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1 Introduction

Because it is built upon an intertemporal expected utility foundation which does
not distinguish between aversion to risk and resistance to intertemporal substi-
tution, the traditional theory of precautionary saving as a response to income
risk does not provide a framework within which one can even ask elementary
questions which are fundamental to the understanding of the determinants of
consumption under uncertainty. For instance, how does the strength of the pre-
cautionary saving motive vary as risk aversion changes, holding the elasticity of
intertemporal substitution constant? Or, how does the strength of the precau-
tionary saving motive vary as the elasticity of intertemporal substitution changes,
holding risk aversion constant?

Moreover, one might wonder whether some of the questions that can be posed
within the intertemporal expected utility framework have different answers once
one distinguishes between aversion to risk and resistance to intertemporal sub-
stitution. For instance, does decreasing absolute risk aversion imply that the pre-
cautionary saving motive is stronger than risk aversion regardless of the elasticity
of intertemporal substitution? And under what condition does the precautionary
saving motive decline with wealth?

To answer these questions, and to gain a better grasp on the channels through
which precautionary saving may affect the economy,! we adopt a representation
of preferences based on the Kreps-Porteus axiomatization which provides, as re-
cent work has demonstrated,? a simple yet powerful separation between attitudes
towards risk and attitudes towards intertemporal substitution.

The existing literature on the theory of precautionary saving under Kreps-Porteus
preferences is not very extensive. Barsky [1999] implicitly addresses some of the
aspects of this theory in a two-period setup, Weil [1991] analyzes a parametric
infinite-horizon model with mixed isoelastic/constant absolute risk aversion pref-
erences, while some of the other papers listed above implicitly touch on it. But
there has not been as yet any systematic treatment of precautionary saving under
Kreps-Porteus preferences.

1. There has recently been a considerable resurgence of interest in precautionary saving. See, for
instance, Barsky et al. [1989], Caballero [1990] , Kimball [1990b], Kimball and Mankiw [1989],
Skinner {1988], Weil [1991], and Zeldes [1989].

2. Selden [1978], Selden [1979], Kreps and Porteus {1978], Hall [1988], Farmer [1990], Epstein
and Zin [1989], Weil [1990], etc.
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Under intertemporal expected utility maximization, the strength of the precau-
tionary saving motive is not an independent quantity, but is linked to other as-
pects of risk preferences. In that case, the absolute prudence —v"/v" of a von-
Neumann Morgenstern second-period utility function v measures the strength of
the precautionary saving motive Kimball [1990b}, and there is an identity linking
prudence to risk aversion under additively time- and state-separable utility:

_ v”’(:v) — ale) - a(z)
@)~ o) b
where "(z)
a(z) = — 7(2) (1.2)

is the Arrow-Pratt measure of absolute risk aversion. Similarly, the coefficient of
relative prudence —zv”/(z)/v”(z) satisfies

. _—_:v(w_():v) = (z) + (), (1.3)
where "
+(z) = "T‘”Ew()i) = za(z) (1.4)
is relative risk aversion and
_ —zd'(2)
e(x) o(2) (L.5)

is the elasticity of risk tolerance, which approximates the wealth elasticity of risky
investment.

The primary purpose of this paper is to set out the relationship that exists more
generally between the strength of the precautionary saving motive, the level and
rate of decline of risk aversion, and intertemporal substitution, for Kreps-Porteus
preferences which allow risk preferences and intertemporal substitution to be
varied independently.

In section 2, we set up the model and derive a local measure of the precautionary
saving motive valid for small risks. Section 3 deals with large risks: it performs var-
ious comparative statics experiments which provide the answers to the questions
we asked at the outset of the introduction and discusses the role of decreasing
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absolute risk aversion in guaranteeing that the precautionary saving motive is
stronger than risk aversion. Consideration of two technical issues arising in the
course of the paper is postponed until 4. The Conclusion takes stock of our main
results and outlines directions for further research.

2  Small risks
2.1 The model

Except for departing from the assumption of intertemporal expected utility max-
imization, we use essentially the same two-period model of the consumption and
saving decisions as in Kimball [1990b].3 We assume that the agent can freely
borrow and lend at a fixed risk-free rate and that the constraint that an agent
cannot borrow against more than the minimum value of his human wealth is not
binding at the end of the first period. Since the interest rate is exogenously given,
all magnitudes can be represented in present-value terms, so that, without loss
of generality, the real risk-free rate can be assumed to be zero. We also assume
that labor supply is inelastic, so that labor income can be treated like manna
from heaven. Finally, for clarity, we assume that preferences are additively time-
separable until section 4, where we discuss how to extend results to the case of
nonseparable utility.

The preferences of our agent can be represented in two equivalent ways. First,
there is the Selden OCE representation,

u(er) + U(v (Ev(&2))) = u(er) + U(M(&2)),

where ¢, and ¢; are first- and second-period consumption, u is the first-period
utility function, U is the second-period utility function for the certainty equiv-
alent of random second-period consumption {computed according to the atem-
poral von Neumann-Morgenstern utility function v), E is an expectation condi-
tional on all information available during the first period, and M is the certainty
equivalent operator associated with v:

M(&) = v H(Ev(E)).

3. Because there is enough to be said about the two-period case, we defer to another paper the
discussion of the multiperiod case.
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According to this representation, the utility our consumers derives from the con-
sumption lottery (cy, &) is the sum of the felicity provided by ¢; and the felicity
provided by the certainty equivalent M(¢&,) of &,.

Second, there is the Kreps-Porteus representation,

u(er) + $(Ev(&)),

where nonlinearity of the function ¢ indicates departure from intertemporal ex-
pected utility maximization. This formulation expresses total utility as the non-
linear aggregate of current felicity and an expected future felicity.

These two representations are equivalent as long as v is a continuous, monoton-
ically increasing function, so that M(&,) is well defined whenever E v(&,) is well
defined.? The link between the two representations is that

$(v) = Uw™(v)). 2.1)

We will mainly use the Selden representation—which is more intuitive—but,
when more convenierit mathematically, we use the Kreps-Porteus representation.

2.2 Optimal consumption and saving

Qur consumer solves the following problem:
max u(w —z) + U(M(z + 7)), 2.2)

where w is the sum of initial wealth, first-period income, and the mean of second-
period income, z is “saving” out of this sum of non-human wealth and mean
human wealth w, and 7 is the difference of second-period income from its mean.

The first-order condition for the optimal level of saving « is

u'(w—z)=U(M(z+5)M(z +7), (2.3)

4. One substantive difference between the preferences Selden [1978] discusses and those of
Kreps and Porteus [1978] that does not concern us here is that Selden allows v to depend on
¢1, while Kreps-Porteus’ assumption of recursive utility excludes this possibility. Since we assume
that risk preferences are independent of ¢;, we are, in effect, looking at the subset of Selden
preferences constituting two-period Kreps-Porteus preferences.
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where M’ is defined by

M(z +9). 2.4)

To guarantee that the solution to {2.3) is uniquely determined, we would like the
marginal utility of saving,

U'(M(z +§))M'(z +§),

to be a decreasing function of z. For now, we will simply assume that it is. This
is not unreasonable, as the assumption that the marginal utility of saving is
downward-sloping is equivalent to the assumption that first-period consumption
is a normal good. Section 4 establishes, plausible conditions on preferences suffi-
cient to guarantee a decreasing marginal utility of saving,

From (2.3) and the assumption of a decreasing marginal utility of saving, it follows
that the uncertainty represented by § will cause additional saving if

UMz +§)M(z+7)>U(z), (2.5)
that is, if the risk § raises the marginal utility of saving.

As in Kimball [1990b], we can study the strength of precautionary saving effects
by looking at the size of the precautionary premium 6* needed to compensate
for the effect of the risk § on the marginal utility of saving. The precautionary
premium 6* is the solution to the equation

U'(M(z + 6" + §))M'(z + 0° + §) = U'(z). (2.6)

We call 8* the compensating Kreps-Porteus precautionary premium, to distinguish it
from the compensating von Neumann-Morgenstern precautionary premium 1"
which is the solution to®

Ev/(z + " +7§) = v'(z). @7

The precautionary premium #* is equal to the rightward shift at each point of the
marginal utility of saving curve due to the risk , as illustrated in Figure 1.

5. See Kimball [1990b].
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u'(w—z)

U'IM(+9)IM’ (2+9)
U'(e)

Zg z

Figure 1: Precautionary saving

2.3 A local measure of prudence

In appendix A, we prove that, for a small risk § with mean zero and variance o7,

0*(z) = a(z)[1 + s(:z:)e(:z:)]%z- + o(0?), (2.8)

where vie)
(=) = zU"(z)

denotes the elasticity of intertemporal substitution for the second period utility
function U(z),% o(0?) collects terms going to zero faster than o2, a(z) is the ab-
solute risk aversion of v defined in (1.2), and e(z) denotes the elasticity of risk
tolerance given in (1.5).

2.9)

Therefore, the local counterpart for Kreps-Porteus preferences to the concept of
absolute prudence defined by Kimball [1990b] for time-additive expected utility
preferences is

a(z)[1 + s(z)e(z)]-

— —u'(w—z : P . A
6. Whenever s(z) = WWT—LES as well, s is the elasticity of mtel;temporal substitution de-
fined in the usual way. More generally, 5(z) is the appropriate notion of intertemporal substitution
for interest rate changes that are compensated so as to hold first-period consumption constant.
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Similarly, the local counterpart for Kreps-Porteus preferences to relative pru-
dence is

P(z) = v(z)[1 + s(z)e(z)], (2.10)

where v(r) = za(z) is relative risk aversion as above. Therefore, in the more
general framework of Kreps-Porteus preferences, the strength of the precautionary sav-
ing motive is determined by attitudes towards risk and attitudes towards intertemporal
substitution,

Three important special cases should be noted:

o for intertemporal expected utility maximization, s(z) = 1/v(z), so that
P(z) = v(z) + €(z)—which is the expression given in (1.3);

o for constant relative risk aversion, y(z) = yand e(z) = 1, so that P(z) =
71+ s(z));

. for constant relative risk aversion y(z) = v and constant (but in general
distinct) elasticity of intertemporal substitution” s(z) = s, P(z) = ~[1 +
s).

From (2.10), the local condition for positive precautionary saving is simply

1
> —_—— .
)2~y @.11)
or, by calculating e(z) and moving one piece to the right-hand side of the equa-
tion

%;(f‘) > 1(2) - p(a), (2.12)

where
o(z) = 1/5(2)
denotes the resistance to intertemporal substitution. The right-hand side of (2.12)

is zero under intertemporal expected utility maximization, in which case (2.12)
reduces to the familiar condition v""(z) > 0.

Intriguingly, equation (2.12) shows that when one departs from intertemporal
expected utility maximization, quadratic risk preferences do not in general lead to
the absence of precautionary saving effects that goes under the name of “certainty
equivalence.”

7. This special case characterizes the framework used by Selden [1979].
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Though P(z) cannot be used directly to establish global results, (2.8) suggests
several principles which—as the next section will show—are valid globally. First,
a change in risk preferences v (holding the outer intertemporal utility function U
fixed) which increases both risk aversion and the rate at which risk aversion de-
clines increases the strength of the precautionary saving motive. Second, decreas-
ing absolute risk aversion (implying y(z)e(z) > 0) guarantees that the precau-
tionary saving motive is stronger than risk aversion. Third, increasing intertempo-
ral substitution while holding risk preferences constant widens the gap between
the strength of the precautionary saving motive and risk aversion. In particular,
when absolute risk aversion is decreasing, raising intertemporal substitution from
the intertemporal utility maximizing level so that the resistance to intertemporal
substitution p(z) = 1/s(z) is less than relative risk aversion® v(z) makes the pre-
cautionary saving motive stronger than it is under intertemporal expected utility
maximization, while a resistance to intertemporal substitution greater than rel-
ative risk aversion makes the precautionary saving motive weaker than under
intertemporal expected utility maximization.®

3  Large risks
3.1 Precautionary Saving and Decreasing Absolute Risk Aversion

In the case of intertemporal expected utility maximization, Dréze and Modigliani
[1972] prove that decreasing absolute risk aversion leads to a precautionary sav-
ing motive stronger than risk aversion. Kimball [1991b] shows that there is a
fundamental economic logic behind this result: decreasing absolute risk aversion
means that greater saving makes it more desirable to take on a compensated risk.
But the other side of such a complementarity between saving and a compensated
risk is that a compensated risk makes saving more attractive.

8. In the multiperiod case, resistance to intertemporal substitution less than risk aversion
(p(z) < v(z)) is associated with a preference for early resolution of uncertainty; resistance to
intertemporal substitution greater than risk aversion (p(z) > 7(x)) is associated with a prefer-
ence for late resolution of uncertainty.

9. There are several further minor but interesting propositions suggested by (2.8) which are valid
globally. First, constant absolute risk aversion implies that the precautionary saving motive and risk
aversion are of exactly equal strength, regardless of intertemporal substitution. Second, two easy
sets of sufficient conditions for a positive precautionary saving motive that are valid globally are
(a) decreasing absolute risk aversion and (b) v"/(-) > 0 and p(z) > ¥(z).
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This argument follows not from any model specific features but rather from the
logic of complementarity itself. To understand this claim, consider an arbitrary,
concave indirect utility function of saving, and the presence or absence of a com-
pensated risk: J(z, \), where z is saving and A is 1 in the presence of the com-
pensated risk § + 7* and zero in its absence.!® The definition of a compensated
risk insures that

J(z,1) — J(z,0) = 0,

i.e., that the consumer is indifferent to the presence or absence of the risk § + 7 *.

Decreasing absolute risk aversion in its most fundamental sense, independent of
any particular model, is the statement that a risk that is indifferent at one level
of saved wealth will become desirable at a slightly higher level of saved wealth.

Thus, 5
&-[J(z, 1) — J(=,0)] = Je(z,1) — Jo(z,0) 2 0
if absolute risk aversion is decreasing. But this implies chat if the first-order con-
dition for optimal saving is satisfied in the absence of the compensated risk-—i.e.,
if Jz(z,0) = 0—, then
Je(z,1) > 0,

implying that a compensated risk makes the agent want to save more. Thus the
tisk premium which makes the agent indifferent to the risk still leaves a positive
effect of the risk, compensated, on saving. This is what we mean when we say
that the precautionary saving motive is stronger than risk aversion.

We now examine more formally how this general logic manifests itself in the spe-
cific framework we are studying.

3.1.1 Intertemporal expected utility maximization: a reminder

Under intertemporal expected utility maximization, decreasing absolute risk
aversion implies that if 7* is the compensating risk premium for j—i.e., if

Ev(z+ 7"+ §) = v(z) (3.1)

then
Ev(c+é+7"+7§) 2> v(z +6) (3.2)

10. In the Kreps-Porteus model, for instance, J(z,)) = u(w — z) + U[M(z + A(§ + =*))).
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for any § > 0. Equation (3.1} and inequality (3.2) together imply that the deriv-
ative of the left-hand side of (3.2) at § = 0 must be greater than the derivative
of the right-hand side of (3.2) at § = 0:

Ev'(z + 7"+ §) =2 v'(2). 3.3)

Equation (2.7) defining the ordinary compensating von Neumann-Morgenstern
precautionary premium " differs from (3.3) only by having ¢* in place of #* and
by holding with equality. Therefore, since v’ is a decreasing function, ¥* > «*.
In words, (3.3) says that a risk compensated by 7*, so that the agent is indifferent
to the combination 7* + § still raises expected marginal utility; therefore, the
von Neumann-Morgenstern precautionary premium 1*— which brings expected
marginal utility back down to what it was—must be greater than 7*,

3.1.2 Kreps-Porteus preferences

The same economic logic applies to the Kreps-Porteus case. Any property that
ensures that extra saving makes compensated risk-taking more attractive guar-
antees that extra compensated risk makes saving more desirable. Formally, de-
creasing absolute risk aversion guarantees that M'(-) > 1, since differentiating
the identity

Me+7(z)+§) =2 (3.4)
yields
(1+7x"(@)M(z+7"(z)+§) =1 (3.5)

and decreasing absolute prudence implies that 7*'(z) < 0. (Monotonicity of v
implies that 1 4+ 7*(z) > 0.) Thus,

U'(M(z + 7"+ §)) M'(z + 7" + §) = U'(z) M'(e + 7" + §) 2 U'(<)(3.6)

where the equality on the left follows from the definition of #*,!* and the in-
equality on the right follows from M’(-) > 1. Combined with the assumption of
a decreasing marginal utility of saving, (3.6) implies that 8* > =*. We have thus
proved:

11. Note that the risk premium 7* is the same as it would be under intertemporal expected
utility maximization.
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Proposition 1 Assuming a decreasing marginal utility of saving, if the risk utility
function v exhibits decreasing absolute risk aversion and the marginal utility of
saving is decreasing, then the Kreps-Porteus precautionary premium is always
greater than the risk premium (6* > n* ).

Remark. By reversing the direction of the appropriate inequalities above, one can
see that globally increasing absolute risk aversion guarantees that 8* < 7*, just
as globally decreasing absolute risk aversion guarantees that §* > =~ If absolute
tisk aversion is constant, both inequalities must hold, implying that 6*(z) = #n*(z) =
constant, regardless of the form of the outer intertemporal utility function!? U.

3.1.3 Patent increases in risk

Proposition | can be extended to patent increases in risk—as defined in Kimball
[1991c], increases in risk for which the risk premium increases with risk aversion,
at least when a utility function with decreasing absolute risk aversion is involved.
The set of patent increases in risk includes increases in the scale of a risk coupled
with any change of location, and the addition of any independent risk, but does
not include all mean-preserving spreads.'®

The compensating risk premium IT*(z) for the difference between two risks ¥ and
i is defined by i
Ev(z+I"(z)+Y)=Ev(z + 7), (3.7

or equivalently, bylr
M(z +II*(z) + ) = M(z + §). (3.8)

I Y is a patently greater risk than , then decreasing absolute risk aversion guar-
antees that II*(z) is a decreasing function of z. (Given decreasing absolute risk

12.  Weil [1991] exploits the fact that 8*(z) = 7*(z) under constant absolute risk aversion as
an aid to solving a multiperiod saving problem with Kreps-Porteus utility.

13. Asnoted in Kimball [1991c], . . . the results of Pratt [1988] make it clear that X is patently
more risky than % if X can be obtained from Z by adding to & a random variable v that is positively
related to Z in the sense of having a distribution conditional on £ which improves according
to third-order stochastic dominance for higher realizations of Z. This sufficient condition for
patently greater risk includes as polar special cases v perfectly correlated with #—which makes
the movement from  to X a simple change of location and increase in scale—and v statistically
independent of £.”
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aversion, reducing & increases risk aversion and therefore increases II* by the
definition of a patently greater risk.) Differentiating (3.8) with respect to z, one
finds that

(1 + II¥(z)] M'(z + II*(2) + ¥)
M'(z + II*(z) + Y), 3.9)

M'(z +9)

IA

where the inequality on the second line follows from IT*(z) < 0. In combination,
(3.8) and (3.9) imply that

U'(M(z + T*(z) + V) M'(z + T*(z) + Y) > U'(M(z + ) M'(z + B)10)

Defining the compensating Kreps-Porteus precautionary premium ©*(z) for the
difference berween the two risks Y and § by

U'(M(z + 0*(z) + V) M'(z + 0%(2) + ¥) = U'(M(z + 7)) M'(z + @)11)
a decreasing marginal utility of saving implies that ©*(z) > II*(z).

Proposition 2 (extension of Proposition 1)Assuming a decreasing marginal util-
ity of saving, if the inner interpossibility utility function v exhibits decreasing absolute
risk aversion and Y is patently riskier than §j, then the Kreps-Porteus precautionary
premium for the difference between Y and § is always greater than the tisk premium
for the difference between ¥ and §. (That is, ©* > II*.)

Proof: See above

3.2 Comparative statics

We now examine how the strength of the precautionary saving motive is affected
by changes in risk aversion, intertemporal substitution and wealth.

3.2.1 Risk aversion
Given two inner interpossibility utility functions vy and v,, define
Mi(z +§) = v (Bo(z +§)) (3.12)

for i = 1,2, and define 8} and 63 by appropriately subscripted versions of (2.6).
Then one can state the following proposition:
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Proposition 3 Assuming a decreasing marginal utility of saving and a concave
outer intertemporal utility function U that is held fixed when risk preferences are
altered, if Ma(z + §) < My(z + §) and Mj(z + §) > M{(z + y) for all z, then
63(z) > 63 (=) for all z.

Proof: By the conditions of Proposition 3

U'(Ma(z + 67 () + §)) My(z +61(2) + §) > U'(Mi(z +63(z) + §)) Mi(z +61(z) + §)
= U'(z) (3.13)

Thus, the Kreps-Porteus precautionary premium 63 for the first set of risk preferences is insufhi-
cient under the second set of risk preferences to bring the marginal utility of saving back down
to U’(z). By the assumption of a decreasing marginal utility of saving, this means that §5 must
be greater than 8} to bring the marginal utility of saving all the way back down to U'(z).

Although useful in aiding one’s intuition, Proposition 3 is not as operational as
we would like. If v, is globally more risk averse than v, the risk premium =, for
vy is always greater than the risk premium = for vy, implying that

My(z +§) = z —m(z) £ 2 — mi(z) = Mi(z +9),

but there is no simple condition we are aware of to guarantee that 75(z) < 7}(z)
so that
Mi(z +§) =1~-my(e) 2 1 - mi(z) = My(z + ).

Still, if v, is more risk averse than vy, so that m3(z) > mi(2), and the absolute
risk aversion of both v (z) and v2(z) goes to zero as z — oo, then 7)(z) < 71 (z)
must hold on average since both m3(z) and 7(z) must fall to zero as z — oco.
Therefore, the conditions of Proposition 3 will often be satisfied when v is more
risk averse than v;, even though it is hard to find more elementary conditions to
guarantee they will be satisfied.

3.2.2 Intertemporal Substitution

Before analyzing the effect of intertemporal substitution on the size of the precau-
tionary premium in general, it is instructive to look at the following proposition,
which indicates how departures from intertemporal expected utility maximiza-
tion affect the precautionary premium:
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Proposition 4 Assuming a decreasing marginal utility of saving, if the von
Neumann-Morgenstern precautionary premium * is greater than the risk pre-
mium == (as it will be if absolute risk aversion is decreasing), then the Kreps-
Porteus precautionary premium §* < * when the function ¢(-) is concave, but
6* > +* when ¢(-) is convex. Ifp= < n* (as it will be if absolute risk aversion is
increasing), then 8* > +* when ¢(-) is concave but §* < * when ¢(-) is convex.

Proof: Assume first that ¢* > #* and ¢(-) is concave. Then

FEvz+¢" +DEV@+9*+7) = ¢Eoz+9" +7)EV()
¢ (v(2))Ev'(2). 3.14)

The equality on the first line follows from the definition of ¢* (2.7), and the inequality on the
second line follows from ¢* > #*, the monotonicity of v and the concavity of ¢(-}, which makes
#'(") a decreasing function. Together with a decreasing marginal utility of saving, (3.14) implies
that

IA

g* <P~ (3.15)

Convexity of ¢(-) or ¥* < 7* alone would reverse the direction of the inequalities in both (3.14)
and (3.15), while convexity of #(-) and ¥* < 7* together leave the direction of the inequalities
unchanged.

The results of propositions 4 are summarized in Table 1. Concavity of ¢ brings

¢ concave ¢ convex
v DARA|7* < ¢* < ¢p*|n= <o < O*
vIARA |¢* < 0* < 7*|0* <Y < »*

Table 1: Summary of propositions 3 and 1

the Kreps-Porteus precautionary premium 6~ closer than the von Neumann-
Morgenstern precautionary premium ¢* to the risk premium 7. Convexity of
é pushes 8* further than +* from 7*. In particular, for quadratic utility—which
exhibits JARA and for which %* = 0— the precautionary premium 6" is positive
if ¢ is concave and negative if @ is convex.

Since concavity of ¢ is equivalent to intertemporal substitution below the rec-
iprocal of risk aversion and convexity of ¢ is equivalent to intertemporal sub-
stitution above the reciprocal of risk aversion, one can see that the pattern is
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one of greater intertemporal substitution increasing the distance between the
risk premium 7* and the Kreps-Porteus precautionary premium 6*, Proposition 5
indicates that, holding risk preferences fixed, higher intertemporal substitution
leads quite generally to a Kreps-Porteus precautionary premium that is further
from the risk premium.

Proposition 5 If, for two Kreps-Porteus utility functions u;(c1)+U;(M(é;)) with
the same risk preferences, (a) the optimal amount of saving under certainty is the
same, (b) the marginal utility of saving is decreasing for both utility functions,
and (c) U, has gteater resistance to intertemporal substitution than Uy—that is,
%2%2 > -Iy, “C) for all z—then |65 — 7| < |67 — 7|, where §; is the Kreps-
Porteus precautzonary premium for utility function ¢ and 7= is the risk premium
for both utility functions. Also, 85 — 7* and 0} — 7* have the same sign.

Proof: The optimal amount of saving for the two utility functions is the same under certainty
only if there is an zg for which

ui(w—z0) = U{(z0) i=1,2. (3.16)
Define the normalized marginal utility of saving functions f; and fa by
(= UM+ )M (z+7)
fi(z) = e (3.17)

For either utility function, the normalized marginal utility of saving f; equals one when z =
zo + 07 (o), as can be seen be careful inspection of (3.17). Therefore, f; and fo tell us what
we need to know in order to establish comparative statics about the Kreps-Porteus precautionary
premium 6*.

Equation (3.16) says that fi and f; meet at ¢ = 2o + 7*(2o), since

Ul(M(zo + 7*(z0) + §)) M'(z0 + 7*(z0) + §) _ Ul(zo) M'(zo + 7*(2z0) + §)
U{(z0) Ul(zo)
M'(.‘Bo + T (.‘Bo) + 37) (318)

for i = 1, 2. Since the equation M(z + 7*(z) + §) = « can be differentiated to obtain
[+ 7*(z)]M'(zo + 7 (z0) + §) = 1, (3.19)

both fi(zo + 7*(z0)) and fa(z¢ + 7* (o)) are greater than 1 if 7'(zo) < 0 and both fi(zo +
7*(z0)) and fa(zo + 7*(20)) are less than 1 if 7*'(z0) > 0.

The ratio between f; and f; simplifies as follows:

hiz) _ Uz(M(-"-‘+37)) Ul(z)
fi(z) T Ul(M(z + §)) Ul(zo) (3.20)
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1
The condition _(f;’,zéi)‘ﬁ > U (I“ Tirzey implies that the ratio %?%:—Z% is a decreasing function'? of z¢
1

4 (Uy@)\ _ Uf@)  UE)
P (U{(x)) = Uye) " T = 620

Since M (z + §) is an increasing function of z, this means that ﬁ% is a decreasing function of
z. In other words, fa(z) > fi(z) for z < zo + 7" (z0) and fa(z) < fi(%) for z > 20 + 7" (20)-

We are now in a position to draw an instructive graph of f; and f,. Figures 2
and 3 depict the two main cases. Decreasing marginal utility of saving means
that f; is decreasing for both utility functions. If #*/(zo) < 0, then f; and f; are
both above one at T = zo + 7*(zo) and f; must hit one first as £ moves to the
right from 2o + 7*(,) since f; is below f; to the right of zo + 7*(20). Therefore
zo + 03(z0) < 20 + 03(20) and 05(z0) < 07 (z0)-

If7*(z0) > 0, then f; and f; are both below one at z = z¢ +7*(zo) and f; must
hit one first as £ moves to the left from z¢ + 7*(z) since f; is above fi to the
left of 2o + 7*(z0). Therefore zg + 03(z0) > zo + 8;(20) and 03(zo) > 05 (o).

If one or the other of f;(z) never hits one, these inequalities remain valid if one
writes 07 (zo) = -+oo when f;(z) > 1 for all z, and 7 (2o) = —co when f;(z) < 1
for all . In any of these cases, 0;(zo) and 82(zo) are on the same side of 7*(zo)
and |03(z0) — 7*(zo)| < |07 (z0) — 7 (o).

Figures 2 and 3 can be used to illustrate not only the effects of changing the
elasticity of intertemporal substitution but also the effects of changing the level
and rate of decline of risk aversion. Focusing on the point (z + 7*, M'(z 4+ 7* 4
#7)) at which the curves f; and f; intersect, increases in risk aversion move this
point to the right, more quickly declining risk aversion tends to move this point
upward, while increases in the elasticity of intertemporal substitution swivel the
curve describing f counterclockwise around this point (increases in the resistance
to intertemporal substitution swivelling the curve clockwise around this point.)
The effects of each change on the strength of the precautionary saving motive
can be seen in the horizontal movement of the intersection with the dashed line
f(z) = 1. The message of (2.10) about the determinants of the strength of the
precautionary saving motive under Kreps-Porteus preferences is amply confirmed
by such an exercise.

14. Prate [1964] proves a result for comparative risk aversion that is mathematically identical
to what we prove here for comparative resistance to intertemporal substitution.
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fi(=)
M'(zo+7"(20)+7)
1
h
f2
0 =0+ (s0) =0+25(%0) rot+9](=0) z
Figure 2: 7*'(z0) < 0
fi(z)
1
M’ (zotx*(z0)+7)
h
f2
0 |zo+e](=0) z0+#3(z0) o+ ~"(=a) z

Figure 3: 7*/(zo) > 0
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3.2.3 Wealth

Kimball [1990b] shows that the precautionary premium is equal to the rightward
shift in the graph of consumption as a function of wealth that results from a risk
7. Thus, if the precautionary saving motive decreases in strength with wealth, a
risk 7 raises the marginal propensity to consume out of wealth at a given level of
consumption.’® We now discuss conditions sufficient to guarantee that the pre-
cautionary saving motive becomes weaker as wealth w—and therefore “saving”
z—increases.

For the special case of small risks, one can differentiate'® (2.8) with respect to
z to get a simple condition for the Kreps-Porteus precautionary premium to be
decreasing:

7]
7 {a(=)[1 + s(z)e(z)]} L 0. (3.22)
For large risks, however, matters are more difficult.

First, we can show that the combination of M (z + §) concave (true for any v be-
longing to the hyperbolic absolute risk aversion class) and 1/U’(z) convex (true
for a constant elasticity of intertemporal substitution less than one) is enough
to guarantee that the Kreps-Porteus precautionary premium 6* is decreasing in
wealth:

Proposition 6 Ifv exhibits decreasing absolute risk aversion, M (z+7) is increas-
ing and concave, and 1/U’(z) is increasing and convex, then 0*(z) is decreasing
inz.

Proof: See Appendix B.

In the important case of constant relative risk aversion and constant elasticity of
intertemporal substitution, Proposition 6 guarantees a decreasing Kreps-Porteus
precautionary premium whenever the intertemporal substitution is less than one.
(See below.) Even when intertemporal substitution is greater than one, Proposi-
tion 7 guarantees that the precautionary premium will be decreasing as long as
a constant intertemporal substitution is less than or equal to the reciprocal of a
constant relative risk aversion.

15. See Figures 1-3 in Kimball {1990a].
16. As above, one must make the assumption that the next derivative beyond the one for which
the limit is to be calculated is bounded as 0 — 0.
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Proposition 7 Ifintertemporal substitution is constant and less than the recipro-

" cal of relative risk aversion, also constant, then the Kreps-Porteus precautionary

premium 6*(z) is decreasing.

Proof: Proposition 6 takes care of the case in which incertemforal substitution is less than or
equal to one, as can be verified from the calculation W’lﬁ = z7+ when

Zi-1/s

Ulz)= =T
Appendix C proves the result for the case 1 < s < %
Remark. Figure 4 graphs the combinations of relative risk aversion v and the
resistance to intertemporal substitution p = 1/s that we have shown by Propo-
sitions 6 and 7 to imply a decreasing Kreps-Porteus precautionary premium
when both relative risk aversion and intertemporal substitution are constant
(p > min(1,7)). We do not know what happens for other possible values of
the parameters p and « for large risks, although for small 7isks (3.22) indicates
that the Kreps-Porteus precautionary premium is always decreasing for constant
intertemporal substitution and constant relative risk aversion.

P

Figure 4: Parameter values known to imply a decreasing 0"

Both Propositions 6 and 7 are difficult to apply when the inner interpossibility
utility function v is not in the hyperbolic absolute risk aversion class.’” For a re-
stricted range of functions ¢(-), the following proposition allows one to establish

17. Proposition 6 can easily be extended to constant relative risk aversion utility functions
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a decreasing precautionary saving motive for any interpossibility utility function
v with decreasing absolute risk aversion that yields a decreasing precautionary
saving motive under intertemporal expected utility maximization.

Proposition 8 If1/¢’ is increasing and convex, and v increasing, concave, and
has both decreasing absolute risk aversion and decreasing absolute prudence
d —-v"(z . 3 .
Ef(.ﬂl < 0), then the Kreps-Porteus precautionary premium 6*(z) is decreas-

ing.

Proof: See appendix D.

4  Technical issues
4.1 Conditions Guaranteeing a Decreasing Marginal Utility of Saving

Almost every proof in the preceding sections relies in some way on the assumption
of a decreasing marginal utility of saving. If that assumption fails, the marginal
utility of saving U'(M (z +§)) M'(z + ) can intersect first-period marginal utility
u/(w — z) more than once when the first-period utility function u is close enough
to linear. Regardless of the shape of the first-period utility function, a failure of
the assumption of a decreasing marginal utility of saving results in a negative
first-period marginal propensity to consume out of wealth, as illustrated in Figure
5. In Figure 3, as wealth rises from w; to wsz, the first-period marginal utility of
consumption u' rises, indicating that first-period consumption falls as wealth rises
from w, to w,. In order to assess how restrictive this assumption is, we now derive
conditions sufficient to guarantee that the marginal utility of saving will, indeed,
be decreasing.

The simplest sufficient condition for a decreasing marginal utility of saving is
concavity of ¢—the function showing the direction and extent of the departure
from intertemporal expected utility maximization—together with concavity of
the inner interpossibility utility function v.

with a shifted origin—that is, to all of the hyperbolic absolute risk aversion functions that have
decreasing absolute risk aversion—as long as U has the same shifted origin.
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U'[M(z+§)]M'(z+§)

0 ) 2y z

Figure 5: A marginal utility of saving increasing on one interval

Proposition 9 If both v and ¢ are (monotonically increasing and) concave—
that is, if the resistance to intertemporal substitution is greater than risk aversion,
which in turn is positive—then the marginal utility of saving is decreasing.

Proof: Concavity of both v and ¢ guarantees that both factors of the Kreps-Porteus representation
of the marginal utility of saving, ¢'(Ev(z + §))Ev’(z + §), decrease as z increases.

Alternatively, concavity of both the outer intertemporal utility function U and of
the certainty equivalent function M, is enough to guarantee a decreasing mar-
ginal utility of saving. This result becomes very useful in conjunction with the
result of Kimball [1991a] that the certainty equivalent function M is always con-
cave for any atemporal-von Neumann Morgenstern utility function v in the hy-
perbolic absolute risk aversion class, including quadratic, exponential, linear, and
constant relative risk aversion utility functions.'®

Proposition 10 If both the outer intertemporal utility function U and the cer-
tainty equivalent function M(z + §) are increasing and concave in z (as M will
be if v belongs to the hyperbolic absolute risk aversion class), then the marginal
utility of saving is decreasing.

18. Utility functions in the hyperbolic absolute risk aversion class are those that can be ex-

1=y
pressed in the form v(z) = X+ ("'7-;") - 1} together with the logarithmic limit as y — 1

and the exponential limit as v — co with ;l;- — —a.
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Proof: Concavity of both I/ and M guarantees that both factors of the Selden representation of
the marginal utility of saving, U’ (M (z + §))M’(z + ), decrease as z increases.

Remark. Looking at the Selden representation of the marginal utility of sav-
ing makes it clear that a necessary condition for the inner interpossibility utility
function v to guarantee a decreasing marginal utility of saving for any concave
U (that is, regardless of intertemporal substitution) is for M to be concave. In
turn, a necessary condition for M to be concave is for absolute risk aversion to
be a convex function (a”(z) > 0), since for small risks one can differentiate
(A.3) to find that (as long as M"(z + §) is bounded in the neighborhood of z),
M'(z+79)= —a”(z)"—;— + o(o?).

It stands to reason that strict concavity of U would. allow one to expand the
set of inner interpossibility utility functions v which would lead to a decreasing
marginal utility of saving, The following proposition confirms that notion.

Proposition 11 Ifthereexist constants A, B, andk > 0 such that A+ Bv(z) > 0
for all z and

[A+ Bu(z)] (—v"(z)
v'(z) v'(z)

for all z, then the marginal utility of saving is decreasing.

[A+Bv(m)]{_”"(z) U"(””)} (4.1)

() *

)Zkz (@) T T)

Proof: See Appendix E.

Remark, Proposition 11 includes the combination of U concave and v in the
hyperbolic absolute risk aversion class as a special case, since the left-hand in-
equality in (4.1) can be made to hold with equality for any hyperbolic absolute
risk aversion utility function, garanteeing that the right-hand inequality holds.'?
Proposition 11 ensures a decreasing marginal utility of saving for inner inter-
possibility utility functions v in a wider domain around hyperbolic absolute risk
aversion the more concave U is.

19. In terms of the parametrization of the previous footnote for hyperbolic absolute risk aversion
udility functions, let B = -1—;—", A=1land k=1
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4.2 Intertemporally Nonseparable Utility

If the utility function must be expressed in the non-time-separable form
T(Cl, M(éz)) = @(Cl, E 'U(éz)),

the first order condition for optimal saving can be expressed as

Tolw — z,M(z + 7))
Ti(w—z,M(z+7))

M(z+§) =1 (4.2)

o ®(w—-z,Ev(z+ 7))
O (w—-z,Ev(z+7))

where subscripts on T and @ indicate partial derivatives.

Ev(z+9) =1, (4.3)

In sections 2, 3.2.1, 3.1 and 3.2.2, all of the results involve finding §* to compen-
sate for § so that first period consumption ¢; = w—z need not change. Therefore,
the way to reinterpret all of the results in this section is to replace U’'(z) by the
marginal rate of substitution function under certainty,

TQ(Cl, .’L‘)
Tl(Cl,'.’L‘),

treating c; as a constant, and to replace ¢'(v) by

QZ(Cla V)
Ql(cla V),

again treating c; as a constant. (Note that none of the propositions depends on
U itself, but only on its derivatives.) The marginal rate of substitution T./Ty,
as well as ®,/®,, are unaffected by monotonic transformations of T or @, since
they are the slopes of indifference curves.

In sections 4.1 and 3.2.3, the effect of changes in = on ¢; = w — z must also
be taken into account. Fortunately, this does not disturb properties such as a de-
creasing marginal rate of substitution, and as long as second-period consumption
is a normal good, the marginal rate of substitution YT2/Y; or the slope ®;/®;
must change more when the effect of z on ¢; is taken into account than when
c1 is treated as a constant. Therefore, the rate of change in the logarithm of the
marginal rate of substitution represented by U”/U’ in (4.1) will always be greater
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when measured inclusive of the effect of z on ¢; than when ¢; is treated as a con-
stant. In Section 3.2.3, Proposition 7 needs no extension, since any intertempo-
ral utility function with a constant elasticity of intertemporal substitution can be
represented in an additively separable form. Proposition 6 remains true if on top
of the conditions that M is concave and

Tl(cl, I)

Ta(e1,z)
is increasing and convex treating ¢; as a constant, the additional condition

82
801802 {111 T2(61302) - 111T1(C1,62)} >0 (44)

issatisfied. Proposition 8 remains true if on top of v having positive and decreasing
absolute risk aversion and decreasing absolute prudence, and

®1(c1,v)
Qy(eq,v)
being increasing and convex, the additional condition
92
Oc,0v

is satisfied. In both of these cases the additional inequality is satisfied with equal-
ity when utility is intertemporally separable.2°

{In®3(c1,v) —In@y(c1,v)} 20 (4.5)

5 Conclusion

We have made considerable progress in understanding the determinants of the
strength of the precautionary saving motive under Kreps-Porteus preferences in
the two-period case. Perhaps one of the more surprising results is that greater risk

20. The seeming inconsistency between the results of this section and those of Kimball [1990b]
Appendix C, arises because under intertemporal expected utility maximization, a utility function
that is nonseparable intertemporally must also have nonseparable risk preferences, so that ¢;
affects one’s preferences for gambles over &;. Here we assume that risk preferences are separa-
ble between ¢; and ¢, even if the outer intertemporal utility function is nonseparable. Kimball
[1990b] Appendix C gives a good indication of some of the extra issues that arise if risk prefer-
ences are nonseparable.
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aversion tends to increase the strength of the precautionary saving motive, while,
in the typical case of decreasing absolute risk aversion, greater resistance to in-
tertemporal substitution reduces the strength of the precautionary saving motive.
Thus, distinguishing between risk aversion and the resistance to intertemporal
substitution is very important in discussing the determinants of the strength of
the precautionary saving motive since these two parameters, —which are forced
to be equal under intertemporal expected utility maximization—have opposite
effects when allowed to vary separately.

Our results also shed new, and important, light on the likely empirical magnirude
of the precautionary saving motive. Remember that we showed in section 2.3
that, for preferences exhibiting a constant elasticity of intertemporal substitution
and constant relative risk aversion, the local measure (in relative terms) of the
strength of the precautionary saving motive is

P=y+1,
P

where # is the coefficient of relative risk aversion and p the inverse of the elas-
ticity of intertemporal substitution. If one believes in the intertemporal expected
utility model and thinks that a plausible value of the coefficient of relative risk
aversion is 4, then one will set 4 = p = 4 and conclude that P = 4+4/4 = 5. If,
on the other hand, one judges—using some recent empirical evidence?! that the
intertemporal expected utility restriction 4 = p is unreasonable, that the coeffi-
cient of relative risk aversion is smaller than 4 and the elasticity of intertemporal
substitution is lower than 1/4,2% then one might set 4 = 2 and p = 10, in which
case P = 2 4 2/10 = 2.2. Thus a moderate coefhicient of relative risk aversion
coupled with a strong insensitivity of consumption profiles to interest rates—
a not implausible description of consumer tastes—yields a precautionary saving
motive that is weaker than the (counterfactually too strong) motive predicted by
the standard intertemporal expected utility model.

Finally, the most important direction in which to extend the results here is to the
multi-period case.?® The propositions of this paper point to natural conjectures

21.  See, for instance, Epstein and Zin [1991], Hall {1988], and Giovannini and Weil [1989].
22. Obviously, the intertemporal expected utility framework can’t even entertain the possibility
that both risk aversion and intertemporal substitution are smaller.

23. Wil [1991] solves a infinite horizon model with isoelatic intertemporal preferences and
exponential risk preferences, and van der Ploeg {1991] one with quadratic intertemporal pref-
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about the determinants of the strength of the precautionary saving motive in the
multi-period case.

erences and exponential risk preferences. But the general multi-period case has not yet beem
studied.
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Appendix A. Local approximation

Define the equivalent Kreps-Porteus precautionary premium 6, expressed as a function of
z, as the solution to the equation

U'(M(z))M'(z) = U'(z - 8(z)). (A.1)

It is easiest to find the small-risk approximation for the equivalent Kreps-Porteus pre-
cautionary premium # first, and then the small risk approximation for the compensating
Kreps-Porteus precautionary premium 8*. For a small risk § with mean zero and variance

o2, Pratt [1964] shows that
2
MEz+§) =z- a(z)%— + o(a?). (A.2)

As long as M"'(-) is bounded in the neighborhood of z, (A.2) can be differentiated to

obtain ,
ME+yp)=1- a'(z)% + o(c?). (A.3)

Finally, Substituting from (A.2) and (A.3) into (A.1), and doing a Taylor expansion of
U(z - 6) around z,

U(ME)M(z) = [U’(z)—U"(z)a(z)"—2+o(a2m1—a'(z)"—2+o(az>l
- V(@)= [0(a)a(e) + V() (@) + o)
= U'(z) = U"(z)6(z) + o(6(z))- (A-4)
Therefore,
0(z) = [a(z)+ U”(( )) a(z )] +0(02) (A.5)
Inspecting (2.6) and (A.1) and then using (A.5) makes it clear that
0'(s) = Bz+67(2))
= [stz+ 0@+ g§+§<(>)l) #(z 4 07(2)] 5 +olo?)
= [a(z)+ U,,(( )) ()| & +o(02) (A.6)

as long as a’ and &; U,, are continuous at z. Using (2.9), (A.6) can be rewritten as

(@) = a(e)(1 + s(2)e(2)] G +ole?), (A7)
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which establishes (2.8) in the text.

Appendix B. Proof of proposition 6
Taking a total derivative of both sides of (2.6) with respect to z, one finds that
1+ 9*’(2)]58;[U'(M(2 +07(2)+ )M (z +6"(2) + )] < U"'(z), (B.1)

where the partial derivative of the marginal utility of saving with respect to z excludes
the effect of z through 6*(z). A decreasing marginal utility of saving is guaranteed by
the assumption that M is concave and the J; is increasing, and means that the partial
derivative is negative, and therefore that 6*(z) will be decreasing in z if and only if

UMz +0° +5)M (= + 6" +§)] < U'(2), .2

that is, if an increase in z without an adjustment in 6* tends to push the marginal utility
of saving in the presence of the risk § compensated by 6* down faster than the marginal
utility of saving in the absence of the risk.24 Rewriting (B.2), 8*(z) is decreasing if

U"(M(z +6*(z) + §))[M'(z + 6" (2) + §)I°
+ U(M(z +6"(z) + 9)M"(z + 0°(2) + §) < U"(z). (B.3)

The condition that M is concave guarantees that the second term on the left hand side
is negative. Therefore it is sufficient to prove that

U"(M(z + 60 (z) + §)[M'(z + 6*(2) + 9))* < U"(2). (B-4)
Dividing both sides of (B.4) by
(U (M(z +6°(2) + )M (z + () + DI = [V/(=)] ®.5)

one finds that (B.4) is equivalent to
UM+ () +9) . U"(s)
(U(M(z +6*(z) + D)) ~ [U(=)]*

By Proposition 1, the assumption of decreasing absolute risk aversion implies that
6*(z) > 7*(z) and

(B.6)

Mz +0"+)> o, (8.7)

24. Appendix B uses the Kreps-Porteus representation of (B.2).
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while U—,IGF convex implies that

& -1 d U'a)
W) GOEE S ®8)

so that I%r; is a decreasing function. Inequalities (B.7) and (B.8) together imply (B.6),
as desired.

Remark. If M”(-) < 0 but v exhibits increasing absolute risk aversion and 1/U'(z) is
concave, the inequalities in both (B.7) and (B.8) are reversed, but (B.6) remains true,
allowing an extension of Proposition 6 to this other case.

Appendix C. Proof of Proposition 7

If

zl—l/s
Ue) = S
and .
-
v(z) = f_ 7

_ then "
(-7 B

L2 c

$(v) =U(v7'(v) =

The assumption that 1 < s < % implies that the exponent of ¢—which we will label
{—is between zero and 1:

1> =({>0. (C.2)
Of course,
1>1-9>0 (C.3)
as well. The composite function ¢(E v(-)) is therefore homogeneous, of degree {(1—7):
$Ev(A(z +9))) = ¢EXNT"v(z+7)
H(A""Ev(z + §)
AA-NgEv(z + §)). (C.4)

Taking the derivative of both sides of (C.4) with respect to z and dividing by A{(1 — )
yields

¢ (Ev(Mz + §))EV(A(z + §)) = AO-D"1¢(Ev(z + §))Ev'(z + §). (C.5)
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As a consequence, if 6* is the Kreps-Porteus precautionary premium for § at z, then it
is also the Kreps-Porteus precautionary premium for A§ at z:

¢(Ev(AMz + 06" + §))Ev'(A(z + 6" + )

= MNON-1G(Ey(z + 6% + §))Ev'(z + )
MA=M=1¢(v(2))v'(2)
#'(v(Az))v'(Az). (C.6)

1l

Since (C.6) holds for all positive A, the derivatives of the two sides with respect to A at
A = 1 must be equal. That equality of derivatives becomes useful for our purposes when
the derivative of the left-hand side of (C.6) is broken into two pieces:

D (B + B +5)EV (e + 8" + 7))
b #(Bo0a+ P + DBV + 5"+ )
= 28 ()W) C.)
at A = 8 = 1. Equation (C.7) implies that

2 (#(Evle +0° + 7Bz +0° +7))

- gg—)\{qs’(Ev()\z +B(0" + )EV O + 68" + 3}

o,
< oot (v(A))(Ae)} —

= S FEEE), cs

if and only if

%w'(h‘v(zw(w+y))Ev'(z+ﬂ(o*+g))} >0 (C9)
I

Since (C.8) is in turn equivalent to (B.2), the Kreps-Porteus precautionary premium
6*(z) is decreasing if and only if (C.9) is true. (Note that positive intertemporal sub-
stitution and constant relative risk aversion guarantee a decreasing marginal utility of
saving.)

Figure 6 graphs

9(B) = ¢'(Ev(z + (6" + §))Ev'(z + B(6" +§)) (C.10)
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9(8)

¢'[v(2)]v' (=)

0 1 B

Figure 6: The function g(8) = ¢'(Ev(z + B(6* + §))Ev'(z + B(0* + 7))

against 8. By the definition of 6*, g(8) = ¢'(v(z))v'(z) atboth # = 0and § = 1. We
need to prove that g(f3) is upward sloping at § = 1 as shown in Figure 6. To show that
g(B) is upward sloping at 8 = 1, we will show that In g(f) is convex, so that once g(f)
passes its minimum and starts upward, it must continue going up. This means that g(f)
can intersect ¢'(v(z))v'(z) only twice, and must be upward sloping at the intersection

of g(B) with ¢'(v(z))v'(z)at f = 1.

The function g(f) is log-convex because both of its two factors are log-convex and
Ing(8) = n{¢'(Ev(z + B(6” + )} + In{Ev'(z + B(6" + 7))}. (C.11)

The second factor of g(f3) is log-convex because (a) decreasing absolute risk aversion
guarantees that In v/(+) in its argument, which makes Inv’(z + 8(6* + 7)) convex in
B for any realization of §, and (b) Artin’s theorem guarantees that an expectation over
functions that are all log-convex in 3 is log convex in 8. (In economics, Artin’s theorem
was rediscovered as the “preservation of decreasing absolute risk aversion under expec-
tations” Nachman [1982] and Kihlstrom et al. [1981). The simplest proof of Artin's
theorem is that log-convexity is equivalent to positive definiteness of the matrix

[ V(z+ 0" +9) vz +(B+8)(0 +7)) ]
V(@ +(B+6)E"+§) v(z+(B+20)0 +)1°

which is preserved under expectations (See Marshall and Olkin [1979]). The second
factor of g(B) is log-convex because In ¢/(-) is a decreasing, convex function (as can
be verified by direct calculation or by noting that ¢(-) has the same functional form as
a utility function with decreasing absolute risk aversion) and Ev(z + (6" + §)) is a
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concave function of 3—as can be verified by calculating

2

%Ev(w +B(6" +§)) =E(6" +§)*"(c + (6" +§)) < 0.

A decreasing, convex function k() = In(¢'(+)) of a concave function j(8) = Ev(z +
B(6* + §)) is convex since

TR = RGN OF + K GE)"6) 2 0 C.12)

Appendix D. Proof of Proposition 8

The Kreps-Porteus representation of (B.3) is

¢"(Ev(z + 6" + §))Ev'(c + 6% + 7))
+ ¢(Ev(z+6* +§)Ev"(z +6* +§)
< ¢"(v(2)['(2)]* + ¢ (v(2))v" (). (D.1)

The marginal utility of saving is decreasing because ¢—,1(-5 increasing means that ¢”(+) < 0,
so (D.1) is what is needed to guarantee that the Kreps-Porteus precautionary premium
6*(z) is decreasing. We will prove (D.1) by showing that each of the two terms on the
left-hand side of (D.1) is less than or equal to the corresponding term on the right-hand
side of (D.1). Using the identity

¢(Eo(z + 0"+ HEv(z + 6" + §) = ¢/(v(2))v'(z),

one finds that
$(Ev(a+ 0"+ DNEV+ 0+ _ ¢ (Ev(e+6 +7))
WEoz 16 T NEN T DE ~ FEe(z t LD
#"((z))
@)
& ({2 (&)
PeEwar PP

The inequality in the middle of (D.2) is analogous to (B.6). Decreasing absolute risk
aversion guarantees that §* > n* and therefore that Ev'(z + 6* + §) > ¢/(z) and
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II . . - - » - .
convexity of -'17}(-5 means that [2—,(%}7 is a decreasing function. Using the same identity
again,

#Ev(z+0*+§))Ev"(z+6*+7) _ Ev"(z+6*+7)

#Ev(z+0*+§Ev(z+6+7  Ev(z+6*+7)

'U”(I)

V()

¢'(v(z))v"(z)

= = A (D.3
S () ’

The inequality in the middle of (D.3) is a consequence of the decreasing absolute pru-

dence of v. Kimball [1991c] shows among other things that decreasing absolute prudence

means that the derived utility function #(z) = Ev(z + 6* + §) is locally more risk averse

than v(z) at any point z at which

IA

Ev'(z 4+ 8* +§) > V(). (D.4)

The middle inequality of (D.3) is precisely an inequality between the absolute risk aver-
sion 9(z) and the absolute risk aversion of v(z) at z. Inequality (D.4) is guaranteed by
the concavity of ¢, which implies, by Proposition 4 that 6* < 3* where 9* is the quantity
which would make (D.4) hold with equality.

Appendix E. Proof of Proposition 11

Since M(z + ) = v Y(Ev(z + §)),
Ev(z +7)

M(z+7)= Tz 1) (E.1)
and
M'(z+§) _Ev"(z+§) v'(ME+9),. . -
Mi(e+9) Bty voIEre) o0 B2
Also, by (E.1),
E[4+ Buo(z +)] _ _[A+Bo(M(z +7))] 3
Ev'(z +§) V(M(z +§)M'(z +§) '
Therefore,

E[A+ Bo(z+ )] 0

Eo+g) 8 " (ME+DM (+9)
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E[A+ Boz +9)) [U"(M(s+t9) o -, M'(z+])
b TG D )
L4 Dol 9)] (U +5) _ (e + 0]
P+ T +5) V(M + D)
N E[A+ Bv(z + §)Ev"(z + 7)
Ev(z + )P
< 0, (E4)

where the inequality follows from condition (3.22) of Proposition 11. The one difficult
leap between (3.22) and (E.4) is made by noting that the left-hand inequality in (3.22)
along with the condition that A + Bv(z) is positive, are equivalent to positive definite-

ness of the matrix [A + Bu(e) \/_L—v’(:c)]
VE(E) (O]

for any value of &, which implies positive definiteness of

[E(A + Bu(z +§)) VEEv'(c+ 17)]
VEEV(z+§) -Ev'(z+§) )’

Thus, the marginal utility of saving is decreasing.
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