NEER WORKING PAPERS SERIES

REQURSIVE AND SEQUENTIAL TESTS OF
THE UNIT ROOT AND TREND BREAK HYPOTHESES:
THEORY AND INTERNATIONAL EVIDENCE

Anindya Banerjee
Robin L. Lumsdaine

James H. Stock

Working Paper No. 3510

NATIONAL, BUREAU OF ECONCMIC RESEARCH
1050 Massachusetts Averue
Canbridge, MA 02138
November 1990

The authors thank T.W. Anderson, Donald Andrews, Bruce Hansen, Iars Hansen,
G.S. Maddala, Greg Mankiw, Alain Monfort, and Mark Watson for helpful
caments and discussions. This research was initiated while Banerjee was
Visiting Scholar, Kennedy School of Goverrment, Harvard University. Stock
thanks the Sloan Foundation and the National Science Foundation (grant no.
SES-89-10601) for financial support. This paper is part of NBER’s research
program in Economic Fluctuations. Any opinions expressed are those of the
authors and not those of the National Bureau of Economic Research.



NEER Working Paper #3510
November 1990

REXIIISIVEANDSMJENI'IALTESISOF'IHEUNITM

This paper investigates the possibility, raised by Perron (1989, 1990a), that
aggregate economic time series can be characterized as being stationary around
broken trend lines. Unlike Perron, we treat the break date as unknown a priori.
Asymptotic distributions are developed for recursive, rolling, and sequential
tests for unit roots and/or changing coefficients in time series regressions.
The recursive and roliing tests are based on a time series of recursively
estimated coefficients, computed using increasing subsamples of the data. The
sequential statistics are computed using the full data set and a sequence of
regressors indexed by a "break" date. When applied to data on real postwar
output from seven OECD countries, these techniques fail to reject the unit root
hypothesis for five countries (including the U.S.), but suggest stationarity

around a shifted trend for Japan.

Anindya Banerjee Robin L. Lumsdaine James H. Stock

Wadham College Dept. of Econamics Dept. of Econamics, Evans Hall
Oxford University Harvard University University of CA - Berkeley
Oxford OX1 3PN Cambridge, MA 02138 Berkeley, CA 94720

UNITED KINGDIM



1. Introduction

There is a large literature on the persistence exhibited by aggregate output,
in particular whether output is well characterized as containing a unit
autoregressive root. One alternative to the unit root (or "integrated") model,
suggested by Perron (1989), is that log output (yy) is stationary around a
deterministic time trend that has one slope in an initial fraction of the sample
and, later, a different slope. Using quarterly data for the postwar U.S.,
Perron (1989) presented evidence against the unit root null in favor of this
trend-shift alternative when the trend shift is associated with the first oil
price shock. Evans (1989) and Perron (1990a) suggested the related model in
which there is a shift in the intercept, in Perron’s case possibly in
conjunction with a shift in the slope of the deterministic trend. These models
and empirical findings are important, for four reasons, First, as Perron
emphasizes, if the trend-shift/stationary model is correct, then studies such as
Cochrane’s (1988) and Cogley's (1990) have attributed too much persistence to
innovations in GNP, and conventional unit root test statistics will incorrectly
fail to reject the unit root null. Second, in the spirit of Harvey (1985) and
Watson (1986), this provides a parsimonious model for a slowly changing trend
component of output which might be useful as data description. Interpreted
narrowly, the single-shift/deterministic-trend model has little economic appeal,
but interpreted more broadly it can be thought of as a metaphor for there being
a few large events that determine the growth path of output over a decade or two
-- in the U.S., the Depression or, later, the productivity slowdown. Once these
decade-shaping events are taken into account, output exhibits business cycle

properties in the sense of mean-reversion over business cycle horizons. Third,



current empirical research relies heavily on techniques built upon the
integrated/stationary classification of time series: if series that are
stationary with breaking trends are incorrectly classified as integrated,
incorrect inferences are likely to follow. Fourth, if the breaking-
trend/stationary model fits many time series better than the integrated model,
then the empirical relevance of the growing literature in theoretical
econometrics on unit roots and cointegration is brought into serious question.

The empirical focus of this paper is on international pattexrns of persistence
and possible permanent shifts in growth trends. We are, however, persuaded by
Christiano’s (1988) argument that the date of the break ought not be treated as
known -- Perron’s approach -- but rather should be treated as unknown a priori.
after all, the hypothesis that there might have been a break in the U.§S. output
process around the first oil shock has intuitive appeal precisely because we
know, before performing formal tests for breaks, that this major event was
followed by a period of slower growth. This paper therefore starts with the
presumption that, if there is a break, its date is not known a priori but rather
is gleaned from the data.

The literature on persistence of output includes several international
comparisons (Campbell and Mankiw [1989], Clark [1989], Cogley [1990], and
Kormendi and Meguire [1988]). These are based on full-sample techniques rather
than procedures that explicitly allow for changing coefficients, and thus leave
unanswered some intriguing questions. Once the break point is treated as
unknown a priori, is there evidence of a break in the drift of output? Is
output stationary around a changing deterministic trend? If so, is this pattern
consistent across countries, or is it idiosyncratic to specific countries? In
particular, if there are identified breaks, are they associated with the
productivity slowdown of the mid 1970's, and do they have the same timing across

countries?



Our two objectives are first to develop econometric techniques (and the
associated distribucion theory) appropriate for answering these questions, and
second to apply these techniques to international data on output (real GNP or
GDP) for seven OECD countries. Once the break point is treated as unknown, the
usual distribution theory does not apply: the relevant statistic now is, say,
the absolute maximum of an increasing number of unit root test statistics, one
for each possible break date. Christiano (1988) and Evans (1989) recognized
this issue and addressed it by numerical simulations.

The methodological contribution of this paper is to provide an asymptotic
distribution theory for statistics pertaining to the shifting-root/shifting-
trend hypotheses. Three classes of statistics are considered: recursive,
rolling, and sequential. Recursive statistics are computed over subsamples
t=1,...,k, for k—ko,...,T, where ko is a startup value and T is the size of the
full sample. "Rolling" statistics are computed using samples that are a
constant fraction 50 of the full sample, rolling through the sample. Statistics
that we term "sequential® are computed using the full sample, sequentially
incrementing the date of the hypothetical break (or shift). The term
"recursive" derives from Brown, Durbin and Evans’ (1975) treatment of recursive
estimation. Some recursive techniques are currently implemented in Hendry's
(1987) statistical package PC-GIVE; also see Dufour (1982). An example of a
sequential statistic is Perron’s (1989) unit root test with a trend shift at
date k, computed sequentially for k = kO""' T-kq, where ky allows for trimming
the initial and final parts of the sample. Another sequential statistic is
Quandt’'s (1960) likelihood ratio statistic, which entails computing the sequence
of likelihood ratio statistics for a break in all the coefficients and then
taking the maximum. These statistics are shown to have natural representations

as stochastic processes defined on the unit interval, and their limiting



distributions are characterized by functionals of Wiener processes. These
results extend related work by McCabe and Harrison (1980), Sen (1980, 1982),
Dufour (1982), James, James and Siegmund (1987), Kramer, Ploberger and alt
(1988), and Ploberger, Kramer and Kontrus (1989). The primary extension is to
the case of a unit root in the regressors and to recursive and sequential tests
for unit roots.

These techniques are applied to data on postwar real output for Canada,
France, Germany, Italy, Japan, the U.K., and the U.S. 1In only one case (Japan)
is the unit root hypothesis rejected in favor of the trend-shift hypothesis. We
also investigate the possibility that output has a unit root, but that its drift
(or mean growth rate) shifted at an unknown date over this period. This broken
drift could proxy for a permanent shift in the process of technological change
or, as here, for a productivity slowdown. In four of the seven countries, the
no-break/unit-root null is rejected in favor of the broken-drift/unit-root
alternative, with the break in the early 1970's.

The recursive and sequential statistics are described, and their asymptotic
properties studied, in Sections 2 and 3. Section &4 presents critical values and
a Monte Carlo experiment. The empirical results are presented in Section 5, and

: : - : 1
conclusions are summarized in Section 6.

2. Recursive and Rolling Test Statistics

The primary focus of this section is on two recursive tests for a unit root,
the Dickey-Fuller t-statistic and a modification of the Sargan-Bhargava (1983)
and Bhargava (1986) statistics, although the results are more general in that
some specialize to stationary time series as well. These two tests examine the

null hypothesis that the process has a unit root, against the alternative that



the process has a root less than one, perhaps with a nonzero linear time trend.
Thus the statistics involve some form of detrending. The motivation for
considering recursive unit root tests is that the process might be well-
approximated as having a unit root over part of the sample but not over another

part.

A. Recursive and Rolling Dickey-Fuller Statistics

It is assumed that observatioms on (y.] are generated according to:
(2.1) Model I: Y = Bg T BT Ay ¥ B(LIAY 1 + €, t=1,...,T

where S(L) is a lag polynomial of known order p with the roots of 1-8(L)L
outside the unit circle. Under the null hypothesis a=l and p;=0. For
estimation and testing, a and By are unconstrained. The errors are assumed to
satisfy:

Assumption A. €, is a martingale difference sequence with

t
ECelle, 1.--) = o2, EQlegtte .00 = 5y, i3, 4, and
SuptE(|€c|a+7|et-l"") = & <= for some v>0.

The t-statistic testing the hypothesis that a=l in Model I, computed over the
full sample of T observations, is the standard Dickey-Fuller (1979) t-statistic
for testing for a unit root, including a constant and a time trend in the
regression. The extension here is to the time series of recursively computed
estimators and t-statistics. Because of the unit root under the null

hypothesis, it is convenient to define transformed regressors Z_ and a

transformed parameter vector § so that under the null (2.1) can be rewritten,



(2.2) Yo = 8'Ze1 * €,

1, ,2 .3 4 1 - =\
where Z, = [Zt ez 2 ] , where Zo = (Ay -pg o Ayt-p+l-”0) ,

Zi -1, Zi - (yt—pot), and Zﬁ-t, where ;—IO-EAyt = pp/(1-(1)), and where

8 = (8] 89 84 8,)" with §; = (By =+~ ﬁp)’, g, = po+ﬂ(l);o+pl, fy=a, and
64-“1+a;0‘ The transformed regressors Zt are linear combinations of the
original regressors in (2.1), with the linear combination chosen to isolate the
regressors with different stochastic properties; specifically, Zi are mean

zero stationary regressors and yt';Ot is an integrated process with no
deterministic component. (This transformation is adopted from and discussed in
Sims, Stock and Watson [1990].) Because the elements of § converge at different
] T, T3/2)’

rates, define the scaling matrix TT - diag(Tng, T, partitioned

conformably with Z, and 4. Let Op denote the covariance matrix of AY rees
Ayt-p+1’ so EZ%Z%' - Op. Also, take as initial conditions Z_=0, s<0, so

that sums can be written starting at t=l.

The recursive OLS estimator of the coefficient vector is

@3 e = Tz ze HPalTlz v, ocsgssst

Thus

2.4)  Tp(d(8)-8) = vp(6) Tar(6)

[Té],

, - [Té]
a1 Z lzt_lTT and ¢p(6) = T Zt z

where Vg (§) = TTlZ e1fer

Thus (2.3) and (2.4) respectively provide representations of the recursive least

squares estimator and its scaled deviation from 4 as random elements of D[0,1]
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There are analogous expressions for a general recursively computed Wald
statistic and for the Dickey-Fuller t-statistic testing the hypothesis that a=1.
Suppose that the Wald statistic tests the q hypotheses Rf=r, where witﬁout loss
of generality the hypotheses are ordered so that R is upper block triangular

when partitioned conformably with 4, that is, the first restrictions involve

3

t and Zé), the next restrictions

coefficients on Z% (and perhaps Zg, z
involve coefficients on Zg (and perhaps Zi and Zé), and so forth. The

test statistics are

(2.5) Fp6) = @3- RGNz 120 ) R RI6) 1) /050 (6), 6 =e<1

33.
(2.6)  tpp(8) = T(35(8)-1)/[Vp(6)>262(8)1%, sgssx=1,
.2 - ij ..
where ¢ (§) = [T§] 1Z£E§](yt-9(6)’2t_1)2 and VT(S)lJ denotes the (1,j)
element of VT(S)_l. Algebraic manipulations have been used to rewrite tDF(S)

*
from Model I in terms of the transformed regression (2.2). Finally, define R

*
(partitioned conformably with 4) so that Rii = R.

. *
130 =l,.-8, Ryp = Ryps

*
and R;. = O otherwise.
13
Let "=>" denote weak convergence on D[0,1]. The asymptotic behavior of the

recursive estimators and test statistics is summarized in the following theorem.

Theorem 1. Suppose that Y. is generated by Model I with pl-O and a=1, and
that Assumption A holds. Then, for 0<805851,
a) Vp(e) => V(+), ¢p(+) => ¢(+), and
* * -1
Tp(8(-)-8) => § (), where § (8) = V(§) "4(§),
where V(§) and ¢(§) are partitioned conformably with TT and

$(8) = o[B(8), W(§), hba(W(S)z—S), SW(S)-IgW(A)dA]’,



2

5 5
Vig = 80y, Vig = 0, = 2,3,4, Vyy = 5, Vg = obfeW(N)dA, V,, = k67,

]
Vyy = o?b2fSu0%ar, vy, - obfSawenar, and v, - (1/9)8°,
where W(§) is standard Brownian motion on [0,1] and B(6) is
p-dimensional Brownian motion with covariance matrix np, W and B are
independent, and b-(l-ﬂ(l))-l.

b) Under the null Ré=r,

Fp(e) = [R¥6%() ) R IR R () 17007 = F(e).
c) Under the null «=1,

tpp(e) = (2P0 = ehpe.

Proofs of theorems are given in Appendix A. Some remarks serve to highlight
different aspects of this result.

(a) Kramer, Ploberger and Alt (1988) and Ploberger, Kramer and Kontrus
(1989) consider the case in which the regressors are stationary lagged dependent
variables; our results provide explicit proofs in their case that the relevant
"denominator" matrices are uniformly consistent.

(b) As in the §=1 case, V(-) is block diagonal. Thus the recursive
estimation of the nuisance parameters (ﬂl,...,ﬂp) does not affect the asymptotic
distribution of the recursive Dickey-Fuller statistic. The novel feature of
these results is that they apply uniformly in §; the "marginals" at any fixed §
are those that would be obtained using conventional (fixed §) asymptotics. For
example, tDF(S'), evaluated at a fixed §', has the "Dickey-Fuller" t-statistic
distribution. Thus the limiting stochastic process tDF(-) can be thought of as
a Dickey-Fuller t-statistic process. Because V(-) is block diagonal, when the
restrictions in R* involve only coefficients on Zi_l, F(+) similarly can be
thought of as a xé/q process. Also, the distribution of the recursive

"demeaned" Dickey-Fuller statistic obtains as a special case by omitting t as a
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regressor in (2.1). The asymptotic representations apply for 0<605651,
accounting for [Téy] startup observationms.

(c) The transformation of the original regressors to Z, is used to obtain a
nondegenerate joint limiting representation of the estimators. This is the
device used by Fuller (1976) and Dickey and Fuller (1979). As in the §=1 case,
because t is included as a regressor the distributions of the processes based on
B(8) and a(§) do not depend on the nuisance parameter pg- For further
discussion in the =1 case, see Sims, Stock and Watson (1990).

(d) Although Theorem 1 is stated for the null model in which a=1 and yl-O,
the results are sufficiently general to handle the case |al<l, plfO. This
follows by redefining the variables in Model I. Specifically, let the left-hand
variable be Ay, rather than y  and exclude Ve from the regression. Then the
Tegressors are (Zi,l,t), where Zt has mean zero and is stationary. Thus
associating the I(0) regressors with Ay, in the notation of (2.1) and omitting
the terms in Y¢ in the statement of the theorem provides the limiting process
for the recursive estimators for the case of a stationary autoregression when
pl-O. 1f B is nonzero, an additional modification so that Zi remains mean
zero and stationary (by subtracting Byt from Aye) results in Theorem 1 applying
to the case of a regression involving an AR{(p) process that is stationary around
a time trend. With these modifications, the result concerning FT(-) (Theorem
1(b)) applies directly, although of course the result on tDF(-) is no longer
germane .

(e) Asymptotic representations for rolling estimators and test statistics
cbtain as a consequence of Theorem 1. Because a fixed fraction LA of the sample
is used, unlike recursive estimators the sampling variability of rolling
coefficient estimators is constant through the sample. Also, rolling statistics

might better be able to detect some breaks, because for SO<H any break will be



excluded from at least one part of the rolling sample and included in another.

Let

. (T61 . \-1,0[Ts
B(8:80) = (LemiT(s-5¢)141%c-1%2-1) (Zé_[%(5_50>]+12c_1yc>

so that Tp(8(8:8)-0) = Vp(8:60) 167(8;:80), where Vp(5:60) =
Til(zng%(5_5°>]+lzc_12é_1)ri1 = Vr(8)-V(6-8) and $7(8;6y) =
Til(Zng%(5_5°>]+1zc_1yc> = $7(8)-$7(5-55). From Theorem 1(a),

Vp(e16g) => V(+;8y), where V(5;6q) = V(§)-V(6-5), and ép(+;64) => $(=:60),
where $(85:60) = $(8)-6(5-55). Thus Tp(d(+;6q)-0) => 67 (+360), where 67 (8:50) =
V(s;so)'1¢(6;60). Representations for rolling F- and t-statistics follow

accordingly.

B. Recursive and Rolling Sargan-Bhargava statistics.

Sargan and Bhargava (1983) derived the uniformly most powerful test of the
null hypothesis that Ve follows a Gaussian random walk against the statiomary
first-order alternative. Bhargava (1986) extended these statistics to the case
in which the null is a Gaussian random walk with drift and the alternative is a
stationary AR(1) around a potentially nonzero time trend, and he showed his test
to be most powerful imvariant. This discussion focuses on Bhargava's statistic,
appropriate for the empirical application; the Sargan-Bhargava statistic is

handled analogously. Bhargava's statistic is
2.7 Ry = Iy, Rt

where yB(8) = v - ((£-1)/(S-D)yg - ((5-0)/(5-1)yy - (F(S) H(yp+yg)), where
1<tss and ¥($) = 81T iy

- 10 -



Although these statistics have desirable optimality properties in the
Gaussian AR(l) case, unfortunately they have the wrong size when they are
applied to series in which the spectral density of Ay  at frequency zero
(sAy(O)) differs from 02/21. This difficulty can be addressed by modifying the
Sargan-Bhargava statistic as suggested in Stock (1988), by replacing

Zt_l(Ayt(T)) by an estimator of ZKsAy(O). The full-sample version of
this statistic was found to have good size and power. In its recursive form,

this modified statistic (actually, a modlflcatlon of T 1R 1) is

2.8 R = (151 2LI8 B crms )y ans (00

where éAy(O) is a consistent estimator of sAy(O)' It is assumed here that
SAy(O) is computed using the full sample; only the numerator in the statistic
is computed recursively.

The asymptotic representation of the recursive modified Sargan-Bhargava

statistic (2.8) is summarized in the following Theorem.

Theorem 2. Assume that &y, = EO + c(L)st, t=1,...,T, where € satisfies
Assumption A, c(1)#0, and Z?=O[cj|<m, and assume that 5 (O) B Sp (0).
Then, on 0<§g<s<l, R(+) => R*(+), where R'(6) = s72f5wB a6 Z4x and

WB(a,6) = W) -(/-mW(s) - [ou(s)as for ass.

This result assumes that éAy(O) B SAy(o)' Such estimators are discussed
extensively in the literature on tests for unit roots. Note that not all
consistent estimators under the null result in consistent tests; for discussions
and recommendations, see Phillips and Ouliaris (1990), Stock (1988), and Stock

and Watson (1988).
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Although Theorem 2 is stated for the special case of the statistic R(§),
this type of result extends directly to the wider class of unit root tests
discussed in Stock (1988), which have the form g(v[T.]), where g is a continuous
wmapping from D([0,1] to Rl and where VITA] is an appropriate element of D{0,1]
that obeys a FCLT. In this notation the recursive modified Sargan-Bhargava
statistic is g(f) = 6 2f¥£2(x)ax, with vima) y?TA]([T5])/(2x§Ay(0))*.

Theorem 2 can be extended to rolling modified Sargan-Bhargava (and g(+)-
class) tests for unit roots, by computing the statistic on rolling overlapping
subsamples of length [SOT), with 5p fixed. If, as in Theorem 2, SAy(O) is
estimated over the full sample, the extension to the rolling statistics is

straightforward and is omitted here.
3. Sequential Tests for Changes in Coefficients

The statistics analyzed in this section are computed sequentially using the
full sample. These allow for a single shift or break in a deterministic trend

at an unknown date. The model considered is

(3.1) Model II: Ye = #g * plrlt(k) T ohpt +ay, q

+ ﬁ(L)Ayt_l + w’xt_l(k) + o€

for t=1,...,T, where §(L) is a lag polynomial of known order p. Unlike model I,

model II allows for a m-vector of additional stationary regressors,

Xt—l(k)‘ As in Section 2, it is convenient to transform the regressors to Z =
1, = ' 1 - - Y

[Z¢' 1 (Feopgt) Typyy Bl where Z = (Ay -pg. ..., &Y¢ py17Ro» x (k)")

and ;O = Eay.; to let § = [Gi 0, 84 8, 95]’, where 6, = (8" w']', by =

p0+ﬁ(l)ﬁo+p2, 93-a, ea-“l' and 95‘“2+a;0; and to set ZS-O for s<0.

12 -



The deterministic regressor rlt(k) captures the possibility of a shift or

jump in the trend at period k. Following Perron (1989, 1990a), consider two

cases:
(3.2) Case A (shift in trend): rlt(k) = (t-k)1(t>k)
(3.3) Case B (jump in trend): rlt(k) = 1(t>k),

where 1(+) is the indicator function. For Case A, the t-statistic testing pl-O
provides information about whether there has been a shift (change in slope) in
the trend; for Case B, this t-statistic provides information about whether there
has been a break in the trend. Case B will alsc be referred to as the mean-
shift model (cf. Perron [1990a]).

Let vy denote the value of w under the null. It is assumed that those X

terms involving k do not enter under the null. Specifically, the disturbances

and (xt(k)) are assumed to satisfy,

Assumption B.

(i) Let MT be the sigma field generated by (et,xt(k),et_l,xt_l(k),,...). Then

2 2 i X 4t
ECeg|Me 1)=0, ECegIM _)mo", ECle | [M__{)=x;, 1-3,4, and E(|e M

¢l e-1) =

x <= for some v>0.

(11) (x.([T6])) is such that: Ex ([Ts])-0, T 'TL_ zlzl' B 5(s),
2T zly >0, and M 1R B ugx o) -

(oW(X), =xH(X)), all uniformly in §, where W and H are standard l-dimensional

Brownian motions, W and H are not necessarily independent, and n is a constant.

The leading case in which Assumption B is satisfied is when a=1, 1-B(L)L has

: : : . : : 1 .
all its roocts outside the unit circle, and X, is omitted so Z_ consists of p

- 13 -



lags of Ayt-l‘ In this case, Model II accounts for a break in the deterministic
trend in the Dickey-Fuller regression (2.1). The formulation (3.l) generalizes
this leading case to include additional mean zero stationary regressors other
than Ayt-j and certain regressors that depend on k. For example, setting x. (k)
- (Ayt-ﬂo)l(t>k) permits testing the null hypothesis that the coefficient on

Aye 1 in Model II is constant against the alternative that it changes once at an
unknown date. It can be verified that this definition of xt(k) satisfies
Assumption B. Also, note that Ext-O is assumed without loss of generality, as
long as a constant is included in the regression.

The estimators and test statistics are computed using the full T
observations, for k-ko, k0+1, ey T-ko, where ko-[TSO]. The resulting
statistics are thus sequential rather than recursive. Let R be a QX (m+p+é)
matrix of restrictions on #. The stochastic processes constructed from the

sequential estimators and Wald test statistic are, for SOSESI-EO,
(3.6)  3(&) = (ToqZ, 1 (TEDZe 1 (1T61) ) HTT 12, (T Dy,
(3.5)  Tp(d(8)-0) = Tp(s) hep(e)

(3.6) Fp(8) = [RIE)-r) [R(IL 2, ([T61)Z, 1 (ITS)) ) IR ) HRI(S) -x] /ad?(6)

where 5%(5)=T VL1 (v.-3(8) 2y (IT61)2, Tp(o)=T71T0 12, (T2, (1T81) 77!

-1oT . :
and WT(S) = TT zt:lzc-l([TSJ)et' Here, TTsTAT in case A and TT’TBT in case

3/2 X 3

— N
B, where T,y = diag(T'I o, 12 132y ang Tgp = diag(T'I T T, T,

p+m’ p+m’
3/2,

T
The next theorem provides asymptotic representations for the standardized

sequential coefficients.
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Thecrem 3. Suppose that Y. 1s generated according to Model II with pl-pz-O
and a=l and that Assumption B holds. Then:
a) In case A, T,1(3(+)-8) => I'(+) 1¥(:), vhere
¥(8) =~ U[(2(5)HB(1))'. W1y, fiJ(X)dW(X),

(1-5)W(D) - [FR(0dr, w(D)-Swona,
Tip = EG8), Tp5 = 0, §=2,...,5, Tpp = 1, Tpy=/trc)ax,
Ty = #(1-5)%, Tps = %, Tyy = [L1(02a, Tyy = [EA-6)T (DA,
Tyg = JIAT(0ax, Ty, = (1-6)°/3, T, = (1-57)/3-}6(1-52),
and FSS =~ 1/3, where W(§) is a standard Brownian motion process, b=(1-
ﬂ(l))—l, J(X) = brH(X) + obW(A), B(A) is (p+m)-dimensional standard
Brownian motion, and B is independent of (W,H).
b) In case B, TBT(9(-)-9) - F(-)-IW(-), where ¥ is as in (a) except that
WA(J) = a(W(1)-W(&)), and where T is as in (a) except for r24 - 1-6, P34 -
Shrooa, Ty, = 16, and T,5 = }(1-52), where B, W, J, and b are as

defined in (a).

Several remarks are in order.

(a) When xt(k) does not appear as a regressor and § is fixed, this reduces
to the model and results presented in Perron (1989). Theorem 3 generalizes this
result to the case in which the estimator and test statistic processes are
random elements of D[0,1], indexed by §. Note, however, that Perron considered
the case of unknown (possibly infinite) AR order p, whereas here p is assumed to
be finite and known.

(b) This result applies for O<60565(1-60)<1. Thus the test for the change
in the coefficients is constrained not to be at the ends of the sample. In
practice, this requires choosing a "trimming" value ko-[T50] to evaluate the

process Fr(6).
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(c) Formal representations for the FT(S) statistic, or for sequential
Dickey-Fuller statistics, obtain using the "R*" device used in Theorem 1(b}).

The limiting process for T%(al(-)-ﬁ) and Fp statistics testing restrictions on
Zi_l can be thought of respectively as Gaussian and xg/q statistic

processes, with the "marginals" of each process (for fixed evaluation points
§=5') having their respective Gaussian or xg/q distribution. Unlike the
limiting processes obtained in Theorem 1, these processes are not adapted to the
sequence of sigma fields generated by (W(X), B(r)}.

(d) This result provides joint uniform convergence of all the estimators and
test statistics. Thus in particular it provides the asymptotic representation
of continuous functions of one or more of these processes. One example is a
rule considered by Christiano (1988): compute the Dickey-Fuller t-statistic in
Model II, tpp(5), for ko/T < § <1, and let the’

DF minkusksTtDF(k/T)‘
(e) A related sequential statistic is the Quandt (1960) likelihood ratio

statistic, which tests for a break in any or all of the coefficients. This
entails estimating 2(T-k0) separate regressions over the subsamples 1,...,[Té]
and [T6}+1,...,T. The likelihood ratio statistic is computed for each possible

break point, and the Quandt LR statistic is the maximum of these. Because each
statistic involves the full sample, the Quandt LR is sequential. However,
because of its use of subsample regressions, its asymptotic representation is
obtained using the results of Theorem 1 for model I.
ok
In the notation of Section 2, Quandt (1960) considered -2lni =
-21nA(k), where A(k) = 65 (o0 5 /61 . and &, , is the

MAXy <ksT-ko 2202 (K), where A( 91,k%+1,77°1,T 3 71 x
standard error of the regression using observations 1,...,k, etc. Because
.1 [T§] => ¢ under the null (a consequence of Theorem 1), the LR statistic is

asymptotically

.16 -



G -2m((1s]) - - o Ty a6y 2 P

-2¢T , 2
- LT e P ()2 )

+ a_ziz-l(yt'a(lyzt-l)z

where §(§) = (EE-[T6]+1Zt-1Zé.1)-1(23_[T6]+1Zc-1yt) and #(§) is given in

(2.3). By algebraic manipulation,

(3.8)  -2IA([T6]) = ¢ 2{Tp(8(6)-8) ) Vp(6) (T (B (6)-))
+ 0" 2T (B(8)-8)) T () (T (B (6)-0))
- o AT (1)-9)) V(D) (T (2 (1)-6))

5 -1¢T . -1 : ; -
where Up(§) = Tp 2t-[T6]+1Zt-1Zt—1TT . Using the identity Tp(#(8)-8) =

(VT(l)-VT(6))—1(¢T(1)-¢T(6)) and the results from Theorem 1, one obtains

(3.9)  -21aa([T-]) => 0" 26(+) V() L) -v(- 1) e (o)
- o sy (v L v v hen)

- 207240y ) V() Ry

This specializes to Chu’s (1989, Section 2) result for the Quandt IR
statistic in the special case that only stationary regressors and a constant are
included. Then V(§)=§V(l), and from Theorem 1 a—lV(l)-k¢(5) - WP+1(6) (i.e.,
a_lV(l)_5¢(6) is distributed as a (p+l)-dimensional standard Brownian motion).
Algebraic manipulation then yields the representation, -26(1-8)1nd([TE]) =>
W;+1(6)’W;+1(6), where W;+1(6) - Wp+1(6)—éwp+1(1) is a (p+l)-dimensional

standard Brownian Bridge. Thus

*

* *
(3.10) -21nk => sup6055ﬁl‘6o(wp+l(5)’WP+1(6)/(6(1-£))).
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Chu (1989) also provides critical values, a Monte Carlo analysis, alternative
related test statistics, and relates the result (3.10) to earlier ones in the
literature. Hansen (1990) recently proposed a related "mean Chow" statistic,
the average of these likelihood ratios, the distribution of which is the
multivariate generalization of the limiting distribution of the Anderson-Darling
(1954) statistic, subject to trimming.

(f) A statistic that will be used in the empirical analysis is the
sequential t-statistic testing the hypothesis that the coefficient on Tlt(k) is
zero in case B (rlt(k)-l(t>k)), under the maintained hypothesis that a=l and
p2-0. This corresponds to a shift in the intercept in a p-th order
autoregression for 4y,.. The distribution of this statistic (tfl(.)) is obtained
from Theorem 3. Because I'(+) is block diagonal, the asymptotic distribution of
tfl(') does not depend on the nuisance parameters (ﬂl,...,ﬂp) and has the
limicing representation ¢, (+) => t:l(-), where c’:lm - W’I(&)/(E(l-&))g

*
and Wl(s) = W(8)-§W(1l) is the l-dimensional Brownian bridge.
4. Monte Carlo Results

This section reports asymptotic critical values and examines the size and
power of selected recursive and sequential statisties. All statistics (except
tfl(.) in the restricted (a=1, pz-O) model) include (1,t) as ragressors to allow
for a possible time trend under the alternative.

The first five statistics examined are recursive tests for unit roots: the

full-sample Dickey-Fuller statistic, tpF (=CDF(1) in the notation of (2.6)); the

. . c s max_ R - : .

maximal Dickey-Fuller statistic, thF :maxkgsksTtDF(k/‘)’ the minimal Dickey
s i . diff a min

Fuller statistic, tgénimlnkosl<TtDF(k/T); thF = tg;x-tDF :

- 18 -



and the minimal value of the recursive Modified Sargan-Bhargava statistic, Rmin
= minkosksTR(k/T)’ where R(§) is defined in (2.8). Asymptotic critical

values, computed by Monte Carlo integration, are reported in Table 1 for
§3=0.25. Not surprisingly, the critical value for tg;n is well below the
full-sample Dickey-Fuller critical value.

An initial examination of the size of these recursive statistics is reported
in Table 2. In this experiment, T-100, the true model is an AR(1l) in first
differences, and a single lag of Ay  is included in the regression (2.1). The
first three statistics have sizes near their asymptotic levels, but the size for

tdiff

DF substantially exceeds its level. The size of g

deteriorates
sharply as the autocorrelation increases. This is surprising in light of the
very good size performance of R(1l) found in Stock (1988).

Table 3 examines the power of these recursive statistics against the
hypothesis that the largest root shifts, being less than one in half the sample
and equaling one in the other half. The recursive statistics tg;x and
tg%n have somewhat better power than thF when the root is initially less
than one, but each has power less than its level against the alternative that
the root is initially one, then less than one. In this latter case, tgéff
often detects a shift, although it does not in the case that the other three
statistics have power. One interpretation of these findings is that when the
root is initially one, the recursive sample moments for k after the true break
point are dominated by the initial, large sample moments. However, because of
the coefficient shift, 6(5) tends to increase, driving tDF(S) towards zero. In
any case, no single recursive statistic seems to provide a reliable test against
this structural break alternative.

The second set of statistics consists of three sequential statistics: the

. . P max - .
maximum of the sequential F-statistics, Fp 'maxkosksT-kg‘T(k/T) testing the



hypothesis that pl-O; the sequential Dickey-Fuller statistic evaluated at the
value of k (k, equivalently $§) that maximizes Fr(6), tDF(s); and
tg%n*'minkgsksT-thDF(k/T)' the minimal Dickey-Fuller statistic over all the
sequentially computed Dickey-Fuller statistics. These statistics were proposed
by Christiano (1988) to extend Perron's analysis to the case in which k is
unknown. We consider Case A (the trend-shift model (3.2)) in detail and present
asymptotic critical values for Case B (the mean-shift model (3.3)).

Critical values for these statistics in Case A are reported in Table &4 for
60-.15. The large critical value of the maximal F-statistic also was found by
Christiano (1988). Table 5 examines the size of these procedures when the true
model has no trend break and follows an AR(l) in first differences. In each
case, the size is approximately the level of the test.

Table 6 reports the power of these sequential tests against some trend-
shift/stationary alternatives. The trend shift is calibrated so that the change
in the slope is large, 20% or 40% of the standard deviation of the innovation.
These results suggest several generalizations. First, the maximal F-statistic
detects the trend break with high probability, particularly if it occurs later
in the sample. Second, both the unit root tests reject with high probability,
more often if the break occurs early than late in the sample. Third, the break
point is identified rather accurately, in the sense that a large fraction of the
estimated break points k occur within * .0ST of the true break point. Fourth,
the full-sample Dickey-Fuller statistic fails to detect stationarity around a
shifting trend, particularly if the break is in the second half of the sample.
This confirms Perron’s (1989) results and interpretation: the permanent shift
in the deterministic trend is mistaken for a persistent innovation to a

stochastic trend.



Table 7 provides asymptotic critical values when there is a shift in the mean
(Case B). The final column reports critical values for the maximal absolute t-

statistic on rlt(k) for the restricted model with p2—0 and a=1.

5. Empirical Results

The previous results are used here to examine whether shifts or breaks in
trends provide a suitable model for the apparent persistence in seasonally
adjusted output in seven OECD countries: Canada, France, West Germany, Italy,
Japan, the United Kingdom, and the United States. Log real output for each of
the countries are graphed in Figure 1. The data sources are discusszd in
Appendix B. As in the previous section, the recursive statistics were computed

using trimming of 25% (60=.25), and the sequential statistics used 60-.15.

Results.

We first computed full-sample statistics for the seven countries, modeling
each series as an AR(2) or AR(4) in first (or second) differences. The
corresponding Dickey-Fuller statistics are tests of the null hypothesis of ome
(respectively, two) unit root; a constant and a time trend were included in the
regression with first differences, a constant was included in the regression
with second differences. For each of the seven countries, the hypothesis of one
unit root could not be rejected, but in each case the hypothesis of two unit
roots could be rejected. We therefore adopted the single unit root model (with
nonzero drift) as the interesting null hypothesis for each of the seven
countries and proceeded with the computation of other statistics using models
(2.1) and (3.1), where the order of the lag polynomial B(L) is & and the null
hypothesis is the existence of a single unit root. In what follows, (3.1) is

specified with no additional regressors (xt).
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The recursive Dickey-Fuller t-statistic is plotted in Figure 2; the dashed
lines are the 10% and 5% critical values for tgén. The recursive statistics
are summarized in Table 8. 1In no case is the standard non-recursive Dickey-
Fuller statistic significant at the 25% level, and neither tgéﬂ nor tg;x
rejects the unit root null at the 15% (asymptotic) level. For all countries but
Italy, the recursive statistics provide no evidence against the unit root null.
For Italy the evidence is mixed: the minimal recursive and full-sample tpF
statistics provide no evidence against the unit root null, but Rmin is
significant at the 10% (but not 5%) level. However, the poor size performance
of Rmin in Section 4 suggests caution in interpreting this result.

The trend shift hypothesis is examined in the first columns of Table 9, and
the sequential Dickey-Fuller t-statistics are graphed in Figure 3. The dashed
lines in Figure 3 are the 10% and 5% significance levels for the minimal
sequential Dickey-Fuller t-statistic. The unit-root/no-break null can be
rejected against the trend-shift/stationary alternative for only one country,
Japan; the rejection is at the 5% significance level. The same conclusions
obtain whether the minimal sequential Dickey-Fuller statistic or tDF(S) is
used, where tDF(ﬁ) is the Dickey-Fuller statistic evaluated at the value of §
that maximizes the F-statistic on the break term. Although the break points
vary across countries, for France, Italy and possibly Germany they are clustered
in 1971-1973. There is some evidence against the unit root null in the case of
Canada as well: the p-value for the full-sample tpp in Table 8 was .62, but the
p-value for the sequential statistics is .12. In the other countries, the p-
values do not change markedly from those in Table 8.

The mean-break model (model B), examined in the second part of Table 9,
presents a somewhat different picture. The sequential Dickey-Fuller statistics
for this model are plotted in Figure 4. Only one country, Canada, indicates a

rejection of the unit root null at the 5% level, with the break in 1981:3.
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The final statistic examines the possibilizy that output for these countries
is I{1l), but that there has been a single shift in the mean growth rate. This
corresponds to Model B of Section 3, with the imposition of the unit root null
(a=1l) and a zero time trend in first differences (pZ-O). This model is examined
by computing the maximal t-statistic on rlt(k)-l(t>k) in Model B under the
restrictions that a=l and pz-O. This statistic and 5% critical values are
plotted in Figure 5. (Movement outside the critical band indicates rejection at
the 5% level using the maximal absolute t-statistic). In four cases -- France,
Germany, Italy, and Japan -- the restriction of a constant drift is rejected in

favor of the hypothesis of a shift in the drift.

Sensitivity analysis

We performed three additional analyses to investigate the sensitivity of the
results to potential measurement errors or anomalies in the data. The results
are briefly summarized here; details are available from the authors upon
request. First, in 1968:2 France experienced a major strike, over which we have
interpolated for the reported results. When the original data are used, the
results do not change, except for the sequential mean-shift statistics; then
tgén* rejects the constant-drift unit root null at the 3% level, with the
break sharply identified as 68:2. We view this as an artifact: reversion to
"trend" after the strike is best thought of rather prosaically as people
returning to work, not as reflecting trend stationary behavior in the long-run
factors driving French economic growth, such as technical progress and labor
productivity.

Second, the results for Germany are for 1950:1-1989:2; for Japanm, 1952:1-

1989:2. Because these data start near the end of World War 1I, the earliest

observations might have unusually large measurement error. But the conclusions



about the significance of unit root tests do not change upon repeating the
analysis over 1955:1-1989:2, although the evidence against the constant-
drift/unit-root null in favor of the mean-shift/unit-root alternative (using
|tfl(8)|) is less strong for Germany.

Third, the computations were repeated using 8 rather than 4 lags for the
Dickey-Fuller regressions and for the autoregressive spectral density estimator
used to construct R(§). The qualitative results are largely unchanged. The
most notable differences are: for Canada, the unit root null is no longer
rejected in favor of the mean-shift/stationary alternative (Case B) -- the p-
value is now .1l4; for the U.K., the unit root null is rejected against Case B

(p-value = .06).

Summary

These results suggest rather different characterizations of the long-run
properties of output for these countries. In two countries, Canada and Japan,
there is evidence against the unit root null using these statistics. For
Canada, the unit root null is rejected against the mean-shift/stationary
alternative, with the break point in 1981:3. Thus the recession of the early
1980's is represented as a permanent downward shift in trend growth; after the
recovery, output again is stationary along its original growth path.

The results for Japan indicate that the unit root null is rejected against
the trend-shift/stationary alternative, with the break in 1969:4. This shift is
apparent in Figure 1: from 1952:1 to 1969:4, on average Japanese output grew at
9.2% per year; since then, it has grown at 4.4%.

The results for the remaining countries provide no evidence against the unit
root hypothesis. Based on the restricted mean-shift model of Figure 5, however,

output for France, Germany, and Italy seem better characterized as being
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integrated, but having suffered a permanent reduction in the rate of growth of
output. For Italy and France, this slowdown appears around 1974, the time of
the first oil shock. For Germany, the sequential t-statistic is less precise in
identifying a specific break point, although the statistic is significancly
negative just before 1974. For these countries, then, output is well
characterized as being integrated, but with average growth that is slower over
the period of the productivity slowdown.

The results for the U.K. are qualitatively different, providing no evidence
against the unit root null. The t-statistics in Figure 5 do not indicate a
statistically significant productivity slowdown; indeed, the growth rate
increased in the 80's, although not significantly so using these procedures.

The results for the U.S. indicate no rejections of the unit root null against
any of the various hypotheses. These results parallel Christiano’s (1988)
failure to reject the mno-break/unit-root hypothesis using bootstrapped critical
values. They accord with Banerjee, Dolado and Galbraith’s (1990) failure to
reject the trend-break alternative for the U.S5. (using the uniform critical
values tabulated in Section 4) for longer annual data series that include the
Depression. fhey are also consistent with the findings in Zivot and Andrew's
(1989) closely related paper, especially with their failure to reject the unit

root null against a trend break alternative for real GNP using the longer

in*
Nelson-Plosser (1982) data when uniform (tg;n ) critical values are used.
Although Perron (198%) finds evidence for a trend break -- and a rejection of
the unit root -- in 1973, this conclusion is based on the assumption that the

reak point is known a priori; when the break point is treated as unknown, the

evidence is much weaker.

Comparison with previous literature and discussion

Several recent papers extend Cochrane’s (1988) study of persistence in U.S.
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output to international data. Each study differs in its sample period and, to
various degrees, in the statistical measure used. Although point estimates of
persistence are not comparable across studies, relative rankings are.

Campbell and Mankiw (1989) examined the same seven countries considered here
over 1957-1986 and measured persistence by the size of a (bias adjusted)
variance ratio for long (5-10 year) differences. They concluded that
persistence in the U.K. was less than in the U.S., but greater in each of the
other countries. GCogley (1990) computed modified variance ratios over 1870-1985
for nine countries, including Canada, France, Italy, the U.K., and the U.S.
Although his data set is much longer, his conclusions are similar to Campbell
and Mankiw’s: the U.S. exhibited the least persistence, followed by Canada; the
largest variance ratios were for France and Italy. Kormendi and Meguire (1588)
also used variance ratios to analyze long annual data on 12 countries and
postwar data for 32 countries, including Canada, France, Germany, Italy, the
U.K., and the U.S. Of these six, using bias-unadjusted measures they too found
U.S. output to exhibit the least persistence (the smallest variance ratios),
with French, German, and Italian output exhibiting the most persistence.

Clark (1989) used a different technique -- a stochastic trend-cycle
decomposition of the form studied by Harvey (1985) and Watson (1986) -- to study
the relative importance of "cyclical" components for the seven countries we
consider, over approximately 1960-1986. A notable feature of his results is
that an I(l) trend fit well for five of the countries; for France and especially
Japan, however, the fit of the model was substantially improved when an I(2)
trend (a stochastic trend with a random walk drift) was introduced. He
interprets this as providing a flexible way to account for the slower growth in
these two countries in the latter half of the sample.

The striking feature of the variance ratio results is that in each study the

variance ratios are highest in the countries for which we identify deterministic
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breaks (with either I(l) or I(0) stochastic components) -- Japan, Germany,
France, and Italy -- and lowest for the U.S., for which we find no evidence
against the no-break unit root hypothesis. Also, Clark finds evidence of
extreme persistence, in the form of an integrated drift, for France and Japan.
These results have a consistent explanation. If the deterministic-break
specification is valid, then this break is by definition highly persistent. If
the break is not taken into account explicitly, then it will be misidentified by
variance ratio statistics as a large but otherwise typical shock to output. In
a model in which the drift is forced to be either constant or integrated
(Clark’s [1989] model), a sufficiently large permanent change will be modeled as
an integrated drift. If the deterministic break view is correct, variance ratio
statistics could give quite misleading views of persistence.

Interpreted more broadly, these results suggest that not all shocks to output
are the same: the shocks associated with the oil crisis of 1974-5 were
considerably more persistent than other shocks before and after, so much so that
our procedures classify them as deterministic breaks rather than a large
negative realization. This treats the single-break model as a simple way to
separate massive, economy-changing shocks -- the Depression, World War II, the
productivity slowdown in the 1970's -- from the other shocks to output that,
while persistent, exhibit less permanence. To us, interpreting these broken
trends as deterministic is unsatisfying, for this conditions on elements of
aggregate activity, such as productivity growth rates or changes in fiscal or
(possibly) monetary management rules, that are unpredictable. We instead prefer
to interpret these rejections as metaphors for these countries having long-run
trends that are smooth with occasional large shocks (see Perron (1989, 1990a)).
This is compatible with Blanchard and Watson’'s (1986) "large shock/small shock”

hypothesis, which they developed using U.S. data -- except that this better



describes Japan and is more accurately termed the "persistent shock/less
persistent shock™ hypothesis. It is also compatible with Hamilton's (1989)
model of random regime switches, although the regimes here last much longer than
the business-cyle switches Hamilton identified for U.S. GNP. 1In Japan, the
trend growth rate dropped around 1970. In contrast, the Canadian trend growth
rate has stayed relatively constant, but the growth path shifted downward in the

early 1980's.
6. Summary and Conclusions

The results in Sections 2 and 3 provide a framework for evaluating the
asymptotic distributions of several recursive or sequential statistics. These
results resolve some open guestions, such as the distribution of the process of
the recursive least squares estimators. There are, however, several theoretical
questions that these results only begin to address. In particular, each of the
test staéistics discussed here has the flavor of general diagnostic tests
against possible changes in coefficients, either autoregressive coefficients or
coefficients describing the deterministic components of the process. This
suggests the value of obtaining formal results on the power of these tests
against various structural break alternatives.

For Germany, Italy, and France, these results provide a new characterization
of the productivity slowdown as being a reduction in the rate of growth of the
I1(1) output process over this period; there is no evidence in favor of the
trend-break/stationary hypothesis for any of these countries. This slowdown
occurred at approximately the same time for each of these countries, 1974. The
analysis also provides new insights into the trend growth of Japan and Canada.

For Japan, the unit root null is rejected against the alternative that output is



stationary . round a trend that slowed significantly around 1970. For Canada,
the unit root null is rejected against the alternmative that the linear trend
growth path shifted downward after the 1979-1982 recession, although this is
sensitive to the number of autoregressive lags used. Finally, the empirical
analysis provides little evidence against the unit root null for the U.K. and --

in contrast to Perron (1989) -- none for the U.S.



Appendix A: Proofs of Theorems

Proof of Theorem 1
To simplify notation, it is assumed that ;O-O. This is done without loss of
1 : 1 - - 3 -
generality, since Zt = (Ayt-yo,...,Ayt_p+l-yo) and Zt - (yt—yot). Also,
threoughout the notation ¢T(6)->¢(6) or ¢T(~)->¢(-) is used interchangeably.
(a) First consider ¢r. Let C(L) = (1-A(L)L) ' so that ay_ = C(L)e, let b =
C(1l) = (l-ﬂ(l))'l, and let s=[T§]. The uniform convergence results ¢2T(6) -
- -3/2 §
TS e =>oW(5) and ¢,0(8) = T /253 jte, => a[8W(8)-[IW(AA] are
immediate consequences of Assumption A and the Functicnal Central Limit Theorem

(FCLT) (Herrndorf [1984]; alsc see Hall and Heyde [1980]). Comnsider ¢3T and

t

*
r=1°r and Ut-C (L)et, where C*(L) =

write y =C(1)§_+U_, whers £ =}

(1-0) " [c(Ly-o(1)]. Then

-1lces -lcrs ~1lces
$37(6) = T Li¥eoq€e = CDIT Le—1fc-1%e * T LemiVeo1e

Now T.lzi-lgt-let - %(T'lfﬁ-T-12§_leé). Because v, = eg—az is a

martingale difference sequence (MDS) with suptE|ut|2+75;<m by Assumption 4,

TS 2 - (s/mo® ¢ Ty, = 502, Because T71¢2 => ohu(s5)?,

- R . . 4
T 1zz,lft_15t -> 5ol ((8)2-6). Because U _j¢, is a MDS with sup E|U, _je | <

(this from the moment assumptions on ¢, and from the l-summability of C(L) [e.g.

Stock (1987)] and thus the absolute summability of C*(L)), T-%EixlUt—let obeys

a FCLT. Thus T'lzi_lu => 0, 50 $yp(8) => sbol(w(s)2-5). Finally,

t-1%c
because Z:L ¢, is a MDS with su E(Zl € )4 =< mz(Zm |c |)4 < @, ¢pym(8)
t-1%¢ Peollie.1%e) = Aallj=0lj » P1T
-kes 1 : : 1,1,
=T Etﬂlzt_let => gB(8§), where B(§) has covariance matrix EZCZt - Dp.

It follows from Chan and Wei (1988, Theorem 2.2) that B and W are independent.

Next consider VT(5). The uniform convergence of each element of VT’ with the

exception of ViiT and leT‘ either obtains by direct calculation or is a
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consequence of T-kys->boW(5) and the continuous mapping theorem. For example,
Vayp(8) = T-zzgzi]yg - bzozfgw(r)zdr. Note however that this
formally holds only for § fixed; to show convergence of the process V33T(-) =>
V33(-), it must further be shown that g(§;f) = fgf(r)zdr is a continuous
mapping from D{0,1] to D[0,1]. This argument is made in Zivot and Andrews
(1989) and is not repeated here.

To demonsirate the convergence of VllT(E) it is sufficient to consider its
(1,1) element; the argument for the other elements is similar. Now Vi1 -
1

- 2 - ) 2 2
T z§_1<Ayt) (recall By=0). Define yy=E(ay,)", Xm(Ay) -7y, and

$;=;{_;X,. With these definitions,
T eyl = (/D + T 11T

S;l > §] + 0 for all §>0. This

Thus the desired result follows if Pr[maxi(r|‘r'1

will be shown by first showing that X is a mixingale and second applying the
mixingale extension of Doob’s inequality.
From Hall & Heyde (1980, p. 19), X. 1s a mixingale if there exists sequences
of nonnegative constants d, and ¥_ such that ¥, ~ 0 as m~ = and
1) [E®JIF.. DI, = ¥4,
¥oe1de

A B

(ii) “Xt'E(thFc+m)”2

for all t=l and m>0, where ”Xst(EXZ)ﬁ. Condition (ii) is automatically

satisfied by (X_) because (Ft) is an increasing sequence of o-fields and X: is

T

]
h,=0.

an adapted stochastic process so that EX IF =X c+m)nL

com)=Xes thus [X_-E(X(|F

Next turn te condition (i). Now

e 1P 12 = BEEF, 0D
- BUELCM e - vglep pier gy - D7)
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1.2 2 2 22.2
E([Z?_OCJ + (Z;_mc END R Z?_Ocja 193

joe-]
E([(Z?_mcjet_j>2 - Z?_mcgoz]z)
)4 2 2.2
B Tyee ) - T -~
2
Z?-mii:m pmmdr=nC i CCRCE (e j ekt taafer) (T5-aC375)

4
~, (T3mnl €5 D

iA

where the final inequality obtains by Assumption A. Now Z?-mlcjl =< KIZ?_mAj

- Klkm/(l-k), where Kl is a constant and X is the absolute value of the largest
root of 1-LA(L), which satisfies |X|<l by assumption. Thus “E(Xcht-m)“Z =<
4%, where d - [xgxi/(l-k)h)k and ¥ = A2, Thus condition (i) is satisfied
with ¥ ~0 as o= and (Ayt)2 is a mixingale.

Next, apply Chebyschev's inequality and the mixingale extenmsion of Doob's

inequality (Hall and Heyde [1980], Lemma 2.1) to show that T_ls[TA] => 0. The

condition of this lemma is that Wm be O(m-k(log(m))-z), which is satisfied here.

Thus

-1 -2.-2 2
Primax; |T “5;] > 6] T8 E[maxi<TSJ

1A

IA

-2 -2vT
§ "R, T Z1-1 i
572K, (e, K]/ (10" /T

(where Kz is a constant) which tends to zero for all §>0, where the second

inequality obtains by Lemma 2.1 of Hall and Heyde. Thus T.ls[TA] => 0 so

T 2[T6 2

(Ayc) => 5’10-

The final term is the pxl vector Vysr, of which consider the i-th element,

(Vy37(8))5- Recall that by assumption Z =0, t=0. For s=[Té],

-3/2cs
Vy3p(E)g = T 7 L1y 1®e g
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-3/2¢s i
=T R e * Lo 8Y e 8y

-3/2¢s-1 i -3/2¢s-r
=T LeilYe 18y + Le-aT Lel18YebY e ey -
Thus T¥(V)37(8)); = v1p(8) + v2.(6), i-1,...,p, where

Tol-Lay 0%

V%T(S) - 5((T-HY[T5]_1)2 - T-lz
= 2T My sy (o (LTE]-1)/D) )
”%T(a) = Zl-lT-lzi;iAytAyt-i+r
i .
= Diap (Y p (T8 ]-145) /D) g

It follows from VllT(S) - V11(6) (shown above) and (for fixed i) T‘%y[ -

Téj-1
boW(§) that vip(6) = 3(b%%(5)% - (v11(6))17) and viL(5) =

551 (V11(6))q5. Thus (V33005 => 0, , i=1,...,p, so Vy(+) => V(o).

(b) Given the convergence results in (a) and the moment conditions in
Assumption A, it follows that &2(6) - 02. The asymptotic representation in
Theorem 1 follows directly from the results in (a) and from Theorem 2 of Sims,
Stock and Watson (1990).

(c) Part (c) follows directly from (a) and (b). O

Proof of Theorem 2
This follows from the proof of Theorem 2.1 of Stock (1988) and from arguing,
as in the proof of Theorem 1(a), that g(§;f) = fgf(r)zdr is a continuous

mapping from D[0,1] to D[0,1]. O
Procf of Theorem 3

(a) The proof is similar to the proof of Theorem 1. First consider I'. The

convergence of rllT and F13T is by Assumption B(ii). The results invelving

.33 .



exclusively deterministic terms (T; i,j = 2,4,5) obtain by direct

iiT’
calculation. The remaining limits, which invelve y,_, obtain by noting that
under Hy (a=1l, py=p,=0), Ayt-ﬂo =~ C(Lywgr,q *+ G(L)e,, where C(L) =

(1AL5(L))-1. Thus by assumption B and the fact that C(L) is 1-summable,
T V2T (4, By) => baH(A) + boH() = J(A).

The results for the remaining terms follow from this limit and Assumption B.
Next consider ¥. The terms Yor and ¥, 4T follow directly. For example, in

case &, ¥,7(8) = T/ (c-)l(eR) e, - 72T (t-K)e,. The resulc
Q&T(S) => Wh(ﬁ) (for k/T->§) obtains from this final expression by applying
Assumption B and the FCLT. Because Zi-let is a MDS with 2+v moments,

-1ET 12 £o1¢¢ =-> g2(8§) B(l) The independence of B(1l) and (H,W) follows
from Chan and Wei (1988), Theorem 2.2. The convergence W3T -
T (e -Bo(e-1))e, => [EI(0)AW() follows from Chan and Wei (1988),
Theorem 2.4.

(b) The argument for Case B is analogous to that for Case A.

These calculations formally show convergence of the processes PT(-) and
WT(-). The step from these results to results for TT(Q(-)-G) and, e.g.,
inf50£551tDF(5) requires showing that these are continuous mappings from D{0,1]

D[0,1] and D[O,1] ~ 31, respectively. This argument is made in Zivot and

Andrews (1990). O
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Appendix B: Data sources

Data for the United States are GNP from Citibase, for 1947:1 to 1989:II. The
data for the other six countries come from two sources, the OECD Main Economic
Indicators database maintained by Data Resources, Inc. (DRI), and Moore and
Moore (1985). In most cases, two series have been spliced together to construct
a longer time series of data. Where this has involved an adjustment because the
real series are indexed to different base years, they have been adjusted using
the earliest available ratio of the two series.

The Canadian data are GNP, with 1948:I to 1960:IV from Moore and Moore and
1961:1 to 1989:I1 from DRI. The French data are GDP, 1963:I to 1989:II, and are
from DRI. The French data c;ntain a large negative spike (a strike) in 1968:1I;
we eliminared this spike by linearly interpolating the value for this quarter.
The data for Germany are GNP, with 1950:I to 1959:1IV from Moore and Moore and
1960:1 to 1989:1I from DRI. The data for Italy from DRI were nominal rates, so
we have used GDP from Moocre and Moore for 1952:I to 1982:IV. The GNP data for
Japan is from Moore and Moore for 1952:I to 1964:IV and from DRI for 1965:I to
1989:II. The data for the UK are GDP at Factor Cost and are from DRI for 1960:1
to 1989:II.

All data were seasonally adjusted at the source.



Footnotes

1. Since writing the first draft of this paper, we have learned of six
independent contemporaneous treatments of various aspects of the recursive
coefficients and trend break problems: Andrews (1989), Bates (1990), Chu
(1989), Hansen (1990), Perron (1990b), and Zivot and Andrews (1989). Discussion
of these papers has been incorporated into the relevant sections of this

revision.
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Table 1
Recursive Unit Root Tests: Critical Values

10% (5%) critical values

max min diff min
T pF DF oF °pF R
100 -3.15 1.93 -3.88 2.95 .0195

(-3.45) (-2.21) (-4.13) (3.37) (.0165)

250 -3.13 -1.88 -3.80 2.98 .0199
(-3.43) (-2.14) (-4.07) (3.36) (.0170)

500 -3.13 -1.88 -3.82 3.01 .0198
(-3.42) (-2.14) (-4.10) (3.45) (.0173)

Notes: The Dickey-Fuller statistic critical wvalues (t F) were taken from
Fuller (1976), Table 8.5.2, and apply to the case of (?,t) being included as
regressors. The remaining entries were computed using data generated by the
null model Ay =€, € NIID(0,1), using the regression equation (2.1) with no
lags of Ay, in the Dickey-Fuller regressions and setting 275, (0) = 1 in the
construction of R(§). The recursive statistics were computeﬁyfor 0,25=<6<1.
The Monte Carle simulations involved 2000 replications. The statistics are
defined in the text.

Table 2
Recursive Unit Root Tests: Size

True Model: Ay, = ﬂAyt_l el € NIID(O,1)

Recursive regression: A = pn + Bt + + B4 + error
g Ye T HFo T A1 Te-1 V-1

Percent rejections at 10% critical values, T=100

max min diff smin
8 SprF °pF tpF tpF R
0.4 9.0% 9.6% 9.23% 14.6% 24.6%
0.6 8.6 8.8 11.0 19.8 3.4

Notes: The T=100 critical values from Table 1 were used to evaluate the
percent rejections. The recursive t-statistic CDF(ED was computed for
0.2558<1. R™™ wa cimauted using the autoregressive spectral estimator

éA (0)={27(1-3(1))“) "¢" from the regression &y = pg + ay_ 1 + B(L)AY 1 *
€., where 4 lags of Ay, , were included. Based on 580 repfications.



Table 3
Recursive Unit Root Tests: Power

True Model: Ve = @Y1 * o€ € NIID(0,1)

a1, t<kT
where @, -

a, e>%T
Recursive regression: Ay. = Wg + Bt +ay. q + ﬂAyt_1 + error

Percent rejections at 10% critical values, T=100

max min diff smin
Ty ay *pF DF pF “pF R
0.9 1.0 15.2% 11.5% 15.4% 13.2% 18.2%
0.8 1.0 21.2 18.0 29.2 14.2 22.6
1.0 0.9 4.4 4.2 8.6 36.2 37.8
1.0 0.8 6.8 4.6 10.8 42.8 49.2

Notes: See the notes to Table 2.



Table 4
Sequential Unit Root Tests, Trend Shift (Case A): Critical Values

10% (5%) critical values

ax min¥*
T T tpp(d)  EpF
100 14.30 -4,20 -4.20

(16.74) (-4.51) (-4.51)

250 12.96 -4.10 411
(15.69)  (-4.41)  (-4.42)

500 13.20 -4.09 -4.11
(15.29) (-4.38) (-4.38)

Notes: The entries were computed using data generated by the null model

Ay =€, €. NIID(0,1), using the regression equation (3.1} and specification
(3.2) with no lags of ay,_. The series of sequential F- and t-statistics were
computed for 0.15=6<0.85. The Monte Carlo simulations involved 2000
replications. The statistics are described in the text.

Table 5
Sequential Unit Root Tests, Trend Shift (Case A): Size

True Model: Ay, = ﬂAyt_1 toegs € NIID(O,1)
Recursive regression: 7y, = pg + plrlc(k) + pot 4+ ay. g+ BAy. _q + errox,

Tlt(k) = (t-k)1(w>k)

Percent rejections at 10% critical values, T=100

ax min¥
B Fr tpp(®) pF
0.4 10.6% 12.2% 12.2%
0.6 12.4 12.6 12.6

Notes: The T=100 critical values from Table 4 were used to evaluate the
percent rejections. The sequential statistics FT(S) and tDF(s) were computed
for 0.15%6<0.85. Based on 500 replications.



Table 6
Sequential Unit Root Tests, Trend Shift (Case A): Power

*
True Model: Ve = ylrlt([TS N+ ay,.1 * €er €y NIID(O0,1),
* * *
1 UTE 1) = (e-[T8 DL(>{Ts |)
Sequential regression: Ye = Hg * ylrlt(k) tougt tay. o+ Bby._1 * error,
1 (k) = (£-K)1(t>k)

Percent rejections at 10% critical values, T=100

Percent k's within

* ax min¥

(@,6 ,87) thr F% tpp(®) o8 k £ .05T
(.9,.25,.2) 24 2% 68.8% 80.8% 82.2% 68.8%
(.9,.50,.2) 0.0 90.2 70.6 71.4 76.6
(.9,.75,.2) 0.0 94.0 30.0 32.8 83.4
(.9,.25,.4) 84.2 99.6 100.0 100.0 95.4
(.9,.50,.4) 0.0 100.0 99.6 99.6 99.4
(.9,.75,.4) 0.0 99.8 58.8 66.2 98.4
(.8,.25,.2) 8.0 65.4 77.2 78.2 8l.4
(.8,.50,.2) 0.0 91.6 76.4 76 .4 92.0
(.8,.75,.2) 0.0 97.6 57.0 57.8 90.2

Notes: see the notes to Table 5.



Table 7
Sequential Unit Root Tests, Mean Shift (Case B): Critical Values

10% (5%) critical values

T F(&) tpp(8) c}’;%“* maxg|t, (5)], restricted
100 15.91 4,51 -4.52 2.62
(18.40) (-4.82) (-6.83) (2.94)
250 16.42 -4.43 -4.51 2.66
(18.61) (-4.75) (-4.75) (2.32)
500 16.70 -4.53 -4.55 2.64
(19.03) (-4.79) (-4.81) (2.86)

Notes: The entries were computed using data generated by the null model

Ay =€, €. NIID(0,1l), using the regression equation (3.1) and specification
(3.3) with no lags of Ay,.. The series of sequential F- and t-statistics were
computed for 0.15<6=<0.85. The Monte GCarlo simulations involved 2000
replications. The statistics are described in the text. The t-statistic for
rl(ﬁ) in the final column is computed under the restriction that yZ-O and a=1
in Model II, Case B.



Table 8
Recursive Statistilcs (p-values) Across Countries

max min L5
Country Sample toF toF toF MLnSR(S)
Canada 48:1-89:2 -1.96 -1.17 -3.70 0.023
(.62) (.41) (.14) (.20)
France 63:1-89:2 -1.74 1.39 -2.44 0.047
(.73) (.99) (.80) (.74)
Germany 50:1-89:2 -1.96 0.20 -1.96  0.110
(.62) (.94) (.97) (.99)
Italy 52:1-82:4 0.26 0.26 -3.87 0.018
(.99) (.95) (.10) (.07)
Japan 52:1-89:2 -0.09 0.72 -2.44 0.072
(.99) (.99) (.80) (.93)
UK 60:1-89:2 -1.88 -0.48 -3.09 0.025
(.66) (.75) (.42) (.26)
us 47:1-89:2 -2.60 -0.00 -2.60 0.037
.27) (.91) .71 (.56)

Notes: The data and statistics are described in the text. P-values testing
the constant-drift unit root hypothesis, based on critical values computed for
T=100, are given in parentheses. The sample period refers to the full sample
of data used to compute the statistics, including initial values for lags in
the autoregressions. The statistic t § Was computed using the full sample;
the rest of the statistics are recursive. R™" was co?pufeg using the
autoregressive spectral estimator éA (0) = {2n(1-B(1))“) "0“, from the
regression Ay, = py + ay. 1 + S(L)Ay_ 1 + €, where 4 lags of Ay, q were
included. The recursive statistics were computed starting at observation
[.25T], where T is the full sample length given in the second column.



Table 9
Sequential Statistics (p-values) Across Countries

Case A: Trend Shift Case B: Mean Shift Case B, Restricted
min* min*

Country 3 cDF(s) T 3 cDF(S) o 13 cTI(S)
Canada 76:2 -4.14 -4.14 81:3 -5.14 -5.14 76:3 -2.11
(.12) (.12) (.02) (.02} (.29)

France 72:4 -3.89 -3.89 68:1 -3.55 -3.55 74:2 -4.45
(.19} (.20) .50 (.54) (.00)

Germany  55:4 -2.79 -2.79 80:2 -2.84 -2.84 60:4 -3.28
(.75) (.77) (.83) (.90) (.02)

Italy 70:4 -3.67 -3.67 74:3 -1.60 -1.60 74:2 -3.48
(.28} (.29) (.98) (.99) (.0L)

Japan 69:4 -4.78 -4.81 73:2 -0.69 -2.23 73:2 -4.85
(.03) (.02) (.99) (.98) (.00)

UK 64:2 -2.49 -2.49 79:3 -3.98 -3.98 82:4 1.55
(.88) (.91 (.27) (.29 (.66)

us 68:2 -3.27 -3.27 63:1 -3.76 -3.76 53:2 -2.04
(.50) (.50) (.39) (.41) (.32)

Notes: The data and statistics are described in the text. P-values testing the
constant-drift unit root hypothesis, based on critical values computed for
T=100, are given in parentheses. The sequential statistics were computed for
[.15T]<k<[.85T], where T is the full sample length given in the second column of
Table 8.
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