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1. Introduction

This paper uses a technique that we call Constrained Asset Share Estimation (CASE)
to test the conditional mean-variance efficiency (MVE) of the U.S. stock market. The
technique is useful in time-series tests of simple asset pricing models because it allows
estimated expected returns to vary in an unrestricted way. It was first applied in a
macroeconomic context in which the "market” portfolio included not only equities, but
also money, bonds and real estate.! It has since been applied more widely to other
portfolios and has been extended to allow for variation in conditional second as well as
first moments.?

The CASE technique nests MVE in a more general, but economically meaningful, theory
of portfolio determination. In contrast, most tests of the null hypothesis of MVE have
no clear alternative hypothesis. This feature is particularly important because many
tests do in fact reject MVE. When one rejects the null hypothesis, it is crucial to have
some idea of what the alternative is. In the central tests below, the alternative to MVE
is that investors’ portfolio shares are linearly related to expected retumns, but that
investors’ asset demands are not determined in the precise way that MVE would imply they
should. The alternative hypothesis is the more general portfolio-balance approach to
asset demands that was first introduced by Tobin (1958, 1969). The problem he was
addressing was the relationship between expected returns and the demand for bonds and
other assets. Sharpe’s (1964) CAPM grew out of an attempt to place more structure on

Tobin’s portfolio balance model by modelling the behavior of individuals as mean-variance

i See Frankel (1982, 1985a), Frankel and Dickens (1984), and Frankel and Engel
(1984).

2 Ferson, Kandel and Stambaugh (1987) estimate the constant-variance version for
stock portfolios. Bodurtha and Mark (1991), Bollerslev, Engle and Wooldridge (1987) and
Engel and Rodrigues (1989) estimate a version which allows for changing conditional
second moments.



optimizers (as in Markowitz (1952) and Tobin (1958)). However, most modern testing of
CAPM has departed from this original context.

The CASE method does not impose the condition that expected returns are constant
over time. It allows expected returns to vary freely, as they must, for example,
whenever new information which may not be observed by the econometrician becomes
available to the investor. In addition, in some of the tests below we allow second
moments to vary according to an ARCH or GARCH process.> Allowing for such variation in
conditional moments is essential for a properly specified test of MVE. There is
considerable evidence that both the conditional expectation and conditional variance of
excess returns contain important predictable components.4

Our tests below emphasize the nested nature of the hypotheses we consider. We pay
special attention to the importance of ARCH vs. MVE vs. the asset shares themselves in
explaining risk premia. The broad findings can be summarized as follows. First, we find
that stock-market shares by themselves have statistically significant power in predicting
monthly excess stock returns. This is what we would expect if the stock market is mean-
variance efficient and if required returns change over time. However, we reject the
restrictions implied by constant-variance MVE. Moreover, the predictive ability of the
asset shares disappears when the constant variance version of MVE is imposed.

However, the constant variance version of MVE can be rejected in favor of a version

3 The ARCH process does not allow second moments to vary freely. It is analogous
to estimating the first moments by an ARIMA process, in which this period’s expectation
is related to recent realizations, rather than by the CASE technique, in which
expectations can vary freely.

% See for example, Fama and French (1988) and Poterba and Summers (1988) for
evidence on the predictability of stock market returns, and Bollerslev (1987) and
Bollerslev, Engle and Wooldridge (1988) for evidence on the predictability of conditional
variances of excess returns. These findings coupled with the results of Hansen and
Richard (1987), who show that the conditionally and unconditionally mean-variance
efficient frontiers are generally different, suggest that such variation in conditional
moments is important for tests of MVE.



of MVE in which the covariance of the asset returns follows a GARCH process.
Furthermore, that version of MVE does have statistically significant ability to predict

stock prices. This model produces an estimate of the coefficient of risk aversion of

about 3.0, with a standard error of about 1.4. So, a version of MVE in which market
betas vary conditionally both because of changes in asset shares and time variation in

the covariances of individual asset returns has explanatory power and produces plausible
parameter estimates. This finding may be relevant to the recent findings of Fama and
French (1992) that betas based on unconditional covariances have no predictive ability
once size is included as an explanatory variable. Although we do not address that issue
directly, the suggestion of our findings is that the CAPM might have performed better in
the Fama and French setting if the betas were conditional on contemporaneous information.
Nonetheless, we find the restrictions that this version of MVE imposes on a GARCH version
of the Tobin portfolio-balance model are rejected.

In short, the unrestricted linear Tobin asset pricing model has predictive power
under both of our specifications (with the GARCH specification doing better than the
constant-variance version). The MVE-constrained model itself also has predictive power
under the GARCH specification. However, the restrictions that MVE places on the Tobin
model can be rejected in all cases.

Sections 2 and 3 briefly describe the model and the data, respectively. Section 4
tests for constant-variance MVE. We introduce our ARCH specifications in section 5.
Section 6 summarizes our general nesting procedure for the hypotheses of interest and

offers our conclusions.



2. The model

Mean-variance efficiency implies that the vector of conditional risk premia is a
linear combination of the asset shares in the portfolio, with the weights proportional to
the conditional variance of asset returns:

E(r,,) = pa2, (1)
where El(r‘+ l) is the expected return above the riskless rate on an N x 1 vector of
assets conditional on all information available at time t, Q is the conditional variance
of returns between t and t+1, A is the N x 1 vector of portfolio weights, with ):L]Am
= 1, and P, is the price of risk equal to E‘(mM)/Vart(mHl), where m is the return
on the aggregate portfolio. If the aggregate stock portfolio is the “"market” portfolio,
MVE is equivalent to CAPM, and the parameter p is to be interpreted as the coefficient of
relative risk aversion. Note that the right-hand side of (1) is equivalent to the risk-

adjusted conditional expected return on the aggregate (or market) portfolio,

» Et(ru—l) = BtEl(mxH) (2)
where
_ COVt(m‘H,I’lH) _ QIAI
' vart(th) varl(m‘“)

This expression makes it clear that the vector of sub-portfolio Bs varies both with the
shares of assets in the portfolio, A, and the conditional covariance matrix, Q, and
thus may move substantially over short time intervals.

Under rational expectations, we can replace the vector of expected excess returns
with the actual returns by including a prediction error that is orthogonal to all
information at time t:

3

where AL E(rm). The insight in Frankel (1982) was that information about

l-1+l = pln‘).‘ + cl+l’



the conditional covariance matrix of returns can be obtained from the error terms, since
under MVE:
nz = El(eu-lclwl)' @

MVE therefore imposes a set of restrictions that are highly nonlinear in that they
constitute proportionality between the coefficient matrix and the variance-covariance
matrix of the error term in (2).

To evaluate (4), we must take a position on how Q changes over time. In sections
4 and 5 below, we assume that Q is constant and that it follows an ARCH or GARCH
process, respectively. We test the hypothesis that MVE holds against more general
alternatives in which investors forecast excess returns as a function of asset shares and
past prediction errors (as in the Tobin model).

The portfolio-balance model of Tobin (1958,1969), representing a general
relationship between asset demands and expected returns, can be written as:
). &)

where B is an N x N matrix of coefficients. By inverting the system of equations in (5),

A = BE(r
t totot+l
we obtain an expression for expected excess returns,
E‘(rm) = Axkl’ (6)
where A = B;'. This system of equations representing the portfolio-balance model is a
generalization of MVE. MVE imposes the restriction that the matrix of coefficients A be
proportional to the variance of the forecast error, € ..
Hence an insight of the CASE method: MVE can be viewed as the null hypothesis in a
test where the alternative hypothesis is the more general unconstrained portfolio balance
model. Using ex post returns, (6) can be written:
r(+l = AIAI + Car ™

Although the values of the equities are endogenous variables in an economic sense, they

are still uncorrelated with the prediction errors, which under rational expectations are
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uncorrelated with all information available at time t.’

We also test the MVE hypothesis above, as well as the more general alternatives,
against an even more restrictive null hypothesis: that investors expect conditional
excess returns to be zero. The results of our tests are discussed in sections 4 and 5.
Section 6 presents a diagram which makes it easy to see the results of our nested
hypothesis tests.

1t is interesting to contrast our test of MVE with two recent closely related
tests. A detailed comparison of our test to that of Harvey (1989) would consume much
space, but the essence of the comparison is simple. The MVE of equation (1) or (2)
implies a relation between expected returns and covariances of returns. The model is not
testable until some additional auxiliary assumption is imposed. Our auxiliary assumption
is in the form of a model for the covariance matrix Q - it is alternatively modeled to
be constant, or to follow a GARCH process. Once the model for n‘ is chosen, the MVE
model determines the behavior of expected returns. Harvey, alternatively, makes the
auxiliary assumption on the expected returns, rather than the covariances. He assumes
that expected returns are linear in observable economic data. This model, combined with
MVE, then determines the behavior of the covariance of returns. The two approaches are
similar in that they test the cross-equation restrictions imposed by MVE while
maintaining the auxiliary assumption. One advantage that arises from the approach of our
paper, in making the auxiliary assumption about the covariances rather than the means, is
that our alternative to MVE is explicit and economically meaningful.

Ng (1991) estimates a constrained version of MVE that is in most respects identical

to our constrained model. However, her alternative hypothesis differs from ours. She

5 Note that the N asset shares, A¢ 1---Aq y are perfectly collinear because they

sum to 1. This does not pose a problem for the estimation of (7), however, because the
equations do not include a constant term.



tests the restriction that the intercept term in equation (1) is zero. As mentioned, our
test is more in line with Harvey (1989), in the sense that we test cross-equation
restrictions.

So, the test proposed here is complementary to the tests of Ng and Harvey, and

perhaps has some advantages.

3. The data

Our tests use monthly stock returns from the New York and American Stock Exchanges
from January 1955 to December 1984. To ease the computational burdens in estimating (3)
we aggregate the stocks into N = 11 (and sometimes 7) industry portfolios.$
Table 1 describes the aggregation of stocks into industry portfolios. The returns
for each portfolio are value-weighted average returns. The N x 1 vector of portfolio
shares, A, is the value of the stocks in the portfolios as a fraction of the total value
of all stocks. Because it is desirable to group together equities that have highly
correlated returns, we tried to put similar industries into the same portfolio.”
Stambaugh (1982) aggregates into 20 industries, roughly by type of final output. We
further aggregate into 11 industries, combining some of Stambaugh’s categories. Table 1

shows Stambaugh’s 20 industries, as well as the 11-industry aggregation that we use to

6 If there are N assets, the computation involves a parameter matrix of dimension
N(N-1)/2 x N(N-1)/2 that must be repeatedly inverted. Engel and Rodrigues (1992) offer a
Wald test version of the CASE test that is less computationally difficult. We apply it
in Section 5 below.

It is easy to demonstrate that if the returns on the industry portfolios are
computed using the asset shares as weights, that the MVE model of equations (1) or (2)
holds for returns on industry portfolios.

7 On the other hand, we would not want to include together the suppliers of

intermediate products and the producers of final output in the same industry. When steel

prices rise, the cost of producing autos increases so that it is possible that steel
producers’ profits rise when auto manufacturers’ profits decline.
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perform our maximum likelihood tests of MVE. Table 1 also reports a 7-industry
aggregation that we use for the ARCH estimation in section 4.

The value shares, A, are used to predict excess returns between time t and t+1.
The shares are measured monthly from the last day of January 1955 to the last day of
November 1984 (359 observations), while the returns are calculated as the dividend plus
appreciation over the previous month beginning the last day of February 1955 and ending
the last day of December 1984. All returns are nominal excess returns above the return

on the one-month Treasury bill recorded by Ibbotson Associates (1986).

4. Tests of MVE with constant conditional variances

Table 2 reports the results from estimating the unconstrained system of equations
(7), when the matrix A is treated as constant over time. Few of the coefficients
individually are significantly different from zero. Not surprisingly, the R%s are not
very high, and none exceeds .10. We can, however, reject at the 95 percent level the
hypothesis that the asset shares have no explanatory power for excess stock returns. The
value of the chi-square statistic (121 d.f.) is 233.56 compared to a critical value of
147.39.89

Under the MVE hypothesis, this unconstrained system of inverted asset demand
equations is not estimated efficiently. If we impose more structure on the system we can

hope to improve the precision of our parameter estimates. So we will estimate the system

8 The 99 percent critical value is 159.32.

_ . % The only prior belief we have about the coefficients is that the return on asset
j is likely to be positively related to the share of asset j in the total portfolio. If

we think of the market portfolio as comprised only of stocks, then in equilibrium
investors will demand a higher return from a given stock portfolio the more of it they
are required to hold. Table 2 shows that in 8 out of the 11 regressions this own-
coefficient is negative (and significantly negative for industries 2 and 7). It is not
significantly positive in any of the regressions.
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of equations (3) which impose the MVE constraints that A = pQ. In this section, the
variance matrix Q is assumed constant over time.

The N equation system (3) must be estimated by maximum likelihood techniques,
imposing cross-equation restrictions between the matrix of coefficients in the
regressions and the variance matrix of the regression errors. Note that the assumption
that Q is constant is not the same as the assumption tests of constant betas and expected
returns. As we saw in the previous section, even with a constant covariance matrix, the
betas, and hence the expected returns on all securities including the aggregate or
"market" portfolio, will vary over time in a general way. Table 3 reports the maximum
likelihood results of (3).

We can report a chi-square statistic for the restrictions implied by (3). This is
the CASE test of the MVE hypothesis against the more general portfolio-balance model. We
impose 120 restrictions on the unconstrained system (121 coefficients are constrained to
be proportional to their corresponding elements in the variance matrix). The test
statistic has a value of 231.34, so we easily reject the hypothesis of MVE at the 99
percent level.

If one were willing to accept the MVE estimates on the basis of prior beliefs, they
yield in some ways much more plausible asset pricing equations. We noted that in the
unconstrained regressions we frequently found that an increase in an asset share would
actually decrease that asset’s expected return. That is not possible with the
constrained MVE estimates. Also, the point estimate of p, which can be interpreted as
the coefficient of relative risk aversion under the assumption that A are shares of the
complete market portfolio, is very plausible -- 2.03. It is very close to the “Samuelson
presumption” of a likely value for average risk aversion. The coefficient is not
estimated precisely, however, as it is not statistically different from zero at the 95

percent level. But its 95 percent confidence interval ranges only up to about 5.3 -
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still a believable estimate for average risk aversion.

On the other hand, the constrained model does a very poor job of predicting excess
returns. The failure to reject the hypothesis that p = 0 implies that asset shares
provide no statistically significant explanatory power for risk premia under the MVE
restrictions, because the coefficients on the shares are all multiples of p.'9 In other
words, MVE vitiates the predictive power of the asset shares alone.

The estimates reported in Tables 2 and 3 calculate the shares as a fraction of
total equity investment. If, however, there are positive net holdings of the riskless
asset, then the shares should properly be calculated as a fraction of total equity
investment plus the total net value of the riskless asset. The riskless asset could have
a positive net value if the government issues riskless short-term bonds, and investors
consider government bonds to be additions to net wealth (so that they do not fully
discount future tax liabilities) or if the government issues money. We estimated the
model under the assumption that the relevant measure of the net supply is the value of
all government bonds (which is calculated by Cox (1985)), and again under the assumption
that the value of outstanding Treasury bills measure the net supply of the riskless
asset. In both cases, there was almost no change in the estimates.

We considered two other formulations which apply when p is interpreted as the
coefficient of relative risk aversion, besides assuming that it is constant. In the
first, we assumed constant absolute risk aversion. In that case, p, = bW‘ where b is the
coefficient of absolute risk aversion and W‘ is the value of all equities at time t. In
the second, we considered a more general formulation consistent with the HARA class of
utility functions, =2 + le. If b = 0, we have the constant relative risk aversion

case, and if a = 0 we have the constant absolute risk aversion case. Again, however,

10 Under the MVE restrictions, constraining r to be zero lowers the log-likelihood
value by 1.1.
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these versions of the model failed to improve the constrained model’s performance.!!

Maximum likelihood estimation of MVE is a difficult problem because of the
constraints imposed between the coefficients and the variance. The entire system must be
estimated simultaneously, which in the case of the 11-asset system means simultaneously
estimating 122 coefficients.

If we are interested in testing MVE, but not in actually obtaining the constrained
coefficient estimates, we do not need to estimate the constrained set of equations. A
Wald test can be performed using only the unrestricted model. In this case, the
unconstrained model (6) is particularly easy to estimate, because it requires only
equation-by-equation ordinary least squares. Engel and Rodrigues (1992) provide an
expression for the Wald statistic for the MVE restrictions. The Wald statistic is not
difficult to compute even for large collections of assets. We tested the MVE
restrictions for the entire set of 20 industry portfolios composed by Stambaugh. We
again reject MVE restrictions easily. The test statistic is distributed chi-square (19
d.f.), and has a value of 58.99, well above the 99 percent critical value.!2

The estimates of this section provide little support for MVE of the stock market.
In all of the tests performed, the restrictions that MVE places on a more general asset

demand model are strongly rejected.

5. Tests of MVE with ARCH conditional variances

In the estimates reported in section 4, we assumed that the return covariance

Il In order to save space, we do not report these results.

12 The comparable Wald test for the 11-asset aggregation yields a statistic
distributed as X%O equal to 22.76. This also rejects the MVE restrictions at the 99
percent level. These particular tests restrict only the diagonal elements of the return
covariance matrix, and yet they reject easily.

11



matrix, 2, was constant over time. Because it has become clear in recent years that
conditional variances of financial variables show a considerable amount of variation, we
turn to a model of time-varying conditional variances.

In simple regression models, the presence of heteroskedasticity often does not
affect the consistency of coefficient estimates, although it does cause standard
calculations of test statistics to be inconsistent. When the MVE restrictions are
imposed, however, changes in variances imply changes in coefficient estimates, which in
turn imply changes in expected excess returns. The coefficient on the asset shares in
the constrained model must move over time if Q does, so holding Q constant leads to
inconsistent coefficient estimates.

Inspection of (2) makes it easy to see why it is important to allow for variation
in Q. There are two possible sources of variation in expected returns if p is constant:
changes in asset shares, A, and changes in a. Suppose, for example, that favorable
news about a stock is announced. One could easily think of cases in which the price is
pushed up, increasing the stock’s share in the aggregate portfolio, even though its
expected return is now lower with the news. If the market is mean-variance efficient,
this can happen when the riskiness of the asset declines -- its own variance falls, or
its covariance with other assets decline. But, for the jth asset, this is exactly a
change in the jth row of Q.

We choose to model variances empirically following Engle’s (1982) ARCH process.
The ARCH takes the conditional variance of this period’s forecast error to be a function
of past forecast errors. It is not based on any theoretical notion of how the general
equilibrium of the economy works. It is an ad hoc model that seems to work well in
practice.

In this section, we apply a multi-equation version of ARCH to the MVE problem.

Because of the difficulty in estimating large ARCH systems, we have further aggregated
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the assets into the 7 portfolios described in table 1. Even with only 7 equations to
estimate, the dimension of the ARCH problem can be quite large. For example, even if we
restrict ourselves to first-order ARCH in which the variances and covariances this period

are related only to the squares and cross-products of forecast errors in the previous

period, the problem is unmanageably large. There are 28 independent elements in the
covariance matrix. If each element were linear related to the 28 lagged squares and

cross products of the forecast errors, there would be 812 parameters to estimate.

Given the complexity of estimating the MVE-ARCH system, and given the limited
amount of data, it is helpful to lower the number of ARCH coefficients. Our test of MVE
uses a parsimonious version of ARCH, in which the model, has return variances given by

o = PP + Gee!G. )
We treat as parameters the upper triangular matrix P, and the diagonal matrix G. Under
this formulation, each element of Q is linearly related to its corresponding component
in the matrix of cross-products of lagged forecast errors. There are only 35
coefficients to estimate. This formulation enforces positive semi-definiteness on the
covariance matrix Q.

The unrestricted form of the inverted system of asset demand equations is given by
equation (7). MVE imposes the restriction that A‘ = pQ, where Q is the conditional
variance of T, In practice, if MVE is to be nested in the general system of asset
demands, then the elements of A in the general system might be related to the same
variables that Q is assumed to be related to. More specifically, we assume that in the
unrestricted model, the coefficient matrix A‘ evolves according to:

A =QQ+ Fee'F, )
where Q is upper triangular and F is diagonal, and the conditional covariance matrix of
returns, Q, is given by (8). The MVE constraint, that A( = le, imposes 34 constraints

on the unconstrained asset demand equations in (7).
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Before turning to the results of the ARCH estimates, it is useful to examine the
constrained MVE estimates on the 7 equation system when Q is constrained to be constant,
as in the previous section. Table 4 shows that the 7-equation system performs much like
its 11-equation counterpart. The estimate of p is close to 2.0. However, it is still
not statistically different from zero, which indicates that the asset share data with the
MVE constraints imposed do a poor job of explaining expected returns. In this case, MVE
imposes 27 constraints on the general system. The test statistic is distributed chi-
square (27 d.f.) and is estimated to be 70.00. The MVE constraints can be rejected
strongly at the 99 percent level.

Table 5 reports the results of the MVE restrictions imposed on the ARCH system.
There are two hypotheses to test here. The first asks whether we can reject the
constant-variance MVE model in favor of the ARCH-MVE. A rejection would imply that time-
varying variances statistically reduce the distance between the stock-market portfolio
and the mean-variance efficient frontier. Such a rejection would lead us to the other
interesting question: can we reject the restrictions implied by MVE on the unrestricted
ARCH cum portfolio-balance system in (7) and (9)?

The constant-variance version of MVE is a special case of the ARCH-MVE model, in
which the G matrix from (8) is constrained to be zero. This imposes 7 constraints on the
ARCH system. Our test statistic is 30.82 and is distributed chi-square (7 d.f.) We
reject the constant-variance restrictions at the 99 percent level. ARCH therefore
improves significantly on the constant-variance form of MVE.

However, only four of the 7 ARCH coefficients (elements of the G matrix) are
significantly different from zero at the 95 percent level. These coefficients are all
quite small in magnitude. The square of each element gives the coefficient relating the
variance in each equation to its own lagged squared forecast error. Only one of the

squared components of G is greater than .10.
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The point estimate of p is 1.91 -- again close to the Samuelson value of 2.0. Once
again, the estimate is not statistically different from zero at the 95 percent level
(although it is now significant at the 80 percent level).

The next step would be to compare the performance of the ARCH model with the MVE
constraints imposed (equations (1) and (8)) to the ARCH model, with the more general,
Tobin model of asset demands (equations (7) and (9)). However, given the unsatisfactory
performance of the ARCH-MVE model in forecasting returns, we instead first see if the
ARCH model of equation (8) can be improved. Specifically, we replace (8) with a
multivariate GARCH specification, based on the model of variances proposed by Bollerslev
(1986). We have

Q = P'P + Gee'G + Ha H (10)
This formulation modifies equation (8) by adding the term HQHH, where H is diagonal, to
the model of the variance.

There are several interesting aspects to these GARCH estimates, which are reported
in Table 6. First, since the ARCH model is nested in the GARCH model, we can test for
the joint significance of the GARCH coefficients in the matrix H. That test statistic is
chi-square (7 d.f.) and its value is 76.22. The hypothesis that H is zero is
overwhelmingly rejected.

In fact, the elements of the matrix H are all quite large, as opposed to the
elements of the G matrix. They all exceed .9, and are statistically significant
individually. The square of these coefficients would serve as a measure of the
persistence of the diagonal elements of the variance matrix. There is evidently a great
deal of persistence, which in turn implies that the risk premia on these assets are
highly serially correlated.

The coefficient p is estimated to be 3.04, with a standard error of 1.41. If we

make the additional assumptions required to obtain CAPM from MVE, p has the
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interpretation of being the coefficient of relative risk aversion. A value of 3 seems
quite plausible, and does not imply excessive risk aversion as some other asset pricing
models require in order to accord reasonably well with the data (see, for example, Mehra
and Prescott (1985)).

Moreover, the fact that the t-statistic (= 2.16) is significantly different from
zero implies that the constrained MVE model with GARCH has a statistically significant
power in explaining equity returns ex ante. That is, the model is useful in predicting
the excess returns on equities.

The next step is then to compare the GARCH model with the MVE constraints imposed
to the Tobin portfolio balance model given by equation (7). We modify the model of A
from equation (9) by adding terms relating A to lagged values of the variance matrix:

A =QQ + Fee'F + Ka K. (11)

Here, the matrix K is diagonal. ‘

Rather than estimate the full-blown unconstrained model, consisting of equations
(7) and (11), we test the restrictions that the MVE system, (1) and (10) put on this
model using a Lagrange multiplier (LM) test. The LM test is useful in this context
because it requires estimation only of the constrained model by maximum likelihood. The
hypothesis that A is proportional to , imposes 42 constraints on the general, Tobin
portfolio-balance model. The test statistic is distributed chi-square (42 d.f.) and has
a value of 81.90. The constrained M.V.E. model is easily rejected at the 99 per cent
level.}3

We conclude that while letting the variance change over time is important in

improving the explanatory power of MVE, it does not improve it enough relative to an

13 Equation (11) imposes symmetry on the portfolio balance model. Testing the
GARCH-MVE against a version of the portfolio balance model in which the constant term in
equation (11) is allowed to be asymmetric produces an LM statistic of 335.15. This is
drawn from a chi-square (62 d.f.) distribution, and is highly significant.
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unconstrained system of asset-demand equations.

6. Summary of conclusions

Figure 1 provides a graphical summary of our nested hypothesis tests. At the top
of the figure is the most unrestricted model we consider, the unrestricted GARCH model in
equations (7) and (11). At the bottom of the figure is the most restrictive model, that
asset shares are of no help in explaining required returns, or equivalently, that risk
aversion is zero. For each pair of models, the line connecting them reports the results
of a test of whether the lower model (the null hypothesis) can be rejected in favor of
the upper model (the alternative hypothesis). It is easy to see that both of the MVE
formulations -- the constant-variance case and the GARCH case -- are rejected when
compared with any more general alternative hypothesis.

It is also apparent that allowing variances to be time-varying significantly
improves the explanatory power for both the constrained and unconstrained models. In
section 4, we reported that the ARCH-MVE model significantly outperformed the constant
variance MVE model, but that the ARCH-MVE model was in turn bettered by the GARCH-MVE
model. 1t is also the case that the unconstrained portfolio balance model with GARCH
coefficients significantly outperforms the portfolio balance model with constant
coefficients. !4

All of the models estimated, with the exception of the constant-variance version of
MVE have significant predictive power for expected excess returns. That is, the model of

investor risk-neutrality (A = 0) can be rejected.!s

14 An LM test for that proposition is distributed chi-square (28 d.f.), and takes on
a vahik of 359.0, rejecting the null extremely strongly.

1S More accurately, the ARCH-MVE does not significantly improve on the risk neutral
model, but the GARCH-MVE model does.

17



In particular, it is interesting that the GARCH version of MVE has power in
explaining equity returns. Allowing the covariances of asset returns to be time-varying
significantly improves the predictive power of the constrained MVE model. Fama and
French (1992) suggest that covariances, as reflected in a measure of an assets
unconditional beta, essentially have no power to predict returns when size is included as
an explanatory variable. It seems unlikely that the predictive power in our model occurs
because our betas are correlated with size, because it is unlikely that the GARCH effects
are related to firm size. Though we do no formal test of our model with size included as
an explanatory variable, it appears that the covariance of asset returns does help
predict the mean of asset returns, as CAPM would have it.

Still, we always reject MVE in favor of the Tobin portfolio balance model. There
are several ways to rationalize this rejection. One would be that the true asset pricing
model is not the CAPM, but rather a multi-factor CAPM, the APT, a version of the
intertemporal CAPM, or perhaps a version of the one-period CAPM that allows for more
investor heterogeneity in either tastes or information sets. A second explanation for
the results would rely on the Roll (1977) critique. If the stock market is very unlike
the true "market” portfolio, we would not expect to find MVE, even if the CAPM holds. 6
Indeed, under this explanation, the asset shares and ARCH processes cannot be accurately
observed.

A third explanation of the results would be that the residuals in (2) lead to poor
measures of the conditional variances. If "peso problems” affect stock market returns,
the estimated residuals will be biased. Imposing the MVE restrictions only compounds the

problems. For example, it is well known that in the five years following the stock-

16 Similar results were found, however, when money, bonds, and real estate were
allowed into the portfolio (Frankel, 1985a,b, and Frankel and Dickens, 1984) and when
foreign assets were allowed (Frankel, 1982, and Frankel and Engel, 1984.)
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market boom of August 1982, the market rose at an average annual rate of 22 percent. Few
would argue in retrospect that it is possible to obtain from this period ex post, valid
measures of ex ante expected risk and return.

One could imagine other reasons as well why the MVE model may fail to describe the
asset price movements of a given sample as well as the generalized Tobin portfolio
balance model. The CASE approach allows us to see how the MVE model, while successful in
its GARCH formulation at predicting excess returns, is still not as successful as the

unrestricted model.
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TABLE 1

Industry Portfolios and S.E.C. Codes

Industry S.E.C. Codes
1. Mining 10,11,12,13,14
2. Food and Beverages 20
3. Textile and Apparel 22,23
4. Paper Products 26
5. Chemical 28
6. Petroleum 29
7. Stone, Clay and Glass 32
8. Primary Metals 33
9. Fabricated Metals 34
10. Machinery 35
11. Appliances, Electric Equipment 36
12. Transportation Equipment 37
13. Miscellaneous Manufacturing 38,39
14. Railroads 40
15. Other Transportation 41,42,44,45,47
16. Utilities 49
17. Department Stores 53
18. Other Retail Trade 50-52, S54-59
19. Banking, Financial, Real Estate 60-67
20. Miscellaneous 1,4,15-17,21,24,25,27,30,31,

46,48,70,73,75,78-80,82,89,99
11 Portfolios (combinations of the 20 portfolios)

Portfolio Industry Portfollios
1 1, 20
2, 3, 4
5
6
7, 8, 9
10
11
12-15
16
17, 18
19

OOV~ NAEWN

[

7 Portfolios (combinations of the 20 portfolios)

Portfolio Industry Portfolios
1 1, 2, 3, 4, 20
2 5, 7, 8, 9
3 6
4 10, 11
5 12-15
6 16
7 17-19



TABLE 2

Estimated Coefficients from Unconstrained OLS Regressions

Dependent Variable:

Independent variable:

Excess rate of return on asset }
Shares of asset j in total portfolio

1 }‘2 3 4 A.5 A6 )\7 Aﬂ A9 A‘l.O A11
Equation 1
-0.14 0.19 0.26 -0.06 =-0.11 0.14 =-0.70 0.08 0.21 -0.35 0.26
(0.12) (0.82) (0.30) (0.26) (0.32) (0.25) (0.44) (0.22) (0.32) (0.25) (0.44)
»
R = .023 Breusch-Godfrey statistic (20 lags) = 42.79
Equation 2
-0.11 -2.29" 0.64" -0.29 -0.28 0.44 -1.12" 0.16 0.59* 0.83 2.06
(0.13) (0.86) (0.32) (0.27) (0.34) (0.26) (0.46) (0.23) (0.22) (0.57) (1.24)
R® = .050 Breusch-Godfrey statistic (20 lags) = 23.38
Equation 3
-0.20 -1.05 0.12 -0.04 -0.32 0.14 -1.20* -0.02 0.46" 1.16 2.05
(0.13) (0.89) (0.33) (0.28) (0.35) (0.27) (0.47) (0.24) (0.23) (0.59) (1.29)
R® = .047 Breusch-Godfrey statistic (20 lags) = 16.99
Equation 4
0.15 -0.55 0.74 -0.82" -0.81" 0.14 -1.01 0.44 -0.01 -0.60 2.79
(0.16) (1.09) (0.40) (0.34) (0.43) (0.33) (0.57) (0.29) (0.28) (0.72) (1.57)
R? = .027 Breusch-Godfrey statistic (20 lags) = 21.74
Equation 5
-0.25 -1.00 0.83" -0.25 -0.81 0.18 -1.68" 0.50 0.41 -0.02 2.20
(0.16) (1.07) (0.39) (0.34) (0.42) (0.33) (0.57) (0.29) (0.28) (0.71) (1.55)
R® = .044 Breusch-Godfrey statistic (20 lags) = 30.71
Equation 6
-0.10 -0.19 0.46 -0.40 -0.68 -0.45 -0.28 0.37 0.18 -0.06 1.99
(0.15) (1.04) (0.38) (0.33) (0.41) (0.32) (0.56) (0.28) (0.27) (0.69) (1.51)

2

R™ = .046

Breusch-Godfrey statistic (20 lags) = 20.41



-0.
(0.

-0.
(0.

-0.
(0.

Equation 7

17 -2.72° 0.83
17) (1.13) (0.41)

R® = .066

Equation 8

.14 -0.85 0.25
(0.

14) (0.93) (0.34)

R® = .067

Equation 9

.09 -0.77 0.50
(0.

12) (0.80) (0.30)

R® = .032

Equation 10
11 -0.38 0.20
16) (1.06) (0.39)

R? = 027

Equation 11
04 -0.25 0.13
14) (0.95) (0.35)

rRZ = .027

-0.
(0.

-0.
(0.

-0.
{0.

-0.
(0.

26
36)

10
39)

10
25)

10
33)

.19
.30)

Table 2 (continued)

-0.
(0.

-0.
(0.

-0.
(0.

(0.

.71 0.44 -2.15" 0.37 0.75" 1.21 3.15
.44) (0.35) (0.60) (0.30) (0.29) (0.75) (1.63)

Breusch-Godfrey statistic (20 lags) = 17.38

43 0.08 -1.41" -0.04 0.62 0.94 1.80
36) (0.29) (0.49) (0.25) (0.24) (0.62) (1.34)

Breusch-Godfrey statistic (20 lags) = 21.10

12 0.18 -0.64 -0.04 0.30 0.07 0.82
31) (0.25) (0.43) (0.21) (0.21) (0.53) (1.16)

Breusch-Godfrey statistic (20 lags) = 35.07"°

27 0.01 -0.56 0.06 0.41 -0.02 1.05
42) (0.33) (0.56) (0.28) (0.28) (0.70) (1.53)

Breusch-Godfrey statistic (20 lags) = 44.68"

.09 0.24 0.13 0.19 0.54 -0.20 -1.31

37) (0.29) (0.50) (0.25) (0.25) (0.63) (1.37)

Breusch~Godfrey statistic (20 lags) = 42.42°

¥ e significant at 5% level

(standard errors in parentheses)



TABLE 3

CAPM Estimation, constant 2, 11 assets
Ty = p(P P)At+ €
Var (e, '} = P'P
t t+l
The estimate of the coefficient p:
2.0319
(1.6130)
The estimate of the upper triangular matrix P:
.0398 .0322 .0334 .0385 .0411 .0346 .0404 .0331 .
(.0018)(.0021)(.0023)(.0028)(.0026)(.0026)(.0030)(.0025)(.
.0274 .0197 -.0033 .0166 .0198 .0223 .0189
(.0011)(.0015)(.0023})(.0019)(.0025)(.0022)(.0019)(.
.0204 .0042 .0044 .0097 .0097 .0078 -.
(.0008)(.0024)(.0015)(.0019)(.0019)(.0014)(.
.0360 -.0029 -.0019 -.0032 ~.0017 .
(.0014)(.0016)(.0021)(.0019)(.0015) (.
.0276 .0058 .0102 .0090 -.
(.0011)(.0019)(.0019)(.0013)(.
.0304 .0068 .00S0 -.
(.0011)(.0016)(.0015)(.
.0272 .0063
(.0011)(.0014)(.
.0214
(.0010) (.

(standard errors in parentheses)

.0089

.0020

0257 .
0022) (.
0017) (.
0046 .
0018} (.
0018 -.
0018) (.

0046 .
0017) (.

0025
0017) (.

.0000

0017) (.

0018) (.

.0272

.0011) (.

.0252

.0094

0317 .
0029) (.

0025} (.
0015 .
oo18) (.
0073 .
0019)(.

0003 .
0017)(.

.0021 -.

0018) (.

0063
0019) (.

0018) (.

0032 .
0017)(.

.0287 .
.0013) (.

0374
0023)

. 0047

0015)

0000
0018)

0125
0016)

0051
0016)

0009
0014)

.0020

0017)

. 0027

0017)

0050
0014)

0006
0013)

.0219

.0007)



TABLE 4
CAPM Estimates, Constant 2, 7 assets

r = p(P'P)At + ¢

tel t+l

Var (e ) = P’'P
t tel

The estimate of the coefficient p:

2.028
(1.466)

The estimate of the upper triangular matrix P:

.03842 .03935 .03711 .04015 .03640 . 02695 .03782
(.00150} (.00185) (.00246) (.00213) (.00206) (.00190} (.00197)
.0207S -.00471 .01708 .01571 -.00389 .0048S

(.00075S) (.00225) (.00140) (.00149) (.00153) (.00123)

.03757 -.002%6 -.00242 -.00033 .00140

(.00115) (.00143) (.00120) (.00166) (.00117)

.02435 .00762 ~.00136 .00342

(.00092) (.00137) (.00156) (.00117)

.02206 .00269 .00735

(.00087) (.00149} (.00108)

.02801 .00408

(.00103) (.00109)

.02034

(.00075)

(standard errors in parentheses)



TABLE 5
CAPM Estimates, ARCH, 7 assets
r = thkt + €

t+1

Var (¢ ) =Q =P'P + Ge €'G
Lt L+ t Lt

The estimate of the coefficient p:

1.912
(1.477)

The estimate of the upper triangular matrix P:

.03714 .03883 .03364 . 04036 .03738
(.00152) (.00189} (.00274) (.00213) (.00204)
.02050 -.00278 .01648 .01486
(.00077) (.00233) (.00150) (.00158)
.03541 -.00285 -.00127
(.00116) (.00157) (.00124)
. 02405 .00687
(.00095) (.00138)
.02118
(.00096)
The estimates of the diagonal elements of G:
305 31874 . 06267 -.03718

. 19819 .13 .
(.03953) (.04684) (.06162) (.04517) (.04355)

(standard errors in parentheses)

—

.02700
.00191)

.00395
.00160)

.00084
.00182)

.00140
.00160)

.00253
.00158}

.02779
.00109)

. 15481
.09843)

.03700
(.00200)

.00494
.00130)

.00082
.00128)

.00308
.00122)

.00747
.00109)

.00391
.00112)

.01971
.00082)

.17706
.04668)



TABLE 6
CAPM Estimates, GARCH, 7 assets
r = thAt + €

tel tel

Var (¢ ) =Q = PP + Ge e'G + HQ H
o tel t tt t-1
The estimate of the coefficient p:

3.043
(1.407)

The estimate of the upper triangular matrix P:

.01075 .01314 .01078 .01227 .01039 .00716 .00824
(.00126) (.00175) (.c0172) (.001586) (.00106) (.00112) (.00088)

.00625 -.00006 .00424 .00338 -.00099% .00102
(.00073) {.00123) (.00088) (.00100) .00071) (.00085)

—

.01087 -.00050 .00011 .00046 .00084
(.00148) (.00072) (.00070) (.00077) (.00071)

.00679 .00134 -.00045 -.00020
(.00110) (.00074) (.00053) (.00073)

.00519 .00057 -.00004
(.00076) (.00069) (.00077)

.00663 .00071
(.Q0092) (.00067)
.00194
(.00102)
The estimates of the diagonal elements of G:
.18916 . 13561 .25085 .11798 . 08263 .22818 . 12647
(.02024) (.02459) (.04273) (.02997) (.02781) (.03748) (.01812)
The estimates of the diagonal elements of H:
.94234 . 93786 .92592 .95185 . 96264 . 94444 . 97392

(.01117) (.01424) (.01969) (.01252) (.00724) (.01272) (.00328)

(standard errors in parentheses)



TesTs oF THE MODEL

r =AAXx +¢ ; E(e €
L+l t t L+l L t+l te+l t

Unrestricted, ARCH Coefficients
At = Q'Q + Fetc;F

reject reject

GARCH-MVE Unrestricted, Constant Coefficients

At = th = e[(P P)+G(st€t)G+HQt_1H] At = Q'Q

reject reject

reject reject

Constant-variance MVE
At = pQ = P'P

don’t|reject

Investor risk-neutrality
Az =0

Figure 1



