said that there is nothing certain in 1life
except death and taxes. While death is undoubtedly certain,
there is, in fact, considerable uncertainty with respect to
taxes. Tax policy provides a key source of uncertainty about the
cost of capjtal to U.S. firms, for example. The inﬁestment tax
credit (ITC) was first introduced in 1962, and subsequently, has
been changed on numerous occasions.l fThat the random ITC dice
are s8till being tossed is evidenced by recent events in
Washington D.C. President Bush advocated a modified ITC, known
as the "investment tax allowance" in 1992, and President Clinton
proposed an jincremental ITC in early 1993, but neither of these
measures was enacted.

Adam Smith thought that uncertainty in taxation was so
injurious that a great deal of tax inequality would be

Justifiable if it was associated with reduced uncertainty in tax

1 cummins, Hassett and Hubbard (1994) provide a thorough review
of post-war tax changes, Since 1962, the mean duration of a
typical state in which a specific ITC is in effect is 3.67 years.
The mean duration of the "no-ITC" state is 3.00 years.



levies. The view that uncertainty is harmful is echoed by
findings that randomness in output prices retards investment
(Pindyck (1988)). Smith’s views on uncertainty are probably not
uncommon. Those views, combined with Pindyck’s findings, suggest
that policy uncertainty will discourage investment. The purpose
of this paper is te consider tax policy uncertainty explicitly
and evaluate whether that is indeed the case.2 Specifically,
does an increase in uncertainty discourage investment?
Uncertainty has typically been introduced in previous work
by assuming that some parameter follows a continuous time randonm
walk (Brownian Motion or Geometric Brownian Motion). When prices
follow a random walk, one’s rational-expectations forecast for
the price at any time in the future is today’s price (perhaps
adjusted for some trend). Tax parameters, unlike most prices,
tend to remain constant for a few years, and then jump to new
values. The expected value of tomorrow’s effective tax rate is
not equal to today’s value, What makes the investment decision
especially intriquing under these conditions is the possibility
that the firm might invest today, only to see an ITC introduced,
or might delay investment today, only to see an existing ITC
repealed. Armed with the knowledge of the expected frequency

with which tax policy changes, firms will delay or speed up

2We focus in this paper on a wmodel with irreversible investment,
as these models generally provide the bkiggest negative effects of
uncertainty on investment. In a companieon paper, we show that
tax policy uncertainty in a model with convex adjustment costs
(e.g. that of Abel (1983)), has similar effects to those shown
here,



investment depending on their perceptions of the probability of
tax changes occurring. Below, we show that this behavior is
crucial to understanding the effects of uncertain tax policy. To
summarize, we find the following. 1In the traditional model of
random tax policy, increasing uncertainty slows down investment.
Thie follows naturally and directly from previous work (e.qg.
Pindyck (1988)). However, when tax policy is modeled as a jump
process, we find that increasing uncertainty has the opposite
effect.

For specificity in this paper, we will consider random
pelicy toward an investment tax credit for new capital; the
effect of tax policy is to alter the marginal price of capital.
We begin in the next section with some background on previous
work on tax policy uncertainty. We turn in the following section
to modeling policy uncertainty as a continuocus time random walk
in logs. For this model, increasing uncertainty takes the form
of increases in the instantaneous variance of the capital price
process. The results from this section provide a benchmark for
the following section. In Section IV we turn to the main
contribution of this paper: discontinuous policy changes. Here,
tax parameters periocdically "jump" between fixed values. In this
model, there are a couple of ways to think about uncertainty and

we consider each in turn. Finally, we conclude in Section V.



II. PBackground

To date, there has been little work addressing the issue of
investment behavior and tax policy uncertainty. That tax policy
is uncertain is not a new concept; indeed, the notion that
investment tax credits may randomly switch on and off was a key
argument in Lucas (1976). More recently, Auerbach and Hines
(1988) attack this same problem in a discrete time model in which
there is a probability each year that tax policy (investﬁent tax
credit and depreciation allowances) will change. To obtain a
tractable solution, they must make linear approximations around
steady-state values of the capital stock. This turns out to be a
critical assumption as the use of a first order approximation
around the steady state means that the information in the second
moment of the distribution of tax policies is eliminated. Thus
mean preserving spreads of the distribution of the random tax
variable will have no effect on the measures of effective tax
rates that they construct.

Bizer and Judd (1989) develop and solve numerically a
general equilibrium model that includes random taxation. In this
closed-economy model, investment equals saving and saving follows
from utility maximization. Thus the results they derive, that
fluctuations in output attributable to random taxation lower
welfare, are intricately related to the curvature of the utility
function. In this paper, we follow Pindyck (1988) and Abel
(1983) and focus on the investment decision in isolation. This

allows us to adopt a more complicated investment model that
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includes irreversibility and, at the same time, solve explicitly
for the effects of uncertainty. As it turns out, this last step
helps motivate the intuition for our results considerably.

Before turning to the model with Jjump processes in
investment costs, we provide a brief discussion of results from a
model in which the price of capital follows Geometric Brownian
Motion. 1In the subsequent section, we will model changes in the
price of capital as following a Poisson Process in which the
expected duration of a tax regime is known but in which the
actual duration is uncertain. We take this approach given the

historical experience documented in the introduction.

III. Investment with Uncertainty Modeled as
Geometric Brownian Motion

IXII. A. The Model

We begin with a simple model in which firms choose when to
undertake a project. The amount of capital employed in the
project (K) and the time at which the project is initiated are at
the discretion of the investor. The capital can be used to
produce F(K) units of output forever which can be sold at price'
P, The production function has the standard properties (F’ > 0,
F* < 0)3. The price P, is an after tax return and is stochastic.

We assume it follows Geometric Brownian Motion:

3  Second order conditions will place additional restrictions on
the production function. In particular the elasticity of
substitution must be less than 1. See Dixit (1992).
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where dz’ is an increment to a Wiener process. The return

follows a continuous time random walk with volatility o and
drift B We model p as stochastic to allow for supply shocks
which affect the price laevel of corporate output as well as the
possibility of randomness in the rate of tax on corporate output.
In the discussion below, we focus on the first source of
randomness for p and consider randomness in the cost of capital
through changes in the purchase price of the investment.

In addition to taxes on the output of the firm, there may be
tax incentives which reduce the cost of capital. Accelerated
depreciation and- investment tax credits are the twe most common
forms of cost reduction. Specifically, we assume that the price
of capital evolves according to the process:

4:lpllt

(2) = u at + o, dzk.

I-'l,‘t

We assume that the correlation between the Wiener Processes for
output price and capital price equals v. Given the randomness in
output and capital prices, the firm wishes to choose an optimal
size of the project (K*) and time to invest (T*} to maximize the
expected discounted value of the stream of profits from the
investment (net of the cost of the investment). This value can
be written as

- T ~pn . -pT
(3) v(p,B,) g;a:;s{lp,rm,)e ds - p, KePT).



Homogeneity of degree 1 in prices allows us to rewrite the value
function in terms of p/p, and p,- That is V(p,pk) - pkv(p/pk).
Since both prices evolve according to a Geometric Brownian
Moticn, the ratio p/pk evolves according to Geometric Brownian
Motion as well:

(4) d(p/p,) = (u -u+o5-vo o,) (p/p,)dt
L J

g

o
+ (o‘pdzP - ckdzk)(p/p&)

The ratio p/pk has trend « and variance (oﬁ) equal to (oi + o -

k
2vo}ai). Thus, this model reduces to the canonical model with a
single source of uncertainty. The firm’s problem is to find the
ratio (p/pi)*, which describes the optimal time to invest. When
the ratio p/pk is equal to (p/p.}* the firm invests, otherwise
the firm waits. We obtain a differential equation in one
variable that can be easily solved to give the following

investment conditions (see Dixit and Pindyck (1994) for more

detalls):

B
{Sa) PF(K) = (P'l-lp) [E_"_i] p.K
(5b) PF’' (K} = p;(p-up}-

2 2 2 2
.50‘0 - + J(.Sa":l ~x)" + 2(p ,ptll)a-0

where g = .

2
0‘0

Equation (5a) merely states that the firm will not invest unless
PF (K}
(p-np)

the expected revenue is greater than the cost of



purchasing the machine, where the cost includes the markup

factor, [—E—], which accounts for the cost of giving up the

option to invest in the futura. Equation (5b} indicates that
once the firm has decided to invest, the loss of the option value
of investing in the .future is a sunk cost, and the firm should
choose the level of capital o that the marginal revenue is egqual
to marginal cost.

In this example, tax policy uncertainty enters via an
increase in the variance of the capital price, and we begin by
considering a mean preserving spread in this price (daf > 0).4

We derive the effect of changing the variance in three steps:

a| £
B-1

> 0; thus the amount by

1) Some simple algebra shows that

80’
k

which expected revenue exceeds the cost of purchasing capital

increases with the variance of capital.

ii} From ecuation (5b), it is clear that K Ilncreases with the

price ratio p/P, -

iii) Combining equations (5a) and (5b) yields the relationship-

4 Strictly speaking, this is an increase in scale in the
terminoclogy of Abel (1985). As Abel notes, if the correlation
among all Wiener Processes is zero, then an increase in scale is
equivalent to a mean preserving spread.



F(IR/K B
F’ (K} 8-1
Second order restrictions on the production function (see

(6)

footnote 3) can be invoked to show that the ratic of the average
to marginal preduct is increasing in K (alternatively, that the

elasticity of output with respect teo K is decreasing in K).

L
g-1'
documented in step i. This leads to firms choosing a higher level

Thus, increases in the wvariance of P, increase as

x* , because of step 1iii. Since the hurdle price ratio, is

monotonic in K (step 1ii), increases in the variance of Py

*
increase the hurdle price ratio (p/pk) . This result is not very

surprising given previous work by Pindyck (1988). Given
homogeneity of degree 1 in prices, investment is triggered by the
ratio of the output to capital price. As egquation 4 shows,
increasing the variance of capital prices produces the same
effect on the variance of the price ratio p/pk as. does an
increase in the variance of output prices®. 1In both models, the
value function is concave in the price ratio. We can invoke
Jensen’s Inequality to show that increasing ¢ will decrease the
expected value of the project. Hence increasing ¢ will lead toc a

higher required hurdle price ratio - or delayed investment.

5 cChanging the variance of P, affects the trend of P/P, slightly

differently than changing the variance of p. This can be seen in
the expression for a in equation 4.



III.B Simulation Results.

In the last section we showed that increasing uncertainty
leads to an increase in the hurdle price ratio. The increase in
this ratioc leads one to expect that time to investment will rise.
However, with increasing variance in capital costs, it becomes
increasingly likely that capital costs will fall sharply in a
short period of time - raising the chances of the hurdle price
ratio being hit in a shorter time. Thus whether time to
investment goes up or down as the variance of capital costs
increases is ambiguous. Therefore we turn to simulations to
determine which of these effects dominate. Simulations also
allow us to assess the economic importance of changes in
uncertainty.

Table 1 {illustrates the importance of mean preserving
spreads on hurdle prices and investment times. We present
results from a Monte Carle experiment in which we simulate 1500
price paths and consider the investment behavior of a firm facing
these prices. The firm has a production function of the form
F(K) = 1ln{1+K) and uses a discount rate of .05 for investment.
Output prices are GBM with no trend and variance equal to .01.
Capital costs also follow GBM with no trend and variance ranging
from 0 to .06. The covariance between the output and capital

price series 1s set to 0.9 Column 2 in Table 1 presents the

6 We start the simulations at time 0 with output price equal to
1.75 and capital cost equal to 20. Thus the ratio of prices at
time zero equals 8.75%.
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hurdle rates from equation 5. As noted above, the hurdle price
ratios increase as ai increase. If capital costs are certain,
the optimal time to invest is when output price exceeds 9.7% of
the price of capital. The ratio increases to 16.6% when the
instantaneous variance of p, rises to .o02. The hurdle price
ratio rises with ai reaching .344 at of egual to .06, The next
column of Table 1 gives the median time to investment. If there
is no uncertainty in capital costs, the median time is 2.81
years?. The average output price at investment equals 1.95, an
increase from time zero of 11t.

Increasing cﬁ from 0 to .01 delays investment dramatically.
The required price ratio has increased from 9.7% to 13.1% and the
median time to investment is now 15.9 years. Investment is
triggered roughly equally by an increase in output price and a
decrease in capital costs. The average output price is 19%
higher than at time 0 and the average capital cost is 20% lower
than at time 0. As volatility in capital costs increase,

investment is increasingly driven by decreases in capital costs

rather than increases in output price. If the variance of

7  When running the simulations, we stop the process if t exceeds
50 and no investment has occurred. Thus we have not estimated
mean time to investment. Mean time to investment will exceed
median time as there is significant positive skew in the
distribution of time to investment. Since there is no trend in
the two price variables, truncating the price process at year 50
should not bias our estimates of the mean prices and investment
level at time of investment. Standard errors of the median time
to investment are based on Koenker and Bassett (1982) as
implemented in STATA.
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capital costs ecquals .06 average output price increases by 11%
while average capital costs fall by over 70% at investment.

Table 1 shows that the the effect of raising the hurdle
price ratio outweighs the increase in volatility in capital costs
in determining time to investment. The median time to investment
rises monotonically with ai from a minimum of 2.81 with no
uncertainty. The increase is very rapid at first, with the
median time increasing to nearly 16 years at cf equals .91 and to
over 24 years at u: equals .02. Beyond of eguals .02 the median
time increases more slowly reaching 27.7 years at ai equals .06.

Summing up, - when policy uncertainty is modeled as the
capital cost following Geometric Brownian Motion, increasing
uncertainty both increases the hurdle price ratioc and lengthens
the time to invesatment. These results provide a benchmark for
considering the next model in which tax changes are discrete and

infrequent.

IV. Investment with Tax Policy Jumps.

IV.A. The Model

As noted above, tax policy changes typically are discrete
changes. Thus we now turn to a model of tax policy in which tax
incentives change randomly and in discrete amounts. Without loss
of generality, we consider an investment tax credit n, € [0,1)

which reduces the price of capital from p to (1-nt)pk.3 Unlike

8 without loss of generality, we now treat the capital price P,

as fixed and let the output price follow Geometric Brownian
Moticn.
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the tax on corporate output, the tax credit is assumed to follow
a Poisson Process. The actual duration of a credit is unknown
although the expected duration is known. Conversely, if there is
no credit in effect, the actual time to a credit is unknown
although the expected time i1s Xxnown. Specifically, the tax

process follows the equation of motion:

-

An Aldt

o 1-adt o=
7 dmr = |
7) t ~An Aodt

0 1-adt nTo=n

where Am = T -mn, > 0. The tax credit randomly switches between
m, and m, with transition parameters A, and A . The transition

parameters are informative on a number of counts. The expected

i
duration of a regime with a high ITC () is given by N while
[+]

the expected duration of a tax regime with low ITC (m) is given

1
by T In addition, the expected fraction of the time that a

1

A
1

AO+AI

high ITC will be in effect is given by

Given the randomness in output price and capital costs, the
firm wishes to choose an optimal size of the project (K) and time
to invest (T) to maximize the expected discounted value of the
stream of profits from the investment (net of the c;st of the
investment). Normalizing by the price of capital, this value can

be written as

13



-}
- —ps _ _ -pT
(8) v = max E { _T[p_r(xT}e ds - (1-m)K P},

There are three regions in the output price space of importance:
In region 1 (p < p‘), there is no investment, regardless of the
value of . In region 2 (p, <p < p,) there is investment if the
high -ITC is in effect and in region 3 (;5 < p) there is
investment regardless of the level of the ITC. The following

picture fllustrates the investment decision:

Investment Rule

n=m, No - Yes Yes
n=m, No No Yes
| |
T T
P
p!. pO
Consider first region 1 below p,- In this region, no

investment is made regardless of the level of the ITC. Let V'
represent the value function when the tax credit is in effect and
Vv’ the value when the tax credit is zero. An arbitrage argument
can be made that?

(9) pVPdt = E(av’)

(10) pviat = E(av')

Using Ito’s Lemma, E(dv°) = (.Sazpz\r:p + upvg + A (vt - v°))dt T4

A(dt)?. similarly, E(av') = ('5"292":, + upV: - A v - V)yat 4

9 This also follows from the Bellman equation.
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B(at)>. Substituting these expressions into (9) and (10),
dividing through by dt and letting dt go to zero yields two
differential equations in p:

{11) pv° = .50‘2pzv':’ + u.pV: +a (v - )

(12) pv! = .Sc‘p’v;p + upv; - A v = V).

The expectation on the right hand sides of equations 11 and 12
are composed of two parts. The first is the expected gain in V°
as prices evolve. The second part reflects the capital gain
(loss) if the tax credit is put in place (eliminated) which
cccurs with prbbability A (A

Equations 11 and 12 are solved in appendix A. The solutions are

1 8 ¥
(13) My {%P - AP }
Y [+]
(14) V1=—1—{APB+AAPT}
A+ A o'z
1 [+]

where B is the positive root to the quadratic Q(x)} = azx(x-lj +

o o

ux - p, 7 the positive root to the quadratic R(x) = 3 agx(x—l) +

px - {(p + Al + Ao) and A: and Az are constants of integration
(see appendix for details).

In region 2, the firm only invests if the high level of the
tax credit is in place. The arbitrage argument used above is
nodified slightly to account for the investment in the presence

of the tax credit:
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(15) pVPdt = E(av%)

. PF(K)
(16) V = - - (1 - m)K
Equation (16) says that the value of the project if the
investment is made equals the expected present discounted value
of the flow of profits from the investment (discounted at rate p)
less the cost of the project. E(dvn) in equation (15) is the
same as above so that the differential equation for V° is still
given by equation ({11). But now we have only one differential
egquation to solve since v is given explicitly in equation (16):

n n, A‘pTthij .\1(1—111)1(1

’ 1
(17) V=cp +Cp + -
! 2 (p-u) (p+A -u) P+ A

1
where n and n, are roots to the quadratic S(x) = Y azx(x-l) + pux

- {p + al) and < and C, are constants of integration.
Finally, in region 3 investment is made regardliess of the

ITC value. The value functions are given by

pF(K )
{18) - ?-:——1!— - (I-HO)KO
P,F(K)
{19) V‘ = ﬁ - (1"“1}1(1

Value matching and smooth pasting arguments can be invoked
to complete the system. Value matching implies that the valiie
function v° and V' must be equal at the boundaries of the

regions. These imply the following three equations:

16



—r  lapB o aap? TI'+c "2
(20) A+ A L APy GP, 2Py
1 0
, A P,F(K) A (1-m K
(p-u) (p+A -u) P+ A
p F(K )
(21) --I—Ap"+u\p7 - ! - (1 - n)K
a +a, [ 02t p - u 17 ™
{22) c nl +C nZ + Alpﬂp(xl) A1(1-'"‘1.)!(‘].
p - =
o TP T G e ) p 4 A
P F(K,)
— - (1-m)K
p - 0" o

In addition to the value matching conditions, smooth pasting
conditions must be met. These imply that the derivatives of Vv°
and V' at the points P, and P, with respect to p must be equal
and the the derivatives with respect to K must be equal to zero
in cases where the investment is actually made. These conditions

yield the following 5 equaticns:

T -1
1 £~1 7-1 1
(23] A+ A {A’ﬂpi - A AP, } = &P,
1 [
n,-1 A F(K )
+ 7.Cp +
2z {(p~12) (p+A -u)
F(K_)
1 B-1 7-1 '
(24) —-—-—-—{Asp + A7AD }=M__
A, F A 1751 6" 25 p - u
P,F’ (K)
(25) 0= — . - (1 ~m7)
P~ u !
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n-1 n,-1 A F(K) F(K,)

26 c +C + =

(26) 1M Py 2"2Pp (p-u}(p+11-u) p = U
pF (K,)

(27) 0 = ————— = (1 = m)
p - n

Equations 20-27 are 8 equations in the 8 unknowns: A, A,

cl, cz, Pyr Pys Kb' and K. Tha*prices P, and P, are the trigger
prices at which time investment is made in the absence of a tax
credit and in the presence of the credit, respectively. The
quantities K, and K are the corresponding investment levels.

At this peint we could do comparative statics to determine
the effects of increasing uncertainty on the hurdle price ratio.
However, there are two issues to consider. First, there are
several ways in which we can define "increasing uncertainty" and
it is important to clarify which definition we are using. In the
next sub-section, we discuss this issue. Second, there exists
the same problem in moving from changes in hurdle price ratios to
time to investment as in the model with Geometric Brownian
Motion. Thus we will need to turn to simulations as in section
III. In the following sub-section, we consider the relationship
batween the hurdle price ratio and the parameters of the Pcisson

process and then turn to simulations to consider the effects of

increasing uncertainty in tax policy on investment.
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IV.B. Defining Uncertainty for the Jump Process.

Before proceeding, we need to define what we mean by
increasing uncertainty. Unlike the GBM model there are a number
of ways te change the level of uncertainty in the model. One way
to generate a mean preserving spread is to fix the values of 2
and change T, and n, such that E{n) is unaffected. For exanmple,
consjder the case *whe;e A, = A A mean preserving spread
results as ("h' n‘) progresses from (.10, .10) to (.05, .1B5) to
(0.0, .20). In the first case, there is no uncertainty in tax
peolicy. The ITC always equals 10%. In the second case, it
randomly switches between 5% and 15% while in the third case it
switches on and off with its value egualing 20% when in effect.
Results from a simulation in which we vary the ITC in this way
can be compared to results from Table 1.

It is also possible to increase uncertainty by altering the
A’s; however, for the Poisson Process, increasing A does not
necessarily imply an increase in uncertainty. Unlike the GBM
process, there 1s not a monotonic relationship between a key
parameter (e.g. ¢) and uncertainty. To see this, let us take the
case where A, = A = A and consider extreme values for A. If A
equals 0, there is clearly no uncertainty over future tax pslicy;
whatever policy is in effect now will be in.effect forever. Now
suppose that A {is a very large number; the instantaneous
probability of switching between the tax and no-tax states is
very close to 1. 1In that case, the credit will switch on and off

every instant. The variation will be extraordinarily high, but
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there will be almost ne uncertainty. At each point in time, you
know with great confidence what the credit will be at the next
point in time. While there is no uncertainty at boundary values
for A, there is clearly uncertainty at intermediate values of a.

The problem of defining uncertainty in this type of case was
first studied in statistical thermodynamics, and the application
to information theory is described at 1length by Theil (1967),
where uncertainty, or "“entropy® is shown to be highest in a
discrete time Markov process when the probability of transiting
to any of n states of the world is 1/n. The continuous time
analogue to Theil’s discrete time maximal uncertainty case is a
probability of transiting out of a state over the course of a
year equaling 1/2. It is a simple matter of integration to show
that the probability of at least one transition occurring in cne
year equals 1/2 when A equals .69, In tables 3 and 4 below, we
range A from 0 to .5 to consider how increases in uncertainty of
the form of increases in A affect investment.190

An obvious varjant on this second approach is to increase
one of the As. Doing so however changes the mean and the

variance.ll Thus we do not have a clean experiment on the effects

10 ysing this approach, one could also examine increasing
uncertainty starting with the case where the ITC is changed with
certainty every instantaneous moment. We do not believe that
this would be interesting however, as that region of the
parameter space has not been--and is not likely to ever be--
inhabitea.

11 oOne could also vary one of the As and adjust the values of n
to fix the expected value of the tax credit. This would combine
the "frequency" effect with the "spread betwaen rates" effect. We
do not report results from this type of experiment, since it adds

20



of changing uncertainty alone. However, it is worth considering
this case as it provides some intuition for results from the
other experiments, especially for how changing the odds of tax
regime shifts can lead to anticipatory behavior on the part of
firms. Thus we begin by examining how the optimal trigger prices
are altered as one or both of the As change. We then turn to
further Monte Carlo results in the Poisson Process model. What
we will find is that in general the hurdle price ratio increases
with increases in uncertainty. As noted above, knowing that the
hurdle price ratio has increased does not mean that the average
time to investment will also increase. Increasing volatility of
the tax policy will lead to a delay in investment but it will
also make it more likely that a favorable investment period will
occur at a time when the investor would like to act. Thus the
average ex post price at which investment occcurs can fall. It
turns cut that in the Poisson model, this second effect dominates
and that time to investment actually falls with increasing

uncertainty.

nothing to the intuition gained from analyzing these two types of
increased uncertainty separatelv.

21



IV.C The Effaect of Changes in Frequency on Trigger Prices

In this section, we calculate the optimal trigger prices for
investment for the model developed in section IV.A.12 As in the
GBM model, we assume that the project uses capital according to
the production function F(K) = 1n(1+K). The trend 4in output
price fs set to zero (ub = 0), the veolatility of price is 10%
(ah) and the discount rate is .05. Finally, the price of capital
(excluaive of any tax credit) equals 20. We set the low tax
credit value at .05 and theshigh tax credit at .15.

Figure 1 illustrates random tax policy where we vary the
frequency of tax changes. We set 10 = Al #= A and range the
parameters from 0 to 1. This means that there is a 50-50 chance
of there being an ITC at any given moment and that the expected
duration of a tax policy ranges from a lower bound of 1 year to
an upper bound of forever. In cases where there is no
uncertainty over tax policy (A = 0), the trigger'price in the
absence of an ITC is nearly 2.0 - double the trigger price in the
absence of output price uncertainty.  Similarly the trigger price
if an ITC is in place is nearly 1.8. As it becomes more likely
that existing tax regimes will switch, the trigger price in the

absence of an ITC increases while the trigger price when an ITC

12 We focus on this section on the output price rather than the
ratio of the output to capital prices to highlight the issue of
delay (higher output prices take longer to reach). The capital
price (exclusive of tax credit) is fixed at 20 so locking at the
ratio or the output price is equivalent.
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is in place initially decreases. This is intuitive: if there is
ne ITC, firms will delay investment if the probability of an ITC
being implemented in the future increases. <Conversely, if an ITC
is in effect and the probability of it being removed increases,
firms will speed up investment.

Note though that after A exceeds .20, the trigger price when
an ITC is in effect gradually begins to rise again. This
suggests we should consider the effects of varying A, and A
separately. Figure 2 fixes Ao at .33 (the expected duration of
an ITC is 3 years) and varies A - Increasing the probability of
an ITC being enacted has a dramatic effect on investment when
there is no ITC (po). Firms delay investment in hopes that the
ITC will scon be enacted. Interestingly, the trigger price if an
ITC is currently in effect (p,) also increases (though less
dramatically). It is now less urgent for firms to invest to take
advantage of an existing ITC. That the credit may be eliminated
before they invest is less costly since the probability that it
will be reenacted is increasing.

Figure 3 holds the probability of an ITC being enacted fixed
at .33 and ranges A from 0 to 1.0. Now we are increasing the
probability that an existing ITC will be repealed, When the
credit is in effect the trigger price falls (firms speed up
investment). In addition, the cost to investing without the
credit goes down since you may not have to wait as long for the
credit to be reenacted during a favorable price realization.

Hence p, also falls.
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Changing both A, and A, thus has offsetting effects. as A
goes up the "cost" of investing without a tax credit increases
since the expected wait to an increased tax credit has fallen.
Hence p, goes up. Similarly, the cost to waiting to invest with
a tax credit goes down (since it will soon come back on again).
So you are willing to hold out for a higher return (p,)- As A,
goes up, the "cost” to waiting goes up as you may lose the tax
credit., Hence you invest sooner (lower pl) if the credit is in
effect. Similarly, the cost to investing without the credit goes
down since you might have to wait a very long time for the credit
to be in effect during a favorable price realization. As figure
1 suggests, these secondary effects are of little importance in
regimes where there is no ITC (po). However, they are important
in the case where the ITC is in effect and more than offsets the
primary effect as A exceeds .2.

This model allows us to capture in a simple way the
"announcement effects" that asset pricing models (e.g. Summers
(1981)) suggest should occur. Asset pricing models indicate how
prices and investment change as policies change and suggest how
investment should change as policy changes are announced. One of
the attractive features of the jump process model of uncertain
tax policy is that we can model anticipations of changes in
government policy as simply a change in A,- For example, a shift
to a more pro-business administration might lead policy makers to

expect that an ITC might be enacted in the near future. In the

context of our model, that is equivalent to an increase in A,
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Similarly, the election of a president that has campaigned on the
"inequities" of an ITC might be modeled as an increase in A,-
Interestingly, there are additional announcenent effects.
Changes in the probability of an ITC being implemented have an
effect on investment even when the ITC is currently in effect
{(and conversely, a change in the probability of the ITC being
removed affects investment even when there is no ITC). This
secondary effect is negligible in the case where there is no ITC
but it is significant when there is an ITC.

IV.D. Investment Simulations

The previoué section showed how optimal trigger prices
respond to changes in various parameters of the model. The
actual average price at which investment occurs will turn out to
be some weighted average of the two trigger prices P, and p . 1In
this section we present simulations based on the model described
in the last section to calculate the average price at which
investment occurs. The model is the same as the one used‘in the
Monte Carlo experiment for Table 1 except that capital costs are
now fixed at 20 and there is a Poisson Process for the tax
credit. We begin the output price process at 1.40 and assune
that m =, at time zerol3d,

Table 2 considers how mean preserving spreads in the level

of the credit will affect investment. The first row shows

13 our conclusions are unaffected by starting the process with m
equal to m.
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results from the model in which there is a constant 10% ITC. The
hurdle price equals 1.75 which corresponds to a hurdle price
ratio of 9.7t and the median time to investment equals 7.64
years. Standard errors are reported in parentheses. We then
construct a mean preserving spread of this credit by allowing the
ITC to randomly switch from a low value of .05 to a high value of
.15 (row 2 of Table 2). The instantaneous probability of
switching in either direction is .35. This corresponds to an
expected duration of the current tax regime of about 3 years. 1In
this case investment is now delayed in the low ITC state until
the hurdle price ratio reaches 12.2%. This represents an
increase of roughly 26% over the hurdle price ratio in the
certainty case. In the high ITC state the hurdle price ratio
falls to 9.2%, a drop of about 5% from the certainty price. The
table also reports that on average the ITC switched states 1.78
times before an investment occurred. Most noteworthy is the
result that median time to investment falls from 7.6 years to 5.5
with the mean preserving spread.

The final row increases the variance in the ITC variable by
setting ("o' "1) equal to (0, .20). In the low ITC world,
investment is now delayed until the hurdle price ratioc reaches
13.4% while in the high ITC world, investment occurs when the
ratic reaches 9.1%. More importantly, the median time to
investment continues to fall. The median time is now 4.3, a fall
of 44% from the certainty case.

It is interesting to consider why the results in Table 2 are
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so different from those in Table 1. A clue to the difference
lies in the expected price of capital (net of the tax credit).
When the ITC vector equals (.05, .15) the net price of capital
can equal 19 or 17. The average net price of capital eguals
17.14 which implies that 93% of the time the investment occurred
when the high tax credit was in effect. Recall that the hurdle
price ratio fell by 5% in the high ITC state and increased by 26%
in the low ITC state. This means that the expected hurdle price
ratio should fall slightly.l4 when the ITC vector is (0, .20)
investment occurs in the high ITC state 98% of the time. Now the
hurdle price ratios change by +38% and -6% for the low and the
high ITC states respectively. The expected change in hurdle
price ratio in this case equals -5.1%, nearly twice the drop in
the (.05, .15) ITC world. Because investment is driven more and
more by the hurdle price ratio in the high ITC state, it becones
more likely that output price will exceed p, sooner since P,
falls with mean preserving spreads. Hence the time to investment
falls.

We turn next to considering how investment behavior changes
as A (= A, = 1‘) changes. Table 3 sets the ITC values at 0 and
.20 and ranges A from .10 to .50. As we discussed before, the
hurdle price ratio increases monotconically as A increases when n

equals m while the ratio first decreases and then increases whén

14 ~The expected change in hurdle price ratio equals (.93)(-
5)+{.07)(26) = —-2.8%.
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T equals .. In Table 3, the ratio in the high ITC state ranges
between .090 and .092. The real movement occurs in the ratio in
the low ITC state. Here the ratio increases by 12% as a
increases from .1 to .5. As A increases, it becomes increasingly
likely that ratio of output to capital prices will exceed the
hurdle ‘price ratio when the high ITC is in effect. The fraction
of times that investment occurs in the high ITC state increases
from 78% when A equals .1 to 99.5% of the time when A equals .5.
The fall in the hurdle price ratio in the high ITC state more
than offsets the increase in the hurdle price ratio in the low
ITC state s0 that the expected hurdle rate falls throughout. The
median time to investment decreases from 9.6 years to 3.1 as A
increases from .1 to .5. Table 4 presents the same results for
an ITC configuration of (.05, .15)}). The qualitative results are
the same as in Table 3. However, as we showed in Table 2, the
reduced spread between the 1low and high ITC values delays
investment. Median times to investment for all values of A are
higher in Table 4 than in Table 3.

Summing up, we find that unlike the model in which capital
prices move according to Geometric Brownian Motion, the ex post
average hurdle price ratio (as distinguished from the ex ante
ratio, conditional on the tax state) falls with increases in
uncertainty in the Poisson Process model. Moreover, the median

time to investment falls in contrast to the model in Section 1I.
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V. Conclusion

In this paper, we construct a simple model of investment in
a world in which there is demand uncertainty (uncertainty in
output price} and also uncertainty in tax policy. We model the
uncertajnty first in a continuous fashion, assuming that the
capital coét follows Geometric Brownian Motion. We next model
the uncertainty in a discontinuous fashion, positing an
jinvestment tax credit as following a Poisson Process, randonmly
switching between a low and a high value.

We begin with some simple historical statistics on the ITC
in the U.S. These data suggest that there is considerable
uncertainty with respect to an ITC. We next turn to some Monte
carlo experiments. When tax policy uncertainty }eads to capital
costs following a continuous time random walk in logs, increasing
uncertainty delays investment. This result follows directly from
work by Pindyck (1988) and others. However, when tax policy
follows a Poisson Process, we find that increasing uncertainty
speeds up investment. In the latter case, investment "piles up"”
in periods in which the high ITC is in effect. If the frequency
with which the ITC is altered is high, then the odds of reaching
the high-ITC state sooner, wherein investment usually occurs, are
higher.

Oour results show that whether random tax policy delays or
speeds up investment depends critically on the form of policy

uncertainty. While modeling uncertainty by Geometric Brownian
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Motion can often provide tractable and useful results for
modeling uncertainty in many applications, it is probably not a
very realistic model for thinking about investment incentives in
the U.S5. tax code. The added complexity in moving from GBM to a

jump process for pelicy uncertainty proves worthwhile,
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Appendix A

We seek a solution to the set of differential equations (11)
and (12). Let z = V' - v* and X = A V' + aV’. Making this
change of variables yields the two independent differential
equations in Z and X:
(A1) pZ = .5arzp3z” +upzZ - (A, + A2
(A2) pX = .5azp’xw +upX + (A, + A)X
We try a solution of the form Ap7 for Z. Substituting in to
equation Al yields
(A3) ApY (.50% (7=1) + My = (p + A+ A)) = O
A general solution to the differential eqguation in Al is given by
Z = Mlp‘rt + sz‘rz where the 7’s are the roots the quadratic

1
equation R(x) = > o®x(x-1) + ux = (p + A + A) and the A’s are

constants to bhe determined. The limiting behavior or 2z as p
approaches zero provided information about A‘. Since zerc is an
absorbing state for p, Z must equal zero if p ever goes to zero.
Since v, <0, the first term in the expression for Z would
explode unless A equals 0.

Using a similar approach for equation A2, we get a general
solution for X = B,‘pﬂ1 + B ,‘!pﬂz where the pg’s are the positive and
negative roots to the quadratic equation Q(x) = % agx(x—l} + ux -
p. Again we use a limiting argument as p approaches zero to
deternmine that B = 0. Substituting the expressions for Z and X

into their definitions and solving for V° and V' gives us

equations 13 and 14 in the paper.
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A similar approach is used to solve for the value function
v® in region 2. We plug in the value function v! in eguation 16
and obtain a general scolution to the differential equation as
above, However, we cannot use limiting arguments to eliminate
either of the constants C, or C, since p is bounded above and

»

below by P, and )
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Table 1. Mean Preserving Spreads With
Continuous Policy Uncertainty

2 R4

o2 7 t E(p) E(p,)
0.00 .097 2.81 1.95 20.0
(.16) (0.0) (0.0)

0.0025 .106 7.28 2.02 19.12
(.40) (.01) (.08)

0.0050 .114 10.97 2.07 18.09
(.59) (.01) (.10)

0.01 .131 15.93 2.09 15.91
(.76) (.02) (.12)

0.02 .166 24.39 2.06 ' 12.37
(-923) (.02) (.13)

0.03 .204 25.44 2.05 10.04
(.87) (.03) (-12)

0.04 .246 27.23 2.00 8.11
(.71) (.03) (.11)

0.06 .344 27.71 1.95 5.65
(.69) (.03) (.08)

This table presents results from a simulation in which output
prices (p) and capital costs (p,) follow Geometric Brownian

Motion. The series have zero trend and are uncorrelated. The
instantaneous variance of the output price series equals .01.
The discount rate egquals .05, The second column of the table
presents the optimal ratio of output to capital prices for
investment (the hurdle ratio). The next three columns present
averages for key variables while t_ is the median time to

investment. There are 1500 replications for each simulatien.
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Table 2. Mean Preserving Spreads in Jump Processes

po pl
n n t E E({1~-m E(An
o S rrery M rrery o (p) ((1-m)p,)  E(am)
-10 .10 .097 .097 7.64 1.75 18.00 -
{.30) {0.0) {0.0)
.05 .15 122 .092 5.48 1.69 17.14 1.78
{.30) {.01) {.02) {-.05)
.00 .20 .134 .091 4.29 1.60 16.08 1.66
(-17) (.01) {(.03) {(.03)

This table presents hurdle prices and expected prices for output
and capital cost (net of tax credit) at which investment takes
place. In addition, it reports the expected number of changes in
the ITC before investment occurs and the median time to
investment. The probabjility of switching an ITC from a low
{high) value to a high (low) value is fixed at .35. The index
zero (one) indicates the low (high) ITC state. There are 1500
replications for each simulation.
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Table 3. The Effect of Policy Frequency on Investment
m =0 w = .20
[ 1

| -
pl:l pl
A —_— _ t E(p) E((1-n)p.) E(An)
(1-m}p, (1-m)p, med .
.10 .122 .090 9.59 1.79 16.89 .88
(.34) (.01) (.05) (.02)
.20 .129 ' . 090 6.07 1.68 16.29 1.27
(.22) (.01) (.03) (.03)
.35 .134 L091 4.29 1.60 16.08 1.66
(.17) {.01) (.02} (.04)
.50 .136 .092 3.09 1.58 16.02 1.87
(.14) (.01) (.01) (.05)

See notas for table 2 for explanation of the table.
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Takle 4. The Effect of Policy Frequency on Investment
= .05 n, = .15
1

no
po pl
(1-mp,| |[(-mp,
.10 .112 .092
.20 <118 .091
.35 <122 . 092
.50 «124 .092

11.69
(.40)

7.37
(.31)

5.48
(-30)

4.86
(.22)

E{p)

1.81
(.01)

1.76
(.01)

1.69
(.01)

1.66
{.01)

E{((1-n)p, )

17.70
(.03)

17.39
(.02)

17.14
(.02)

17.07
(.01}

See notes for table 2 for explanation_of table.

38

E{An)

.84
{.03)

1.24
(.03)

1.78
(.05}

2.31
(.07)
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