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inventory decisions in the presence of gestation and maturation delays between

production and consumption. The low fertility rates of cows and substantial

lags between fertility and consumption decisions cause the demographic

structure of the herd to respond cyclically to exogenous shocks in demand for

beef and in production costs. Known biotechnology of cattle demographics

imply sharp numerical benchmarks for the dynamic system that describes the

evolution of cattle stocks and beef consumption. These compare very closely

to structural econometric time-series estimates over the 1875-1990 period and

prove that systematic cattle cycles have a wholly rational explanation.
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I. NATURE OF THE PROBLEM
Total stocks of U.S. beef cattle (figure 1) are among the most periodic

time-series in economics. Cattle are both investment and consumption goods,
and current breeding and consumption decisions have important feedbacks on
future stocks. Reproductive stock accounts for about 40 percent of total stocks,
and lengthy gestation and maturation lags stretch the process over several years.
Economists have recognized the importance of these lags (Ezekiel (1938) is the
classic reference). However, lags of biotechnology must be combined with
more comprehensive economic dynamics to explain these cycles. There are
many empirical studies of the supply of beef, but a more complete market
account in terms of the modern‘ economics of renewable resources and
intertemporal substitution is essential to the problem.? The model presented here
proves useful in accounting for many of the interesting cyclical properties of the

data.

! We are indebted to Lars Hansen and Thomas Sargent for helpful
discussions, Li Hao for research assistance and the National Science Foundation
for research support.

“Empirical studies of the supply of beef by Nerlove, et. al. (1979, 1992) are
the most comprehensive available. See also Trapp (1986) and Rucker, et. al.
(1986), among others. Not much is available on the market equilibrium theory
of completely managed renewable resources with significant reproductive stocks.
Recent work on annual storage of agricultural goods (Williams and Wright
(1990), Deaton and Laroque (1992)) is related, but is inappropriate for cattle
because there are no reproductive feedbacks to future stocks.
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It is known that investment aspects of cattle can produce unusual supply
responses. For example, an increase in demand for beef reduces current supply
if younger animals are held back to achieve greater slaughter weight (Jarvis,
1970) or if more females are withheld for reproduction to increase the future
size of the herd (Rosen, 1987). We study the breeding margin and show how
rational reproductive-inventory decisions combine with production lags to
produce cattle cycles.

The model is built upon elementary facts of beef cattle technology.
Cattle typically are held on land that is below the margin of cultivation.
Breeding stock and young animals forage in pastures, crop remnants, and
rangeland. Once they are large enough, virtually all young males (steers) and
about one-third of young females (heifers) are sent to corn feed lots for
"finishing,” to be slaughtered at approximately 2 years of age. Remaining
females are bred on an annual cycle, also beginning at age 2. A cow has at most
one calf after a 9-month gestation period, and an effective reproductive life of
8-10 years. These delays embody natural "time-to-build” features (Kydland and
Prescott (1982)) in the age structure of stocks and cause cyclical feedbacks
between current consumption and future reproduction decisions.

Trends are ignored in what follows. They include income and
substitution effects in the demand for beef and many improvements in beef and
substitute food technologies that are interesting in their own right, but don’t
contribute to understanding persistent cycles. The model has been specified with
the minimum number of parameters necessary for the problem-—the rates of
fertility and natural deaths, the rate of interest, and demand and supply shocks.
Beef cattle technology is so simple that these parameters are known (approxi-
mately) a priori and can be used to predict the time path of cattle stocks and
consumption. These predictions track the actual data extremely well, and

provide strong evidence that breeding stock inventory decisions are important for



cattle cycles.

The next section sketches a market equilibrium model. Its dynamic
properties are discussed in section III. Empirical investigation of the model
specification is in section IV and some estimates appear in section V.

Conclusions are in section VI.

II. THE MODEL

We focus on market equilibrium inventories of female breeding stock,
assuming a one year gestation-birth delay and a fixed two year maturation lag
for both breeding and consumption (slaughter). The interesting economic
decision is whether to breed or consume a mature female. Males (steers) are
slaughtered at maturity and are inframarginal for breeding decisions. For
present purposes they can be treated as females marked for slaughter and need
not be labeled as separate capital goods.> A number of other simplifying
assumptions are made. The main ones are homogeneous and undifferentiated
stocks of adult cattle, independent of age or prior fertility; an exogenously fixed

slaughter age of two years*; and no interactions between trends and cycles.

3 The price of slaughter animals per unit weight is similar for steers and
heifers. Beef quality is lower for cows, but they are larger so gross value is not
appreciably different. These equalizing differences are ignored to simplify the
dynamics.

“The Austrian margin is too difficult to analyze because it causes the order
of the system describing market dynamics to vary with market conditions. This
omission is regrettable, but may not be important, for three reasons. First,
variations in slaughter age have only minor feedback on future population
decisions compared to breeding stock inventory decisions. Second, veal is a
very small proportion of U.S. beef consumption and almost entirely produced
by the male offspring of dairy cows (a distinct breed in the U.S.). Third,
slaughter age seldom varies by as much as one year, yet the total stock cycles
in figure 1 are nine years or more. The Austrian margin can’t affect much just
as a matter of accounting.



A. Population Mechanics

Population mechanics are assumed to follow the schematic of figure 2.
Adult stocks are either bred or consumed. After a one year lag each animal
reserved for breeding gives birth to g calves, with g < 1. At birth, all surviving
calves enter a "pipeline” and remain there for two years, before merging into
the adult stock at maturity. Assume that beef quality is invariant to age and
breeding history. Then mature adult cows are consumed on equal terms with
mature steers and heifers, and it is natural to treat all adults as neoclassical
capital with Poisson death rate §. This simplification is required empirically
because the stock data are total head counts, not classified by age. It also
eliminates the need to keep track of the adult age distribution. The state space
is compacted to only three capital goods: adults, yearlings, and calves.
Empirical evidence will be brought to bear on this specification in section IV.

Population stock-flow accounts are easily expressed. Let x, be the
breeding stock, ¢, the number consumed and k, the total number of mature

animals at the beginning of period t. Then

0 k =x +c.

The gx,, calves born at t enter the pipeline, and the gx , calves born one year
earlier remain there as yearlings. The head count, y,, of all stocks is the sum

of adults, yearlings and calves

(2) Yo = x + gx, + gX.-

Intertemporal constraints derive from standard demographic accounts
because the U.S. beef cattle industry is essentially closed. Imports and exports

of cooked beef products are trivial and few live animals are shipped across



international borders. Imports of foreign fresh beef have been highly restricted
in the U.S. over the years. Basically none was imported until the 1960s and at
their highest levels today account for less than 10% of domestic consumption.
Little beef is exported from the U.S. We assume a closed system in which U.S.
consumption is produced exclusively from domestic stock.

All stocks in the pipeline in figure 2 move up one place each period.
A total of c, adults are sent to slaughter (all steers and a strictly positive fraction
of heifers) and 8k die of natural causes. The gx,, yearlings at t-1 enter the adult

herd, so breeding stock evolves as

(31 X = (1 'a)x\-l + 8% - G

The three variables [X,,,X,5,X,3] conveniently represent the state of the
population because current stocks of calves, yearlings and adults are readily
calculated from them.

B. Breeding Stock Inventory Policy

Ranchers choose between reproduction and slaughter of adults. In an
ongoing market equilibrium, they do some of each and profits are equated at
both margins. Assuming constant returns to scale, a rancher’s calculation is
independent of herd size and profits are equated on the average as well as on the
margin. Let p, be the price of an animal on the hoof and m, the feeding cost of
preparing it for slaughter. Define q, = p, - m, as the net return from selling an
animal at t for consumption.

The return from holding an adult animal for reproduction is the
opportunity to sell it and its progeny later, minus holding costs and foregone
interest. A cow survives with probability 1-6 and will be worth E,(1-0)q,., next
year, where E, is expectations given period t information. Its g progeny sit in

the pipeline for two years, and will have value Egq,,, when potentially sold



three years from now. Letting ¢ be the rate of interest and B = 1/(1+) the
discount factor, the gross return from breeding is E[8(1-8)q,,, + £°gq..3]. Net
return subtracts expected holding costs. Let h, be the unit holding cost for an
adult and assume proportional adult equivalent holding costs of v, and v, for

calves and yearlings. Then, discounted holding costs are

C) z, = h + Bgyh, + Fgvih..

Market equilibrium requires equal value for both selling and holding,

or

) q = E[B8(1-0)q,,, + gﬁaqws - z].

Note that the coefficients on the lead terms on q in (5) are the discounted
coefficients of the lag terms of x in (3). This duality property of intertemporal
optimization arises because (5) is the Euler equation from maximizing discounted
expected values of beef prodl;ction in a perfectly competitive market.

Demand and boundary conditions complete the description of the model.
Specifying a particular demand function for such a lengthy period is problemat-
ic, but since population dynamics are linear, we take demand as approximately

linear too:

() ¢ = a-op,+ d = - aq,-om, + d,

where d, is a demand shifter (scaled so its coefficient is unity). Initial stocks are
exogenously given, with at least one of them strictly positive. Limiting future

values of capital are bounded if the average rates of growth of all cost and



demand shifters are less than the rate of interest.’

Equation (1) - (6) reduce to two linear third-order difference equations

in x, and q:
(7) X - (l'a)xt-l - X3 = -0y + aq, + am,- d\
® Elq, - B(1-0)qu4: - 84,43 + b + Bgyeh,, + Bgyih,.] =0

III. MARKET SOLUTION

We study a special case where feed, forage and land are elastically
supplied to the industry. Then holding costs h, and finishing costs m, are
exogenous, independent of x, or c,, and the model is recursive. The supply of
beef is elastic at constant supply price g, determined from (8), independent of
Xx,, consumption is demand determined at that price, and stocks evolve from the
solution to (7). '

A. Renewal Conditions

The primary task is to characterize the stochastic processes for {x,,c,}.
Renewal requirements give rise to one unusual detail. Suppose cost and demand
parameters m, h and d were constant, and breeding stock and net price, x and
q, settled down to steady-state values. Inspection of (7) and (8) reveals two

necessary renewal conditions for this problem.

©) g-6 > 0

SWe impose upper bound constraints on the amounts of cattle and money
producers can borrow in order to rule out pyramiding schemes that would cause
future capital values to be unbounded. Once such schemes are ruled out, it can
be shown that the proposed solution is the market equilibrium (Scheinkman
(1986)).



(10) Bg+ B0 -8-1>0

Births must exceed natural deaths for renewal in (9). In addition, the gross
return from reproduction must exceed the return to slaughter at the steady-state
price in (10). Otherwise holding costs could not be covered and the herd
rationally would be driven to extinction.

B. Market Equilibrium

Assume AR(1) processes for the shocks {d,,m,h}:

(11) u = pu, + € foru = d, m, and h,

where the p.’s are serial correlation parameters, ¢ are i.i.d. innovations with
zero means, constant variances, and zero cross correlations at all leads and lags.
Rescaling e™ to include the multiplicative effect of o and suppressing constants,

the full model is, in operator notation,

(12) (1 -¢,L)1 - ¢,L)(1 - ;L)x, =
aq, + [¢7/(1 - pL)] - [ef/(1 - psL)]

(13) EJ[(1 - L)1 -N'LY(A - A'L)q,
+ (1+ gyol'+ gvil)el/(1 - pL)] = O,

where ¢, and )\, are the roots of the two cubic characteristic equations®

“The characteristic equation of (12) and (13) factors into two cubics in the
recursive case. If h, or m, are increasing in x,and c,, there is rising supply price
of beef and the price and quantity system is fully simultaneous. The characteris-
tic equation remains of order 6 but has no cubic factors. The recursive form has
proven useful for uncovering the essential economics of the problem. Numerical
calculations reveal that the characteristic roots are insensitive to rising supply
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(14) ¢ -(1-8¢-g =0
(15) g\ + (1-8)BN-1=0.

The characteristic roots have three important properties.’

(i) Equations (14) and (15) both have one real root and two imaginary
roots. The complex roots produce cyclical responses to shocks. Let [¢,,A,] be
the real roots and [¢,,¢5,A,,A;] be the imaginary roots.

(i) The product of complementary roots across equations equals (1 +
): o\ = 1/8, for i = 1,2,3. This familiar turnpike result is due to symmetry
of coefficients in equations (3) and (5).

(ii1) Three roots are explosive and three are stable. The real root of
(14) is explosive, ¢, > 1/8, so the real root of (15) is stable, from property (ii):
A, <1. The complex roots of (14) are stable and the complex roots of (15) are
explosive: |¢;| <1 and |N|>1/8, forj = 2,3.

Roughly speakigg, the stable real root in (15) is associated with the
overall speed of convergence of the system. The two complex stable roots in
(14) are associated with convergence of the age structure of animals to their
stable distribution. Cycles arise from demographic "echo effects” of the current
age distribution on future reproductive capacity. Demand and supply shocks
cause ranchers to alter how much breeding stock they carry and these decisions
percolate through all future birth cohorts. The percolations oscillate unless

initial stocks are accidentally lined up just right.

price specifications in the relevant parameter range, so stock dynamics aren’t
affected much. This class of models easily accommodates both rising supply
price and shock processes of any order and generalization is straightforward.

"The graphs of (14) and (15) and condition (10) prove (i) and (ii).
Substituting ¢\, = 1/8 into either equation verifies (it).
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The model is solved by taking the unstable roots forward and the
unstable roots backward (Sargent(1979), Hansen and Sargent(1990))°. The
solution in terms of the state variables [x,,X.;,X,;] and current and past

innovations {e%,€™,¢e} can be shown to be

(16) (1-AD)1 - ¢, - ¢;L)x, = 0,
17 ¢ = (& A1 - g L)1 - $sL)x, -
with

(18) O, = [(os M)/ (@~ pINe/(1 - p,L)] - (o M)/(@1- p))lE™/(1 - pul)]
- [aTN/(3- (1 + Pp’+ 2epcos][el/(1 - puL)]

where T' and ¢ are defined by I' = 1 + Bp,v.8 + 0278 and ¢; = re*¥, for
j = 2,3. The formula for prices in terms of the state variables is similar to
(17). Finally, the autonomous form for ¢, results from substituting (16) into law

of motion (3):
(19) (1 - AL, = -(1-¢,)0,

Autonomous equations for p, or q, also look like (19).

In this example, the c, process (19) (and by implication the price
process) is of lower order than the process for x, (16), and contains only real
roots. Consumption (and prices) do not oscillate, only stocks do. This strong

restriction arises from the recursive specification--constant returns to scale and

8Some technical details of this specific class of models are discussed in
Rosen, Murphy and Scheinkman(1989).
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elastic factor supplies to the industry.® If factor supplies are not elastic, the
stable complex roots of the charactenistic equation are present in both the
autonomous consumption and stock equations. Prices have predictable cycles in
that case (though no profit can be made of it). Nevertheless, the recursive
structure suggests that there is a sense in which cycles are more important for
breeding stock than for prices or consumption and it is a convenient place from
which to start.

C. Transfer Functions

Figure 3 shows how positive demand innovations ¢! work their way
through the market (cost innovations look similar except for sign). They are the
graphs of the power series expansions of [(1 - A\ L)(1 - ¢,L)(1 - ¢,LX(1 - p, L)}
for x, from (16) and of
(1 -¢,)I(1-AL)1 - pL)]? for ¢, from (19), multiplied by the coefficient on
€ in (18), all calculated at cattle parameters g = .85, = .909 and § = .1.
Figure 3 indicates different market responses to transitory (p, = 0), permanent
(p, = 1) and intermediate (p, = .6) shocks. The coefficients on the innovation
terms in (18) imply that innovations are transitory when p; < A,;: the shock dies
out quicker than the market’s overall response-speed. As illustrated with p; =
0, adult stocks are sold off and consumption is increased in the period when a
positive shock occurs. Consumption is reduced later so that stocks can be built
back up to sustain normal demand. The initial sell-off of adult stocks disturbs

the pipeline age distribution and causes the oscillatory responses of stocks.

Favarro (1989) structured a related model for Uruguayan cattle, allowing
for rising supply price of land and grazing competition between cattle and sheep.
Another intriguing possibility is to include rising supply price of feed grains and
competition for them among cattle, hogs and poultry. Some experimentation
along those lines suggests that the dynamic effects on cattle of shocks in
competing industries are second-order relative to what we focus on here, but
these possibilities deserve more investigation than we have given them.

11



Ranchers behave opportunistically and sell more when demand is high because
they anticipate that it is likely to fall back to normal after a little while.

Innovations are permanent when p, > A,. Then the shock is more
persistent than the overall response-speed of the system and intertemporal
substitution is opposite to that of transitory shocks. For the p, = 1 case
illustrated, consumption initially falls when demand increases. Ranchers know
that increased demand is likely to be sustained for a long time into the future
and more than the average number of females must be bred initially to achieve
the greater herd size necessary to provide it. Consumption jumps up when
stocks get large enough, then smoothly convergesto its new steady state.
Breeding stocks increase initially, then grow cyclically to their new steady state
for the same reasons as before. Figure 3 reveals a kind of backward bending
initial supply response to permanent shocks, and a normal rising supply price
response to transitory shocks. An intermediate case where p; = .6 works out
to be slightly on the transitory side of this example. Its responses are smaller
because the two effects tend to cancel each other.

Figure 4 contrasts responses of breeding stocks to total stocks. Notice
how the moving average in (2) redistributes the y-responses and stretches them
out over a longer time interval. This is an important aspect for understanding

the cyclicity of total stocks in figure 1.

IV. EMPIRICAL COMPARISONS

A. Estimating the Breeding Stock
The stock data'” in figure 1 are total head counts of all beef cattle in the

U.S. at the end of each year, not only the breeding stock portion in (16).

1°All data are from U.S. Department of Commerce, Bureau of the Census,
Historical Statistics: Colonial Times to 1970 and U.S. Department of Agricul-
ture, Agricultural Statistics, annual issues.
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However, equation (2) implies that breeding stocks x, can be replaced in (16) by
inverting total stock y,

(20) x, = y/ll + gL + gLl’] = y/G(L)

We use (20) to construct breeding stock x, from the total herd count data y,. The
construction is important because it bears on the empirical relevance of the
simplifying assumptions used to compact the state space.

Two initial conditions are needed to iterate x, from y,in (20). The
average annual growth rate of 4.5% for the U.S. cattle population over 1875-
1990 is extrapolated back to 1875 and 1876 for this purpose'!. The following
argument shows that errors do not accumulate in the iteration. The solution to

(20) is
(21) x, = [y/(1 - §0)A - £L)] + bkt + by,

where the b’s are constants satisfying some initial conditions and the £’s solve
£ + gt + g = 0. The complex roots §;are stable (§,¢, = g < 1 and || =
Vig), so the effects of measurement error decline in damped oscillations in
subsequent years. Some experimentation with different initial conditions showed
convergence to the same constructed x-series within 15 or 20 years.

B. Validating the 3-State Approximation

'"In a deterministic system with a constant 4.5% growth rate, the ratio of
breeding stock to total population, x/y, is fixed at [1 + g/1.045 + g/(1.045)7]".
Given g, this factor is applied to y,g;5 to get an initial condition for X,g;5. An
initial condition for t = 1876 is obtained by applying X,g;s = (1.045)X 5.
Recall that g is interpreted as the number of live births. The recursion formula
(20) assumes that all calves survive into their second year. Calves survive at a
lower rate than yearlings, but we have not experimented with alternative
assumptions because this is likely to be an unimportant source of error.
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Three alternative x, series have been calculated for values of g
approximating the net fertility rate of U.S. cattle under modern conditions: .80,

.85 and .90. Adding consumption to both sides of equations (3)

(22) k,=c +x,=(1-0x, + gxgs

Equation (22) is an identity in the model, but not in the data. Its validity can
be verified empirically by adding an intercept, a second lag in x,,, and a
disturbance term to the right hand side and treating it as a regression. Actual
slaughter numbers(available since 1900) are added to the constructed x, series
to estimate k, in (1), and k, is regressed on x,,, X,,, and x,;. If the model is
valid, the regression coefficient on x., should estimate (1-8), in the range
[.9,.95] for cattle, both the intercept and the regression coefficient on x, , should
be zero, and the coefficient on x,, should give back the value of g used to
construct x,

Regression coefficients for the entire 1900-1990 period for which k, can
be constructed and for the sub-period 1930-1990 appear in table 1. Considering
the drastic simplifications, the fit is slightly astonishing. The constant term has
a standard error approaching statistical significance, but a value of zero cannot
be rejected and its point estimate is unreliable. The other coefficients are more
sharply estimated. In all cases the estimated coefficient on x,, is small and not
significantly different from zero, as required. The estimates of (1-0) are
decreasing in the assumed value of g and only mildly out of the .90-.95 range.
The implied estimates of g in the last column are slightly too large, and
increasingly so for larger assumed values. However, 95% confidence intervals
cover the assumed value in every case. On the deficit side, F-tests formally
reject the joint hypothesis [y,=7v,=0,y,=.95,7;=assumed value of g]. And

when additional lagged values of x are included in the regression, the coefficient
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on x,, is statistically significant (all larger lags are insignificant), indicating that
the model’s intertemporal specification is not strictly accurate.

Graphic evidence that the quality of approximation is good enough to
warrant serious consideration is presented in figure 5. Equation (22) implies a
consumption series corresponding to each {x} series. This completely artificial
consumption series imputed from {x}, with 6 = .1 and g = .85, is compared
to actual slaughter numbers, a series that is collected independently of total stock
counts, at the top of figure 5. Though the constructed series is noisier, its major
cyclical variations compare very well both in timing and magnitude to actual
consumption. It errs mostly in the trends. The actual productivity of U.S. cattle
farmers in sustaining consumption is greater than the model predicts, and
increasingly so after 1940. However, the comparison is quite close if trends are
eliminated. This can be shown in the following way for the relationship
between consumption {c} and total stock {y}, which are independent series.

Equations (20) and (22) imply the following relationship between {c} and {y}:

(23) (1+gL + gLl%c, = -[1- (1-9L - gl’ly, = L)y,

This are plotted (g=.85 and 6=.1) in the lower panel of figure 5 after removing
trends. The cyclical movements of G(L)c and $(L)y are virtually identical. It
is important to stress that the ¢ and y series are independent counts of a flow
and a stock and not imputed from each other.

Breeding stock {x} imputed from g = .85 is plotted along with total
herd size {y} in figure 1. The y-series is smoother and more periodic than the
x-series because {y} is a three term moving average of {x}. Both change their
character after 1930, due to secular improvements in the quality of the data, as
well as changes in the dynamic structure of cattle technology caused by corn

feeding and other agricultural innovations that are ignored here.
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C. ARMA Formulation

It is pointless to test all the strong restrictions implied by this simple
model, because it is known to be wrong in its details. Formal statistical
rejections of the null would tell us no more than we already know. The more
interesting question is "how wrong is it?" We proceed by comparing estimated
autonomous ARMA forms for x, and ¢, in (16) and (19) with some theoretical
benchmarks.

The benchmarks are found by multiplying both sides of (16) and (19)
by (1 - p,L)(1 - p, L)1 - p,L). The resulting composite error terms have zero
autocorrelation after two lags, so the autonomous forms for {x,c} can be

represented as ARMA processes. The result in an ARMA(6,2) for x,

(249 (A -MD(A - ¢,1)(1 - $L)1 - L)1 - p L)1 -p,L)x,
=, + byw, + buw,

where w, is an i.i.d. random variable with zero expectation'?. Applying the

same procedure to (19) results in an ARMA(4,3) for c,

(25) (1 -AL)A - pL)(A - p L)1 - pL)e,
= a’l + bcla'l-l + baa"-z + bcad‘c-s

with i.i.d. random variable & and MA constants b, defined by an expression
similar to note 11. Write (24) as B(L)x, = A(L)w, where B(L) is the sixth
order polynomial in L and A(L) is a second order polynomial in L. Then (20)
and (24) imply an ARMAC(6,4) for {y} of the form B(L)y, = G(L)A(L)w, with

(Note Numl§ 2 Its variance and the MA constants b,; can be calculated from

w + bxlwl-l +bx2°‘,t-2 = (l'me)(l'phL)Etd + (l-de)(l-phL)E‘m
+ (1-pL)(1-p,L)E", with & = [(p, - \)/(®, - p))e* for u = d,m,h.
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the same AR part as the x-process.

Two simplifications are useful.

(i) If py = p, = Py = p, then b= b, = by,= by= 0 and there is
effectively only one independent shock, a linear combination of the "structural”
shocks ¢!, ¢™, and ¢'. Here (24) reduces to an AR(4) and (25) to an
ARMA(2,1)". The {y} process is ARMA(4,2).

(26) (1 - MDA - ¢,L)(1 - ;L)1 - pL)x, = o,
27) (1 - a1 - pL)c, = @, + b,
(28) (1 - NL)Y(1 - ¢,L)(1 - ¢5L)(1 - pL)y, = w, + g, + gw,,

@i) If p,, = p, then b, = b, = O, and there are two independent
shocks, one to demand and another to supply. Now x,becomes an ARMA(S,1),
and ¢, an ARMA(3,2):

(29) (1 - ML) - 6,1)(A - ¢,L)(1 - pL)(A - pL)x, = @, + b,

(30) (1 -NL)A - pL)(1 - pL)e, = @ + b,y@y; + by,

Here {y} follows an ARMA(5,3) with the same autoregression coefficients as
(29).

The essential elements of cattle technology are so simple that (\,¢,,$5)

in these formulas are known approximately a priori. They are calculated from

BTo economize notation it is understood that the definitions of w and & are
adjusted to satisfy p,= p_ = p,= p in (24) and (25), and to satisfy p, = p, =
p, for (26) and (27).
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(11) and (12) for given values of §, # and g. In what follows we specify g =
.85, 6=.10 and $=.909. These imply A\,=.809, ¢,=-.2299+.75651, and ¢;=-
.2299-.7565i. Substituting these theoretical values into the AR parts of the
ARMA processes provides benchmarks with which ARMA estimates can be
compared.

V. ARMA ESTIMATES AND COMPARISONS

A. One-Shock Version.

The one-shock model in (26)-(28) accounts for the major time-series
properties of y,, x, and c, surprisingly well. These series have complicated
trends. There was small or no growth in stocks and consumption prior to the
1930s and large growth thereafter, at least until recently. Per capita consump-
tion of beef fell well into the 1920’s, took off in the 1930’s and turned down
again in the late 1970’s. This theory has nothing to say about trends, yet trends
must be removed for statistical purposes. The ARMA'’s were fitted to deviations
around two-piecewise linear least squares trends broken at 1930." The ML exact
method was used for estimation, guaranteeing that the estimated MA represen-
tation has stable roots.

The numbers in rows labeled ARJ in table 2 are estimated autoregres-
sion coefficients with the J¢h lag of the dependent variable expressed to the right
of the equals sign. Those listed in rows labeled MAJ are coefficient estimates
of the Jth moving average term. Theoretical AR benchmarks are listed for each

variable, assuming parameter values g=.85, §=.10, §#=.909 and experimenting

“ARMA’s first differences generally yield similar results--see appendix. If the
forcing variables follow random walks, the order of the differenced ARMA
should remain the same as in table 2 If they don’t follow random walks,
differencing adds an additional MA term. There are no reasons to expect that
shocks follow random walks in this problem and we are unable to decide this
point. This issue is avoided by using deviations rather than differences. Also,

first differences are not quite appropriate because trends are not uniform in these
data.
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with different p-values. A value p=.6 achieved a reasonably good match
between the estimates and theory for {x}, and that same benchmark is applied
to the AR’s for {y} and {c}. Additional support for p = .6 is provided by the
fact that real prices of corn and hay follow AR(1)’s with coefficient on the order
of 0.6.

The estimated AR(4) coefficients on {x} resemble their benchmarks,
though better at the first two lags than at the last two. The virtue of using {x}
for estimatation is that its ARMA has the fewest number of MA terms, and MA
terms are difficult to estimate. But there is a potential problem: its 3-period
lagged recursive construction from (20) might induce spurious autocorrelations
in the estimates due to inaccuracies of specification. The higher order MA
processes for {y} was estimated to check this point. As noted above {y} has the
same AR benchmark as {x} and its MA benchmark is 1+.85L+.85L% The
estimates for {y} in the second column confirm that the AR estimates for {x} are
not spurious consequences of the way {x} was constructed. The AR’s match
closely those of {x} and the MA terms are in the right ballpark relative to their
benchmarks ('though too large—-they imply roots perilously close to mod 1). The
estimates for {c} compare fairly well in the AR part, but not in the MA part.
Similar results were obtained on series constructed with g=.8 and g=.9 and are
not reported.

Table 2 does not conveniently indicate how well this model fits the data
in many respects. Some pictures show that the quality of fit is exceptional.

First, the sample paths of {x}, {y} and {c} were predicted by applying
the theoretical ARMA benchmark coefficients to estimated innovations. The
residuals from the estimated ARMA’s were used as innovations. Figure 6
compares the predicted and actual series. In each case solid lines are data (in
deviation form) and simulations are marked by either circles or diamonds. The

circles apply the theoretical benchmark ARMA coefficients in table 2 directly
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to the residuals estimated from corresponding table 2 regressions. The
diamonds are indirect simulations: those for x apply G'(L) to the directly
simulated y-series and those for y apply G(L) to the directly simulated x-series.
Finally, the indirect simulation for c applies (22) to directly simulated {x}."*
Differences between simulations and realizations are negligible except for the
indirect prediction of ¢, which, unlike the others, compounds specification and
estimation errors. The artificially simulated series are very close to the data,
especially considering the complexity of the phenomena and the utter simplicity
of the model.

Another visualization is provided by spectral variance decompositions
of estimated and theoretical ARMA'’s. These appear (over the entire circle) in
Figure 7. Spectra implied by the theoretical benchmarks in table 2 are marked
by circles. The solid lines are spectra implied by the estimated ARMA'’s in the
table. Again, the comparisons are very close. These calculations are not
independent of those underlying figures 6, but they reveal an important new
point. The accumulation of mass near 2 radians in the theoretical spectrum of
x implies a 3+ period cycle in breeding stock. The mass in the empirical
spectrum of x calculated from the ARMA estimates occurs at a slightly higher
frequency than predicted, but the difference is minor. It is possible that the
three period recursive construction of {x} causes the extra weight at 2 radians
in its empirical spectrum in figure 7. However, the spectral comparison for y
proves that the empirical mass at 2 radians for x is not artificial. Theory predicts

an absence of mass near 2 radians in the y-spectrum, just as the ARMA

'SLet B, and B, represent the theoretical and estimated AR portion for series
i=x,y and let G and G denote theoretical and estimated MA parts for y. Then
the circles for x and y respectively are B;'(L)B,(L)x, and B;'(L)B(L)G(L)G
'(L)y,. The simulation of {y} has more chances to go wrong than that of {x}.
The indirect simulation for y is B;'(L)B(L)G(L)x, and for x is B;'(L)B(L)G’
'(L)x,. Comparable expressions apply to c.
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estimates show. The heavier mass at the neighboring longer frequency (this is
even more pronounced in the difference estimates--see appendix) is not implied
by this theory. Finally the constant supply price assumption predicts no
systematic cycles in {c} and none are found in this simple specification.

Similar conclusions follow from the AR characteristic roots calculated
at the bottom of table 2. The two stable complex roots ¢, and ¢, arising from
cattle biotechnology and demographics in (14) is what causes the 3+ year cycle
in breeding stock dynamics. In all cases the estimated and predicted values of
these two roots are reasonably close to each other. The comparisons for A; and
p are less close.

B. Two-Shock Version

Estimates of the two-shock model in table 2 reinforce these conclusions.
Here theoretical benchmarks are harder to establish. We have little prior
knowledge of the roots of the shock processes for the AR part. The .6 value of
p used in the one-shock model was arbitrarily retained for the two-schock
benchmark, !eaving one free autoregression parameter for the second shock. A
value of .95 matches up reasonably well, but by no means perfectly. Note the
three theoretical AR roots A, ¢,, and ¢, remain unchanged. MA benchmarks
are very complicated now (see equations (29) and (30)) and require much more
detailed technical knowledge of the costs, production structure and shock
processes than is available to us. These demanding refinements are left for
future work.

The estimated AR coefficients are in the right ballpark in each case and
the implied empirical spectra (including the MA part) in figure 8 are similar to
figure 7. The two-shock model confirms the 3+ year cycle in {x} and the
absence of 3 year cycles in {c}. However, the empirical spectrum of {c} shows
a small mass point at about .66 radians, or a tendency toward a 9.5 year cycle,

which is not predicted by the model. Finally, the implied roots for ¢, and ¢,
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are close to their benchmarks. However, other complex roots appear here (and
also in the one-shock model) that remain to be explained (the two shock model
in differenced form has similar properties as those in table 2). Finally, the
three-shock model is too complicated to yield reliable estimates. The estimates
we managed to produce are very imprecise, but their implied spectral decompo-

sitions are much like those in figures 7 and 8.

V1. CONCLUSION.

The evidence suggests that models of this kind contribute substantially
toward understanding cattle cycles. Shocks to demand and supply have
persistent long term effects on future stocks by changing farmer’s incentives to
carry breeding stock and altering the age composition of herds. The large weight
of breeding stock in the total cattle population and their lengthy gestation and
maturation periods probably makes cattle a pathological case compared to other
managed animal populations. However, pathologies sometimes are useful to
study because their properties are exaggerated and easier to observe. The fully
rational model investigated here is capable of explaining important cyclical
aspects of these data. Appeals to cobweb theory or to ignorance of cattle
farmers are unnecessary to account for them.

The findings also suggest that a recursive structural model with long
run constant returns to scale is a good approximation. In a fully simultaneous
model with rising supply price, the reduced form AR parts of the autonomous
forms in (16) and (19) for {c} and {x} would be exactly the same, and both
would exhibit period 3 cycles. A 3-cycle is observed in stocks, but not in
consumption. Empirical experimentation reveals that the AR part of the con-
sumption ARMA definitely is of lower order than those for stocks, as a constant
supply price, recursive structure requires. In this respect also the empirical

representations are inconsistent with the kinds of cobweb expectational models
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commonly suggested as causing cattle cycles. We cannot pursue this point here
because a constant supply price model cannot mest static (cobweb) price
expectations into breeding inventory decisions—static expectations and constant
supply price implies corner solutions in which all adult stocks are either held or
slaughered, contrary to what the data show. Still, only a little reflection is
needed to recognize that static cobweb price expectations wedded to this
technology and rising supply price must generate 3 year cycles in consumption
not observed in the data. Some longer cycles in consumption and stocks not
explained by this model appear to be in the data. Perhaps some of these can be
better understood with improved specifications of cattle dynamics and by serious

investigation of the shock processes that drive these kinds of models.
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TABLE 1

Regression Estimates:
k, = x, + ¢ = by + bix; + byx; + byx,,

Regression Coefficient (Std. Errors)
g PERIOD b, b, b, b, R?
1900- -1544 1.11 .04 .83 978
.80 1990 (849) (.12) (.15) (.12)
1930- 1785 97 04 .88 977
1990 (1153) (.12) (.15) (.12)
1900- -1524 1.01 .09 92 976
.85 1990 (859) (.11) (.14) (.11)
1930- 1855 87 .08 .96 976
1990 (1162) (.11) (.13) (.11)
1900- -1509 91 .14 1.00 977
.90 1990 (863) (.11) (.13) (.10)
1930- 1895 .80 .13 1.03 975
1990 (1160) (.11) (.12) (.10
Notes: x, is constructed for indicated value of g from total stock series by methods

described in text. ¢, is slaughter numbers, USDA sources.
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