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1 Introduction

Nuclear power and intermittent renewables (wind and solar) are generally regarded as the

only mature technologies that have the potential to generate the amounts of electricity

required to decarbonize global energy consumption.1 While many industrialized countries

have chosen to focus on the deployment of wind and solar generation resources, especially

after the 2011 Fukushima disaster (Davis, 2012; Joskow and Parsons, 2012), we currently

observe a renewed interest in nuclear power.2 Therefore, future low-carbon power systems

may, at least in some jurisdictions, include large installed capacities of both intermittent

renewables and nuclear power.

Because of their technical complexity and economic characteristics (high construction

costs, low variable operating costs), most nuclear reactors around the world are used to

produce a steady output of electricity, fueling the perception that they are inherently inflexible

assets. In contrast, wind and solar produce electricity intermittently, frequently requiring

other generation technologies to ramp up and down for short periods of time whenever

renewable output vanishes or booms. From a purely operational standpoint, it is therefore

unclear whether nuclear, wind and solar can jointly provide reliable low-carbon electricity.

This paper explores this issue empirically, leveraging the fact that France is a jurisdiction

whose electricity supply is already heavily relying on both nuclear and renewables.3 While

the lion share (70 to 80%) of France’s low-carbon electricity comes from nuclear power, the

penetration of wind and solar has been steadily growing, reaching 14% of total generation in

2024 (RTE, 2025). The two technologies are now comparable in terms of potential maximum

instantaneous output (63 GW for nuclear and about 50 GW for wind and solar), implying

that one may expect them to strongly interact during some hours.

We address three main research questions. First, to what extent are nuclear units able to

quickly decrease (and increase) their instantaneous power output, an operational mode called

“load-following,” as a response to short-term fluctuations in wind and solar output? Second,

1Industrialized countries are usually considered to have exhausted the main locations suitable for large-
scale hydropower. In addition, the cost-effectiveness and/or technological feasibility of alternative low-carbon
power generation technologies, such as carbon capture or nuclear fusion, remains to be shown.

2For example, countries such as France, the United Kingdom or Poland have announced plans to build
new nuclear reactors.

3Over the past two decades, domestic generation from low-carbon power plants (nuclear, hydro, wind and
solar) has on average exceeded domestic electricity demand by 2% in France (Astier, 2025).

1



what are the impacts of load-following in terms of loss of capacity factor, environmental

externalities and safety associated with the production of nuclear energy? Third, what are

the relevant operating constraints that limit the ability nuclear units to load-follow and how

do they interact with an increase in renewable output?

These research questions are of first-order importance for the European power system, as

recently highlighted in a Financial Times article (Millard, 2025). The operating constraints

of power plants, and in particular start-up costs for thermal power plants, have been shown

to have significant implications for short-term electricity market design (Reguant, 2014),

and to strongly interact with the growing penetration of intermittent renewables (Jha and

Leslie, 2025). In this paper, we also highlight that one type of non-convexity, namely

“minimum output constraints,” may exacerbate the degree of substitution between nuclear

and renewables, possibly limiting their joint ability to provide a reliable supply of low-carbon

electricity (see Section 2).

Our empirical analysis relies on detailed public data on the French power system over

the past decade (see Section 3). This includes the characteristics of French nuclear units,

hourly aggregate outcomes of the French power system (2012–2024), hourly generation

and outage information for nuclear units (2015–2024), dynamic information on minimum

output constraints (2021–2024) and yearly plant-level environmental reports (2019–2024).

We employ different empirical strategies to address our three research questions.

First, we use system-level hourly data to assess the prevalence of nuclear load-following

in the French power system (see Section 4). We regress hourly aggregate nuclear output on

hourly wind and solar output, as well as hourly residual demand,4 for the sample period

2012–2024. In contrast to the perceived “inflexibility” of nuclear power plants, we estimate a

large coefficient of substitution between renewables and nuclear. Most of the effect remains

when controlling for day-of-sample fixed effects, suggesting that most of this substitution is

due to “load-following”, that is, short-duration decreases in the output of a subset of nuclear

units. Specifically, the day-of-sample fixed effects regression finds that an additional MWh

of renewable generation predicts a 0.66 MWh decrease in nuclear output during the hour.

Second, we explore the consequences of the flexible operation of French nuclear units

4We define residual demand as gross domestic consumption plus net exports minus net hydropower
generation (because pumped-storage hydropower plants can both consume and produce electricity) and
must-take biothermal (see Section 4).
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using hourly unit-level data for 2015 to 2024. To do this, we define two quantitative measures

of flexible unit operation: (i) a count of load-following events, and (ii) the amount of

(full-load hours of) “lost energy”, which we define as the additional energy that would

have been produced if a load-following nuclear unit had instead produced at its maximum

output during each load-following event. An obvious implication of load-following events

is a decrease in how intensively a nuclear unit is used during a fuel cycle. This usage

intensity is measured by the capacity factor of a generation unit, defined as the ratio between

the average and maximum possible power generation during a pre-specified time period.

We find the (mechanical) direct reduction in the capacity factor of nuclear units due to

load-following to be small, amounting to at most a few percentage points.5 In addition, we

are not able to detect any impact of nuclear load-following on environmental outcomes, at

least based on an empirical analysis of monthly plant-level observations. We also investigate

indirect channels that may have an impact on the capacity factor of nuclear units, namely

fuel efficiency, the duration of maintenance, and planned/forced outages. Only the latter

is found to be significantly associated with load-following. This relationship is, however,

noisy, due to the large heterogeneity in the cause and duration of outages. In addition,

the occurrence of forced outages may be imperfectly observed since it is measured in a

context of asymmetric information (Hausman, 2014; Bizet et al., 2022). We therefore next

restrict attention to “emergency” forced outages, namely automatic shutdowns and manual

emergency interventions, which are unlikely to be concealed to the regulator. We estimate

proportional hazards models (see Section 5) and find that an increase of five full-load

hours (GWh/GW) of “lost energy” (or, equivalently, one additional load-following event) is

associated with a 1% increase in the hazard rate of an “emergency” forced outage, which

implies a higher probability of such an outage occurring during the unit’s fuel cycle.

Third, we explore the interaction between intermittent renewables and the operating

constraints that limit the ability of nuclear units to load-follow (see Section 6). Most

importantly, like other thermal power plants, a nuclear unit must produce at or above a

minimum level of output to maintain stable operations of the generation unit and transmission

network. Most of the French nuclear units face a “nominal” minimum output constraint

5Of course, the average capacity factor differs from the average economic value of the electricity produced.
This caveat is for example well-known for renewables, for which the decrease in the levelized-cost of energy
may over-estimate the increase in the social value of wind or solar (Joskow, 2011).
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(MOC) of 20 percent of the unit’s nameplate capacity and the remainder have a MOC

equal to 25 percent of the unit’s nameplate capacity. Using panel regressions with unit-

hour observations for 2015–2024, we find that wind and solar output are associated with

increasingly-binding nominal MOCs. Specifically, we estimate that, on average, the nominal

MOC of one additional nuclear unit starts binding in a given hour for every 3 GWh increase

in wind and solar output. We next compute a plant-by-day-of-sample metric capturing the

extent to which each nuclear unit is “exposed” to the installed capacity of other generating

technologies (wind, solar, hydro and thermal). Using this wind and solar exposure metric, we

find empirical evidence that nuclear units located closer to solar power plants are more likely

to reach their nominal MOC. This result suggests that, with increasing solar generation,

grid constraints may place additional restrictions on the choice of which nuclear unit(s)

the system operator must ramp down. Conversely, when renewable output is low, grid

constraints may force the system operator to temporarily set the minimum output constraint

of a nuclear unit above its nominal MOC to maintain grid stability. Such “dynamic” MOCs,

which are publicly disclosed since June 2021, may also arise for other considerations than

grid stability. We observe dynamic MOCs to be binding much more frequently than nominal

MOCs, in large parts due to the fuel management constraints faced by nuclear units. When

accounting for both nominal and dynamic MOCs, we show that, in 2024, hours during which

the available downward flexibility of the nuclear fleet was exhausted are strongly associated

with zero or negative day-ahead prices. In other words, we find that the very large increase

in the occurrence of zero or negative day-ahead prices that France experienced in 2024 (such

prices occurred about 6% of the time or more than 500 hours during the year), results from

many hours showing a combination of both high intermittent renewable output and depleted

load-following capability of the nuclear fleet.

Our empirical results paint a nuanced answer to the question of whether nuclear, wind

and solar can jointly provide reliable low-carbon electricity. On the one hand, in contrast to

widely held views, we show that nuclear units can be operated quite flexibly, and that the

associated lost energy sales seem to be currently limited. Of course, France may represent an

optimistic case study, with a large nuclear fleet operated by a single operator with decades

of experience with load-following operations. Yet, the observed amount of load following
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is well within the specifications of the so-called European Utility Requirements that all

modern nuclear reactors meet. On the other hand, even in this favorable setting, we find

evidence suggesting that the nuclear fleet has exhausted its load-following potential for a

non-negligible number of hours in 2024. During such hours, the interaction between high

renewable generation and a non-convexity in the supply function of nuclear units, known as

the minimum output constraint, induces non-positive spot prices, and thus, in the absence

of sufficient alternative sources of flexibility such as large-scale storage or demand response,

a strong substitution between nuclear and renewables.6

While the importance of nuclear load-following has been widely discussed in industry

and institutional reports (e.g. Bruynooghe et al. (2010); Lokhov (2011); Grünwald and

Caviezel (2017); Morilhat et al. (2019); OECD (2021)), and explored using model simulations

in engineering studies (e.g. Jenkins et al. (2018); Loisel et al. (2018); Lynch et al. (2022);

Blanchard and Massol (2025)), a detailed ex post analysis using data from actual operations

has, to the best of our knowledge, only been attempted in the on-going work by Johannsen

et al. (2025). This latter study, however, focuses on the United States electricity supply

industry, where nuclear load-following represents an exceptional operating mode because

the share of nuclear in total generation in all regions of the United States is significantly

smaller than in France. The economics literature has otherwise studied nuclear energy from

a number of perspectives, including the incentives of plant operators regarding cost-efficiency

(Davis and Wolfram, 2012) or safety (Hausman, 2014), unilateral market power in offer-based

markets (Davis and Hausman, 2016; Liski and Vehviläinen, 2018; Lundin, 2021), avoided

environmental externalities (Severnini, 2017; Adler et al., 2020; Jarvis et al., 2022), and green

industrial policy (Andersson and Finnegan, 2024; Makarin et al., 2024). We complement

this body of work by (i) showing that nuclear units have the ability to load-follow, similar to

other large steam turbine generation units, and (ii) quantifying the main trade-offs associated

with unit owners engaging in load-following actions. In addition, we further document the

importance of non-convexities in the aggregate “supply” function of energy in electricity

markets. In particular, start-up and/or ramping costs have been shown to raise challenges for

6Note that, although nuclear load-following is of first-order importance to assess the extent to which
nuclear and intermittent renewables may co-exist at a large scale in a power system, our results should not
be interpreted as definitive evidence that nuclear power must, or must not, represent a large share of future
low-carbon electricity mixes. Indeed, the answer to this question also critically depends on the construction
costs of new nuclear units, a highly-debated topic (Grubler, 2010; Boccard, 2014; Rangel and Lévêque, 2015).
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market design (Reguant, 2014) and market power investigations (Mansur, 2008), especially

so with the increasing penetration of intermittent renewables (Jha and Leslie, 2025). We

further show that minimum output constraints, yet another supply-side non-convexity in

electricity markets, can have a major influence on market outcomes in a low-carbon power

system given the intermittency of renewables.

The rest of the paper is organized as follows. Section 2 provides relevant background

on nuclear operations and outlines the economic intuition behind the importance of the

(in)flexibility of nuclear units. Section 3 describes our empirical setting and data sources.

Section 4 defines load-following operating behavior by nuclear units and discusses alternative

ways to quantify its intensity. Section 5 estimates the impacts of load-following in terms

of loss of capacity factor, environmental externalities and safety. Section 6 turns to the

operating constraints limiting the ability to load-follow, and investigates how they interact

with intermittent renewables and market outcomes. Finally, Section 7 discusses the external

validity and potential policy implications of our results. Section 8 concludes.

2 Nuclear Operations and Renewables: Technical Back-

ground and Economic Relevance

This Section first introduces useful background on nuclear power technology that underlies

subsequent analyses, with a particular emphasis on minimum output constraints. We next

discuss how such constraints may interact with intermittent renewables. In particular,

we explain why this interaction has first-order implications for the economics of reliable

low-carbon power systems.

2.1 Nuclear Operations

A nuclear power plant is a facility composed of one or several nuclear units, that is, individual

installations able to produce electricity independently from each other. Each unit hosts a

reactor where neutrons are used to break large radioactive atoms (e.g. uranium 235), a

reaction known as nuclear fission. This reaction releases neutrons and heat. The former fuels

a chain reaction by which the process is self-sustained. The latter is used, as in any other
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steam turbine power plant, to boil water,7 and produce pressurized steam that is sent to a

turbine to generate electricity. Nuclear units can reach an installed capacity of 1,000 MW

and above, which is orders of magnitude larger than the typical size of a single wind turbine

(about 2 MW) or solar panel (about 300 W).

Given their size, nuclear plants involve high construction and fixed costs, whose recovery

is typically only possible through high utilization rates. In addition, a stable chain reaction

requires a complex real-time monitoring of the net flow of neutrons (using chemicals and

control rods) to prevent meltdowns. As a result, in the vast majority of jurisdictions, online

nuclear units consistently produce at (or close to) their maximum capacity, an operating

mode often referred to as “baseload” (see left panel on Figure 1).

Figure 1: Hourly output of the French nuclear unit “Belleville 1” for two different weeks.
Left panel: example of baseload operation. Right panel: example of load-following operation.
The upper red horizontal line represents nominal capacity, and the lower red horizontal line
the level of the nominal minimum output constraint.

Similarly to other thermal power plants, nuclear units have, nonetheless, the ability

to ramp up and down, an operating mode known as “load-following” (see right panel on

Figure 1). This operating mode is subject to two main constraints. First, ramping constraints

mandate that the absolute rate of variation in output, called “ramp”, should not exceed an

engineering-determined upper bound. This upper bound is typically set to 3 to 5% of installed

capacity per minute for nuclear units (Lokhov, 2011). As a result, ramping constraints allow

for variations (the sum of the absolute value of output changes) exceeding 100% of installed

capacity over the course of an hour and, as apparent from Figure 1, cannot be reliably

inferred from hourly output data. They are therefore not studied in this paper. Second,

7Either directly in Boiling Water Reactor (BWR) designs or indirectly in Pressurized Water Reactor
(PWR) designs. All commercial reactors in France are PWRs.
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while a nuclear unit can ramp down when switching from “baseload” to “load-following”

operations, its output must stay above an engineering-determined lower bound to maintain

stable operations. We call this static lower bound the “nominal minimum output constraint”

(nominal MOC) of the unit. For most French nuclear units, the nominal MOC is equal to

20% of the installed capacity of the unit (see Figure A.12).

Unlike other thermal (e.g. coal- or gas-fired) power plants, however, a nuclear plant

operator cannot “top-up” the fuel contained in its reactor. Instead, the nuclear unit must be

shut down for refueling, which has two main implications. First, the relevant timescale to

study the economics of nuclear units corresponds to “fuel cycles”, that is, sequences of a

period of production followed by a refueling outage (see Section 5). Second, the chemical

composition of the nuclear reactor changes over time as the fuel gets depleted. This evolution

in turn limits the ability of a nuclear unit to load-follow when it reaches the end of its fuel

cycle (Lynch et al., 2022). More generally, in any given hour, the enforced lower bound

on the output of a given nuclear unit may be higher than the nominal MOC, either for

unit-specific (e.g. balancing the chemical composition of the reactor) or system-specific (e.g.

grid stability) reasons. When such situations arise, we call the enforced lower bound on

output the “dynamic minimum output constraint” (dynamic MOC).

In economics, the minimum output constraint, either nominal or dynamic, represents a

non-convexity in the supply function of a nuclear unit. The next paragraph highlights its

critical role in shaping the economics of a power system that predominantly relies on nuclear

and intermittent renewables.

2.2 Substitution between Nuclear and Renewables

Consider a power system whose electricity generation mix is exclusively composed of wind and

solar on the one hand, with a zero marginal cost of production, and of nuclear on the other

hand, with a positive marginal cost of production. Figure 2 illustrates the corresponding

supply function for a given hour, also known as the “merit order” curve in the electricity

industry. The horizontal green segment represents the total output from wind and solar for

the considered hour, and the horizontal orange segment the total capacity of nuclear units

that are up and running during that hour. Further assume that electricity demand (in blue)
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is lower that the sum of available renewable output and nuclear capacity, a situation that is

expected to frequently occur with such an electricity mix (Mallapragada et al., 2021).

a) Flexible nuclear

q

p

price

b) Inflexible nuclear

q

p

price

Curtailed RES

Figure 2: Market-clearing equilibrium prices when the nuclear fleet in either flexible (left
panel) or inflexible (right panel) in the short run.

Two very different situations may then arise. On the one hand, if the nuclear fleet is

flexible enough, meaning it can decrease its output while meeting the MOCs of all nuclear

units, it will adjust its supply to demand (left panel on Figure 2). The competitive market

price will then be the marginal cost of nuclear and no renewable output will be curtailed.

On the other hand, if the nuclear fleet is inflexible, meaning it is unable sufficiently decrease

output due to binding MOCs (right panel on Figure 2), renewables will then need to be

curtailed and the competitive market price collapses to a non-positive value.8

In summary, the extent to which nuclear operations can be flexible has first-order

implications for equilibrium market prices in a low-carbon power system, and thus for the

long-term profitability of the different production technologies, as well as of other investments

(batteries, electric vehicles, etc.). In addition, in the above example, nuclear load-following

increases total surplus by avoiding renewable output curtailments. On the flip side, however,

operating nuclear units in a flexible manner may increase the probability of outages and thus

decrease overall reliability. Empirical evidence from actual operations is therefore needed to

explore the trade-offs associated with nuclear load-following.

8Negative prices may arise if renewable support schemes imply that renewable producers incur a positive
(private) opportunity cost when they do not generate electricity.
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3 Empirical Setting: the French Power System

Our empirical evidence is drawn from the French power system, which we now briefly describe

along with our main data sources, all of which are public.

3.1 Background on the French Power System

Electricity Mix

Electricity generating technologies in France may be divided into five broad categories:

nuclear, hydropower, fossil-fueled thermal plants, wind and solar. Over the past decade, the

installed capacities of these technologies have exhibited very different trends.

First, nuclear power represents the largest share of both installed capacity and generated

electricity. In the 2010s, the nuclear fleet consisted of 19 power plants, hosting between

two and six units, for a total of 58 units (see Figure A.13). The majority of units have

a nameplate capacity of around 900 MW, while most remaining units have a nameplate

capacity of around 1300 MW. Only the 4 most recent units, which were commissioned in the

early 2000s, have a higher nameplate capacity of around 1500 MW. During our period of

interest, two 900 MW units (Fessenheim power plant) were closed in 2020 and one 1600 MW

unit (Flamanville 3) was commissioned in December 2024.9 The current fleet therefore

consists of 18 plants composed of 57 units, for a total capacity of 63 GW.

Similarly to nuclear, the installed capacities of hydro and fossil-fueled thermal power

plants has remained fairly flat over the past decade.10 In contrast, the installed capacities of

wind and solar have been steadily growing. Installed wind capacity increased from 6.7 GW as

of 31 December 2011 to about 24 GW as of 31 December 2024. Solar photovoltaic capacity

increased from about 2.5 GW to 24 GW over the same time window. In addition, transfer

capacities with neighbor countries have also increased with the commissioning of new DC

interconnectors with Spain (2015), Great Britain (2021-22) and Italy (2022), as well as grid

and operational upgrades in the AC transmission network.

Figure 3 shows the resulting monthly time series in terms of energy, along with domestic

9We do not include Flamanville 3 in our dataset because it had not started commercial operations as of
31 December 2024.

10Hydropower nonetheless shows a mildly increasing trend driven by the commissioning of small-scale
run-of-the-river units. For fossil-fueled technologies, the closure of coal power plants has been compensated
by the commissioning of gas-fired power plants.
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Figure 3: Monthly electricity consumption, generation by main technology and commercial
exchanges over 2012–2024. Dashed vertical lines indicate the beginning of each year.

electricity consumption. Several observations are worth making. First, France is a so-called

“winter peak” system, meaning that electricity consumption is highest during cold winter

months (December, January and February). Indeed, given the high penetration of electric

heating and the lack of widespread adoption of air conditioning, typical electricity demand

during the winter is 1.5 to 2 times higher than during the summer. Second, nuclear is by

far the dominant technology in the electricity mix, representing three quarter of domestic

generation and an even larger fraction of domestic consumption. Third, as a result of

the two previous observations, the fleet-level output of nuclear power plants is far from

exhibiting a flat “baseload” pattern. Indeed, because of the very large share of nuclear in

the electricity mix, nuclear load-following operations in France started decades before the

emergence of intermittent renewables (Commission de régulation de l’énergie, 2025). Finally,

the generation from wind and solar has been steadily growing from negligible amounts

in 2012, to a combined output comparable to hydropower towards the end of the sample

period. While this increase in average renewable output may seem relatively small, it masks

considerable hourly variations. Indeed, the joint output from wind and solar can represent a

large fraction of domestic generation in some hours. In addition, with the recent growth of

wind and solar, the current French power system could, at least in theory, exclusively rely on

nuclear and renewables.11 Therefore, France is a particularly relevant case study to explore

11See Figure A.14 in the Appendix.
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how power systems may behave as they approach an electricity mix relying exclusively on

nuclear and renewables.

Institutional Background

As in the rest of Europe, wholesale electricity markets have been launched in France in

the early 2000s. However, the incumbent utility, “Electricité de France” (EDF), still owns

and operates the entire nuclear fleet, along with many hydro, thermal and renewable power

plants. Electricity generation is thus very concentrated, with an HHI index exceeding 6,000

(Astier, 2025).

Strategic behavior and unilateral market power therefore represent legitimate concerns.

Our research questions, however, relate to the short-term substitution between nuclear and

intermittent renewables. There are a number of good reasons to believe that market power

is unlikely to be of first-order importance in our setting. First, incentives to engage in

(short-term) capacity withholding are mitigated by vertical integration (EDF remaining the

dominant retailer) and the fact that the nuclear fleet was subject, for our period of interest, to

a (partial) financial divesture mechanism.12 Second, there is significant regulatory oversight

of market players’ bidding behaviors, so that bids significantly departing from (declared)

opportunity costs would likely be detected.13 Third, because renewables benefit from

generous pay-as-produced support mechanisms, cross-ownership of nuclear and renewables

seems unlikely to induce preventive curtailment of renewables in order to prevent market

prices from collapsing. Consistently, over 2012–2024, renewable curtailment levels have been

negligible or small: the annual technical reports of the system operator do not mention

renewable curtailments until 2024. The report for the year 2024 (RTE, 2025) states that

2024 was the first year with non-negligible curtailed volumes, with 1.7 TWh of wind and

solar output curtailed because of negative prices, that is, about 2.4% of total wind and solar

production. This year indeed also coincides with a spike in non-positive hourly day-ahead

prices (see Figure 4), which we will return to below.

In summary, while strategic responses to the growing penetration of intermittent renew-

12The mechanism was called the “Accès régulé à l’électricité nucléaire historique” (ARENH). See:
https://www.cre.fr/electricite/marche-de-gros-de-lelectricite/acces-regule-a-lelectricite-

nucleaire-historique-arenh.html.
13In addition, even if declared opportunity costs were to be mis-reported or strategically set, the relative

ranking between renewables and nuclear in the merit order, which triggers load-following (see Figure 2),
would very likely remain the same.

12
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Figure 4: Number of non-positive hourly day-ahead prices per year in France.

ables represent an interesting an area of investigation, they may not play a critical role in

our setting. We therefore leave their exploration for further research.

3.2 Data Sources

Our analyses exclusively rely on public data sources. The technical characteristics of each unit

(nominal capacity, commissioning date, vintage, nominal minimum output level, etc.) are

retrieved from EDF. Country-level information about the power system is publicly available

at a (sub)hourly time scale from both the transmission system operator14 and Entso-e.15

We retrieve from these data sources hourly electricity consumption, aggregate generation by

technology and net imports/exports for the period 2012–2024.

Unit-level hourly output of nuclear units is available from the transmission system

operator (TSO) from 2012 onward.16 Over the period 2012–2024, the hourly output levels

of 56 (after 2020) to 58 units (before 2020) represent over 6 million observations. Episodes

of missing or erroneous data are therefore a relevant concern. Because our later analysis

predominantly relies on hourly unit-level output time series, we perform extensive data

cleaning and sanity checks.17

14From 2012 onward at https://www.rte-france.com/eco2mix, last accessed on 9 April 2025.
15From 2015 onward at https://transparency.entsoe.eu/, last accessed on 9 April 2025.
16https://www.services-rte.com/fr/visualisez-les-donnees-publiees-par-rte/production-

realisee-par-groupe.html, last accessed on 9 April 2025.
17First, we flag obvious outliers. Second, we cross-validate the data from the French TSO with the same

data from Entso-e available from 2017 onward. Specifically, we rely on Entso-e data for days when we detect
data quality issues in the French TSO data. Third, we aggregate unit-level output at the fleet level and
compare it with the reported hourly aggregate nuclear output. Finally, we plotted and visually inspected all
58 time series, leading to a small number of manual corrections. Besides consistency with fleet-level output,
these manual changes were informed, when relevant, by public information on unit-level outages.
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Next, we leverage four sources of data on unit-level outages. First, the nuclear safety

agency publishes on its website a notification whenever a nuclear unit is switched off and

needs the authorization of the agency to be turned on again.18 These outages usually

correspond to planned outages for refueling and maintenance. We retrieve the dates of these

outages, and whether or not refueling operations were performed.19 Second, transparency

regulations require the incumbent utility, which operates all nuclear units, to declare planned

and forced outages. These notifications are published by both the TSO20 and EDF.21 The

final dataset covers the period 2015–2024.22 Since June 2021, the outage data published

by EDF also include information about unit-level dynamic MOCs.23 Finally, we obtained

from the nuclear safety agency the date and unit of all the automatic shutdowns and manual

emergency interventions that occurred in 2015–2024.24

Information on environmental outcomes at the plant-month level are manually retrieved for

2019–2024 from yearly environmental reports on nuclear installations (pursuant article 4.4.4.

of the decree of 7 February 2012). Finally, hourly day-ahead prices are for example available

from Entso-e’s transparency platform.

4 Load-Following: Evidence and Measurement

In this Section, we first provide quantitative evidence of the widespread use of nuclear

load-following in the French power system. We next propose discrete and continuous metrics

that we will subsequently use to estimate associated impacts.

18https://www.asn.fr/l-asn-controle/actualites-du-controle/installations-nucleaires/arret-

de-reacteurs-de-centrales-nucleaires, last accessed on 9 April 2025.
19We cross-validate and complement the information on refueling events by investigating manually, for

each unit, all shut-down periods lasting more than a couple of weeks. A handful of (very likely) refueling
events (based on typical fuel cycle lengths) could not be found on the nuclear safety agency website and have
been added manually.

20https://www.services-rte.com/fr/telechargez-les-donnees-publiees-par-rte.html?category=

generation&type=unavailabilities, last accessed on 9 April 2025.
21https://www.edf.fr/groupe-edf/ambition-neutralite-co2-pour-edf-a-l-horizon-

2050/optimisation-et-trading/listes-des-indisponibilites-et-des-messages/liste-des-

indisponibilites, last accessed on 9 April 2025.
22Besides an identifier of the outage, each notification consists of a publication date, a version (i.e., the

number of updates about this outage that have been published to date), and information on the event (start,
end, available capacity and, possibly, some minimal description). Although both data sources agree most of
the time, their overlap is not perfect. We therefore build a merged dataset that keeps track of the latest
notification about each event from either data source.

23Specifically, due to transparency obligations, the utility must disclose the actual MOC enforced at a
given unit at a given point in time whenever its value is at least 100 MW larger than the nominal MOC. We
leverage these disclosure messages to build unit-level hourly time series of the dynamic MOCs from June
2021 to December 2024.

24We are very grateful to the Autorité de Sûreté Nucléaire et de Radioprotection (ASNR) for sharing this
dataset with us.
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4.1 Aggregate Evidence of Load-Following

We use country-level hourly data for 2012–2024 to estimate several models of the form:

Nh = α+ βRESh + γRDh +
∑
T

δh∈T + ϵh (1)

and:

Nh =
∑

b∈{bins RD-RES}
(αb + βbRESh + γbRDh) +

∑
T

δh∈T + ϵh (2)

where, for a given hour h, Nh denotes the output of the nuclear fleet, RESh the combined

output of wind and solar25 and RDh the residual demand except for wind and solar, that is,

gross consumption (including pumped hydro) plus net exports minus hydropower and must-

run biomass.26 Specification (2) allows for non-linear effects by estimating different coefficients

for different bins of system residual demand RDh −RESh ∈ {< 25, 25− 40, 40− 63, > 63}

(in GWh/h). We estimate different models that differ by the set of time fixed effects δh∈T

included in the specification: none, week-of-sample or day-of-sample.

Dependent variable: Nh (period 2012-2024)

(1) (2) (3) (4) (5) (6)

RESh -0.78 (0.0064) -0.62 (0.0065) -0.66 (0.0075)

RDh 0.774 (0.0035) 0.626 (0.0057) 0.63 (0.0067)

RESh:bin<25GW -0.3 (0.26) -0.6 (0.28) -0.8 (0.15)

RDh:bin<25GW 0.4 (0.25) 0.6 (0.29) 0.7 (0.15)

RESh:bin25-40GW -1.04 (0.011) -0.81 (0.011) -0.85 (0.0098)

RDh:bin25-40GW 1.09 (0.011) 0.82 (0.01) 0.85 (0.0095)

RESh:bin40-63GW -0.70 (0.0095) -0.53 (0.0073) -0.56 (0.0085)

RDh:bin40-63GW 0.709 (0.0054) 0.56 (0.0067) 0.56 (0.008)

RESh:bin>63GW -0.43 (0.048) -0.25 (0.022) -0.24 (0.014)

RDh:bin>63GW 0.44 (0.028) 0.29 (0.014) 0.25 (0.0091)

Week-of-sample FE N Y N N Y N

Day-of-sample FE N N Y N N Y

Observations 113,973 113,973 113,973 113,973 113,973 113,973

R2 0.919 0.984 0.994 0.930 0.988 0.995

Table 1: Obtained estimates for different specifications of Equations (1) and (2). Robust
standard errors are clustered by day-of-sample.

25Because renewable curtailments have been negligible over the considered period (see above), using
realized or forecasted output is unlikely to affect the obtained results.

26While hydro supply and imports/exports may raise endogeneity concerns, taking them as exogenous is a
standard approximation in the literature (e.g. Borenstein et al. (2002)). The symmetry of the estimated
coefficients for RESh and RDh suggests that this approximation is likely to be reasonable in our application
as well. If anything, it may under-estimate the short-term substitution between nuclear and renewables.
Indeed, by taking hydro output as exogenous (when computing hourly residual demand), we shut down the
possibility that hydro reservoirs may endogenously reduce output during high renewable hours and substitute
for nuclear output in a latter hour.
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Table 1 reports the our estimation results. Depending on specifications, we find that an

additional MWh of wind or solar generation is associated with a 0.6 to 0.8 MWh decrease

in nuclear output. Because they do not include any time fixed effects, the estimates from

specifications (1) and (4) capture the sum of both medium-term (scheduling of planned

outages) and short-term (load-following) responses of the nuclear fleet to intermittent

renewables. In contrast, by including week- or day-of-sample fixed effects, the remaining

specifications control for the contemporaneous availability of the fleet (i.e., how many

nuclear units are online), and therefore isolate load-following. Consistently, the estimate

from specification (1) is larger (in absolute value) than estimates from specifications (2)

and (3). Yet, the comparison of the different estimates suggests that the bulk of the

response of the nuclear fleet to intermittent renewables is associated to load-following.27

Non-linear specifications align with the “merit order” intuition of Figure 2: load-following

predominantly occurs when residual demand is low relative to installed nuclear capacity. In

addition, consistently with Figure 3, maintenance and refueling are scheduled in priority

during periods with low residual demand (specification (4)).

Because most of the response of the nuclear fleet to the variability of wind and solar output

consists of load-following,28 we next discuss how to measure the intensity of load-following at

the unit-level in order to subsequently investigate the potential opportunity costs associated

with this operating mode.

4.2 Measuring Unit-level Load-Following

In order to empirically assess the consequences of nuclear load-following, it is necessary to

construct metrics that capture its intensity. We rely on unit-level hourly output and outages

to build such metrics.

Specifically, we define a “load-following event” as a set of contiguous hours during which

a unit (i) is up and running (i.e., we exclude start-up, stretching and forced/planned outage

events); and (ii) produces less than 75% of its installed capacity. While this latter threshold

27An heterogeneity analysis estimating (for specification (3)) separate substitution coefficients by year-of-
sample suggests that its value remained fairly consistent across years, ranging from −0.6 to −0.76.

28Nuclear and renewables also interact at a sub-hourly time scales through ancillary services provision.
Because of the small amplitude and short duration (seconds to minutes) of the corresponding variations
in output, we cannot reliably measure this interaction from hourly data and therefore leave it to further
research.
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is somewhat arbitrary, it represents a sensible value to avoid false positives29 while capturing

load-following operations with a very high probability.30 Counting the number of load-

following events then provides a discrete metric of the intensity of load-following. Over

2015–2024, we detect 11,000+ load-following events, with a slightly decreasing trend over

2015–2022 and a sharp increase in 2023–2024, the latter year experiencing twice as many

load-following events as the historical average (see Figure A.15).

Figure 5: Illustration of “load-following events” and “lost energy”.

Load-following events can be, however, very heterogeneous in terms of duration (median

of 4 hours, with an inter-quartile range spanning from 3 to 7 hours) and depth of load

reduction (median minimum output of 29% of installed capacity, with an inter-quartile

range spanning from 24 to 51%). To account for this heterogeneity, we also introduce the

concept of “lost energy” (in GWh), defined as the additional electricity that would have

been generated if the unit had produced at its nominal capacity. Figure 5 shows the hourly

output of the unit “Belleville 1” for one week in 2021. During that week, we detect that the

unit performed three “load-following events”, with a corresponding “lost energy” depicted

as the shaded blue area. Normalizing lost energy (in GWh) by installed capacity (in GW)

provides a measure of load-following that is commensurate to “full load hours” of lost energy,

that is, the number of hours the unit would need to run at full capacity to produce the

29Output variations in the range 80-100% are frequent and exhibit very heterogeneous patterns, possibly
due to the provision of ancillary services.

30Because load-following requires careful and costly monitoring by plant operators, a given amount of
output reduction is usually achieved by significantly decreasing the output of handful of units rather than
small reductions spread across all units.
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energy output that was foregone due to load-following.

Of course, alternative measures of “load-following” can be defined. For example, Blanchard

and Massol (2025) instead use the sum of absolute ramps. We found, however, the different

measures of load-following to be highly correlated with each other, so that the results of

subsequent analyses are very similar across the various possible metrics.

5 Opportunity Costs of Load-Following

This Section uses our previously defined “load-following” metrics to estimate the associated

impacts in terms of loss of capacity factor, environmental externalities and safety.

5.1 Loss of Capacity Factor

Load-following has both direct and indirect impacts on the utilization rate a nuclear unit.

This utilization rate, called the “capacity factor”, is defined as the ratio between average

and maximum output for a specified time period. As discussed in Section 2, the specific

features of nuclear operations imply that the relevant timescale to measure average output is

a fuel cycle, that is, the sequence consisting of a production period and a refueling outage.

The direct impact is a mechanical consequence of the fact that, during load-following

events, the unit is producing below its installed capacity. Indirect impacts may also arise if

load-following interacts with fuel efficiency, maintenance and/or outages.

Direct impact

Figure 6 illustrates our definition of the “direct” impact of load-following on the capacity

factor of a nuclear unit. It represents a stylized fuel cycle, with the production period in

blue and the refueling outage in orange. The shaded blue area materializes the lost-energy L

due to load-following. If we denote with K the installed capacity of the unit, the number

full-load hours of lost energy is, by definition, H ≡ L/K.

Let D denote the observed duration (in hours) of the whole fuel cycle (production and

refueling). As a first approximation, the amount of electricity E generated during a cycle

may be considered as a constant determined by the amount of fuel loaded during the previous

refueling outage. Therefore, in the absence of load-following, the duration of the fuel cycle
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time

Figure 6: Direct impact of load-following on the average capacity factor of a unit.

would have been D −H. Using these notations, the (mechanical) decrease ∆ in capacity

factor due to load-following is equal to:

∆ ≡ 100×
(

E

K(D −H)
− E

KD

)
≃ 100× E

KD

H

D
(3)

Figure A.16 shows, across the fuel cycles that we fully observe in our sample, the

relationship between the intensity of load-following and the decrease in capacity factor.

Consistently with industry reports,31 we find this decrease to be lower than 1 p.p. for the

vast majority of fuel cycles, and to roughly amount to a 1 p.p. decrease in capacity factor for

each 180 full-load hours of “lost energy”. In addition, because load-following predominantly

occurs during hours with low electricity prices, the per-MWh social value of “lost energy”

is, by construction, lower than the average social value of electricity. As an illustration, we

find the lost-energy-weighted average price of electricity to be 26e/MWh. In contrast, the

nuclear-output-weighted price is 65e/MWh.

Indirect impacts

Load-following may also have an impact on the average capacity factor of the nuclear

fleet through several indirect channels. First, fuel efficiency (i.e., the amount of electricity

produced per ton of radioactive fuel) may increase or decrease. Second, the duration of

refueling outages may increase if more maintenance is performed when the unit is shut down.

Third, the occurrence of outages (planned or forced) may increase.

To explore these channels, we run regressions of the form:

Yif = αi + βHif + ϵif (4)

31For example, (Bruynooghe et al., 2010) mentions a 1.2 percentage point (p.p.) decrease in capacity
factor.
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where Yif is the outcome of interest for unit i during fuel cycle f ((i) total electricity

produced, (ii) duration of the refueling outage, and (iii) number of hours planned/forced

outages, either in logs or in levels), αi are unit fixed-effects and Hif denotes the number of

full-load hours of lost energy (either in logs or in levels) for unit i during fuel cycle f .

Tables A.5 and A.6 in the Appendix report the obtained results. If anything, we estimate

a positive relationship between load-following and fuel efficiency, although economically

negligible. In addition, no significant relationship is found with the duration of subsequent

refueling outages. Note that this null result does not necessarily imply that load-following

does not induce additional maintenance, but rather that maintenance schedules seem to be

set independently of the amount of load-following performed during a given fuel cycle. Finally,

we estimate a positive and significant association between load-following and planned/forced

outages. These coefficient estimates should, however, be interpreted with care. First, they

are somewhat imprecise given how heterogeneous outages may be in terms of cause and

duration,32 not to mention the risk of strategic disclosure. Second, load-following may be

less likely during fuel cycles that experienced outages early on, inducing a downward bias.

Although one approach to mitigate this latter concern could be to instrument for Hif ,
33 we

rather adopt in what follows a different empirical strategy (see below).

5.2 Environmental Impacts

Load-following may also have an impact on the environmental externalities associated with

nuclear power. First, nuclear units use vast amounts of water for cooling. Load-following

may thus have an impact on water intakes, water consumption,34 or the temperature and

pH of released cooling water. Second, nuclear units also release chemicals, radioactive (e.g.

tritium) or not (e.g. boron), as part of the monitoring of the chain reaction.

We retrieved data from public environmental reports to assess whether we could detect an

impact of load-following on these externalities. This empirical exercise, however, suffers from

two important caveats. First, our dataset on environmental outcomes consists of month-plant

32For example, in 2023, strikes were the main cause of planned outages, inducing about 16 TWh of lost
energy (Commission de régulation de l’énergie, 2025).

33Consistently with the above intuition, using the amount of load-following predicted by hourly system
residual demand and day-of-sample fixed effects to instrument for Hif yields a non-significant coefficient
estimate for planned outages and increases the magnitude of the coefficient estimate for forced outages.

34For air-cooled units, some water evaporates during cooling and therefore is not returned to the river.

20



observations for 2019–2024, that is, a pretty coarse panel. Second, liquid waste need not be

released contemporaneously with nuclear production. Indeed, liquid chemicals can be stored

in pools in order to be released only when circumstances meet environmental regulations.

With these shortcomings in mind, we are not able to detect any significant and/or

economically meaningful association between load-following and environmental externalities

(see Tables A.7 and A.8 in the Appendix).

5.3 Safety

The above evidence of an association between load-following and outages suffered from

two main caveats. First, outages can be very heterogeneous events and, given asymmetric

information, their disclosure may be endogenous (Bizet et al., 2022). Second, using fuel

cycles as the unit of observation also raises endogeneity concerns, since a major outage at

the beginning of the cycle may lead to subsequently more conservative operations.

To address the first concern, we follow Hausman (2014) and restrict attention to “emer-

gency” outages, that is, automatic shutdowns and manual emergency interventions. We

assume that such outages cannot be concealed to the nuclear safety agency, who provided us

the date and units of these events.35 Over the period 2015–2024, we observe 600+ emergency

outages, about half of which occur as the unit is ramping up after a refueling outage, likely

due to warming-up testing programs.

To address the second concern, we leverage unit-level hourly data and focus attention on

the time window between the actual start of a fuel cycle36 and either (i) the first emergency

outage (if any) or (ii) the next refueling outage. Restricting attention to this time window

indeed allows to credibly satisfy the underlying assumptions of survival models (Cox and

Oakes, 1984). First, units that just completed a refueling outage, during which maintenance

and repairs are performed, may be considered to be in statistically comparable states in

terms of wear and tear. Second, there exists an unambiguous measure of time, which we will

35While we observe automatic shutdowns and manual emergency interventions separately, our main analysis
treats both types of events as similar “emergency” outages. Indeed, when an incident occurs, it is sometimes
the case that the unit operator will first try to perform manual emergency interventions to avoid an automatic
shutdown. Our main results are robust, however, to restricting the sample to automatic shutdowns only.

36Given the numerous outages occurring during warming up testing programs, we define the “actual start
of a fuel cycle” as the first time the unit reaches 85% of its installed capacity. While somewhat arbitrary, this
threshold is chosen based on the start-up program of the most recent nuclear unit, Flamanville 3, whose last
testing plateau was 80% of installed capacity (see Figure 18 of Commission de régulation de l’énergie (2025)).
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denote by t. In what follows, time will be measured as “full-load hours” (cumulative output

divided by installed capacity), but similar results are obtained using clock hours. Third,

we perfectly observe both emergency events and fuel cycle ends. Finally, we observe our

explanatory variable of interest (load-following) at every point in time for every unit.

Denote with T the date at which the first emergency event occurs for a given unit.

Survival models treat T as a random variable with cdf F (.) and pdf f(.). However, instead

of studying these latter functions, survival models focus attention on survival and hazard

functions, which represent equivalent alternative ways of summarizing the distribution of T .

The survival function S(.) is defined as:

S(t) ≡ Pr(T ≥ t) = 1− F (t) (5)

It represents the probability that the unit will “survive”, that is, will not experience an

emergency event, at least until time t. The hazard function h(.) is defined as:

h(t) ≡ f(t)

S(t)
=

f(t)

1− F (t)
(6)

Loosely speaking, it captures the instantaneous rate of failure. More precisely, the probability

of experiencing an emergency event between t and t+ dt (conditional on having survived

until time t) is given by h(t)dt.

The Cox proportional hazards model assumes that the hazard function hi(.) of unit i

may be parametrized as:

hi(t, θ) ≡ exp(θTxi(t))h0(t) (7)

where θ is a vector of parameters to be estimated, xi(t) is a vector of (possibly time-varying)

explanatory variables, and h0(t) is an unspecified baseline hazard function. An appealing

feature of this model is that θ can be consistently (although not efficiently) estimated by

maximizing the following partial likelihood function (see Cox and Oakes (1984) p.117):

L1(θ) ≡ Πn
i=1

exp(θTxi(τi))∑
l∈R(τi)

exp(θTxl(τi))
(8)

where i indexes all observed dates τi of emergency events, and R(τi) denotes the “risk set”
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at τi, that is, all observations for which an emergency event either occurs at a later date or

does not happen before the end of the fuel cycle (censoring). The underlying intuition for

this partial maximum likelihood approach is that, since h0(t) is shared across all units, most

of the identification power for θ comes from “which” unit experiences an event (conditionally

on an event occurring) rather than “when” the event occurs. From this perspective, at

each date τi, a survival model needs to be able to predict which individuals among the set

R(τi) of remaining individuals will experience an emergency event. Equation (8) precisely

corresponds to the likelihood function of a logit model applied to this problem.

(1) (2) (3) (4)

Full-load hours of lost energy 0.0018 0.0020

(0.00073) (0.00078)

# load following events 0.009 0.010

(0.0033) (0.0035)

vintage CP1 -0.3 -0.4

(0.25) (0.25)

vintage CP2 -0.5 -0.5

(0.28) (0.28)

vintage P4 0.0 0.0

(0.287) (0.288)

vintage P’4 -0.4 -0.4

(0.28) (0.28)

vintage N4 -0.6 -0.6

(0.37) (0.37)

Table 2: Estimated impact of cumulative load-following on the hazard rate.

Table 2 shows the estimation results under four different specifications,37 which measure

cumulative load-following either as full-load hours of lost energy (specifications (1) and (2))

or as the count of load-following events to date (specifications (3) and (4)). In addition,

specifications (2) and (4) include dummy variables for the vintage of the units which are, from

oldest to newest, CP0 (used as the reference), CP1, CP2, P4, P’4 and N4 (see Figure A.23).

Across all specifications, we find that one additional load-following event increases, on

average, the hazard rates by about 1%. While this effect is fairly small for a single event,

it is worth remembering that we detect 11,000+ load following events over 2015–2024, and

that dozens of load-following events may be performed during a single fuel cycle.

To put this number into perspective using back-of-the-envelope calculations, note that, as

a baseline, we observe at least one emergency event for about 60% of fuel cycles. Therefore,

37We estimate proportional hazards models using the R package survival (Therneau, 2024).
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when the hazard rate increases by 0.002 as a result of 1 additional full-load hour of load-

following, the increase in the probability to experience one additional emergency outage is

(roughly) 0.002× 40%. Because the observed median (mean) number of full-load hours of

lost energy during such events is 60 hours (165 hours), this indirect effect may amount to

at least 5% to 15% of the direct effect in terms of capacity factor loss. This relative effect

represents, however, a lower bound. First, it does not account for the possibility of repeated

events. Second, in contrast to load-following, which occurs at low spot prices, forced outages

are more random, and thus happen at higher average prices.

6 Limits to Load Following

While technically possible at a seemingly non-prohibitive opportunity cost, nuclear load-

following is limited, however, by the operational constraints described in Section 2. This

Section explores how wind and solar interact with such operating constraints.

6.1 Nominal and Dynamic Minimum Output Constraints

Inferring binding MOC constraints

Although we observe unit-level nominal MOCs (static values) and dynamic MOCs (time

series for June 2021-2024), we do not directly observe whether the constraints are actually

binding at any given point in time. Indeed, minimum output constraints are instantaneous

power constraints. In contrast, our data consist of hourly energy output, that is, average

power over the course of one hour. As a result, the MOC may bind within a given hour even

though the average power during this hour is higher than this MOC.

In order to infer whether a given MOC was (likely) binding within a given hour, we

proceed as follows. First, because we are interested in operating constraints that bind in the

context of normal operations, we focus attention on non-outage hours. In addition, to avoid

picking up hours when the unit enters the minimum output level region as it is ramping

down/up before/after an outage, we exclude from the sample the set of contiguous hours

before/after of an outage where output remains below 85% of nominal capacity.

Restricting attention to such hours (when a unit is experiencing “normal” operations), we
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Figure 7: Illustration of the labeling (non-outage) of hours as “minimum output constrained”,
either due to the nominal MOC (red) or a dynamic MOC (orange).

Note: The bottom red horizontal line represents the nominal MOC and the dashed red horizontal
line this minimum output level plus the maximum capacity reserved for ancillary services. The
nominal MOC is assumed to bind in a given hour if hourly output is within a buffer of 5% of nominal
capacity around those two lines. Similarly, the dynamic MOC is assumed to bind if observed hourly
output is within 5% of nominal capacity around this value.

define the nominal MOC region as a buffer (with a width equal to 5% of the nominal capacity)

around the nominal MOC and the nominal MOC plus the maximum capacity committed

to ancillary services (2 to 5% of nominal capacity depending on the unit). Similarly, for

dynamic MOCs, we consider that the minimum output constraint is binding within a given

hour whenever the observed hourly output is within a buffer of 5% of nominal capacity

around the other MOC in that hour. Figure 7 illustrates this imputation.

Occurrence of MOC constraints

In order to build intuition about whether and how intermittent renewables may interact

with MOC constraints, we start with an exploration of the circumstances under which these

constraints are observed to bind.

First, Figure 8 restricts the sample to unit-hour observations during which a unit is

running (i.e., not outaged) and plots, for each month in 2015–2024, the fraction of observations

for which each type of MOC is inferred to bind. We observe binding nominal MOCs to be

relatively rare (about 1% of observations) and volatile events. In particular, the occurrence

of binding nominal MOCs peaked during the Covid-19 lock down (spring 2020), a period

when gross electricity consumption decreased sharply (Buechler et al., 2022). Similarly, the
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Figure 8: Fraction of hours in each month during which the nominal MOC (resp. dynamic
MOC) was binding (conditionally on the unit being online and not outaged).

years 2022 to 2024, during which consumption was lower than usual (due to energy savings

and mild winters) and the installed capacity of renewables increased significantly, exhibits a

sharp increasing trend in the occurrence of nominal MOCs. In contrast, dynamic MOCs are

found to bind very frequently (over 50% of the time) with a relatively flat time trend.

Figure 9: Histogram of the hours of the day when the minimum output constraints (either
nominal or dynamic) are inferred to bind.

Next, Figure 9 shows the hours of the day during which either type of MOC most

frequently binds. For nominal MOCs, the obtained distribution exhibits two modes: one

during the night (2-6 am), when gross demand is low and wind generation can be high, and
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one during the afternoon (2-5 pm), when solar generation is high.38 Figure A.18 further

reveals that the relative magnitude of these modes has evolved over time, with a sharp

increase in 2024, especially for the afternoon mode. In contrast, the occurrence of binding

dynamic MOCs is distributed almost uniformly across hours of the day.

Figure 10: Occurrences of minimum output constraints (unit-hour observations) as a function
of the position of the hour within the fuel cycle of the unit.

Finally, Figure 10 shows the observed frequency of nominal and dynamic MOCs as a

function of the position of the hour within the fuel cycle of the unit. We observe that

virtually all hours during which the nominal MOC binds take place during the first two

thirds of the fuel cycle. Indeed, because of the physics and chemistry of nuclear reactors,

French nuclear units can no longer operate very flexibly when they are reaching the end of a

fuel cycle (OECD, 2021; Lynch et al., 2022). Consistently, dynamic MOCs bind relatively

more frequently at the very beginning and during the last third of the fuel cycle, suggesting

that they frequently arise because of fuel management constraints.

Several takeaways emerge from the previous descriptive graphs. First, despite being very

flexible at the fleet level, nuclear units very frequently face minimum output constraints,

especially dynamic MOCs. Second, the frequency of occurrence of these latter constraints

does not exhibit a significant time trend, seasonality or intraday pattern. Instead, dynamic

MOCs seem to relate, at least to a significant extent, to fuel management constraints. Third,

the frequency of occurrence of nominal MOCs shows, in contrast, a strong intraday pattern,

38Figure A.17 shows the average aggregate generation of each technology for each hour of the day.
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as well as monthly spikes, that suggest a strong sensitivity to residual demand, and thus

wind and solar generation. In what follows, we quantitatively explore this latter relationship.

6.2 Renewables and Minimum Output Constraints

To assess the relationship between intermittent renewables and binding MOCs, we replace in

Equation (1) the dependent variable with the number of units for which a minimum output

constraint is inferred to bind in a given hour. Table 3 reports the obtained results. We

also include one additional specification where the output from renewables is split into solar

generation on the one hand, and wind generation on the other hand.

Dependent variable: # of constrained units in hour h

Nominal MOC (2015-2024) Dynamic MOC (Jun 2021-2024) Either MOC (Jun 2021-2024)

(1) (2) (3) (4) (5) (6) (6) (7) (8)

RESh (GWh) 0.081 0.30 -0.14 0.00 -0.03 0.34
(0.004) (0.0078) (0.023) (0.0172) (0.023) (0.023)

RDh (GWh) -0.026 -0.28 -0.28 0.44 0.35 0.34 0.40 0.02 0.01
(0.0014) (0.0071) (0.0072) (0.013) (0.019) (0.018) (0.014) (0.026) (0.024)

Solarh (GWh) 0.31 0.06 0.41
(0.0082) (0.017) (0.022)

Windh (GWh) 0.27 -0.32 0.00
(0.0076) (0.029) (0.034)

Day-of-sample FE N Y Y N Y Y N Y Y

Num.Obs. 87,662 87,662 87,662 31,437 31,437 31,437 31,437 31,437 31,437
R2 0.108 0.656 0.658 0.358 0.838 0.845 0.321 0.822 0.830

Table 3: Relationship between wind and solar output and the occurrence of minimum output
constraints. Robust standard errors are clustered by day-of-sample.

The obtained results are consistent with the previous stylized facts. First, when controlling

for the level of residual demand (except for wind and solar) and day-of-sample fixed effects, a

higher generation from wind and solar in a given hour is associated with more units reaching

their nominal MOC during this hour. On average in a given hour, 1 additional nuclear

unit is reaching its nominal MOC for every 3.3 GWh of additional wind and solar output.

Estimating separate coefficients for wind and solar yields similar estimates. In contrast,

the occurrence of dynamic MOCs is not associated with intraday variations in intermittent

renewable generation. If anything, wind generation seems to be associated with a decrease in

the occurrence of dynamic MOCs, perhaps when some steady minimum level of generation

is needed locally for grid stability reasons.
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6.3 Grid Location

We further explore the relationship between intermittent renewables and binding nominal

MOCs locationally. While Table 3 reveals a strong relationship between the two variables,

wind and solar power plants are not spread uniformly across space. In this paragraph, we

thus explore whether spatial considerations may have a measurable impact on which nuclear

units are ramped down when wind and solar generation is high.

Consider a given renewable power plant that produces 1 MWh of electricity. The “closer”

this power plant is to a nuclear unit, the more substitutable this MWh may be to a MWh

generated by the nuclear unit. Ideally, the proximity between the nuclear unit and the

renewable facility should be measured by their “electrical distance”, that is, by modeling

power flows in a way that accounts for the topology of the power grid and Kirchhoff laws.

This exercise, however, requires very detailed information about the power system at every

point in time. Such data is unfortunately not publicly available.

Instead, we compute an “exposure” metric that may be derived from publicly available

data (see Appendix B for more detail). Specifically, we rely on spatial rather than electrical

proximity. Consider a given date t and a given nuclear unit n. Let i ∈ It,τ index all the power

plants of technology τ ∈ {wind, solar, hydro, thermal} that are in service at date t, and

denote with Ki the installed capacity of unit i. We denote with d(i, n) the as-the-crow-flies

distance between unit i and nuclear unit n. We then define the “exposure” Xn,t,τ of nuclear

unit n to technology τ at date t as:

Xn,t,τ ≡
∑
i∈It,τ

(
max(d(i, n), d0)

d0
)−γKi (9)

where d0 and γ are (positive) tuning parameters. The parameter d0 plays two roles. First, it

defines a buffer around the nuclear unit, to avoid giving an infinite weight to units located in

the same municipality. In practice, nuclear power plants tend to be isolated (the 1% quantile

of d(i, n) is 30 km or more for all installations), so that the exact size of this buffer has

little influence on the results. Second, it defines the unit for distances. However, because

we later rely on relative exposures (see Equation (10)), this dimension plays no role in our

results. In what follows, we therefore simply set d0 = 1 km. The parameter γ ∈ (0, 1)
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controls the speed of decay. Specifically, if an installation is located twice further away from

a given nuclear plant than another installation, its weight will be lower by a factor 2−γ . As a

illustration, the obtained relative weights for γ ∈ {0.25, 0.5, 0.75} are {0.84, 0.71, 0.59}. We

use γ = 0.5 in what follows, but similar results are obtained for γ = 0.25 and γ = 0.75 (see

below). Figure B.26 shows the obtained “exposure” metric (in MW) to wind and solar for

each nuclear plant. We observe a significant amount of both temporal and cross-sectional

variation. Quite intuitively, nuclear plants located in the Southern part of the country are

most exposed to solar, those in the Northern part most exposed to wind and those in the

center exposed to both wind and solar.39

For wind and solar, we then compute the “share” Wτ,h,n (in GWh) of the aggregate

national output Sτ,h of technology τ in hour h that is “assigned” to unit n as follows. First,

we retrieve, for hour h, the set M of units that are not experiencing an outage. Second, we

use the vector of exposures as a sharing key for Sτ,h and define:

Wτ,h,n ≡ Xτ,h,n∑
m∈M Xτ,h,m

Sτ,h (10)

Our empirical strategy is then to estimate, on the sample of non-outaged unit-hour

observations, linear probability models of the form:40

Yh,n = α+βsolar
1 Solarh+βwind

1 Windh+βsolar
2 Wsolar,h,n+βwind

2 Wwind,h,n+ηRDh+δh∈D+λn+ϵh,n

(11)

where Yh,n is a dummy variable taking the value 1 if the nominal minimum output constraint

is assessed to be binding in hour h for unit n, λn denotes unit fixed effects, and δh∈D refers

to day-of-sample fixed effects.

The rationale behind Equation 11 is to nest the specification whose results are reported

in Table 3. Specifically, if we remove the terms Wτ,h,n from Equation 11, we obtain the

same specification as before, except that it is estimated on an unbalanced panel of unit-hour

observations, rather than on a time series that aggregates the cross-sectional dimension.

39Note that, for this spatial analysis, “wind” only refers to on-shore installations. Indeed, as of 2025,
France only hosts 1.5 GW of off-shore wind (vs. 22.5 GW of on shore wind), and the corresponding
plants were commissioned during the very end of our sample period (the above country-level analysis does,
however, include off-shore wind output in aggregate wind generation). Adding off-shore wind as an additional
technology does not alter the obtained results.

40We also estimated logit models and obtained marginal effects of similar magnitudes. We therefore report
the results of linear probability models to simplify the interpretation of results.
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Adding the terms Wτ,h,n then asks the question: controlling for aggregate residual demand

and renewable output, does the “exposure” of a nuclear unit to a given renewable technology

nonetheless still positively correlates with the occurrence of binding nominal MOCs?

Dependent Variable: Is nominal MOC binding? (γ = 0.5)
(1) (2) (3) (4) (5)

RESh (GWh) 0.0078 0.0077
(6.4e-05) (0.00012)

RDh (GWh) -0.00707 -0.00707 -0.00716 -0.00715 -0.00730
(5.5e-05) (5.5e-05) (5.6e-05) (5.6e-05) (5.7e-05)

WRES,h,n (GWh) 0.004
(0.0038)

Solarh (GWh) 0.0082 0.0080 0.0081
(0.00007) (0.00015) (0.00015)

Windh (GWh) 0.0069 0.0071 0.0069
(6.8e-05) (0.00017) (0.00017)

Wsolar,h,n (GWh) 0.008 0.011
(0.0048) (0.0049)

Wwind,h,n (GWh) -0.006 0.005
(0.0058) (0.0059)

Xhydro,h,n -0.42
(0.036)

Xtherm,h,n -1.0
(0.09)

Num.Obs. 3,370,555 3,370,555 3,370,555 3,370,555 3,370,555
R2 0.064 0.064 0.064 0.064 0.064

Table 4: Obtained results when estimating Equation (11). Robust standard errors (HC1)
clustered by unit and day-of-sample are reported in parenthesis. Exposure metrics are
computed using γ = 0.5.

Importantly, because residual demand includes net exports, this approach allows to

control (at least in parts) for any “exposure” to foreign generation units (whose location

is not observed). Table 4 reports the obtained estimation results. The first and third

columns correspond to the counterpart of the results shown in Table 3: one additional

GWh of renewable output increases the probability that a unit available to ramp down

reaches its nominal MOC by 0.007 to 0.008. Because there are on average 38 such units

in a given hour, this estimate closely matches the previous estimate from aggregated data

(0.008× 38 = 0.3), a mechanical result. Adding the combined exposure to renewable output

(WRES,h,n ≡ Wsolar,h,n +Wwind,h,n) as a co-variate (specification (2)) yields a statistically

insignificant coefficient. However, when exposures to wind and solar enter separately, a

statistically significant relationship between exposure to solar generation and binding nominal

MOCs is found. In contrast, no robust effect is estimated for wind, and exposure to hydro

and thermal technologies (measured with Xτ,h,n for simplicity) is, quite intuitively, negatively

31



associated to binding nominal MOCs. Tables A.9 and A.10 in the Appendix report the

obtained results for alternative values of the parameter γ (0.25 and 0.75 respectively).

Consistently with the hypothesis that solar generation may induce local grid constraints, a

larger coefficient for Wsolar,h,n is estimated when closer solar units are given a higher weight

(γ = 0.75) than when they are given a lower weight (γ = 0.25).

Overall, our analysis supports the hypothesis that the increasing penetration of solar

generation may induce grid constraints that further limit the ability of the nuclear fleet to

accommodate renewable generation. One possible explanation for the absence of a similar

result for wind is that, in contrast to solar generation, which exhibits a very high degree

of contemporaneous correlation (Wolak, 2016), wind generation is more diversified across

locations (see Figure A.17). Therefore, our exposure metric Wwind,h,n for wind may be less

precise (i.e., less correlated with actual power flows) than our exposure metric for solar.

6.4 Remaining Flexibility and Spot Prices

In 2024, France experienced a sharp increase in the occurrence of non-positive prices

(Figure 4), a trend that is persisting in 2025. As discussed in Section 2, an exhausted ability

to perform nuclear load-following combined with low residual demand levels may rationalize

such episodes. In this paragraph, we empirically explore this possibility.

More precisely, we note that, at any given point in time, a given unit must be in one of

three possible states. First, the unit may be in an “outage” state (planned/forced outages,

refueling). In such situations, it cannot provide any downward flexibility. Second, the

unit may be producing at its minimum output level, either nominal or dynamic. Similarly,

such units cannot decrease their output further. Third, the unit may be running above its

minimum output constraint. We denote with Fh (for “flexible”) the set of units that fall

within this latter category in hour h.

We then denote with RFh the remaining (downward) flexibility of the nuclear fleet in

hour h, defined as:

RFh ≡
∑
n∈Fh

(Pn,h −MOCn,h) (12)

where Pn,h is the observed output of unit n during hour h, and MOCn,h is the minimum

output constraint of this unit for this hour. Figure A.19 shows the evolution of the (monthly)
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distribution of RFh between June 2021 and December 2024. Although its median value does

not exhibit any obvious pattern, the lower tail of the distribution (first percentile and below)

has been significantly shifting to the left.

Figure 11: Binscatter plot of hourly day-ahead prices against remaining nuclear flexibility
(drawn with the R package binsreg by Cattaneo et al. (2024)). The sample is restricted to
hours in 2024 with a remaining flexibility lower than 10 GWh.

Figure 11 shows a bin-scatter plot, for the year 2024, of the remaining flexibility RFh

against hourly day-ahead prices, censoring the sample to hours with 10 GWh or less of

remaining flexibility. We find that hours with non-positive prices typically correspond to

situations where the short-run flexibility of the nuclear fleet is exhausted.

Overall, this observation suggests that, since 2024, the French power system has en-

countered novel operating conditions where nuclear load-following is reaching its limits

for a non-negligible fraction of hours. This situation results in more frequent episodes of

non-positive prices, as well as a growing reliance on renewable curtailments (RTE, 2025).

Should this trend persist, it may end up compromising the profitability of both nuclear

and intermittent renewables, and thus their ability to jointly provide reliable low-carbon

electricity supply.
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7 External Validity in Space and Time

Arguably, France may represent an optimistic case study for studying the ability of nuclear

power to perform load-following. Indeed, the French nuclear fleet is operated by a single

operator who has, given the very high share of nuclear in the electricity mix, decades of

experience with load-following operations (Commission de régulation de l’énergie, 2025). In

particular, the design of reactors was adjusted early on to improve their load-following abilities

(Bruynooghe et al., 2010). However, all modern reactors supposedly now share this ability.

For example, prior to the nuclear phase out, load-following was also performed in Germany

(Lokhov, 2011; Grünwald and Caviezel, 2017) and the European Utility Requirements specify

that a “nuclear unit should be able to go through the following number of load variations:

2 per day, 5 per week and 200 per year.”

Figures A.20–A.22 in the Appendix explore how often these thresholds are reached in

practice. At a daily time scale, at most 4% of unit-day observations in a month exhibit

2+ load-following events. At the weekly time scale, although the number of unit-week

observations with 5+ load-following events has increased sharply in recent years, they still

represent only about 4% of unit-week observations in 2024. Finally, none of the unit is

observed to perform more than 200 load-following events per year.41

Overall, the external validity of our findings to other jurisdictions rather hinges on

regulatory and institutional feasibility. For example, the United States has explicit regulations

restricting the use of nuclear load-following (Lokhov, 2011). Given the small but positive

association between load-following and emergency forced outages, concerns about nuclear

safety seem likely to affect the political feasibility of lifting up such regulations.

Looking forward, the evidence that the nuclear fleet has exhausted its load-following

potential for a non-negligible number of hours in 2024 suggests that, while nuclear has the

ability to operate quite flexibly, additional flexible assets are likely to be required once

intermittent renewables reach very high penetration levels. In a first-best environment,

the increasing occurrence of non-positive prices should attract investments in such assets

(pumped hydro, batteries, demand response, etc.). Whether this prediction will materialize in

41Besides load-following, “load variations” may also refer to the provision of ancillary services. However,
such provision is increasingly coming from other flexible assets such as batteries.
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practice is an open question given the severe market failures inherent to European electricity

markets (Graf, 2025). For example, the installed capacity of battery storage, while growing,

remains relatively small in France (1.1 GW as of 31 December 2024). Similarly, French retail

rates remain heavily regulated (Astier, 2025) and generally fail to pass-through episodes of

non-positive prices to end-consumers.

8 Conclusion

This paper studies empirically the behavior of a low-carbon electricity system relying on high

amounts of both renewables and nuclear power. We focus on the case of France, a country

whose generation fleet includes, as of 31 December 2024, 63 GW of nuclear capacity and

about 50 GW of cumulated wind and solar capacity.

We first explore how the French nuclear fleet adjusts its operations when wind and solar

generation is high. We find that, in contrast to widely held beliefs, nuclear units are in

practice operated very flexibly: an additional 1 MWh of domestic wind and solar generation

is on average associated to a 0.6 MWh decrease in nuclear output. This substitution is made

possible by so-called “load-following” operations, that is, short-duration decreases in the

output of a handful of units. We next seek to assess the potential economic, environmental

and safety costs associated with load-following. Although the costs we are able to estimate do

not stand out as prohibitive, they are nonetheless non-negligible. In particular, load-following

is found to slightly but significantly increase the hazard rate of automatic shutdowns and

manual emergency interventions.

Finally, we study the main operational constraints limiting the technical feasibility of load-

following, namely minimum output constraints (MOCs). Despite the significant flexibility of

nuclear operations, we find that MOCs, especially dynamic MOCs raised by fuel management

constraints and, possibly, grid congestion, are frequently binding, limiting load-following

potential. In addition, units that are available for load-following are increasingly constrained

by their nominal MOC as wind and solar generation increases.

Overall, the interaction between high renewable generation and non-convexities in the

supply function of nuclear units (MOCs) can ultimately result in non-positive spot prices

and renewable curtailments, exacerbating the substitution between nuclear and renewables.
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Consistently, in 2024, the large increase in the occurrence of non-positive prices is found to

be strongly associated with situations where the remaining downward short-run flexibility of

the nuclear fleet was exhausted.
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Appendices

A Supplementary Figures and Tables

A.1 Additional Figures

Figure A.12: Minimum output level (expressed as a percentage of nominal capacity) of
French nuclear units (source: EDF). The red horizontal line corresponds to 20% of nominal
capacity.

Figure A.13: Location of the 19 nuclear power plants. The numbers in the circles indicate
the number of units that compose each power plant. The two units of Fessenheim (in the
North East) have been permanently shut down in 2020 and are no longer in operations. The
third unit of Flamanville was commissioned in 2024 has not started commercial operations
in that year. It is therefore not included in our dataset.
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Figure A.14: Percentage of hours in each month when nuclear would be marginal in an
hypothetical situation where all the nuclear units would be available all the time.

Note: to draw this Figure, we compute, for each hour, the “residual demand” defined as gross
electricity consumption (including water pumping) plus (net) exports minus renewable generation
(wind, solar, hydro and biomass). In other words, the residual demand represents the remaining
electricity load that must be supplied by “dispatchable” assets, such as nuclear or fossil-fueled power
plants. For each hour, we then compare the level of residual demand to installed nuclear capacity. If
the latter exceeds the former, the nuclear fleet is sufficient to balance supply and demand under the
hypothetical scenarios where all nuclear units would be available. The Figure plots, for each month
in our sample, the percentage of hours where such a “theoretical marginality” of nuclear occurs. We
observe that, over the past three years, the increase in wind and solar (combined with the decrease
in gross consumption and changes in imports/exports patterns) has been sufficient to make nuclear
“theoretically marginal” in all hours.

Figure A.15: Number of detected load-following events per year (2015-2024).
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Figure A.16: Computed (mechanical) decrease in the capacity factor of nuclear units (“direct
impact”) as a function of the number of full-load hours of lost energy.

Figure A.17: Average hourly aggregate generation (GWh) from wind and solar for each year
in our sample period.

Figure A.18: Histograms (one for each year in the sample) of the hours of the day when the
nominal MOC is inferred to bind.
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Figure A.19: Summary statistics of the monthly distributions of hourly remaining flexibility:
minimum, quantile 0.001, first percentile and median.

Figure A.20: Number of unit-day observations in each month with 2 or more load-following
events.

Figure A.21: Number of unit-week observations in each year with 5 or more load-following
events.
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Figure A.22: Distribution (boxplots) of the number of load-following events performed by
each unit in a given year.

Figure A.23: Different vintages of the French nuclear fleet (source: Wikipedia).
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A.2 Additional Tables

Log(Full-load hours Log(duration (weeks) Log(1 + # hours Log(1 + # hours

of output) of refuel. outage) of planned outages) of forced outages)

Log(1 + Full-load hours 0.025 0.05 0.28 0.25

of lost energy) (0.0042) (0.029) (0.055) (0.050)

Unit FE Y Y Y Y

Num.Obs. 367 360 367 367

R2 0.673 0.151 0.278 0.302

Table A.5: Estimation results from Equation (4), with variables expressed in logs. The unit
of observation is a fuel cycle.

Full-load hours Duration (weeks) # hours of # hours of

of output of refuel. outage planned outages planned outages

Full-load hours 0.0028 0.00 1.1 0.4

of lost energy (0.0005) (0.0092) (0.54) (0.15)

Unit FE Y Y Y Y

Num.Obs. 367 360 367 367

R2 0.682 0.207 0.227 0.230

Table A.6: Estimation results from Equation (4), with variables expressed in levels. The
unit of observation is a fuel cycle.

Log(cubic meters Log(cubic meters of Log(mean temperature Log(mean pH

of water intakes) evaporated water) of released water) of released water)

Log(1 + lost 0.000 0.02

energy in MWh) (0.00407) (0.023)

Log(1 + lost energy in 0.07 0.2

MWh per GWh produced) (0.018) (0.15)

Log(1 + plant 0.049 0.003

output in MWh) (0.0052) (0.0014)

plant FE Y Y Y Y

month-of-year FE Y Y Y Y

Num.Obs. 1284 1272 764 810

R2 0.960 0.841 0.762 0.585

Table A.7: Estimated associations between load-following and cooling water. Observations
are at the month-plant level, when available.
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Log(m3 of liquid Log(GBq of Log(tritium Log(kg of boron Log(boron

chemicals released) tritium) concentration (GBq/m3)) released) concentration (kg/m3))

Log(1 + lost -0.01 0.04 0.09 -0.01 0.01

energy in MWh) (0.0084) (0.0081) (0.019) (0.0078) (0.0116)

Log(1 + plant 0.06 0.21 0.06

output in MWh) (0.011) (0.024) (0.027)

plant FE Y Y Y Y Y

month-of-year FE Y Y Y Y Y

Num.Obs. 1,288 1,273 1,273 1,259 1,259

R2 0.560 0.518 0.351 0.400 0.188

Table A.8: Estimated associations between load-following and liquid waste. Observations
are at the month-plant level, when available.

Dependent Variable: Is nominal MOC binding? (γ = 0.25)
(1) (2) (3) (4) (5)

RESh (GWh) 0.0085 0.0079
(6.8e-05) (0.00015)

RDh (GWh) -0.00765 -0.00762 -0.00777 -0.00777 -0.0080
(5.8e-05) (5.8e-05) (5.9e-05) (0.00006) (6.2e-05)

WRES,h,n (GWh) 0.018
(0.0045)

Solarh (GWh) 0.0090 0.0088 0.0088
(7.4e-05) (0.00017) (0.00017)

Windh (GWh) 0.0074 0.0074 0.0068
(7.1e-05) (0.00023) (0.00023)

Wsolar,h,n (GWh) 0.006 0.014
(0.0051) (0.0051)

Wwind,h,n (GWh) 0.00 0.03
(0.0080) (0.0083)

Xhydro,h,n -0.7
(0.062)

Xtherm,h,n -0.9
(0.11)

Num.Obs. 3,188,823 3,188,823 3,188,823 3,188,823 3,188,823
R2 0.070 0.070 0.071 0.071 0.071

Table A.9: Obtained results when estimating Equation (11). Robust standard errors (HC1)
clustered by unit and day-of-sample are reported in parenthesis. Exposure metrics are
computed using γ = 0.25.
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Dependent Variable: Is nominal MOC binding? (γ = 0.75)
(1) (2) (3) (4) (5)

RESh (GWh) 0.0085 0.0084
(6.8e-05) (0.0001)

RDh (GWh) -0.00765 -0.00764 -0.00777 -0.00776 -0.00791
(5.8e-05) (5.8e-05) (5.9e-05) (5.9e-05) (0.00006)

WRES,h,n (GWh) 0.003
(0.0026)

Solarh (GWh) 0.0090 0.0085 0.0085
(7.4e-05) (0.00013) (0.00013)

Windh (GWh) 0.0074 0.0076 0.0077
(7.1e-05) (0.00013) (0.00013)

Wsolar,h,n (GWh) 0.017 0.022
(0.0035) (0.0036)

Wwind,h,n (GWh) -0.009 -0.007
(0.0038) (0.0038)

Xhydro,h,n -0.47
(0.022)

Xtherm,h,n -0.70
(0.056)

Num.Obs. 3,188,823 3,188,823 3,188,823 3,188,823 3,188,823
R2 0.070 0.070 0.071 0.071 0.071

Table A.10: Obtained results when estimating Equation (11). Robust standard errors (HC1)
clustered by unit and day-of-sample are reported in parenthesis. Exposure metrics are
computed using γ = 0.75.
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B Exposure to Other Generation Technologies

To compute our “exposure” metric, we track the evolution of municipality-level installed

capacities of each generation technology other than nuclear power.

We rely on a yearly public inventory of power plants published by the French government

since 2017. This inventory lists all electricity generation units as of 31 Deccember42 and

notably provides, for each unit, (i) its installed capacity, (ii) its technology (hydro, non-

renewable thermal, nuclear, renewable thermal, solar, wind), (iii) the municipality where it

is located,43 and (iv) its commissioning date. In particular, knowing the installed capacity,

municipality and commissioning date of each unit allows us to compute municipality-level

time series of installed capacity, broken down by technology.44

Figure B.24: Locations of non-renewable thermal, hydro, wind and photovoltaic capacities as
of 31 December 2024. Nuclear plants (operational as of 31 December 2024) are represented
with black circles.

We observe that the installed capacity of hydropower has been largely constant, with

42For example, the inventory as of 31 December 2024 is available at https://www.data.gouv.fr/fr/

datasets/registre-national-des-installations-de-production-et-de-stockage-delectricite-au-

31-12-2024-1/, last accessed on 9 April 2025.
43Mainland France is divided into 30,000+ such municipalities, which therefore represent a very granular

spatial unit.
44For privacy reasons, however, small PV installations (lower than 36 kW of capacity) are aggregated

at the municipality or departement level (see Astier et al. (2023) for more detail). Because they represent
a small fraction of total installed solar capacity (less than 5 GW out of 24 GW as of 31 December 2024),
we aggregate for simplicity small PV installations at the departement level (mainland France has 94 such
departements). We interpolate these estimates linearly to proxy for the daily departement-level time series
of these installations.
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nonetheless a mildly increasing trend driven by the commissioning of small-scale run-of-the-

river units. Fossil-fueled thermal capacity also followed an almost flat trajectory to reach

about 18 GW in 2024, the closure of coal power plants being more than compensated by

the opening of a few gas-fired power plants. Finally, the installed capacities of wind and

solar have been growing steadily. Installed wind capacity increased from 6.7 GW as of

31 December 2011 to about 24 GW as of 31 December 2024. Solar photovoltaic capacity

increased from about 2.5 GW to 24 GW over the same time window.

Figure B.24 shows where the installed capacities of the four main non-nuclear technologies

(non-renewable thermal, hydro, wind and photovoltaic) are located as of 31 December 2024.

Importantly, the spatial distribution of power plants differs significantly across technologies.

Thermal power plants tend to be located close to the main cities, while hydro facilities locate

near the main mountain areas and along rivers. Wind power plants were predominantly

installed in the North. Although somewhat spread out across the whole territory, solar

installations have been more intensively deployed in the South. Overall, Figure B.24

illustrates that the different nuclear power plants are “exposed” differently to other generation

technologies, at least in a spatial sense.

From this data, we build a municipality-by-day-of-sample panel of the installed capacity

of each technology in each municipality. Because municipalities are small geographical units

in France (which has 30,000+ such municipalities), we consider units to be located at the

centroid of the municipality where they sit. We denote with d(i, n) the as-the-crow-flies

distance between unit i and nuclear unit n. Figure B.25 illustrates these notations in a

simple case where It,τ ≡ {1, 2, 3}.

K1

d(i = 1, n = 1)
K2

d(i = 2, n = 1)

K3

d(i = 3, n = 1)

Nuke unit 1

Figure B.25: Notations used in our construction of our “exposure” metric.
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We then define the “exposure” Xn,t,τ of nuclear unit n to technology τ at date t as:

Xn,t,τ ≡
∑
i∈It,τ

(
max(d(i, n), d0)

d0
)−γKi

where γ and d0 are (positive) tuning parameters. In our main specification, we set d0 = 1 km

and γ = 0.5.

Figure B.26: Obtained exposure metric (in MW) to solar (left panel) and wind (right panel)
for the 18 nuclear plants between 1 January 2015 and 31 December 2024 (d0 = 1 km and
γ = 0.5).

Figure B.26 shows the obtained “exposure” metric (in MW) to wind and solar for the

different nuclear plants. Note that, for simplicity, we restrict the sample to the balanced

panel of the 18 nuclear plants that were in operations during the whole period (i.e., we

exclude from this analysis the plant of Fessenheim, which closed in 2020).
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