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ABSTRACT

I study irreversible investment decisions when projects take time to complete, and arc subject

to two types of uncertainty uver the cost of completion. The first is technical uncertainty, i.e.,

uncertainty over the amount of time, effort, and materials that will ultimately be required to

complete the project, and that is only resolved as the investment proceeds. The second is input

cost uncertainty, ie., uncertainty over the prices and quantities of labor and materials required and

which is external to the finn's investment activity. I derive a simple decision rule that maximizes

the firm's value, and I use it to show how these two types of uncertainty have very diffcrent

effects on investment decisions. As an example, I anaiyze the decision to start or continue

building a nuclear power plant during the 1980's.
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1. Introduction.
In most studies of investment under uncertainty, it is the future payoffs from the invest-

ment that are uncertain. The emphasis on uncertainty over future payoffs also applies to

the growing literature on irreversible investment. Much of that literature (see Dixit (1992)

and Pindyck (1991) for an overview) studies optimal stopping rules for the timing of sunk

costs of known magnitude, in exchange for capital whose value fluctuates stochastically,

At times the cost of an investment is more uncertain than the future payoff. This is often

the case for large projects that take considerable time to build. An example is a nuclear

power plant, where total construction costs are hard to predict due to both engineering

and regulatory uncertainties. Althongh the future value of a completed nuclear plant is

also uncertain (because electricity demand and costs of alternative fuels are uncertain),

construction cost uocertainty is much greater, and has deterred utilities from building new

plants There are many other examples, ranging from large petrochemical complexes, to the

development of a new line of aircraft, to urban construction projects. Also, large size is not

a requisite. Most R&D projects involveconsiderable cost uncertainty; the development of a

new drug by a pharmaceutical company is an example.

In addition to their uncertain costs, all of the investments mentioned above are irre-

versible. Expenditures on nuclear power plants, petrochemical complexes, aod the develop-

ment of new drugs are firm- or industry-specific, and hence are sunk costs that cannot be

recovered should the investment turn out, er post, to have been a had one. In each case, the

investment could turn out to he bsd because demand for the product is less than anticipated,

or because the cost of the investment turns out to be greater than anticipated. Whatever

the reason, the firm cannot "disinvest" and recover the money it spent.

This paper studies the implications of cost uncertainty for irreversible investment deci-

sions. I am concerned with projects that take time to complete, so that two different kinds of

uncertainty arise. The first, which I call I echrsicol uncertainty, relates to the difficulty of cqm-

pleting a project: Assuming prices of construction inputs are known, how much time, effort,

and materials will ultimately be required? This kind of uncertainty can only be resolved by



undertaking the project; actual costs and construction time unfold a-s the project proceeds.'

These costs may from time to time be greater or less than anticipated as impediments arise

or as the work progresses faster than planned, but the total cost of the investment is only

known for certain when the project is complete. Also, this oncertainty is largely diversifiable.

It results only from the inability to predict how difficult a project will be, which is likely to

be independent of the overaU economy.

The second kind of uncertainty relates to input costs, and is external to what the firm

does. It arises when the prices of lahor, land, and materials needed to build a project fluctuate

unpredictably, or when unpredictable chauges in government regulations change the required

quantities of construction inputs. Prices and regulations change whether or not the firm is

investing, and are more uncertain the farther into the future one looks. Hence iuput cost

uncertainty is particularly important fur projects that take time to complete, or are subject

to voluntary or involuntary delays. Also, this uncertainty may be partly unodiversifiable;

changes in construction costs are likely to be correlated with overall economic activity.

This paper derives decision rules for irreversible investments subject to both types of cost

uncertainty. For siroplicity, I first assume that the value of the completed prnject is known

with certainty, and then show how the model can he extended so that this is also stochastic.

The decisinn rules I derive allow for the possibility nf abandoning the project midstream, and

maximize the value of the firm in a competitive capital market. These rules have a simple

form: Invest as long the expected cost to complete the project is below a critical numher.

Also, the derivation of the decision rule yields the value of the investment opportunity, Le,

what nne would pay for the right to undertake the project. I explore how this value, and the

critical expected cost to completion, depend on the type and level of uncertainty.

Both types of uncertainty increase the value of an investment opportunity. The reason

is that the payoff function is rnax[O, V — IC, where K is the cost and V the value of the

completed project. The investment opportunity is like a put option; the holder can sell an

LThk is a simpliflcation in that for some projects cost uncertainty can be reduced by first undertaking
additional engineering studies. The investment problem is then more complicated because nne has three
choices iustsad of two: start construction now undertake an engineering study and then begin construction
csly ii tte study indicates rts are likely to be low, or abandon the project completely.
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asset worth an uncertain amount K fur a fixed "exercise price" V. Like any option, its value

is increased by an increase in the variance of the price of the underlying asset.2

However, the two types of uncertainty affect the investment decision differently. Technical

uncertainty raises the critical expected cost to completion. Hence a project can have an

expected cost that makes its conventional NPV negative, hut it can still be economical to

begin investing. The reason is that investing reveals information about cost, and therefore

has a shadow value beyond its direct contribution to the completion of the project; this

shadow valne lowers the full expected cost of the investment.3 Also, since information about

cost arriv only when investment is taking place, there is no value to waiting.

As an example, a project requires a first phase investment of $1. Then, with probability

.5 the project will be finished, and with probability .5 a second phase costing 84 will be

required. Completion of the project yields a certain payoff of $2.8. Since the expected cost

of the project is $3, the conventionally measured NPV is negative. But this ignores the value

of the option to abandon the project should the second phase be required. The correct NPV

is 1 + (.5)(2.8) = $11.4, so the firm should proceed with at least the first phase.

Input cost uncertainty reducrs the critical expected cost. Hence a project could have a

conventional NPV that is positive, but be uneconomical. This is because costs of construction

inputs change whether or not investment is taking place, so there is a valne of waiting for new

information before committing resources. Also, this effect is magnified when fluctuations in

construction costs are correlated with the economy, i.e., in the context of the CAPM, when

the "beta" of cost is high. The reason is that a higher "beta" implies that high cost outcomes

are more likely to be associated with high stock market returns, so that the investment

opportunity is a hedge against nondiversifiable risk. Put another way, a higher "beta" raises

the discount rate applied to expected future costs, which raises the value of the investment

opportunity, as well as the benefit from waiting rather than investing now.

JJsing put-call parity, we cans slso think of this as a call option with s stochastic exercise price (K) on
an asset with a fixed valse ('1). In my model, the firm has a more complicated compound option; it can
spend ao uncertain amount of money in return for an option to continue the partially completsd project

5lt is analogous to the shadow vslue of production arising from s learning curve, which lowers the full
* cost of production; see Majd and Pindyck (1989).
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For example, suppose an investment can be made oow or later. The cost is now $3, but

next period it will either fall to $2 or rise to $4, each with probability .5, and then remain at

that level. Investing yields a certain payoff of $3.2, and assume the risk-free rate of interest

is zero. If we iovest now, the project has a conventional NPV of $0.2. But this ignores the

opportuoity cost of closing onr option to wait for a better outcome (a drop in cost). If we

wait, we will only invest if the cost falls to $2. The NPV if we wait is (.5)(3.2 — 2) = $0.6,

so it. is belier to wait. Now suppose the "beta" of cost is high, so that the risk-adjusted

discount rate is 25 percent per period. Because the payoff from completing the project is

certain, this discount rate is only applied to cost. Hence the NPV if we wait is now (.5)[3.2

— 2/t.25j = $0.8. The higher "beta" raises the present values of net payoffs, and thereby

increases both the valne of the investment opportunity and the value of waiting.

This paper is related to several earlier studies. The value of information gathering has

been explored by Roberts and Weitzman (1981), who developed a model of sequential in-

vestment similar to mine in that the project can be stopped in midstream, and the process

of investing reduces both the expected cost of completing the project as well the variance of

that cost. They derive an optimal stopping rule, and show that it may pay to go ahead with

the early stages of an investment even though the NPV of the entire project is negative.4

Grossman and Shapiro (1986) also study investments for which the total effort required to

reach a payoff is unknown. They model the payoff as a Poisson arrival, with a hazard rate

specified as a function of the cumulative effort expended. They allow the rate of progress to

be a concave fusction of effort, and focus on the rate of investment, rather than on whether

one should proceed or not, My results complement those of these authors, but my model is

more general in its treatment of cost uncertainty, and yields relatively simple decision rules.

This paper is also related to the basic model of irreversible investment by McDonald and

Siegel (1986). They consider the payment of a sunk cost I in return for a project worth

4Wnitsman, Newey and Rabin (IIJSI) use this model to evaluate demonstration plants for synthetic fuels,
and show that learning shout costs couLd jsstify these investments. MacKie-Masnn (lOOt) extends the
Roberts and Weitsman analysis by allowing for investors (who pay the cost of a project) and managers (who
decide whether to continoe or sbsndon the project) to have conflicting interests sad asymmetric infnrmatins.
He shows that asymmetric learning about cost leads tn inefficient nverabandnnment of projects. Finally, Zeira
(tOOT) devnlnped a model is which a firm learns about its payoff function as it accumulates capital.
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V, where V and I evolve as geometric Brownian motions. The optimal investment rule is

to wait until V/I reaches a critical value that exceeds 1, because of the opportunity cost of

committing resources. Also, Majd and Pindyck (1987) study sequential investment when a

firm can invest at some maximum rate (so it takes time to complete a project), the project

can be abandoned before completion, and the value of the project, received upon completion,

evolves as a geometric Brownian motion. In this paper the firm can also invest at a maximum

rate, hot it is the cost rather than the value of the completed project that is uncertain.5

The ba-sic model is developed in the next section, In Section 3, numerical solutions are

used to show how the value of the investment opportunity and the optimal investment rule

depend on the source and amount of uncertainty, as well as other parameters. Section 4

analyzes the decision to build a nuclear power plant; it shows how the model can be used in

practice, shows the importance of analyzing technical and input cost uncertainty together,

and illustrates the nature and implications of nuclear plant cost uncertainty during the

1980's. Section 5 discusses some extensions of the basic model, and Section 6 concludes.

2. The Basic Model.
Consider an investment in a project whose actual cost of completion is a random variable,

k, and whose expected cost is K = Eu). The project takes time to complete; the maximum

rate at which the firm can (productively) invest is k. Upon completion, the firm receives an

asset (e.g., a factory or new drug) whose value, V, is known witls certainly.

If there were no uncertainty over the total cost, valuing the investment opportunity and

determining the optimal investment rule would be straightforward. The project will take

time T = K/k to complete, so the upportunity to invest is worth:

FU) = max [ve_TK/5 — f/k dc_nI dt,

5in related work, Baldwin (1082) analyzes sequential investment decisions when investment npportosities
arrive randomly and the firm has limited resources. She vaLues the sequsoce of opportuoities and shows thst
a simple NPV rule leads to overioveatment, is., there is a value to waiting for better opportunities. Likewise,
ii cost evolves stochsstieally, it may pay to wait for cost to fall. Also, Myers and Majd (1984) determine the
value of a firm's option to abandon a project in return fur a scrap value, 3, when the value of the project,
V, evolves as a geometric Browsian motion (the firm has a put option to sell a project worth V for a price
3), and show how this abandonment value affects the decision to invest.
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= max [(V+ k/r)r"5 — Jr/c, 0] (1)

where r is the (risk-free) rate of interest. The optimal investment rule is to proceed with the

project as long as F(K) > 0, i.e., as long as K is less than a critical K, given by:

IC = (k/r)log(l+rV/k).

Hr 0, F(K)= V—IC, and K = V. But if r >0, F(K) <V—K, and K <V. The
reasou is that the payoff V is received only at time T, and must be discounted accordingly,

hut the cost of the investment is spread out frnm i = 0 to T. Also, note that F(R) is a

convex function of K, so nrscertainty over cost should increase F(K). Little can he said at

this point, however, about the effect of uncertainty on the optimal investment rule.

Introducing Uncertainty.

I introduce uncertainty over cost by letting the expected cost to completion, K(t), follow

a controlled diffusion process. Suppose for the moment that K(t) is given by:

dK = —Id± +g(I,K)clz, (2)

where I is the rate of investment, z(t) is a Wiener process that might or might not be

correlated with the economy and the stock market, and gj � 0, gj 5 0, and ilK � 0. Eqn.

(2) says that the expected cost to go declines with ongoing investment, hut also changes

stochastically. Stochastic changes in K might be due to technical uncertainty, in which case

g(0,K) = 0 and gi >0, to input cost uncertainty, in which case g(0,K) > 0, or to both.6

I will again assume that there is a maximum rate of investment Jr. Let F(K) F(A; V, k)

be the value of the investment opportunity. Then F(K) satisfies:

F(K) = flax E3 [Vcmt —f I(fle (3)

subject to eqn. (2), 0 C 1(t) k, and K(T) = 0, Here p is an appropriate risk-adjusted

discount rate, and the time of completion, I, is stochastic.

6Eqa. 12) is a generalization of Roberts and Weitzman (1981), who also model the expsrted cost to go
as a stochastic process that is rontrolled by the rats of imsvestsuent.
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For eqn. (2) to make economic sense, more structure is needed. In particular, we would

like: (i) F(K; V, k) to be homogeneous of degree one in K, V, and k; (ii) P < 0, i.e.,

an increase in the expected cost of an investment should always reduce its value; (iii) the

instantaneous variance of dK to be bounded for all finite K and to approach 0 as K — 0; and

(iv) if the firm invests at the maximum rate Jr until the project is complete, E0 f,j Jrdi = K,

so that K is indeed the expected cost to completion. We can meet these conditions and still

allow for reasonably general 4ost structures hy letting g(I, K) = /3K(I/IC)", with 0 c c
This clearly satisfies conditions (i) and (iii). As will become evident later, 0 'C a C rather

than fI C a cc 1, which also satisfies (i) and (iii), is needed to satisfy (ii) Finally, it is shown

in Appendix A that (iv) is also satisfied.

\Ve will restrict the analysis to a = 0 and ., which correspond naturally to our two

types of cost uncertainty, and which result in simple corner solutions for optimal investment.

(As discussed in Section 4, other values of a result in interior solutions wherc I is varicd

in response to changes in the variance of dK.) The case ofa = corresponds to technical

uncertainty; K can change only if the firm is investing, and the instantaneous variance of

dIC/K increases linearly with I/K. When the firm is investing, the expected change in IC

over an interval fii is —IAt, but the realized change can be greater or less than this, and

K can even increase. As the project proceeds, progress will at times he slower and at times

faster than expected. The variance of [C falls as K falls, but the actual total cost of the

project, fId, is only known when the project is completed.

The case of o = 0 corresponds to input cost uncertainty; the instantaneous variance

of dK/K is constant and independent of I. Now IC will fluctuate even when there is no

iovestment; oogoing changes in the costs of labor and materials will change K irrespective

of what the firm does. And since the project takes time to build, the actual total cost of the

project is again only known when the project is complete.

We can allow for both types of uncertainty by combining these two cases in a single

equation for the evolution of K:

dIV = —Idt + /3(IK)'12dz + yltdw, (4)
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where dr and dw are the increments of uncorrelated Wiener processes. We will assume that

all risk associated with dx is diversifiable, i.e., dx is uneorrelated with the economy and the

stock market. However, dw may be correlated with the market. Note that eqn. (4) combines

uncertainty over the amount of effort required to complete a project, nrscertainty over the

cost of that effort, and uncertainty over the time the project will take.

The Optimal Investment Knie.

Given that dee in eqn. (4) may be correlated with the market, we cannot use the risk

free rate of interest for the discount rate p in eqn. (3). We can eliminate p from the

problem, however, if dee is spanned by existing assets in the economy, i.e., if in principle one

rould replicate mcvements in dee with some other asset or dynamic portfolio of assets. The

investment problem can then be solved using cootingent claims methods. If spanning does

not hold, we could instead find an optimal investment rule using dynamic programming,

subject to some choice of discount rate p.

We will assume that spanning holds. Let x he the price of an asset or dynamic portfolio

of assets perfectly correlated with so, so that dx follows:

dx = a1xdt t71xdsv. (5)

By the CAPM, the risk-adjusted expected return on x is r5 = r + OPZmiTZ, where 0 is the

market price of risk,8 and Pew is the instantaneous correlation of z with the market portfolio.

The Appendix shows that F(R) mnst satisfy the following differential equation:

/32JKFKK + I2K2FKK — JFK — IIrIKFK — I = rF, (6)

where ft' — r)/c1. Recall that r = T + OPzmOr. Thus = 0Pcm- Since 0 is a ecooomy-

wide parameter, the only project-specific parameter needed to determioe i/ is Pe,,t, which is

equal to the coefficient of correlation between fluctuaLions in cost and the stock market.

TBuL without spanning we would have no theory For determining the correct discount rate lcther than by
melting sssumptions shout the risk preferences of managers or the firm's stockhnlders) Ferthermore, the
correct discount rate need not be constant. If 4w reflects unpredictable changes in the prices of factors such
as labor and raw materials, spanning should hold at least ronghly

5That is, S = (rm — r)/ie_, where r,,, is the expected return un the market, and c, is the standard
deviation of that return. If we take the New York Stnck Exchange Index as the market, over the period
1926-88 r,,, —. r an .08 and 5',,, .2, au I? an .4.
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Note that eqn. (6) is the Bellman equation for the stochastic dynamic programming

problem given by (3), but with p replaced by r. Because eqn. (6) is linear in 1, the rate of

investment that maximizes F(K) is always equal to either 0 or the maximum rate k:

I' k for/31CFKKFK1�0
• 1=, (7)

0 otherwise

Eqn. (6) therefore has a free houndary at apoint K, such that 1(t) = k when K C K and
• 1(t) = 0 otherwise. The value of K must be found as part of the solution for F(K). To

determine F(K) and IC, we solve (6) subject to the following boundary conditions:

F(0) = V (8)

limF(K)=0 (9)

• /32ICFKKC) — Fpc(IC) — 1 = 0 (10)

and F(K) continuous at IC, Condition (8) says that at completion, the payoff is V. Con-

dition (9) says that when K is very large, the probability is very small that over some finite

time it will drop enough to begin the project. Finally, condition (10) follows from (7), and

is equivalent to the "smooth pasting" condition that F(K) be continuous at IC.

When I = 0, eqn. (6) has the following simple analytical solution:

F=aK& (11)

where, to satisfy boundary condition (9), his the negative root of the quadratic equation

y2b(b — 1) — yb— r 0, i.e., I 1
(12)

The parameter a is determined from the remaining boundary conditions, together with IC

and the solution for F(K) for K c IC. This must be done numerically, which is relatively

easy once eqn. (6) has been appropriately transformed? A family of solutions for K < IC

9When I = 5, eqn. (6) has a first-degree singularity at K 0. To eliminate this, make Lbs substitution
F(K) = f(y), where y = log K. Then (6) becomes:

Zk%(y) 2k+2rf(y)—
— /325 + 5e j32h—s + 72'

and boundary conditions (8) to (it) are transformed accordingly.
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can be found that satisfy condition (8), but a unique solution, together with the value of a,

is determined from (10) and the continuity of F(K) at IC.

3. Solution Characteristics.
The effects of cost uncertainty can be seen by first examining solutions of equ. (6) for

the case of pure technical uncertainty, i.e., = 0, and then for the case of pure input cost

uncertainty, i.e., /3 = 0. Afterwards we will return to the general case.

Technical Uncertainty.

When only technical uncertainty is present, equ. (6) rcduccs to:

/32IKFxpc — JFK — J = rF. (13)

in this case, K can change only when investment is taking place, so if K > K and the

firm is not investing, it never will, and F(K) = 0. Hence bouudary conditions (8) and (10)

remain the same, but condition (9) is replaced with F(R) = 0.

When r = 3, eqn. (13) has an analytical solution:

K
F(R)= V-K+[32() , (14)

and the critical value of K, iC, is given by:

= (1 + j32)V

Eqn. (14) has a simple interpretatien. With r = 0, V — K would he the value of the

investment opportunity were there no possibility of abandoning the project. The last term

is the value of the put option, i.e., the option to abandon the project should costs turn out

to be much higher than expected. Note that for /3 > 0, [C > V, and K is increasing in /3.

The more uncertainty there is, the greater the value of the investment opportunity, and the

larger is the maximum expectod cost for which beginning to invest is economical.

When r > 0, eqn. (13) does not have an analytical solution, hut can be solved numerically

for different values of /3. To choose values for /3 that are reasunahld, we need to relate this

10



parameter to the variance of the project's total cost. The Appendix shows that for this case

in which = 0, the variance of the cost to completion is given by:

Var(k) = (-!) (15)

Hence if one standard deviation of a project's cost is 25 percent of the expected cost, /1

would be 0.343, and if nne stand ard deviation is 50 percent of the expected cost, /3 would be

0.63. Standard deviations of project cost in the range of 25 to 50 percent are not unusual,

so we will use these values fnr j3 in the calculations that follow.

Figure 1 shows F(K) as a function of K for V = 10, k = 2, '- = .05, and /3 = 0, .343,

and .63. Observe that F(K) looks like the value of a put option, except that F(K) = 0

when K exceeds the "exercise" point iC. Although F(K) is larger the higher is /3, the effect

is greatest for larger values of K. Also, the effect of technical uncertainty on the optimal

investment rule is moderate; only when /3 = .63 does fC substantially exceed its value for

the certainty case. lo fact, for IC to increase by 50 percent (from about 9 to about 13.5), a

value of /3 close to 1 is required, which in turn implies that the standard deviation of total

cost be about 100 percent of the expected cost.

Finally, Figure 2 shows how .F'(E) depends on the maximum rate of investment, k. (Here,

/3 = .63.) As in the certainty case, a larger Jr implies a larger F(K), because the payoff V

is expected to be received earlier, and hence is discounted less. Also, when the investment

opportunity is worth more, the critical value IC is larger.

Input Cost Uncertainty.

With only input cost uncertainty, eqn. (6) becomes:

72IC2FK.c — JFK — /i7KFjç — I = rF. (16)

This is again subject to boundary conditions (8) and (9), but condition (10) is replaced with

• F,v(K) = —1. Now K can change whether or not investment is taking place, so like a

financial put option, F(K) > 0 for any finite K.

When > 0, eqn. (16) has no solution when r = 0, because then there woold be no

reason to ever invest. One would always be better off waiting until K fell close to 0 so that

11



the net payoff from investing is larger. It would not matter that substantial time might have

to pass for this to happen, because net payoffs would oot be discounted.

If I 0, K is logoormally distributed. Then y can be interpreted as the standard

deviation of percentage changes per period (in this case, a year) in K. Determining a value

for that is reasonable depends on the makeup of cost; Section 5 shows how this can be

done for a specific example. Figure 3 shows numerical solutions of equ. (16) for 0, .2

aod .4. (In each case, V = 10, k = 2, r = .05, and a.) Observe that even when -y is .2,

there is a substantial effect on the value of the investment opportunity (particularly when

K is large), and on the critical cutoff IC. When = .2, IC' is about half of svhat it is when

7 = 0, so that a correct net present value rule would require the payoff from the investment

to be about twice as large as the expected cost before the investment is undertaken, This is

similar to the kinds of numerical results obtained by McDonald and Siegel (1986) and Majd

and Findyck (1987) for uncertainty over the payoff to an investment, and shows that the

effects of input cost uncertainty can also be quantitatively important.

Figure 4 shows the dependence of F(Ic) and K' nn , i.e., on the extent to which

fluctuations in IC are correlated with the economy and the stock market. Recall that ql =

°Prrn = 0PKm- A reasonable value for &, the market price of risk, is 0.4, so we would expect

to he less than this, perhaps on the order of .1 to .3. Figure 4 shows F(K) for ci = 0, .3,

and for illustrative purposes, .6. As is clear from this figure, a value of on the order of .1

will have only a negligible effect on F(IC) and It". For a value of .3, however, the effect is

large, and reduces K by around 25 percent compared to 0. Thus input cost uncertainty

with a large systematic component can have a substantial impact on the decision to invest.

The General Case.

The value of the investment opportunity and the critical expected cost K can be found

for any combination of /3, , and ci by numerically solving eqn. (6) and its associated

boundary conditions. Since increases in /3 and 7 (or ci) have opposite effects on IC, it is

useful to determine the net effect for combinations of these parameters.

Table 1 shows K' as a function of both /3 and -y, for = 0, V = 10, 4 = 2, and r = .05.

12



Table 1 — Critical I( as a Function of fi and y.
(Note; V = 10,/c = 2,r = .05, and = 0.)

7

0 0_i 0-2 0.3 0.4 0.5

0 8.9257 6.6113 4.9463 3.7524 2.8857 2.2559

0.1 8.9844 6.6504 4.9756 3.7720 2.9016 2.2681

0.2 9.1309 6.7578 5.0537 3.8330 2.9468 2.3032

0.3 9.3750 6.9385 5.1855 3.9307 3.0225 2.3608

0.4 9.7168 7.1875 5.3711 4.0674 3.1274 2.4438

0.5 10.156 7.5098 5.6104 4.2480 3.2617 2.5488

0.6 10.693 7.9053 5.8984 4.4629 3.4277 2.6758

0.7 11.328 8.3691 6.2402 4.7168 3.6230 2.8271

0.8 12.051 8.8965 6.6309 5.0146 3.8477 3.0005

0.9 12.861 9.5020 7.0801 5.3467 4.1016 3.1982

1.0 13.770 10.166 7.5732 5.7178 4.3848 3.4180

Note that K' decreases with and increases with j9, but is much more sensitive to changes

in 7. Whatever the value of /3, a 7 of 0.5 reduces 1C to about a fifth of the value it has when

= 0. Also, this drop in K' would be even larger if there were a systematic component to

the input cost uncertainty. Thus for many investments, and particularly for large industrial

projects where input costs fluctuate, increasing uncertainty is likely to depress investment.

The opposite will be the case only for investments like R&D programs, where technical

uncertainty is far more important and /3 could easily exceed 1.

Table 2 shows F(K;/3,7) as a function of /3 and for K = 8.92, which is the value of

I when jJ = = 0. This is the "premium" in the value of the investment opportunityI
that results from the two sources of cost uncertainty. Note that this premium is increasing

in both /3 and q, but is again more sensitive to 7. Also, if is large (say, 0.5), this premium

changes very little when /9 is increased.
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Table 2 — F(K) as a Function of /3 and .
(Evaluated at JT corresponding to /3 = = 0)

it
7

74 0 0.1 0.2 0.3 0.4 0.5

0 0 1.0877 2.1553 3.1588 4.0535 4.8345

0_i .1384 1.0915 2.1596 3.1599 4.0565 4.8371

0.2 .2026 1.0983 2.1642 3.1670 4.0606 4.8409

0.3 .2428 1.1149 2.1753 3.1747 4.0692 4.8456

0.4 .3924 1.1434 2.1956 3.1878 4.0810 4.8595

0.5 .5199 1.1918 2.2277 3.2146 4.0974 4.8746

3.6 .7499 1.2650 2.2697 3.2440 4.1240 4.8920

0.7 .9067 1.3652 2.3280 3.2837 4.1572 4.9184

0.8 1.1664 1.4942 2.3998 3.3401 4.1978 4.9487

0,9 1.3606 1.6848 2.4939 3.4024 4.2460 4.9884

1.0 1.6034 1.8724 2.5996 3.4764 4.3021 5.0323

The use of this model for investment decisions requires estimates of /3 and y, and, sec-

ondarily, an estimate of 0 or PKm. This requires estimating confidence intervals around

projected cost for each source of uncertainty. To break total cost uncertainty down into

technical and input cost components, one can utilize the fact that the first is independent of

time, whereas the variance of cost due to the second component grows linearly with the time

horizon. Thus, a value for 7 is found by estimating the standard deviation of cost T years

into the future assuming no investment takes place prior to that time. This estimate, &lr,

could come from experience with construction costs, or from an accounting model of cost

combined with variance estimates for individual inputs. Tlsen, = &/'/7. Likewise, nsing

eqn. (15) and an initial estimate of expected cost, K(3), a value for /3 can be based on an

estimate of the time-independent standard deviation of Ic. In the next section, I illustrate

this in the context of a specific example — the decision to build a nuclear power plant.

14



4. Example — The Construction of Nuclear Power Plants.

We will examine the decision to start or continue building a nuclear power plant in the

context of market conditions in late 1982 or 1983. This was about three years after Three

Mile Island, and was a time of considerable uncerts.inty over nuclear plant cnnstrnction costs,

which had begun rising sharply. Many utilities faced difficult decisions whether to go ahead

with planned or ongoing construction, and some cancelled plants that were well on their way

towards completion.'° Examining this investment problem will show how the model can be

used, and provide insight into the evolution of nuclear power in the U.S.

To apply the model, we need estimates of the expectation and variance of the cost of

building a kilowatt of nuclear generating capacity, a decomposition of that variance into

technical and factor cost components, the maximum rate of investment, and the value of the

unit of capacity. The last two numbers are relatively straightforward. Given the prices of

alternative Ouch during the early- and mid-1980s, the value of a unit of capacity was about

$2,000, with fluctuations in real terms within only a 10% range.'1 The actual construction

time for nuclear plants varied through time and across plants during the late 1970s and

1980s, from 6 to as long as 16 years, hut tended to move proportionally with realized costs,

and increased over the years as (real) costs increased. During the early 1980s, however,

estimates of erpected construction time were clustered around 10 years, so a good estimate

of the maximum rate of investment is 10 percent of expected cost.

To estimate the expectation, variance, and variance decomposition of cost, I use survey

data on individual nuclear plant costs published by the Tennessee Valley Authority, and a

cross-section regression analysis by Lewis Perl (1987, 1988) that explains differences in these

costs across plants. The TVA obtained quarterly estimates of expected cost for nuclear

plants planned or under construction in the U.S. These numbers, published in the TVA's

"Costs per Kilowatt Report for U.S. Nuclear Plants," provide data on the expected cost of

"For example, Virginia Electrir Power rancelled its Nnrthasrra Ill arid IV uoits,-whirh were 10% com-
pleted1 Public Service of Indians cancelled Marble Hill (35% cempleted), Wsshingtoa Public Power Supply
Systems csncelled four of its live plants (5% to 50% completed), and Cleveland Electric Illuminstisg cancelled
its Zimmer plant, which was more than 90% completed.

"All numbers are in 10f5 constsrr dollars. This figure is based or, Perl (1987, 1988).
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a kilowatt of generating capacity on a plant-byplant basis. The variance of cost and its

decomposition can be estimated from the time-series and cross-sectional variation of these

numbers1 using the fact tbat tbe variance of cost due to technical uncertainty is independent

of time, but tbe variance due to input cost fluctuations grows with tbe time horizon.

in any year, expected costs per kilowatt will vary across the 50 to 60 plants in the TVA

survey, but part of this variation can be explained by differences in the type of plant, the

experience of the contractor, region of the couotry, etc. Consider the cross-section regression:

COST1 = O + a5X51 + e2X2;1 + ... + q, (17)

where COSTo is expected cost for plant s in year t, and the X1s are a set of explanatory

variables. This regression filters out the predictable part of the cross-sectional variation.

Then, for plant i in year ,an estimator of the variance of cost due to technical uncertainty

is the variance of the cross-sectional forecast error for COST11 from the regression equation

(17), given the values of X50, X20, etc., that apply to plant i.

A lower bound on this variance is the (squared) standard error of the regression; this

would be the variance of the forecast error if, for plant i, X51 for each k were equal to its

cross-sectional mean. fu general, the X501s for any plant will differ from the means, so the

variance of the forecast error will exceed the squared standard error of the regression. (The

reason is that the true coefficients a, a2, etc., are unknown, and only estimated.) An upper

bound on the variance of the forecast error is the cross-sectional sample variancc of COST11.

Hence I consider values of /3 in eqn. (6) that correspond to forecast error variances ranging

from the squared standard error of the regression to the sample variance.

Pen (1987, 1988) ran such regressions in logarithmic form for 1977—1985, using the TVA

data on COST for the last quarter of each year, with up to teo explanatory variables.12 I infer

values of /3 from his results, using the 1982 data and regression. Converting to levels, the

t2He regressed the log of COST (in constant 1085 dollars) against a set of vaciables that, included the
log of the real wage, the log of the net design electric rating (reflecting the scale of the plant), the log of
the experience of the architect/engineer (measured in number of plants designed), and dummy variables for
the region of the coustry, for the type ef rock foundation, for whether the plant was the first or subsequent
built by the utility, foe whether it was a boiling water reactor, for whether the utihty served as its own
construction manager, and for whether the plant hart a complex cooling tower. Only variables that were
statistically significant were retained, so segressions for some years included only a subset of the above,
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mean expected cost for that year was $1435 perkilowatt, with a standard error of regression

of 17 percent. This is a lower bound on the standard deviation of the cross-sectional forecast

error, and using eqn. (15), implies j3 = .24.' The upper bound is the sample standard

deviation, which for 1982 was 46 percent of expected cost, and corresponds to 9 = .59.

Next. I estimate the variance due to input cost uncertainty by fitting the annual tine

series for mean expected cost to a geometric random walk. The drift and standard deviation

of percentage changes in mean expected cost are .12 and .06 respectively for 1977-1985, and

.11 and .07 for 1977-1982. Since I consider decisions at the end of 1982, I use the latter

nuasbers. However, an estimate of the drift based on six years of data (1977-82) is very

imprecise, and an expected real rate of increase of mean cost of 5 percent per year would

have been reasonable at the time. This would yield an estimated standard deviation of

.20, so I take .07 to .20 as a reasonable range for in eqn. (6). Also, most input cost
uncertainty was due to continual and unpredictable regulatory change, rather than factor

price fluctuations. Since this is largely uncorrelated with the economy, I set ç/ = 0.

Table 3 shows solntioos for /9 0, .24, and .59, and y = 0, .07, and .20. In each case,

V = 82000 per kilowatt, k ¶144 per year (10% of the $1435 mean expected cost in 1982),

= 0, and r = .045) The table shows the critical cost J(, and the value of the utility's

investment option (per kilowatt) for an actual expected cost equal to the mean of $1435.

Observe that absent input cost uncertainty (-p = 0), K' ranges from $1609 to $1881, so

that these investments would have been largely economical. (Technical uncertainty increases

K' by 4 to 21 percent compared to its value of $1550 when /9 = -p = 0.) But input

cost uncertainty lowers IC considerably, making the average plant uneconomical. Even for

= .07, in most cases it would have been preferable to wait and see how regulations (and

the expected costs they implied) evolved. And for = .20, i.t would have been economical to

15Note that this accounts for construction experience and movement down the learning curve. For a discus-
sion of the impact of experience on unclear plant speratisg costs, see McCabe (1991). McCabe aLso examines
techaciogy adoption with uncsrtsin operating cost, and argues that utilities buy a mix of technologies in
order to reduce the variance of operating cost.

'The average yield on i-year and 13-year Treasury bonds is 1982 was 13%. I take the 1979-62 average
rate of inflation of 7% in the PPI and 10% in the CPI as estimates of expected inflation, which puts ths real
risk-free rats at shout 3-6%.
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Table 3 — Critical Cost per Kiluwatt of Capacity at End of 1982.
(Based on V = $2000 per Kilowatt, r = .045 Jr = $144 per year,

and 0 0. Mean expected cost was I? = $1435 per kilowatt.)

'9

stop construction on plants that were 40 percent complete-'5 This would seem to justify the

decisions that some utilities made at the time to cancel planned or ongoing construction.16

The results are not very sensitive to the maximum rate of investment, Jr. Taking 3 = .24

and y = .07, if Jr = 288 (so expected construction time is 5 years instead of 10), 1C rises to

$1397. If Jr = 96 (so construction is expected to take 15 years), IC falls to $1154. Thus for

a reasonable range of expected construction times, IC varies by + 10 percent.

These results show that for nuclear power plants, input cost uncertainty matters most for

the investment decision, even though there is substantial technical uncertainty. They also

show the importance of incorporating both types of uncertainty in the analysis, rather than

treating them separately. Note from the table that the dependence of K on 3 is moth less

'6This assumes that there is no cost to stopping, and that construrtion could be resumed in the future.

'5The TVA surveys were available to all U.S. utilities, so presumably they could have performed the same
analysis.
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when 7 is £7 or .20 than it is when y is zero. So, if one first calculated the change in if

doe to, say, a of .59 (holding 7 = 0), and then the percentage change due to a y of £7,

the result would be a IC of about $1518, rather than the correct value of $1293.

5. Extensions of the Model.
This section shows how the model can be extended to account for uncertainty over the

future value of the completed project, and to allow for more general processes for K(t).

Uncertainty over the Value of the Completed Project.

Suppose the evolution of K is again given by eqn. (4), but V also evolves stochastically:

dV = ra,,VdL -I- aVdz, (18)

where ds is assumed to be uncorrelated with is or du,. Thus future values of V are log-

oormally distributed, and since the project takes time to complete, the payoff is always

oncertaio. For simplicity, we will assume that all risk is divcrsiflable. Then we can use

dynamic prograrnmiog, discounting with the risk-free rate of interest.

The value of the investment opportunity is again given by eqo. (3), but with V now

stochastic, and hence replaced by V(t). The Bellman equation is:

rE = rnax{—I(t)
— IFK + /32IKFgg + 11-I2K2FKK n5VFv + oVFvv} (19)

This is linear in I, and eqn. (7) again applies. The optimal rule is to invest whenever

K � IC(V). Eqn. (19) is an elliptic partial differential equation with a free boundary along

the line Ic'(V). The solution must satisfy the boundary conditions: (i) F(0, V) =V, (ii)

limv_s F(K, 1') 0, (iii) limK.5 .F(K, V) = 0, (iv) J321C'FKKU , V)—F,<(.IC, V)—1 = 0,

and F(K, V) and FK(R, V) continuous at IC(V). Condition (ii) reflects the fact that 0 is

an absorbing barrier for 1'; the other conditioos are interpreted as before.

When K> K(V), so that I = 0 eqn. (19) has the following analytical solution:

F(K, V) = m(K/Vr', (20)

where ____________________

(1 a—o' ( 2r(7+a) '\

9+2+2flN+P+22)2) (21)
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When K < IC(V), use the continuity of F(K, V) and F(R, V) at ir to eliminate m:

F(K, V) (K/$FK(A', V) (22)

Eqn. (19) together with conditions (i) and (22) can be solved numerically using a finite

difference method. The boundary, K'(V), is found simultaneously with F(R, V).

Generalizing the Process for K(t).

We inposed restrictions on K(t) that resulted in a simple investment role and let os

clearly differentiate between two types of cost uncertainty. We let K(t) follow:

elK = —Edt + 3K(iJKfd; (23)

with a = 0 or . Now suppose 0 c a < . We will again assume that dz is diversiflable, and

that V is fixed and certain. Then the Bellman equation is:

rF = max {-'@ — 'K + 12J2af(2(1_olFKK} (24)

Maximizing with respect to I gives the optimal investment role in terms of F(K):

a32K2151Fi(K) = Alt
(25)

1-i- Fl(

Substituting P(A) into (24) yields the following nonlinear differential equation for F(K):

rF = I + fit' — + F-)252°1 (26)

To find F(.K), (26) most be solved (numerically) subject to conditions (8) and (9).

Eqo. (26) has solutions for which —l < EK 0 and FKK > 0.17 Note from eqn, (25)

that 1 —+ 0 as K —t 6, so for small K, I falls as the net payoff V — K rises. This is the

opposite of Grossman and Shapiro's (1986) finding that I rises as the net payoff rises when

there are decreasing returns to effort. In my model there are constant returns to effort; I

falls because the variance of k falls as K falls, so that the shadow value of learning falls.

'7At K = 0, F'5 most be greater than -1 ss long as construction Lakes units time snd the discount rats is
positive. Likewise, Fjyç most remain finite as K 0.

20



6, Conclusions.

The model developed in this paper, as well as such predecessors as Roberts and Weitaman

(1981) and Grossman and Shapiro (1986), belong to a broad class of optimal search problems

analyzed by Weitzman (1979). In what he characterized as a "Pandora's box" problem,

one must decide how many investment opportunities with uncertain outcomes should be

undertaken, and in what order. In this paper, each dollar spent towards completion of

a project is a single investment opportunity, and the uncertain outcome is the amount of

progress that results. The model developed here is more general in that expected outcomes

can evolve stochastically even when no investment is taking place (input cost uncertainty),

but more restrictive in that the order in which dollars are spent is predetermined.

One advantage of this model is that it leads to a simple investment rule that is relatively

easy to apply in practice. Also, the restrictions tbat have been imposed on the process for

K(t) allowed us to clearly differentiate between two types of cost uncertainty. As we have

seen in the previous section, some of the restrictive assumptions in the model can he relaxed

(e.g., that V is non-stochastic), but at the cost of added computational complexity. Other

restrictions can be relaxed as well. For example, we can relax the restriction that technical

uncertainty is the same for each phase of the project (i.e., the uncertainty over the first

third of a project's anticipated cost is the same as for the last third) by making /3 in eqn.

(13) a function of K. As long as /3(K) is a smooth munotonic function, it is reasonably

straightforward to obtain numerical solutions for F'(R).

The sources and amounts of cost uncertainty will vary greatly across different projects.

However, based on the ranges of parameter values that would apply to the bulk of large

capital investments, factor cost uncertainty is likely to be more important than technical

uncertainty in terms of its effect on the investment rule and the value of the investment

opportunity. We saw that this is clearly the case for investments in nuclear power plants.

The opposite may be the case fur some R&D projects. And although we found that K is not

very sensitive to /3, this was based on the assumption, discussed above, that the uncertainty

is the sanse across all phases of the project. Increases in K may be much larger if much of

a project's unccrtainty gets resolved during its early phases.
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Appendix

A. Mean and Variance of IC.

Here I show that if K@) follows a controlled diffusion of the form:

dK = —kdt + /3K(k/K)dz, (A — 1)

then JC() is indeed the expected cost to completion. Let:

MU) = E1
[1k dr1K(t)J

(A — 2)

where 2' is the first passage time for K 0. We will show that MU) =K.

We make use of the fact that the functional M(K) must satisfy the Kolmogorov backward

equation corresponding to (A — 1):

— kMK + k = 0, (A — 3)

subject to the boundary conditions (i) M(0) 0 and (ii) M(oo) = , (See Karlin and

Taylor (1981), Chapter 15.) Clearly M(K) = K is a solution of (A — 3) and the associated

boundary conditions. Now consider a more general solution of the form MU) = K + h(.K),

where h(K) is an arbitrary function of K. By direct integration,

hg(JC) = Cexp
[(2:— l)fi2k2]'

(A 4)

Hot since liDK_,., hK(K) C, the constant C must equal zcro to satisfy boundary condition

(ii). Hence M(K) = K.
For the case of a (technical uncertainty) we can also find the variance of the cost

to go, i.e.,
2

Var(K)=E, [1T] —K5(t). (A—5)

Let G(K) = K1 [17 k-drIK]2. Then C(K) must satisfy the following Kolmogorov equation:

ji2kJCGKK — kGK + 2kK = 0, (A — 6)
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subject to the boundary conditions 0(0) = 0 and 0(m) = m, (See }Carlin and Taylor

(1981), page 203.) The solution to (A — 6) is Gf.J'C) = 2K2/(2 — j32) so the variance is:

Vs.r(J<) = (-) K5. (A — 7)

B. Derivation of Equation (6).

Given a replicating asset or portfolio whose price x follows eqn. (5), we can value the

firm's investment opportunity as a contingent claim. First, denote S — cs. Now consider

the following portfolio: hold the investment opportunity, worth F(K), and sell short n units

of the asset with price x. The value of this portfolio is then 4 = F(K) — mx, and the

instantaneous change in this value is d = dF — ndx. Since the expected rate of growth

of x is a < r1, the short position will require a payment stream over time at the rate

n(r — cx)x = n&x. Also insofar as investment is taking place, holding the investment

opportunity implies a payment stream J(i)• Thus over an interval di, the total return on the

portfolio is dF — ndx — rsSxdt — J(i)di.
Next, using Ito's Lemma, write dF as:

dl' = FdK + FxK(dIfl2

1 l'Kdi + /3(JK)'12FKdx + 7JtFfçdW + I35IKFKKdi + h2K5FKKdt

Substituting (5) for dx, the total return on the portfolio over an interval di is therefore:

—1l'K di + I3(JK)"5FKdz + yKFKdw + /32lI<F,ç,j-di y2K2Fdt
— rsrvrxdi — nixdw — rsSxdt — Idi.

By setting n = 7ICFK/a2x, we can eliminate the terms in din, and thereby remove noodi

versiflable risk from the portfolio. With is chosen this way, the only risk the portfolio carries

is diversifisbie, and hence the expected rate of return on the portfolio must be the risk-free

rate, r. Using this value of is and equating the expected portfolio return to r(F — rsx)dt

yields equation (6) for 1(R).
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FIGURE 1 - TECHNTCAL UNCERTAINTY

Shows value of investment opportunity, F(K), as function of expected coat to completion, K, for = 0,
.343, and .63, where fi describes degree of technical uncertainty. Other parameter values are V = 10,
It = 2, r = .05, and t = ' = 0. Intersection of F(K) with K axis gives critical expected cost K.

F( K)

K

FIGURE 2 - CHANGES IN MAXIMUM RATE OF INVESTMENT

Shows value of investment opportunity as function of expected cost to completion fnr three values of
maximum rate of investment; It = I, 2 and 10. Only technical uncertainty is present (3 = .63, y 4,
= 0). Other parameter values are V = 10, and r = .05.
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FIGURE 3-INPUT COST UNCERTAINTY

Shows value of investment opportunity as fuciction of expected cost to completion, and critical expected
cost K, for y = 0, .2, and .4, where y is annual standard deviation of percentage changes in cost due
to input cost fluctuations. Other parameter values are V = 10, k = 2, r = .05, $ = 0, and = 0.

F(K)6

FIGURE 4 - INPUT COST UNCERTAINTY WITH SYSTEMATIC RISK

Shows value of investment opportunity as function of expected cost to completion, and critical expected
cost K, for = 0, .3, and .6, Only input cost uncertainty is present (-y = .2, = 0). Other parameter
values areV = 10, k = 2, andr = 05.
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