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New trading practices and
short-run market efficiency

1. Introduction

Over the last decade, concerns about the relationship between new trading practices
and stock market volatility have grown. A broad-based group of observers, including
corporate officers, market makers, and members of the investing public argue that stock
prices are increasingly subject to excessive fluctuations, especially in the short-run. They
point to index arbitrage and other institutional portfolio trading strategies — strategies
which involve simultaneous trades in many securities — as having a deleterious effect on
the behavior of prices.

There is, however, little direct evidence to substantiate these concerns. First, the
evidence in support of an increase in short-term volatility is quite weak. Harris (1089), for
example, studies the recent short-run volatility of the S&P500. He reports that the data
show a statistically significant, but economically trivial, rise in the conditional volatility of
returns. Second, there is also little evidence that increases in short-term volatility — even
if present - are excessive.

This lack of evidence is, in a sense, not surprising. Volatility exhibits wide swings,
which makes estimation of secular shifts difficult. Moreover, economists have no very good
explanation of what generates volatility.! Without a model, it is difficult to identify the
impact of changes in trading practices, and to judge whether any increase in volatility is
for better or for worse. In short, simple measures of volatility may not be the best way to
assess the impact of portfolio trading strategies.

An alternative way to look for impacts of new trading practices is to examine the au-
tocorrelation of index returns. There are at least two ways in which new trading practices
may affect autocorrelations. First, if these practices have brought with them short-run
overreactions, they will introduce into returns a predictable component which exhibits
negative autocorrelation. Second, if new trading practices have helped to eliminate ineffi-

ciencies, then we might expect prices to be less predictable i.e., to exhibit autocorrelations

1 See Schwert (1990) for an investigation of the statistical properties of return volatilities.
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nearer to zero than previously. Either way, measures of autocorrelation have the advantage
of providing an unambiguous null hypothesis: in a well-functioning market, returns ought
to be uncorrelated.? .

In this paper, we focus on how the new trading practices might have affected the
autocorrelation and volatility of market returns. Lower commissions and better communi-
cations, clearing, and information technology have made it possible to trade larger baskets
of stocks. In addition, the relatively new stock-index futures market now acts as a highly
visible “billboard” of market-wide factors. These kinds of changes could have a variety of
effects on price behavior. For example, they may foster the proliferation of trading strate-
gies with destabilizing effects. On the other hand, they may improve the market’s ability
to impound aggregate information rapidly and efficiently into individual stock prices.

To clarify how this latter effect operates, we provide below a simple model to show
that slow dissemination of market-wide information results in index returns which are
“sluggish,” in that they exhibit positive autocorrelation and relatively low variance. This

essed e

v

occurs even when information about individual stocks is proc fliciently. We show
that the index’s theoretical autocorrelation falls and that its volatility rises with an increase
in the speed at which market-wide information is disseminated. We also show that such
increases in speed of dissemination alter only cross-stock moments and have no effect on
the autocorrelation or variance of individual stock returns.

We go on to document that there has in fact been a sharp and dramatic decline in
the autocorrelation of stock-index returns for a number of broad market indexes, and a
marked increase in the variance of short-term returns. For example, we find that very
short-run (15-minute) returns on the S&P 500 during the 1983 to 1989 period went from
being very highly autocorrelated (with a correlation coefficient of about 0.4) to practically
uncorrelated. The same appears to be true for daily and weekly returns on the Dow Jones,
S&P 500, and value-weighted NYSE indexes over the last 20 years. (The autocorrelation of
equally-weighted NYSE returns also appears to have fallen, although not as dramatically.)

In addition, from 1983 to 1989 the variance of short-run index returns rose steadily by

30f course even in a perfectly efficient market, time-varying axpected returns could lead to nonsero autocorrelations, Over
short enough return horizons, however, the variation in expected returns should be dominated by the variance of total returns.



almost 50 percent relative to the variance of longer-horizon returns.3

These results are entirely attributable to a reduction in cross-stock autocorrelation;
changes in own-stock autocorrelation are small, and if anything, positive during the 1980s.
This finding seems at odds with the argument that the new trading practices have brought
with them an increased tendency toward short-run overreaction.? Also consistent with
this is our finding that higher-order autocorrelations, which were formerly statistically
negative, have risen to become indistinguishable from zero.

The decline in index autocorrelation and increase in variance could in principle be ex-
plained by measurement problems associated with increases in bid-ask bounce or decreases
in nontrading effects. In order to estimate the importance of these alternatives, we employ
transactions data on individual NYSE stocks. We then decompose index returns, which
are based on last-trade prices, into bid-ask bounce, nontrading, and current midquote
the decline in autocorrelation. Moreover, increases in trading volume (i.e., decreases in
nontrading staleness) appear if anything to have increa:sed measured index autocorrelation.
We discuss these and other results below. But our basic finding is that the well-known
autocorrelation in short-term index returns appears to have been due to inefficiencies in
processing market-wide information. Furthermore, with recent technological and institu-
tional improvements in the processing of this information, much of the autocorrelation
seems to have disappeared.

The paper is organized as follows. In section 2, we provide a simple model which relates
the speed of dissemination of market-wide information to the autocorrelation and variance
of returns. Section 3 explores the decline in autocorrelation in 15-minute returns on the
S&P 500. We devote section 4 to interpreting our findings, performing the decomposition
mentioned above. Section 5 then looks at the historical behavior of daily- and weekly-return
autocorrelations; there we report evidence of a similar secular decline in autocorrelation.

Section 6 concludes.

3For avidence on the sverage autocorrelation of short-run index returns, see Lo and MacKinlay (1988) and Poterba and
Summers (1988),
4See Lo and MacKiniay (1990) for evidence of the importance of cross-stock sffects in generating predictable index retums.
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2. A simple model of market-wide information

A simple model suffices to demonstrate how reductions in transaction costs and im-
provements in information technology can affect the behavior of index returns., Imagine
that the market consists of NV stocks, each of which is managed by a risk-neutral specialist.
Suppose that the true value of the ith stock at time ¢ is given by Vf, which is defined as
the sum of a market-wide “factor,” V;, plus an idiosyncratic value term, E; : Vt" =V + E} .
For simplicity we assume that the components of Vt‘ follow independent random walks,
and the mean-zero innovations AV; = u;, and Af;' = ef are iid normal, with variances a?,
and a;", respectively.

In order to capture the notion that trading costs and technological delays hamper the -
dissemination of information, we assume that the specialist cannot observe V,‘ instantly,

but must wait until time ¢t + 1 to observe V¢ (and its components). In the s

irit of

Kyle (1985), we assume that the specialist also observes at time ¢ an order flow which
is comprised of an informed-traders’ component, here given simply by the change in true

value, ug + cf, plus a random component from “liquidity” traders, yf";
Ft"=ug+e§+l/§, (1)

with v} iid normal (both across time and over stocks) and with zero mean and variance
03.5 Thus, at time t the sth specialist observes his own private order flow, Ft", plus
the components of true value of the ith stock at time ¢ — 1, Vt‘_1 We refer to those
informed traders who observe u; (and therefore V;) contemporaneously as “index” traders
to distinguish them from traders who observe stock-specific information, ei.

If specialists set time-¢ prices optimally, according to their current conditional expec-

tation of V,‘, it is easy to show that the price of the sth stock at time ¢ is just:

P} =\F} +V},, (2)

5The results below would continue to hold if we were to derive informed traders’ optimal order flow, rather than positing
it exogenously. All that matters here is that current information sbout value is not fully incorporated into prices, which is a
general featurs of equilibrium models of informed trading.



2.2
where A = _zlu;"zer_ﬂ The change in price between times ¢ and ¢ — 1 is then:

outog+oy,

AP = Mug + ¢ + AV:) + (1= A)(ue— + ‘g—l)' ®)

Straightforward algebra yields that own-stock price changes are serially uncorrelated, ie.,
cov(APt", A t;l) = 0, a result that follows directly from specialists’ optimal choice of the .
market-depth parameter, ). |

Even though individual price changes are not predictable based on their own past
behavior, an index of stock prices is positively autocorrelated. To see this, define the change
in price of an equally-weighted stock index from ¢ — 1 to ¢ as AP, = N1 2,1!:1 AP,". The
autocovariance in the index can be written as the sum of the own-stock plus the cross-stock

autocovariances:

N N

4 . . N » »
cov(APy AP-1) = N72(Y cov(AF, APL) + 33 cov(aF}, aFL)). @)
=1 1=1 j5#¢
As mentioned above, the own-covariance on the right-hand side of (4) is zero, and from
(3), the ¢, jth cross-covariance on the right-hand side of (4) is given by A(1 — A)o2. Index

autocovariance is therefore:

(N-1) 2 _(N-1) (¢7¢2 + 02)0202
cov(AP,, AP _1) = Y——1(1 — A)do? = ul_v-u_ - o, 5
(AR, AR) N ( Ny N (0% +o0?+02)? ()

Thus, even though specialists use all the information available to them to set prices and
individual stock returns are serially uncorrelated, an index of returns exhibits positive
autocorrelation.

How might this autocorrelation persist in an equilibrium model? While informed index
traders have better information than do specialists (and therefore earn trading profits),
in an equilibrium with free entry, expected profits offset expected costs of monitoring and
then trading on the index. To eliminate the autocorrelation, more index traders would

have to enter. But entry does not pay with costly information acquisition and trading.

$Given knowledge of V_, and that fact that the random variables are normally and independently distributed, the best
unbissed predictor of current price has the linear form in (2), with A set to the OLS estimator in a regression of u; + c:' (the
portion of current value unknown to the specialist) on F}.
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What happens if market-wide information is disseminated more rapidly, so that the
lag in observing V; is reduced? To see this in the model above, imagine that there is a
change in market technology such that V; is observable at time ¢ to specialists. This would
occur if it becomes costless to trade V;, whereupon index traders would earn positive net
profits unless innovations in V; are fully incorporated in current prices. Alternatively, a
futures market for the index might open and serve as a “billboard,” making the current
value of the index publicly observable.

For either of these reasons, once innovations in V; are fully incorporated into current
prices, the price of the sth stock is given by P = z\’(Ft" —ug) + V':_l + u¢, and the new
level of market-depth by X = ;ﬁ%f’ By substitution, the change in the ith stock’s price
becomes:

AP} = N(e} + Avf) + (1 - M)eb_y + u,. (6)
As before, A is set such that the own-stock autocovariance is zero. Using (4) and (6),

index autocovariance is now given by:
cov(AP, AP;_y) = N"Y(N — 1)cov(ug, up_y) =0, (7

i.e., the cross-stock autocovariance disappears and hence the index is serially uncorre-
lated. Although this model is simple, it demonstrates a very general point: more rapid
dissemination of market-wide information lowers the autocorrelation of index returns.?
Consider next how faster dissemination of market-wide information affects the variance
of the index. Simple algebra yields that when market-wide information is observed with a

one-period lag, the variance of the index is:
var(AP,) = N~} (0,2‘ +ol+a(N - 1)03), (8)

with a = (1 - 2A(1 - X)) < 1. Alternatively, if information is instantly disseminated,

variance increases to:

var(APR) = N"l(aﬁ +02 + (N - l)aﬁ) =% + N~ 152, (9)

TThe specialist subtracts u1, which is now directly observable, out of the order flow in order to obtain the best unbiased
predictor of 0:'. {the component of current value which he cannot observe).

$None of the results depend on the symmetrical nature of the model. We would reach similar conclusions if, for axample,
we were to assume that some stock prices react more rapidly to aggregate information than others.
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In these formulas we see that own-stock variances remain constant at o2 + 02 under both
regimes, while contemporaneous cross-stock covariances rise from ao2 to o2 when infor-
mation is disseminated more quickly. This makes intuitive sense, since the decline in
autocovariance is exclusively a cross-stock effect. Thus, index variance rises to reflect the

compression of market-wide movements.

3. Autocorrelations in high-frequency S&P 500 returns

We next explore the actual behavior of the variance and serial correlation of short-
term returns. In this and the following sections, we examine the behavior of very short-run
returns - 15-minute returns on the S&P 500 cash index from February 1983 to December
1989. In section 5 we go on to look at the behavior of daily and weekly returns.

Table 1 shows the average 15 minute variances for each year from 1983 to 1989.° Each
measure of variance is calculated in two ways; the first column reports the average variance
during each trading day (beginning at the open and ending at the close), averaged across
all trading days in the period; the computation in the second column does the same, but
also inciudes the overnight return between the close and open, treating the overnight as
though it were just another 15 minute interval.10

The main result from Table 1 is that the level of variance moves around so much year
by year that it is difficult to discern an upward trend over this seven-year span. While
the variances for 1989 are about 50 percent above those for 1983, they remain about
25 percent below the average variances during 1986. Similar results emerge when longer
horizon returns are used to compute measures of volatility. This is not strong evidence of
a sustained upward trend.l!

Tables 2a and 2b show average variances by year and by time of day for both the

cash and futures indexes. Table 2a indicates that as much as 25 percent of an average

9To clarify the effect of the October 1987 crash, we calculate two messures for 1987; the first includes only trading days up
until the crash and the second includes the entire year.

10Note that the latter column is only slightly higher than the formar; indeed, the overnight variance is not much larger than
the variance for an average 15 minute interval during the day. It hourly variances remained constant around the clock, the
second column would be about three times as large as the first. French and Roll (1986) document that variance per unit time
is much lower when the market is closed than when it is open. Our data may even exaggerate this effect because, due to
nontrading, overnight price changes may get incorporated only slowly into the opening index.

1! Harris (1989) studies conditional as well as unconditional varisnces of S&P returns, and finds that thers is an sconomically
small (but statistically significant) increass in recent variance.
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day’s cash-market volatility occurs during the first half-hour of trading. Variances in each
year are greatest in the early morning and near the end of the day, remaining uniformly
low in between. What is responsible for such large price movements in the morning after
the open? One possibility is that staleness in the index results in information that has
accumulated overnight to seep only slowly into prices. In such a case, we would expect to
see a very different picture in the futures market, where sluggish trading at the open should
not be a problem. Thus, we would expect the overnight return variance in the futures index
to be greater and the early morning variances smaller than in the cash market.

Table 2b shows that this is indeed the case. The table compares the volatility of
the cash and futures S&P 500 indexes for 1988 and 1989 (the only years for which we
could obtain such high-frequency futures dat:a).12 As we expected, the high early-morning
variances evident in the spot market index are conspicuously absent in the futures data,
while the overnight futures variances are about 10 times as large as those during the
day. Interestingly, note that the variance of the futures index in the middle of the day is
consistently greater than that of the mid-day cash index.

The overall result that comes out of tables 1 and 2 help is not very exciting: levels
of index volatility are too variable to isolate with much confidence any recent increase.
However, if it were possible to scale volatility properly, so that the “noise” were eliminated,
perhaps we could sharpen these observations. One approach would be to scale 15-minute
volatility by volatility at some long horizon. In this spirit we computed the ratio of 15-
minute to weekly volatility, which is plotted in Figure 1. The figure shows a definite increase
in short-horizon volatility relative to that at longer horizons. This finding is consistent
with both the overreaction hypothesis as well as the model of information dissemination
in section 2 above.

Has there been a decline in low-order autocorrelation alongside of this increase in
variance? To answer this we look at both intraday variance ratios and first-order autocor-
relations. Table 3a reports variance ratios comparing the variance of 15-minute returns

with that of returns at 30, 60, 120, and 180 minutes. If the index follows a random walk,

13The data used to construct Table 2b run only from April 1988 until Novembar 1989. As a consequence, the cash-market
estimates in Tables 2a and 2b are not identical.



so that returns are completely random, each of the variance ratios would be close to 1.0.
Numbers higher than 1.0 indicate positive serial correlation in returns,1314

Also, table 3b reports estimates of average first-order autocorrelation coefficients from
15-minute returns. These should be (and indeed are) similar to the 30- to 15-minute ratios
in table 3a, which are approximately equal to 14p, where p is the first-order autocorrelation
coefficient. Differences between the two measures are due to the different weighting of first
and last returns on each day, and are small, though detectable, for these data.l®

In spite of differences in computational technique, identical conclusions come consis-
tently out of both tables: there has been a dramatic decline in the high-frequency positive
serial correlation present in the index in the 1980s. Indeed, the majority of the initial
Positive correlation has since disappeared. The estimated standard errors — which are less
than 0.02 - indicate that these changes are highly statistically significant. The largest
declines appear to occur in 1985 and 1986, although (with the exception of the crash of
1987) the point estimates have continued falling since then. In some cases, there remains
currently no statistically significant autocorrelation in the index,16 Figure 2 graphs the
autocorrelations from the top panel of Table 3b.

Tables 3a and 3b may hide a great deal of information by averaging autocorrelations
over the day. To look beneath these numbers, Table 4 presents evidence on the predictabil
ity of consecutive 15-minute returns, showing first-order autocorrelation coefficients by year

and time of day. The table’s first two columns show that the predictability of upcoming

13Table $a reports variance ratios measured in several different ways. In the top panel, the ratios are computed for each
trading day, and sre then averaged over the year. In the second pand, ovemight price changes are once again included just as
though they were 15-minute returns, and the aversge across days is reported. The numbers in the top panel are generally lower
than those in the second pand, in part because of the behavior of prices at the beginning of each day: average daily variance
ratios, such as those computed in the top-panel, wili genarally be biased downward when » disproportionate share of the day's
variance occurs at the beginning of the day. The third and fourth panes are computed analogously to the first and second,
except that they omit the opening-return effect by leaving out the first 30 minutes of each day’s trading. All of the estimates
are corrected for small sample biases. For details on this procedure, see, for example, Cochrane (1988).

1 Standard errors from Monte Carlo simulations under the null hypothesis that returns are independently and identically
distributed are reported in each panel. Interestingly, conditional heteroskedasticity does not appear to be & problem in retums
over such short intervals. We performed White tests for conditional heteroskedasticity on the actual dats, and wers unable
to reject the null hypothesis of no heteroskedasticity. This is in striking contrast to returns for daily intervals, where thers is
strong evidence of heteroskedasticity conditional on the prior day's returna.

131n calculating these coefRciants and the variance ratics which preceds them we allow expected returns to vary freely across
trading days. While this method imposes no restrictions on expected rsturns, it does lead to some implausible results (for
exsmple, expected returns on some trading days are calculated to be negazive). An alternative, but equally extreme method
would be to force expected returns to be constant over the entire year. When this is done, the autocovariances are higher by
about 0.03, but the change from 1983 to 1988 remains essentially unaffected. Because the return horizon is so short, when
expected returne are fixed over the year, just which value is chosen for expected returns makes little difference to the results.

$$MacKinlay and Ramaswamy (1988) also report a recent decline in the first-order autocorrelation of index returns.
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15-minute returns was very large during 1983 and 1984. The average correlation coefficient
in those years was 0.44 and 0.33, respectively. In addition, the degree of predictability is
basically constant throughout the day, and not importantly different at the beginning of
each day when volatility is greatest.

Table 4 suggests that the reduction in the predictability of returns is not restricted to
some portion of daily trading: essentially all of the daily correlation coefficients fall from
their high levels at the beginning of the sample. The steady reduction in autocorrelations
appears to be a fairly general feature of the market, and does not appear concentrated in
a portion of the trading day.l”

So far we have described the predictions of subsequent 15-minute returns by current
15-minute returns. There is also the question of how well current returns can forecast
price changes which are further into the future. Tables 5a and 5b address this issue by
reporting higher-order autocorrelation coefficients. To read Table 5a, note for example that
—0.0122 in the fourth line, first column, represents the autocorrelation between a current
15-minute return and the 15-minute return one hour later.!® The most readily obvious
feature of Table 5a is that none of the higher-order autocorrelations are anywhere near as
large as the first-order autocorrelations. In 1983, for example, the second-order coefficient
is 0.038, an order of magnitude lower than the first-order estimate (but still statistically
positive). The second-order autocorrelations have also fallen over time. Indeed, all the
estimates after 1984 (with the exception of the subsample which includes the 1987 crash)
are statistically indistinguishable from zero.

To help digest the information in Table 5a, a summary of the coefficients is presented
in Table 5b. To do this we average the coefficients over half-day intervals. Thus, for
example, the second line in Table 5b represents the average of the second- to twelfth-order
correlation coefficients from Table 5a. Because the first-order coefficient is distinctly larger,

we do not include it in this average.!®

17To save space we do not present standard errors for the correlation coefficients in Table 4. To give a rough sense, though,
wae note that almost all of the coefficients in excess of 0.2 are statistically different from sero st the one-percent level,

1$These sutocorrelstions trest the overnight return like any other 15 minute interval; they also ignore any time-of-day
heterogeneity in sutocorrelation coefficients,

19For the years 1988-89, thers were 26 15-minute intervals in each trading day (ss compared with 24 intervals during 1983-85),
80 that the half-day averages include an extra coefficient during this period.
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Focus first on the pattern of the estimates for 1983. The first-half-day coefficient is
smaller than the first-order coefficient, and the average second-half-day coefficient is smaller
still (although it is still statistically significant). The third-half-day coefficient drops further
and is actually statistically negative. Next, notice that this pattern disappears slowly over
time. By 1988 and 1989, the average higher-order coefficients show no real downward
trend and none remain statistically different from zero. Thus, the decline toward zero in
first-order autocorrelations seems to occur in higher-order autocorrelations as well. These
results are inconsistent with the view that new trading practices have led to short-term

overreactions.

4. Interpreting changes in the predictability of the cash index

So far we have concentrated on the decline in autocorrelation in the reported index,

due to bid-ask bounce and nontrading effects, which could in principle account for the
decline in autocorrelation. In this section, we attempt to measure the contribution of
these two sources of measurement problems, and to isolate the portion of the decline that
is generated by more efficient processing of market-wide information. To do this, we need
to employ transactions data for individual stocks. These data will allow us to identify
own- and cross-stock components of the decline and to gain some insight into how market-

wide information is actually disseminated. This will be important for distinguishing the

overreaction hypothesis from the faster-dissemination-of-information hypothesis.

4.1. Bid-ask bounce

The first source of measurement error is bid-ask bounce. When there are discrete
differences in the prices at which buys and sells are executed, random buys and sells may
lead to the appearance of up- and down-movements in prices, even when quoted prices are
constant over time. This component of price changes will exhibit negative serial correlation:
when the index is at the ask, all else equal, it tends on average to move down toward the

bid.20 If bid-ask bounce is present in the last-trade index, then the level of autocorrelation

2°Roll (1984) presents a simple model of such bid-ask bounce, and shows that bounce induces negative covariation between
current and future returns.
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coefficients is lower as a result. What is important for our analysis, however, is whether
the bounce can explain the change in autocorrelation through time.

There are at least two ways that the importance of bid-ask bounce have increased
in the 1980s. First, all else equal, bid-ask bounce is an increasing function of the size of
the bid-ask spread, so an increase in the spread could produce a corresponding increase in
bounce. Second, if investors tend to trade more frequently in portfolios of stocks rather
than in individual stocks, then buys and sells will have greater synchronousness and, all
else equal, bid-ask bounce will increase. Consider as an example the case in which buys
and sells across stocks are random, so that at any given time 50 percent of the stocks
are at the bid and 50 percent at the ask. In such a case the index would contain only a
negligible bounce component, even though bounce may be important for individual stocks.
Compare this with the case in which buys and sells are perfectly synchronized as a result
of portfolio trading, i.e., stocks are simultaneously all at the bid or all at the ask. In this
latter case, the synchronousness of buys and sells would create bid-ask bounce and reduce
the serial correlation in the last-trade index.

The evidence from table 5 suggests that these explanations are unlikely to explain most
of the decline in autocorrelation. If bid-ask bounce were responsible for the change of —0.36
(0.07 in 1983 minus 0.43 in 1989) in the first-order autocorrelation, we would expect an
equal-size reduction in all correlation coefficients, and not just that of the first-order (see
Roll, 1984). It is clear from table 5 that the change in the first-order coefficient is more
than an order of magnitude greater than changes in higher-order coefficients. However,
there is some evidence that bid-ask bounce has increased slightly. From table 5a, we can
see that the second-order autocorrelation coefficient falls by -0.030, from 0.038 in 1983
to 0.008 in 1989. Similarly, from Table 5b, the average autocorrelation coefficient over
the first 24 hours falls by about —0.016 over the same period. Both of these changes are
statistically significant. But even if we suppose that they are due entirely to increases in
bid-ask bounce, they are clearly too small to explain the overall change in autocorrelation

of the index.

12



4.1.1. Transactions data

A second, more direct, piece of evidence on bid-ask bounce can obtained by attempting
to isolate the bid-ask component of the last-trade index. To do this, we examined data
for all NYSE transactions for the years 1983 and 1988. Working with as large a subset
of the S&P500 as possible, we constructed an approximate S&P500 last-trade index and
corresponding indexes of bid and ask prices prevailing just before the last trade.2!

We will need some notation in order to follow how these data are used. Let L; be
the index of last-trade prices and M; be the index of extant midquotes for each last-trade
price. The difference between the two, L; ~ M;, measures the distance between the last
trade index and the center of the then-prevailing spread. Now let It = In(L¢/Le—q) be
the return index of last-trade prices, and m; = In(My/M,;_;) be the last-trade-midquote
return index. In principle, the last-trade midquote index is not cont@hated by a Roll-
type bid-ask spread, so we can learn about the importance of bounce by exploring the
changes in serial correlation of I; and m;.

Table 6 reports estimates of the first-order autocorrelations of the indexes we con-
structed from the transactions data: l; and m;. As in panels 3 and 4 of table 3, we
provide in table 6 average intraday autocorrelations excluding the first 30 minutes of each
day’s trading. Below each number we report estimates of the own-autocorrelation of the
total index. Since total covariance is the sum of own-covariance plus cross-covariance,
the own-covariances allow us to assess how much of the change in autocovariance is at-
tributable to cross-stock effects. For example, the first line in table 6 shows the change
in the autocorrelation of our /; index from 1983 to 1989 of —0.332.22 Of this, the num-
ber beneath line 1 says that 0.015 is attributable to a decline in own-autocovariance (i.e.,

an increase in Zﬁl(w‘)zcov(lf,I;'_l)/var(lg), where w' is the weight of the ith stock in

31Qur intra-dsy-transactions database is from the Center for the Study of Security Prices. We considered only thoss stocks
in the S&PS00 whose primary market is the NYSE. We also considered only those transactions and specialist quotes which
were reporied on the NYSE. This was done to minimise complications arising from quotation and trade reporting standards
that vary between markats. Stocks were also exchided on days whers thers wers apparent data errors, or on dsys when quote
and price data were available only after the first 30 minutes. Cartain whole days were also excluded due to gaps in the data.
We computed indexes for 338 days in 1983 and 262 days in 1988; the number of stocks varied between 369 and 430 in 1983,
and betwesn 374 and 455 in 1988. By leaving out the Arst hour of each day’s trading, the number of stocks we could include
in the index increased. However, doing so had no material effect on any of our estimataes.

?2Note that this number is closs (but not precisely equal) to the autocorrsiations of the S&P 500 reported in table 3b,
Discrepancies uq.du- to the differences in the way the indexes are calculated. Ses footnote 20 above.
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the index), and that the remaining —0.347 is attributable to a decline in cross-covariance
(Zf’:__l Zgﬁj w"w"cov(l{,li_l)/var(lg)). As discussed earlier, if the decline in index au-
tocorrelation is due predominantly to better processing of market-wide information, we
would expect changes in cross-covariance to explain most of the decline.

The second line of table 6 reports the first-order autocovariance of m; divided by the
variance of the last-trade index, c—o—v‘(,%'(;—:"j—"—l)-.za This index explains a change of —0.221,
or two thirds of the decline in the autocorrelation of {t. On the third line is difference
between the first two lines, which is an explicit measure of bid-ask effects. It is clear from
line 3 that the bid-ask component has risen by more than we estimated from table 5: the
change from 1983 to 1988 is —0.111. Nevertheless, this is still only about one third of the
change in the autocorrelation of the last trade index.

It would be wrong, however, to interpret differences between the autocovariances of
the last-trade and last-trade-midquote indexes on line three as pure measures of bounce.
To see why, define the bid-ask error as the difference between the last-trade and last-
trade-midquote return indexes: ¢ = l; — m;, which is approximately the change in L; — M;
(expressed as a percent of M;).24 If ¢ > 0, then loosely speaking, there is a greater fraction
of buys at time ¢ than at time ¢t — 1. Then rewrite the third line of table 6 as:

cov(lg,lt_l)_cov(mg,m,_l) _ cov(e,ee—1)  cov(me,e—1)  cov(e, me—y)
var(l;) var(l;) — wvar(l) © var(ly) var(l¢)

(10)

Equation (10) says that the difference between the autocorrelations can be subdivided into
three parts. Each of these turns out to have a distinct interpretation.

The first term on the right-hand side of (10) is a direct measure of the serial correlation
induced by synchronized buy and sell orders. That is, it is a pure measure of Roll-type
bounce. The fourth line in table 6 reports that the change from 1983 to 1988 in %:‘7'5—:;‘—‘1

over time is negative, but relatively small at —0.051. Notice, however, that the move in

33 Note that this is just the Arst-order sutocorrelation of my multiplied by %'L&"—'))- We use this expression, rather than the

simple autocorrelation of me because it has the same denominator as the autocorrelation of 1y, and is therefore amenable to
additive decomposition. These ratios are all calculated daily, then averasged over the year.
34 Using the notation from above we can see the relationship between ¢, and deviations from the bid-ask midpoint:

¢ = In(Ly/Ly1) - In([My /M) = ‘ﬂ(:‘:—ef'l) N & - €e-ny

where fg = (Lg - Ml)/Ml.
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the own-autocovariance in line 4 is actually positive, with an increase of about 0.024. This
says that bid-ask bounce in individual stocks has become less important (rising over time
toward zero), which suggests that the average stock’s bid-ask spread has narrowed. We
checked this implication by computing the average bid-ask spread, and found that the
average spread indeed fell from 1983 to 1988 from 19.5 basis points to 17.1 basis points.

These facts also imply that cross-correlation in bid-ask bounce has become (more)
negative (falling by —0.051 — 0.024 = —-0.075). Such a decline would follow from an
increase in the synchronousness of buy and sell transactions across stocks. Note that this
is exactly what we would expect if portfolio trading has increased over time. In any case,
the own- and cross-components of bid-ask bounce are small in size, and, moreover, tend to
cancel. Overall bid-ask bounce is therefore responsible for only a tiny part of the change
in the correlation of the last-trade index.

The second term on the right-hand side of equation (10) is slightly more complex.
It measures the correlation between past increases in buys (sells) and current increases
(decreases) in the midquote index. Table 6 reports this term in line 5; the correlation is
clearly large and positive. In addition, these estimates move toward zero over time, and
account for 20 percent of the unexplained change reported in the last column of line 3.
There are two possible explanations for such behavior: what we call the “eating-through-
the-order-book” (ETOB) and the “sluggish-response-to-order-flow” (SRFI) hypotheses.

The ETOB hypothesis describes a market in which order flow is positively autocor-
related and limit orders are sticky. Suppose, for example, that the specialist has a limit
order at the ask price, with more limit orders at prices above that. Suppose also that
as buy orders come in and the specialist executes and (eventually) exhausts the current
limit order, he simply moves the ask price up to the next limit order. When order flow
is positively autocorrelated (which might occur if big trades are broken up and executed
sequentially), an increase in buy orders tends to forecast an increase in the ask price, and,
therefore, an increase in the future midquote index. The ETOB hypothesis would therefore

predict that the covariance between €¢—1 and my is positive.25

2%See also Glosten and Milgrom (1985), who present a model with the same prediction. In their model, bid and ask rates
resdjust upward after buys and downward after sells; this crestes positive correlation between €3 and m, for individual stocks.
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The other possibility to explain line 5 is the SRFI hypothesis. Thissays that order-flow
information for a given stock is incorporated into quotes for other stocks slowly over time.
For example, suppose that at time ¢ — 1 the GM specialist executes a buy order at the ask
(which increases ;). This buy order might provide incremental information about the
value of Ford, and therefore might be associated with an increase in the Ford specialist’s
quotes. The SRFI hypothesis says that the full increase happens not insténtaneously, but
slowly through time. Thus the positive covariance between €t-1 and m;.

The important difference between these two hypotheses is that - unlike ETOB - SRFI
is a measure of how rapidly market-wide information is disseminated, and is therefore
central to our point in this paper. How can we distinguish between these two hypotheses?
One way is to observe that SRFI is clearly a statement about correlation of ¢;_; and m;
across stocks, while ETOB is an own-stock effect. Using the own-covariance numbers in
table 6, we can separate out the cross-stock component in the last columns of line 5. The
estimates imply that of the change in line 5 of —0.020, about —0.009 (—0.020 + 0.011) is
attributable to cross-stock effects.

This result suggests that, by trying to cleanse the last-trade price index, I, of bid-ask
bounce, we throw away some evidence that the processing of market-wide information
has improved. Since the last-trade midquote index, m; does not use transactions prices, it
ignores the fact that deviations from midquotes may be a form of market-wide information,
and that this form of improved information dissemination helps explain the reduction in
the autocorrelation of ;. This reasoning implies that if SRFI is correct, as it appears to
be, we should not attribute the decline in line 5 to an increase in bid-ask bounce, but to
improved processing of market-wide information.

Finally, consider the last term on the right-hand side of (10), °°‘:':;"Z"" . This term
measures the covariance between past increases (decreases) in the midquote index and
current buys (sells). Table 6 presents our estimates of this term on line 6. The covariance

is negative and decreasing over time, accounting for a fall in the autocovariance of the
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last-trade index of about —0.041. As with the previous term, there are two potential ex-
planations: the “see-’em-coming” (SEC) and “slow-response-to-price-information” (SRPI)
hypotheses.

Under the SEC hypothesis, the specialist appears able to anticipate the upcoming
order flow, tending to raise (reduce) prices just as buy (sell) orders arrive. This would
lead us to expect that bid-ask prices rise as buy orders (locally) peak, and therefore that
the covariance between m;_; and ¢; is negative. Clearly, specialist anticipation of future
order flows is not in itself bad for other investors; if specialists are responding to the
same information that generates trading in the first place, then SEC may result in better
information being incorporated into current prices.26

The alternative — the SRPI hypothesis — holds that some stocks’ quoted prices respond
slowly to information, making it attractive to buy or sell them when the index changes.
To.see this more clearly, suppose that the index is comprised of two stocks: GM, whose
quoted prices respond immediately to information, and Ford, whose quoted prices are
“sticky.”%” When positive market-wide information is released, GM trades immediately at
higher quoted prices, while Ford’s quoted prices remain the same. If there are a few smart
traders observing this, they will profit if they buy Ford as the price of GM rises. The
buying of Ford subsequently subsides as its price slowly rises. Thus a current increase in
the index of GM and Ford quotes predicts that the index of GM and Ford buys is currently
high (and falling).

Once again, we can exploit the fact that the SEC hypothesis is an own-stock effect
while the SRPI hypothesis is a cross-stock effect in order to distinguish between these two
explanations. (To see this in the example above, note that the price increase in GM is
not associated with current buys of GM, and that the current buying of Ford is assumed
not to drive up current Ford quotes.) Once again, our estimates show that the own-stock
change is essentially zero (—0.005 from the last column of line 6). Thus, the cross-stock
effect accounts for most of the change of —0.041 from 1983 to 1988 in line 6: the SRPI

hypothesis seems to be the right explanation for the decline in the covariance of m;..; and

2$For svidence that specialists are able to anticipate order flows, see Sirri (1990).
3T Quoted prices would be sticky if the specialist could adjust them, but doesn't, or if investors piace on the specialist’s book
limit orders which are not immedistely revised when information is released.
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€.

There are several interesting implications of these findings. First, they suggest that,
conditional on some prices changing in response to news, trades do not cause price changes,
but that the lack of price changes does cause trades. To see this, note that if in these
circumstances trades caused price changes, then there would be buying of GM when its
price rose. This, however, should lead to a negative own-stock correlation of m,_; and
€, which we do not find. In order to generate negative cross-stock effects and zero own-
stock effects, it must be that when some prices rise and others don't, outside investors buy
predominantly those that don’t.

Second, this cross-stock effect is once again closely related to the processing of market-
wide information. We have seen that the covariance between my¢_) and ¢; is falling because
of more aggressive trading of stocks whose quotes are slow to respond to market-wide news.
Such trading is clearly helpful in eliminating positive correlation in last-trade quotes. Of
course, if the processing of market-wide information were completely efficient, all stock
prices would respond instantly, and this would tend to choke off such cross-stock trading
in the first place. But in such a world we would observe zero autocorrelation in an index
of current midquotes, which, as we show in the following subsection, is not yet the case.
In sum, the negative cross-stock covariance of m¢—1 and € suggests that trading pressures
are working toward enhancing the efficiency of the market index. We therefore may want
to include line 6 of table 6 in the portion of the decline in autocorrelation due to improved
market efficiency.

To sum up the results of this subsection, we have seen that after purging the last-
trade index of bid-ask effects, the decline in the first-order autocorrelation from 1983 to
1988 is about ~0.221, or about two thirds of the ~0.332 decline in the autocorrelation of
the last-trade index. Of the remaining —0.111, —0.045 might be attributed to our slow-
response-to-information hypotheses (—0.009 to SRFI and —0.036 to SRPI), which we think
of as reflecting better processing of market-wide information. Thus we can attribute only
—0.051 of the —0.332 decline in the autocorrelation of I; to measurement error induced by

classic bid-ask bounce. Next, we try to separate out the nontrading effects in m;.
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4.2. Nontrading effects

The more frequently mentioned - and potentially more serious ~ form of measurement
error comes from nontrading. Because our m; index is computed from last-trade quotes,
some fraction of individual stock quotes will always be “stale.” As trades occur in these
stocks, any apparent staleness will disappear, creating the impression that information
seeps slowly into the index. Thus the last-trade index appears positively correlated, even
if the prices at which these stocks would trade (if they were to trade) might respond
instantaneously to information.

The size of this nontrading correlation depends on two factors: the frequency with
which stocks trade, and the degree to which trades are synchronized across stocks. Clearly,
greater trading volume works to reduce nontrading and hence to reduce the serial corre-
lation in returns. Alternatively, greater synchronization in trades across stocks can affect
index correlation, even holding fixed the volume of trade, Common models of nontrading,
such as that of Scholes and Williams (1977), are not easily able to capture the importance
of the latter effect. Rather than try and test a particular model of nontrading, we turn to

the transactions data in an attempt to purge the index of the effects of nontrading.?8

4.2.1. Transactions data

We can use the 1983 and 1988 transaction data discussed above to calculate explicitly
a measure of staleness. Following Harris, Sofianos, and Shapiro (1990), we note that the
last-trade midquote index, m;, can be thought of as equal to the current midquote index
plus a staleness term - the difference between the last-trade midquote and the current
midquote:

me = eme+ s¢ = eme + (my — emy). (11)

To understand equation (11), think of the true underlying index as equaling the av-
erage of current bid and ask prices. The return on this current midquote index, which
is free of staleness and bid-ask bounce, is given by e¢my. Then the error in measuring

returns using information available at the times when stocks last traded (as opposed to

% Atchison, Butler, and Simonds (1987) use actual transaction arrival rates to estimate the Scholes and Williams (1977)
model for daily returns on the NYSE. They find that the model ¢can explin only 10-15 percent of the observed correlation in
this index.
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using current information), is given by s; = m¢ — cmy;. By examining s;’s role in the de-
cline in the autocorrelation of m;, we can gain more direct evidence on the importance of
nontrading. Note that the autocorrelation of ¢my has real economic implications. Positive
autocorrelation in em¢ would, for example, say that it is better not to sell after an up-tic
in the market, but to wait until after a down-tic.

Table 7 begins the decomposition by comparing the first-order autocovariances of m,
and cm; in the first two lines. For purposes of comparability with the previous table, these
are scaled by the variance of /;.2% In the first line of table 7 is the autocovariance of m;
from table 6.

The second line reports estimates of the autocovariance of the current midquote index,
cm¢. Most striking is that its decline of —0.270 is greater than that for m;. In other
words, nontrading staleness does not explain a positive portion of the reduction in the
autocorrelation of Iy - it actually makes the decline in index autocorrelation even more
striking. How could it be that, all else equal, as staleness due to nontrading is reduced,
the autocorrelation of I; actually rises?

The answer lies in the elimination of strong cross-stock covariation in quoted prices.
To take an example, suppose that the current quotes are set somewhat inefficiently, in that
price changes for GM, while being serially uncorrelated, always lead by one day those of
Ford. In this case an index of current quotes will show positive autocorrelation. However,
now add the assumption that GM trades continuously, but that Ford happens to have
traded only very early in the trading day. In that case, Ford’s last-trade quotes lag behind
current Ford quotes by almost one day. Because of this asymmetry, the resulting last-trade
index is less positively autocorrelated than the current midquote index. Therefore, when
trading volume picks up, the autocorrelation in the last-trade index rises. This cross-stock
asymmetry can explain the results in the first two lines of Table 7 for 1983, and the fact
that the decline in the autocovariance of em; is larger that of m;.

To further explore this notion of asymmetric predictive power across stocks we com-

puted another version of our value-weighted ¢m; index - this time using equal weights.

2°The variances of these variables are broadly similar. For example, we have that in 1988 the average daily return variances
(times 10%) ware: I, = 0.8310, m; = 0.6622, and cm, = 0.7535.
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Defining the equally-weighted current midquote index as eq and z; = cm; — eqp, we can

decompose the autocovariance of ¢m; into four terms:

COV(Cmt»cmt—l)=C°V(¢%¢qt—1) cov(eqr, 2—1) , cov(z,eq_;) cov(z, 21)
var(l;) var(l;) var(ly) var(l;) var(l;)

. (12)

Loosely speaking, the terms on the right-hand side of (12) as follows: the first is a measure
of small stocks’ ability to predict the return on other small stocks; the second a measure of
large stocks’ ability to predict returns on small stocks; the third a measure of small stocks’
ability to predict returns on large stocks; and the fourth a measure of large stocks’ ability
to predict returns on other large stocks. If stocks respond symmetrically to market-wide
information, we would expect that the —0.27 decline in the autocorrelation of cmg would
be distributed equally across these four components. In fact, the change of —0.27 is made
up of declines of —0.12, —0.11, —-0.01, and —0.04, respectively, of these four terms. It
follows that the overall decline in autocorrelation has come mostiy (and about equally)
from a fall in the ability of small stocks to predict returns on other small stocks and a fall
in the ability of large stocks to predict returns on small stocks.30
The fourth, fifth, and sixth lines of Table 7 decompose the difference between the
autocovariances of m; and ¢m; into three components, similar to those in equation (10):
cov(mg, my_1) _ cov(emy, cmy_y) _ cov(se,se—1) | cov(sy,cmy_q)  cov(cmy, s¢-1)
var(l;) var(!;) var(l;) var(l;) var(l;)

(13)

The changes in lines 4 and 5 are negligible, so that the only important source of net
change is measured by the last term on the right-hand side of (13), which is reported on
line 6. This term measures the covariance of the new information in quotes beyond that
reflected in the last trade, s;—; = m;_; — ¢cm;_1, and the return on the current midquote
index, cm;. We might expect this covariance to be negative and rising over time because
the autocovariance of emy is positive and declining over time. Line 6 of the table shows
that the covariance between s;_; and m; indeed increases from 1983 to 1988 by 0.048, with
own- and cross-components of —0.002 and 0.050, respectively. This cross-covariance can

be interpreted as a measure of the responsiveness of current quotes to information which

30 Lo and MacKinlay (1990) show that the predictability of small stock returns sccounts for a large portion of index autocor-
relation.
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comes out between time ¢ — 1 and the last trade as of time ¢ — 1. It is in this sense that a
decline in the cross-covariance of s¢—1 and cmy is evidence of more rapid dissemination of
market-wide information.

Note that this effect suggests a more rapid response of quotes to other stocks’ quote
revisions, not necessarily triggered by trading. This compliments both the SRFI hypothesis
above (which suggests more rapid response of quotes to other stocks’ order flows) and the
SRPI hypothesis (which suggest more rapid response of order flows to changes in other
stocks’ quotes).

In sum, when we compute a current midquote index, em;, which has been purged of
the effects of both the bid-ask spread and staleness, we find that it accounts for about
—0.270 of the —0.332 decline from 1983 to 1988 in the first-order autocorrelation of the
last-trade index, /;. If we add back the —0.045 decline due to slow response to information
(the SRFI and SRPI hypotheses from section 4.1), we have —0.315 of the —0.332 change
in the autocorrelation of /;. Tables 6 and 7 also show that this decline is entirely due to
cross-stock effects; our results are therefore best explained by more rapid processing of

market-wide information.

5. Daily and weekly autocorrelations

So far we have focused on returns over holding periods of 15 minutes for as long as 15-
minute data are available. One might want to know whether the decline in autocorrelation
also applies to longer-horizon returns, and whether it is part of a longer-term trend. In
this section we look at the first-order autocorrelation of daily and weekly returns since the
1920s.

Figure 3 shows the first-order autocorrelation of daily returns in each year since 1926.
We report three different indexes: Dow-Jones Industrials, the S&P500, and the NYSE
value-weighted index (the last being available through CRSP only since 1962).31 Several

striking observations come out of Figure 2.

3! The unusual obssrvation for 1963 seems related to the sasassination of President John F. Kennedy on Friday November 22,
1963. On that day the markast fell by almost 8 percent on fears that nuclear war might begin, then rebounded upward on the
next trading day ('Nuday) by 3 percent. When those days are removed from the data the autocorrelation coeficients jump up
to about 0.1.
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First, it is clear that the decline in autocorrelation documented in the foregoing sec-
tions is evident in daily returns, and that the 1980s are part of a longer-term secular decline
in serial correlation which began around 1969. At that time, the daily autocorrelation co-
efficients were between 0.3 and 0.4 - very high when compared to the more recent years,
when daily autocorrelations have on average been slightly negative.3?

Second, the three indexes tell essentially the same story. Their parallel behavior is im-
portant because it indicates that nontrading is unlikely to explain much of the variation in
autocorrelations. To see this, note that the Dow-Jones Industrials includes only 30 stocks,
all of which are traded very frequently, in contrast with the broader S&P500 and NYSE
indexes. Beca.usé the Dow-Jones is more actively traded, we expect its serial correlation
to be lower; this has indeed been the case during the post-war period. Note, however, that
the differential between the Dow-Jones and other indexes has not changed much during the
recent period. It does not appear to have increased — indeed, it has decreased - between
1969 and 1990, a period during which index autocorrelations fell by almost 0.4.

Third, there seem to be three distinct regimes since 1926. The first, which corresponds
roughly to the interwar period, shows autocorrelations to be about zero. The second,
beginning with the war and lasting until the late 1960s, seems (with the exception of 1963)
to be constant at about 0.15. The most recent period is associated with a large, but
remarkably steady, decline from 0.4 to zero.

Finally, note that the variation in autocorrelations is not predominantly due to changes
in the average autocorrelation of individual stock returns. To demonstrate this, Figure 4
graphs the first-order autocorrelation on the NYSE value-weighted index along with the
average own-stock autocorrelation — the first term on the right-hand side of eQua.tion (4).33
The figure clearly shows that the decline in autocorrelation that began 1969 is due to cross-
stock returns.

Our last piece of evidence comes from figures 5 and 6. They show autocorrelations of

320ur Monte Carlo simulations suggest that standard errors for these cosfficients (allowing for heteroskedaasticity) are about
0.12.

33The sverage own-sutocorrelation is estimated by taking the simple average autocorrelation of returns on the 160 largest
capitalisation stocks for each year and dividing by 150. Sinca these stocks represent only a fraction of the NYSE's capitalization,
this estimate is likely to overstate the magnitude of the own-stock contribution to sutocorrelation.
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weekly returns for the S&P 500, Dow Jones, and value- and equally-weighted NYSE in-
dexes, respectively. Because the standard error of each year’s autocorrelation coefficient is
large, the figures include 7-year moving averages of the coefficients. The hump in autocor-
relation beginning in the early 1960s remains evident in these graphs. It is also clear that
the the positive autocorrelation often found in weekly returns comes primarily from this
hump, and that the autocorrelation has not been strongly positive since the mide 1970s.
The exception to this is the equally-weighted NYSE index return in Figure 6. Its autocor-
relation has fallen the least, remaining relatively high. This suggests that high-frequency
portfolio trading does not yet include a large number of small stocks, and therefore cannot

fully discipline their prices.

(=9

What could explain the episodic behavior of serial correlation seen in figures 3, 5 an

6? Could the trading practices of the day explain why autocorrelations were so high in th

o

late 1960s and early 1970s, and so low in the 1930s? One possibility is that the relative

importance of institutional versus individual investors has changed over time, and that

research.

6. Conclusions

Our main empirical finding is that the predictability of short-term stock returns has
declined markedly in 15-minute data, and somewhat less markedly in daily and weekly
data. These changes seem concurrent with rapid growth in new institutional trading prac-
tices like portfolio and index futures trading. We examine the possibility that technical
explanations such as increases in bid-ask bounce and decreases in nontrading are respon-
sible for the decline in autocorrelation of 15-minute returns, but the data do not support
such alternatives. In addition, we find little evidence to support the overreaction hypoth-
esis, which would suggest decreases in both own-autocorrelations and higher-order index
autocorrelations, neither of which we find.

We therefore argue that the reductions in autocorrelation, which are overwhelmingly
due to cross-stock effects, are a result of improved efficiency with which market-wide

information is impounded into the prices of individual stocks. This improvement appears
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to stem from the recent ability of portfolio trading to exploit positive serial correlation in
index returns and from the facilitating role played by stock index futures in disseminating
market-wide information.

Of course, our results do not imply that new trading practices have been beneficial,
nor that prices are now closer to the present value of dividends. The creation of a futures
market could still produce negative externalities if, in the process of making the index
more efficient, futures siphon off order flow from individual stocks, and thereby lead to

greater inefficiency with respect to stock-specific information.34

343¢e Gammill and Perold (1989) and Subrashmanyam (1989) for an elsboration of this argument,
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Figure 1
Ratio of Annualized 15-Mintute to Weekly Volatility
S&P 500, 1983-89
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Figure 2

Average Daily First-order Autocorrelation
in 15-minute returns on the S&P 500
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Figure 3
Autocorrelation of Daily Returns on Stock Indexes
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Figure 4
First-Order Autocorrelation of Daily NYSE Returns
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Figure 5
First-Order Autocorrelations of Weekly Returns

02 —

0.18

0.1

0.05

028

T T T L
1926 1931 1936 1941 1948 1951 1956 1961 1966 197y 1978 1981 1988

T T YT T

— 8 S&P 500, actual and 7-year moving averaga ..o + DU actusl and 7-year moving aversgs



Figure 6
First-Order Autocorrelations of Weekly Returns
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Table 1
Measures of Varlance
of 15-Minute S&P500 Returns

(times 10°)
Year Intraday Variance Interday Variance
1983 1.194 1.216
1984 1.469 1.502
1985 0.907 0.918
1986 2.211 2.216
1987 (precrash) 3.344 3.264
1987 (full year) 7.714 7.808
1988 2.776 2.780
1989 1.751 1.727

Notes: Intraday variance measures the average 15-minute return during the trading day, ex-
cluding close-open returns. Interday variance includes the close-open return, treating it as though
it were another 15-minute interval.



Table 2a
Variance of 15-Minute S&P500 Returns
by Year and Time of Day
(times 10%)

time of day year
1983 1984 1985 1986 1987:1 1987 1988 1989

9:45 13.28  23.18 51.59 22.05 10.89
10:00 4.222 6.838 27.92 3.730 2.677
10:15 8.761 9.856 5.667 1.990 3.897 10.46 3.137 1.733
10:30 2.699 2.602 1.422 1.885 2.867 5.160 1.761 4.351
10:45 1.048 1.625 0.947 1.149 2.183 6.069 1.937 1.767
11:00 0.955 0.966 0.598 1.440 2.451 8.949 1.327 1.078
11:15 0.684 0.705 0.571 1.823 1.773 4.748 1.374 1.156
11:30 0.537 100 0463 1.620 1.527 6.771 1.200 1.041
11:45 0.524 0.606 0.415 1.789 1.209 3.807 1.041 0.752
12:00 0.651 0.777 0.437 1.398 1.556 3.157 0.986 0.991
12:15 0.577 0.603 0.365 1.473 1.445 3.352 1.027 0.748
12:30 0.507 0.609 0.536 0.933 2.045 3.306 1.223 0.686
12:45 0.402 0.552 0.413 1.126 1.135 4.847 1.041 0.535
1:00 0.402 0.614 0.238 1.049 1425 6.063 1.143 0.525
1:15 0.482 0.579 0.559 1.066 1.358 2.443 1.341 0.607
1:30 0.520 0.947 0.450 1.262 1.353 4.052 1.661 0.732
1:45 0.592 0.858 0.488 1.161 1.330 3.780 1.152 0.832
2:00 0.786 0.760 0.480 1.185 2.879 5.883 1.212 0.789
2:15 0.934 1.166 0.892 1.417 1.805 2.858 1.446 0.812
2:30 1.063 1.045 0.658 1.102 1.931 4.799 2.375 1.203
2:45 1.028 1.167 0.855 1.212 3.212 5.736 2.240 1.482
3:00 1.111 1.578 0801 2.040 2.208 5.766 2.439 1.860
3:15 1.107 2.128 1.109 2.682 4.128 5444 3.860 2.069
3:30 1.434 1.699 1457 3.367 4.061 5.753 2.904 2.378
3:45 1.423 2.091 1.246 3.967 5.482 7.636 5.836 2.255
4:00 1.579 1.780 1.174 2.896 3.638 9.581 3.923 1.967
overnight 0.262 0.987 0.402 1.018 0.708 0.945 1.442 0.341

Notes: Opening times during 1983-85 were at 10:00 AM, 30 the first recorded 15-minute return
for each day is at 10:15. Opening times were 30 minutes earlier for the rest of the sample. The
column entitled "1987:1”includes only trading days before October crash; the column entitled
”1987”includes trading days from the entire calendar year.



Table 2b
Variances of 15-Minute Returns
by Year and Time of Day
for Cash and Futures S&P500 Indexes

(times 108)

time of day cash futures

1988 1989 1988 1989
9:45 15.32 11.35 3.806 4.068
10:00 2.239 2.761 3.539 2.895
10:15 2.658 1.778 3.686 4.093
10:30 1.192 4.662 2.623 4.337
10:45 1.738 1.828 2,896 2.777
11:00 0.995 1.007 1.241 1.486
11:15 0.824 1.206 1.435 2.393
11:30 0.930 1.089 1640 1.142
11:45 0.964 0.721 2.107 1.182
12:00 1.023 1.034 1.606 1.336
12:15 1.008 0.700 1970 1.207
12:30 0.961 0.641 1.318 1.367
12:45 0.642 0.518 1.343 0.9345
1:00 0.679 0.535 1.294 1.075
1:15 0.737 0.629 1.844 1.372
1:30 0.939 0.706 1.793 1.109
1:45 0.592 0.765 1.456 1.416
2:00 0.768 0.726 1.544 1.542
2:15 1.031 0.832 2.364 1.605
2:30 1.648 1.269 2.875 1.513
2:45 1.726 1.473 2.694 1.824
3:00 1.689 1.762 3.735 2.616
3:15 1.882 2.113 3.257 2.706
3:30 1.647 2.480 3.027 3.450
3:45 2.757 2.375 4.808 14.24
4:00 3.105 2.087 3.736 1.921
4:15 0.289 0.196 2.375 1.225
overnight 0.255 0.506 16.72 10.85

Notes: Our futures data covered only the period from April 1988 to November 1989. For
comparability, the cash index variances above were computed for the same sets of trading days.



Table 3a

Variance Ratios based on 15-Minute S&P500 Returns

year minutes of longer horizon:

30 60 120 180 1 day

Panel 1: averages of intraday ratios
1983 1.375 1.490 1.574 1.726
1984 1.220 1.291 1.341 1.416
1985 1.150 1.216 1.362 1.470
1986 1.027 1.011 1.033 1.119
1987 (precrash) 0.956 0.908 0.938 1.046
1987 (full year) 0.957 0.908 0.946 1.061
1988 0.967 0.953 0.968 1.077
1989 0.970 0.966 0.986 1.090
simulated standard errors 0.015 0.028 0.044 0.048
Panel 2: interday ratios

1983 1.677T 1.817 1.954 2.249 2.249
1984 1.465 1.638 1.782 2.081 2.081
1985 1.293 1.429 1.519 1.773 1.7713
1986 1.127 1.228 1.295 1.527 1.527
1987 (precrash) 1.103 1.182 1.235 1.338 1.338
1987 (full year) 1.413 1.389 1.459 1.817 1.817
1988 1.150 1.229 1.267 1.384 1.384
1989 1.130 1.260 1.285 1.344 1.344
simulated standard errors 0.014 0.025 0.039 0.049

Notes: Panel 1 is the average across variance ratios computed for each day (and ignoring
overnight returns). Panel 2 treats the overnight return as though it were another 15-minute return.
Standard errors are from Monte Carlo experiments, using the null hypothesis that returns are iid.

Monte Carlo simulations were also run using several models of conditional heteroskedasticity;
of these resulted in standard errors importantly different than those reported above.

none



Table 3a (continued)
Varjance Ratios based on 15-Minute S&P500 Returns

year minutes of longer horizon:
30 60 120 180 1 day

Panel 3: averages of intraday ratios (excluding first 30 minutes)

1983 1463 1.768 1.904 1.979
1984 1.362 1.584 1.690 1.818
1985 1.193 1295 1382 1.374
1986 1.115 1.167 1.213 1.283
1987 (precrash) 1.081 1.114 1.158 1.282
1987 (full year) 1.085 1.120 1172 1.285
1988 1.085 1.134 1.173 1.322
1989 1.102 1.152 1.166 1.280

simulated standard errors 0.015 0.028 0.044 0.048

Panel 4: interday ratios (excluding first 30 minutes)

1983 1.237 1.375 1476 1.588 1.787
1984 1.219 1.373 1549 1.670 1.911
1985 1.116 1228 1.360 1.451 1.565
1986 1.070 1.178 1.285 1.360 1.589
1987 (precrash) 1.059 1.134 1234 1.283 1.379
1987 (full year) 1161 1.248 1.284 1.354 1.639
1988 1.094 1.184 1.262 1.302 1.420
1989 1.077 1156 1.274 1.293 1.352

simulated standard errors 0.015 0.028 0.044 0.048

Notes: Panels 3 and 4 are comparable to Panels 1 and 2, except that the returns from the first
30 minutes of each day are omitted. Standard errors are from Monte Carlo experiments, using the
null hypothesis that returns are iid. Monte Carlo simulations were also run using several models of
conditional heteroskedasticity estimated from the acutal data; none of these resulted in standard
errors importantly different than those reported above.



Table 3b
First-Order Autocorrelation Coefficlents
based on 15-Minute S&P500 Returns

year P

Panel 1: averages of intraday coefficients

1983 0.423
1984 0.264
1985 0.197
1986 0.073
1987 (precrash) 0.020
1987 (full year) 0.034
1988 0.038
1989 0.023
simulated standard errors 0.015

Panel 2: average of intraday coefficients, excluding first 30 minutes

1983 0.446
1984 0.322
1985 0.154
1986 0.102
1987 (precrash) 0.068
1987 (full year) 0.077
1988 0.086
1989 0.088
simulated standard errors 0.016

Notes: Panel 1 is the average across variance ratios computed for each day (and ignoring
overnight returns). Panel 2 is comparable, except that the first 30 minutes of each trading day
are omitted. p denotes the first-order autocorrelation coefficient of the index returns. Standard
errors are from Monte Carlo experiments, using the null hypothesis that returns are conditionally
heteroskedastic following a White (1980) model of heteroskedasticity.



Table 4
Correlation Coefficients of Adjacent 15-Minute S&P500 Returns
by Year and Time of Day

daily interval year

1983 - 1984 1985 1986  1987:1 1987 1988 1989  average
1 0.7317 0.4158 0.4229 0.0570 -0.0552 0.3053 -0.1875 -0.1590 0.1914
2 0.1091 0.2346 0.0455 -0.0483 0.0137 0.5010 0.1059 0.0972 0.1323
3 0.4141 0.5112 0.2815 0.2928 0.0108 0.3009 0.0490 0.0255 0.2357
4 0.4720 0.4024 0.1907 0.2785 0.2374 0.2247 0.2447 -0.1082 0.2428
5 0.6252 0.4019 0.2897 0.1424 0.2670 0.5361 0.3734 0.1703 0.3507
6 0.4938 0.3988 0.3437 0.3769 0.1845 0.1129 0.1987 0.2365 0.2032
7 0.5107 0.4357 0.4180 0.2640 0.2350 0.5632 0.0413 0.0935 0.3202
8 06118 0.4552 0.3022 0.2884 0.2299 0.4601 0.2138 0.2200 0.3477
9 0.6509 0.5485 0.4256 -0.1159 0.1384 0.3017 0.2018 0.1475 0.2873
10 0.5037 0.3999 0.3226 -0.0047 0.0265 0.2611 0.0946 0.0i132 0.2059
11 0.4939 0.5020 0.2741 0.0827 0.1344 0.3687 0.1344 0.0729 0.2579
12 0.5757 0.3054 0.3457 0.1319 0.1427 0.0501 0.1143 0.1050 0.2214
13 0.5920 0.4144 0.1842 0.0287 0.0559 0.6281 0.2748 0.1684 0.2933
14 0.5812 0.3434 0.1806 0.1220 0.1208 0.3052 0.1305 0.1792 0.2454
15 0.4599 0.2786 0.0729 0.1103 0.1102 -0.0645 0.3998 0.1701 0.1922
16 0.5624 0.3524 0.2358 0.2055 0.0943 0.3272 -0.0931 0.1543 0.2298
17 0.5817 0.3561 0.0741 0.0456 0.0181 0.3173 0.0387 0.1068 0.1923
18 0.5247 0.3653 0.2594 0.1650 -0.1188 0.0467 0.1380 0.0223 0.1753
19 0.5145 0.5271 0.2456 -0.0590 -0.0634 -0.0678 0.2542 0.1576 0.1886
20 0.3593 0.2342 0.1351 0.1333 0.1750 0.2198 0.1020 -0.0449 0.1642
21 0.5498 0.3434 0.0923 0.1913 0.2503 0.1774 0.0603 -0.1530 0.1890
22 0.3684 0.3133 0.2992 0.0701 -0.0683 0.2549 0.1666 0.3822 0.2233
23 0.5905 0.4243 0.2609 0.0391 -0.0194 0.2542 0.0653 0.1555 0.2213
24 0.0101 0.1347 0.2543 0.1746 -0.0238 0.1247
25 0.0891 0.2137 0.4167 0.2736 0.3958 0.1339
26 0.3591 0.1327 0.3151 0.2773 0.0981 0.3290 0.0599 0.1366 0.1126
27 0.1296 -0.0667 -0.2514 -0.2572 -0.0910 -0.0632 0.2193 0.3241 0.0165
average 0.4399 0.3344 0.2136 0.1080 0.0917 0.2723 0.1425 0.1128 0.2144

Notes: Line numbers 1-25 indicate the daily time interval of the regressor. For example, line
1 is the correlation coefficient between the second and first (or opening) return on each trading



day. In years 1983-85 the market opened 30 minutes later than in subsequent years; hence there
are two fewer correlation coefficients for 1983-85. Line 26 is the correlation between the overnight
return (close to open) and the return in the last 15 minutes of trading. Line 27 is the correlation
between the overnight return and the return in the first 15 minutes of the next day’s trading.
The column entitled ”1987:1”includes only trading days before October crash; the column entitled
”1987”includes trading days from the entire calendar year.



Table 5a
Serial Correlation Coefficients of 15-Minute S&P500 Returns at Longer Lags
by Year

lag number year
1983 1984 1985 1986 1987:1 1987 1988 1989

1 0.4327 0.2942 0.1884 0.0741 0.0558 0.2617 0.0942 0.0667
2 0.0381 0.0213 -0.0087 0.0006 -0.0026 0.0328 0.0010 0.0076
3 -0.0221 0.0025 0.0408 0.0370 0.0526 -0.0240 0.0281 0.0450
4 -0.0122 0.0247 0.0430 0.0326 0.0126 -0.0514 0.0342 0.0413
5 0.0178 0.0423 0.0129 0.0005 0.0128 -0.0498 0.0077 0.0251
6 00295 0.0434 0.0184 0.0327 0.0025 -0.0148 -0.0040 0.0267
7 0.0437- 0.0266 0.0125 0.0172 0.0164 0.0267 0.0142 0.0096
8 0.0385 0.0385 0.0186 -0.0020 0.0242 0.0450 0.0040 -0.0417
9 0.0302 0.0326 0.0135 0.0117 -0.0157 0.0388 -0.0036 -0.0237
i0 0.0251 0.0161 0.0156 0.0078 0.0126 0.0554 0.0145 0.0080
11 0.0278 0.0172 0.0216 0.0337 0.0102 0.0554 -0.0033 0.0001
12 0.0310 0.0390 0.0059 0.0158 -0.0167 0.0273 -0.0072 0.0048
13 0.0198 0.0586 0.0289 0.0215 -0.0062 0.0118 -0.0062 -0.0008
14 0.0165 0.0244 0.0253 0.0216 0.0000 0.0304 0.0079 -0.0029
15 0.0138 0.0199 0.0266 -0.0026 0.0105 0.0346 0.0219 0.0231
16 0.0165 0.0094 0.0088 0.0129 0.0121 0.0310 0.0152 0.0327
17 0.0017 -0.0048 0.0171 0.0032 0.0047 0.0052 0.0173 0.0320
18 -0.0291 -0.0034 0.0029 0.0219 0.0097 -0.0195 0.0083 -0.0173
19 -0.0290 -0.0302 -0.0013 0.0214 0.0154 0.0263 0.0403 -0.0212
20 0.0198 -0.0097 0.0048 0.0187 0.0021 0.1070 0.0042 -0.0362
21 0.0571 -0.0004 0.0024 0.0078 0.0401 0.0803 0.0079 0.0261
22 0.0484 -0.0010 0.0058 0.0268 -0.0033 -0.0014 0.0114 -0.0148
23 0.0446 -0.0207 0.0148 -0.0066 -0.0046 -0.0621 0.0043 0.0011
24 0.0246 -0.0169 0.0132 -0.0106 0.0083 -0.0480 -0.0038 -0.0287

Notes: Standard errors of these coefficients are approximately 0.012. The column entitled
”1987:1”includes only trading days before October crash; the column entitled ”1987"includes trad-
ing days from the entire calendar year.



Table 5a (continued)
Serial Correlation Coefficients of 15-Minute S&P500 Returns at Longer Lags
by Year

lag number year
1983 1984 1985 1986 1987:1 1987 1988 1989

25 -0.0289 -0.0152 -0.0007 0.0145 -0.0122 -0.0503 0.0121 0.0279
26 -0.0360 0.0141 -0.0072 -0.0051 -0.0053 -0.0186 -0.0102 -0.0105
27 -0.0338 0.0040 -0.0027 0.0015 -0.0028 -0.0086 -0.0200 0.0106
28 -0.0436 -0.0244 -0.0251 -0.0065 -0.0200 -0.0062 -0.0277 -0.0100
29 -0.0486 -0.0214 -0.0285 -0.0060 0.0011 0.0110 0.0023 -0.0025
30 -0.0207 -0.0563 -0.0089 -0.0094 -0.0292 0.0022 -0.0396 -0.0242
31 0.0049 -0.0294 0.0085 -0.0228 -0.0028 0.0293 -0.0022 -0.0271
32 -0.0153 -0.0174 -0.0038 -0.0046 -0.0223 0.0132 -0.0112 0.0137
33 -0.0367 -0.0224 -0.0130 -0.0119 -0.0196 -0.0070 -0.0081 0.0047
34 -0.0248 -0.0271 0.0269 -0.0158 -0.0222 -0.0304 0.0081 0.0063
35 -0.0206 -0.0128 -0.0197 0.0020 0.0142 -0.0152 -0.0128 -0.0031
36 -0.0101 -0.0006 -0.0248 -0.0145 -0.0060 -0.0203 -0.0206 0.0062
37 -0.0206 -0.0227 -0.0297 -0.0007 0.0116
a8 -0.0306 0.0099 -0.0149 0.0123 0.0137
39 0.0100 -0.0023 -0.0196 -0.0068 0.0135

Notes: Standard errors of these coefficients are approximately 0.012. The column entitled
”1987:1”includes only trading days before October crash; the column entitled 1987 includes trad-
ing days from the entire calendar year.



Table 5b
Summary of
S&P500 Serial Correlation Coefficients at Longer Lags
by Year

lag numbers year
1983 1984 1985 1986 1987:1 1987 1988 1989

1 0.4327 0.2942 0.1884 0.0741 0.0558 0.2617 0.0942 0.0667
2-first-half-day * 0.0225 0.0277 0.0177 0.0174 0.0085 0.0128 0.0066 0.0085
second-half-day 0.0171 0.0021 0.0124 0.0095 0.0060 0.0088 0.0105 0.0009
third-half-day  -0.0262 -0.0174 -0.0083 -0.0099 -0.0096 -0.0074 -0.0098 0.0010

Notes: Standard errors of the last three rows are approximately 0.004. Half-days are equivalent
to 12 15-minute return intervals during 1983-85 and to 13 15-minute return intervals during 1986-
89. The column entitled ”1987:1”includes only trading days before the October crash; the column

entitled 71987”includes trading days from the entire calendar year,



Table 6
Decomposition of
Last-Trade Index Returns

Variable 1983 1988 Change

Averages of intraday ratios, excluding first 30 minutes

1. COV(’;, l,_l)/var(l,) 0.422 0.090 -0.322
iy wiwlcov(lh, li_) fvar(l,) -0.026 -0.011 0.015
2. cov(my, my_y)/var(l,) 0.389 0.168 -0.221
ik, wiw'eov(mi, mi_ ) /var(l,) -0.006 -0.003 0.003
3. (COV(lg, I!—l) - cov(m,, m._l))/var(l.) 0.033 -0.078 -0.111
T, whui(cov(li Ji-1) = cov(mi, mi_,))/var(l)  -0.020 -0.009 0.011
4. CO‘V(Q,Q_I)/VM(IQ) -0.035 -0.086 -0.051
Tk, w'wicov(d, é_,)/var(ly) -0.040 -0.016 0.024
5. cov(my, €_1)/var(ly) 0.146 0.126 -0.020
iy w'wicov(mi, é_,) /var(l,) 0.017 0.006 -0.011
6. cov(e, m,_,)/var(l,) -0.077 -0.118 -0.041
il wiaeov(e, mi_,)/var(ly) 0.003 -0.002 -0.005

Notes: Indexes are constructed to approximate the S&P500, using NYSE stocks only. See
footnote 21 in the text for more details. I; represents the last-trade return index, m; the last-trade
midquote return index, cm, the current midquote return index, and ¢, = Is — my is measurement
error introduced by the bid-ask spread.



Table 7
Decomposition of
Last-Trade Midquote Index Returns

Variable 1983 1988 Change

Averages of intraday ratios, excluding first 30 minutes

1. cov(my, my_;)/var(l;) 0.389 0.168 -0.221
LN wwieov(mi, mi_,)/var(l) -0.006 -0.003 0.003
2. cov(emy, cmy_y) /var(l;) 0.412 0.142 -0.270
S wiwieov(emi, emi_) ) /var(l) -0.007 -0.003 0.004
3. (cov(mi, my_;) — cov(cmy, cmy—,))/var(l,) -0.023 0.026 0.049
=N, wiw'(cov(mi,mi_,) - cov{em}, cmi_,)}/var(iy) 0.001 -0.000 -0.001
4. cov(sy, 8;-1)/var(l,) -0.014 -0.020 -0.006
YN, Wiufeov(sl, si_,) /var(ly) -0.017 -0.005 0.012
5. cov(s,cmy_y)/var(ly) 0.087 0.094 0.007
YN, wiutcov(si, cmi_,)/var(ly) 0.016 0.005 -0.011
6. cov(cmy, s;_1)/var(l,) -0.007 -0.048 0.048
Z?_’__l wiw'cov(emi, ai_y)/var(l) 0.002 0.000 -0.002

Notes: Indexes are constructed to approximate the S&P500, using NYSE stocks only. See
footnote 21 in the text for more details. I, represents the last-trade return index, m, the last-trade
midquote return index, cm; the current midquote return index, and s; = m; — ¢cm, is measurement
error in the last-trade midquote index due to nontrading staleness.



