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1. Introduction

In this paper we show that countries and industries with large seasonal cycles also have large
business cycles. We then discuss the elements required in a model to generate our finding and
explain why the finding suggests that the economic mechanism propagating seasonal fluctuations is
closely linked to that propagating business cycle fluctuations. We also propose a particular model
that incorporates this property and that is consistent with our empirical result. The model is
preliminary but it illustrates our main point: the robust finding that the amounts of seasonal and
business cycle variation are positively correlated across sectors is likely to require an explanation

in which the two kinds of fluctuations are intimately related.

In the first part of the paper we show there is a strong, positive correlation across both
countries and industries between the standard deviation of the seasonal component and thestandard
deviation of the non-seasonal component of aggregate variables such as output, labor input, interest
rates, and prices. That is, large seasonal cycles are cross-sectionally correlated with large business
cycles. This result is robust to the treatment of outliers and to controlling for country or industry
characteristics; it is insensitive to the treatment of stationary stochastic scasonality; and it is

strongly independent of sample period.

After documenting this stylized fact, we discuss possible explanations. In gencral three fac-
tors can generate the cross-sectional correlations. First, there may be cross-sectional correlations
between the amounts of seasonal and non-seasonal variation in the exogenous forcing variables. Sec-
ond, there may be nonlinearities in the structural model that relates the seasonal and non-seasonal
variation in the economy. Third, the economic propagation mechanism transmitting seasonal fluc-
tuations from exogenous to endogenous variables may be systematically related to that transmitting

business cycle fluctuations.

We also discuss the significance of our empirical finding for comparisons between seasonal and
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non-seasonal fluctuations. Earlier work (Barsky and Miron (1989), Beaulieu and Miron (1990a,b))
demonstrates that the seasonal and business cycle fluctuations in modern economies display a
number of striking similarities. In particular, both kinds of fluctuations exhibit many of the crucial
stylized facts about business cycles. This general similarity between the two kinds of fluctuations
suggests that the same economic propagation mechanism produces the two kinds of fluctuations,
but the similarity is not by itself conclusive. We show using the framework described below that the
evidence provided in this paper constitutes much stronger evidence that the propagation mechanism
for seasonal fluctuations is intimately related to that for business cycle fluctuations.

In the final substantive section of the paper, we develop a simple model that generates our
empirical finding. We assume firms endogenously choose their degree of technological flexibility in
response to the variance of seasonal and non-seasonal demand shocks. Firms facing bigger seasonal
or non-seasonal shocks choose more flexible technologies and thus are better able to respond to both
kinds of shocks. Although this model is intended to be illustrative, we find evidence supporting
one of its key empirical implications.

We conclude by discussing the implications of our model for issues in the study of aggregate
fluctuations. The first and perhaps most important is that in our model the propagation mechanism
links the seasonal and non-seasonal behavior of the economy, suggesting that one cannot understand
the business cycle without also understanding the seascnal cycle. Because of the interconnections,
anticipated and unanticipated shocks cannot always be sharply distinguished, and both have real
effects on the economy. Second, in our world technology is not something that is exogenously
determined, as it is in real business cycle models; instead, the degree of technological flexibility is
chosen endogenously by firms in response to the degree of demand variability. Finally, our model
is consistent with the view that the stabilization of output has a first-order effect on wellare by

raising the average level of output in addition to reducing its variance.



2. Methods and Data

The main empirical question we address is whether there is a correlation across “sectors” be-
tween the amount of seasonal variation and the amount of business cycle variation in macroeconomic
time series. We formalize this question as follows.

Assume we have time-series observations on a variable X for each of I sectors, where sector
denotes either a country or an industry within a country. Let X} denote the observation in sector
i at time t. For instance, X} may denote output in the ith U.S. manufacturing industry at date 2.
Following Barsky and Miron (1989), we assume

12
si= Y Edi 4+, e
k=1
where z! is the first difference of the log of X}, d¥ is a dummy for month k, and €} is covariance

stationary. We define the seasonal and non-seasonal components of zi as

12
ot = &l 2)
k=1
i . 12 .
gt ==y ¢hdf . 3
k=1

The two components are orthogonal according to this decomposition.

We note that the decomposition is not universally accepted in the literature because it assumes
there is no seasonal integration and defines any stationary stochastic seasonality as non-seasonal.!
Beaulieu and Miron (1991) show there is little evidence of seasonal integration in aggregate U.S.
data series similar to those examined here.? We show in Section 3 that our treatment of stationary
stochastic seasonality has no significant effect on our results. For the remainder of the paper,

therefore, we use the terms “non-seasonal” and “business cycle” interchangeably.

1 As far as we know, there is no precise definition of stationary, stochastic seasonality. Roughly speaking, it can
be defined as peaks in the spectrum of z;'" at seasonal frequencies.

2 Hylleberg, Engle, Granger and Yoo (1990) explain how to test for seasonal integration.
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We measure the amounts of seasonal and non-seasonal variation by the standard deviations of

the seasonal and non-seasonal components of the variables:
S = [Nt

oi(z) = (var(z;”))?

of(z) = (var(z{™)? .

‘We then examine whether the amounts of seasonal and non-seasonal variation are correlated across

sectors, i.e., whether (; is non-zero in the equation
o} = P11+ Baof +vi (4)

where ¢ = 1,..., T denotes either countries or industries. There is nothing in our assumptions about
the processes generating the data that implies a correlation in cither direction.

Our strategy for estimating f; is as follows. We first estimate the seasonal dummy cocfficients,
£k, in equation (1) with OLS for each variable in each sector. We then compute measures of
the seasonal and non-seasonal standard deviations by substituting the estimates of the & into
equations (2)~(3) and taking standard deviationsover time.? Finally, we estimate the cross-sectional
regression,

6F =P+ 6207 +Gi s (5)
by least squares.

There is a potential for bias in estimates of §; because &7 and 67 are estimated and therefore

measured with error. This measurement error, and thus the bias in estimates of 3, disappears

3 The formulas for the standard deviations include a degrees of freedom correction to account for the fact that
zy* and 2" are estimated:

#1(z) = (F=gvarei Ny, o7 (2) = (Fhvar(zim))E.

* In the cross-sectional regressions for countries, the number of time series observations on a given variable often
differs across countries. This difference produces heteroskedasticity in the cross-sectional errors. To correct for
. ‘. . N - 1 . . . .
this heteroskedasticity, we weight &7 and &! by (T} — 1)% where T is the number of time series observations
for a specific series in country i. The same procedure is applied to the price regression for manufacturing
industries. For the remaining series, we estimate (5) by OLS.
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as the number of time series observations on the z; approaches infinity.® There may be a bias in
finite samples, however, In an appendix available on request, we present results of Monte Carlo
experiments designed to estimate the magnitude of the small sample bias. The results show that
the amount of such bias is insignificant in most cases.®

e use two different data sets. The first consists of time-series observations on six aggregate
variables from twenty-five OECD countries (see Beaulieu and Miron (1990b) for details). The
variables are real retail sales, industrial production, the money stock, the consumer price index,
nominal interest rates and ez post real interest rates.” Most series are available monthly, seasonally
unadjusted, for the period 1960:1 — 1987:12, although some are available only for a subsample.
There is no variable for which we have data for all twenty-five countries.

The second data set consists of time-series observations on ten different variables in each of
twenty 2-digit U.S. manufacturing industries (see Beaulieu and Miron (1990a) for details). The vari-
ables are two measures of production (shipments plus the change in inventories (Y4) and industrial
production), shipments, inventories, four measures of labor input (production worker employment,
total employment, average production worker hours, and total production worker hours), nominal
wages, and prices. Each series is available monthly, seasonally unadjusted for all twenty industries

for the period 1967:4-1987:12, except for the price series, which is available only for a subset of

5 The OLS standard error of [3;, however, does not converge to the true, asym ptotic standard error as the number
of sectors grows large. Even if v; is homoskedastic, the measurement error in &7 surcly varies across sectors
(i) when the number of time series observations is held constant. Thus, the observed residuals in the cross-
sectional regression, which include both »; and measurement error, are heteroskedastic. To account for this
heteroskedasticity, we use White’s (1980) method to estimate the covariance matrix. This method is consistent
as the number of countries or industries grows large.

LS

When the “true” cross-seclional correlation is zero in our experiments, we do obtain a positive bias. Under
several different data generating processes, however, the bias is only about one tenth the magnitude of the
coefficient we estimate in the real data. Further, when we run experiments where the true corrclation is about
the same magnitude as those estimated in real data, we obtain a small negative bias, suggesting that the results
reported below may underestimate the strength of the positive cross-sectional correlation. The simulations do
suggest that if the cross sectional variation in the standard deviations of the seasonal component is small
compared to that in the non-seasonal component, the bias can be substantial. Given the results in Beaulieu
and Miron (1990a,b) on the seasonal patterns in aggregate data, this implies that one should place less weight
on the results below for variables such as prices, wages and interest rates than on those for other variables.

~

All variables are measured as log growth rates except where noted in Section 3.2 and except for real rates,
which are measured as levels of the nominal rate minus the log growth rate of prices over the time horizon of
the nominal rate.



industries and in one case—Transportation—only for a restricted sample period.

3. Cross—Sectional Correlation Results

In this section of the paper we first establish that the amounts of seasonal and business cycle
variation are strongly, positively correlated across both countries and industries. We then demon-

strate the robustness of the result along a number of dimensions.

3.1 Main Results

We examine the cross-country evidence first. Figures 1-6 plot the non-seasonal standard
deviation versus the seasonal standard deviation for real retail sales, industrial production, the
nominal money stock, the price level, the nominal interest rate, and the real interest rate.® The
figures also show the OLS regression of the non-seasonal standard deviation on the seasonal standard
deviation and a constant. Table 1 reports weighted least squares regressions. The table gives the
coefficient and ¢-statistic from the regression of the non-seasonal standard deviation on the seasonal
standard deviations across countries, for each of the six variables. The results in the table confirm
the impression given in the figures that there is a strong, positive correlation across countries
between the amount of business cycle variation and the amount of seasonal variation. The sign of
the correlation is statistically significant at better than the 3 percent level for all six variables.

Figures 7-16 plot the standard deviation of the non-seasonal component against the standard
deviation of the seasonal component for the ten variables on which we have data across 2-digit
U.S. manufacturing industries. Table 2 reports OLS estimates of the regressions illustrated in

9

the figures.” For both measures of output, shipments, and inventories, the amounts of seasonal

and business cycle variation are strongly, positively correlated across industries. The same result

8 The results for industrial production use Total Industrial Productior. We have also computed the regressions
reported in this subsection with Manufacturing Industrial Production, with results that are virtually identical
to those presented in the text.

9 For prices, the table reports a weighted least squares regression because the Transportation price series is
awvailable only beginning in 1969:1.



holds for total hours, average hours, total employment, and production worker employment. The

cross-sectional correlation is quite strong for wages but only modest for prices.

3.2 Robustness

We now report our checks for robustness. As a first step, we re-estimate the regressions reported
in Tables 1 and 2 omitting the observations substantially off the regression line (sce Tables Al-
A2).1% The signs and magnitudes of the correlations are generally not sensitive to the exclusion of
the obvious outliers. The only exceptions are Retail Sales in the cross-country regressions and the
two employment measures in the cross-industry regressions. In these three cases the coefficients are
still positive but insignificant at the 5 percent level. Overall, exclusion of outliers increases rather
than decreases the statistical significance of the results.

As a second robustness check, we re-estimate the regressions in Tables 1 and 2 with various
country or industry characteristics included as controls (see Tables A3-A4). For countries we
consider four variables: total GNP, per capita GNP, the share of output in agriculture, and the
share of output in manufacturing.!! For industries we use the percent of the industry that is
unionized, the ratio of non-production workers to total employment, the four-firm concentration
ratio, a dummy variable for whether an industry produces to stock (Belsley (1969)), and a dummy
variable for whether the industry is classified as producing durables or nondurables. The results
show that for both countries and industries, the cross-sectional relation between seasonal and non-
seasonal variation is robust to the inclusion of cross-sectional characteristics. Although controlling

for the various country and industry effects considered sometimes slightly reduces the magnitude

12 For countries, we re-estimate the following regressions: retail sales, omitting Spain and Yugoslavia; industrial
production, omitting Sweden; money, omitting Iceland and Turkey; and prices, omitting Greece, Turkey, and
Yugoslavia. For industries, were-estimate all regressions excluding Tobacco, as well as the following: production
worker hours, production worker employment, and total employment, omitting Tobacco and Petroleum; and
prices, omitting either Transportation only or Transportation and Lumber.

1

The sources of the variables are the World Bank's World Development Report, 1987 and World Tables, 1987.
We have also used the Summers and Heston (1988) estimates of real GDP to measure output; this has no effect
on the results.



of the correlations, the correlations are still positive and significant in almost all cases.!?

Our third robustness check addresses the issue of stationary, stochastic seasonality. Although
we are aware of no micro-theoretic model in which stochastic seasonality and deterministic sea-
sonality are intimately related (with both completely unrelated to the non-seasonal stochastic

component), traditional decompositions such as

y = trend + deterministic seasonals + stochastic seasonals + other stochastic components

suggest that the cross-sectional correlations documented above may be generated by mislabeling
stochastic seasonality as stochastic non-seasonal variation.

To check the possibility that stationary stochastic seasonality explains our results, we compare
the standard deviation of the seasonal dummy component of the seascnally-unadjusted series to
the standard deviation of the seasonally-adjusted series, where the seasonal adjustment technique
is one that removes both stationary stochastic seasonality and deterministic dummies. Since there
is no universally agreed upon definition of stochastic seasonality, there is no universally agreed
upon seasonal adjustment technique. We use the official Census X-11 adjusted data when these are
available. In addition, for all series we adjust the data oursclves using the version of X-11 provided
in the EZ-X11 program documented in Doan (1989)."® The results are presented in Tables A6
and A7. In most cases, the correlations between seasonal and non-seasonal standard devialions
are trivially different from those reported in Tables 1 and 2, regardless of whether we use official

X-11 adjusted data or EZ-X11 adjusted data.!* The explanation is simply that in most series

12 For countries, we have also experimented with a much larger set of control variables, with results similar to
those presented in the text. See Table AS.

13 Both the official X-11 and the EZ-X11 procedures can be approximated as two-sided moving average filters of the

original data; see Cleveland and Tiao (1976), Wallis (1974), and Doan (1989). The full-scale implementations
of both programs, however, are non-linear in two respects. First, observations that are more than a certain
distance from the true series are attenuated. Second, end-points are treated differently from the bulk of the
series.

The exceptions are the cross-country regressions for Retail Sales and M1 and the cross-industry regression for
Production Warker Hours. For Retail Sales and M1, the relation is still positive but statistically insignificant.
For Production Worker Hours, the relation is insignificantly positive in the EZ-X11 data and insignificantly
negative in the Census X-11 data.



stationary, stochastic seasonality accounts for a small fraction of the variation not explained by
seasonal dummies.

As a fourth check, we also re-estimate the basic cross-sectional correlations using data on
detrended log levels rather than on log growth rates (see Tables A6-A7). The data are detrended
by removing a quadratic trend. Overall the results are less striking than those using growth rates
but are broadly consistent with the results discussed above. For countries the correlation is positive
for all six variables and statistically significant at the 5 percent level in four out of six cases.!® For
industries six of the ten variables show a positive correlation, but the correlation is significant at
the 5 percent level for only two variables (Y4 aﬁd Average Hours). The correlation is not significant
at the 5 percent level in any of the four cases where the point estimate is negative. Each of the
negative estimates appears to depend heavily on the observations for Food and Tobacco. When
these two industries are excluded the correlation is positive but insignificant at the 5 percent level.
Excluding Food and Tobacco, however, makes the correlation for Inventories negative,

As a final check on our results we apply our procedure separately to the time-series data
from the first and second halves of the sample periods. For countries we split the sample after
1973:12, estimate the seasonal and non-seasonal standard deviations for each subsample, and then
re-estimate the regressions in Table 1. For the manufacturing series we split: the sample after 1977:9
and re-estimate the regressions in Table 2. In both cases we obtain results strikingl-y similar to

those presented above for the entire sample (see Tables A6-A7).

4. Explanations for the Cross-Sectional Correlations

Taken together, the cross-country and cross-industry correlations documented above constitute
a robust stylized fact: countries and industries with large seasonal cycles also have large business

cycles. In this section we discuss possible explanations for this finding. We first indicate in a

'S This includes the result presented earlier on the real rate, which was conducted in levels.
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general framework the factors that can account for the cross-sectional correlations. We then use
this framework to discuss the implications of our results for the relation betwcen seasonal cycles

and business cycles.

4.1 A General Framework

Suppose the reduced-form equation for an endogenous variable, y, relates that variable to two

exogenous variables z; and z,,
y = flz1,22) ,

where we suppress time and sector subscripts for convenience. Each of z;, z; is the sum of a

stationary non-seasonal component and a deterministic seasonal component,
Ty =z} 4z,

=123+ 23 .

This specification is consistent with a large range of models. For example, z; may represent lagged
z;. Alternatively, z; may be the seasonal component of a series while z, is the non-seasonal
component of the same series (i.e., 2] = z3 = 0).
Define Z; as the unconditional mean of z? plus the mean of z{. Let £} and Z be the deviations
from the respective means. The second—order Taylor expansion of f(-,-) around (Z1,Z,) is
2 13
y~ f(ELE) + Y filELE)E +E) + 50 ) fi(@3)(E + E)ET + 3
i=1 i=1 521
where subscripts on f(-,-) denote differentiation.)® Since z{ and z§ are deterministic we can define

a seasonal and a non-seasonal component of y,

16 We assume that z7 and zJ are stationary and ergodic. If the assumption is violated, then one can take £; and
I3 to be the initial values of z1 and z; respectively. In this case, a Taylor approximation will likely be poor for
t much larger than its initial value. Furthermore, this approximation is likely to be poor if 2} or I is large.
Including further terms to provide a better approximation does not affect the subsequent analysis.
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2 2 2
y' = f(31,32) 4 9 filF1,82)8] + % 30 fislE, 20) (212 + EEFEI) (6)
i=1

i=1j=1

s

yvi=y-vy°,

where E[é}"iﬂt] denotes the expectation of the product conditional on the season. Assuming that a
decomposition such as (6) holds in each of I countries or industries, we want to know the conditions
under which the standard deviations of y™ and y* are correlated across sectors.

Cross-sectional correlation between the seasonal and non-seasonal standard deviations of the
endogenous variable y can arise in three ways. First, there may be cross-sectional correlation
between the seasonal and non-seasonal standard deviations of the exogenous variables. In our
framework this possibility is captured by having o(z?} correlated with o(z}). Second, nonlinearities
in the relationship between the endogenous and exogenous variables can generate our cross-sectional
results. In taking the standard deviations of y* and y™ in equation (6), the non-linearities in
f(-,-) produce a correlation between o{y*) and o(y") because of the term E[Z}z7t]. Third, the
parameters transmitting seasonal fluctuations from exogenous to endogenous variables may be
systematically related to those transmitting non-seasonal fluctuations. For example, the parameters
fi(Z1,%2) may multiply both the seasonal and non-seasonal components of the z;. The three
possibilities are of course not mutually exclusive.

We do not pursue further the possibility that the seasonal and non-seasonal standard deviations
of the exogenous variables are correlated cross-sectionally. The attractiveness of this explanation
depends on the context. Sometimes the exogenous shocks are unobservable, so explaining the
observed correlation in this way is neither testable nor enlightening. We show below that this
explanation is particularly unappealing in some examples. The second possibility — nonlinearities
— is potentially part of the explanation for our empirical results, but nonlinearities can produce
a correlation in either direction so it is important to isolate the particular nonlinearities that are
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relevant.

In the next section we provide a model that explains our empirical findings by incorporating
a link between the parameters relating seasonal and non-seasonal fluctuations.!” Before presenting
our model, however, we use the framework described above to discuss the implications of our

empirical findings for understanding the relation between seasonal cycles and business cycles.

4.2 The Seasonal Cycle and the Business Cycle

It is common in economic modeling to abstract from seasonal variation, presumably because
such variation is “irrelevant” for the study of what is interesting, the non-seasonal variation.'® The
irrelevance of seasonal variation may occur because seasonal fluctuations result from different ex-
ogenous sources than non-seasonal fluctuations. For instance, seasonality may result from holidays
while business cycles result from monetary surprises. More importantly, seasonal variation might
be irrelevant to the study of business cycle variation because the mechanism by which impulses are
propagated treats seasonal shocks differently than non-seasonal shocks. One reason for this second
condition to hold may be that seasonals are anticipated.

These assumptions about the nature of seasonal cycles relative to business cycles imply two
restrictions on the analytic framework described above. The first amounts to saying that seasonal
cycles are due, say, to 1 while business cycles are due to zo (i.e., 27 = z§ = 0, Vt). The sec-
ond assumption implies that the parameters transmitting seasonal fluctuations from exogenous to
endogenous variables have no connection with those transmitting business cycle fluctuations (e.g.,
f1{Z1,Z2) is unrelated to f2(Z1,Z2) in the case where z} = z} = 0).

If both these conditions hold, the discussion above shows that the model does not imply a cross-

sectional correlation between the seasonal and non-seasonal standard deviations of y, assuming the

17 The particular model we examine also incorporates a non-linearity, but this is not crucial for the results.

13 One exception is Ghysels (1988), who models stationary stochastic seasonality in a dynamic context. In his
model seasonal fluctuations in demand add power to the spectrum of production at non-seasonal {requencies.

12



other possible sources of this correlation are absent.!® This means that when models assume a priori
that there are significantly different sources and propagation mechanisms for seasonal cycles and
business cycles, it is more difficult for those models to accommodate the empirical facts presented in
this paper. We now demonstrate these points through two examples. The examples are deliberately
overly simple, but we find them useful in order to fix ideas.

Consider first the textbook aggregate supply/aggregate demand model due to Lucas (1973):

mt—pt =Yt (7)

Yo = 0(pe = Ecapr) + 8t (8)

where 3, is a seasonal dummy shifter in the technology (the natural rate), m; is the nominal money
stock, py is the price level, y; is real output, and 6 is a parameter. All variables are measured in
logs. Equation (7) is a standard aggregate demand curve, and equation (8) is a standard Lucas
supply function, with the natural rate replaced by the seasonals, s;.

The solution for output is

8

= m(mt —Eiame) + 8¢ .

Yt

This example embodies in a simple way both of the two notjons described above. First, the sources of
seasonal and business cycle fluctuations are different. Seasonal variation is due to technology shifts,
while business cycle variation is due to monetary surprises. Second, the mechanism transmitting
shocks from exogenous to endogenous variables is different as well. No parameter multiplies both the
technology shocks and the money shocks. The model cannot explain the cross-sectional correlation
in output across countries unless those countries in which the variance of the anticipated technology
seasonal is large are also the ones in which the monetary authority puts a large variance into the

money stock surprises. There is no obvious reason for this condition to hold.

19 We also assume that the higher moments of z are independent of the season.
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A second useful example is the standard permanent income model of consumption. Assume

that a representative consumer faces the problem:

max E (¢,
max ;‘;ﬁ (Cy)

s.t. Ag+1 = R(At +ye — C!)

Rg=1,

where C; is consumption, y; is income, A; is beginning-of-period wealth, 7 is the constant, gross
real interest rate, and J is the consumer’s rate of time preference.

Suppose the utility function is quadratic with a seasonal shifter in the intercept of the marginal
utility function,

U(Cy) = a,Cy — vC2,
where o; is a seasoral dummy process. Then the solution for the change in consumption is

1 R-1
Ce—=Cior = a(at -+ % Z R0 (Esys — Eeavs) -

s=t
The variance of the non-seasonal change in consumption depends only on R and the properties of
y:. The variance of the seasonal change in consumption depends only on v and the properties of
ai.

This example shows why the sharp distinction between anticipated and unanticipated shocks
makes our empirical findings hard to explain. Changes in consumption are driven by revisions in
forecasts of permanent income, and such revisions are themselves unforecastable under rational
expectations. If income is the only possible source of seasonality in this model, consumption is not
seasonal. In order to explain the observed seasonality of consumption, it is necessary to postulate
a seasonal in preferences. Then, in order for the model to accommodate our cross-sectional results
there must be a cross-sectional correlation between the variance of the seasonal shift in preferences

14



and the variance of the shock to income. Again, there is no obvious reason for this condition to
hold.

The discussion is this subsection does not prove that the exogenous variables producing business
cycles are the same as those producing seasonal cycles, nor does it prove that seasonal and non-
seasonal shocks, whatever their source, propagate through the economy in the same manner. The
discussion does show that models of aggregate fluctuations in which the sources and impact of
seasonal fluctuations are fundamentally different from those of business cycle fluctuations have

difficulty encompassing our empirical findings.

5. Capacity Choice and Output Fluctuations

In this section we present a model that gencrates some of the cross-sectional correlations
documented above. This model is not the only way to explain the correlations; we focus on it
partly to illustrate that a model consistent with our findings can produce interesting results.?®
Nevertheless, we believe the main innovation in our model is an important one that is worth
pursuing in its own right. We present some suggestive evidence along these lines.

Our basic idea is illustrated graphically in Figure 17. The figure illustrates a firm’s marginal
cost curve along with‘the demand curves faced by that firm in various states of the world. The
diagram portrays two seasons with the state of demand uncertain around its mean level in each
season. The MC curve begins to rise steeply at some point, which we refer to loosely as “capacity.”
The firm obtains flexibility by purchasing “excess” capacity, so the firm can expand output over
a larger range without a substantial increase in marginal cost. In the top panel, the firm faces a
demand curve that does not shift much seasonally. It therefore chooses a level of capacity that is

close to the average level of output. In the bottom panel, the firm faces a much greater seasonal

20 Ghysels (1988), Todd (1989), Braun and Evans (1990), Chatterjee and Ravikumar (1990}, and Hansen and
Sargent (1990) also present models that are potentially consistent with the facts documented above. With
the exception of Chatterjee and Ravikumar (1990), however, none of these papers discusses the cross-sectional
correlations discussed here, and even Chatterjee and Ravikumar do not show that their model necessarily
implies our stylized facts.

15



variance in demand, so optimal capacity choice is greater, implying that non-seasonal shocks in the
low demand season have a bigger effect on output than they would in the world described in the
top panel. There is of course nothing special about seasonal variation in demand; an increase in

the amount of non-seasonal variation also leads to an increase in optimal capacity.

5.1 The Basic Model

We now formalize this story. The simplest model of capacity has a firm with constant marginal
costs up to the capacity limit, giving a backwards ‘L’-shaped marginal cost curve. Such a model
typically yields a corner solution for output, since the solution to the first-order conditions may be
greater than capacity before imposing the inequality constraint. To simplify the analysis we ensure
interior solutions by assuming a hyperbolic marginal cost function for which the vertical asymptote
can be thought of as the binding capacity constraint.?!

The firm’s marginal cost curve is given by:

MC =cz,

¢
-z,
where z, is the firm’s output in season s, cis a fixed parameter, and ¢ is a parameter (the vertical
asymptote) chosen ez ante by the firm at some cost per unit of “flexibility”. Purchasing more ¢
lengthens the range over which the marginal cost curve is relatively flat and hence increases the
firm’s output response to demand shifts.
Suppose the firm chooses its technology once a year. During the year it produces for one high

and one low season, after which the technology disintegrates. The inverse demand curve is linear,

Ps=0s— JZs,

21 The main points made in this section can be shown most simply in a model with linear marginal cost (MC)
curves, with firms able to purchase er ante the slope of the curve. The flatter is the curve, the greater is the
output response to a demand shock. However, the simple linear MC model is not particularly interesting since
almost all firms appear to operate sometimes in a region where MC turns up sharply. Moreover, linear marginal
cost curves predict homoskedasticity in the growth rates of output across seasons whereas our model predicts
heteroskedasticity. We discuss this implication below.
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where a4, = a + 6o + € with a fixed, € is a white noise demand shock, § = {—1,1} in the low and
high seasons respectively, and ¢ is the magnitude of the seasonal shift in demand.
If output decisions are made after the realization of the current period’s shock, then given

technology, ¢, optimal output in a period s is

o (st b+ dd) = [(e + o+ cl6) ~ hasg]’
s 2b

and maximized period profits are
bouy « -
77 =(as - 5:,):, — co[ln ¢ — $ln(¢ — ) — z3).

We assume that both seasons are of the same length and that the firm does not discount across
the two seasons. Then the firm’s optimal er ante capacity choice is obtained by maximizing the
expected sum of period profits, minus the cost of purchasing capacity, ¢¢. No explicit solution to
this problem exists, so we solve the model numerically for a variety of parameter values.

For all parameter values tested, the model yields a positive correlation between the seasonal
and non-seasonal standard deviations of output as the seasonal demand shift changes. Two typical
sets of results are given in Tables 3a and 3b. The correlation coefficient between the standard
deviations of the seasonal and non-seasonal components of output is greater than 0.9 in both cases.
Thus, the model is consistent with the facts presented in Section 3.%?

In order to make this explanation of the cross-sectional correlations convincing, we need to
extend the model theoretically and test its empirical implications. At the theoretical level, the most
important addition is to allow firms to hold inventories with which to smooth production. Since

capacity and inventories play essentially the same role in our simple model, we ignore inventories

32 We also constructed a model in which the firm fixes a single price at the beginning of the year and charges
that price regardless of season or realization of the non-seasonal shock. Such behavior may be explained by
high ‘menu costs’ of changing prices ar by customer loyalty considerations. Thus, prices are not seasonal, We
used the same marginal cost and demand curves as above and assumed that the firm sells either the quantity
demanded at its pre-announced price or the quantity at which marginal cost is equal to price (whichever is
smaller, and thus optimal, for the firm). This model generates the same result as above: thereis a positive
cross-sectional correlation between the standard deviations of seasonal and non-seasanal output as the seasonal
demand shift changes. The other results discussed below also hold in our fixed-price model.
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rather than deal with the added complication of a second state variable. In order to extensively test
the model, however, we must account for the behavior of inventories. We would also like to consider
entry and industry equilibrium, possibly with strategic competitive motives for holding excess
capacity (e.g., Spence (1979)) and inventories (e.g., Rotemberg and Saloner (1986)). These features
would make the model more complete in addition to suggesting tests of the relative importance
of demand or cost fluctuations and strategic motives as determinants of capacity and inventory

behavior.

5.2 Empirical Verification

Thorough empirical testing of our model is beyond the scope of this paper, in large part
because the model is too preliminary to withstand detailed scrutiny. To illustrate the model’s
potential, however, we examine one simple implication that is likely robust to the theoretical
extensions discussed above. The prediction is that output exhibits a particular form of seasonal
heteroskedasticity.

Imagine non-seasonal stochastic shifts in the intercept of the demand curve in each season (see
Figure 17). During the low season, there will be substantially more variation in realized cutput than
during the high season because of the effective truncation of high season output by the capacity
constraint as well as because of the greater slope of the MC curve up to the level of capacity. We
should therefore see seasonal heteroskedasticity in the non-seasonal output residuals, i.e., different
non-seasonal variances in different seasons. The prediction is stronger than merely saying there
will be seasonal heteroskedasticity; the model implies that the variance in the high season is lower
than in the low season.

Testing this proposition is complicated when there is a unit root in production. For all seasons
the theoretical variance of the level of output conditioned only on the season is infinite. Although the
variance of growth rates is finite, the model does not predict a pattern relating heteroskedasticity
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in the growth rate variances to the seasonals in the growth rates. We do, however, expect the
variance of the growth rates to be related to the seasonal in the level of output. Assume that the
process for output is integrated because the process for demand is integrated. The firm adjusts
output more in response to a shock to demand growth if capacity is slack than if capacity is tight
because when capacity is slack MC is relatively flat. We therefore expect the non-seasonal output
growth rate variance to be high when the level of output is low.

To verify this intuition, we constructed a 20-year simulation of our model in which the stochas-
tic demand shock is integrated. This produces integration in production, and all of the results
discussed above still hold. In particular there is seasonal heteroskedasticity in the log growth rate
output variances, with the growth rate variances decreasing in the seasonal level of output.

We test the prediction of seasonal heteroskedasticity in our three measures of output: IP across
countries, IP across U.S. manufacturing industries, and Y4 across U.S. manufacturing industries.
We first calculate a White (1980) test for any form of seasonal heteroskedasticty. The results are
presented in Table 4 under the column labeled Heteroskedasticity. At the 5 percent level, the data
reject the null of no seasonal heteroskedasticity for eighteen of twenty countries (IP) and fourteen
(IP) or seventeen (Y4) of twenty U.S. manufacturing industries. We also report test statistics for
three U.S. industry aggregates. The results are consistent with those for the individual two-digit
industries.

We next test whether the variance of the growth rate conditional on the month is negatively
correlated with the level of production in that month. To calculate the seasonals in the level of
production, we regress the log level of an industry’s or country’s production on twelve monthly
dummies and a quadratic trend. Qur estimates of the seasonal in the level of output are then
the twelve coefficients on the monthly dummies. For each country and industry we calculate the
Spearman rank correlation between the variance of the production growth rate in 2 month and the
average level of production in that month. We also calculate the significance level for the one-sided
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alternative that the correlation is negative.?

The Spearman rank correlations are reported in Table 4 under the column headed Patiern.
For all three production series, eighteen of the twenty countres or industries display negative
correlations. For countries, with output measured by IP, ten of the correlations are significant at
the 5 percent level and three more are significant at the 10 percent level. For industries, with output
measured by IP, eight of the correlations are significant at 5 percent and two more are significant
at 10 percent. For industries with output measured by Y4, four of the correlations are significantly
negative at 5 percent and another two are significant at 10 percent. The percentage of negative rank
correlations is substantially larger than under the null of no relationship. This conclusion applies
even if countries or industries are correlated so that the observed seasonal variance~production level
pairs are not independent chservations.?

These results support the premise in our model that capacity constraints affect production
more in high versus low demand seasons. They do not show that capacity constraints are chosen

endogenously, as suggested above. We leave the investigation of this claim for future work.

6. Conclusions

In this paper we document a robust stylized fact, explain at a general level what factors are
required in a model to accommodate the fact, and offer one specific model that is consistent with
the empirical finding. The explanation we offer clearly requires significant further development
at the theoretical level, as well as additional testing of its empirical implications. We leave these
tasks for future work. We close with a discussion of some implications of our capacity story for
understanding aggregate fluctuations.

The first and perhaps most important implication is that endogenous control of technological

2 We have also calculated the Pearson correlation coefficients between the variance of the production growth
rates and the level of production. The results are similar to those reported in the text.

24 Under the null of independent observations, the probability of observing only two positive correlations out of
twenty is .000. Under the null that there are only ten independent observations, the probability of observing
one positive correlation is .011.
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flexibility links seasonal cycles and business cycles so that it is not possible to correctly study the
two types of fluctuations separately. In our model the amount of seasonal variation in demand is
a crucial determinant of the firm’s non-seasonal output variability, and the non-seasonal variation
in demand partly determines the firm’s seasonal pattern of production. Seasonal and non-seasonal
fluctuations therefore interact and jointly determine the mechanisms by which both seasonal cycles
and business cycles are propagated.

A corollary is that both anticipated and unanticipated shocks can have real effects, and these
effects cannot always be sharply distinguished. Over horizons that matter, firms in our model
respond similarly to all shifts in demand regardless of how well anticipated. The degree of flexibility
chosen ez ante affects the er post response to both anticipated and unanticipated shocks. Of
course, if policymakers systematically attempted to exploit the medium-term fixity of technological
flexibility, firms would adjust their choice of flexibility (the Lucas (1976) critique). Nevertheless,
policies that smooth anticipated fluctuations have real effects.

A second implication of our model is that the technology is not something that can be treated
as exogenously determined, as it is in the real business cycle models of Prescott (1986) and others.
Instead, the degree of technological flexibility is chosen endogenously by firms in response to the
degree of demand and cost variability. Of course exogenous technology shocks may be one source
of aggregate fluctuations, but our model suggests that the path of technology should not be taken
as something determined entirely outside the model. As long as there is more than one way to
produce output, firms’ choice of method is affected by the stochastic environment in which they
operate, and this implies interactions between the nature of demand shocks and supply shocks.

Finally, our model is potentially consistent with the view (e.g., De Long and Summers (1988),
Ramey and Ramey (1991)) that the stabilization of output has first-order effects on welfare by
raising the average level of cutput in addition to reducing its variance. Over fifty years ago Kuznets
(1933) suggested this as a reason for stabilizing the seasonal cycle. Since we have not yet modeled
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the general equilibrium of the economy in which our firm resides, we cannot say whether it would
improve welfare for policymakers to stabilize output; unused capacity is not equivalent to socially
“excessive” capacity. It does follow, however, even in our simple model, that stabilizing demand—
either seasonally or non-seasonally—would reduce the amount of resources invested in capacity and

thus have a first-order effect on output.
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Table 1. Cross-Country Regressions:
Non-Seasonal Standard Deviation on Scasonal Standard Deviation
Retail Sales | Indus. Prod. | Money | Prices | Nom. Rale | Real Rate
Coefficient .22 .18 .51 1.91 2.27 .86
t-statistic (2.36) (2.42) (2.93) | (4.74) (3.83) (3.18)
R? 13 34 17 66 47 52
Sample Size 18 20 23 21 11 10

Notes:

1. Weighted least squares regression results with weights equal to the fourth root of the sample length

minus one, (N — 1)1/4,

Table 2. Cross-Industry Regressions:
Non-Seasonal Standard Deviation on Seasonal Standard Deviation
Y4 IP Shipmenis | Inveniories | Prod. Vrk. Hrs.
Coefficient .53 .32 .50 .76 49
t-statistic (2.55) (9.50) (2.05) (25.85) (7.39)
R? .22 .60 .18 91 .35
Sample Size 20 20 20 20 20
Avg. Hours | Prod. Workers | Total Emp. Wages Prices
Coefficient 1.25 42 .40 .70 .88
t-statistic (8.00) (5.45) (6.39) (28.19) (1.34)
R? 73 20 22 86 09
Sample Size 20 20 20 20 17

Notes:

1. OLS regression results except for prices, which is estimated by weighted least squares; sce text for

details.

2. Y4 is shipments plus the change in inventories.
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Table 3a. Simulated Capacity Model

Seas. Optimal Std. Dev. of Non-seasonal

Shift | “Capacity” Qutput Std. Dev. of
Oulput

o " Seas. Non-Seas. | Low Seas. | High Seas.
0.0 5.661 0.000 0.169 0.029 0.029
0.5 5.676 0.085 0.170 0.032 0.026
1.0 5.722 0.173 0.174 0.037 0.024
1.5 5.798 0.263 0.179 0.042 0.022
2.0 5.905 0.359 0.186 0.048 0.021
2.5 6.044 0.462 0.195 0.056 0.020
3.0 6.216 0.573 0.205 0.065 0.019
3.5 6.419 0.694 0.217 0.075 0.019
4.0 6.654 0.825 0.230 0.087 0.019
4.5 6.920 0.966 0.244 0.100 0.019
5.0 7.214 1.119 0.258 0.113 0.020
5.5 7.536 1.282 0.272 0.128 0.020
6.0 7.882 1.455 0.286 0.142 0.021
6.5 8.249 1.637 0.299 0.157 0.021
7.0 8.636 1.828 0.312 0.172 0.022
7.5 9.039 2.026 0.324 0.186 0.023
8.0 9.457 2.231 0.335 0.200 0.024

Correl. .997

Notes:
1. Each row contains the results from a different simulation, with the seasonal shift parameter indicated.
For all simulations, the other parameter values are: e = +1;a=10;b=1;c=1;6§=.5; ¢ = L.
2. ¢ is the optimal choice of the flexibility parameter (“capacity”).
3. Correl. gives the correlation between the seasonal standard deviation of output and the non-seasonal
standard deviation of output.
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Table 3b. Simulated Capacity Model

Seas. Optimal Std. Dev. of Non-seasonal

Shift | “Capacity” Output Std. Dev. of
Output

o 'S Seas. Non-Seas. | Low Seas. | Iigh Seas.
0.0 2.475 0.000 0.051 0.003 0.003
0.5 2.480 0.027 0.053 0.004 0.002
1.0 2.494 0.055 0.057 0.005 0.002
1.5 2.518 0.087 0.065 0.007 0.001
2.0 2.554 0.124 0.077 0.011 0.001
2.5 2.604 0.170 0.093 0.016 0.001
3.0 2.670 0.226 0.112 0.024 0.001
3.5 2.754 0.296 0.133 0.035 0.001
4.0 2.858 0.382 0.156 0.048 0.001
4.5 2.982 0.484 0.177 0.062 0.001
5.0 3.123 0.602 0.195 0.076 0.001
5.5 3.277 0.734 0.210 0.088 0.001
6.0 3.443 0.876 0.222 0.098 0.001
6.5 3.615 1.025 0.231 0.106 0.001
7.0 3.794 1.181 0.238 0.112 0.001
7.5 3.976 1.340 0.244 0.117 0.002
8.0 4.161 1.502 0.248 0.122 0.002

Correl. .945

Notes:
1. Each row contains the results from a different simulation, with the seasonal shift parameter indicated.
For all simulations, the other parameter values are: € = £1; a = 10; b= 2.5; ¢ = .25; 6 = .5; ¢ = 2.5.
2. ¢" is the optimal choice of the flexibility parameter (“capacity”).
3. Correl. gives the correlation between the seasonal standard deviation of output and the non-scasonal
standard deviation of output.
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Table 4a: Tests for Heteroskodasticity in Growth Rates — IP, OECD Countrics

Couniry Heleroskedasticity Paltern Couniry Heteroskedasticity Pallern
x3; p-value | Correl. | p-value X3 p-value | Correl. | p-value
Australia 9.83 546 420 913 [ Japan 30.96 .001 -538 .035
Austria 12,69 314 -.147 324 | Luxembourg 140.33 .000 -.650 .011
Belgium 36.30 .000 =T34 .003 | Netherlands 92.90 000 -.280 .189
Canada 87.35 .000 -.469 .062 Norway 64.64 .000 -.685 .007
Finland 85.71 .000 -.650 011 | Portugal 52.38 .000 -.105 373
France 77.14 .000 -.874 .000 | Spain 86.55 .000 -.559 .029
Germany 58.54 .000 -.608 .018 | Sweden 112.89 .000 -.455 .069
Greece 59.93 000 720 .996 United Kingdom 98.26 .000 -.161 .309
Ireland 20.52 039 -.685 .007 | United States 32.07 .001 -.580 .024
Italy 67.71 .000 -.413 091 | Yugoslavia 41.13 .000 -.329 .148

Table 4b: Tests for Heteroskedasticity in Growth Rates — IP, U.S, Manufacturing Industries

Industry Heleroskedasticity Pattern Industry Heleroskedasticity Patiern
X3 p-value | Correl. | p-value x4 p-value | Correl | p-value

Food 77.67 .000 -.154 .317 | Stone, Clay, Glass 26.41 .006 -.713 .005
Tobacco 23.79 014 -.287 183 Primary Metals 14.60 202 -.517 .042
Textiles 24.19 .012 =776 .001 Fabricated Metals 10.77 463 -.371 .118
Apparel 202.64 .000 -.685 .007 Machinery 11.31 417 .063 877
Lumber 26.64 .005 -.455 .069 Electrical Machinery | 34.63 .000 -.385 109
Furniture 27.85 .003 -.315 .160 | Transportation Egp. | 59.71 .000 -.804 .00t
Paper 31.50 001 =301 171 Instruments 12.58 321 -.154 317
Printing 39.61 .000 175 707 Miscellaneous Mfg. 9.28 596 -.587 .022
Chemicals 17.58 .092 -.448 072

Petroleum 25.23 .008 -.531 .038 | Non-Durables 3247 .001 -.007 491
Rubber 21.05 .033 -.224 .242 | Durables 66.01 .000 -.671 .008
Leather 45.30 .000 -.909 .000 | Total Manufacturing | 66.24 .000 -.573 .026

continued
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Table 4c: Tests for Heteroskedasticity in Growth Rates — Y4, U.S. Manufacturing Industries

Industry Heteroskedasticity Pattern Industry Heteroskedasticity Pattern
x% p-value | Correl. | p-value x% p-value | Correl. | p-value

Food 51.01 .000 -.204 177 | Stome, Clay, Glass 31.58 .001 -.392 .104
Tobacco 25.71 .007 -.154 .317 | Primary Metals 29,34 .002 -.035 457
Textiles 33.66 .000 .320 .852 | Fabricated Metals 35.30 .000 -734 .003
Apparel 15.40 165 -.580 .024 | Machinery 37.54 .000 -.357 128
Lumntber 49.94 .000 -.448 072 | Electrical Machinery | 45.11 .000 -.329 .148
Furniture 11.03 441 -.182 .286 | Tranmsportation Eqp. | 28.19 .003 -.629 .014
Paper 47.63 .000 -.448 .072 | Instruments 31.16 001 -.028 .466
Printing 23.96 013 -.357 128 | Miscellaneous Mfg. 38.03 .000 -.329 148
Chemicals 35.02 .000 .070 .585

Petroleum 16.14 136 -.273 .196 | Nen-Durables 17.07 .106 -.175 .293
Rubber 34.69 .000 -.629 .014 | Durables 42.73 .000 -.385 .109
Leather 28.49 .003 -.182 .286 | Total Manufacturing | 3318 .000 -.343 .138

Notes for Tables 4a-4c:
1. x}, are statistics for the hypothesis that all monthly variances are the same. P-values are the significance
levels for the chi-square statistics.

2. Correl. gives the Spearman Rank Correlation between the montly variances of the growth rates and the
average level of the series in that month. P-values are for test that the correlation < 0 using a t-test
approximation.

3. Y4 is shipments plus the change in inventories.
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Figure 17: Fluctuations in Demand
and Capacity Choice

Low Seasonal Variance
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Table Al. Cross-Country Regressions:
Non-Seasonal Standard Deviation on Seasonal Standard Deviation
Selected Countries Excluded

Excld. Countries Spn, Yug Swe Ice, Tur Gre, Tur, Yug
Retail Sales | Indus. Prod. Money Prices

Coeflicient 15 .31 .38 1.37

T-Statistic (1.39) (5.37) (2.42) (3.11)

R? .07 54 13 43

Notes:

1. Weighted least squares regression results with weights equal to the fourth root of the sample length
minus one, (N — 1)1/4,

} Table A2. Cross-Industry Regressions:
Non-Seasonal Standard Deviation on Seasonal Standard Deviation
Selected Industries Excluded
Excld. Industries Tobacco
Y4 IP Shipments | Inventories | Prod. Wrk. Hrs.
Coefficient .35 .34 25 .60 .53
t-statistic (3.54) (3.52) (3.41) (5.21) (2.30)
R? .23 40 .30 .52 .14
Avg. Hours Prod. Workers | Total Emp. Wages Prices
Coeflicient 1.07 43 .32 1.21 .85
t-statistic (5.49) (1.58) (1.75) (5.18) (1.38)
R? 53 .08 .02 42 .10
Excld. Industries "obacco and Petroleum Transp. Lum. & Trn.
Prod, Wrk. Hrs. | Prod. Workers | Total Emp. Prices
Coeflicient 45 27 22 2.33 3.22
T-Statistic (2.16) (1.43) (1.85) (5.20) (3.04)
R? 26 .07 .07 .39 .32
Notes:

1. OLS regression results except for prices, which are weighted least squares; see text for details.
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Table A3. Cross-Country Regressions with Country Characteristics Included:
Non-Seasonal Standard Deviation on
Seasonal Standard Deviation and Country Characteristics

Retail Sales | Indus. Prod. Money CPI Nom. Rate | Real Rate Controls

Coefficient .18 15 42 1.88 2.86 .84 TGNP
t-statistic (2.08) (2.10) (2.39) (4.69) (4.57) (3.07)

R? .24 .39 .25 .65 .59 47
Coeflicient .22 .19 .19 1.49 3.03 .94 AG
t-statistic (2.57) (2.61) (1.37) (3.11) (3.80) (3.77)

R? 50 .34 37 £5 48 .50
Coeflicient .30 .19 .87 1.54 1.69 1.01 MFG
t-statistic (2.90) (2.51) (4.20) (3.87) (2.24) (3.49)

R? .31 .33 .26 .72 67 .65
Coefficient .14 18 .39 1.57 3.08 .84 PCGNP
t-statistic (1.62) (2.78) (2.68) (4.86) (4.45) (2.33)

R? .39 39 .16 .68 .56 46
Coeflicient .18 16 17 1.47 4.42 .92 TGNP, AG
t-statistic (1.91) (2.30) (1.31) (3.09) (13.38) (3.81) & PCGNP

R 49 34 .49 .62 82 .34
Coefficient .25 16 .58 1.52 3.54 .95 TGNP, MFG
t-statistic (2.61) (2.43) (3.69) (3.97) (7.25) (3.02) & PCGNP

R? 41 36 26 .68 81 53

Notes:

1. Weighted least squares regression results with weights equal to the fourth root of the sample length
minus one, (N — 1)}/4,
2. TGNP denotes the total GNP of the country In mid-1985 (dollars). AG denotes the share of GDP
devoted to agriculture in 1985. MFG@ denotes the share of GDP devoted to manufacturing in 1985.

PCGNG denotes the GNP per capita in 1985 (dollars).

3. The sample size varies according to the availability of data on the control variables.
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Table A4, Cross-Industry Regressions with Industry Characteristics Included:

Non-Seasonal Standard Deviation on

Seasonal Standard Deviation and Industry Characteristics

Yy IP Shipments Inventories Prod, Wrk, Hrs. | Controls
Coefficient 46 .30 45 a1 49 E7
t-statistic (2.25) (7.88) (1.98) (28.26) (4.80)
R? .19 .59 14 81 .31
Coefficient 46 .30 39 76 42 C4
t-statistic (3.13) (6.35) (2.99) (22.26) (5.19)
R 28 .63 .34 01 35
Coefficient .56 .30 .59 76 46 Union
t-statistic (2.46) (9.91) (2.21) (22.90) (7.32)
R? .18 .69 27 91 .35
Coefficient 57 .32 .57 75 45 Stock
t-statistic (2.40) (8.17) (2.00) (17.96) (4.43)
R? 21 59 25 91 34
Coefficient 57 .35 .56 .76 48 Durb
t-statistic (2.16) (9.04) (1.85) (20.30) (6.20)
R 20 .62 .18 .91 31
Coeflicient 27 37 29 .51 .52 Union, C4
t-statistic (2.47) (5.09) (3.91) (3.37) (2.40) & Durb
R 11 52 .30 A7 .09
Coefficient 27 37 .29 51 .50 Union, C4
t-statistic (2.74) (4.60) (4.49) (3.39) (2.30) & Stock
R? 13 52 30 A7 .12
Coefficient .25 .25 17 53 44 E7,C4
t-statistic (2.07) (1.76) (2.11) (3.62) (1.35) & Durb
R 11 45 .26 47 .10
Coefficient 20 .29 27 .57 46 Union, E7
t-statistic (1.28) (2.57) (3.01) (4.10) (1.42) & Stock
R? 16 50 30 44 07
Sample Size 20 20 20 20 20
confinued
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Table Ad. Cross-Industry Regressions with Industry Characteristics Included:
Non-Seasonal Standard Deviation on
Seasonal Standard Deviation and Industry Characteristics

Avg. Hours Prod. Workers Total Emp. Wages Prices Controls
Coefficient L1l 49 46 .69 .89 E7
t-statistic (6.67) (3.69) (4.23) (2447) (1.26)
R3 .76 .19 20 .86 .04
Coeflicient 1.21 32 33 .87 87 C4
t-statistic (7.45) (3.30) (5.05) (19.07) (1.34)
R? .72 25 .26 .86 02
Coefficient 1.24 .36 38 .68 .80 Union
t-statistic (8.43) (4.74) (5.97) (29.70) (1.18)
R? 72 .25 27 86 03
Coeficient 125 .35 .33 .68 107 Stock
t-statistic (10.76) - (2.94) (3.10) (15.78) (1.75)
R? .78 .19 .22 86 .28
Coefficient 1.29 42 40 .69 1 Durb
testatistic (11.68) (5.11) (5.26) (21.35) (1.82)
R? 79 15 .18 -85 18
Coefficient 1.27 38 .33 L1 1.20 Union, C4
t-statistic (7.36) (1.71) (1.98) (4.41) (2.95) & Durb
R? .58 .06 -.01 .35 .10
Coefficient 1.23 32 29 1.07 1,22 Union, C4
t-statistic (6.51) (1.49) (1.69) (4.10) (3.17) & Slock
R? 53 11 04 .35 18
Coefficient .99 A7 .38 1.00 1.58 E7,C4
t-statistic (9.56) (1.30) (1.21) (3.36) (3.82) & Durb
R? 74 .02 -.06 45 27
Coefficient 1.01 41 .32 1.03 1.00 Union, E7
t-statistic (5.20) (1.23) (1.08) (3.49) (1.48) & Stock
)i £6 07 01 38 07
Sample Size 20 20 20 20 17
Notes:
1. OLS regression results except for prices, which is estimated by weighted least squares; see lext for
details,

2, E7 denotes the ratio of non—production workers to total employment in 1977. Union denotes the
percentage of employees in unions in 1983. C{ denotes a measure of concentration in each industry
based on the Four-Firm Concentration Ratios reported in the 1977 Census. Stock denotes a dummy
for the six production to stock industries, Food, Tobacco, Apparel, Chemicals, Petroleurn, and Rubber,
Durd denotes a dummy for the ten durable goods industries.
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Table A5. Multivariate Cross-Country Regressions:

Non-Seasonal Standard Deviation on Seasonal Standard Deviation and Country Characteristics

Retail Sales Indus. Prod. Money CPI Nom. Rates Real Rates
Coeff | t-stat | Coefl | t-stat | Coeff | t-stat | Coeff | t-stat | Coeff | t-stat | Coefl | t-stat
SEASONAL 19 1.90 17 2.56 .29 2.27 | 1.19 2.81 | 3.33 9.90 | 1.20 4.53
(06) | (62)] (02)| (38)| (15)](1.26) | (47) | (1.21) | (81) | (5.81) | (.21) | (1.67)

AREA -.10 -1.18 | -.16 2.07 | -.10 -1.97 .00 .06 01 224 | -.01 -.30
(:09) | (.92) | (.08) | (1.21) | (.06) | (1.01)| (.02) | (1.16) | (.00) | (1.21) | (.02) | (1.28)

POP -11 | -2.45 | -.06 | -1.27 | -.06 | -3.02 | -.01 -.93 .00 3.09 | -.00 -.62
(:03) | (.73) (.03)| (.75) | (.02) | (1.16) | (.01) | (.73)| (.00) | (2.19) | (.01) | (1.62)

TOTGNP -6l | -2.24 | -43 | -1.78 | -.36 | -3.05 | -.06 -.93 .01 439 | -.02 -.41
(200 | (73| (20 ] (00) | (11)](.29)] (05) | (78) | (.01) | (275) | (.05) | (1.55)

AGRSHR .23 1.56 04 .73 .10 2.39 .02 43 | -.00 | -2.12 | -.08 -.93
(:16) | (.91) | (.08) | (.81)| (.04)| (.90) (| (.04) | (.79)| (.01)|(2.33) | (.07) | (.93)

MFGSHR -.08 | -1.53 | -.01 -12 | -.06 | -2.30 | -.00 -20 | -.00 | -4.45 | -.03 | -2.76
(03)| (41)| (03)| (61)| (02)| (57| (01) | (76) | (00) | (4.17)| (.01)| (82)

INDSHR .03 Py .10 1.26 | -.05 | -1.83 .03 1127 -01 | -6.30 | -.05 | -4.10
(.08) | (.73)| (.03)| (47)| (.02) | (.78)| (.01) | (.16) | (.00) | (2.70) | (.01) | (1.65)
SERSHR -09 | -1.19 | -.09 | -1.39 .01 40 | -.04 | -1.42 .00 5.00 .05 4.22
(OT) | (90) | €03) | (:65)] (.03) |10y | on) | (27| (00)|(2.36) | (on) | (1.60)

PCGNP -.20 -1.91 -.08 -.54 .02 25 ) -.03 | -L.15 .01 2.82 | -.03 -1.11
(.07) | (.62) | (.04) | (:27)| (.07) | (1.08)| (.02) | (.66) | (.00) | (1.40)| (.03) | (1.05)

LIFE -.06 -.25 | -.02 -20 | -10 | -1.62 | -.02 32 | -.00 -.89 | -.10 | -2.31
(:22) | (L.01) | (.08) | (46)| (.06) | (97)| (.03) | (46) | (.01) | (1.01)| (.03) ]| (1.13)

BIRTH .26 1.17 | -42 -2.22 .15 3.35 .08 2.70 .00 .74 | -01 -.30
(19) | (84) | (10) | (:64) | (-04) | (1.19) | (O1) | (1.13) | (.01) | (1.46) | (.04) | (.86)
INFMOR .20 2.76 12 1.09 .03 4.85 .02 | 2.94 .00 .37 .05 1.40
(-09) ; (1.38) | (.15) | (1.33) | (.01) [ (1.95) | (.00) | (1.72) | (.00) | (.35)| (.02)| (.77)
POPMD -.35 -1.62 -.25 -.64 17 3.31 .09 1.72 | -.01 -1.49 -.00 -.04
(20) | (1.44) | (19) | (47)| (.05) | (1.10) | (.02) | (.87)| (.00) | (1.35) | (.03)| (.52)
CALOR .23 1.84 14 1.20 | -.07 -.95 | -.01 «.34 .00 1.16 .03 .93
(O7y | (21) | (08) | (.68)| (.04)| (.85)| (.02) | (.B53) | (.00) | (48)| (01)| (.24)
SCHOOL .02 43 | -.07 | -1.48 | -.03 | -1.30 .01 .87 .00 6.78 .00 .35
(04) | (73)| (.02)| (43)| (.02) | (.79)| (.01) | (.59) | (.00) | (3.16) | (.01) | (1.45)

LFAGR 15 2.07 .05 79 .04 3.03 .05 3.48 | -00 | -1.60 | -.05 | -2.60
(.06) | (.46) | (04)| (.69) | (.03)1(1.99)]) (.02) | (:57) | (01)](2.81)| (.01)| (.46)
URBAN -05 | -1.55 | -.02 | -1.11 | -.03 | -2.83 | -.01 | -1.82 | -.00 .14 .02 3.89
(.02) | (66) | (01)] (43) | (01| (83) ] (.00) | (.33) | (.00){(2.20) | (.00) | (1.07)

R? 42 40 42 69 80 60
(.12) (.05) (.12) (.06) (.11) (.15)
conlinued
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Notes:

1. The statistics are generated from regressions of the Non-Seasonal Standard Deviation times 100 on a
constant, the Seasonal Standard Deviation times 100 and one variable from each of the three demarcated
groups. The three groups measure the size of the country, the composition of GDP, and the level of
economic development. The averages of all combinations are reported. Thus, SEASONAL reports the
average coefficient on the Seasonal Standard Deviation from 108 regressions (3 x 4 x 9). AREA reports
the average coefficient on the area variable from 36 regressions (4 x 9). The constant is not reported.
'Weighted/ least squares is used with weights equal to the fourth root of the sample length minus one,
(N - 1ML,

2. Coeff is the average coefficient on that right-hand side variable for all regressions in which that variable
is included. Standard deviations are in parentheses. Likewise, t—stat reports the average t-statistic.

3. AREA, is millions of square kilometers. POP, is total the population in hundred millions, mid-1985.
TOTGNP, is the total GNP in billions of 1985 dollars. AGRSHR, is the share of agriculture in GDP,
1985. MFGSHR, is the share of manufacturing in GDP, 1985. INDSHR, is the share of industry in
GDP, 1985. SERSHR, is the share of services in GDP, 1985. PCGNP, is GNP per capita in thousands
of 1985 dollars. LIFE, is the life expectancy at birth as of 1985. BIRTH, is the crude birth rate per
thousand population, 1985. INFMOR, is the infant mortality rate, 1985. POPMD, is the population
per physician, ten thousands, 1981. CALOR, is the daily calorie supply per capita, ten thousands, 1985.
SCHOOL, is the number of people enrolled in school as a percentage of age group, higher education,
1984. LFAGR, is the percent of labor force in agriculture, 1980. URBAN, is the percent of population
in urban areas, 1985.
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Table A6. Cross-Country Regressions:
Non-Seasonal Standard Deviation on Seasonal Standard Deviation
Various Robustness Checks
Retail Sales | Indus. Prod. M1 CPI Nom. Rate | Real Rate Type
Coefficient .30 .09 43 1.87 —_ — First Half of
T-Statistic (4.32) (2.08) (1.96) (4.76) —_ —_ time series
R? 17 21 .09 .65 — — sample
Coeflicient .10 10 .52 1.16 2.70 71 Second Half of
T-Statistic (1.05) (2.29) (2.86) (2.93) (4.78) (1.41) time series
R? .09 .19 .22 44 51 .13 sample
Coeflicient .19 .07 .56 1.92 — — EZ X-11
T-Statistic (.84) (2.63) (.23) (4.55) — —
R? -.05 22 -.07 66 — —
Coefficient .62 .04 61 9.99 4.13 — Detrended
T-Statistic (2.19) (1.02) (.53) (4.11) (2.38) — Levels
R? .39 02 .08 .50 .29 —
Notes:

1. Weighted least squares regression results with weights equal to the fourth root of the sample length
minus one, (N — 1)1/4.
2. The first half of the split sample is the longest possible subsample of the period 1960:2-1973:12. The
second half is 1974:1-1987:12.

3. EZX-11 uses the EZX-11 data program (Doan, 1989)

with default values for outliers (Outlier limit =

2.5; Graduate extremes, lower = 1.5, upper = 2.5). It also adjusts for Easter, Thanksgiving and Labor
Day. It does not adjust for trading days. M1 is missing data for Australia and Belgium.

4. Detrended levels means the data were detrended using a quadratic trend.
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Table A7. Cross Industry Regressions:

Non-Seasonal Standard Deviation on Seasonal Standard Deviation

Various Robustness Checks

Y4 IP Shipments | Inveniories | Prod: Wrk. Hrs. Type
Coefficient 41 .28 .20 73 42 First Half of
T-Statistic | (3.52) | (7.43) (1.55) (16.57) (5.27) time series
R? .28 .51 11 .89 31 sample
Coefficient 1 32 .64 .58 49 Second Half of
T-Statistic | (2.62) | (10.46) (2.33) (30.80) (6.97) time series
R? .50 .70 .52 .88 .33 sample
Coefficient 43 31 28 .60 57 First Half,
T-Statistic | (3.78) | (4.35) (2.56) (7.96) (2.07) No Tobacco
R? .34 42 26 85 .19
Coefficient 31 .26 19 43 52 Second Half,
T-Statistic | (3.54) | (3.52) (3.57) (3.55) (2.76) No Tobacco
R? .23 .32 .29 .30 17
Coeflicient .43 .25 .26 .53 -11 Census X-11
T-Statistic | (2.96) | (10.40) (2.27) (34.80) (--97) adjusted
R? .25 .57 .18 .88 -.02 data
Coefficient 43 .25 .26 .55 .42 EZ X-11
T-Statistic | (2.74) | (8.62) (2.21) (33.41) (5.73) adjusted
R? .23 .52 17 .89 25 data
Coefficient .80 -.07 .45 51 -.14 Detrended
T-Statistic | (3.05) | (-.31) (1.93) (1.66) (-.78) Levels
R? .30 -.05 .14 21 -.03
Coefficient .64 21 .29 -.29 43 Detrended
T-Statistic | (2.25) (.56) (1.43) (-1.88) (1.11) Levels, No
R? .20 -.04 05 .01 .00 Food or Tobacco
continued
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Table A7. Cross Industry Regressions:
Non-Seasonal Standard Deviation on Seasonal Standard Deviation
Various Robustness Checks (continued)
Avg. Hours | Prod. Workers | Total Emp. Wages Prices Type

Coeflicient 1.21 .38 .35 .56 1.44 First Half of
T-Statistic (4.15) (3.83) (5.26) (11.69) (5.87) time series

R 72 .22 21 69 52 sample
Coefficient 1.19 .36 .31 .65 .80 Second Half of
T-Statistic (8.42) (3.48) (4.66) (37.88) (1.17) time series

R? .65 .15 17 .93 .09 sample
Coeflicient 77 .59 .48 143 1.41 First Half,
T-Statistic (5.38) (1.62) (1.57) (4.88) (5.62) No Tobacco

R? .58 .15 .10 .52 .50
Coeflicient 1.35 40 .29 1.02 .56 Second Half,
T-Statistic (4.81) (1.61) (2.14) (4.14) (1.09) No Tobacco

R? .54 .08 .07 .60 .02
Coeflicient 1.19 .32 .28 — — Census X-11
T-Statistic (6.14) (4.22) (4.87) — — adjusted

R? 65 11 .09 — — data
Coeflicient 1.15 31 .26 .52 73 EZ X-11
T-Statistic (9.58) (3.79) (4.68) (18.90) (1.12) adjusted

R? .70 .09 .08 .75 .05 data
Coefficient .87 -.14 -.09 .01 8.87 Detrended
T-Statistic (3.32) (-.84) (-.50) (.14) (1.63) Levels

R? .23 -.03 -.08 -.06 .25
Coeflicient .96 .35 .32 1.02 8.82 Detrended
T-Statistic (1.83) (.95) (.74) (.92) (1.62) Levels, No

R? 14 -.02 -.03 -.00 .24 Food or Tobacco

Notes:

1.
2.
3.

4.

OLS regression results except for prices, which are weighted least squares; see text for details,

The first half of the split sample is 1967:5-1977:9; the second half is 1977:10-1987:12.

Census X-11 uses actual seasonally adjusted data. Seasonally adjusted data for Tobacco, Petrolenm
and Miscellaneous Manufacturing is unavailable for average hours and production worker hours.
EZX-11 uses the EZX-11 data program (Doan, 1989) with default values for outliers (Outlier limit =
2.5; Graduate extremes, lower = 1.5, upper = 2.5). It also adjusts for Easter, Thanksgiving and Labor
Day. It does not adjust for trading days.

. Detrended levels means the data were detrended using a quadratic trend,
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