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Growth models with endogenously determined rates of technical change provide
a useful framework for studying the effects of fiscal policy on the long-run growth
rate. Recent papers by Jones and Manuelli (1990), King and Rebelo (1990), Lucas
{1990), Rebelo (1991), Yuen (1991), Kim (1992), Jones, Manuelli, and Rossi (1993),
and others have used endogenous growth models to look at both the positive and
normative effects of taxation. Unfortunately, although all of thege authors use a
similar basic framework and calibrate their models to U.S. data, their quantitative
conclusions differ wildly.

For example, Lucas (1990) calculates that eliminating the capital tax and rais-
ing the labor tax in a revenue-neutral way would have a trivial effect on the U.S.
growth rate, raising it by only three hundredths of a percentage point, while Jones,
Manuelli, and Rossi (1993) conclude that eliminating all distorting taxes could raise
it by as much as eight percentage points! King and Rebelo (1990) and Kim (1992)
conclude that tax reform would raise the growth rate by modest, but nontrivial
amounts.

The goals of the present paper are to trace the sources of these conflicting
results by examining the features of the preferences, technology, and tax policy
that are critical for conclusions about the long-run growth effects of taxation, and
to compare their predictions with some of the evidence offered by U.S. experience.
We look at flat-rate taxes levied on the income from physical and human capital,
the proceeds of which are rebated in lump-sum form, and we compare steady state

growth rates.



As shown in Rebelo (1991), if all income is taxed at a common rate 7, then,
compared with the values in an untaxed economy, the steady-state input ratios and
factor shares in all industries are unchanged, and the interest rate is reduced by
the factor (1 — 7). The change in the growth rate is then equal to the change in
the interest rate multiplied by the elasticity of intertemporal substitution. These
effects are independent of the properties of the production functions (beyond lin-
ear homogeneity) and preferences (beyond a constant rate of time preference and
constant elasticity of intertemporal substitution).

If income from different sources is taxed at different rates, however, the situ-
ation is substantially more complicated. For determining growth effects, the im-
portant features of the economy include two types of parameters. The first group
consists of those, like factor shares and depreciation rates, that can be calibrated
in a straightforward way on the basis of easily observable quantities. The second
consists of parameters, like elasticities of substitution in production and the elastic-
ity of labor supply, that cannot be calibrated on the basis of observations from an
economy growing along a balanced path. Price variation is needed to estimate these
elasticities, and, by definition, prices do not vary along balanced growth paths. One
of our goals here is to assess the sensitivity of growth effects to the values of these
hard-to-observe parameters.

First we consider the technology parameters. We assume that the preferences
and technologies are of the CES variety and compare economies that have different

elasticities of substitution but that, in the absence of taxes, have identical interest



rates, factor shares, and factor price ratios. That is, we compare economies that
are observationally equivalent in the untaxed steady state (or when both factors are
taxed at the same rate), but respond differently when factors are taxed asymmetri-
cally. Under the assumption of inelastic labor supply, we show that while the quan-
titative responses of the steady-state interest rate and growth rate to fiscal reform
are quite sensitive to the factor share parameters in the input-producing sectors,
they are very insensitive to the substitution elasticities. Surprisingly, steady-state
revenues are also quite insensitive to the elasticity parameters.

Elastic labor supply is then considered. First we show that if leisure time is
quality adjusted in the same way work time is, then the analysis of the preceeding
sections remains unchangea: only a reinterpretation of the results is needed. We
then show that if leisure time is measured in "raw hours," the effect of taxation
on the interest rate depends on the elasticity of labor supply, and we derive a
quantitative relationship for that effect.

We then proceed to a numerical comparison of some of the tax models men-
tioned earlier. We find that the very small growth effect found by Lucas is due
to the technology he uses for the sector producing human capital, and the very
large effect found by Jones, Manuelli, and Rossi is due to their assumption about
the elasticity of labor supply. We also show that the calculated growth effects of
taxation are very sensitive to assumptions about the rate of depreciation and the
tax treatment of depreciation, and we argue that some that some commonly used

assumptions overstate the potential growth effects of tax reform.



The rest of the paper is organized as follows. The basic model is described
in section 1, and general properties of the steady state are discussed in section 2.
The technology parameters are studied in sections 3 and 4, and elastic labor supply
is discussed in section 5. Numerical comparisons are carried out in sec‘tion 6, and

conclusions are drawn in section 7.

1. The basic model

Time is continuous, all markets are perfectly competitive, and there is an
infinitely-lived representative household. At each date #, existing stocks of physical
and human capital, k; and A, are used as inputs into production. These stocks
depreciate at the rétes 6, and &, respectively. The household owns the stocks,
which it supplies, inelastically, to firms. The economy has three types of firms,
which produce new physical capital, Ii;, new human capital, o, and consumption
goods ¢;. The household uses its income to buy goods of all three types. Let g
and pi, 1= 1,2, be the net-of-tax returns and purchase prices for the two factors,
measured in terms of contemporaneous consumption goods. The revenue from all
taxes is rebated to the household in lump-sum form, T}, at each date ¢.

The household’s problem is, given (61,82), (ko,ho), and {pi,par. ques Gor. Tk,

t > 0}, to choose {c;, s, Iot, ey bty £ 2 0} to

max /000 e (et - 1)/(1 - o)dt

(13,) s.t. iCt = Ilt — 61}%,
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(1b) he = Iny — 6o,

(1c) piehe + paloe + cr — queky — quhy — T3 <0,

where p,o > 0.

The factor returns g;; are determined as follows. Let 6, and £;,i = 1,2, 3. be
the proportions of the physical and human capital stocks employed in the production
of physical capital, human capital, and consumption goods, respectively; let G, H
and ¥ be CRS production functions for the three sectors; and let 7;; be the flat-rate
tax — constant over time — on income earned by factor ¢ = 1,2, employed in sector
J = 1,2,3. Profit maximization and competition imply that factors are paid their
marginal products and that the net-of-tax return on factor i must be equal in all

sectors where it is employed. Hence

(2) @it = (1 = 7)pueGi(Orikr, Liehe) + wiTiipinds
= (1 — 7i2)p2e Hi(Baske, La:he) 4 wiTiopse b
= (1 — i) Fy(Backe, Lache) + wirispun s, 1= 1,2,
where w; € [0, 1] is the extent to which depreciation on factor i is tax deductible.
To characterize a competitive equilibrium, the conditions for utility maximiza-
tion and profit maximization must be combined with those for budget balance for the

government and market clearing. Only balanced growth paths will be considered.!

' As shown in Bond, Wang, and Yip (1992}, the model here is globally asymp-
totically stable, so balanced growth paths represent the long run of the economy.
See Caballé and Santos (1991) and Faig (1991) for other analyses of stability, and
see Mulligan and Sala-i-Martin (1993) for a discussion of transitional dynamics.
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Along any such path, consumption and both kinds of capital grow at a common,
constant rate g, and the interest rate, the growth rate, and the sectoral allocation
of factors are constant. Let é=c/k,z = h/k, and 2z; = £;h/6;k, i=1,2,3.

It is shown in the Appendix that if income is taxed gross of depreciation (w; =

wq = 0), then the balanced growth path satisfies

(3a) r=p+ayg,
(3b) (1 - ‘7’11)G1(1,Zl) - 51 =T,
(3C) (1 '—‘ ng)Hz(l, 22) bl 62 =7, ]

(1—T11)G1(1,21) _ (1 —le)Hl(l,ZZ)

(Sd) (1 — T21)G2(1, Zl) - (1 — Tzz)Hz(l, 2’2),
(3e) (1-m1)Gi{1, ) _ (A -m3)RA(1,2)
(1 =m)G2(1,21) (1~ 7o) Fa(1,23)
(3f) g+6 =6:G(1,z),
2
(3g) g+6b= ;H(l,zz),
(3h) é=0yF(1, z3),

A
()
=
2
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o
!
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(3.]) Ziei = 2.

3
Py
Equation (3a) relates the consumption growth rate to the interest rate; (3b) and
(3¢c) equate the real rate of return on each factor, net of taxes and depreciation,
to the interest rate; (3d) and (3e) follow from the equality of factor returns in all
sectors; (3f)-(3h) are market-clearing conditions for the three outputs; and (3i) and
<3J) are resource constraints for the two factor inputs. These equations can be used
to solve for r,¢,é z, and (6;,2), i =1,2,3, all of which are constant along the
balanced growth path.

Notice that the system is block-recursive: (3b)-(3d) can be solved indepen-
dently for (r, z1,z2) and then (3a) solved for g. Notice, too, that if tax rates vary
only by factor (r;; = %, J = 1,2,3) or only by sector (ry =7, i=12), then

(3b)-(3d) take the simpler form ?

(4:1) (1—7'1)61(1,21)—61 =r,

{4b) (1—m)Hs(1,20) —ba =,

(4c) Gi(1,21)  Hi(l,2)
Go(l,z1)  Hao(l,z)’

2 The assumption that tax rates vary only by sector is probably not too bad
for the U.S., where in the education sector physical capital and the (substantial)
fraction of the labor input representing students’ time are both untaxed, and where
in the goods sector both physical and human capital are taxed at similar rates.



Alternatively, it is shown in the Appendix that if income is taxed net of depreciation

and tax rates vary only by factor, then along the balanced growth path

(4'&’) (1 - T]_)[Gl(l, Z]_) - 61] =r,

<4b/> (1 i Tz)[HQ(]., 22) bl (52] =7r,

(4¢”) =

where 7;, i =1,2, is the tax rate for factor 1.

Notice that the solution to (4a)-(4c) or to.(4a’)-(4c') depends only on the
technologies, depreciation rates, and tax rates in the input-producing sectors. The
preference parameters p and ¢ affect only how the interest rate is translated into a
growth rate, the relationship in (3a). Hence we can first focus our attention on the
interest rate, and then later use the preference parameters to calculate the growth

rafte.

2. General properties of the steady state

Suppose that income is taxed net of depreciation and tax rates vary only by
factor. If income from both factors is taxed at a common rate T, then it is clear
from (4a’)-(4c’) that the steady-state input ratios are unaffected and the interest
rate is reduced by the factor (1 — 7). These conclusions are the same for any CRS

production functions. Moreover, it is clear that a tax levied on factors employed in



the consumption goods sector — which in this setting is equivalent to a consumption
tax — is completély nondistorting.’

If the returns to physical and human capital are taxed at different rates, the
situation is more complicated. Figure 1 shows the consequences when income from
physical capital is taxed and income from human capital is not. The solid lines show
the determination of the steady-state interest rate and input ratios when there are no
taxes. Equation (4a’) is graphed in the northeast quadrant, (4b') in the northwest,
and the ratios of the marginal products in the southern quadrants. Each of the
curves must be roughly as shown: [G1(1,21) — 6] is increasing in z1; [Ha(1, 20) — 62
is decreasing in zy; G1(1,2,)/G2(1, 1) is increasing in z| ; and H{(1,2z0)/Ha(1, z3)
is increasing in z;. The steady state corresponds to the set of values lying in a
rectangle, as shown.

Ifa ﬁat—rate tax of 1y is imposed on income from physical capital, then the curve
in the northeast quadrant is shifted down by the factor (1 — 7), as shown. The
new steady state interest rate, call it R, must lie between the values A = (1 — 7)r
and r, where r is the interest rate in the untaxed economy. Hence, the new steady
state has a lower interest rate and higher ratios of human to physical capital in
both industries: z; and z; both rise. Analogous arguments hold if both factors are
taxed but the income from physical capital is taxed more heavily, or if the relative

magnitudes of the tax rates are reversed.

3 See Rebelo (1991).
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Quantitatively, the changes in the interest rate and the input ratios depend on
properties of the production functions in both input-producing sectors. An obvious
conjecture is that the degree of substitutability between the two factors is crucial.
If they are highly substitutable, then one might expect that the economy adjusts
by substituting away from the more heavily taxed factor, and that other variables —
including the interest rate — adjust very little. Thus, one might expect a large impact
on input ratios and factor shares, but a relatively small impact on the interest rate.
The reverse might be expected if the substitution possibilities are poor. As we will
see below, these conjectures about input ratios and factor shares are correct, but
the conjecture about the interest rate is not. The response of the interest rate —
and hence of the growth rate — is very insensitive to the elasticities of substitution
in the production technologies.

An interesting special case is the one studied in Lucas {1990). Lucas as-
sumes that human capital is produced using human capital as the only input, so
H(ky, hy) = Bhy. It then follows immediately from (4b’) that the interest rate is
r = B — & in the untaxed economy and R = (1 — 12)(B — é2) in the taxed economy.
That is, the steady state interest rate is completely determined by B, appropri-
ately adjusted for taxes and depreciation. In this case the curve in the northwest
quadrant in Figure 1 is horizontal.

In the next two sections, we will see how the quantitative responses of the
interest rate and the input ratios depend on the elasticities of substitution in the

two input-producing sectors.
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3. Common technology for the production of both inputs: G = H

Suppose that physical and human capital are produced with the same tech-
nology, G = H; this is the assumption used in the benchmark case of King-Rebelo
{(1990) and in model 1 of Jones-Manuelli-Rossi (1993). In addition assume that
& = 8, = 0. We will compare economies that have different CES technologies but
that, in the absence of taxes (or when income from all sources is taxed at a common
rate), have identical steady-state input ratios, factor shares, and interest rates.

Fix z and r. For each o < 1, there is a unique CES function, call it G(-, ; @),
with elasticity parameter a and with scale and weight parameters that depend on

a, z, and r, such that (4a) and (4b) hold for the input ratio z and interest rate r.

As shown in the Appendix, that function is

rlwl=ek® + (1 — w)l-2px]ie o =40,
(5) G(k,h;a) =

r(k/w)*[h/(1 = w)~¥, a=0,
where w = 1/(14z). For fixed z and r, (5) defines a family of economies indexed by
a. Every economy in this family has a steady state with interest rate r, input ratio
2z, and factor share w for capital, when income is untaxed (or taxed at a common
rate for both factors). The economies in this family have different elasticities of
substitution n = 1/(1—«), but that parameter could never be identified by observing
an economy growing along a balanced path.

If income from different sources is taxed differentially, these economies have dif-

ferent steady-state interest rates, input ratios, and factor shares. Let m = (m;, my),

where m; = (1 - 7), i=1,2, and let Z(m,a), R(m,a), and S(m,a) denote the
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steady-state input ratio, (net-of-tax) interest rate, and (gross-of-tax) factor share
ratio in the economy with tax policy m and technology a. It follows from (4a)-(4c)
that

miGi(1, Z(m, a); o] = myGa{l, Z(m,a);a] = R(m, a),
and by definition the factor share ratio is

G2(1, Z(m, a); ]

S(m,a) = Z(m,a)m'

Evaluating the derivatives of G and substituting, we find that

Z(m,a)  (my\"
(Ba) , — = <m—1 , all 7,
(Gb) - S(Tr: Q) _ (mg/ml)n_l, all n,
oo Ema) [l (owmamy e,
c S R A »
rmy (mz/ml)l—w n=1,
where s = (1 — w)/w is the factor share ratio in the untaxed economy. Since

physical and human capital are produced with the same technology, if their returns
are taxed at different rates, the ratio of their rental rates must be mq/m,, to offset
the tax differential. Then (6a) and (6b) are simply the standard formulas relating
the changes in input and factor share ratios to changes in the factor price ratio for
CES production functions. Notice that the impact of a given tax policy on these

ratios increases with the elasticity of substitution and does not depend on w.
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From (6c) we see that the effect of any tax policy (my,m2) on the interest
rate can be thought of as follows. If all income were taxed at the same rate, then
the interest rate would be R = rm;. If the tax rates differ, then the right side of
this equation must be multiplied by the term on the right side of (6¢), a term that
depends only on the ratio ms/m;. Thus, the effect of fiscal policy on the interest
rate is homogeneous of degree one in the pair (my, m2).

To a first-order approximation, the response of the interest rate to changes in
tax policy when my/m; ~ 1 is independent of 7. To see this, differentiate (6c) and

find that
din(R/rm,)

leml=mz =1-w.

This conclusion is a direct consequence of the fact that for fixed (r, z), all members
of the family of production functions defined in (5) have identical marginal rates of
substitution when Z = z, and that the latter holds if m; = m;.

To study the quantitative importance of the elasticity of substitution when
ma/m; is not ciose to one, we can simply compute the ratios in (6a)-(6c) as functions
of the parameters 7 and w and the ratio ma/m;. Figure 2 depicts results for such
computations. (Since Z/z and S/s are so closely related, only the latter is reported.)

The ratios R/rm and §/s are plotted as functions of the ratio ms/m;, which
varies from 0.5 to 2.0. The first panel, which displays R/rm, has six curves. The

three with solid symbols (with open symbols) correspond to economies with a share

parameter of w = .20 (of w = .40), and with substitution elasticities of 1/2.1, and
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2. As noted above, the ratio S/s is independent of w, so the second panel contains
only tﬁree curves, corresponding to the three substitution elasticities.

The results are quite striking. The response of the interest rate is quite sensitive
to the share parameter w but is extremely insensitive to the elasticity parameter 7.
The response of the factor share ratio, on the other hand, does not depend at all
on w, but is extremely sensitive to 7.

Thus, to accurately predict the impact of a given tax policy on the long-run
interest rate (and growth rate), it is important to know the share parameter w
for the input-producing industry. The elasticity parameter 1, however, is of minor
importance. The policy’s impact on input ratios and factor shares, on the other
hand, are sensitive to 1 but not to w. Since w is observable in the untaxed steady
state but 1 is not, it may be easier to predict the impact of fiscal reform on the

interest rate than its impact on factor ratios and factor shares.

4. Different technologies for producing the two inputs: G # H

In this section wé will extend the analysis to allow the two input-producing
sectors to have different technologies. To study the effects of taxing the two factors
at different rates, we will fix parameter values (z;, 22,7, q) and compare economies
with CES technologies for producing physical and human capital that, when un-
taxed, have the specified input ratios, interest rate, and rental ratio ¢ = ¢, /q3. The

method for deing this is exactly as in the previous section, except that scale and
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weight parameters must now be found for each sector. For fixed (z;, 22,7, q), the

resulting technologies are

V atl/a
(73) G(kl, hl; a) =r [wl‘aklﬂ‘ + (1 _ w)l—a <%> ’
R
(7b) H(ky, ho; ) = qr {vl‘ﬁkf +(1—p)i? (h_> ’
q

where w = ¢/(q + z1) and v = ¢/(g + 22) are factor shares. For fixed (z1, 22,7, q),
these equations define a two-dimensional family of economies, indexed by the pair
(a, B8). Every economy is this family has a steady state with input ratios z; and zo,
interest rate r, rental ratio ¢, and factor shares w and v for capital.

Given a tax policy m = (my,ma), the rental ratio, input ratios, and interest
rate — call them Z\(m, o, 8), Zg(’fﬁ, o, ), R(m, a, 3), and Q(m, o, 8) — will depend
on the elasticity parameters a and 3. To compute them, notice that (4a)-(4c) imply

that Z;, Z», R, and @ satisfy

(8a) 2 - ) o,

(Bb) m1G1(1, Zl) = msz(l, Zg) = R, all m, ().’./3.

Evaluating the derivatives of G and H and substituting, we find that the changes

in the input and factor share ratios are

(9a)

Zi(m, 0,8) _ [Q(m,a,ﬁ)r,

21 q
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(9b) Z2(TT:2a, 8 _ [Q(m;a, ) } g |
(9e) Sl<ms’1a,ﬁ> _ [Q(m;a,ﬂ)r”"
(9d) 52(’"::@ _ [Q(m;a,mr’

where n = 1/(1 — a) and v = 1/(1 — B) are the elasticities of substitution in the
two sectors, and where s; = (1 — w)/w and s2 = (1 — v)/v are the factor share
ratios in the untaxed economy. As before, the ﬁrst two equations are the familiar
expressions that, for CES technologies, relate changes in the input ratios to a change
in the rental ratio.
Next, using (9a) and (9b) to evaluate G; and Hy, we find that
rlw+ (1 - w)(Q/q)" VY, n#1,
Gi(1, Zi;0) =

T(Q/q)l‘wv n= 1,

Q@) + (1= 0)(Q/g) YO0, v # 1.
Hz(la Z?.J ﬁ) =
r(Q/a)™, v=1
We can substitute from these expressions into (8b) to solve for the ratios Q/q and

R/r. If both elasticities of substitution are unity, n = v = 1, we find that

J(1=uo)
(102) Qm.0.0) (ﬁ2>1 -

q my
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R(m, 0, 0) B (@) (1—w)/(1-w+v)

(10b) pre

m
If both elasticities differ from unity, n,v # 1, we find that

Q(m, a, B) {w + (1 — w)[Q(m, a, B) /g 1}/ my

(12) 7 ot (0 )Qima B T my
R(m,a,f) _ o Qmas )]
(11b) b < w1 - w) [—q_] J
Qm. a8 1" 1Q(m, a8
ma m,a, m,a, |
R N

If physical capital is taxed more heavily, ms/m; > 1, then @/q > 1, so the rental
rate for physical capital rises relative to the wage rate. The reverse occurs if human
capital is taxed more heavily. The intuition behind this is clear: a relatively higher
rental rate on the more heavily taxed factor is needed to equate the net-of-tax
returns on the two factors.

As before, it follows from the way the family of technologies is defined that, for
small differences in the two tax rates (i.e., for mo/m close to unity), the response
of the factor price ratio and the interest rate are, to a first order approximation,
independent of the elasticities of substitution. To see this, note that my/m; = 1
implies ()/q = 1, and differentiate (11a) and (11b) to find that

dn(Q/q) ’ _ 1
dén(my/my) ' me/m=t l—w+v’

din(R/rmy) |
dln(Q/q) '@/t

=1-w.
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It is clear from (9c¢) and (9d), however, that the behavior of the input and factor
share ratios in each sector are quite sensitive to that sector’s elasticity parameter.

As before, we can explore the economy’s responses for large differentials in
the tax rates by simply computing the values in (9)-(11). Figures 3a-3d display
R/rmy, Q/q,S1/s1, and Sy/s; as functions of ma/m,. The factor shares w = 0.4 and
v = 0.2 are used throughout, and the elasticity parameters take values of 0.5, 1.0,
and 2. Each figure has six curves, drawn for six different elasticity pairs (1.7). as
indicated. The results are qualitatively very similar to those in the previous section.
The effects of a given tax policy ma/m; on the steady-state interest rate ratio B/rm;
and rental ratio Q/q are very insensitive to the elasticity parameters. The effect
on the factor share ratio in each industry is very sensitive to that industry’s own
elasticity, however. Experiments with other parameter values indicate that these
conclusions are robust.

Next consider the share parameters. Figure 4 shows the response of the interest
rate for Cobb-Douglas technologies with different pairs of share parameters {(w,v).
where w = .2 and .4, and v = .05,.2, and .3, as indicated. The shares, unlike the
elasticities, are quantitatively important in determining the interest rate.

The share of tax revenue in total income in the steady state is also quite
insensitive to the elasticity parameters. Figure 5 plots the ratio of revenue to total
income, including all income generated in the sector producing human capital, as a
function of my, for m; = .65 and for share parameters w = .40 and v = .20. (The

computational procedure is described in the Appendix.) The four curves are drawn
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Interest rate
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Cobb~Douglas technologies, various factor shares (w,v)
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for different elasticity pairs (7,7), where each parameter takes values of 0.5 or 2.0.
The elasticity parameters have very little effect on the revenue ratio. In addition,
the figure looks very similar if income is defined narrowly, excluding output in the
sector producing human capital.

To a first order approximation, transitional dynamics in the neighborhood of
the untaxed steady state are also independent of the elasticity parameters. To seec
this observe that, by construction, all members of a family of technologies defined
by (7a) or (7b) have identical steady state marginal products. That is, for fixed
(21, 22,7, 9q), the derivatives G;(1, z1; @) and H;(1,22;3), 1= 1,2, are independent
of o« and 3. Hence for any (k;, h;) with k;/h; near z;, the level of output is also
approximately independent of the ela‘sticity parameter. For e>'camp1e, choose (ki , hy)
such that k;/h; =~ 2, and let (k{, h{) be any nearby point satisfying h{/k{ = 2.
Then

G(ky, hyya) = Gk}, hi;a) + (ki — k))Gi(1, 21; @) + (h1 — h))G2(1, 213 @)
=ki1G1(1, z1;0) + h1G2(1, z1; @),
where the first line uses a first order Taylor series approximation and the second
uses Euler’s theorem for homogeneous functions. As we have already noted, the
derivatives in the second line are independent of a. An analogous argument holds

for the technology in the human capital sector.
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5. Elastic labor supply

In this section we will briefly discuss two ways of incorporating elastic labor
supply into the basic model. Throughout this section, we will let £4 denote the
proportion of time devoted to leisure.

First, suppose that leisure time is quality adjusted in the same way work time

is,* and suppose instantaneous preferences have the form

V(C, [4h)l~a

U(C, Z‘ih) = 1—0

, >0,

where V: Ry x [0,1] — Ry is strictly increasing, strictly concave, continuously
differentiable, and homogeneous of degree one. To incorporate this change into
the household’s decision problem, we must modify the objective function and put
(1 — £4)h; in place of h; in the budget constraint (1c). The new control variable
£4: adds a new first order condition. In addition, we must modify the government’s
budget constraint and the resource constraint for human capital. As shown in the

Appendix, in the steady state, these changes imply that (3j) is replaced by

3

(3i") Zzigi =(1-4y)z,

i=1

and a new condition determining the steady state mix of consumption and leisure
is added. In the case where taxes are levied by sector, gross of depreciation, the

new condition is

Vg_(c, Z4Z)

(Sk/) Vl (C, Z4Z)

= (1-m)Fy(1, z).

4 See Becker (1981, Ch. 1 and 2) for an interpretation of these preferences in

terms of home production.
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Equations (3a)-(3d) are unaltered, however, so the interest rate and growth rate are
unaffected. A consumption tax now distorts the labor-leisure mix, but still has no
effect on the steady-state growth rate.

Alternatively, suppose that utility depends on pure leisure time, unadjusted
for the level of human capital, and suppose that instantaneous preferences have the

form

[CU(&)]FU‘

U‘(C! ) = 1= a)

o >0,

where v: [0,1] — Ry is strictly increasing, strictly concave, and twice continu-
ously differentiable, and where concavity of v requires that —ov”(£;)u{£,) > (1 —
20)[v'(£4)]2. As before, the household’s objective function and budget constraint
must be modified, as well as the government’s budget constraint and the resource
constraint for human capital. Also as before, the new control variable adds a new
first order condition.

1t is shown in the Appendix that if income is taxed gross of depreciation and
tax rates vary only by sector, then the steady state equations (3c) and (3j) are
altered, and a new condition determining the labor-leisure tradeoff is added. The

new conditions are

(3c’) (1—m)Ha(l,z)(1—£y) = b =1,

(3j’) Zziei = (1 - 24)2,
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(3K

=(1-m)zF(1, ).

Notice that the system of equations is no longer block-recursive: the real interest
rate and factor intensities can no longer Ee determined in isolation. For this reason
it is more difficult to explore analytically the properties of the steady state. Nev-
ertheless, it can be shown that a consumption tax still has no effect on the steady
state growth rate, provided that the revenue is not rebated to households.
Moreover, an argument exactly analogous to the one in section 4 can be used
to calculate the steady state effects of flat-rate income taxes on the interest rate as
functions of the elasticity of labor supply. Simply substitute (1 — £4)ms for mo in
(8b) and notice that the rest of the analysis is as before, except that £, is unknown.
In particular, the second line of (11b) holds with (1 — £4)ms replacing ms. Then,

differentiate as before to find that

din(R/r) | _ 1 [z dfn(1 ~ 84)}
dén(my) 'm/m=l " 1 4 g dfn(my)

It

din(R/r) | 1 14 dfn(1 — £4)
dén(myp) 'm/m=l" 14 g dén(mg) |’

where z = v/(1 — w). Recall that v is the share of physical capital in the sector
producing human capital, and 1 — w is the share of human capital in the sector
producing physical capital, so v/(1 — w) is the ratio of the alien factor shares. In

Lucas’s {1990) model v = 0, so £ = 0. As the first expression shows, in this case a
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tax on the sector producing physical capital has steady state growth effects only if
the supply of labor is elastic.

Notice that the importance of elastic labor supply in producing growth effects
is greater the smaller are v and w. In the next section we will see that the large
growth effects found by Jones, Manuelli, and Rossi. (1993) result from low values

for v and w, together with a large labor supply elasticity.

6. Quantitative Comparisons

In this section we will use the framework developed above to compare the
results in Lucas (1990), King and Rebelo (1990), Kim (1992), and Jones, Manuelli
and Rossi (1993) on the potential effect of tax reform on the long-run growth rate
of the U.S. economy. As noted above, the quantitative conclusions in these papers
differ dramatically. We will see below that these sharp differences in the conclusions
arise from differences in the assumptions about the share parameter in the sector
producing human capital, the depreciation rate for human capital, and the elasticity
of labor supply.

Two features appear in some of the models we are comparing that do not fit
into the framework used here. The first feature is a production function for human
capital that displays diminishing point-in-time returns.® Technologies of this sort
dampen the impact of changes in the rate of return on incentives to invest. The

second feature is a utility function that has pure leisure (unadjusted for quality)

® See Heckman (1976) and Rosen (1976) for a further discussion.
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as an argument. As we saw in the last section, elastic labor supply of this form
magnifies the impact of changes in tax policy, since it provides a second avenue,
in addition to adjustments to consumption, by which consumers can respond to
changes in the rate of return on investment. We will see below that diminishing
point-in-time returns do not seem to be quantitatively important in any of the
analyses, but elastic labor supply does have a quantitatively significant effect in the
Jones, Manuelli and Rossi model.

In this section we allow tax rates to vary by both factor and sector, and we
assume that income is taxed grossrof depreciation. First we simplify each of the
models to conform to our setup and calibrate it using the author’s parameter values.
We then carry out the tax experiment(s) performed by him, to see whether alter-
ing the specification has changed the model’s responses significantly. The details
of these numerical computations are contained in the Appendix. Then, for each
calibration, we perform the exercise of eliminating all income taxes.

Cobb-Douglas production functions are used throughout, so (3a)-(3d) take the

form

(12a) r=p+o0g,

(12b) (1 - Tu)A‘U}Z%—w —_ (51 =r,
(12¢) (1-72)B(l = v)z" — by =,

24



(1 - TZI)(l b w) _ (1 - 7'22)(1 d 'U)
(azd) (1-rmwz (1= 7a)vz

where 7y; is the tax rate on factor i employed in sector j.

6.1 The Lucas model

First consider the model in section 4 of Lucas (1990). It includes diminish-
ing point-in-time returns in human capital accumulation, elastic labor supply, and
an elasticity of substitution of 0.60 (rat‘her than unity) in the goods production
technology. In addition, Lucas ignores depreciation, which can be interpreted as
an assumption that the production functions are defined net of depreciation and
returns are taxed net of depreciation. Lucas’s baseline parameters are displayed in
Table 1. The key assumptions are that human capital is produced using human
capital only, and that the human capital sector is untaxed.

The experiment Lucas runs is cutting the capital tax to zero while raising the
labor tax to 0.46. As noted above in section 2, in our version of Lucas’s model, this
change has no effect on the growth rate. The nonzero effect Lucas obtains comes
from the fact that labor supply in his model is (very slightly) elastic. Similarly, in

our version of Lucas’s model, eliminating all taxes has no effect on the growth rate.
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TABLE 1

Lucas (1990)

Additional features

- diminishing point-in-time returns to human capital
accumulation

- elastic labor supply

- CES production function with 0.6 elasticity of
substitution

- taxes levied net of depreciation

Baseline parameters

& =0 6=0, w=.24 v=.00

(.26,.40,.00,.00), ¢ = 2, p = 0.0340

-
It

Benchmark indicators

0.0150, r = 0.0640

[
i

Experiments

- reduce capital tax to 0%
and raise labor tax to 46%

- eliminate all taxes

change in the growth rate

Lucas’s model our model

-0.0003 0.0000

n.a. 0.0000




6.2 The King and Rebelo model

Next consider the model in Section III of King and Rebelo {1990). Except
for dimiqishing point-in-time returns in human capital accumulation, their model
is identical to ours: labor supply is inelastic, technologies are Cobb-Douglas, and
returns are taxed gross of depreciation. Their baseline parameters are displayed in
’fable 2.

7 King and Rebelo look at two experiments, increasing all tax rates by .lb and
raising the tax rate on physical capital only by .10. Each experiment is performed
for two sets of parameter values. In each case, our moadified version of their model
gives results very similar to the original. Thus, introduc;ng diminishing point-in-
time returns in the sector producing human capital does not make much difference
quantitatively.

Eliminating all taxes in the modified model raises the growth rate by 0.0330

_for King and Rebelo’s baseline parameters, or when a lower value (¢ = .05 instead
of .33) is used for capital’s share in the sector producing human capital. If a lower
depreciation rate for human capital is used, 6, = 0.012 instead of 0.100. eliminating

all taxes raises the growth rate by only 0.0143.

6.3 The Kim model

Kim (1992) begins with a much more detailed description of the U.S. tax sys-
tem, but is able to aggregate to obtain effective net tax rates on the two factors.

After the aggregation, his model is identical to ours except for the presence of
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TABLE 2

King and Rebelo (1990)

Additional features

- diminishing point-in-time returns to human capital
accumulation

Baseline parameters

So=.1, 6 =.1, w=.33, v=.33

r = (.20,.20,.20,.20), 0 = 1, p = 0.0120

Benchmark indicators

g = 0.0200, r = 0.0320

Experiments

- increase all taxes
by .10

- raise capital tax
by .10

- raise capital tax
by .10 with v = .05

- increase all taxes
by .10 with §,=.012

- eliminate all taxes

- eliminate all taxes
with v = .05

- eliminate all taxes
with §, = .012

change in the growth rate

King-Rebelo model our model
-0.0152 -0.0167
-0.0052 -0.0058
-0.0011 -0.0012
-0.0067 -0.0071

n.a. 0.0330
n.a. 0.0330
n.a. 0.0143




an inflation tax Vand the partial deductibility of depreciation on physical capital.
His baseline parameters, which are displayed in Table 3, are similar to King and
Rebelo’s except that the depreciation rates are substantially lower and o is sub-
stantially higher. Kim’s experiment is to eliminate all taxes. This change raises the

growth rate by 0.0085 in his model and by 0.0091 in our version of it.

6.4 The Jones, Manuelli, and Rossi model

Finally, consider Model II in Jones, Manuelli and Rossi (1993). They assume
that labor supply is elastic, and their production function for human capital has
human capital and market goods as inputs. This is important because of the tax
treatment of various factors: human capital employed directly in the sector produc-
ing human capital is not taxed, but all factors employed in producing the market
goéds used by that sector are taxed. In other respects their model conforms with
our set-up: the technologies are Cobb-Douglas and taxes are levied gross of depre-
ciation. Modifying our structure to incorporate their tax structure is not hard, so
we will do so.

Let the technology for the sector producing human capital be J(Ia, £o:h;) =
@Ift(fztht)l_“‘ where Iy is the input of market goods, £y is the proportion of time
allocated as direct labor input, and ® > 0. The constraints (1b) and (ic) for the

consumer’s problem become

(1) hy = ®I% (£yhy) ™% = 63h,
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TABLE 3

Kim (1992)

Additional features

- inflation tax

- partial deduction of depreciation
on physical capital

Baseline parameters 5 =.05 6, =01, w=v=.34
o=194p =01
r = (.34,.17,.34,.17)

Benchmark indicators g = 0.0150, r = 0.0391

Experiments

- eliminate all taxes

change in the growth rate

Kim’s model

our model

0.0085

0.0091




(1ch It + Ioe + e — queke — qoe(1 — £oy —29)h: — T} <0,

where Z4 is the (fixed) proportion of time allocated to leisure and (1— £y~ 1) the
proportion allocated to goods production, and where prices are unity because all
market goods are produced with the same technology. As shown in the Appendix,

the steady state conditions are

(13a) r=p+o0g,

(13b) (1— ) Awzi™ — & =r,
(13¢) (1= m)A(1 - )z = 2.
(13d) (A-L)(1-9)u™ - =r,
(13e) g+ 6 =00u7Y,

where p = {oh/I; is the input ratio in the human capital sector. The baseline
parameter values use by Jones, Manuélh’, and Rossi are displayed in Table 4. Notice
that v = 9w = .17 is the (implicit) share of physical capital in the sector producing
human capital.

The experiment Jones, Manuelli and Rossi run is to eliminate all taxes. They
do this for a number of alternative values for the parameter ¢ (cf. their Table III).

Comparisons with our version of their model are reported in Table 4 for ¢ = 2 and
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TABLE 4

Jones, Manuelli, and Rossi (1993)

Additional features

- elastic labor supply

- market goods used in producing human
capital

Baseline parameters

6k='1! 6h=-1) W=-36,¢/=_48
r=(.21,.31,.00,.00), ¢ = 1.5, p = 0.0200

1-8,=.29, 1, = .12

Benchmark indicators

g = 0.0200, r = 0.0500

Experiments

- eliminate all taxes

- eliminate all taxes
with 0 = 1.1

change in the growth rate

JMR model our model
0.0350 0.0211
0.0830 0.0333




o = 1.1. In both cases their growth effects are much larger than ours, increases of
0.0350 and 0.830 instead of with 0.0211 and 0.0333. The reason is the very high
elasticity of labor supply in their model. For ¢ = 2, their model predicts that the
total supply of labor to non-leisure activities (1 — £4) increases by 16% in the new
steady state, and for ¢ = 1 it predicts that labor supply increases by an astounding

48%!

6.5 Comparing the experiments

The seven experiments reducing all tax rates to zero produce growth effects be-
tween 0.0 and 3.3 percentage points. As noted above, the low value is an immediate
consequence when (untaxed) human capital is the only input in the production of
human capital. The high value occurs when the elasticity of intertemporal substi-
tution and the depreciation rates are high. Moreover, elastic labor supply can raise
that figure even higher. Can anything be said about which range of values is most
* plausible?

U.S. experience provides what is almost a natural experiment in tax reform. Be-
fore the Sixteenth Amendment was approved in 1913, the U.S. Constitution severely
restricted the ability of the federal government to levy taxes on income. Even af-
ter approval of the Amendment, income tax revenues were, until World War 11, a
negligible fraction of GNP. That fraction increased dramatically in the early 1940’s,

from 2% to-15% of GNP.
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Figure 6 shows income tax revenue as a fraction of GNP and the growth rate
of per capita real GNP for the period 1889 — 1989.% In line (1), revenue consists
of revenue from federal, state, and local individual income taxes. In line (2} it
includes, in addition, revenue from social security and retirement taxes and from
the federal corporate profits tax.

While there are other aspects of government policy that changed after World
War II, we would expect, on the basis of some of the models above, that such a
dramatic increase in income taxation would generate a noticeable negative effect
on the growth rate. It does not. The growth rate of per capita real GNP, while it
displays substantial variation both before and after 1942, displays no clear break in
its average value. |

We performed three statistical tests, all of which confirm the visual impression
that the average growth rate is the same before and after 1942. The first was a
t-test for the difference in means (allowing for different variances). The average
growth rate is 2.31 before 1942 and 1.22 after, and the t-value for the difference is
0.92. For the second, we estimated the mean rate of growth for the two periods by
regressing the logarithm of per capita real GNP on a constant and a time trend,
and performed a Chow test. The least squares growth rates are 1.37 and 1.61 in the
two subperiods, and the F) g7 -value is 3.57. The final test was non-parametric. The

median growth rates are 2.10 and 2.11 in the two subperiods, and the p-values are

8 The tax data is from the Survey of Current Business. The GNP and pop-

ulation data are from One Hundred Years of Economic Statistics (for 1889 —
1928) and The Economic Report of the President (for 1929 — 1991).
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0.38 and 0.46.7 In each case, we could not reject, at the 5% level, the hypothesis
that the average growth rate was the same in the two subperiods.

We view this evidence as suggesting that the growth effects implied by some
of the calibrations above are implausibly large. Among the endogenous growth
models, the U.S. experience over the last century seems to accord best with Lucas’s
calibration, or, more generally, with any in which the share of human capital in
producing human capital is close to one. (It also accords well with the Solow model,
in which growth is driven by exogenous technical change.) Several modifications of
the other models substantially dampen the growth effects they produce, however.

First, the assumption that income is taxed gross of depreciation overstates the
impact of tax reduction. To see this, suppose that all income is taxed at the same
rate, so factor proportions in both industries are independent of the tax rate, and
let » be the interest rate when there are no taxes. Then it follows from (4a)-(4c)
and (4a’)-(4c’) that raising the tax rate by A7 reduces the (after-tax) interest rate
by Ar(r + §) if income is taxed gross of depreciation, but by only Arr if income
is taxed net of depreciation. If the interest and depreciation rates are about equal,
the former effect is about twice as large as the latter. In the U.S., depreciation
of physical capital is at least partly deductable, so assuming that income is taxed

gross of depreciation exaggerates the potential effects of tax reform.

T The second test was motivated by Watson’s (1992) Monte Carlo study, which
shows that the least squares estimate of the growth rate is more robust than the

geometric mean to differences in the serial correlation properties of the series. The
third test is described in Gibbons (1985, pp. 131-140).
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Second, a depreciation rate of 10% for physical capital is too high. Calculations
based on the capital consumption allowance and estimates of the aggregate capital
stock produce an average depreciation rate of a little over 6%.8

Third, a depreciation rate of 10% for human capital is probably also too high.
Estimates of depreciation at the individual level range from 0.2% (Heckman 1975),
to 1.2% (Mincer 1974), to 3-4% (Haley 1976). If working lifetimes are about 40
years, then, ignoring population growth, about 2.5% of the workforce retires each
year. Retirees have more experience but less education than younger workers, and
average wages peak well before retirement for most workers. If retirees embody 2.5%
to 4.0% of the total stock of human éapital, then summing individual depreciation

and retirement effects gives a range of‘2.7% to 8.0%. The latter figure involves

8 The depreciation rate is equal to the ratio (capital consumption allowance

/output) /(capital/output). From the 1991 Economic Report of the President
we find that for 1989, CCA/Y = 554/5201 = 0.107. Christiano (1988, pp. 260-262)
calculates the capital-output ratio to be 2.65, of which 10% is is consumer durables,
33% producer structures and equipment, 33% government and private residential,
and 24% government non-residential. Since the capital consumption allowance fig-
ures exclude consumer durables and government, the relevant capitai-output ratio
for our purposes is K/Y = 2.7 [1 — .10 — (.025 * .33) — .24] = 1.73, where we
have used the information in Young and Musgrave (1980, Tables 1.A.2 and 1.A.6)
to estimate the proportion of residential capital owned by the government. Com-
bining these two figures, we obtain a depreciation rate of 0.107/1.73 = 0.062. This
figure agrees well with calculations for the period 1950-1975 based on the capital
stock estimates in Young and Musgrave. Using their figures (Table 1.A.2) for the
capital stock (excluding government capital, consumer durables, and inventories),
and figures from the Economic Report of the President (1991, Tables B-1, B-3,
and B-16) for output and the capital consumption allowance, and making use of
the formula § = (CCA/Y)/(K/Y), we obtain depreciation rates for 1950-1975 of
850 = .0885/1.44 = 0.613, &35 = .0887/1.44 = .0620, g0 = .0939/1.52 = .620, &5 =
.0880/1.46 = .0600, &7 =.0951/1.52 = .0620, and &5 = .1065/1.61 = .0660.
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substantial double counting, however: if individual depreciation rates are high,
then retirees account for a correspondingly smaller proportion of the total stock of
human capital.

Fourth, there is little evidence of the very strong labor supply effects postulated
by Jones, Manuelli and Rossi. Average weekly hours per employed person have
fallen very steadily and dramatically over the last century, from 53.5 hours in 1889
to 34.6 hours in 1989. Labor force participation has risen over the same period,
with the proportion of the population that is employed growing from 35.0% in 1889
to 47.4% in 1989.° The trend in hours slightly outweighs the trend in employment,
with weekly hours per head of population falling from 18.7 to 16.4.

If the King and Rebelo model is recalibrated with 6, = 6 = .06, eliminating
all taxes raises the long run growth rate by 2.5 percentage points rather than 3.3. If
depreciation on physical capital is taken to be fully deductible, the growth effect is
further reduced, to 1.8 percentage points. And as Tables 2 and 3 show, even smaller
growth effects are obtained if a smaller value is used for the depreciation rate on

human capital, &5, or for the elasticity of intertemporal substitution, 1/c.

% The ratio employment/population (in millions) is 21.6/61.8 = .350 for 1889

and 117.3/247.3 = .474 for 1989. For the earlier year, the figure for population is
from Maddison (1982, Table B2), and those for employment and average weekly
hours are from Kendrick (1961, Tables A-VII and A-IX). For the later year, all the
figures are from the 1993 Economic Report of the President {Tables B-29, B-30,
and B-42).
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7. Conclusions

The U.S. economy over the last century conforms very well to the description
of a balanced growth path, with stable values for the capital-output ratio, capital’s
share in income, leisure’s share in total time, and the interest rate. Hence those
data can have very little information about some of the elasticities that are relevant
here. One goal of the present paper has been to study how sensitive quantitative
conclusions about growth effects are to these badly estimated parameters.

On the technology side, we found that the elasticities of substitution in produc-
tion are not critical for growth or revenue effects. Thus, assuming Cobb-Douglas
production functions in all sectors is harmless: within a wide range, conclusions
about growth and revenue effects are very insensitive to this assumption. (Elas-
ticities may be important for welfare conclusions, however, since they are critical
in determining the size of the distortion in input ratios resulting from asymmetric
~ taxation of factor incomes. For example, see Lucas (1990) and Davies and Whalley
(1991).)

By contrast, share parameters are quite important for growth effects. Excellent
information about factor shares in the goods-producing sector is readily available,
but a better estimate of capital’s share in the sector producing human capital - a
parameter about which information should be available ~ would be very useful.

On the preference side, two elasticities are important. Differences in estimates
of the elasticity of intertemporal substitution can easily account for differences by

a factor of two or three in estimates of growth effects. Similarly, differences in
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estimates of the long-run elasticity of labor supply can account for differences of
several percentage points in beliefs about interest rate effects. For the reasons
discussed above, it seems unlikely that aggregate U.S. time series can be used to
improve our estimates of either parameter. Other data sources, cross-section or
cross-country, are needed.

The depreciation rates for both types of capital, the tax treatment of depreci-
ation, and the tax treatment of inputs in the sector producing human capital are
also critical for determining growth effects. Among these, the depreciation rate for
human capital is the most problematic. Although depreciation rates for individual
human capital have been estimated from age-earnings profiles, those estimates are
inappropriate in the current context, where the largest source of depreciation comes
from the fact that lifetimes are finite. An overlapping generations model would al-
low a more satisfactory treatment of this issue, but at the cost of raising a new and
equally difficult problem: how human capital is transmitted from one generation to
the next.

We should emphasize that even if the growth effects of tax reform are small,
the welfare effects may be large, as shown in Lucas (1990) and Davies and Whalley
(1991). In particular, capital taxation can lead to a fairly large bias in the com-
position of the capital stock between its physical and human components, a bias
that can have serious welfare consequences. The analysis here suggests that study-

ing these consequences in models in which growth is exogenous (or absent) may
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be harmless. There is, as yet, no theoretical presumption or empirical evidence of

substantial growth effects from factor taxation.
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APPENDIX

A.1 Balanced growth conditions

First we derive (3a)-(3j). Let Ay, A2 and v be the multipliers associated with
the constraints (1a)-(1c) in the household’s problem. Then the conditions for a

maximum are

(A1) ¢’ =u,

(A2) Aip = wps,  i=1,2,

(A3) )-\it =(p+ )it — g, 1=1,2,
(A4) tl;Lglo e P Aky = tlirg e " Aphy = 0,

and (la)-(1c). Use (2) and (A2) to substitute into (A3) for ¢;; and v, to get

(A5) /I\lt/)‘lt =p+(1—wim)b — (1 = m11)G1(1, 1),

(A6) Aot /Ao = p+ (1= wam)bs — (1 = 7a2) Hy(1, 221).
Budget balance for the government implies that
T; = [r16upuGr + T2bupa Hy + 71303 F1] ke
+ [rnlup1Ga + Talopa Hy + T3ls Fo) by
— wib1pre [T1161 + 11260 + 11303 ke
— w2bapae [To1 £y + Toalay + Toala] by
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Let é = c;t/k;: be the ratio of consumption to the capital stock, let z, = h,/k; be
the economy-wide input ratio, and let z; = £;h,/8;:k, be the input ratio in sector

i. Clearing in the output markets implies
Iy = 61tk G(1, 212),

Iy = Ok H(1, 20:),
C = gatk'tF(la z3t)s

and clearing in the factor markets implies (3i) and (3j).
Along the balanced growth path, consumption and both kinds of capital grow

at a common, ‘constant rate g,
(A?) ét/Ct=kt/kt=ilt/}lt=g.

Then, since factor prices are constant along the balanced growth path, it follows

(Al) and (A2) that
(AS) I.lt/Vt = ’.\It/Alt = )'\Zt//\2t = —0g.

Therefore, the transversality condition (A4) holds if p > (1 — o)g, exactly the
condition needed to ensure that total utility is bounded if consumption grows at
the rate g. It will be assumed throughout that this is the case.

To describe the balanced growth path, use the market-clearing conditions to
eliminate I; and I, from (1a) and (1b); use Walras’ law to drop (1c); and substitute

- from the steady-state conditions (A7) and (A8) into the laws of motion (1a}, (1b},
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(A5), and (AG); If income is taxed gross of depreciation, then w; = 0,1 = 1,2, so
(3d) and (3e) follow from (2).

If income is taxed net of depreciation but tax rates vary only by factor, then
w =wy=1,and 71 = T2 = 73 = 7,1 = 1,2. In this case (4a’) and (4b') follow

from (A7) and (AS8), and (4c') follows from (2).

A.2 The family of CES production functions

Next we will show how the families of CES functions used in sections 3 and 4

are constructed. Any CES production function can be written as

Alfk® + (1 -9l a £0,
G(k,h) =

Ak RO, a=0,
where 0 < A,0 < § <1, and a < 1. Fix z and r. For each a < 1, we want to
define a CES function, call it G(-, -; ), with elasticity parameter a and with scale

and weight parameters A and 8 (that depend on «,z, and r) such that (4a) and

(4b) hold for the input ratio z and interest rate r. That is, we require that

Gi(l,z;a) 2! 1
Go(1,z;0)  1—-6

Gi(1,z;a) = BA[G + (1 - )%=/ = 1,

Solving these two equations for A and  as functions of «, z, and 7, using them to
write G(-,; a), and rearranging terms, we obtain (5). The method used in section 4

is the same.
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A.3 Tax revenue

To compute the ratio of tax revenue to output, assume that tax rates vary only
by factor, and let 71 and 2 be the tax rates on income from physical and human

capital. Using {2) we find that

Tax revenue  mk:p1G1 + 2hip1 G2

Income k:p1 Gy + hep1Ga

71(G1/Go) + 12
(G1/G)+ Z

T1Q+’4’2Z
Q+2,

where Z = hy/k:, and where the last line uses (8a). To express Z in terms of @),

first use (3a) and (3g) to find that

Assume that consumption goods and physical capital are produced with the same

technology, F = G. Then Z, = Z3, so (3j) implies that
Z = Zl + (Z2 - Z1)92~

Substituting for #; we obtain

Z1H(1,Z,)

2= A7) = (Z - Z)(R=p)/a).

Then, substituting from (9) and (10b) or (11b), we can write Z;, Z, and R in terms

of @/g. The latter can be computed by using (10a) or (11a).
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A.4 Elastic labor supply

Next consider elastic labor supply. If leisure time is quality adjusted, the first
order condition (A1) for the household’s problem is replaced by a pair of conditions

and the law of motion (A3) for A, is slightly altered. The new conditions are
V(Ctyetltht)_a‘/l(ctye‘itht) = Vt,

V(ct,f“ht)“”Vz(c,,tht) = VtqQyt
j\gt =(p+8)Aax — V= {ct, Larhe) Va(ce, Lashe )y — veqin(1 = £4:).

Combining the first two equations to eliminate v, substituting from (2) for ga;, and
normalizing by k: gives (3k’). Substituting from the second into the third reproduces
(A3).

If leisure time is not quality adjusted, then the new conditions for the house-

hold’s problem are

w(le) e = v,
"7 v(fa) TV (at) = veqaihe,
dot = (p + &) A2 — 11 (1 — Lat).

Combining the first two to eliminate v;, substituting from (2) for gy, and normal-
izing by k; gives (3k"). Substituting from (A2), (A8), and (2) into the third gives

(3¢").
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A.5 The Jones, Manuelli, and Rossi model

To derive our version of the Jones, Manuelli, and Rossi model, replace the

constraints (1b) and (1c) in the household’s problem with
he = J(Iot, a:he) — 63k,
Lig + It + ¢ — queke — qoche(1— £oe — 84) = T, <0,
where Z; is the fixed proportion of time devoted to leisure. The conditions for a

maximum are (Al) and

A = u,
Age i (Tots Lathe) = v,
Aot Jo(Ioz, Lochs) = veqor,
Ae = (p+ 61)Ax: — vequs,
Aot = (p + 62) Ao — AaelarJo(Tot, Loche) — veqor(1 — fo — 24).

Eliminating v, using (A7) and (A8), and substituting from (2), we find that the

conditions for a steady state include
g+ by =0J{1/p,1);
(L, )/ (1, ) = (1 — m1)Ga(1, 1),
—og=p+6& — (1~ m)Gi(1,2),
—og=p+ 8 — LJo(1, p) — Ji(1, ) (1 — 721)Ga(1, 21) (1 — £y — 1),
r=p+og.
" Substituting for G and J and their derivatives gives (13a)-(13e).
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A.6 Calibration

Tables Al-A3 show our calibrations of the King-Rebelo, Kim, and Jones-
Manuelli-Rossi models. Each table displays the baseline calibration values, the com-
puted values for all endogenous variables in response to tax experiments, changes
in the baseline values when the model is recalibrated, and the results of tax exper-
iments for each new calibration. For Lucas’s model, the interest rate is computed
by taking — for Lucas’s values — capital’s share, adjusted for the capital tax, divided

by the capital/output ratio: r = {.24)(1 — .36)/2.4.
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Table Al

King and Rebelo (1990)

Calibrated

Uncalibrated

=8=.1, w=v=.33

Exogenous g=1, A=1 p = .0120, B = .1750
7 = (.20,.20,.20,.20)
Endogenous r =.0320, g = .0200 7, = z, = .3554

Tax experiment

values for endogenous variables

= (.30,.30,.30,.30) g = .0035, r = .0155, z, = 7, = .3554

7 = (.30,.20,.30,.20) g = .0142, 1 = .0262, z, = 7, = .4056

7 = (.00,.00,.00,.00) g = .0530, r = .0650, z, = 7, = .3554
Recalibration v = .05 p = .0120, B = .1846, z, = .3554, z, = 3.376
r= (.30,.20,.30,.’20)' g = .0188, r = .0308, z, = .4276, 7, = 4.062
r = (.00,.00,.00,.00) g = .0530, r = .0650, z, = .3554, z, = 3.376
Recalibration §,= .012 p = .0120, B = .05835, z; = z, = .3554

r = (.30,.30,.30,.30) g=.0129,r = 0249, z, =z, = .3990

r = (.00,.00,.00,.00) g =.0343, r = 0463, z; =z, = .2971




Table A2

Kim (1992)
Calibrated Uncalibrated
& = .05, §, = .01,
w=v=.34 A= B = .05569
Exogenous
=194, p=.010
r = (.34,.17,.34,.17)
Endogenous g = .0150 z, =2, = 2467

r = .0391

Tax experiment values for endogenous variables

r = (.00,.00,.00,.00) g = 0241, r = 0567, 2, =2 = .1729




Table A3

Jones, Manuelli, and Rossi (1993)

Calibrated Uncalibrated
=8 =.1 w=.36 A = 1.401
Exogenous 1-8,=.29,¢ = .12 Y = .4828
$=10,0=15p=.0200 (v =wy = .1738)
r = (.21,.31,.00,.00)
Endogenous | g =.0200 r=.0500, ¢ = 1.00
z, = 2174

Tax experiment

values for endogenous variables

r = (.0,.0,.0,.0) g = .0411, r = .0816, ¢, = .117
u=.6728, z, = 2070

Recalibration & = 1.1 A =1.280, ¢ = .5103, (v = yw = .1837)
p=1.000, r = .0420, z, = .2298

7 = (.0,.0,.0,.0) g = .0533, r=.0733, ¢, =.1255

p= 6758, z, =.2171
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