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This paper explores the role of complementarities and

coordination failure in economic growth. We analyze the

evolution composed of a countable set of infinitely-lived

heterogenous industries. Individual industries exhibit

nonconvexities in production and are linked across time through

localized technological complementarities. Each industry employs

one of two production techniques. One technique is more

efficient in using capital than the other, but requires the

payment of a fixed capital cost. Both techniques exhibit

technological complementarities in the sense that the

productivity of capital invested in a technique is a function of

the technique choices made by various industries the previous

period. These complementarities, when strong enough, interact

with incompleteness of markets to produce multiple Pareto-

rankable equilibria in ling run economic activity. The

equilibria have a simple probabilistic structure that

demonstrates how localized coordination failures can affect the

aggregate equilibrium. The model is capable of generating

interesting aggregate dynamics as coordination problems become

the source of aggregate volatility. Modifications of the model

illustrate how leading sectors can cause a takeoff into high

growth.
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1. Introduction

The large differences in both per capita output levels and growth rates across

countries have recently become the focus of considerable research in macroeconomics.

Much of this interest stems from the implications of different national experiences for

modelling macroeconomic aggregates as devolving from a dynamic general equilibrium

framework. A hallmark of the stochastic growth model pioneered by Brock and Mirman

[1972] is the convergence of economies with identical sets of preferences and production to

a unique limiting distribution for a wide array of initial conditions. Yet many analyses of

long run output movements (see Romer [1986], DeLong [1988], Quah [1990], and Bernard

and Durlauf (1990], among others) have concluded that divergence is in fact the norm.

One approach to this stylized fact is of course to argue that countries possess sufficiently

heterogeneous microeconomic characteristics that long run behavior is heterogeneous as
welt. Jones and Manuelli [1990], for example, show that if the marginal product of

capital is sufficiently large over all possible capital/labor ratios, then different
specifications of microeconomic parameters such as tax rates, production functions or

rates of time preference can lead to divergence of growth rates in a competitive general

equilibrium framework. However, most economists seem confident that differences in per

capita output levels and growth rates are too vast to be attributed to differences in
microeconomic parameters alone. Reinforced by the view that these disparities are

Pareto rankable, the bulk of theoretical work on divergence has looked for deviations

from the Arrow-Debren model.

One approach to explaining divergence has relied on modifications of the

standard growth model to account for increasing returns to scale as a source of multiple

steady states. Romer [1986), Lucas [1988] and Azariadis and Drazen [1990] have argued

that various forms of social increasing returns to scale can lead to a divergence between

the social and private marginal products of human and physical capital and lead to

multiple growth paths. Romer models the individual firm production function as being
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positively affected by the level of the aggregate capital stock in the economy. The

aggregate stock proxies for a host of production complementarities between individual

producers such as unpatentable innovations. As a result, a given marginal product of

capital is compatible with two different levels of capital, leading to multiple equilibria.

The possibility that multiple equilibria exist for aggregate activity has been

explored in a number of other formulations of market failure. The effects of incomplete

markets are analyzed in Diamond (1982], where multiplicity occurs due to the
externalities associated with search. IJeller (1986, 1990] derives similar results through

imperfect competition. In his model, firms act as Cournot oligopolists. Because of the

feedback of production into aggregate demand, marginal revenue and marginal cost can

intersect at several different levels of output. More generally, models of this type

emphasize the role of complementarities across firms and consumers in determining

average economic activity. Strong complementarities can lead the aggregate economy to

a Pareto inferior equilibrium because of coordination failure.

Increasing returns to scale and imperfect competition have been linked to

multiple equilibria, with emphasis on long run development, in recent work by Murphy,

Shleifer and Vishny [1989]. These authors show that increasing returns can lead to

multiple equilibria when production decisions by monopolistic firms are constrained by

the extent of market demand. Low and high output equilibria are both possible due to

aggregate demand spillovers across all parts of the economy which are created by

production in each sector. These different steady states allow low per capita income

levels to be interpreted as a manifestation of coordination failure.

One problem in thinking about most coordination failure models as metaphors

for aggregate activity is that they are limited by the absence of any stochastic dynamics.

These models typically exhibit several constant steady states. The level of long run

activity, however, is entirely determined by the initial conditions of the model. No role

exists for transition dynamics in the selection of or movements across steady states.

Further, most coordination failure models cannot address the question of cycles in
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aggregate activity. (See Diamond and Fudenberg [1989] for an exception.)

This paper is designed to construct an explicitly dynamic and stochastic model of

coordination failure with a focus on the mechanisms by which growth evolves. We work

with a variant of the l3rock-Mirman economy. The economy consists of a countable

number of infinitely-lived, profit maximizing industries. Consumers are risk neutral.

Technological complementarities create intertemporal linkages between the production

functions of each sector, in ways similar to social increasing returns models. When these

cornplementarities are strong enough, coordination failure can occur which affects long

run growth.

Methodologically, we follow an approach to stochastic coordination problems

developed in Durlauf [1990a]. The basic idea is to interpret an aggregate equilibrium as a

joint probability measure characterizing many agents. The microeconomic

characterization of an individual agent is treated as equal to the specification of a

probability measure over the agent's actions conditional upon the rest of the economy.

The existence of an equilibrium is correspondingly equivalent to the existence of a joint

probability measure consistent with the microeconomically generated conditional

measures. Uniqueness of the equilibrium occurs whenever the conditional probability

measures can generate only one joint measure. When a class of conditional probability

measures is consistent with multiple joint measures, the stochastic process is said to be

nonergodic. This characterization of coordination problems as the relationship between

conditional and joint probability measures provides a natural framework for discussing

endogenous evolution towards steady states, as infinite-dimensional stochastic processes

can be modelled as the limits of finite-dimensional stochastic processes with different

initial and terminal conditions. AL the same time, by modelling the economy as a

stochastic process, it is straightforward to generate nontrivial time series properties for

aggregate output.

The dynamic behavior of our aggregate economy possesses two interesting

properties. First, the complementarities in the model act as a source of volatility in
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output across both industries and time. Intuitively, complementarities in behavior mean

that changes in the decisions of one agent spill over and alter the constraint sets of other

agents in ways different from the effects which occur in a competitive equilibrium model.

High production in one industry induces high production in other industries through the

technological complementarities. This type of stochastic volatility is driven by
fundamentals and thus contrasts with results showing how incomplete markets can

generate sunspots.

Second, the transition probabilities describing how industries react to

complementarities create the potential for multiple long run equilibria. If industries are

sufficiently sensitive to the production decisions of others, in the sense that high

production by a given industry will occur with very low probability in the absence of high

production of others, then the economy will exhibit two long run equilibria. It is
standard in the coordination failure models that complementarities can lead to

multiplicity. (See Cooper and John [1988] for an excellent discussion of the static case.)

The current framework differs from most other models by describing this multiplicity as

the outcome of a dynamic process and by permitting transition dynamics between

equilibria. In addition, our model permits multiplicity to coexist with heterogeneity in

the behavior of individual agents. Multiple equilibria will not imply that all agents are

simultaneously producing at the high or low level.

In terms of understanding growth mechanisms, our model gives a primary role to

two factors. First, strong local linkages across industries can create sequential

complementarities which build up over time to affect aggregate behavior. Strong local

linkages mean that expansion in one sector will increase the conditional probability that a

finite number of additional sectors will expand. Collectively, these effects can lead to

aggregate growth. Second, leading sectors can induce takeoff in economic development.

Leading sectors are defined as industries that trade with all other industries and hence

whose expansion can cause economy-wide complementarities. Growth in these sectors,

due to technical change or other factors, can have far reaching effects. In particular, if
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leading sectors grow and provide services at lower cost to the rest of the economy, the

conditional probability structure of microeconomic production decisions will shift toward

choosing high production with greater frequency. This shift can, through the strong local

complementarities, induce a takeoff to growth.

Our results contrast with the Murphy, Shleifer, Vishny model of industrialization,

whose antecedent is the big push model of Rosenstein-Rodan [1943]. In big push theories,

industrialization occurs through the simultaneous movement of many sectors. In our

model, higher production in a given sector generates complementarities over a finite

subset of other sectors. however, because these ranges of complementarities overlap, all

sectors are eventually linked. I{ence growth can proceed through the sequential expansion

of different parts of the economy. Interestingly, our model roughly corresponds to a

major competitor of the big push school of industrialization policy: the Hirschman model

of economic development through the promotion of leading sectors with strong linkages to

industries throughout the economy. In Hirschman's framework, economic development

emerges as growth of some sectors spills over to cause growth in other sectors through

many different supply and demand links. Different parts of an economy can thus develop

at different rates, eventually leading to aggregate expansion. As in our model, Hirschman

argues that leading sectors can stimulate aggregate growth through simultaneous

interaction with many industries at once which then stimulate the many intertemporal

linkages in production.

Section 2 of this paper sets up a simple economic environment embodying

localized complementarities. The economy consists of a countable set of interacting

industries, each facing a nonconvexity in production. The solution to individual firm

capital accumulation problems and existence of the aggregate equilibrium are analyzed.

Section 3 discusses conditions for multiple equilibria. In Section 4, the cyclical behavior

of the economy is explored through simulations. Section 5 analyzes the role of leading

sectors in generating a takeoff from one equilibrium to another. Section 6 provides

summary and conclusions. A Technical Appendix follows which outlines some of the
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mathematics and contains proofs of the various theorems in the text.

2. A model of interacting industries

We consider a countable set of infinitely lived industries indexed by I. Time is

discrete. The economy may be thought of as the limit of an increasing sequence of

economies composed of finite numbers of industries. Each industry consists of a

continuum of identical firms. This specification permits us to treat the industries as

individual agents and at the same time ignore strategic considerations in their production

decisions. Specifically, the distinction between firms and industries is made to justify

assuming that industries act competitively with respect to complementarities. Each firm

takes the behavior of its own and other industries as given when making production

decisions. All firms produce a homogeneous good; industries are distinguished by distinct

production functions rather than distinct outputs. Following the standard Brock-Mirman

formulation, the homogeneous final good may either be consumed or converted to a

capital good which fully depreciates after one period. Aggregate output 1', consumption

C, and capital K obey

= c,+x,. (2.1)

These aggregates are computed by summing over all firms and consumers at each i.

Given our assumptions on internal industry structure, industry behavior is

proportional to the behavior of a representative firm which chooses a capital stock

sequence {K,) to maximize the present discounted value of profits ll

I = E( p,÷a(+3—K11+a) I ff). (2.2)

}' equals the output of the i'th industry's representative firm at 1; P equals the date
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zero price of output at t (the price of output available at tin terms of the price of output

available at time 0); W denotes all information available to the economy at the

beginning of t. Each industry's representative firm has an initial endowment of output

which can be used as capital.

Consumers in the economy are risk neutral. Consumer r evaluates the

consumption stream {Crt} through the utility function

Urt = E(E Ptrt+j I ff3. (2.3)

All firms are owned by the consumers. All uninvested output is paid out as real
dividends. As we shall see, in equilibrium, total dividends payments exactly equal

consumption for each consumer.

Aggregate behavior is determined by the interactions of many heterogeneous

industries employing nonconvex technologies. Production occurs with a one period lag;

firms at 1—1 employ both one of two production techniques and a level of capital to

determine output at t. Only one technique may be used at a time. Cooper (1987) and

Murphy, Shleifer, and Vishny [19891 exploit similar technologies to analyze multiple

equilibria; Milgrom and Roberts [1990] discuss how this type of nonconvexity can arise as

firms internally coordinate many complementary activities. The technique-specific

production functions produce Y1 and '2,i. through

y1,1l,t = fi(K1.1_1—F,(,t_i) (2.4)

'2,i,t = f2('i,I—I,1,t—1) (2.5)

and are industry-specific productivity shocks and F is an overhead capital cost.

and are elements of ff. Recalling that firms within an industry are identical, we

define w1 whkh equals 1 if technique 1 is used by industry i at t, 0 otherwise;
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= {...w1_i g,w1t,w1÷it...) which equals the joint set of techniques employed at 2; and
= {...w 1,w} which equals the history of technique choices up to 1. The entire

history of technique choices can be indexed by 2, the two-dimensional lattice of integers.

We place several restrktions on these technologies. First, each, technique fulfills

standard curvature conditions. Further, we associate technique 1 with high production.

Specifically, net capital NE'11, which equals K,—F for technique 1 and K11 for

technique 2, has a strictly higher marginal (and by implication total) product when used
with technique 1 than technique 2.

Assumption 2.1. Restrictions on technique-specific production functions

For all realizations of (it' and 11K, fi(NK,(1) and f2(NK,q1) are twice-
differentiable functions such that

A. f1(0,ç1) _f2(0,hII a = 0.

8f1(NK,(11) > 0f2(NK,t711) 82f1(NK,ç1) 82f2(NK,i11) <• 811K -, 811K —,
011K2

—,
0/11(2

—.

0f1(0,() — 8f2(0,1 — • 0f1(oo,(, ) — 8f2(co,,)• 811K - 811K °°' 011K
-

811K —0.

D 8f1(NK,(11) 8f2(NK,q,.1)
011K >

811K

Both techniques exhibit technological complernentarities, as the history of

realized activity determines the parameters of the production function at 1. Romer's

11986] model of social increasing returns shares this feature. Our complementarities differ

from Romer's in two respects. First, all complementarities are local as the production

function of each firm is affected by the production decisions of a finite number of
industries. The index i orders industries by similarity in technology; spillovers occur only
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between similar technologies. A large body of research in economic history has described

the importance of local complementarities in the evolution of technical innovations.'

Second, our complementarities are explicitly dynamic. Past production decisions affect

current productivity, which captures the idea of learning-by-doing as described by Arrow

(1952].

Specifically, we model the complementarities through the dependence of C1, and

on the history of industry technique choices. This means, in a learning-by-doing

context, that knowledge accumulation is a function of time spent on an activity, as

opposed to scale. This seems appropriate if the efficiency of the fixed capital cost of

technique 1, which we treat as devoted to organization and administration of production,

is more likely to improve due to accumulation of knowledge than the efficiency of

variable capital. Since firms in an industry are identical, the industry technique choice

represents a measure of total time devoted to a particular industry-specific technique.

Complementarities are assumed to be the only source of dependence across shocks.

y) denotes the conditional probability measure of r given information y z(g) denotes

the random variable associated with this measure. = {i—k...i...i+1) indexes the

industries which affect the productivity of firms in industry I.

Assumption 2.2. Conditional probability structure of productivity shocks

'Rosenberg [1982] documents many examples of local technological
complementarities leading to interternporal spillover effects across industry production
functions. For example, technical change in the early history of the chemical industry
helped trigger innovations in metallurgy and electrical products through the provision of
cheap inputs-"such essential items as refractory materials, insulators, lubricants...and
metals of a high degree of purity." Similarly, David's [1986) discussion of path
dependence shows how the evolution of the typewriter evolved as an element of "a larger,
rather complex system of production that was technically interrelated." Typewriter
operators and producers of typed products jointly interacted in a decentralized, sequential
manner to implement innovations such as keyboard design. As David [1988] has argued,
these findings suggest that economies exhibit nonergodic behavior along many
dimensions.
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A. i4C, I D'_1) = I V . E

B. p(q1,g =
I w111_1 V i E Ak,).

C. The random pairs are mutually independent of each
other V I.

No markets exist whereby individual firms and industries can coordinate

complementarities. Markets are missing in two senses. First, there is no mechanism

whereby one industry can be compensated for choosing technique 1 in order to expand the

production sets of other industries. At the same time, since the industries are composed

of many small, distinct producers, firms within an industry also cannot write contracts in

order to act strategically in technique choice. Second, firms cannot be recombined under

under joint management to internalize the complementarities.2 These violations of the

standard Arrow-Debreu assumptions will have an essential impact on the dynamics of the

economy.

In equilibrium, the representative firm makes a choice of the high or low

efficiency technology based upon the level of activity of the complementary industries in

the previous period. For a sequence of date zero prices {pj, each firm possesses an

optimal capital choice level conditional on the technology choice 1 or 2. Denoting
relative prices as = these optimal conditional capital choices, K111 and

respectively, are implicitly defined by the two first order conditions

0f1(K1, 1—F,(1 )
1 = E(P+I ÔNK I (2.6)

2The second form of missing markets can be replaced by an assumption which
says that managers cannot completely coordinate the activities of sufficiently large
organizations.
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1 = E(p1+i ONK trj. (2.7)

Each firm chooses the maximum of

, 1—F,(1 )—K1,11 I tr) (2.8)

and

E(pt+1f2(K2 1)—K2, , I ff). (2.9)

It is clear from our assumptions that the production of each firm is higher under

technique 1 than technique 2. In equilibrium, choices of technique I represent greater

capital expenditures in exchange for greater future output.

In order to solve for an equilibrium, we exploit the linear utility specification.

Observe that when consumption is nonzero every period, equalization of marginal rates of

substitution to relative prices means that p1 is proportional to flt, i.e. p1 = j3 V I. Any

other solutions can be ruled out by the transversality conditions associated with the

individual industry and consumer maximization problems. Along this constant relative

price ratio, if firms are maximizing profits, then the marginal rate of substitution will

equal the marginal rate of transformation of capital into output and consumers are

maximizing utility by setting dividends equal to consumption. Consequently, the

existence of an equilibrium can be refonnulated as showing the existence of a set of

optimal firm (and hence industry) production sequences for p1 =

We therefore place an assumption on the relationship between available output

and desired capital which ensures the existence of constant relative prices starting at date

zero, rather than asymptotically. This assumption, which implicitly places restrictions on

both the initial output endowments and the technique-specific production functions,

renders the conditional technique choice probability measures stationary.
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Aumption 2.3. Lower bounds on available cap ital3

For all realizations of(, and q,1, E Y11 >E K1,1,(fl), where K1,111(i3) fulfills
* — — I — —

1—
ONK

When relative prices are constant, one can characterize the conditional

probability measures over technique choices by all industries at all dates. This occurs

because the history of technique choices is a sufficient statistic for the conditional

probability measures describing the profit maximization problem of each firm.

Theorem 2.1. Structure of conditionai technique choice probability measures

The equilibnum lechnique choice conditional probability measures for each industry obey

I li..i) = tt(u1, I w_1 V i e A&,). (2.10)

It is now straightforward to verify the existence of an equilibrium for constant

relative prices. Theorem 2.1 describes theconditional probability measures for individual

technique choices. From the structure of the economy, if a joint probability measure

exists over all technique choices in all periods which is compatible with these conditional

measures, then an equilibrium exists for characterizing capital and consumption decisions.

To see this, suppose that such a measure exists. In this case, an equilibrium
characterization of the capital accumulation decisions for all firms over all periods is

implicitly defined since the industry technique choices simply define a sequence of

3Both Assumptions 2.2 and 2.3 can be relaxed without affecting the Theorems
3.1 and 3.2, which constitute the main results of the paper. The assumptions make the
proofs of the Theorems substantially more straightforward.
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production sets for each firm, resulting in capital choices based on (2.9) and (2.10). As

argued earlier, the resulting consumption sequence from these capital choices is also an

equilibrium for consumers since relative prices equal the marginal rate of substitution.4

Proving the existence of equilibrium is thus equivalent to showing that a set of

conditional probabilities over finite subsets of a stochastic process generates a probability

measure over an entire process. As shown by Theorem 2.1, our assumptions on localized

complementarities ensure that these conditional measures also possess a localized

structure in the sense that conditioning the technique choice on the entire history of the

economy is equivalent to conditioning on a finite number of other elements in the

stochastic process. This implied localized probability structure is generally sufficient to

ensure that a joint measure exists. In one dimension, where the index is normally

thought of as time, the localized structure ensures existence through standard results in

the theory of Markov chains which show how specification of a probability transition

matrix generates a joint measure (see discussions in çinlar ['9751 or Rosenblatt f1971]).

For our model, the set of technique choices are indexed by Z2, the two-dimensional

lattice of integers. For stochastic processes whose indices run over several dimensions,

also known as random fields, conditions for the existence of a joint probability measure

have been derived by Dobrushin [1968J. Dobrushin's criteria, when applied to the

industry technique choice probabilities, imply

4Put differently, since the conditional probability measure characterizing
cu1,1,

K1,1 and Y11 obeys p(w11, K,1 1W11) = p(wjt, Y11, K11 'J.1—1 '' i E
the existence of a joint probability measure over the technique choices implies there exists
a joint probability measure over capital. and output decisions such that all industries are
maximizing (2.2).

5Our use of Dobrushiri's Theorem allows us to show that an equilibrium exists for
arbitrary initial conditions. When the initial conditions are specified, existence may be
proven using the Kolmogorov Extension Theorem, as the unconditional probability
measures of all finite dimensional sets of elements are now defined. It is natural in this
model to take the initial conditions for the technique choices as = 9.
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Theorem 2.2. Existence of equilibrium

There exists at least one joint probability measure over all technique choices at all dates,

p(Q), whose associated conditional probabilities characterizing time- and industry-
specific technique choices possess the form given by Theorem 2.1.

Figure 1 illustrates a typical realization of a cross section-time series of Q.

3. Multiple equilibria and long run behavior

We now restrict the conditional probabilities in order to discuss multiplicity and

dynamics. Past choices of technique 1 are assumed to improve the current relative

productivity of the technique. As a result, technique 1 choices will propagate over time.

Further, we assume that w=1 is a steady state, which means that when all productivity

spillovers are active, the effects are so strong that high production is always optimal.

Assumption 3.1. Impact of past technique choices on current technique probabilities6

Let w and w' denote two realizations of w1. 11w1 � w V j E à1, then

A. Prob(w1,, = ii w1,1_1 = w5V jE ak,)> Prob(w = i w1,_1 = w ViE Ak,,).

B. Prob(w1, =i = 1 ViE Ak,,) = 1.

Whenever some industry chooses cer = 0, a positive productivity feedback is lost.

Different configurations of choices at i—I determine different production sets and

6This assumption can be reformulated in terms of restrictions on the technique-
specific production functions.
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conditional technique choice probabilities for each industry. We bound the technique

choice probabilities from below and above by err and err respectively.

er: S Prob(w,1 = i t— = 0 for some j E A ,) err (3.1)

Since w=1 is an equilibrium, multiple equilibria exist if for some initial

conditions, =' fails to emerge as I grows. Notice that even if = 0, favorable

productivity shocks will periodically induce industries to produce using technique 1. The

choice of technique 1 by one industry, through the complementarities, increases the

probability that the technique is subsequently chosen in several industries. With strong

spillovers, these effects may build up, allowing g=1 to emerge from any initial
conditions. The model therefore allows us to analyze the stability of a high aggregate

output equilibrium from arbitrary initial conditions.

The stability of w=1 is in fact a function of the transition probabilities which

describe how the economy evolves outside of the high production equilibrium.

Intuitively, this equilibrium is stable from any initial condition if the probability of high

production by an industry independent of all cornplementarities is sufficiently large. In

this case, the spillover effects induced by spontaneous production will cause the economy

to iterate towards the high production limit. This can be seen in the extreme case where

er;=1. Alternatively, if the production probabilities are too low in the absence of

active complementarities, the spillover effects from spontaneous production will be

insufficient to generate momentum towards = 1• This can be seen in the extreme case

where erf'=0.7 For this parameter value, the economy consisting of all low production

technique industries is clearly an equilibrium. The interesting cases for uniqueness and

multiplicity occur when and rr are not elements of {0,1), as these cases will

7When erft=0, our model reduces to the typical static coordination failure
model where the two equilibria impose homogeneous behavior on all agents and imply
trivial aggregate time series.
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result in nontrivial dynamics. The values of O' and erft place bounds on the degree
of complementarity in the economy. Small values of er?t suggest that
complement.arities are powerful, as the occurrence of high production is extremely

dependent upon the choices of others. Conversely, large values of er!5 mean that

complementarities are weak in the sense that high production frequently occurs even in

the absence of high production by relevant industries in the past. The precise
relationship between the transition probabilities and multiple equilibria is summarized by

Theorem 3.1. Uniquene of long run equilibrium as a function of degree of
corn plemen tarity

For each index set LIkg, with at least one of k or! nonzero, there exist numbers ekl and

k.l' 0< k,l < 0k,t <1 such that

A. Ife;n � 8k,t' then imp(w1=1twa=o) = 1.

In an economy starting with all low production technique industries, any individual

industry will almost surely converge to the high production technology.

B. If er?t S k,I' then

i.

ii. limj4w1=11w0=0)0.

In an economy starting with all low production technique industries, the probability that

any individual industry achieves high production will be strictly bounded below 1.

Further, the economy will almost surely fail to converge to the high production
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equilibrium.

Further, the range of values of k,I which generates multiple equilibria is
nondecreasing in k and L The greater the number of industries which must act in unison

to ensure that high production is employed with certainty by a given industry, the
smaller the range of parameter values for conditional high production probabilities where

the high production equilibrium emerges. This may be interpreted as saying that high

production outcomes are less likely to emerge as the range of coordination failures

expands.

Theorem 3.2. Relationship between conditional probability bounds and range of
complementaritie.s

Let I(k,) denote the set of values of Qk, which generate multiple equilibria, in the

sense of Theorem 3.1. If Ak, c 1m,n then I(Q&,) c (vn,n)

Consequently, for an arbitrary range of local complemcntaritics, the aggregate

dynamics of the economy are jointly determined by initial conditions and transition

probabilities. These two factors collectively select a long run equilibrium. When

multiple equilibria exist, the transition probabilities do not determine a unique invariant

measure for the system. This property is far more common for random fields than one-

dimensional time series, as discussed in the Technical Appendix. Intuitively, when

economic agents interact along several dimensions, the degree of interdependence between

the agents increases sufficiently to generate multiplicity.

Theorem 3.1 illustrates a dynamic path for economic development. Unlike static

models of industrialization, our framework demonstrates how high levels of production

can emerge endogenously from low production initial conditions. Complementarities can

buitd up across time, leading to a high production long run steady state. This idea
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suggests a resolution of the paradox posed by Scitovaky (1954], on how a railroad that

requires the existence of a steel industry to provide inputs of production and a steel

industry that requires the existence of a railroad to transport materials can ever jointly

develop. When complementarities occur sequentially and when the probability of high

production is still nonzero for an industry even when other industries are inactive,

evolution towards the high production equilibrium can result from the buildup of
complementarities across time.

One can associate w=1 with the equilibrium which would emerge if all firms

chose their production levels cooperatively. If production through technique 1 is

sufficiently large for =i versus any other conilguration, then =i emerges as the

cooperative (and efficient) equilibrium after one period. Consequently, incompleteness of

markets lowers the mean and increases the variance of industry and aggregate output

along the inefficient equilibrium path, as technique choices fluctuate over time. When

industries fail to coordinate, production decisions become dependent on idiosyncratic

productivity shocks. Observe that the volatility associated with the inefficient

equilibrium is caused by fundamentals and is quite distinct from the case where market

incompleteness leads to the emergence of sunspots in aggregate activity.

4. Aggregate dynamics

Our model of interacting industries is capable of producing rich individual

industry and aggregate dynamics.8'9 To better understand the behavior of the aggregate

economy, we consider some simulations for various ranges of industry interaction. In

each simulation, we construct a finite approximation to the infinite economy consisting of

600 industries over 2000 time periods. In all cases, w0 =(I. Output per period by each
industry is normalized to equal 0 or 1.10

We initially consider the case where A10={i—1,i}, which implies the conditional

probability structure
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= fl = 1iti = 1) = 1

= ii = O,Wj....1 = 1) = 0,

= 1 w1...1 t_i = 1,w1 _i = 0) = 03

= I = D,w1 = 0) = 03. (4.1)

This model was originally analyzed by Stavskaya and Pyatetskii-Shapiro [1968J. It is
known from simulations reported in that paper, as well as subsequent analytical work,

that the greatest upper bound on errrwhich permits the inefficient equilibrium to cxist,

is slightly greater than .3, when 01 =0 = 03.

8The results in the previous section imply that each realization of the economy
fails to converge to the invariant measure = i. When °E?' � '±'o = Q and
er;> 0, it follows that each industry i possesses nondegenerate dynamics in the sense
that bin sup = 1 and lim inf w11 = 0 almost surely. The first limit is obvious since
there is a positive probability each period that = 1. The latter holds, because the
alternative, Jim inf w = 1, can hold iff w1=1 after a finite number of periods, which
requires that all elements = C after a finite number of periods, which would
require that all industries which interact with this previous set equal 1 after a finite
number of periods, and so on. This recursion implies that Jim p(çt' =Al ceo = Q) 0,
which cannot hold by Theorem 2.3.8. See Shnirman [19Sff'd Vasilyev [1970) for a
more formal argument.

9When there are a finite number of industries, then as t'oo, the high production
equilibrium wilt almost surely emerge. This holds since each period there is a nonzero
probability that all industries will spontaneously choose technique 1. However, a
sufficiently large finite economy can replicate the behavior of the infinite economy for an
arbitrarily large number of periods with arbitrarily high probability. In this sense, a
large finite economy will, for a relevant observable history, appear nonergodic.

'°A {0,1) support for industry output can be justified by generalizing our
assumptions on technology so that = Y if and =
f2(K,,_1) and then normalizing output.

19



a
Cz

0 = .30
0, .25

= .20

TIME

FIGURE 2

80-Period Sample Rea'ization - 80 Industry Economy
A0

+ = high production by industiy i at

Aggregate output equation

V1 = .09 + .67 '4 + .07 V1,

0 10 20 30 40 50 60 70 80



Figure 2 displays a sample path realization over the last 80 periods of an 80
industry cross section when the conditional probabilities are = .3, 02 = .25 and

03 = .2. As the Figure indicates, the economy exhibits considerable cross-section and

intertemporal persistence. Different parts of the economy exhibit disparate behavior.

The average output level over all 500 industries, V, obeys the AR(2)

Vt = .09 + .671'_ + .07Y_2 + (4.2)

The mean value of Y associated with this equation is .35. Recalling that e = .2, the

mean activity level is nearly double that which is predicted by the probability of

production in the absence of active complementarities. The difference between the mean

and the lowest production probability shows how high production choices can spill over

across sectors, building up over time to raise aggregate output.

Figure 3 contains a realization of the behavior of an 80 industry cross section

when the conditional probabilities are 01 = .15, 02 = .10 and 03 = .05. As the Figure

suggests, the degree of high production bunching is relatively low when assessed either

over a cross-section or over time. This occurs because the probability of production is so

low in the absence of active complementarities that spillover effects do not build up to a

great extent. The average output equation is

11Each regression was computed using the last 1000 observations for all 500
industries of a 2000 period simulation of the economy. Multiple runs produced essentially
the same AR coefficients, suggesting that the low equilibrium measure is unique.
(Results in Vasilyev (1980] show that if the conditional probabilities 01 are small enough,
there is a unique low equilibrium joint measure starting from ceo=O. However, his proof
did not show that any set of Ofs which generate multiple measures will only generate one
measure from w0=O, so we cannot apply his result to our 01 choices.) By using a central
limit theorem argument, one can show that the demeaned Y1's can be normalized to
possess nondegenerate limits as the number of industries becomes unbounded. This will
ensure that the limiting AR representation for the sequence of (normalized) finite
economies is also nondegenerate. See the discussion in Piclcard 11976,19771.
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= .04 + .25Y_1 + .06Y_2 + c. (4.3)

This equation possesses an unconditional mean of .06, which indicates that the spillover

effects are relatively weak compared to Figure 2.

Our second set of simulations arc constructed based on the interaction range
a1 1={i—1,i,i+1}. In this case, there are eight different conditional probabilities. We

reduce the number of relevant parameters to 3 by assuming the probabilities obey

= 1 = 3) = 1

= 1 = 2) =

= 1 = 1) = 02

= 1 fw1_1, = 0) = 03. (4.4)

This structure can be interpreted as saying each complementarity has the same effect on

the production function. Simulations of this structure have shown that the model is

nonergodic when all transition probabilities are below .45.

Figure 4 was generated for the case 0 = .4, 02 = .35, 03 = .3. The model

exhibits some cross-sectional and intertemporal persistence in fluctuations, but less than

that observed in Figure 2. The associated average output equation is

= .18 + .49Y_ + .OTY_2 + c. (4.5)

Interestingly, the mean of average output, .41, is not substantially greater than 03 =.3.

Certain one-period ahead production occurs only when three industries are simultaneously

active, which is a low probability event when each was inactive the previous period.
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Hence, this economy has difficulty in building up active complementarities over time.

Finally we report the behavior of this economy for 01 = .25, °2 = .2,

03 = .15. The associated output equation is

= .13 + .29Y_1 + .02Y1_2 + c. (4.6)

which possesses a mean of .19. Again, reduction of the transition probabilities reduces

both the mean and degree of persistence due to the low probabilities of production in the

absence of active complementarities, as evidenced in Figure 5.

These simulations demonstrate how our interacting economy can generate

nondegenerate macroeconomic time series with widely differing degrees of persistence,

depending upon the transition probabilities. The model cannot, however, generate exact

unit roots in output, which have been the subject of so much recent empirical work. This

inability occurs because normalized aggregate output behaves as a stationary L2 process.

Unit roots can emerge in our framework, however, through the introduction of

deterministic technical change which causes the aggregate production set to become

asymptotically unbounded. As described in Durlauf [1990a]1 multiple equilibria can

interact with the evolution of the production set to convert a linear deterministic trend in

potential output into a random walk in realized output.

5. Movement acro equilibria and takeoff

The existence of a low output equilibrium hinges critically on the probabilities of

high production in the absence of potential complementarities. When these probabilities

are sufficiently high, then the economy will endogenously evolve towards the high

production state. This feature suggests an interpretation of takeoff to industrialization as

the consequence of increasing the microeconomic decision probabilities of choosing high

production.12
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Technical change is a natural mechanism for introducing evolving probabilities in

technique choice. Two different interpretations exist which can relate technical change to

the simultaneous evolution of conditional technique choices across many industries. One

possibility is that technical change is highly correlated across technologies. II one thinks

of technical change as a multiplicative random walk with drift appended to individual

industry production functions, this would require a great deal of cointegration across

technologies. An alternative possibility is that there exists some common factor which

simultaneously affects many industries. This idea underlies Hirschman's [1958) argument

that the growth of leading sectors such as transportation or steel can stimulate

production throughout the economy due to various demand and supply links between the

leading sectors and other industries.

In order to see how leading sectors can cause the economy to take off, we modify

the model as follows. Let the high production technology take the form

= f1(K1,_i—F,C1,_1,R) (5.1)

where is representative firm i's input of a good produced by a single leading sector.

When industry i employs technique 1, it starts production at 1—1 with a capital
investment and then employs the leading sector input at to produce output at f13

The leading sector is assumed to be monopolistically competitive. There is free

entry into the industry. At 1—1, the j'ih leading sector firm chooses its level of output at

1, R'71, by choosing a level of capital At The firm's production function exhibits

increasing returns due to an overhead capital cost F!1 combined with an exogenous

capacity constraint The leading sector uses the final good as a capital input.

t2See Kelly 11990] for an interesting analysis of takeoff as resulting from the
formation of economy-wide markets out of an initial localized market structure.

'3Under this timing specification, it is natural to think of the leading sector as
replacing some phase of the production process which would otherwise require a part of

Alternative specifications do not affect the results.
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Without loss of generality, we assume that the production function is linear in capital

and a multiplicative shift factor —i after subtracting overhead capital.

= 51_1gUC1_1—J1) if �
= R1 otherwise. (5.2)

We assume that the random vector is

independent of V i and that ,, ?' and 1' are

elements of

In equilibrium, this sector will produce subject to a no profit condition. In other

words, the date zero price j4' for leading sector output will equal average cost for each

firm in the sector. When demand is large enough, leading sector firms produce at

capacity, which means that the price of leading sector output equals

at—1i1a c
is — w \tircti9 tI 5 3Pt —

The first order conditions for profit maximization ensure that the relative profitability of

the first technique is increasing in {, increasing in and decreasing in F.
This modification of the technique 1 production functions gives the necessary

structure for providing a role for leading sectors in generating a transition to the high

production equilibrium. Suppose that technical change leads to monotonic rightward
shifts in the distribution functions of . and and a monotonic leitward shift in the

distribution function for it. In this case, the conditional probabilities

p(w11=1 I w- V jE Ak!, fS) (5.4)

will increase across time for all production histories as technical change occurs.'4 If the
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conditional probabilities are sufficiently sensitive to the price of output from the leading

sector, then takeoff can be induced by innovation in the leading sector production

function.

Figures 6 and 7 exhibit how technical change can lead to rapid growth, by

showing how a simulated economy will expand as the microeconomic probabilities ofhigh

production increase over time. Each Figure contains a sample path realization for

average production over 500 industries, employing a zero-one normalization for individual

industry output. In Figure 6, all transition probabilities for a A10 economy are started

at = .2 V i. After 25 periods, the probabilities O each grow by .01 per period. This

continues for 30 periods, after which the economy evolves with the new conditional

probabilities O = .5. Figure 7 repeats the expcriment for a A1 I economy. In this case,

the initial probabilities are 0 = .3 and the terminal probabilities are = .6. Both

experiments result in roughly the same S-shaped pattern of growth. In both cases,

growth in aggregate output exceeds .01 per period, the probability parameter growth rate;

both economies converge to the efficient steady state.

This sort of explanation has been applied to the development of the American

economy in the period 1820-1850. North [19661 describes how the early growth of the

American economy led to increased demand for transportation, which in turn stimulated

the construction of canals. Cheaper transportation costs due to canal construction then

stimulated expanded activity in many sectors, including greater agricultural production

and land development. Increased sectoral activity in turn stimulated transportation

demand so that the cycle repeated itsell, leading to substantial increases in aggregate

output.

Technical change arguments cannot easily address the question of movements

from the high to the low production equilibrium. One possibility for explaining shifts to

'4For a wide range of market games, decreasing marginal costs in the leading
sector due to technical change will lead to greater use of the leading sector input at lower
prices by each industry, thereby stimulating high production.
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low production is to interpret the leading sector as providing financial services and then

to characterize a financial collapse as creating effects analogous to a negative shock to

technology. Durlauf (1990b) shows how several of the models of Greenwald and Stiglitz

[1988] on interactions between credit market imperfections and investment can be applied

in this way. In particular fluctuations in the real sector feed into the financial services

sector and thus trigger movements between equilibria.

6. Summary and conclusions

This paper is designed to illustrate how incomplete markets and
complementarities can combine to affect aggregate behavior. We have analyzed these

issues in the context of a modified Brock-Mirman stochastic growth model. The basic

results we have shown are three-fold. First, we have shown how long run capital

accumulation and growth may be affected by the interactions of market incompleteness

and complementarities. Technological complementarities combine with incomplete

markets to generate multiple equilibria. These equilibrium paths generate very different

aggregate dynamics from one another. Further, market incompleteness can enhance the

role of idiosyncratic productivity shocks in affecting output decisions and lead to the

propagation of aggregate shocks across time. Second, by proposing a precise way of

measuring the magnitude of technical complementarities, through their effect on

conditional production probabilities, it is possible to link the degree of complementarity

in the economy to the presence of multiple aggregate equilibria. Third, characterizing the

interaction of local and joint complementarities, one may describe how economies shift

across equilibria. This view suggests that leading sectors can act as the trigger for

aggregate development. Methodologically, the paper has employed a probabilistic
characterization of aggregate equilibrium which appears to be a useful language for

describing the dynamics of certain types of coordination failure.

A major limitation of coordination failure and complementarities-based models as
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paradigms for macroeconomic behavior has been their inability to address data questions.

Conversely, a great strength of the representative agent/real business cycle paradigms has

been the direct mapping of these models into aggregate time series. An important goal of

this paper has been to show how complementariLies can produce nondegenerate aggregate

fluctuations. One suspects that further research will show how models driven by

complementarities can generate time series which can be successfully calibrated to US

aggregate data. Unless one is satisfied with establishing an observational equivalence

between the real business cycle and coordination failure approaches, it is clear that an

essential extension of the current paper is the development of empirical tests for

complementarities. Our interacting industries model, like most of the multiple equilibria

literature, embeds complementarities and market incompleteness at a very disaggregated

microeconomic level. It therefore appears that the identification of strong
complementarities as a source of aggregate fluctuations will require that
macroeconometrics develops firmer microeconomic foundations.
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Technical Appendix

1. Random field theory

The mathematics in this paper, based on random field theory, is new to
macroeconomics. In this section, we try to provide some intuition into this branch of

probability theory. Spitzer [1971) and Griffeath (1976] provide very clear introductions to

the general theory. A random field is any stochastic process made up of individual

elements w, of some set Q, where a E A, an index set. Representative agent economies

can be expressed as random fields by letting the index set equal time, 7'. If the index set

is one of the integer lattices 1', then one can define a local random field as a random field

where the conditional probabilities based upon the rest of the system depend only on

elements distance D away.

I QWg,) = P("a w6, b—al C D) (A.!.!)

A Markow tandom field obeys this structure for D = 1. When one of the dimensions

indexing random variables is time, this definition treats the past, present and future

symmetrically. One can also build up local random fields by conditioning only on the

past. For example, letting A = 2, a = (i,t) and employing the partitions fl and

described in the text, a temporally Markov random field over elements Wj may be

defined by

p(w I '—i) = I (A.1.2)

whereas a local, temporally Markov random field may be defined by

it(w1,1 I i—r) s4', t I I 6—(r )l D). (A.1.3)
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The economy described in the text generalizes this form by allowing an asymmetric range

of interactions.

An important feature of random fields with multidimensional index parameters is

that these processes exhibit interesting forms ol nonergodicity which are absent from one-

dimensional processes. To see this, consider the Markov chain for the time series x with

state space {O,1) and probability transition matrix Q.

';]
The only case where this transition matrix is consistent with more than one invariant

limiting measure for rt is when c = /3 = 1, i.e. Q equals the identity matrix. This would

mean that the time series generated by the process is degenerate.'5 However, for the

multidimensional economies explored above, multiple inyariant measures are consistent

with nondegenerate time series.

The intuition behind this difference is that multidimensional random fields

exhibit a qualitatively different degree of dependence across individual elements than

their one-dimensional counterparts. The only way for the one-dimensional Markov

system to exhibit multiplicity is to force the transition probabilities to equal one, thereby

inducing sufficient dependence across random variables to affect the long run behavior of

the system. This skewing of the transition probabilities is necessary because of the

relatively sparse number of interactions across elements of the stochastic process. We can

see this by contrasting the interactions of x_, and in a Markov chain with the

'51f the state space possesses more than two elements, then it is possible to
construct finite Markov chains which are nonergodic yet produce nondegenerate time
series. However, this still requires that the system becomes permanently excluded from
certain states.
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interactions of z, and t 1+2' in a random field corresponding to A1,1 in the text. As
Figure 8 iltustrates, there is only one path linking the realization of x_1 to the
conditional distribution of x.2. The effect of x1_ on r2 occurs only through the
intermediaries x and x1+i; generally, Lhe effect of any individual element on future values

of the process decays rapidly. For the random field corresponding to a many (7)
different paths lead to an effect of the realization of t;,_ on the distribution of
These paths are drawn in Figure 9. The number of interconnections grows as the
distance between the elements increases. (The growth in the number of paths is
qualitatively different from what occurs if the dimension i assumes only a finite number

of values.) This large number of interconnections makes the impact of individual

elements on the subsequent history of the stochastic process more persistent. The many
interconnections in multidimensional systems lead to a substantially greater degree of

dependence across observations than in one-dimensional systems, leading to nonergodicity

and hence multiple equilibria in a rich class of models.

2. Proo of Theorems

Proof of Theorem 2.1.

This Theorem is based upon standard arguments showing that the equilibrium in

the I3rock-Mirman model can be supported by a representative agent economy with price

taking firms. When ( and are elements of we can define the one-period profit

function, r4,((111,,1) as the value of

max sttp(/3f1(K1 —F,(1 j—K1, flJ2(K1 1)—K1 ). (A.2.1)

Observe that r11((11,q-1) is well-defined. Given our assumptions on the

production function, the timing of information and the size of firms (firms treat the
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technique choices of all industries in the future as invariant to their choices), it is

straightforward to show that maximization of (2.2) in the text with respect to the entire

{K1,} sequence is equivalent to maximizing (A.2.1) with respect to K period by period,

so long as the solution to (2.2) is bounded. Boundedness holds for any summable date

zero price sequence by Assumption 2.1. Further, concavity of the conditional production

functions in capital renders the maximum to the profit maximization problem unique.

Hence the profit maximization problem has a solution and an optimal sequence of

technique choices exists.

Clearly, if and are known, then the profitability of each technique is

known as well, which determines the technique choice unless the two techniques are

equally profitable. Assume that all ties are broken by a time invariant rule which is a

function of and i. Recalling the equivalence of the firm and industry technique

choices, by the Continuous Mapping Theorem, w1 is a measurable function of these

variables under perfect information. Application of the law of iterated expectations to

the probability measure characterizing w, conditioning for any if_, makes the

optimal capital choice a function of the joint conditional probability measure for ( and

which given Assumption 2.2 yields Theorem 2.1.

Finally, observe that Assumption 2.3 means that the conditional probability

measures characterizing w are identical across i and t, V I � 1.

Proof of Thcorem 2.2.

To prove the existence of a joint probability measure for Pt = /3, we verify the

two conditions derived by Dobrushjn [1968] for the existence of a joint probability

measure generated by a given set of conditional measures. First it is necessary to show

that probabilities over all finite sets can be consistently defined. This may be seen

through the construction of the conditional probabilities. For any initial condition , it
is possible, given the transition probabilities, to compute p(w11) V i. One can proceed to
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define probabilities based on the individual elements for any finite set in Repeating
this procedure, it is possible to assign probabilities for any finite set in fl. Letting too,
this means that all conditional probabilities over finitesets can be consistently defined.

The second condition in Dobrushin is that for any finite set S and any 6> 0,
there exists a finite set of elements, F(S, 6), S (S, 6), such that

I s451 1)—p(510,,,—S) � 6. (A.2.2)

This condition immediately holds for the probability structure we have examined.

Consider the case S=w1 where the range of interactions is k, Choose the surroundingt r as

i:' = {Wp,q such thai 0< v—il S k+4 0 c k—ti s k+1}.

Let P be any set of elements such that F' n1' = F'(1 w1 =. It is clear, given the k
structure, that the conditional probability of any F', given F, is equal to the conditional

probability given F and w1 t•

I w11,F) = p(I" IF) (A.2.3)

Since this is true for all sets F', it is also true for 000—F—w1,1, i.e.

I w1,F) = IF) (A.2.4)

or

p(w1, F, 0—F—u,) — p(F, fl—F—w11)
(A 25)p(w11, F)

—
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which implies

p(wjt, 1', c�—r—,1) = p(w11, I')
(A 26)p(F, fl00—F—w11)

or

I — p(WH IF) = 0, (A.2.7)

which shows that (A.2.2) holds for S=w1 . This argument generalizes to any S, which
proves the Theorem.

Proof of Theorem 3.1.

The proof of (A) is based upon a generalization of a standard argument in

probability theory describing the limiting behavior of percolation models. (Sec
Kindermann and Snell [1980] and Grimmett [1989) for a description.) To show that the

high production equilibrium is attainable from any initial condition, given a sufficiently

high value of err, it is sufficient to provide conditions such that

= I c'o = Q)=O. (A.2.8)

(This limit is equivalent to the probability that w equals 0 if we start theeconomy far

enough back in the past.) The probability that w1 equals 0 is bounded from above by

the probability that at least one of the elements in w11_1, JE Ak,,, equals 0, since if
none of these elements equals 0, w equals 1 with certainty. Each of the elements
is a function of k+l+1 elements of time 1—2. If none of the elements in
JE {i—2k—l...i+21+1} equals 0, then none of the relevant elements can equal 0.
hence, in order to have p(w1=0) 0, it is necessary for there to be a path of zeroes
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linking the elements of w1, t—2' j E {i—2k—1...i+21+1) through w_1, I E Ak , to
Making this recursion it times leads to (k-i-l+1)" different paths leading from elements at
i—n to Wit.

The probability that any path of length i—i consists of all 0's is bounded from

above by (i_Ø2)t1 Consequently, the probability that at least one path of zeroes

leads from Wo to can be bounded from above by the sum of the probabilities of each

of the paths, which implies

= °I = 2) � (k--l÷1)1—'(l_efl)1--1. (A.2.9)

If err> k:t1 then the limit of the right hand side is 0 as n=oo, which is the

required result.

The proof of (B) is based upon known results concerning the model for

A110={i—1,i}. We prove (B.i); the proof for (B.ii) is identical. Let p'/(•) denote the
conditional probability measure of w1 for index set A1 and 4.1(.) denote the
conditional probability measure for given Ak,,. Shnirman [1968] proves that if

there exists a i.o > 0 such that (B.i) and (B.ii) hold. We can thus assume that for

some

km = 'o = 0) < 1. (A.2.10)

In order to show that these properties hold for an arbitrary index set Ak,, it is sufficient

to show that there exists a Qk greater than 0 such that

Iir pj(w1 = ii = 0) c 1. (A.2.1l)

We assume that the conditional probabilities of production under A always equal Q

unless all relevant industries chose technique 1 the previous period, i.e.
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= = fl 1_I = 1,u11 = 0)

= = i = O,w1,_1 = 1)

= = ii = = 0). (A.2.12)

For any choice of ekE such that

k,1 � 9 (A.2.13)

and any sample path realization of k 1 and 1 0 imply

= ii � = ii (A.2.14)

The distribution of differs, however, under the two sets of transition probabilities.

The proof is complete once it is verified that the distribution of w1... is at least as likely
to produce a high production industry under s4:'() than under

For each c/, define S, as the set of alt configurations w such that w c44 V 1.

From the assumption on the transition probabilities, (A.2.13), it is clear that the

probability of a draw in 2, for w1 is at least as great under pj'°(.) than under 4.1(.),
for any c./. This implies

-

EE' =) � s4'' E Eu,, I = 2). (A.2.15)

Making this argument recursively t—2 times yields

E —,, = Q) � jj(w C E1 I = 2). (A.2.16)
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Choose w' so that '4 1.11 k = 1, i—I, 0 otherwise. This means that S, defines the set
of sample path realizations of such that = ij = 1. A subset of these

sample path realizations imply pt'!(w,g = ii = 1. hence it is at least as likely that
creates a conditional probability equalling 1 under p'(.) as under

We now can combine three results. First, (A.2.14) shows that conditional on any
given w1, the probability of w1=l is at least as large for j4'(.) than any
Second, (A.2.16) states that that the probabitity that the draw of produces a
conditional probability equal to 1 is also at least as large for j4'(.). Third, (A.2.13)
shows that any configuration cg.4 such that the conditional probability of high
production does not equal 1 under p'f(.) generates a conditional probability under

s''?L) that is at least as great as under j4't(.). Therefore,

= 1 = Q) = 0 o = 0). (A.2.17)

Taking the limit as i*oo for both sides of this inequality and recalling (A.2.10) gives the

desired result.

Proof of Theorem 3.2.

This Theorem immediately follows from the proof of Theorem 3.1.
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