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ABSTRACT

Studies of the firm’s demand for factor inputs often assume
a constant rate of utilization of the inputs and ignore the fact
that the firm can gimultaneously choose the level and the rate of
utilization of its inputs. In particular, the literature on
dynamic factor demand models has, until recently, largely
overlooked the issue of capital utilization and/or did not
distinguish carefully between the distinct concepts of capital
and capacity utilization. In this paper we allow for variations
in the rate of capital utilization within the context of a
dynamic factor demand model by adopting a modeling framework
within which the firm combines its beginning-of-period stocks
with other inputs to produce its outputs as well as its
end-of-period stocks. We also derive measures of productivity
and capacity utilization for the adopted modeling framework.
Given the depreciation rate is endogenous a consistent capital
stock series must be generated during estimation from the
investment data. This yields, as a byproduct, a consistent
decomposition of gross investment into replacement and expansion
investment. As an illustration, the model is applied to U.S.
Electrical Machinery data.
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1. Introduction1

In the last two decades a large body of literature emerged regarding the
utilization of capital.2 Still, studies of the firm’s demand for factor
inputs often assume a constant rate of utilization of the inputs and ignore
the fact that the firm can simultaneocusly choose the level and the rate of
utilization of its inputs. In particular, the literature on dynamic factor
demand models has, until recently, largely overlooked the issue of capital
utilization, and/or did not distinguish carefully between the distinct
concepts of capital and capacity utilization.

In this paper we allow for variations in the rate of capital utilization
within the context of a dynamic factor demand model by adopting a modeling
framework in which the firm combines its beginning-of-period stocks with other
inputs to produce its outputs as well as its end~of-period stocks. This
modeling framework goes back to Hicks (1946), Malinvaud (1953) .and Diewert
(1977,1980). In the literature on dynamic factor demand models this framework

was first adopted by Epstein and Denny (1980) and more recently by Kollintzas

We would like to thank Martin Baily, Ernst Berndt, Jeffrey Bernstein,
Roger Betancourt, Christopher Clague, Melvin Fuss, Erwin Diewert and Charles
Hulten for helpful comments. We also gratefully acknowledge support from the

C.V. Starr Center for Applied Economics.

2 Most of this literature focused on the firm's long-run decision.

Excellent summaries (including important extensions) of this literature are
given in Betancourt (1987), Betancourt and Clague (1981) and Winston (1974,
1982).



and Choi (1985) and Bernstein and Nadiri (1987a,b).3 Only the first two
papers implement the model empirically. In contrast to Epstein and Denny
(1980) we model and estimate not only the firm's demand for its variable
factors, but also the demand for its quasi-fixed factors. Kollintzas and
Choi's (1985) model differs from ours in that adjustment costs are modeled as
external. In contrast to both studies we allow for more than one quasi-fixed
factor. The quasi-fixed factors may become productive immediately or with a
lag. (Apart from those general modeling differences, these studies also
differ from the current one in terms of the actual empirical specification,
implementation, and detail of the analysis of the empirical results.)

To facilitate a full interpretation of the empirical results it seems of
interest to also report estimates of technical change. Consequehtly we
develop new measures of technical and capacity utilization based on the
adopted modeling framework (which allows for temporary equilibrium and for the
endogenous determination of the depreciation rate). The obtained productivity
measures generalize the productivity measures for multiple output technologies
introduced recently by Berndt and Fuss (1989). Furthermore, we give a
decomposition of the traditional measure of total factor productivity growth

into technical change, scale effect, adjustment cost effect, and the variable

3 Bischoff and Kokkelenberg (1987) adopt a related framework where the

depreciation rate is modeled as a function of capacity utilization. Other
contributions to the literature on dynamic factor demand models that allow for
the firm to operate at different levels of utilization, but are based on
alternative modeling frameworks, include papers by Nadiri and Rosen (1969),
Abel (1981), Bernstein (1983), Kokkelenberg (1984), Honkapohi ja and Kanniainen
(1985), and Shapirec (1986).



depreciation effect.

Given the depreciatlion rate is endogenous, existing capital stock series
cannot be employed for estimation and a consistent capital stock series must
be generated during estimation of the model from gross lnvestment data. Thus,
as a byproduct, we generate alternative capital stock series that can be con-
trasted with "official” capital stock estimates. We also obtain a consistent
decomposition of gross investment into replacement and expansion investment
which is important from the vantage point of public policy analysis.

To illustrate the various features of the model we have estimated the
model using data from the U.S. electrical machinery industry. We compare
those estimates with those obtained by Nadiri and Prucha (1989a) from a model
with an exogenously given capital depreciation rate.

The paper is organized as follows. The theoretical specificatlion of the
model is presented in Section 2. Both primal and dual measures of technical
change for multi-product firms, and measures of capacity utilization are
developed in Section 3. In this section we also explore the traditional
measure of total factor productivity growth as a measure of technical change
in more detail and identify sources of (possible) bias. In Section 4 we give
an empirical specification of the model and apply this model to U.S.
electrical machinery data. We present estimates of the model parameters,
price and output elasticities, estimates of technical change and scale, as
well as the internally generated capital stock series and the decomposition of
gross investment into replacement and expansion investment. We also give a
decomposition of the traditional measure of total factor productivity growth.
Concluding remarks are given in Section 5. Most of the underlying mathematic

derivations are relegated to several appendices.



2. Theoretical Model ﬁpecificatlon4

2.1 Technology and Stochastic Closed Loop Feedback Control Policy

Consider a firm that produces a set of outputs from a set of variable
inputs and a set of quasi-fixed inputs. We distinguish between quasi-fixed
factors whose depreciation rates can be chosen by the firm and those whose
depreciation rates are exogenous to the firm. To keep the theoretical
discussion general we also allow for some quasi-fixed factors to become
immediately productive and for some to become productive with a lag. More
specifically, we assume that the firm's technology can be represented by a

factor requirement function of the form

(2.1) M = M(Y ,L ,K°,K ,R,0K ,AR ,T ),
t t t t t t t t t

with kK = a'% + (1-a%k and R = A"R + (I-A")R . Here Y denotes
t t t-1 t. t t-1 t
the vector of output goods. Vt = [ML.L:]T denotes the vector of the variable

inputs. Kt is the vector of the end-of-period stocks whose depreciation

rates can be chosen endogenously by the firm. More specifically, let K:

denote the vector of "old" stocks left over at the end of period t from Ktq;

it is then assumed that the firm can choose the level of K: by e.g. choosing

4 The subsequent discussion makes use of the following notational

conventions (unless explicitly indicated otherwise): Let Zt be some kx1
vector of goods in period t, then pf refers to the corresponding kx1 price
vector; ZH and pf2 denote the i-th elements of Zt and pi
respectively. Furthermore, in the following we often write (pf)TZt for

Zf_lpfxztl where the superscript "T" stands for “transpose'.



appropriate levels of mailntenance. Of course, this is equivalent to choosing
the rate of depreciation for respective stocks, since we can always write K:
= (1—65)KL_1 and interpret Sf as a diagonal matrix of depreciation rates.
RL is the vector of the end-of-perlod stocks whose depreclation rates are
exogenous to the firm. Et and gt denote the vectors of productive stocks
and A" and A" are diagonal matrices where the diagonal elements lie
between zero and unity. If a diagonal element is one, then the corresponding
quasi-fixed factor becomes immediately productive; 1f a diagonal element is
zero, then the corresponding quasi-fixed factor becomes productive with a
one-period lag.5 The vectors AKL = KL—Kt_1 and ARt = Rc_Rc-1 represent
internal adjustment costs in terms of foregone output due to changes in the
quasi-fixed factors. The variable Tt represents an index of technology.

The stocks KL and RL accumulate according to the following equations:

(2.2) K =18+, R =1+ (I ~a89R
t L t t t t t-1

where If and I? denote the respective vectors of gross investment and 6?
denotes the diagonal matrix of exogenous depreciation rates (some of which may
be zero).

We assume that it is the firm’'s objective to minimize the expected

present value of its future cost stream.6 More specifically, we assume that

> For example, let K'_1 and Etl denote the first element of KL and

EL, respectively, and let RT denote the first diagonal element of the matrix

A*. Then K. = A’k o« 1-aMx equals K if af=1 and equals
e 1t 17T e-1,1 t1 1
K if A7=0.
t-1,1 1
6

We note that the subsequent theoretical discussion can be readily



the firm’s objective function is given by

K.T K R,T,R 1

. o VT K. T, R, T, T -1 _
(2.3) ELZT=t[(pT) Vr+(pr) Kr+(pr) Rr+(qr) Ir+(qr) Ir]ns=t(1+rs) -

o LT K.T,o
EL£:=L[M(YT’LT'KT'ET'BT'AKT'ART'TT)+(pT) Lr-(qr) Kr

1

K.\T, R.T, KT, R\T R T ~
+(pr) Kr+(pr) Rr+(qr) Kr+ (qr) [Rr-(Ihar)Rr—ll]ns=c(1+rs) ’

where the expression on the r.h.s. was obtained utilizing (2.1) and (2.2). Et
denotes the expectations operator conditional on the set of information
available in period t. The information set is assumed to include all lagged
stocks and all current and lagged exogenous variables. The firm is assumed to
face perfectly competitive markets with respect to its factor inputs. For
reasons of generality we distinguish between the price (cost) associated with

operating the stocks, p and p:, and the price of new investment goods

after taxes, q: and q_, possibly normalized by l—ur where u_ denotes

the corporate tax rate.7 (We assume that at least one price in each

modified to also apply to the case of a profit maximizing firm.

7 As an illustration, suppose R 1is a scalar and corresponds to the number

of non-production workers; then pR may represent total compensation per
non-production worker with qR equal to zero. As a further illustration,
suppose K 1s a scalar and corresponds to the stock of a certain capital
good; then pK may represent the insurance cost and qK may equal
[l—c—u(l—mc)B]pIK/(l—u), vwhere pIK denotes the price of new investment
goods, u denotes the corporate tax rate, ¢ 1is the rate of the investment
tax credit, m 1is the portion of the investment tax credit which reduces the
depreciable base for tax purposes, and B is the present value of the

depreciation allowances.



corresponding pair is positive.) All prices in period T are taken to be
normalized by the price of the variable factor Mt. With r.ove denote the
real discount rate (which may possibly also Incorporate variations in the
corporate tax rate).

Assume thatl the firm follows a stochastlc closed loop feedback control
policy in minimizing the expected present value of its future cost stream
(2.3). Then in period t the firm will choose optimal values for its current
inputs Ln' K, Rt, and for K:. At the same time the firm will choose a

t

contingency plan for setting Lr' K, Rr’ and K: in periods 7T=t+1,t+2,...

T
optimally, depending on cbserved realizations of the exogenous variables and
past choices for the quasi-fixed factors. Of course, for given optimal values
for LT, Kr' Rr, and K: the optimal values for Mr is implied by (2.1)
Prices, output and the discount rate are assumed to be exogenous to the firm’s
optimization problem.

Since LT and K; can be changed without adjustment costs the
stochastic closed loop feedback control solution can be found conveniently in
two steps. In the first step we minimize the total (normalized) cost in each
period T with respect to LT and KZ for given values of the quasi-fixed
factors and the exogenous variables. Substitution of the minimized
expressions into (2.3) then leads in the second step to an optimal control
problem that only involves the the quasi-fixed factors KT and Rr'

The part of total cost that actually depends on LT and K: is given by
M(Y_,L_,K°.K ,R AK AR ,T ) + (p)TL. - (g5)"k°, 1i.e. variable cost minus the

LA A A A A 4 Tt T T T T
value of the "old" stocks left over at the end of the period from the

beginning of period stocks. Assuming that M(.) is differentiable and that a

unique interior minimum of the above expression exlists, the first order



conditions for that minimum are given by:

(2.4) M /3L + p- = Q, M sk’ - ¢~ = 0.
T T T T T T

Let LT and K; denote the minimizing vectors and define

(2.5) Gt = G(p;.q:,YT,ET,BT,AKT,ART,TT) = ﬁr * (p;)rir - (qi)Tﬁz !
with ﬁt = M(Yt,ir,ﬁi,ET,BT.AKT,ART,TT). The function G(.) has the
interpretation of a normalized variable cost function net of the value of the
“o0ld" stocks. Technically it can be viewed as the negative of a normalized
restricted profit function. For duality results between factor requirement
functions and normalized variable profit functions see, e.g., Diewert (1982)
and Lau (1976). We assume that the function G(.) is twice continuously
differentiable in all its arguments, homogeneous of degree zero in pL and
qK. non-decreasing in Y, [AK|, |AR| and pL, non-increasing in K, R and
qK, concave in pL and qK, and convex K, R, AK and AR.

As indicated above, the stochastic closed loop optimal control solution
for {KT’RT}:=0 can now be found by replacing MT + (pl_E)TLT - (q;)TK; in

(2.3) by GT and by minimizing

0 L K
(z.6) EL,_ [Gpy,al.Y K,

K,\T R,\T K,\T R.,T R T =1
(pt) KT+(pT) RT+(qI) KT+ (q_r) [RT—(I—ST)RT_I]]nszt(hrs)

,BR ,O0K_,AR_,T_ ) +
b 20t 2k M ¢

with respect to the quasi-fixed factors only. Standard control theory implies
that the optimal control solution for {KT,RT}:_O that minimizes (2.6) must

satisfy the following set of stochastic Euler equations (r=t,..,,w):8

Compare, e.g., Stockey, Lucas and Prescott (1989), ch.9, for a more



86, 6G1+1 K. K 56, %G
(2.7) “A —— = (I-A JE_———=/(1+r_ ) = p_+q_ + - E ———/(1+r_ )
ok Tk Tl T |aak Taak ™
-t T+l T T+1
G BGTH R R BGT aG‘r41
(2.8) - —% - (1= JE—"/(1+r ) = pi+ct + - E_ /(141 )
SR T e * 3AR AAR
=t —T+1 T T+1
R - [ R R, R .
where c¢ = E [q_(1+r_ )-(I-38_)q_ 1/(1+r_ ) has the interpretation of a
T T T T+1 T T T+l

vector of rental prices. The optimal values for LT and K: can be found by
differentiating (2.6) with respect to p; and q: and making use of (2.5)

i.e. via Shephard's and Hotelling's lemma:9

it

(2.9) L 8G_sop-
T T T

il

(2.10)  K° = -8G_saq" .
T T T

2.2 Interpretation of Optimality Conditions

We first compare the structure of the two sets of stochastic Euler
equations for the quasi-fixed factors Kr and RT with endogenous and
exogenous depreciation rates, respectively. For this purpose observe that

upon denoting the normalized variable cost by

detailed list of assumptions and a careful exposition of stochastic control
theory, as well as for a discussion of the transversality condition. An
explicit solution and a more detailed list of assumptions for the case where

G(.) is linear quadratic will be given in Section 4.

9 In case of a profit maximizing model we have furthermore the following

condition for the output vector: 8G_s/a8Y_ = pY + [BpY/BY 1y_.
Tt T L S 4



= L K - LT~
(2.11) g, g(pr,qr,YT,KT,BT,AKT,ART,TT) Mr + (pt) Lr ,

we have Gr =B, - qi'K:. To simplify the discussion also assume temporarily
that all quasi-fixed factors become productive with a lag, i.e. AK =0 and
A =0 and K =K and R =R__ . We can then rewrite (2.7) and (2.8) as:
R =T T = 11
agt+l ':+1 K
2.7") —ET e /(1+r ) + E Tq /(1+rrﬂ) =
K K 6Gt aGr+1
I A 3EK_ aak ()
~ T +1
ag‘rn : +1 K R R
(z2.8") —Er aRr /(1+r o1 ) + E Tq /(1+rn1) + (I—Br)ETqTﬂ/(Hrrﬂ) =
R R aGt
Pr " % EmR_ T E. 7 1/(1+rr+1)

Now define R: = (I—BS)Rt_1 analogously to K: as the vector of "old" stocks
left over at the end of the period from Rtl. We then have

(1-3% JE_q" /(1+r_ ) = E_[8R° /R_1q" /(14+r. ) and 8R° /8K = o.
T+1 T T+1 T T+1 T+1 T+1 T

a1’ 9
Substitution of those expressions into (2.7') and (2.8") shows that -
expectedly although not immediately obvious from (2.7) and (2.8) - the two
sets of first order conditions have the same basic structure. Of course, for
the special case where the depreciation rates of K are exogenous, i.e. KZ =
(I-Sf)Kt_1 with 6: given, we expect the form of the stochastic Euler

equations for K to reduce to that for R. To see this observe that in this

N )E qK /(1+r_ ) and

sy X _ _
case ET[aKT&l/Kr]qr+1/(1+rr+1) = 6r+1 T T+1 T+1

E_[8K° /R_1q* /(1+r_ ) = 0.
T T+1 T T+1 T+1

Based on (2.7') and (2.8") we can give the following economic
interpretation of the stochastic Euler equations: The optimizing firm invests
in the quasi-fixed factors K and R until, at the margin (and properly

discounted), the reduction in the variable cost plus the increase in the value

10



of the “old" stocks K° and R° in the next period equals the price (cost)
of operating the quasi-fixed factor plus the acquisition price plus current
period adjustment costs minus the expected adjustment cost that would have
occurred if the investment would be undertaken in the next period (rather than
the current one).

We note that the above discussion can be readily extended to the general
case where some of the quasi-fixed factors may become productive immediately
and some with a lag. For the purpose of further interpretation of the

stochastic Euler equations consider the transformation function

(2.12) F(Y ,M ,L ,K°,K ,R ,AK ,AR ,T.) =0 ,
t t t t t t t t t

such that F(Y ,M(Y ,L ,K°,K ,R ,6K ,AR ,T },L ,K°,K ,R ,AK ,AR ,T )=0; for

t [ t [ A A e t (A
example F(.) = M(.) - M. We assume that the function F(.) is twice
continuously differentiable in all its arguments. It follows readily from
(2.4), (2.5) and (2.12) that -3G/82 = [8F/8Z1/[8F/8M) for Z = K,R,AK,AR;
cp. also Section 3. Hence we can interpret the derivatives -3G/8Z appearing
in the stochaslic Euler equations as marginal rates of transformation between

the factors Z and the variable factor M.

2.3 Certainty Equivalence Feedback Control Policy

The formulation of a stochastic closed loop control policy generally
requires knowledge of the entire distribution of the exogenous variables.
Alternatively one may hence postulate that the firm formulates a certainty
equivalence feedback control policy, which-only requires knowledge of the
first moment (mean) of the exogenous variables. In that case the firms

objective function is given by (2.3) or (2.6) with the expectations operator

11



moved next to each of the exogenous variables. The firm would now devise in
each period t an optimal plan for its inputs in periecds t, t+1,... such that
its objective function in period t is optimized and choose its inputs in
period t accordingly. In each future period the firm will revise its
expectations and optimal plan for its inputs based on new information. In
case of a certainty equivalence policy the first order conditions for the
optimal plan (in period t) for guasi~fixed factors would be given by (2.7) and
(2.8) with all exogenous variables replaced by there expected values
(conditional on information available at time t and the expectations operator
in front of the respective derivatives suppressed). Equations (2.9) and
(2.10) remain the same. If G(.) is linear-quadratic, then the well known
certainty equivalence principle implies that the closed loop and the certainty

equivalence feedback control policy are identical.

12



3. Generalized Measures of Technological Characteristics

3.1 Primal and Dual Measures of Technical Change

The traditional measure of total factor productivity assumes, in
particular: (1) that producers are in long-run equilibrium, (2) that the
technology exhibits constant returns to scale, (3) that output and input
markets are perfectly competitive, and (4) that factors are utilized at a
constant rate. The puzzle of the observed slowdown of productivity growth
during the 1970's has initiated a critical methodological review of the
traditional measures of productivity.lo

The model considered here relaxes all of the above listed assumptions
that correspond to the traditional measures of productivity. In the following
we define, within the context of our model, appropriate measures of technical
change. We first define those measures in terms of the firm’s transformation
function, F(.), and then show how those measures can be evaluated from the
normalized variable cost function net of the value of the "old" stocks, G{(.).
We also discuss corresponding index number formulae.

As a byproduct of our discussion we also define measures of capacity
utilization. Those measures generalize corresponding measures considered in
Berndt and Fuss (1981, 1986, 1989), Morrison (1985a,b, 1986) and Nadiri and

10 Cp., e.g, Berndt and Fuss (1981, 1986, 1989), Bernstein and Mohnen

(1988), Caves, Christensen and Swanson {1980, 1981), Denny, Fuss and Waverman
(1981a), Griliches (1988), Hulten (1986), Mohnen, Nadiri and Prucha (1983),
Morrison (1983, 1985a,b, 1986, 1989), Nadiri and Prucha (1983, 1984, 1989%a,b)
and Nadiri and Schankerman (1981a,b).

13



Prucha (1989b), in that the model conslidered here not only allows for the firm
to choose its factor inputs but also its rate of factor utilization optimally.

For ease of notation we drop in the following time-subscripts whenever
those subscripts are obvious from the context. Assume that the technology
index T shifts by, say, A. Let a = a(A,Y,V,KD,E,ﬁ,AK,AR,T) be the
proportionality factor by which all outputs Y can be increased corresponding
to this shift in technology such that the firm remains on its production
surface, i.e. F(aY,V,KO,E,B,AK,AR,T+A) = 0. Similarly, let b =
b(A,Y,V,K°,K,R,AK,AR,T) be the proportionality factor by which all inputs and
K° can be decreased corresponding to this shift in technology such that the
firm remains on its production surface, i.e. F(Y,bV,bK’, bK, bR, bAK, bAR, T+4) =
0. Furthermore let c¢ = C(K,Y,V,KO,E,B,AK,AR.T) be the proportionality
factor by which all outputs Y can be increased corresponding to an increase
in all inputs and K° by a factor « such that the firm remains con its
production surface, i.e. F(cY,kV,kK’,kK,kR,KAK, kAR, T) = 0. We can now give
the following two definitions of productivity growth, AY and Ax’ and

returns to scale, p:

(3.1) A =

3a __8F
¢ 5&‘1&:0 = - a—T/[)ji(aF/avl)vx],

__ b _OF
. 35l neo = ﬁ/[)jj(zﬂ-‘/avj)vJ + L (6F/8K K + I (8F/6R IR +

o o
Z;(SF/@Kk)Kk + Z;(GF/EAKKJAKk + ZI(SF/SARIJARIL

- 8
K Kk=1

= A /A

Y X
We refer to AY and AX as the rates of, respectively, output and input
based productivity growth or technical change. The definitions given above

are analogous to those given in Caves, Christensen and Swanson (1981) and

Caves, Christensen and Diewert (1982a,b) for technologies without explicit

14



adjustment costs and constant factor utillzation rates.
We next show how the above measures can be evaluated from the cost side.

Observe from (2.1) and (2.12) that 8F/82 = -[aM/82}[8F/8M] for 2 =Y, L, K

)

o

R, X°, 8K, AR, T. Furthermore observe from (2.4) and (2.5) that dG/82 =

dM/782, and hence
(3.2) 8F/3L = pL[BF/aMJ, aF/3K° = —q‘[aF/aM]. 8F/382 = -18G/32) [8F/8M],

for 2 =Y, K, R, &K, AR, T. Therefore we can write the above expressions for

technical change and returns to scale alternatively in terms of the normalized

variable cost function net of the "old" stocks, G, as:
(3.3) AY = - [BG/BT]/[ZX(BG/BYX)YXL
A, = - [8G/aT)/[G - L (8G/8K JK - T (8G/8R IR -

):k(BG/dAKk)AKk - ):I(BG/aARX)ARl],
P = A, = G - [k(ac/ag()g( - ):I(BG/BBI)BI

{;(BG/BAKk)AKk - ZI(BG/BARI)ARI]/[Z‘(BG/BYX)YXL
The total shadow cost is defined as
. = - - / -~ - &
(3.4) C G z;(ac/agk)gk El(BG 631)51 X;(BG/BAKk)AKk ):I(BG/dARl)AR1

where —BG/BEk, —6G/BBl, vBG/BAKk, and -6G/6AR1 denote the respective
shadow prices. For given shadow prices we have 48G/dT = dC/8T and hence it
follows from (3.3) that Ax = - [8G/8T]/C = - [8C/8T]/C.

The above expressions for output based and input based technical change
and returns to scale generalize those previously given in Nadiri and Prucha

(1983, 1984, 1989a,b) for single output technologies with adjustment costs,

15



but constant factor depreciation rates:11 To see this recall that according to

(2.5} and (2.11) we have G = g - Z;th: where g represents the (standard)
normalized variable cost function. Hence 8G/8Z = 8g/8Z2 - Z;q:BKi/BZ for 2 =

Y, K, R, &K, AR, T and therefore

(3.4") C=g - Z;(ag/agk)gk“zl(3g/351)ﬁl—z;(ag/aAKk)AKk—zl(ag/aARl)ARl
K o ~o
):qu(Kk - Kk),
S0 o co So 2o
K* = Zs(aKk/ags)Es+Zl(3Kk/agl)BI+Z%(6KR/6AKS)AKS+ZI(aKk/aARl)ARY

Suppose K° is proportional to K, as is the case if K = K_1 and the
corresponding depreciation rates are exogenous constants, then clearly 8G/8Z
= 0g/8Z for Z = Y, R, &K, AR, T and ﬁc =K. Therefore, in case of
exogenously given depreciation rates, the expressions in (3.3) hold with the
normalized variable cost function net of "old" stocks, G, replaced by the
normalized variable cost function, g. It is readily checked that the
resulting expressions correspond to those reported in Nadiri and Prucha (1983,
1984, 1989a,b); i.e., the expressions for technical change and returns to
scale given in (3.3) contain those given in the latter papers as a special
case.

The issue of a proper measure of technical change, given that the firm is

in short-run or temporary equilibrium but not in long-run equilibrium, has

1 Nadiri and Prucha (1989b) also provide expressions for multiple output

technologies. We note furthermore, that the algebra adopted here is
completely analogous to that used by Caves, Christensen and Swanson (1981) for
multiple output technologies without explicit adjustment costs and constant

factor utilization rates.
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also been discussed by, among others, Berndt and Fuss (1981, 1986, 1989),
Hulten {1986), and Morrison (1983, 1986, 1989). Those authors discuss proper
measures of technical change in terms of adjustments of traditional technical
change measures by utilization rate measures. Berndt and Fuss (1981, 1986)
and Hulten (1986) consider single output technologies with constant returns to
scale. Morrison also considers single output technologies, but allows for
(possibly) non-constant returns to scale and explicitly takes into account
adjustment costs. Berndt and Fuss (1989) consider multiple output
technologies with (possibly) non-constant returns to scale, but do not
explicitly consider adjustment cost. None of those papers considers
explicitly the effect of variable factor depreclation rates.

We next relate the productivity measures AY and AX derived within our
generalized framework to those by Berndt, Fuss, Hulten and Morrison. As shown

in Appendix A

(3.5) - 8G/8T = T (8G/aY Y, - [):Jp‘J’\'/J - [kq:k: -

zk(ac/agk)gk - zl(ac/agl)gl - Zk(aG/aAKk)AKk - Zl(aG/aARl)ARlL
where for any variable, say, 2 we adopt the notation 2 = 82/8T. Since A
X
= -(8G/8T)/C and since for given shadow prices 38G/3Y = 8C/8Y, equations
(3.4) and (3.5) imply the following index number formula for input based

technical change:

_ ° - : _ v e = Op0 0
(3.6) A, = AMYVK KR BK R, T) = Lo (Y /Y ) = [Ls|(V /Y )-F, s (KI/KD)
| P} R, Ak, L e AR, ,
VI, 5 (K /K 4L S| (R /R DT s, " (8K /0K )+ s (AR /B8R )],
with
e = (3C/ay )/ (Y /C), s’ = p'v /C, s® = ¢«°rc,
1 1 1 ) J J k k k
s* = (-3G/3K)K/C, ST = (-8G/3R)R/C,
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Sf‘ = (-8G/8AK)AK/C, s?“ = (-8G/3AR)AR/C.

Here c£ denotes the elasticity of the shadow cost with respect to the i-th
output, s: is the cost share of the j-th variable input in total shadow
costs, and ST, S, S?R are the shadow cost shares of El, AKk and AR1 in
total shadow cost. s: is the shadow cost share corresponding to the
acquisition and operating cost of gk, and s: is the share reflecting the
value of the k-th "old" stock, K:, in total shadow cost.

Suppose now K° is proportional to K, as is implicitly assumed in
Berndt and Fuss (1989): Then, as remarked above, 8G/8Z = dg/8z for 2 =Y, R,
AK, AR, T; furthermore K and K° grow at the same rate and hence
)jkst(gk/gk) - zks:(K:/K:) = qut(gk/gk) with 0": = (-8g/3K)K/C. Substituting
the latter expressions into (3.6) and suppressing the terms that take
adjustment costs explicitly into account then yields Berndt and Fuss' (1989)
technical measure for multiple output technologies - denoted in that paper by
AS/AS. That is, the input based technical change measure Ax generalizes the
latter technical change measure of Berndt and Fuss (1989). Consequently, it
also generalizes the corresponding technical change measures considered in the
above listed papers by Berndt, Fuss, Hulten and Morrison for single output
technologies.

In general, technical change is a function of respective inputs and
outputs. In (3.6) technical change was evaluated at current input and output
values. Berndt and Fuss (1989) define, within the context of their model,
alternative measures that evaluate technical change at long-run equilibrium
input and output values. In Appendix A we present also measures that
generalize those latter measures by Berndt and Fuss within the context of the

model considered here.
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For ease of notation, we assume for the remainder of this section that L,
K°, K, and R are scalars (and that all quasi-fixed factors exhibit positive
growth).12 Furthermore, to simplify the discussion we assume that all
quasi-fixed factors only become productive with a lag, i.e. AK =0 and An =
0 and K = K_1 and R = R—1' We also assume that pK = 0 and pR =0 and

that all price expectations are static.

3.2 Measures of Capacity Utilization

For further interpretation of our input based and output based technical
change measures consider the following measure of total cost (normalized by

the price of the variable factor M):

(3.7) ct =M+ p'L+cfk+ R

= G(p",q%, Y.K,R. 8K, AR, T)  + (1+r)q"K + c'R ,

where QK = qK(r+6K) and gR = qR(r+6R) denote respective rental prices; the
second equality follows given M, L and K® are chosen optimally and
observing that QKE = (l+r)qKE - qKKo, Now suppose we attempt to measure
technical change in terms of the total cost function c* by A; =
-(8C"/8T)/C". Observing that &8C'/8T = 8G/8T 1t follows immediately from

(3.3) and (3.4) that

P +
(3.8) Av = pr(C /C), Ax = AX(C /C).

12 The results generalize trivially to the case where L, K°, K and R are

vectors.
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Clearly, in long-run equilibrium c* equals C and hence A; equals A{
In general, however, A; differs from Ax and AW

We note that the above formulae generalize analogous formulae given, in
particular, in Morrison (1983,1986) for adjustment cost technologies in case
of a single output good and exogenously given factor depreciation rates.
Analogously to Berndt, Fuss, Hulten and Morrison we can interpret c/C” as a
measures of capacity utilization and we can therefore interpret our input and
output based measures for technical change as being derived from A; via an
adjustment in terms of a capacity utilization measure to account for temporary

equllibrium; cp. also Nadiri and Prucha (1989b).13

As indicated by the above discussion the traditional measure of total
Vfactor productivity growth, say TﬁP, is only a proper measure for technical
change under the assumption that returns to scale equal unity, that producers
are in long-run equilibrium, that output and input markets are perfectly
competitive and factors are utilized at a constant rate. Since the TFP
measure is used widely as a measure for technical change we provide in the

following a decomposition of the TFP measure under the less restrictive

13 Berndt and Fuss (1989, p.10) use the term "input-specific utilization

rates "for the ratios of long-run and short-run equilibrium values of the
quasi-fixed factors. We note that within the context of our model those
ratios can vary over time, although the intensity of their use, as reflected
by the corresponding depreciation rates, remains constant. We hence refrain

from using this terminology here.
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assumptions maintained here to isolate more clearly respective sources of
bias. We provide this decomposition for the case of a firm that produces a
single output good and Tt=t

Consider the following typical Tornquist approximation for the

traditional measure of total factor productivity growth:
(3.9a) ATFP = AlnY - AlnN
t t t

where AlnYL denotes the growth rate of output and AlnNt denotes the growth
rate of a cost share weighted index of aggregate inputs. The index of

aggregate inputs, N, 1is defined by

(3.9b)  AInN, = 1(AInN' + alnN'T)
t 2 t L
BINT = g“(r)AlnML + EL(r)AlnLt + E"(r)Alngt + ER('E)AlnBL,
sty = o /c s5(r) = p
) = kot sf(e) =
Tt T

where tolal cost C' is defined in (3.7) and the gz denote the respective

cost shares (2 = M,L,K,R). In Appendix A we show that in general ATFP can be

decomposed as follows:14

(3.10) BTFP = ATFP: + ATFP? +ATFP:: +ATFP: +ATFP§ ,

where

1
ATFP 5 [Ax(t)+AX(t—1)] ,

1
t
ATFP‘f = (1-1/p(£))8lnY, .

14 For ease of notation we give the decomposition under the assumption that

p(t)=p(t-1). Formulae for the case where p(t) may differ from p(t-1) are
given in Appendix A.
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STFPY = 3L, 11706 /0K - (1+r)q¥ 1K /C]]{AInK -A1nNT] +
% [_E:L’L_l[[—BGT/BEI_—QS]R_r/C;][Aln}jL—AlnN-:].

ATFP‘: = % f_rzL,t_l[I—6Gr/6AKT]AKI/C;][AlnAKL—AlnN:—] +
! Troo o,[(-6G,/80R 18R /CI][A1nAR ~A1nN'],

ATFP? = % ):r:t,t_l[-q_tK_‘;/C_:][Aan:—Aant_l].

The first term in the above decomposition of ATFP corresponds to actual
technical change. The remaining terms decompose the difference between ATFP
and technical change, i.e. they reflect sources of potential bias of ATFP as a
measure of technical change. More specifically, the second term reflects
scale effects. We note that under increasing returns to scale and positive
output growth ATFP will overestimate the technical change. The third term
reflects the difference in the marginal conditions for the quasi-fixed factors
between short and long-run equilibrium due to adjustment cost, i.e. the
difference between the shadow price and (long-run) rental price. Suppose the
shadow price for a particular quasi-fixed factor exceeds the long-run price
used In the computation of ATFP. In this case ATFP will, ceteris paribus,
overestimate the technical change effects given the growth rate of the
quasi-fixed inpul exceeds that of the aggregate input index. The fourth term
reflects the direct effect of adjustment costs in the sense that due to the
presence of AKL and ARt in the transformation function the growth rates of
those terms also enter the decomposition of the output growth rate. The {ifth
term stems from the fact that the firm can choose the depreciation rate for
some of its quasi-fixed factors endogenously. Clearly, in case of a constant
depreciation rate K° and K_1 will grow at the same rate and this latler

term will be zero.
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4. Empirical Application

In the following we apply the above described model to analyze the
production structure, factor demand, productivity growth, capacity
utilization, and the determinants of the rate of capital depreciation in the

U.S. Electrical machinery industry.

4.1 Empirical Specification and Estimation Procedure

For the empirical analysis we specialize the model to two variable
inputs, two quasi-fixed factors, and one output good. More specifically, in
the following LL and ML denote, respectively, labor input and material
input, and KL and RL denote, respectively, the end of period stocks of
physical capital and R&D, and YL denotes gross output. The firm can
determine the depreciation rate of capital endogenously, while the
depreciation rate of R&D is fixed. p: now denotes the price of labor, and
q: and q? denote the after tax acquisition price for capital and R&D
normalized by the price of material goods, respectively. We assume pt = p? =
0 and ro=r.

To model the technology we specify (dropping subscripts t} the following

functional form for the normalized variable cost function net of the value of

the "old" stocks:

(4.1) G(p",q".K_,R_.8K,8R,Y,T) =
17p L L 1 K,2 LK 1 L,2
Y (ac +ap *.p T + Eaxoxo(q )T+ @ P q + EaLL(p 17} +
aK +aR + a K pL + a oK qK +
K -1 R -1 KL -1 K -1

o R pL + a_ oR qK +oa K T+a R T+
RL -1 RK -1 KT -1 RT -1

-1/ 1 2 1 2 1 2 1 2
YPla X% 4 e K R+ o R® o+ la aK® + Lo AR®).
2 KK -1 KR -1 -1 2 RR -1 2 KK 2 RR
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For reasons of interpretation of the functlon G(.) we note that in general (as
is not difficult to see) the normalized variable cost function net of the
value of the "old" stocks corresponding to a homothetic production function is
of the form

K R
-1 ~1 AK AR
HCY}'H(Y}'H(Y)'H Y)’T]H(Y)

(4.2) G.[pL.qK.

where H(Y)} 1is a function in Y and the scale elasticity is then given by
H(Y)Z{Y(dH/dY)]. In case H(Y) = Y"P the technology is homogeneous of
degree p. Consequently the function G(.) defined in (4.1) can be viewed as a
second order approximation of the normalized variable cost function net of the
value of the "old" stocks corresponding to some general homogeneous technology
(where parameter restrictions such that the marginal ad justment costs at AK =
AR = 0 are zero have been imposed).15 The convexity of G(.} in K, R, &K, &R
and the concavity in pL and qK implies that O?K > 0, aRR >0, a a -~ az

KK RR KR

2
>0, ., >0, .. >0, « <0, oo <0, & oo ~a o> 0.
KK RR LL K K LL K K LK

We assume that the firm determines its inputs according to a certainty
equivalence feedback control policy and holds static expectations on relative
prices, output and the technology. As shown in Appendix B, the firm’s optimal

quasi-fixed factor inputs in period t corresponding to the technology defined

15 We note that G(.) defined in (4.1) is a generalization of the normalized

varlable cost function introduced by Denny, Fuss and Waverman (1981b) and
Morrison and Berndt (1981} for constant returns to scale technologies. Nadiri
and Prucha (1983, 1989b} generalized the latter function to homothetic
technologies. In imposing parameter restrictions such that the marginal

ad justment costs are zero for zero net investment we follow that literature.
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by {(4.1) can then be described by the following accelerator equations:

(4.32) 8K =m (K -K J+m (R -R ),
t XK L t-1 KR t t-1
.

(4.3b) AR =m (K -K )+m (R -R ),
t RK t t-1 RR

t t-1

with

. - Lok

K « « a +o T+oa p +q (l+r+ta_ o) “

ol _ KK KR K KT t KLt t KK e

R' a o oa + o T+ a pL + cf t

t KR RR R RT t ALt t
where expectations are characterized with a carat ( ). The accelerator
coefficients M = (mxj)l K, R have to satisfy the following matrix equation:
BM® + (A+rB)M - A = 0 with A = (au)l 1ok, R and where B 1is the diagonal
matrix with elements i and O in the diagonal. The firm's demand

equations for the variable factors and the firm’s optimal choice for the "old"
stock (to be left over from the beginning of period capital stock) can be
derived from (4.1) as M =G =~ pLL + qKKO, L = 38G /apL, and K° =

t t tt tot t t t t

K
3G, /8q:

_ 1 “Ky2 LK1 “Ly2,51/p0
(4.4a) ML {« zax°x°(qt) @ oP . ~ u.(pt) )Yt +

[¢]
o K + o« R +a K T +a R T +
K t-1 R t-1 KT t-1 t RT t-1 t
o K + o K R+ R® 4+ le ak® 4 la aR%YVP
2 KK t-1 KR t-1 t-1 2 RR t-1 2 KK t 2 RR Lt t
(4.46) L = {x +a T + o oq +a (pPIHVP + o K  + o« R
q P
t L LT t LK t LL t t KL t-1 RL t-1
(4.5) K=~ {0o+ « opL + oo oqx)Yl/‘J - a oK - a_ oR s
t X LK t K K t t KK t-1 RK t-1

Recall also from (2.2) that
(4.6) K =1 + K:.

Equation (4.5) provides an economic model for K: and and hence for the

depreciation rate of capital 6:; recall that the depreciation rate of
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capital is implicitly defined by K: = (1~8§)Kt_1. Equation (4.5) explains

K: as a function of relative prices, output and lagged stocks. The case of a
constant and exogenously given depreclation rate is contained as a special
case with @ = @ 0 = oo = & o= 0 and ®® = T (1-5%3.

For purposes of estimation it proves advantageous to reparameterize the
model. More specifically, instead of estimating the parameter matrices A
and B it proves advantageous to estimate the matrices C = (CXJ)LJ=LR =
-BM and B (and to express the elements of A as functions of the elements
of B and C). This approach is explained in more detail in Appendix B. The
matrix C is found to be symmetric and negative definite.

For purposes of estimation we also add stochastic disturbance terms to
each of the factor demand equations in (4.3) and (4.4).16 Analogously to the
approach taken by Epstein and Denny (1980) we assume that equation (4.5) for
K: holds exactly. This assumption is clearly strong. It facilitates that
the unobservable stocks KL and K: can, at least in principle, be expressed
as functions of observable variables and the unknown model parameters. More
specifically, by solving (4.5} together with the identity (4.6) recursively
for KL and K: from some given initial capital stock, say KO, we can
express KL as a function of Ii. I ,...,KO.R ,R _,..., the exogenous
variables and the model parameters. Consequently, upon replacing KL and
KL_1 in (4.3) and (4.4) by the obtained expressions we can, at least in

principle, rewrite the system of factor demand equations as a dynamic system

16 When necessary we have corrected for first order autocorrelation of the

disturbances.
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of equations that determines It, Rt, Mm' and Lt, and where in the so

obtained system all variables are observable. (If the initial stock is

unobserved we may treat it as an additional parameter.)

Of course, for the actual numerical computation of estimators of the
model parameters 1t is generally not necessary to solve (4.5) and (4.6)
analytically for Kt (and K:). Numerical algorithms for the computation of
estimators that are defined as optimizers of some statistical objective
function generally require the numerical evaluation of the statistical
objective function for different sets of parameter values. For any given set
of parameter values we can solve (4.5) and (4.6) numerically for Kt (and
K:). Hence, rather than to substitute the analytic solution for Kt we can,
in evaluating the statistical objective function, first solve (4.5) and (4.6)
numerically and then substitute the numerical solution for KL. The
statistical objective function underlying the parameter estimates reported in
the next section is the Gausslan full information maximum likelihood (FIML)
function. We used the subroutine VAIOAD from the Harwell program library to
numerically maximize this function, i.e. to calculate the FIML estimates. We
note that the factor demand system (4.3) and (4.4) in conjunction with (4.5)
and (4.6) may be viewed as a system of equations with implicitly defined

variables.17

7
! Subroutine VA10AD calculates the gradient of the objective function

numerically. This is convenient but numerically expensive. For an algorithm
for the computation of estimators of the parameters of a system of equations
with implicitly defined variables that evaluates the gradient of the objective

function from analytic expressions see, e.g., Prucha and Nadiri (1988).
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4.2 Parameter Estimates and Elasticities

We have estimated two versions of model (4.3)-(4.6) from U.S. electrical
machinery industry data. In one version we have imposed the parameter
restrictions «@o =« o =@®oo0o =« o =0 which implies that K° = -

K LK K K RK t

aKKDKL-l’ i.e. that the depreciation rate of capital is constant. In the
other version no parameter restrictions are imposed and thus the depreciation
rate of capital is a function of relative prices, output and lagged stocks.
We refer to those versions of the model as model 2 and 3, respectively. We
note that for both models 2 and 3 the depreciation rate is estimated and the
respective capital stock series are determined consistently with the estimated
model parameters from gross investment data during estimation. To contrast
these results we also report parameter estimates presented in Prucha and
Nadiri (1989a) for a model with exogenous capital depreciation rate based on
the capital stock series provided in the OBA data bank. We refer to this
latter model as model 1. It corresponds to (4.3)-(4.4) with @0 = a o=

LX

@oo =« o =0 and with « o replaced by - (1—6K) where &% is defined
K K RK KK t t
by the OBA capital stock series. The underlying data for the U.S. electrical
machinery industry are described in Appendix C and are the same as those used
in Nadiri and Prucha (1989a). Since a full discussion of the parameter
estimates of model 1 and their implication is given in Nadiri and Prucha
(1989%a) we will focus in the following on a comparison of the three models.
The structural parameter estimates are given in Table 1. The squared

correlation coefficients between actual and fitted data are quite high and

very similar across models. (Fitted values are calculated from the reduced
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TABLE 1: Full Information Maximum Likelihood Estimates of fhe Parameters for
the U.S. Electrical Machinery Industry: 1960-1980

Parameters Model 1 Model 2 Model 3
OBA Capital Stock Estimated Capital Stock Estimated Capital Stock
Constant Depreclation Variable Depreciation

Rate Rate

o 1.83 (7.99) 1.87 (6.78) 1.86 (25.03)
1/p 0.82 (16.37) 0.86 (16.75) 0.84 (19.15)
@ -0.95 (2.86) -0.82 (2.11) -0.73 (10.93)
@ -0.65 (4.51) -0.77 (1.89) -0.81 (5.51)
@pr -0.19 (3.96) -0.20 (4.71) -0.17 (11.23)
X 0.22 (5.24) 0.27 (2.26) 0.23 (8.00)
Cre -2.05 (2.73) -1.71 (2.56) -1.41 (9.30)
iR -2.10 (6.49) -2.45 (1.89) -2.27 (5.44)
Cox 0.15 (0.83) 0.15 (0.67) 0.01 (0.07)
oy 8.70 (2.65) 8.01 (3.35) 7.30 (7.11)
@on 13.80 (12.22) 16.20 (1.69) 15.27 (5.07)
@ 1.91 (25.85) 1.94 (17.17) 1.88 (30.44)
@, -0.48 (3.88) -0.44 (3.47) -0.52 (5.50)
o 0.29 (2.66) 0.32 (2.82) 0.35 (7.56)
%o -0.52 (4.75) ~0.57 ( 3.96) ~0.56 (10.61)
o -0.28 (6.88) -0.34 (4.56) -0.32 (6.20)
o e° ~0.96 (41.60) -0.998 (163.90)
® o o -0.003 (3.08)
K K

® o 0.027 (8.85)
LK

- 0.023 (9.48)
RK

Log of likelihood 222.10 223.62 224.16
M- Equation: R 0.85 0.84 0.84
L- Equation: R2 0.65 0.65 0.65
I "-Equation: Hé 0.91 0.8 0.89
I'-Equation: R 0.86 0.86 0.86

Absolute values of the asymptotic "t"-ratios are given in parentheses.

R™ values correspond to the squared correlation coefficients between the

actual M, L, I, I wvariables and their fitted values calculated from the

reduced form.
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form). In terms of asymptotic "t"-ratios the parameter estimates are in

general statistically significant.18 The parameter estimates also satisfy the

theoretical restrictions for all models. In particular, the estimates for

c ., c ,a , and «oo are negative and those for «,., «.., ¢c_c -
KK’ TRR’ TLL K K KK' TRR KK RR

2 2 . .

¢, and « «oo - a o are positive. Some of the parameter estimates
KR LL K X LK

differ across models. To obtain an appropriate interpretation of the
importance of those differences we will report in the following various
implied characteristics for the estimated factor demand systems.

The adjustment cost coefficients L and @ are (though different) in
magnitude similar across models and are generally statistically different from
zero. Clearly, omitting these terms would not only have resulted in a
misspecification of the investment pattern, but also in inconsistent estimates
of the other technology parameters. For models 1, 2 and 3 the implied
accelerator coefficients mo and M 2ares respectively, 0.24 and 0.15, 0.21
and 0.15, and 0.19 and 0.15. Thus for all models the accelerator coefficient
of capital exceeds that of R&D. The cross-adjustment coefficients m and

KR

My 8re small and (in absolute value) less than 0.02 for all models.

Our specification does not impose a priori constant returns to scale.

Rather, we estimate the scale elasticity (represented by p-l) from the data.

18 It is interesting to note that while the log-likelihood only increases

slightly between models 2 and 3 the asymptotic "t"-ratios corresponding to the
additional parameters @00, @ 0 and % appearing in model 3 are all
greater than two. This suggests an increase in the local curvature of the

log-likelihood function between the maxima corresponding to models 2 and 3.
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TABLE 2: Short-Run, Intermediate-Run, and Lopg—Run Elasticities in the U.S.
Electrical Machinery Industry: 1976 .

Flasticity Model 1 Model 2 Model 3
OBA Capital Stock Estimated Capital Stock Estimated Capital Stock
Constant Depreciation Variable Depreciation
Rate Rate
SR IR LR SR IR LR SR IR LR

Price Elasticities of Materials

chH -0.32 -0.40 -0.64 -0.29 -0.40 -0.75 -0.26 -0.38 -0.80
CHpL 0.36 0.41 .65 0.33 0.41 0.75 0.33 0.43 0.88
CHqK -0.01 0.02 0.09 -0.02 -0.02 0.10 -0.04 -0.02 0.03
CHqR -0.01 -0.02 -0.08 -0.01 -0.02 -0.08 -0.01 -0.02 -0.10

Price Elasticities of Labor

eLpH 0.47 0.55 0.90 0.44 0.54 0.97 0.46 0.58 1.10
SLpL -0.48 -0.58 -1.12 -0.45 -0.57 -1.14 -0.52 -0.67 -1.40
ELqK 0.00 -0.02 -0.06 0.00 -0.02 -0.07 0.05 0.04 0.02
CLqR 0.00 0.04 0.27 0.00 -0.04 0.24 0.00 0.04 0.27

Price Elasticities of Capital

SKpH 0.10 0.17 0.38 0.11 0.19 0.44 0.13 0.23 0.59
cKpL -0.05 -0.09 -0.17 -0.07 -0.12 -0.24 -0.10 =-0.18 -0.47
CKqK -0.04 -0.08 -0.18 -0.04 -0.07 -0.17 -0.03 =-0.05 -0.13
chR -0.01 -0.01 -0.04 0.00 0.00 =-0.04 0.00 0.00 0.00

Price Elasticities of R&D

ERPH -0.05 -0.09 -0.27 -0.05 -0.09 -0.28 -0.05 -0.10 -0.32
L‘RpL 0.11 0.20 0.65 0.10 0.19 0.61 0.11 0.21 0.71
ERqK -0.01 -0.01 -0.03 0.00 0.00 -0.03 0.00 -0.02 -0.05
z:RqR -0.06 -0.10 -0.34 -0.05 -0.09 -0.30 -0.05 -0.10 -0.33

€, is the elasticity of Z = materials (M), labor (L), capital (K), R&D
s

(R), capital left over at the end of the period (K°), and gross capital
in?_/estment (I") with respect to s = price of materials (p ), price of labor
(p7), price of capital (q"), price of R&D (q ), and output (Y). The symbols
SR, IR, and LR refer to the short, intermediate and the long-run.
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TABLE 2: cont.

Elasticity Model 1 Model 2 Model 3
OBA Capital Stock Estimated Capital Stock Estimated Capital Stock
Constant Depreciation Variable Depreciation
Rate Rate
SR IR LR SR IR LR SR IR LR

Price Elasticities of Capital Left Over at End of Period

CchH 0.00 0.11 0.44 0.02 0.15 0.63
SKOPL 0.00 -~0.07 -0.24 -0.02 -0.13 -0.52
CKqu 0.00 ~0.04 -0.17 0.00 -0.03 -0.13
SKoqR 0.00 0.00 -0.04 0.00 0.00 0.01

Gross Capital Investment

€ KH 1.69 1.49 0.44 1.78 1.50 -0.52

P

€KL -1.0S -0.%0 -0.24 -1.31 -1.06 0.83
P

£ KK -0.61 -0.54 -0.17 -0.48 -0.44 -0.12
q

£ KR -0.06 -0.07 -0.04 0.00 -0.02 -0.19

Output Elasticities

€y 1.19 1.07 0.82 1.32 1.18 0.86 1.28 1.16 0.84
€, 1.07 1.06 0.82 1.08 1.07 0.86 1.01 1.01 0.84
gy 0.20 0.34 0.82 0.19 0.33 0.86 0.18 0.32 0.84
. 0.14 0.24 0.82 0.13 0.25 0.86 0.14 0.25 0.84
€0, 0.00 0.1%9 0.82 0.00 0.1% 0.86 0.01 0.18 0.84
£ K, 2.55 2.22 0.82 2.93 2.63 0.86 3.02 2.74 0.84

The implied scale estimates are similar, i.e. 1.22, 1.16 and 1.19 for models
1, 2 and 3.

The own- and cross-price elasticities and output elasticities of labor,
materials, capital, R&D, the capital left over at the end of the period, and
gross capital investment for 1976 are reported in Table 2. The elasticities

are calculated for the short~run (SR), intermediate-run (IR) and long-run (LR)
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for each input.19 All of the own-price elasticities are negative. The

magnitudes of the own- and cross-price elasticities are generally similar
across models. However due to the endogeneity of the capital depreciation
rate we can recognize some important differences between model 3 and models 1
and 2: One interesting difference can be observed in comparing the long-run
elasticitles of labor with respect to the price of capital, ELqK, and the
long-run elasticity of capital with respect to the price of labor, cm}. For
medels 1 and 2 both Euf and CK;_ are negative which reflects the fact

that in the long-run BL/BqK = (r+5K)aK/6pL. (Recall that qK denotes the
after tax acquisition price and not the rental price.) However for model 3
the elasticity chK is positive while CKPL is negative. At first glance
this may seem inadmissible. However, as is demonstrated in Appendix D, due to
the endogeneity of the depreciation rate of capital we have the following
long-run relationship for model 3: BL/aqK = (1+r)6K/6pL - BKO/BpL. Therefore
in the case of an endogenous depreciation rate the sign of aL/aqK may differ
from that of BK/BpL. The sign of EL/aqK depends on the relative magnitudes
of ax/apL and BKQ/BpL, as opposed Lo the case of an exogenous depreciation
rate where 8K°/8p" = (1-3")4K/@p" and hence 8L/8g" = (r+5%)aK/8p". Another
interesting difference can be observed in comparing the long-run elasticities
of gross capital investment with respect to the price of labor. For model 2
this elasticity is negative .24 while for model 3 it is positive .83. Again

19 K R

For 2 =M, L, K, R, KD, I, 1 let ZL . denote the optimal plan value
for Z in period t+v corresponding to the firm’s optimization problem in
period t. Short-run, intermediate-run and long-run elasticities then refer to

the elasticities of ZL T for T =0, 1 and ®, respectively.
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this can be explained from the fact that in the case of an exogenous
depreciation rate we have BIK/apL = BKGK/apL, while in case of an endogenous
depreciation rate we have more generally aIK/éipL = aK/apL - BKD/BpL. As a
consequence BIK/apL can be positive while both 6K/6pL and BKO/BpL are
negative. The switch in the long-run elasticity of gross capital investment
with respect to the price of materials from positive .44 for model 2 to
negative .52 for model 3 can be explained analogously.

The pattern of the output elasticities reveals that the varlable factors
of production, labor and materials, respond strongly in the short-run to
changes in output; in the short-run they overshcot their long-run equilibrium
values. The output elasticitlies of the quasi-fixed factors, capital and R&D,
are small in the short-run but increase over time. In general the respective
output elasticities are similar across models. It is interesting to note,
however, that the short-run elasticity of capital investment corresponding to

models 1 and 3 differ by approximately on half of a percentage point.

4.3 Capital Stock and Capital Depreciation Rate

The model considered in this paper generates series for the capital stock
and depreciation rate as a byﬁroduct of the estimation process. In Table 3 we
report those estimates for models 2 and 3. For reasons of comparison we also
report the OBA capital stock and depreciation rate series that underlie the
estimates of model 1. For both models 2 and 3 the estimated depreciation rate
is on average 0.038 as compared to 0.055 for the OBA capital stock series.
This translates, for example, into a sizable difference of 16 percent in the

magnitude of the capital stock at the end of the sample period. The estimates

34



TABLE 3: Comparison of OBA and Estimated Capital Stock Data in the U.S.
Electrical Machinery Industry: 1960-1980.

Model 1 Model 2 Model 3
OBA Capital Stock Estimated Capital Stock Estimated Capital Stock
Constant Depreciation Variable Depreciation

Rate Rate
Year K K° 5 K K° 5 K k° 5
K | S K

1959 0.536 0.489 0.055  0.544 0.497 0.038  0.550 0.502 0.028
1960  0.561 0.506 0.055  0.576 0.523 0.038  0.588 0.533 0.030
1961  0.587 0.530 0.055. 0.613 0.556 0.038  0.626 0.569 0.033
1962 0.612 0.555 0.055  0.647 0.590 0.038  0.661 0.604 0. 035
1963  0.639 0.578 0.055  0.683 0.622 0.038  0.698 0.637 0.036
1964  0.669 0.604 0.055  0.722 0.657 0.038  0.737 0.672 0.038
1965 0.720 0.632 0.055  0.782 0.694 0.038  0.796 0.708 0.040
1966  0.796 0.681 0.054  0.867 0.752 0.038  0.877 0.763 0.039
1967  0.876 0.754 0.052  0.955 0.833 0.038  0.963 0.841 0.040
1968  0.943 0.831 0.051 1.030 0.918 0.038  1.036 0.924 0.041
1969  1.016 0.896 0.050  1.110 0.991 0.038  1.114 0.994 0.041
1970 1.069 0.965 0.050  1.172 1.068 0.038  1.174 1.070 0.039
1971 1.108 1.015 0.051  1.220 1.127 0.038  1.221 1.128 0.040
1972 1.143 1.050 0.052  1.266 1.173 0.038  1.263 1.170 0.041
1973 1.208 1.081 0.054  1.344 1.217 0.038  1.335 1.209 0.043
1974  1.281 1.142 0.055  1.432 1.292 0.038  1.422 1.283 0.040
1975 1.305 1.211 0.055  1.471 1.377 0.038  1.465 1.371 0.036
1976 1.337 1.230 0.057  1.521 1.415 0.038  1.516 1.409 0.038
1977 1.389 1.258 0.059  1.593 1.463 0.038  1.587 1.457 0.039
1978 1.460 1.306 0.060  1.687 1.532 0.038  1.681 1.526 0.039
1979 1.549 1.372 0.060  1.799 1.622 0.038  1.794 1.617 0.038
1980  1.678 1.456 0.061 1.952 1.730 0.038  1.952 1.725 0.036
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of the depreciation rate implied by model 3 vary in the rage from .028 to
.043. The pattern of the depreclation rates indicates a general increase

until 1973. The pattern also shows a decline in 1974 and 1975 as well as in

1980 reflecting periods of recession and slow output growth in U.S. electrical

machinery industry. (Of course, the depreciation rate depends not only on
output but also on relative prices and the observed pattern reflects both
effects.)

It seems of interest to discuss the magnitude of the estimated
depreciation rate as it relates to the average survival time of capital in
more detail. Let Kt = Ef=o¢1lt-1 where ¢‘ZO denotes the efficiency
function. Assume that the ¢1 are nonincreasing, ¢O=1, ¢i>0 for 1=0,...,m
and ¢i=0 for i>m, where m is the maximal survival time (which may possibly

be infinite). Given KL = If + (1-6:)Kt_1 it follows that

K
K f:=0(¢l-¢141)1'.-1-1

(4.7) BL = X
z?=o¢xlt—x-1

The average survival time is given by z:—o(¢1-¢1+1)i‘
Clearly if gross investment grows at a constant rate, i.e. If =

(1+p1)tI;. and the efficiency function does not depend on t, the depreciation

rate is constant over time and given by

m -1
Xi=0(¢1-¢x‘1)(l+p1)
z“"l1=0¢l ¢ l+pI )—1

(4.8) s* =
t

That is, the depreciation rate is only a function of ¢0,...,¢ and the growth
m

rate of gross investment (and hence constant) regardless of the shape of the

efficiency function. We consider two "limiting" cases. In case of a one-hoss

shay efficiency function, i.e. ¢x=l for i=1,...,m, the depreciation rate
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equals 6: = 1/[{f=0(1+p1)l], and the average survival time equals the
maximal survival time m. In case of a geometrically declining efficiency
function, i.e. ¢1 = (1—6)1. the depreciation rate 1s constant regardless of
the pattern of investment and given by 65 = &, and the average survival time
equals (1-8)/8. The average growth rate of gross investment in our sample is
nine percent. Corresponding to thls growth rate and our estimate of an
average depreciation rate of 0.038 the implied average survival times for the
two "limiting" cases are approximately 13 and 25 years, respectively.

The assumption of a constant depreciation rate has a long history and has
been the subject of considerable debate.zo (As remarked above, both a
geometrically declining efficiency function and a constant growth rate of
gross investment imply a constant depreciation rate.) The model considered in
this paper allows for quasi-fixed factors with a constant depreciation rate as
well as for quasi-fixed factors with a variable depreciation rate.
Replacement investment is defined as the difference between the initial stocks

and what is left over from those stocks at the end of the period, i.e. Ifn =

KLI - KS. Net investment is defined as the difference between gross
investment and replacement investment, 1.e. I:E = I:—IER or ISE = Ka - KL .

Within our model both K‘ and K? are endogenously determined by the firm;

20 The assumption of a constant depreciation rate has been challenged, among

others, by Feldstein and Foot (1971}, Eisner (1972), Eisner and Nadiri (1968,
1970), Feldstein (1974), Feldstein and Rothschild {1974) and Bitros and
Kelejian (1974); and was forcefully defended by Jorgenson (1974). Recently
the validity of the geometric depreclation assumption has been tested in
several papers by Hulten and Wykoff (1980, 198la,b,c) based on a sample of

used asset transaction prices.

37



hence also ItR and IEE are endogenously determined. That is, as a

byproduct, our specification also yields a structural model for the endogenous
determination of replacement investment versus expansion investment. We
repeat that at the estimation stage only gross investment enters as an
observed variable. Stocks are generated internally and hence are generated
consistently with replacement investment. As pointed out by Jorgenson (1974)
some of the previous studies on replacement investment were not fully
consistent in that they employed capital stock data that have been generated
under a different set of assumptions than those maintained in those studies.
Our approach is not subject to the same criticism and hence allows in
principle for a proper test of the constancy of depreciation rates.

In Table 4 we present the ratio of net investment to gross investment for
the period 1960 to 1980. The ratio implied by models 2 and 3 is much higher
than the ratio implied by the OBA capital stock series. This implies
(consistent with our previous remarks) a much higher rate of capital
accumulation as compared to the OBA capital stock series. We note that the
patterns of the net to gross-investment ratio over time seem quite similar
across the models and the ratio generally drops in years of slow output

growth.

4.4 Technical Change and Capacity Utilization

Our estimates of pure technical change as reported in Table 5 are 0.60,
0.69 and 0.66, respectively, based on models 1, 2 and 3. That is, our
estimates of technical change are on average higher based on models 2 and 3 as

compared to model 1. As discussed in Section 3, the traditional measure of
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TABLE 4: Ratio of Net Investment to Gross Investment in the U.S. Electrical
Machinery Industry: 1960-1980.

Model 1 Model 2 Model 3

Year OBA Capital Stock Estimated Capital Stock Estimated Capital Stock

Constant Depreciation Variable Depreciation

Rate Rate -
1960 0.46 0.62 0.69
1961 0.45 0.61 0.66
1962 0.43 0.59 0.62
1963 0.45 0.59 0.60
1964 0. 46 0.60 0.59
1965 0.58 0.68 0.67
1966 0.66 0.73 0.72
1967 0.66 0.73 0.70
1968 0.60 0.67 0.65
1969 0.60 0.67 0.65
1970 0.51 0.59 0.57
1971 0.41 0.51 0.48
1972 0.38 0.50 0.47
1973 0.51 0.61 0.58
1974 0.53 0.63 0.61
1975 0.25 0.41 0.41
1976 0.30 0.47 0.49
1977 0.40 0.55 0.56
1978 0.46 0.60 0.61
1979 0.50 0.63 0.65
1980 0.58 0.69 .70

total factor productivity only equals technical change if, in particular,
producers are in long-run equilibrium, the technology exhibits constant
returns to scale, input and output markets are perfectly competitive, and
factors are utilized at a constant rate. In Table 5 we also report estimates
of the traditional measure of total factor productivity. Those estimates are
approximately three times larger than our estimates of pure technical change.
Based on the decomposition formula {(3.10) given in Section 3 and based on the
estimates of the respective models we also provide a decomposition of the
sources for this difference. The main source of the difference is the scale

effect which represents about 40 to 50 percent of the growth in the
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TABLE 5: Decomposition of Total Factor Productivity Growth in the U.S.
Electrical Machinery Industry in Percentages: 1960-1980.

Model 1 Model 2 Model 3
OBA Capital Stock Estimated Capital Stock Estimated Capital Stock
Constant Depreclation Variable Depreciation

Rate Rate

Technlcal 0.60 0.69 0.66
Change
Scale Effect 1.04 0.83 0.93
Ad justment Cost Effects

Temporarl“é Equl- 0.33 0.42 0.39

librium Effect

Direct Adjus 0.03 0.02 0.02

ment Cost Effect
Variable Depre- 0.00 0.00 0.02
ciation Effect
Unexplained 0.04 0.03 -0.03
Residual
Total Factor 2.04 1.99 1.99

Productivity

traditional total factor productivity measure. The remainder of the
difference is mainly due to the presence of adjustment cost. The measures of
total factor productivity differ across the models since they are based on
different capital stock series. Comparing the decomposition between models 2
and 3 shows that allowing for the depreciation rate to vary increases the
scale effect, lowers the adjustment cost effect and decreases the estimate for
pure technical change. The variable depreciation rate effect is small. (Of
course, the importance of the adjustment cost and the variable depreciation
rate effect will differ across applications depending on the size of
respective factor shares and differences in growth rates; cp. formula (3.10}.)
We note that for all models estimated pure technical change exhibits a
very smooth pattern and increases over time. For example, for model 3 the
estimate of pure technical change is .56 in 1960 and .88 in 1980 with a low of

.51 in 1964.
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TABLE 6: Capacity Utilization in the U.S. Electrical Machinery Industry:

1960-1980.
Model 1 Model 2 Model 3
Year OBA Capital Stock Estimated Capital Stock Estimated Capital Stock
Constant Depreclation Variable Depreciation
Rate Rate
1960 1.073 1.089 1.093
1961 1.092 1.107 1.107
1962 1.100 1.109 1.107
1963 1.111 1.122 1.118
1964 1.119 1.130 1.125
1965 1.119 1.125 1.121
1966 1.116 1.119 1.116
1967 1.120 1.126 1.121
1968 1.115 1.124 1.118
1969 1.113 1.123 1.117
1970 1.098 1.112 1.104
1971 1.071 1.086 1.078
1972 1.094 1.107 1.099
1973 1.111 1.122 1.114
1974 1.099 1.112 1.104
1975 0.99%4 1.010 1.009
1976 1.059 1.074 1.068
1977 1.102 1.116 1.107
1978 1.113 1.126 1.117
1979 1.125 1.137 1.127
1980 1.129 1.142 1.132

In Table 6 we report estimates of capacity utilization based on the cost
ratio C/C*; cp. Section 3.2. Those estimates are similar across models.
For all models capacity utilization drops approximately ten percent in 1975,
reflecting a fourteen percent decline in gross output in the U.S. electrical
machinery industry in that year. Comparing the capacity utilization estimates
corresponding to models 2 and 3 we see that the estimates corresponding to the
latter are generally somewhat smaller. This seems consistent with the fact

that in model 3 also the depreciation rate of capital can be chosen optimally.
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5. Conclusion

In this paper we have specified a general dynamic factor demand model
where the firm can choose the depreciation rate of some (or all) of the
quasi-fixed factors optimally. The model allows for multiple outputs,
variable inputs, and for the quasi-fixed factors to become productive
immediately or with a lag. Based on the model we develop primal and dual
measures of technical change. Those measures extend those recently given in
Berndt and Fuss (1989). We also deduce a measure of capacity utilization and
explore the sources of biasg for the traditional measure of total factor
productivity growth.

We have estimated two version of the empirical model using data from the
U.S. electrical machinery industry. The more general version of the model
determines the depreciation rate of capital as a function of output and
relative prices. For the other version of the model (in order to identify the
implications of allowing for an endogenous determination of the depreciation
rate) we have imposed parameter restrictions such that the depreciation rate
of capital is constant. We note that for both version of the model the
depreciation rate is estimated and the respective capital stocks are generated
internally during estimation in a theoretically consistent fashion from the
gross investment series. For further contrast of our model we also report the
estimates obtained in Nadiri and Prucha (1989a) from a model with exogenous
depreciation rate that utilizes the capital stock series published by OBA. We
refer to those models as, respectively, model 3, 2 and 1

On the whole the price and output elasticities are similar across models
However some interesting differences can be observed. In particular, as

explained in more detail in the text, when the depreciation rate is
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endogenously determined the sign of the long-run cross price elasticities of
the variable factors and capital need not be the same. In fact, we find the
estimated long-run cross price elasticities of capital and labor io be of
opposite sign. Related to this phenomenon we also observe that the long-run
elasticity of gross investment with respect to the prices of labor and
materials changes between models 2 and 3, 1.e. by allowing the deprecation
rate to be endogenously determined, from -.24 to .83 and .44 to -.52,
respectively.

For both models 2 and 3 the depreciation rate is eétimated on average to
be 0.038 as compared to 0.055 for the OBA capital stock series. This
translates into a sizable difference of 16 percent in the level of the capital
stock at the end of the sample period. Also the ratio of net to gross
investment implied by models 2 and 3 is much higher than the ratio implied by
the OBA data. All these ratios show sensitivity to the growth in output.

Our estimates of pure technical change is approximately .6, which is
approximately one third of the estimate implied by the traditional measure of
total factor productivity growth. 1Il.e., the traditional measure of total
factor productivity growth significantly overestimates Lhe rate of technical
change.

Although the model considered here is quite general, several extensions
of the theoretical model seem of interest. In particular, variations in the
rate of utilization of an input can be achieved by varying the numbers of
hours the input is employed and/or by changing the intensity or speed with
which the input is used in the production process. An increase in the
intensity or speed with which capital is operated will typically result in an

increase in the rate of depreciation of capital. An increase in the length of
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time capital is employed will typically results in increased costs due to
shift and overtime premiums and an increase in the rate of depreciation of
capital. t seems of interest to incorporate both cost aspects into the
nodel .

At the empirical stage it may be interesting to include more quasi-fixed
factors by distinguishing between production and nonproduction workers and by
differentiating between different types of capital. Also it seems desirable
to endogenize the depreciation rate of R&D. Another extension would be te
allow for more general patterns of expectations. Furthermore, the model can
be reformulated in a profit maximizing setting to explore the existence of

markups in different industries.
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Appendix A: Background Material for Productivity Measures

For ease of notation we drop in the following time-subscripts whenever

those subscripts are obvlous from the context.

A.1 Derivation of Equation 3.5

Totally differentiating the transformation function (2.12) yields

. . 0.20 .
ZI(BF/GYI)Y‘ + ZJ(E)F/@VJ)VJ + X;(aF/BKk)Kk + X;(aF/aEk)Ek +

Zl(aF/BB‘)B, + Zk(BF/BAKk)AKk + ):l(aF/aARl)ARl + 8F/8T = 0.

Equation (3.5) is then obtained by substituting (3.2) into the above

expression.

A.2 Technical Change Measures Corresponding to Long Run Equilibrium Values

As remarked in the text, in general technical change is a function of
respective inputs and outputs. The technical change measure Ax =
A(Y.V,KO.E,B,AK,AR,T) defined in (3.6) corresponds to current input and
output values. Analogous to Berndt and Fuss (1989) we may also calculate,
within the context of our model, technical change at long-run equilibrium
input and output values. As in Berndt and Fuss we define two alternative
long-run equilibria. The first assumes that inputs are adjusted optimally for
current output levels; the second assumes that outputs are adjusted optimally
for current levels of the quasi-fixed factors. Assume for a moment that
prices are static. To simplify the exposition assume furthermore that E:K—1
B=R_1, px=0 and pR=0. The the long-run optimal quasi-fixed factors, say E.=K'
and B.=R., needed to produce the current level of outputs Y are then

implicitly defined by -aG(p",q",v,k",R",0,0,T)/8K = (1+r)¢" and
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—6G(pL.qK.Y,§“B.,O,O,T)/BB = QR; cp. equations (2.7} and (2.8)}. The

corresponding long-run variable factors and "old" stocks are given by L. =

56 sapt, K% = ~a6"/aq, M =6 - poL" + @VK® where G =

G(pL,qK,Y,K-‘R.,O,O,T); cp. equations (2.5), (2.9) and (2.10)}. Similarly, if

the number of quasi-fixed inputs equals the number of outputs, long-run

optimal outputs, say Yo, for given levels of the quasi-fixed factors can be
. . L K @ K

defined implicitly by =-dG(p ,q .Y ,K,R,0,0,T)/8K = (1+r)q and

—aG(pL,qK,Yo‘E.B.O.O.T)/SB = gR. The corresponding long~-run variable factors

and "old" stocks are given by L° = ac®/ap", k°° = -a6°/aq%, M® = ¢® - p'1® +
qK’KOO where GO = G(pL,qx,Ye,g,B,O,O,T). Total cost for the two long-run

equilibria is given by:

9]
it

L X - - - -
Gp".q", v,k ,R,0,0,T) + L (1+r)qX + LR .

L K O
¢® = G(p",q".¥*K.R,0,0,T) + L (1+r)qik + LR

Using (3.6) -we can now define, corresponding to the two long-run equilibria,

the following two measures of input based technical change:

xo= A0 KK RT,0,0,T) = Tl (Y /Y -
y* e A O, s0" 0% K® o% % R e% %
L5 Vg sy &) /I sy (R/KDE s) (R/RD],

A% = AY®, v, k%, k,R.0,0,T) = ):1:?(\'{?/\{?) -

VO 30 . O 00 200 , 00 KO 2 RO+
[):Jsj (VJ/VJ)—Z'_ksk (Kk /K )+z;sk (g_k/l_(k)i»):lsI (R,/R 1],

where c: and c? denote respective long-run total cost elasticities with
respect to output, and sv‘, so., sx'. sR- and svo’ Soo’ sxo’ SRO denote

b k k i ) k k 1
respective shares in long-run total cost. We note that the input based

technical change measures A; and Ai generalize, respectively, Berndt and

Fuss’ (1989) technical change measures Aa/A3 and Ad/Ad. We can also define
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the following alternative capacity utilization measures: C/C‘ and C/CO.

A.3: Decomposition of the Traditional Measure of TFP Growth

In the following we give a proof for the decomposition of the Tdrnquist
approximation of the traditional measure of total factor productivity growth,
ATFP, presented in Secticn 3.3. We consider the case of a single output good
and maintain that all assumptions stated in the text hold.

We shall utilize the following lemma.

Lemma Al: Let U =& - Vv where w= cz:ir(al/a)ﬁ‘ +A and V = ZT~JBL/B)h1

with « = ZT:“; and @ =T B. Then

@ = (-1e) + I7 e =6, )/al (h~¥) + ZT:.: @@ G =0) + (/e

+

Proof: G = (1-1/€)i + (1/e)i = v = (1-1/€)% + L% /i = ¥ + (1/e)x =

(1-1/¢)w + ZT:r(al/a)(hl—V) + (1/e)A.  The result now follows upon observing

that T (B /el ~v) = (B/0)T] (8, /8) (n,~0) = (B/&)(T_ (B /B)h - ¥} =

(Bra){v - v} = 0. Q.E.D.
Now let

(A.1) Y, = f(ML,LL,KS,EL,BL,AKL,ARL,Tt)

with 5(:Kt_l, Bt=RL_1, and Tz:t denote the firm's production function

obtained by solving the transformation function (2.12) for Yz' Assume that
this solution is unique and differentiable. Implicit differentiation of the
transformation function then implies 38Y/8Z = - [9F/82]/[8F/8Y] for Z = M, L,

KO, K, R, &K, AR. Because of (3.2) it follows further that

(A.2) ay/aM = p'/[8G/aY), aY/aL = p“slscrav], avsok° = -q*/186/8Y],
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ays8z = - [8G/821/18G/aY], Z = K, R, &K, AR.

(Recall that pH=1.) Now consider the following decomposition of output

growth based on a translog expansion of the production function:

(4.3) Alny, = i(alnY' + Alny' ')
t 2 t t
AlnY® = e (T)ALmM + £ (T)AlDL + £, o(T)AInK® + & (t)AInK
t YH t YL t YK t YK t

+ EYR(I)Aln}jt + cYAK(r)AlnAKt + CYAR(t)AlnARt + ky(r),

0

with T = t, t-1, and where the ¢ (1) = [8Y_s8Z2_1[Z2_sY ] with Z =M, L, K
\74 Tt T

K, R, &K, AR denote output elasticities, and output based technical change

XY is defined by (3.1). (For notational convenience we do not underline the

subscripts K and R in denoting the output elasticity with respect to K

and R.) In light of (3.3) and (3.4) we have for the scale elasticity plt) =

Cr/[(aGr/aYt)Yr] where C denotes total shadow cost. It now follows from

(A.2) that
(A.4) £, (7) = () [pIM_/C 1, e, (7) = p(x)IPL_/C ],
e 0t) = p(r)[—q:](:/cr], e, () = Pl [(-8G /a2 )z 1/C_,

with 2 = K, R, AK, 8R. Using the above lemma it follows readily form

(A.2) and the definition of AlnN: in (3.9) that (r = t, t-1)

(A.5) AlnY' - AlnF' =
t t
p(T){Ip"M_/c_1a1nM + (piL_sC_lalnl - [qk°/C_1AlnK?
TT T t TT T t T T T t
- [8G_soK 11K _sC_1alnK, - [8G_s8R 1{R /C_lAlnR
T T T T t T T -t T t
- 18G_s8AK_1{AK_/C_1A1nAK - [8G_s8AR_1{AR_/C_lAIndR } + A (1)
T T T T t T T T T t Y
- {Ip"M_/C’1a1nM + [p-L_/C 1AlnL
pT T T t pT T T n t

- [¢"k_/ct181nKk - [c"R /C’1AINR ) =
I T t b S 4 T t
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o

T K, 0
(l—l/p(r))AlnYL [qur/CT][AanL

- AlnF')
t

- 18G_/8K_ + c“11K /C_1[AlnK - AlnF']
T =T i =T T t t

- [8G6_/8R_ + c"1IR /C_I{AlnR - AlnF')
T =T T =T T t t

[8G_/8AK_] [AK_/C_1(AlnAK - AlnF")
T T T T t t

[8G_s8AR_] [AR_/C_]1{AInAR - AInF ] + (1/p(t))A (x) =

T T T T t t Y
T K, 0O o

(1 1/p(r))A1nYL - [qTKT/cT][Aant Aln&tl

K T
- [aGT/agT + (1+r)qT][ET/CT][A1n§L - AlnF ]

[8G_/8R  + c"1IR /C_1[AlnR - AlnF']
T =T T =T T t t

[8G_/88K_1{4K_sC_]1[AlnaK - AlnF'l
T T T T t t

T
[BGT/BART][ART/CT][AlnARL - AlnFL] + (l/p(T))hy(t).

where the last equality follows by observing that gxg = (1+r)qK§ - qKKG. A
general decomposition of the Térnquist approximation of the traditional

measure of total factor productivity growth is obtained by substituting the
above expression into ATFP, = AlnY, - AlnF, = %Zrzh‘rl[AlnY: - AJan]. The

decomposition given in (3.10) follows under the additional assumption that

plt)=p(t-1).
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Appendix B: Derivation of Estimated System of Factor Demand Equations

Consider the model described in Section 4.1. Given the specification of
G(.) in (4.1) it follows from (2.7) and (2.8), and the discussion in Section
2.3, that the certainty equivalence feedback control policy for the

quasi-fixed factors needs to satisfy the following set of Euler equations

(T=t,t+1,...):
(B.1a) - «. K + [ +(2+r)e, JK_ = (141« K + o« R =a"

KK T+l KK Kk T KK T-1 KR T t

_ R

(B.1b) - aRth+1 * [aRR+(2+r)aRR]R1 - (1+r)athT_1 * aKRRT T
with

a" = e +a T +ta pL + qK(1+r+a 0 o) 1YP

t K KT t KL b t K K t

a" = la +a T +ta pL + CR]Yllp

t R RT t RL"t [

Solving the above set of second order difference equations (in conjunction
with the transversality condition) is a standard problem; cp. e.g. Madan and
Prucha (1989). The solution is given by the accelerator model (4.3). As
noted in the text, the accelerator coefficients have to satisf{y the following

matrix equations:

(B.2) BMZ + (A+rB)M - A = O
where M = (m ) , A= (e« ) and B is the diagonal matrix
131, 3=K,R 1171, J=K,R
with elements Lo and L in the diagonal. Furthermore, the matrix C =

(

ij)lj-KR = -BM is symmetric and negative definite; cp. e.g. Madan and

Prucha (1989). Unless we impose separability in the quasi-fixed factors,
i.e., @ = 0 which implies Mg = 0, (B.2) cannot generally be solved for

M in terms of A and B. We can, however solve (B.2) for A in terms of M

and B: A= BM(M+rI)(I—M)_1. Since the real discount rate r was assumed to
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be constant, M is constant over the sample. Hence, instead of estimating
the elements of A and B, we may estimate those of M and B. To impose

the symmetry of C we can also estimate B and C 1instead of B and M. Lel

D= (d)) o= -MA™' and observe that A =C - (1+r)[B ~ B(C+B) 'B] and

that D = B! + (1+r)(C-—rB)—1 is symmetric.z1 It 1s then readily seen that we

can write (4.3) equivalently as:

_ “L “x S1/p
(B. 3a) AKL = dKK[aK + ocmTt o pot qL(1+r+0LKnKo)]YL

+d fa +a T +a pL + cR]YUP+ [c /e« K + [c /a. . R,
KR' R RT t ALt et kK KR t-1 kR KK t-1
(B.3b) AR =d [« + a T +a p '+ q (1+r+ao o J¥7P
t KR® K KT t KLt t K K t
“L “RyG1/P
* dRR[aR * aRTTt * e Py * CL]YL * [CKR/ahh]KL—i * [CRR/aRf(]RL~1'
where
d = 1/«a. + (14r)lc - ra..]/e ,
KK Kk RR i
d = 1/«,. + (1+4r)lc - ra.l/e ,
RR RR KK 44
d = -(l+r)c_ /e, and e = (¢ - ra.)(c - ra..) - ¢ .
KR KR KK Kk " TRR Ri KR
Furthermore, we can express o« , & , & in (4.4) as
kKK’ RR' KR
2
e T %k T (1+r)[akk = (g ) gy + o)1l
=c - (140 (e, - (), + c )V/f],
AR AR RR fiit 43 KK
« =c - (1+r)le,. .. c )/f , and f = (a . +c J(a . .+c ) - .
KR KR Kk RiTKR kk KK’ RR RR KR
21

The reparametrization approach was first suggested by Epstein and Yatchew
(1985) for a somewhat different model with a similar algebra. It was further
generalized by Madan and Prucha (1989); for application of this approach see,
e.g., Mohnen, Nadiri and Prucha (1986) and Nadiri and Prucha (1989a).
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Appendix C: Data Sources and Construction of Variables

Gross QOutput: Data on gross output in current and constant 1972 dellars were

obtained from the U.S. Department of Commerce, Office of Business Analysis
(OBA) database and correspond to the gross output series of the U.S.
Department of Commerce, Bureau of Industrial Economics (BIE). Gross output is
defined as total shipments plus the net change in work in process inventories

and finished goods inventories,

Labor: Total hours worked were derived as the sum of hours worked by
production workers and nonproduction workers. Hours worked by production
workers were obtained directly from the OBA database. Hours worked by
nonproduction workers were calculated as the number of nonproduction
workers*hours worked per week*52. The number of nonproduction workers was
obtained from the OBA database. Weekly hours worked of nonproduction workers
were taken to be 39.7. A series of total compensation in current dollars was
calculated by multiplying the total payroll series from the OBA database with
the ratio of compensation of employees to wages and salaries from U.S.

Department of Commerce, Bureau of Economic Analysis (1981, 1984).

Materials: Materials in current dollars were obtained from the OBA database.
Materials in constant 1972 dollars were calculated using deflators provided by

the U.S. Department of Commerce, Bureau of Economic Analysis.

Value Added: Value added in current and constant 1972 dollars was calculated

by subtracting materials from gross output.

Capital: The net capital stock series in 1972 dollars and the current and

constant 1972 dollar gross investment series were taken from the OBA database.

52



The method by which the OBA capital stock series is constructed is described

in the U.S. Department of Labor, Bureau of Labor Statistics (1979). The user
s K K K K IX

cost of capital was constructed as ¢ = q (r+«8') with g =p /(1-u) where

pIK is the investment deflator, u 1is the corporate tax rate and r = 0.05.

(Of course, the OBA capital stock series was only used in the estimation of

Model 1. In estimating Models 2 and 3 only the investment series and qK

were utilized.)

R&D: The stock of total R&D is constructed by the perpetual inventory method
with a depreciation rate GR = 0.1. The benchmark in 1958 is obtained by
dividing total R&D expenditures by the depreciation rate and the growth rate
in real value added. The nominal R&D expenditures are taken from National
Science Foundation (1984) and earlier issues. To avoid double counting we
have subtracted the labor and material components of R&D from the labor and
material inputs. The GDP deflator for total manufacturing is used as the
deflator for R&D expenditures, pIR, All R&D expenditures were taken to be

immediately expensible. The user cost for R&D was hence constructed as c" =

pm(r+6ﬂ).

All constant dollar variables were normalized by respective sample means.
Prices were constructed conformably and normalized by the price of materials.
Expectations on prices were set equal to current prices. Expectations on
gross output were calculated as follows. We first estimated a first order
autoregressive model for output and then used this model to predict Yt. Time
was used for the technology index T. In estimating models 2 and 3 we used as

the initial capital stock the corresponding value of the OBA capital stock.
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Appendix D: Long-Run Reciprocity Relationships

In the following we show that, as claimed in the text, the following
reciprocity relationship holds in the long-run: 6L/3qK = (1+r)3K/6pL =
3K°/6pL. The maintained assumptions are that 5=K_1 and B=R_1. that the
firm is in long-run equilibrium and that expectations are static. For reasons
of notational simplicity we also assume that L, Ko, K and R are scalars

K R
and that p and p are zero.

Under the maintained assumptions equations (2.7)-(2.9) reduce to

(D.1a) -8G/8K = (1+r)q", (D.1b) -8G/8R = " (r+s"),
L o K
(D.1¢) L = 8G/8p", (D. 1d) K° = -8G/aq .
Let GaB denote the second order partial derivatives of G with respect to

« and 8 where «,f8 = qK, pL, K, R. (Of course, since G 1is assumed to be
twice continuously differentiable in all its arguments we have GaB =G, .)
Differentiating (D.1la), (D.1b), (D.1lc) with respect to qK and (D.1a),

(P.1b), (D.1d) with respect to p-~ yields:

K Ky _
(D.2a) -G x, - G (Ks8q) - G (8R/Bq) = (1+r) ,

]
o

X K
(D.2b) -G x, - G (K/8q) - G (8R/3q)

(D.2c) Grr + G L(BK/Bq") + G L(8R/8q") = aL/8q".
qp Xp Rp

|
o

L L
(D.3a) -G L -G, (&s8p) - G (8R/Bp) =

L L, _
(D.3b) -GL -G (8Ks8p) - G (aR/8p) =0,

(D.3¢)  GLr+ G x(8K/3p") + G, x (8R/8p") = -3K°/3p".
q q

Define
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G G 8K/ aq" K/ 8p- 1+4r+G_
H=-| ¥ n = k|, h = L, § = 1y =
G G 'k dR/8q {' "L 8R/8p 71’ “x G x{|" ~L G L

RX RR Rq Rp

We can now rewrite (D.2c) and (D.3c) as, respectively:

K _ L\ T
(D.4a) aL/aq” = GquL + (JL) hx B

(D.4b) (1+r) (8K/8p") - 8K°/ap" = GLx v (J‘)ThL.

Solving equations (D.1a), (D.1b) and (D.2a), (D.2b), respectively, yields

h = H_ljK and hL = H_le. The claimed result now follows upon substituting

X

those expressions into (D.4) and observing that H 1is symmetric.
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