NBER WORKING PAPERS SERIES

ON THE PREDICTIVE POWER OF INTEREST RATES AND INTEREST RATE SPREADS

Ben Bernanke

Working Paper No. 3486

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 October 1990

This paper is part of NBER's research programs in Economic Fluctuations and Financial Markets and Monetary Economics. Any opinions expressed are those of the author and not those of the National Bureau of Economic Research.

ON THE PREDICTIVE POWER OF INTEREST RATES AND INTEREST RATE SPREADS

ABSTRACT

A number of interest rates and interest rate spreads have been found to be useful in predicting the course of the economy. We compare the predictive power of some of these suggested interest rate variables for nine indicators of real activity and the inflation rate. Our results are consistent with those of Stock and Watson (1989) and Friedman and Kuttner (1989), who found that the spread between the commercial paper rate and the Treasury bill rate has been a particularly good predictor. We present evidence that this spread is informative not so much because it is a measure of default risk (which has been the usual presumption), but because it is an indicator of the stance of monetary policy; for example, during the "credit crunches" of the 1960s and the 1970s, the commercial paper—Treasury bill spread typically rose significantly. We also show that, possibly because of changes in monetary policy operating procedures and in financial markets, this spread appears now to be a less reliable predictor than it used to be.

Ben Bernanke Woodrow Wilson School Princeton University Princeton, NJ 08544 Economists have long understood that financial market variables contain considerable information about the future of the economy. Stock prices, in particular, have always been a popular leading indicator. Recently, though, a number of researchers have pointed out that interest rates and interest rate spreads--that is, differences between interest rates on alternative financial assets--can be effective predictors of the economy.

Probably the most striking results along these lines have been obtained by James Stock and Mark Watson¹, who examined the information contained in a wide variety of economic variables in an attempt to construct a new index of leading indicators. Stock and Watson found that two interest rate spreads—the difference between the six-month commercial paper rate and the six-month Treasury bill rate, and the difference between the ten-year and one-year Treasury bond rates—outperformed nearly every other variable as forecasters of the business cycle. The two Stock and Watson variables are not the only candidates that have been advanced, however: A number of alternative interest rates and spreads have been suggested by various authors, as we will discuss further below.

The finding that interest rates and spreads contain a great deal of information is interesting, but it raises a number of questions. Possibly the most important of these is the question of why interest rates and spreads predict the course of the economy so well. In this article we try to make some progress on this issue.

To do this, a necessary first step is to determine which interest rate variable (or variables) is the most informative about the future

[&]quot;New Indexes of Coincident and Leading Economic Indicators", NBER Macroeconomics Annual, MIT Press, 1989.

course of the economy. Section I of this paper runs a "horse race" between a number of suggested predictors. We test the ability of the alternative interest rate variables to predict nine different monthly measures of real macroeconomic activity, as well as the inflation rate. While many interest rate variables have been excellent predictors of the economy during the period that we consider, we find that the best single variable is the spread between the commercial paper rate and the Treasury bill rate--one of the two Stock and Watson variables. An additional finding is that, unfortunately, the predictive power of this variable (as well as of the other interest rate variables) appears to have weakened in the last decade; this poses a potential problem for the use of this variable in the new index of leading indicators proposed by Stock and Watson.

Given the superiority of the commercial paper--Treasury bill spread documented in Section I, in Section II we narrow our focus to inquire why this particular spread has historically been so informative about the economy. We consider two principal hypotheses: The first is that the commercial paper--Treasury bill spread is informative because, as the difference between a risky return and a safe return on assets of the same maturity, it is a measure of perceived default risk. Suppose that, for whatever reason, investors expect the economy to turn down in the near future; because this will increase the riskiness of privately issued debt, the current spread between private and safe public debt will be bid up. The commercial paper--Treasury bill spread forecasts

Actually, the predictive power of this particular spread was first noticed not by Stock and Watson but by Benjamin Friedman and Kenneth Kuttner, as discussed below.

the future, according to this explanation, because it embodies whatever information the market may have about the likelihood of a recession.

The second hypothesis discussed here is that the commercial paperTreasury bill spread predicts the economy because it measures the stance of monetary policy, which in turn is an important determinant of future economic activity. We discuss two variants of the monetary policy hypothesis, both of which require the assumption that commercial paper and Treasury bills are imperfect substitutes in the portfolios of investors. The general idea underlying both variants is that monetary policy affects the spread between commercial paper and Treasury bills by changing the composition of assets available in the economy; because of imperfect substitutability, interest rate spreads must adjust in order to make investors willing to hold the new mix of assets. A more detailed discussion of this hypothesis is deferred until Section II below.

It seems clear that the commercial paper--Treasury bill spread must reflect default risk to some degree (the first hypothesis), so much of Section II is devoted to asking whether the spread also measures the stance of monetary policy (the second hypothesis). Using several alternative measures of monetary policy, we find evidence that it does. Indeed, to a degree that we found surprising, the commercial paper--Treasury bill spread seems more closely related to conventional indicators of monetary policy (such as the Federal funds rate) than to alternative measures of default risk.

The paper's tentative conclusion--tentative, because of the surprisingly weak association of the spread with other measures of default risk--is that the spread between commercial paper and Treasury

bill rates has historically been a good predictor because it combines information about both monetary and non-monetary factors affecting the economy, and because it does this more accurately than alternative interest rate-based measures. However, because this spread has become over time a less perfect indicator of monetary policy, it may be a less useful predictor of economic fluctuations in the future.

I. A Comparison of the Predictive Power of Alternative Interest Rates and Spreads

In this section we review some recent literature on the predictive power of interest rates and spreads. We then compare the forecasting power of a number of the variables that have been suggested by various authors.

Much of the recent attention to the predictive power of interest rates can be traced back to a provocative 1980 paper by Christopher A. Sims. 3 At the time, Sims was interested in interpreting his own earlier finding that the growth rate of the money stock helped forecast output 4; in particular, he wanted to know if this earlier finding could be taken as evidence that monetary policy can be used to affect the real economy. In the 1980 paper Sims showed, in a vector autoregression (VAR) system including postwar data on industrial production, wholesale prices, and the MI money stock, that MI was an important predictor of production; indeed, in this VAR, disturbances to MI were found to explain 37% of the forecast variance of industrial production at a horizon of 48 months. This predictive power for money was in line with the earlier results of

[&]quot;Comparison of Interwar and Postwar Cycles: Monetarism Reconsidered", American Economic Review 70, May 1980, 250-7.

See Sims, "Money, Income, and Causality", American Economic Review 62, September 1972, 540-52.

Sims and others. However, in his paper Sims also showed that, when the commercial paper rate was added to the VAR, nearly all of money's predictive power for output was "absorbed" by the interest rate: In the expanded VAR, the commercial paper rate explained 30% of the forecast variance of industrial production at the 48-month horizon, while money accounted for only 4%. Similar results were later obtained, but for the Treasury bill rate rather than the commercial paper rate, by Robert B. Litterman and Laurence Weiss. 5

From the finding that money did not predict output when interest rates were also in the forecasting equations, both Sims and Litterman and Weiss concluded that monetary policy does not in fact affect real output. This interpretation was disputed by Bennett McCallum, who pointed out that in practice interest rates might be a better indicator of monetary policy than money growth rates; hence the predictive power of interest rates was not necessarily evidence against the effectiveness of monetary policy. A paper by Ben Bernanke and Alan Blinder concurred with McCallum's view, pointing out that the Federal funds rate--the interest rate most closely associated with monetary policy--was in fact unusually informative about the future of the real economy. We present some evidence which bears on the debate about monetary policy in Section II; for the time being, though, let us just note that the literature following Sims' contribution demonstrated the forecasting power of several alternative interest rates.

^{5 &}quot;Money, Real Interest Rates, and Output: A Reinterpretation of Postwar U.S. Data", Econometrica 53, January 1985, 129-56.

⁶ McCallum, "A Reconsideration of Sims' Evidence Concerning Monetarism", Economics Letters 13, 1983, 167-71.

Bernanke and Blinder, "The Federal Funds Rate and the Channels of Monetary Transmission", unpublished paper, Princeton University, September 1989.

The research that followed Sims suggested that it was the level of interest rates that was important for forecasting the economy. However, a number of papers written during the 'eighties showed that spreads between different interest rates could also be extremely informative. For example, in a study of financial crises during the Great Depression, Bernanke showed that the spread between the rates on Baa-rated corporate bonds and Treasury bonds was a leading indicator of output during the interwar period. ⁸ Arturo Estrella and Gikas A. Hardouvelis demonstrated the forecasting power of the difference between short-term and long-term Treasury rates⁹; the "tilt" of the term structure, as this spread is sometimes referred to, is in fact a popular forecasting variable in financial circles, as Estrella and Hardouvelis mentioned. In a paper cited above, Bernanke and Blinder suggested that the spread between the Federal funds rate and the long-term government bond rate--which they interpreted as an indicator of monetary policy--would be a useful predictor; similar conclusions were drawn by Robert D. Laurent. 10 The high information content of the spread between the commercial paper rate and the T-bill rate was first documented in an important paper by Benjamin M. Friedman and Kenneth N. Kuttner. 11 Finally, as discussed in the introduction, Stock and Watson's comparison of a wide variety of potential leading indicators gave high marks to the commercial paper --

Bernanke, "Non-monetary Aspects of the Financial Crisis in the Propagation of the Great Depression", American Economic Review 73, June 1983, 257-76.

[&]quot;The Term Structure as a Predictor of Real Economic Activity", Federal Reserve Bank of New York, research paper no. 8907, May 1989.

See Laurent, "An Interest Rate-Based Indicator of Monetary Policy", Economic Perspectives, Federal Reserve Bank of Chicago, January/February 1988, 3-14; and "Testing the 'Spread'", ibid., July/August 1989, 22-34.

[&]quot;Money, Income and Prices After the 1980s", NBER working paper no. 2852, February 1989.

Treasury bill spread and the spread between short-term and long-term Treasury rates (the tilt of the term structure).

Comparisons of univariate forecasting power

Given the variety of interest rate-based predictors that have been suggested, it is important to try to determine more precisely which of the candidate variables contain the most information. A preliminary examination of eight proposed forecasting variables, taken one at a time (i.e., in univariate fashion), is reported in Tables 2 and 3. (Definitions of the alternative interest rates and spreads used in this paper are given in Table 1.) Here we consider four interest rates and four interest rate spreads. The four interest rates include the Federal funds rate (RFF), the three-month Treasury bill rate (RT3MO), and the six-month commercial paper rate (RCP6MO), all of which have been used in previous studies of the forecasting power of interest rates. We also bring in at this stage the ten-year Treasury bond rate (RT10), both because Stock and Watson include the first difference of this variable in their experimental index of leading indicators and because we wanted to have a representative long-term rate. The four interest rate spreads examined are 1) the commercial paper -- Treasury bill spread (at six months' maturity), which we call SHORT because Stock and Watson refer to it as the short-term public-private spread; 2) the spread between the long-term corporate bond rate (Baa rating) and the ten-year government bond rate, or LONG; 3) the difference between the one-year Treasury bill rate and the ten-year Treasury bond rate, called TILT because it measures the tilt of the term structure; and 4) the spread between the

Federal funds rate and the ten-year Treasury bond rate, referred to here as FUNDS.

We examined the ability of each of the eight forecasting variables to predict ten macroeconomic variables (nine indicators of real activity, plus the CPI inflation rate); the chosen macro variables are listed down the left-hand side of Tables 2 and 3. The ten macroeconomic variables are essentially the same as those used by Bernanke and Blinder in their paper, with the addition of nonagricultural employment and personal consumption expenditures; all of these variables are closely-watched measures of the economy, which also meet the criterion of being available on a monthly basis. We tested the predictive power of the interest rate variables for a number of different economic series, instead of just (say) industrial production, as a check on the robustness of the relationships that we find. 12

We evaluated the univariate forecasting power of the individual interest rates and spreads, as follows: For each macro variable and each interest rate variable (rate or spread), we estimated three insample, one-month-ahead prediction equations, using monthly data for 1961-89. ¹³ In the first of the three prediction equations, the macro variable being forecasted was regressed on a constant, a trend, six lags

The start date is determined by data availability. Using onemonth rather than longer forecasting horizons gets at the main issue of information content while avoiding technical problems arising from overlapping forecast errors. We present some evidence from six-monthahead forecasts below which suggest that our main results are robust to

the choice of forecast horizon.

Obviously the ten macroeconomic variables are not independent, since they are all related to the aggregate business cycle; thus, we should not overstate the advantage of looking at a number of different variables. On the other hand, the ten variables do reflect different measurement techniques, different sectors, and different cyclical dynamics; thus a finding that an interest rate variable predicts many of the macro variables is less likely to be spurious than a finding that an interest rate variable predicts a single macro variable.

of itself, and six lags of the interest rate variable. The second prediction equation augmented the first equation by adding six lags of CPI inflation and six lags of real M2 growth to the right-hand side of the equation. ¹⁴ The third equation augmented the first equation by adding six lags of the growth rate of the index of leading indicators to the right-hand side. ¹⁵

Given these estimated forecasting equations, each containing the interest rate variable and other predictors, we tested the hypothesis that all lags of the interest rate variable could be excluded from the equation (that is, that the interest rate variable had no marginal predictive power). The results are given in Table 2 (for interest rates) and Table 3 (for interest rate spreads). For each macro variable and each interest rate variable, the tables give three numbers; these correspond to the probability that the interest rate variable can be excluded from the first, second, or third prediction equation, respectively. Low values imply strong marginal predictive power; thus, a value of .0001 means that there is only one chance in 10,000 that the interest rate variable does not belong in that particular prediction equation.

The two tables show that interest rates and spreads clearly contain information about the future of the economy that is not included

¹⁴ Stock and Watson used a similar procedure. Only real money growth was added in the prediction equation for inflation, since lags of inflation were already included in the first equation. Deflation of M2 was by the CPI.

This is the traditional index, not to be confused with the Stock and Watson experimental index. The traditional index of leading indicators is a weighted average of twelve macroeconomic time series that have been found historically to be quite useful for forecasting real activity. The available leading indicator series includes revisions that were not available at the time of actual forecasts; since interest rates are rarely revised, this introduces a bias against finding marginal predictive power for interest rate variables.

even in the index of leading indicators. For example, the Federal funds rate (RFF in Table 2) predicts each of the macro variables at the .0001 level of significance when only lags of the forecasted variable are included; it predicts all of the macro variables at the .05 level or better when inflation and real money growth are added; and it predicts seven of the ten variables at close to the .01 level or better even in the presence of the index of leading indicators.

Which interest rate variables are the best predictors of the economy? Direct comparisons are undertaken in the next sub-section of the paper. However, as a simple and informal way of quantifying the impressions given by the univariate results in Tables 2 and 3, suppose that we assign "points" to each interest rate variable as follows: 5 points for each entry in Table 2 or 3 which is less than .001; 4 points for entries between .001 and .01; 3 points for entries between .01 and .05; 2 points for entries between .05 and .10; and 1 point for entries between .10 and .20. The scores arrived at in this way are as follows:

Federal funds rate (RFF)	119	points
3-month T-bill rate (RT3MO)	96	points
Commercial paper rate (RCP6MO)	119	points
10-year T-bond rate (RT10)	85	points
SHORT spread (RCP6MO - RT6MO)	109	points
LONG spread (RBAA - RT10)	105	points
TILT spread (RT1 - RT10)	89	points
FUNDS spread (RFF - RT10)	106	points

On a univariate basis, and by this informal scoring measure, the Federal funds rate and the commercial paper rate do better than the Treasury bill rate and the long-term bond rate. Of the spreads, the TILT variable seems weaker than the others, which are more or less equal.

Multivariate comparisons

All the interest rate variables we have looked at appear to have significant forecasting power. Is this because all interest rates capture basically the same information about the future? Or does each interest rate or spread have separate information about the evolution of the economy? To try to answer these questions, and to make more direct comparisons between the different interest rate variables, a multivariate analysis is necessary.

In the previous section, we found that the Federal funds rate and the commercial paper rate seemed to be better predictors than the Treasury bill rate and the long-term Treasury bond rate. Since this has also been indicated by previous research, we drop the two Treasury rates from the comparison. This leaves six interest rate variables—two interest rates and four interest rate spreads—to be compared. The historical behavior of these variables is shown in Figures 1-6; vertical lines in those figures indicate the dates of business cycle peaks.

The short-term Treasury rate is still implicitly included, since it is a linear combination of the commercial paper rate and the commercial paper rate-Treasury bill spread.

We retain the spread between short-term and long-term Treasury bonds (TILT) because, even though it did relatively poorly in the univariate comparison, it has been strongly advocated as a forecasting variable.

To see which of these variables are the best predictors, and to try to determine the "dimensionality" of the information in interest rates, we proceeded again by estimating in-sample forecast equations for each of the macro variables. Each forecast equation contained a constant, a trend, six monthly lags of the forecasted variable, and six lags each of from between one and four interest rate variables. We refer to a forecasting equation containing k different interest rate variables on the right hand side (along with the constant, trend, and lagged values of the dependent variable) as a model of size k.

We estimated all possible models of size k for each macro variable and for k = 1, 2, 3, 4. Since there were six interest variables to choose from, this means that for each forecasted variable we estimated six models of size one, fifteen models of size two, twenty models of size three, and fifteen models of size four. The best-fitting (highest R^2) models for each forecasted variable and for each model size are listed in Table 4. The best overall fits (regardless of model size) are indicated by superscripts in the table: Superscript r indicates the model that fit best by the adjusted R^2 criterion, superscript a the model that is best by the Akaike information criterion, and superscript r the model that is best by the Schwarz criterion. The section r is the model that is best by the Schwarz criterion.

Putting aside for a moment the question of which model size produces the overall best equations, let us consider first how our alternative interest rate variables compare in this head-to-head

See for example M.B. Priestly, <u>Spectral Analysis and Time Series</u>, London: Academic Press, 1981, pp. 372-6. The best equation by each of these criteria is the one that minimizes the log of the sum of squared residuals plus a penalty term that is increasing in the number of right-hand side variables. The Schwarz criterion assesses the heaviest penalty for adding extra independent variables, the adjusted R² criterion the lightest.

forecasting competition. Obviously, the answer depends on which macro variable we are considering; but, generally, the SHORT variable—the spread between the commercial paper rate and the Treasury bill rate—appears to be the best predictor. When only one interest rate variable is allowed (i.e., in the models of size one), SHORT gives the best fit in six of the ten cases; it also appears in seven of the best size two models.

To see the size of SHORT's advantage as a predictor, as before let us try to summarize the results of Table 4 by an informal point system. Suppose we award 5 points to each interest rate or spread variable for each time it appears in the best size-one model; 3 points for each appearance in the best size-two model; 2 points for each time in the best size-three model; and 1 point for each appearance in the best size-four model. The point totals this time are:

Federal funds rate (RFF)	27	points
Commercial paper rate (RCP6MO)	35	points
SHORT spread (RCP6MO - RT6MO)	69	points
LONG spread (RBAA - RT10)	38	points
TILT spread (RT1 - RT10)	4	points
FUNDS spread (RFF - RT10)	37	points

These totals point fairly clearly to SHORT as the best overall of the six interest rate predictors; this is in line with the previous finding of Friedman and Kuttner and of Stock and Watson. At the other end of the scale, TILT (the difference between the one-year T-bill rate and the ten-year Treasury bond rate) appears to add little when the

other variables are included. ¹⁹ The other four interest rates and spreads embody intermediate amounts of independent information. Of these four, perhaps the most interesting is LONG, the spread between the Baa corporate bond rate and the long-term bond rate. LONG is not the best variable in any of the size-one models, but it appears in four of the size-two models, eight of the size-three models, and all ten of the size-four models. Since the correlation of LONG with the other interest rate variables is low, our interpretation is that this variable, while not containing the most "essential" information which is present in interest rates, does contain useful additional information.

The comparison among forecasting variables that we have just drawn ignored the issue of the optimal size of the forecasting models (which is closely related to the issue of the "dimensionality" of the information in interest rates). Unfortunately, our conclusions on this count are somewhat ambiguous. Of the three criteria used to compare models of different sizes, the one which puts the stiffest penalty on extra parameters (the Schwarz criterion) always indicated that the model of size one was best, while the criterion with the smallest penalty on extra parameters (adjusted R²) chose models of size three or (usually) size four. (See Table 4.) The Akaike criterion, which gives an intermediate penalty for increased model size, indicated in two cases that the best model was of size one but in the other eight cases that the best size was either three or four.

In many cases the models chosen by the stringent criteria are nested in the larger models chosen by the alternative criteria. When a

This poor showing for TILT was not due to the inclusion in the analysis of another term structure variable, the spread between the Federal funds rate and the long-term bond rate (FUNDS). Exclusion of FUNDS from the analysis gave approximately the same results for TILT.

larger model nests a smaller one, the hypothesis that the smaller model is to be preferred can be directly tested by testing the hypothesis that the additional forecasting variables can be excluded. We usually found in these cases that the larger model was statistically preferred at conventional significance levels. The fact that larger models are typically preferred is weak evidence for the view that there are several different types of independent information in interest rate variables, which cannot be completely captured by using a single interest rate or spread in a forecasting equation.

Out-of-sample forecasting

While in-sample fit is one criterion for judging prediction equations, the ultimate test of an equation is the ability to forecast out of sample. Our experiments along this line suggested that, unfortunately, the strong predictive power of interest rates that has been noted is most apparent for the period before (approximately) 1980; since that time the forecasting power of interest rates has deteriorated significantly. 20

As a simple illustration of this point, we present results here for only three key macro variables (industrial production, the unemployment rate, and inflation) and for models including only one interest rate variable. What we wanted to determine was whether the use of an interest rate variable could improve out-of-sample forecasting for the key macro variables, given the inclusion in the equation of lagged values of the macro variable and of the index of leading indicators. In

This is also true in sample. For example, if the prediction equations reported in Tables 2-4 are re-estimated for 1961-79, the results remain strong; if they are re-estimated for 1980-89, there is a substantial reduction in fit.

contrast to the prediction equations in the previous section, which focused on one-month-ahead forecasts, we consider here six-month-ahead forecast equations.

For each of the three macro variables, we estimated prediction equations for samples beginning in January 1961 and ending in December of 1971, 1974, 1977, 1980, 1983, or 1986. The dependent variable in each case was the cumulative growth rate of the forecasted macro variable over the previous six months. Each prediction equation included a constant, a trend, and the seventh through twelfth lags of the monthly growth rate of the forecasted variable, of the growth rate of the index of leading indicators, and of one of the candidate interest rate variables. For each forecasted variable and sample period we chose the prediction equation that fit best in-sample. The "winning" interest rate variable in each case is shown in Table 5; just below the name of each interest rate variable is the probability that all lags of that variable could be excluded from the associated prediction equation.

Using the best prediction equations for each sample period, we made out-of-sample forecasts for each subsequent three-year period. The forecast periods were non-overlapping; so, for example, using the equation estimated through December 1971, we made forecasts of the sixmonth growth rates beginning in January or July of 1972, 1973, and 1974. The accuracy of these forecasts was compared to what could have been obtained if the interest rate variable had been omitted, and the forecasting equation had been estimated using only lagged values of the forecasted variable and the index of leading indicators. The second entry below each variable name in Table 5 gives the ratio of the average absolute forecasting error obtained when the interest rate variable is

included to the average absolute error obtained without the interest rate variable. Similarly, the third entry below each variable name gives the ratio of average squared forecast errors. Entries less than one indicate that using the interest rate variable improves the out of sample forecast, relative to an equation which uses only the lagged forecast variable and the index of leading indicators.

Table 5 shows once again that SHORT is the best interest rate variable for predicting real activity (thus this finding appears to be independent of the forecast horizon). Although the spread between the Federal funds rate and the long-term bond rate (FUNDS) is best for forecasting the nominal variable (inflation), for the two real variables (industrial production and the unemployment rate). SHORT fits best in ten of twelve cases. Table 5 also shows that, up through 1980, the use of interest rate variables would have consistently improved out-of-sample forecasts.

After 1980, however, the story is different. Although the use of SHORT would have helped to forecast real variables in 1984-86, in 1981-83 and 1987-89 an equation using SHORT would have performed considerably worse. Further, the inflation prediction equation deteriorates in all sub-periods of the 1980s.

The "reason" for the poor performance of SHORT in the 1980s is that, first, this variable, like all interest rate variables, was very volatile in 1979-83 (compare Figure 3); although there was of course a severe recession during this time, the real economy did not exhibit volatility proportional to that in interest rates. Second, SHORT rose in the last third of the 1980s, indicating (based on previous experience) that the economy should have gone into a mild recession; but

no recession occurred. To understand at a deeper level why the forecasting power of SHORT has weakened, we need to explain why this variable seemed to contain so much information in the first place. To this issue we now turn.

II. Why Does the Commercial Paper--Treasury Bill Spread Predict the Economy?

The first main section of the paper showed that, while many interest rates and spreads are informative about the economy, the best single interest rate indicator among those we examined is probably the spread between the commercial paper rate and the Treasury bill rate, or SHORT. At this point we narrow the focus of the paper to consider specifically why this variable seems to contain so much information about the future of the economy. Though for concreteness we focus on SHORT, much of the discussion to follow would apply to several of the other interest rate indicators as well.

As discussed in the introduction, the simplest explanation of why SHORT forecasts the economy is that it measures the amount of default risk perceived by the market. As such, this spread may be useful because it summarizes available information about the likelihood of a recession.

A difficulty with this explanation is that SHORT would seem to be a poorer measure of general default risk than several other available interest rate spreads. Defaults on prime nonfinancial commercial paper are extremely rare (much too infrequent, in our view, to plausibly account for the 300 basis point swings in this spread that have been observed); if obtaining an objective measure of default risk were

important, a variable such as the Baa corporate bond--Treasury bond spread ought to do a better job in forecasting than SHORT. Indeed, the correlation of SHORT with other indicators of default risk is remarkably low: For example, the correlation of monthly changes in SHORT with monthly changes in the spread between Baa corporate bonds and Treasury bonds (LONG) is just .09 over the 1961-89 period; when the Aaa rate is used instead of the Baa rate, the correlation is still .09, and when the Baa--Aaa rate differential is used, the correlation in changes with SHORT is less than .04. James C. Van Horne has shown that the correlation between the commercial paper spread and the long-term corporate bond spread is low even when measured company by company. 21

Although the correlation of SHORT with other default measures is low, its correlation with various measures of monetary policy is higher; for example, the correlation of monthly changes in SHORT with monthly changes in the Federal funds rate over 1961-89 is .46. While of course not necessarily proof of anything, this correlation does motivate consideration of the possibility that SHORT is a good forecaster because it contains information about monetary policy. We will call this general proposition the monetary policy hypothesis. We consider two different versions of this hypothesis; the common element of both, as mentioned in the introduction, is that it is assumed that commercial paper and Treasury bills are imperfect substitutes in investors' portfolios.

The first version of the monetary policy hypothesis might be called the "credit crunch" story, and is due principally to Timothy Q.

[&]quot;Behavior of Default Risk Premiums for Corporate Bonds and Commercial Paper", Journal of Business Research, December 1979, 301-13.

Cook 22 Cook's argument is that, prior to institutional changes in 1978, monetary policy affected SHORT (and other money market spreads) by inducing disintermediation from the banking system. Because of Regulation Q-imposed deposit interest rate ceilings, during the latter part of the 1960s and in the 1970s monetary tightening and the associated increase in interest rates periodically led to large outflows of deposits from banks. Depositors were motivated to withdraw, of course, in order to obtain higher open-market yields. However, because private money market instruments such as commercial paper could be purchased only in large minimum denominations, during these episodes disintermediated deposits flowed primarily into T-bills. Cook argued that, during these credit crunch episodes, the large switches from deposits to T-bills in private portfolios lowered the yield on T-bills relative to commercial paper (and other money market instruments). Thus tight money was reflected in an increase in the commercial paper--Treasury bill spread. The increase in this spread during the credit crunches of 1966, 1969, and 1973-4 can easily be seen in Figure 3.23

Why didn't the increase in the spread cause banks or other investors not constrained by the minimum denomination restriction to sell off their Treasury bills and buy commercial paper, thus offsetting the switch by depositors? This did happen to some extent. But as Cook's article explains in detail, Treasury bills are valuable to banks

[&]quot;Determinants of the Spread Between Treasury Bill Rates and Private Sector Money Market Rates", Journal of Economics and Business, Spring/Summer 1981, 177-87.

It is also the case that credit crunches, because they reduced the funds available for bank lending, led to large increases in the issuance of commercial paper by nonfinancial firms. This would also tend to raise the yield on commercial paper relative to Treasury securities. See Timothy D. Rowe, "Commercial Paper" in Timothy Q. Cook and Rowe, editors, <u>Instruments of the Money Market</u>, Federal Reserve Bank of Richmond, 1986.

and other investors for reasons beside their direct yield. For example, T-bills can be used for posting margin, for collateralizing overnight repurchase agreements, and for satisfying bank capital adequacy requirements; commercial paper generally cannot fulfill these functions. Thus it is reasonable that the demand for Treasury bills will be less than perfectly elastic as the commercial paper--Treasury bill spread widens; that is, Treasury bills and commercial paper are imperfect substitutes.

Given Cook's explanation of why credit crunches caused the spread SHORT to increase, then as long as the monetary actions which caused the credit crunches also tended to induce recessions, SHORT should help predict the economy. A nice feature of this explanation is that it suggests that SHORT should no longer be strongly related to monetary policy after the institutional changes (such as the introduction of money market mutual funds and the removal of deposit rate ceilings) which eliminated credit crunches; this is consistent with the finding that SHORT is no longer a good predictor after 1980.

The credit crunch story implies that SHORT will be related to monetary policy only during periods when deposit rate ceilings are binding. An alternative form of the monetary hypothesis, which lacking a better name we call the "simple imperfect substitutability" hypothesis, suggests that SHORT will respond to monetary policy whenever the Federal funds rate (or some other short-term interest rate) is used as an intermediate target. This story goes as follows: Suppose that, in the process of tightening the stance of monetary policy, the Federal

John P. Judd and John L. Scadding, "Liability Management, Bank Loans and Deposit 'Market' Disequilibrium", Economic Review, Federal Reserve Bank of San Francisco, Summer 1981, 21-44.

Reserve induces a rise in the Federal funds rate. This directly increases the cost of funds to banks. However, banks have several principal alternatives to borrowing Federal funds: 1) They can issue CDs or other managed liabilities; 2) they can sell some of their holdings of Treasury securities; or 3) they can cut back on credit to their loan customers (or raise loan interest rates).

If Treasury bills and other assets are imperfect substitutes, then either action (1) or action (3) by banks would tend to increase the open-market commercial paper rate relative to the Treasury bill rate. To sell additional CDs, the banks would have to raise the rate they offer on that instrument; since commercial paper is a very close substitute for CDs in investor portfolios, this would lead the commercial paper rate to rise as well. 25 If banks respond to the higher cost of funds instead by raising the cost of credit to business loan customers, firms that are able to do so will borrow directly from the public by issuing additional commercial paper; this too will raise the commercial paper rate.

If banks sell off Treasury securities (option (2)), on the other hand, the tendency for the spread to increase will be arrested; however, following Cook's argument above, banks will not sell off their T-bills in response to a modest increase in the yield differential. Thus, an increased commercial paper--Treasury bill spread will be associated with tight monetary policy, which would help explain why this spread is a useful forecaster. The decline in SHORT's forecasting power after 1980 would in this case be explained by the observations that 1) because of

The correlation of monthly changes in the commercial paper--Treasury bill spread and the CD--Treasury bill spread is .88 over 1970-89, the period for which data were available.

changing Federal Reserve procedures, interest rates in general have been much less reliable indicators of monetary policy since the October 1979 policy shift, and 2) financial innovation, deregulation, and internationalization over the last decade may have increased the substitutability among alternative short-term assets. Another possibility is that monetary policy has simply been relatively less important in recent years. ²⁶ Note that, relative to the credit crunch hypothesis, this alternative view would predict a more gradual reduction in the sensitivity of SHORT to monetary policy after 1978.

Like the credit crunch version of the monetary policy hypothesis, the simple imperfect substitutability version is sensitive to the possibility that there are investors in the economy, outside of banks, for whom commercial paper and Treasury bills are (nearly) perfect substitutes; if these investors exist, their arbitrage activity will cause the spread between these two assets to reflect only differences in after-tax expected yields. Rather than discuss in the abstract whether such arbitrage is likely to exist, however, we turn to some empirical evidence on the relationship of interest rate spreads to Fed policy.

The Response of Interest Rate Spreads to Changes in Monetary Policy

We now consider how some key interest rate spreads, including SHORT, respond to changes in monetary policy. As will be shown, the

It may be that monetary policy has appeared less important in recent years because the Federal Reserve has acted aggressively to forestall any increase in inflationary expectations; with inflation under control, there has been no need for the Fed to administer the strong contractionary medicine (with the resulting effects on real activity) that it did in some previous episodes. I thank Timothy Cook for this suggestion.

evidence is consistent with the general view that SHORT is if anything more closely related to indicators of monetary policy than to the economy-wide level of default risk.

Precise dates of changes in monetary policy are, of course, not available. Instead, we rely on two very different studies that tried to measure shifts in Federal Reserve policy:

The first of these studies is by Christina D. Romer and David H. Romer. 27 By a reading of Federal Reserve records, Romer and Romer identified dates in the postwar era at which monetary policy shifted to a tighter, anti-inflationary mode. Four of these dates (December 1968, April 1974, August 1978, and October 1979) fall within our 1961-89 sample period. Table 6 shows the behavior of the Federal funds rate (RFF), the commercial paper--Treasury bill spread (SHORT), the spread between Baa and Aaa corporate bond rates (which we will call DEFAULT), and the difference between the one-year and ten-year Treasury bond rates (TILT) for the period from two months before until twelve months after each Romer and Romer date. We introduce DEFAULT here in as a measure of the behavior of perceived default risk in the economy. DEFAULT is probably superior to LONG as a measure of default risk (although the two spreads are highly correlated), since changes in LONG may also be affected by changes in the value of the call option attached to most corporate bonds. 28

The most important observation to make from Table 6 is that SHORT and DEFAULT respond rather differently to increasing monetary tightness, as measured by the Romer and Romer dating. Generally, SHORT rises and

[&]quot;Does Monetary Policy Matter? A New Test in the Spirit of Friedman and Schwartz" in O.J. Blanchard and Stanley Fischer, eds., NBER Macroeconomics Annual, MIT Press, 1989.

I thank Richard Kopcke for pointing this out.

falls sympathetically with the Federal funds rate RFF during the contractionary episodes; in this sense, its behavior is similar to the term structure spread TILT, which also moves with the funds rate. In contrast, DEFAULT typically responds only with a lag, usually not rising until after RFF and SHORT have fallen back. 29 This is a bit of evidence for the view that SHORT responds more to monetary policy than to changing perceptions of default risk. The fact that SHORT still appears to respond to the funds rate in 1979, when credit crunches were no longer a possibility, seems to favor the alternative "simple imperfect substitutability" version of the monetary policy hypothesis. 30

The second study of monetary policy we utilize is by Cook and Hahn. ³¹ Using Wall Street Journal reports, Cook and Hahn determined the dates of approximately 75 changes in the Federal funds rate target which occurred between September 1974 and September 1979. (This period was chosen because, according to the authors, during this time the Federal funds rate was a very precise indicator of monetary policy.) Using daily data, Cook and Hahn showed that changes in the Federal funds target caused changes in Treasury bill and bond interest rates; this implies that the target changes conveyed new information and were not simply passive adjustments to the existing level of rates.

For a similar result, compare the cyclical behavior of the Federal funds rate, the commercial paper--Treasury spread, and the spread between Baa and government bonds (an alternative default measure) in Figures 1, 3, and 4. RFF and SHORT tend to lead the cycle, while LONG clearly lags. It is odd though that changes in default premia appear to be forecastable, since if true this would imply potential profit opportunities.

A caveat is that, because of tax considerations, SHORT should respond to the level of interest rates in general. This is analyzed further below.

Timothy Cook and Thomas Hahn, "The Effect of Changes in the Federal Funds Rate Target on Market Interest Rates in the 1970s", Journal of Monetary Economics, 1989, 331-51.

Table 7 reports the result's of regressing changes in the Federal funds rate (ΔRFF), the commercial paper--Treasury bill spread (ΔSHORT), the Baa bond--Aaa bond spread (ΔDEFAULT), and the term structure spread (ΔTILT) against changes in the Federal funds target, as identified by Cook and Hahn. Since the Federal funds rate did not seem always to respond contemporaneously to the target change (which implied that there may have been market uncertainty about the size and timing of the change), we used weekly data and regressed changes in the interest rate variables against the current and lagged change in the Federal funds target. ³²

Table 7 shows that, first, the actual Federal funds rate responded strongly to changes in the target during this period, with the coefficients over the week of the change and the subsequent week adding up approximately to one. The term structure variable also responded strongly to target changes, and with high statistical significance; this suggests that the tilt of the term structure is in fact largely driven by monetary policy. Most interesting, though, is that the responses of SHORT and DEFAULT to a change in the funds target are found to have been in opposite directions during this period; with a one week lag, SHORT responded positively and with high statistical significance to an increase in the funds target, while DEFAULT, somewhat surprisingly, actually fell. (The decline in DEFAULT is small but quite statistically significant.) The rather different responses of these two variables are consistent with the previous observation, based on the Romer and

Reported results are for the whole sample, which contains many weeks in which the change in the Federal funds target was zero.

Regressions restricted to weeks of non-zero change in targets gave essentially the same results.

Romer dates, that SHORT is more closely related to monetary policy indicators than to general default risk.

An estimated equation for the commercial paper--Treasury bill spread

To get at the determinants of SHORT more directly, we specified and estimated some simple regressions in monthly data.

A first consideration in modelling SHORT empirically is that some account must be taken of tax effects. Unlike commercial paper returns, Treasury bill yields are not taxable at the state and local level. On this account the before-tax yields to the two instruments must be related by RCP6MO - t RT6MO, where t > 1 is a factor measuring the tax advantage of T-bills. This relationship implies that RCP6MO - RT6MO - (t - 1) RT6MO, i.e., the spread increases proportionally to the level of the bill yield. In contrast, the ratio RCP6MO/RT6MO - t should be independent of the level of bill yields. We followed previous work and used as our dependent variable the ratio RCP6MO/RT6MO rather than the spread RCP6MO - RT6MO³³; however, estimated equations using the spread as the dependent variable and including the Treasury bill yield on the right-hand side gave similar results.

The previous discussion suggests that the ratio RCP6MO/RT6MO should depend on perceived default risk and the stance of monetary policy. We used the Baa--Aaa spread (DEFAULT) as a measure of default risk and the Federal funds--Treasury bond spread (FUNDS) as an indicator

Spread Between Treasury Bill Rates and Private Money Market Rates Since 1978", Economic Review, Federal Reserve Bank of Richmond, November/December 1983, 3-15.

of monetary policy.³⁴ Regressions of RCP6MO/RT6MO against these two variables yielded significant coefficients with the right sign, but the equations exhibited high serial correlation. After correction for first-order serial correlation, we obtained

1) for January 1961--June 1978 (the "credit crunch" period):

RCP6MO/RT6MO = 1.10 + .0215 DEFAULT + .0347 FUNDS
$$(46.8) (0.87) (6.49)$$
rho = .84 R^2 = .743

2) and for August 1978--December 1989:

RCP6MO/RT6MO =
$$1.06 + .0077$$
 DEFAULT + $.0084$ FUNDS (51.9) (0.66) (4.02)
rho = $.84$ R² = $.709$

where rho is the estimated first-order serial correlation coefficient and t-statistics are in parentheses. 35

These results show that the ratio of commercial paper and Treasury bill yields is positively related to default risk, as the theory suggests, but that the relationship is rather weak. 36 The relationship

The relatively high serial correlation suggested the alternative of doing the estimation in first differences. This gave about the same results as in the reported equations.

We use the spread variable FUNDS rather than the Federal funds rate itself in order to be sure that we are not attributing to monetary policy possible effects (such as tax effects) arising from changes in the general level of nominal interest rates. However, for the record, replacing FUNDS with the Federal funds rate RFF led to essentially the same results.

about the same results as in the reported equations.

36 Higher t-statistics for DEFAULT were obtained in the alternative specification with SHORT on the left-hand side and the level of the Treasury bill rate on the right-hand side.

to monetary policy, as measured by FUNDS, is statistically much stronger, and in the earlier period is economically significant as well. (For example, if the Treasury bill rate is 8%, and the Federal funds rate spread rises by one percentage point, the equation for the earlier period implies an increase in the commercial paper--Treasury bill spread of about 28 basis points). In contrast, after 1978 the effect of the Federal funds rate spread on the commercial paper--Treasury bill spread is only about one-fourth as large as before.

That the relationship of SHORT to monetary policy weakens but does not disappear after 1978 is more consistent with the simple imperfect substitutes version of the monetary hypothesis than with the credit crunch version. In order to make a more direct comparison of the two versions of the monetary hypothesis, we examined the effects of adding to the equation for RCP6MO/RT6MO a variable equal to the spread between the six-month Treasury bill rate and the deposit rate ceiling imposed by Regulation Q, whenever that difference was positive. 37 This new variable, called CRUNCH, is supposed to capture episodes of disintermediation.

When CRUNCH and DEFAULT were included together in the equation for RCP6MO/RT6MO, for the sample period January 1961--June 1978, CRUNCH entered significantly and with the right sign in the OLS estimates. However, with correction for serial correlation, CRUNCH entered with the wrong sign. When both CRUNCH and FUNDS were included in the equation, with correction made for serial correlation, the result was

The ceiling rate we used was the one corresponding to time deposits of six months to one year.

-.0539 CRUNCH

(5.86)

 $rho = .82 R^2 = .779$

In this equation FUNDS enters much as before but CRUNCH has the wrong sign. Although these results should be taken only as suggestive, they do tend to support the simple imperfect substitutes version of the monetary hypothesis over the credit crunch version.

The Information Content of SHORT

At this point, we may return to the question of why SHORT is such a good predictor. Some part of the reason appears to be that this spread combines information about both monetary policy (and the state of the money market) and expected default risk. As a test of this answer, we ran one more experiment: We estimated prediction equations for each of the ten macro variables used in Section I, over the entire sample period 1961-89. Each equation included a constant, a trend, six lags of the forecasted variable, six lags of DEFAULT (as a measure of default risk), six lags of FUNDS (as a measure of monetary policy), and six lags of SHORT. If SHORT is a good forecaster because it contains

The reader will have noticed that, based on the statistical evidence we have reported, the relationship of SHORT to default risk looks rather weak. We don't want to push that conclusion too far: There are periods, such as 1970 (following the Penn Central bankruptcy) and the spring and summer of 1982 (following the collapse of Drysdale Securities and Penn Square) in which SHORT seems to respond strongly to fears about possible defaults.

information about both default risk and monetary policy, in the presence of DEFAULT and FUNDS its predictive power should be much weakened.

The results are in Table 8. For each prediction equation we give the probabilities 1) that both DEFAULT and FUNDS should be excluded from the equation (leaving only SHORT) and 2) that SHORT should be excluded from the equation. The results are mildly supportive of the view that information about default and monetary policy is important for forecasting: In nine of the ten cases, the probability that both DEFAULT and FUNDS can be excluded from the equation is lower than the probability that SHORT can be excluded. On the other hand, SHORT retains significance at conventional levels in a number of the equations, despite the presence of the other two variables. It must be either that SHORT somehow measures default risk and monetary policy more accurately than do DEFAULT and FUNDS, or that this variable also contains other kinds of information. 39

III. Conclusion

This paper began by comparing the predictive power of a number of different interest rates and spreads. While several of these variables were found to contain a great deal of information about the future evolution of the economy, the spread between the commercial paper rate and the Treasury bill rate appears to be the best predictor--although this predictive power has weakened recently.

We also considered whether SHORT remains informative when the CD--Treasury bill spread is included in the forecasting equations; under the imperfect substitutes story, the two spreads should contain similar information. In this case SHORT can almost always be excluded. These two spreads move so similarly that it doesn't appear to matter which is used for forecasting.

We have made some progress toward explaining why this interest rate spread is so informative. Besides containing information about default risk, which is the natural first hypothesis, this spread seems also to be a measure of monetary policy. (Indeed, if anything, the relationship between the commercial paper--Treasury bill spread and monetary policy has historically been more clearcut than the spread's relationship with default risk.) The commercial paper--Treasury bill spread predicts well because it registers developments in both the non-monetary and monetary sectors of the economy.

There are at least two possible explanations for why the predictive power of the commercial paper--Treasury bill was lower in the 1980's than previously. First, a number of changes in Federal Reserve operating procedures during the decade reduced the reliability of interest rates in general as indicators of the stance of monetary policy. Second, financial innovation, deregulation, and international integration may have increased the substitutability among various money market instruments; all else equal, this would act to reduce the sensitivity of interest rate spreads to monetary policy.

Whether the commercial paper--Treasury bill spread will be as useful a predictor in the future as it was in the past depends very much on which of the two explanations just given is the more important. If the first is correct, then to the extent that the Federal Reserve returns to its earlier emphasis on interest rates as targets or indicators, the predictive power of the spread (and of other interest rate variables) should return. If the second explanation is the right one, and commercial paper and Treasury bills have become effectively perfect substitutes, then the spread should not be a useful predictor in

the future. Unfortunately, it is too soon to tell which of these explanations should be given the greater weight.

Data appendix

All the data used are from Data Resources, Inc. Full variable definitions and DRI code names are listed below:

Monthly variables

Industrial production index--total (JQIND)

Unemployment rate--civilian (RUC)

Capacity utilization--manufacturing--total (UCAPFRBM)

Employed persons--nonagricultural establishments (EEA)

Housing starts--private, including farms (HUSTS)

Retail sales--1982 dollars (STR82)

Personal income--1982 dollars (YP82)

New orders, manufacturing durables goods--1982 dollars (OMD82)

Personal consumption expenditures (C)

Consumer price index (CPIU)

M2 money supply (MNY2)

Leading indicators -- composite index (JLEAD)

Effective rate on Federal funds (RMFEDFUNDNS)

Average market yield on 3-month government bills (RMGBS3NS) and 6-month government bills (RMGBS6NS)

Rate on prime commercial paper -- 6 months (RMCML6NS)

Rate on prime certificates of deposit, secondary market--6 months (RMCD6SECNS)

Yield on Treasury securities at constant maturity of 1 year (RMGFCM@1NS) and 10 years (RMGFCM@10NS)

Yield on Moody's AAA corporate bonds (RMMBCAAANS) and BAA corporate bonds (RMMBCBAANS)

Weekly variables

Federal funds rate--effective (FFYW)

Commercial paper rate, industrial--6 months (FIP180YW)

Treasury bill rate--6 months (FBL6YW)

Treasury bond rate, constant maturities--1 year (FCN1YYW) and 10 years (FCN10YYW)

Seasoned corporate bond rate (Moody's Baa and Aaa), weekly averages of daily figures (CAVBAA and CAVAAA)

Table 1. Interest rates and spreads used in this study

Mnemonic	<u>Definition</u>
----------	-------------------

RAAA Long-term corporate bond rate,

Aaa credit rating

RBAA Long-term corporate bond rate,

Baa credit rating

RCP6MO Commercial paper rate, highest

quality, six months' maturity

RFF Federal funds rate, overnight

RT3MO Treasury bill rate, 3 months

RT6MO Treasury bill rate, 6 months

RT1 Treasury bill rate, 1 year

RT10 Treasury bond rate, 10 years

SHORT RCP6MO - RT6MO

LONG RBAA - RT10

TILT RT10

FUNDS RFF - RT10

DEFAULT RBAA - RAAA

Table 2. The information content of interest rates

Predicted		Interest	rates	
variable	RFF	RT3MO	RCP6MO	RT10
Industrial	.0000	.0000	.0000	.0021
production	.0236	. 0204	.0008	.0169
	.1227	.1084	.0163	.0828
Unemployment	.0000	.0001	.0000	.0001
rate	.0089	.0220	.0043	.0113
	.0133	. 2232	. 1446	.1197
Capacity	.0000	.0000	.0000	.0001
utilization	.0224	.0217	.0005	.0145
	.1012	.0921	.0085	.1080
Employment	.0000	.0000	.0000	.0079
	.0379	.0419	.0057	.0547
	.4147	. 2843	. 1497	. 2240
Housing	.0000	.0000	.0000	.0000
starts	.0000	.0001	.0000	.0006
	.0000	.0001	.0000	.0001
Retail .	.0001	.0157	.0017	.0795
sales	.0396	. 7010	. 3566	.6718
	.0019	.1383	.0464	.3168
Personal	.0005	.0109	.0007	.2211
income	.0192	.1275	.0183	.2880
	.0107	. 1439	.0148	.2173
Durables	.0000	.0005	.0000	.0059
orders	.0038	.0720	.0189	.0329
	.0031	.0942	.0286	.0269
Consumption	.0000	.0000	.0000	.0001
	.0046	.0621	.0183	.1012
	.0000	.0000	.0000	.0003
Inflation	.0000	.0000	.0000	.0003
	.0000	.0000	.0000	.0001
	.0001	.0002	.0004	.0021

Note: For definitions of interest rate variables, see Table 1. Entries give the probability that the interest rate variable can be excluded from a prediction equation for the macro variable, for each of three specifications of the prediction equation. Data are monthly, 1961-89.

Table 3. The information content of interest rate spreads

Predicted		Interest	rate spreads	<u>i</u>
<u>variable</u>	SHORT	LONG	TILT	FUNDS
Industrial	.0000 .0001	.0000	.0000	. 0000
production	.0014	.0000 .0012	.0707 .4144	.3004 .6166
Unemployment	.0000	.0032	.0053	.0002
rate	.0003 .0121	.0008 .0314	.4488 .6963	. 1443 . 0262
Capacity utilization	.0000	.0000	.0001	.0001
utilization	. 0000 . 0003	.0000 .0032	.0738 .1378	.1197 .1063
Employment	.0000	.0000	.0001	.0002
	.0015 .3816	.0003 .0511	.3691 .9062	.5683 .9818
Housing	.0002	. 0006	.0000	.0000
starts	.0261 .0104	.0300 .0087	.0000 .00 0 0	.0004 .0001
Retail	.0012	.0199	.0000	.0000
sales	. 2607 . 2026	.3630 .7911	. 2502 . 0 087	.0087 .0002
Personal	.0000	. 1117	.0015	.0001
income	.0000 .0000	.0075 .0461	. 0400 . 0964	.0082 .0138
Durables	.0000	.0007	.0001	.0000
orders,	.0060 .0545	.0018 .0173	. 2673 . 3345	. 0467 . 0442
Consumption	.0000	. 0348	.0000	.0000
	.0006 .0002	.1664 .4888	.0207 .000 0	.0017 .0000
Inflation	.1814	.0006	.0002	.0001
	.1305 .2123	.0006 .0040	.0000 .0011	. 00 0 0 . 0004

Note: For definitions of interest rate variables, see Table 1. For explanation of the table, see notes to Table 2 and text.

Table 4. Best-fitting prediction equations

Predicted	Model size	(number of e	xplanatory v	<u>ariables)</u>
<u>variable</u>	1	2	3	4
Industrial production	SHORT ^S	SHORT LONG	RCP6MO ^a SHORT LONG	RCP6MO ^T SHORT LONG FUNDS
Unemployment rate	SHORTS	SHORT LONG	RCP6MO LONG FUNDS	RCP6MO ^{ar} SHORT LONG FUNDS
Capacity utilization	SHORT ^S	RCP6MO SHORT	RCP6MO ^a SHORT LONG	RCP6MO ^T SHORT LONG FUNDS
Employment	SHORTS	RCP6MO SHORT	RCP6MO ^{ar} SHORT LONG	RFF SHORT LONG TILT
Housing starts	RCP6MO ^S	RCP6MO FUNDS	RFF ^a LONG FUNDS	RFF ^r SHORT LONG FUNDS
Retail sales	FUNDS ^{sa}	LONG FUNDS	RFF ^r LONG FUNDS	RFF RCP6MO LONG FUNDS
Personal income	SHORT ^{sa}	RCP6MO SHORT	RCP6MO ^r SHORT TILT	RCP6MO SHORT LONG TILT
Durables orders	SHORTS	RFF SHORT	RFF ^a SHORT LONG	RFF ^r SHORT LONG FUNDS
Consumption	FUNDS ⁵	RFF SHORT	RFF LONG FUNDS	RFF ^{ar} SHORT LONG FUNDS

Table 4. (continued)

Model size (number of explanatory variables) Predicted 2 3 1 <u>variable</u> RFF^{r} RFF^S LONG RFF^a Inflation **FUNDS** RCP6MO RCP6MO LONG **FUNDS** FUNDS

Note: For each macro variable, the table lists the interest rate variables included in the best prediction equation of the specified size. Data are monthly and cover 1961-89. All equations include a constant, a trend, and six monthly lags of the predicted variable. For definitions of interest rate variables, see Table 1. Superscript (s) indicates best model by Schwarz criterion

- (a) indicates best model by Akaike criterion
 (r) indicates best model by adjusted R² criterion

Table 5. Marginal forecasting power of interest rates and spreads for industrial production, the unemployment rate, and inflation at six-month horizons

Forecasted variable

Period	Industrial production	Unemployment rate	Inflation
101100	production	TALE	initation
1972-74	SHORT	RFF	RFF
	(.0011)	(.0003)	(.0000)
	.7704	. 8743	. 8965
	. 5997	. 7542	. 8538
1975-77	RCP6MO	SHORT	FUNDS
	(.0000)	(.0000)	(.0000)
	.8907	. 6582	. 5445
	. 9532	.7497	. 2150
1978-80	SHORT	SHORT	FUNDS
	(.0000)	(.0000)	(.0000)
	. 7069	.7692	.6387
	. 5372	. 5435	.4169
1981-83	SHORT	SHORT	FUNDS
	(.0000)	(.0000)	(.0000)
	1.5456	1.3887	1.9002
	1.7403	1.9950	2.6509
1984-86	SHORT	SHORT	FUNDS
	(.0000)	(.0000)	(.0000)
	.9233	. 6605	1.5382
	.6846	.6346	1.8680
1987-89	SHORT	SHORT	TILT
	(.0000)	(.0000)	(.0000)
	1.4480	1.2751	1.2782
	1.6922	1.4578	1.9667

Note: For each variable and forecasting period, the interest rate variable named is the one that fit best using data prior to the forecasting period. (Variable names are defined in Table 1.) The number in parentheses is the probability that all lags of the named interest rate variable could be excluded from the prediction equation. The next two numbers are the ratios of (respectively) the average absolute forecasting errors and the average squared forecasting errors between equations with and without the interest rate variable, as discussed in the text.

Table 6. Behavior of the Federal funds rate and interest rate spreads in the periods around the Romer and Romer dates

Episode 1 (December 1968)

		RFF	SHORT	DEFAULT	TILT
1968	0	5.92	. 39	. 75	.01
	N	5.81	.33	. 82	.05
	D*	6.02	.12	.78	.16
1969	J	6.30	. 25	.73	. 30
	F	6.64	. 32	. 64	. 22
	M	6.79	.66	.66	.04
	A	7.41	.91	.65	.09
	M	8.67	1.20	.73	.10
	J	8.90	1.48	.72	.47
	J	8.61	1.42	. 76	.88
	Ā	9.19	1.14	.89	.85
	S	9.15	1.17	.91	.66
	0	9.00	1.27	. 89	. 54
	N	8.85	. 84	.90	. 75
	D	8.97	.95	. 93	. 52

Episode 2 (April 1974)

		RFF	SHORT	DEFAULT	TILT
1974	F	8.97	. 87	.68	08
	M	9.35	. 59	.61	. 55
	A*	10.51	1.47	. 62	1.11
	M	11.31	2.22	.68	1.20
	J	11.93	2.84	. 80	1.13
	J	12.92	3.78	.76	.99
	A	12.01	2.54	.77	1.32
	S	11.34	2.70	. 94	.83
	0	10.06	1.62	1.21	.15
	N	9.45	1.29	1.71	02
	D	8.53	1.87	1.74	12
1975	J	7.13	.94	1.98	67
	F	6.24	. 71	2.03	-1.41
	M	5.54	.44	1.81	-1.62
	A	5.49	.15	1.63	-1.33

Table 6. (continued)

Episode 3 (August 1978)

	RFF	SHORT	DEFAULT	TILT
1978 J	7.60	. 40	. 84	37
J	7.81	. 47	. 72	25
A*	8.04	. 53	.79	10
S	8.45	.45	.73	.22
0	8.96	.48	.70	.50
N	9.76	.99	.80	1.20
D	10.03	1.07	.78	1.29
1979 J	10.07	. 85	.88	1.31
F	10.06	.60	.82	1.14
M	10.09	.49	.89	1.13
A	10.01	.38	.95	.94
M	10.24	.44	.97	.87
J	10.29	. 65	1.09	.66
J	10.47	. 58	1.09	.69
A	10.94	.90	1.12	.95

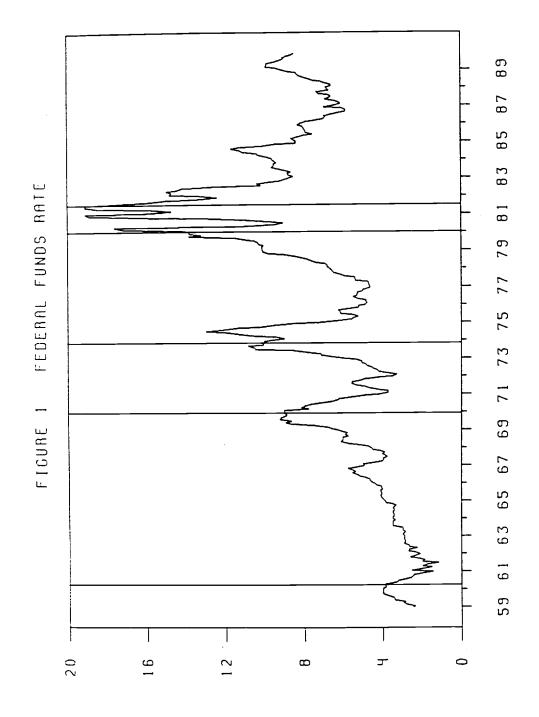
Episode 4 (October 1979)

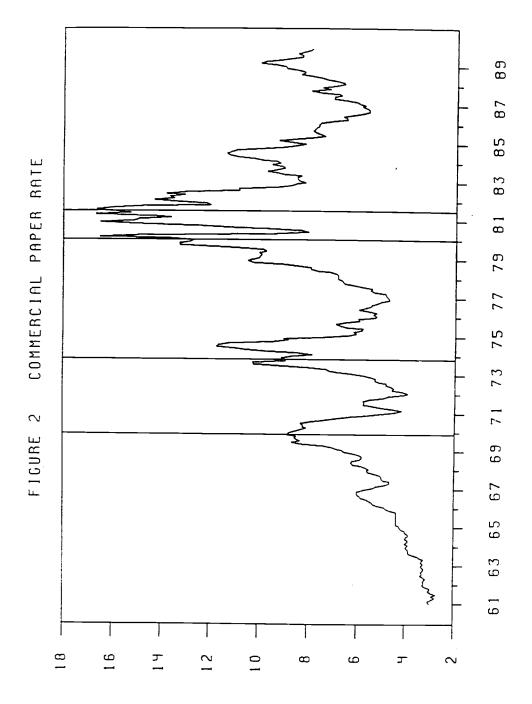
	RFF	SHORT	DEFAULT	TILT
1979 A	10.94	. 90	1.12	.95
S	11.43	1.40	1.10	1.51
0*	13.77	1.57	1.27	2.14
N	13.18	1.44	1.23	1.74
D	13.78	.96	1.32	1.59
1980 J	13.82	.82	1.33	1.26
F	14.13	.74	1.19	1.51
M	17.19	1.47	1.49	3.07
A	17.61	2.05	2.15	1.83
M	10.98	.64	2.18	79
J	9.47	. 73	2.13	-1.62
J	9.03	. 23	1.58	-1.60
A	9.61	. 20	1.51	86
S	10.87	.47	1.68	.01
0	12.81	. 69	1.92	.74

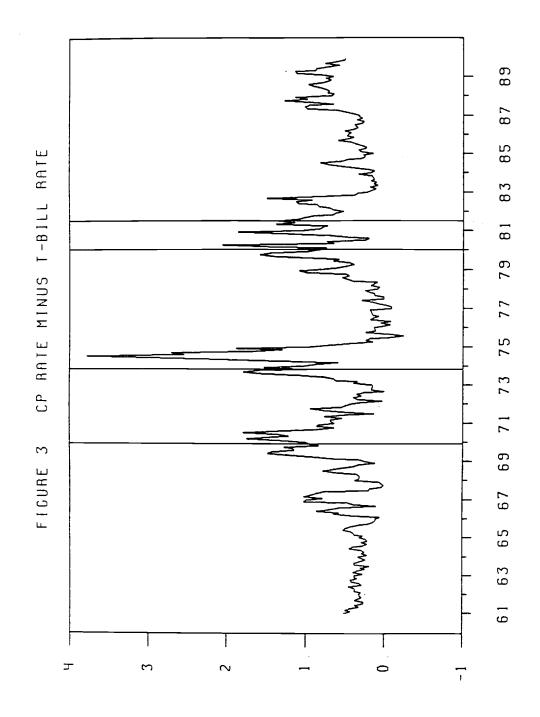
Note: The dates defining the four episodes were determined by Romer and Romer to be dates at which monetary policy was tightened in order to fight inflation. Variable names are defined in Table 1.

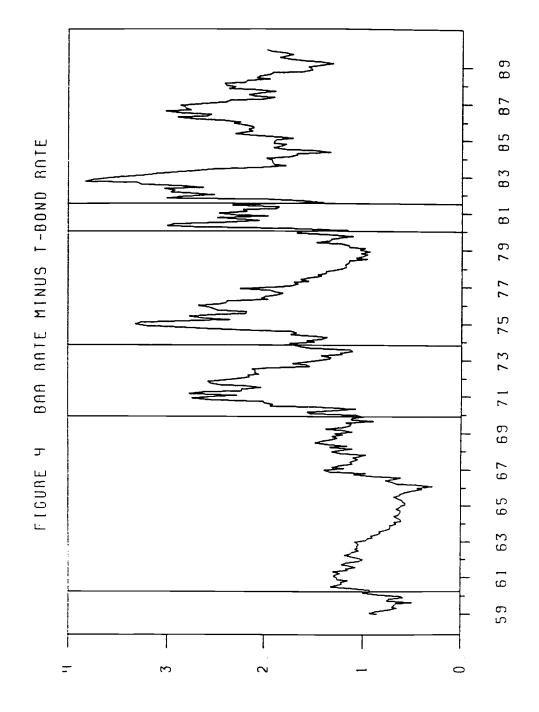
Table 7. Relation of changes in interest rate variables to changes in the Federal funds target

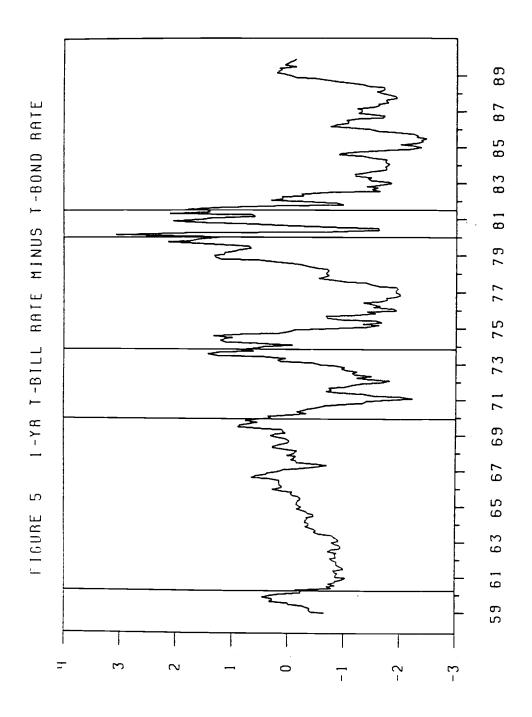
Dependent variable	constant	ΔTARGET	ΔTARGET ₋₁
ΔRFF	0063	.488	.668
	(.468)	(4.72)	(6.46)
ΔSHORT	0047	063	.252
	(.500)	(.863)	(3.45)
ΔDEFAULT	.0011	043	020
	(.616)	(3.04)	(1.45)
ATILT	0041	.322	.350
	(.689)	(6.87)	(7.48)


Note: Data are weekly and the sample period is September 1974 until September 1979. $\Delta TARGET$ and $\Delta TARGET_1$ are the changes in the Federal funds target, in the current and previous week respectively, as identified by Cook and Hahn. Other variable names are defined in Table 1. t-statistics are in parentheses.


Table 8. The marginal forecasting power of the commercial paper rate--Treasury bill rate spread in equations containing alternative variables


Marginal significance levels


	H _O : All lags of FUNDS, DEFAULT equal zero	H _O : All lags of SHORT equal equal zero
Forecasted variable		
Industrial production	.0000	.0004
Unemployment rate	.0048	.0133
Capacity utilization	.0001	.0076
Employment	.0007	.2615
Housing starts	.0000	.0022
Retail sales	.0080	.9680
Personal income	. 2534	.0171
Durables orders	.0156	.0530
Consumption	.0002	. 0959
Inflation	.0000	. 1211


Notes: Entries are the probabilities that the given set of forecasting variables can be excluded from a prediction equation which includes six lags each of the forecasted variable, FUNDS, DEFAULT, and SHORT. The das are monthly and the sample period is 1961-89. Variable names are defined in Table 1.

