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1. Introduction

Much of the empirical investigation of the interest rate term structure

has focused upon the "expectations theory" that relates the yield on long term

bonds to expected future short rates. This theory has frequently been tested

using regression tests of the slope of the yield curve (the "yield spread") or

forward rates.' In general, these tests reject the expectations theory citing

standard explanations that either (a) risk prernia are time-varying, or (b)

market forecasts are biased when viewed ex post.2 In this paper, we investigate

these explanations with two goals in mind.

Our first goal is to ask what these rejections must imply about the

behavior of bond returns in two polar cases. In the first case, we assume the

conventional paradigm that forecasts are always unbiased so that time-varying

risk premia must explain all of the rejections. Using the pattern of rejection

across regression tests and maturities together srith a unifying framework, we

back out a number of restrictions on the behavior of risk prernia including the

following:

(a) the variance of the risk premia increases with the maturity of the bond;

(b) this variance increases faster than the variance of the yield spreads

across maturities;

(c) the covariance of the forward premium with the current risk premium is

greater than the sum of covariances of the forward premium with all future

'For only a few examples, see Fama (1984), Shiller (1979), Mankiw (1986),
Shiller, Campbell, and Schoenholtz (1983). Fama and Bliss (1987) examine the

relationship using long-term forward rates. For a more extensive list of
references, see Campbell and Shiller (1989) or the surves by Melino (1986) and
Shiller (1987). In addition to the regression tests that are the focus of this
paper, Campbell and Shiller (1987) also calculate the yield spread that would

be implied by the expectations theory and find that it is highly correlated with

the actual yield spread.

2See Campbell and Shiller (1989), for example. As discussed below, forecast
errors may appear biased when observed ex post even though agents use information
efficiently and in this sense may be considered to have "rational expectations."
Therefore, we call these forecasts ex pose biased and not "irrational."
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risk premia over the maturity of the bond.

Any model of risk premia that assumes expectations are unbiased ex post must

incorporate these features.

On the other hand, recent research has shown that market participants may

make forecasts that appear biased when viewed ex post even though they are using

all information efficiently e.x ante. They may make these forecasts if they

believe discrete changes in the process of rates are possible, if they are

learning about a recent change in the process of rates, or if the nature of the

process is non-ergodic.3 In view of these results, we next examine the polar

opposite case to the previous one by supposing that risk premia are constant.

Under this assumption, we document the behavior of expectations necessary to

explain the pattern of rejections from the regression tests. We find that when

the yield curve is upward-sloping, the market on-average predicts a higher future

interest rate than occurs ex post. Furthermore, we find sufficient conditions

for forecast errors to explain all of the rejections. Generally speaking, we

would observe the pattern of rejections if current forecast errors have greater

covariation with current information than do future forecast errors.

Although we document these stylized facts under the two polar cases of

either time-varying risk premia with unbiased forecasts or constant risk premia

with ex post biased forecasts, actual returns may contain both time-varying risk

premia and biased forecasts. Nevertheless, much of the literature has assumed

the first case, This observation leads us to the second goal of our paper.

Namely, to ask: can we find any evidence against the presumption that time-

varying risk premia explain it all?

To ask this question, we test a condition that must necessarily hold when

3The impact of future discrete change on expectational errors was first
pointed out by Rogoff (1980), subsequently by Krasker (1980), and was recently
empirically investigated in interest rates by Lewis (1991). The effects of
learning on forecast errors after changes in policy are described in Lewis
(1989). Hodrick (1990) notes that non-ergodic processes may account for
expectational errors.
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time-varying risk premia are both solely responsible for rejecting the theory

and are stationary.' Intuitively, If ex post biased forecast errors are not

present in the sample, the unexplained component of excess bond returns would

be comprised of a white noise forecast error and a stationary time-varying risk

premium. In this case, the unexplained residual must necessarily be stationary.

On the other hand, if ox post biased forecast errors are present in the sample,

then the residual may include runs of serially correlated forecast errors. Since

interest rates are non-stationary, these runs within the sample may make the

excess bond returns appear non-stationary as well. This intuition forms the

basis for testing the null hypothesis that no ex post biased forecasts appear

in the sample. Surprisingly, this test Is rejected for short maturities up to

6 months, suggesting that time-varying risk premia do not provide the only source

of rejecting the expectations theory.

An interesting feature of our test is that it. may be applied more generally

than the specific focus of this paper. Our test uses very recent results in time

series analysis that allow inference about parameters from cointegrating

regressions.5 Similar tests may be useful in future research.

The structure of the paper is as follows. Section 2 develops the unifying

framework that allows for time-varying risk premia and evaluates existing

regression test results in the presence of these premia. Section 3 describes

how ex pose biased forecasts affect these results. A summary of what the

regression results imply about either time-varying risk prernia or expectational

errors is contained in Section 4. Section 5 examines whether risk premia can be

solely responsible for rejections of the expectations theory. Concluding remarks

follow.

'Standard models of time-varying risk premia imply that these are stationary

since they depend upon the time-series properties of the change in consumption.
See, for example, Campbell (1987) and Grossman and Shiller (1981).

5See Stock and Watson (1989) and Hansen and Phillips (1989)
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2. Regression tests and time-varying risk premia

2.1 A unifying framework

The "expectations theory" of the term structure of interest rates relates

the equilibrium yield of long bonds to the expected value of short rates over

the maturity of the bond. In order to evaluate how time-varying risk premia

would affect regression tests, we consider a unifying framework that incorporates

the expectations theory as a special case. For the case of pure discount bonds,

this relationship is:6

k-i
— (1/k) E ER'+I + (1/k) ek (1)

i —o

where Rk is the yield on a k-period bond purchased at time t, E denotes the

market's expectations conditional upon information available at time t, and 6k

is a time-varying risk premium on holding the k-period bond relative to rolling

over one period bonds. The expectations theory implies a special case of

equation (1) where the risk premium is a constant,

A slightly different form of the risk premia will also prove useful for

the investigation below. In particular, we will also define the one-period

holding premia:

— k Rk - (k-i) ERk-i+1 - (2)

where qSkt is the time-varying premium relative to the risk-free one-period rate

(R') on a risky position of holding a k-period bond for one period and then

selling the proceeds at the prevailing rate. Iterating (2) forward verifies that

— E E°+i, or that the risk premia on holding a long bond relative to

rolling over short bonds is equal to the expected value of the sum of holding

premia from today until the maturity period of the long bond.

6See Campbell and Shiller (1989), for example. In this paper, we will be
using data series for discount bonds rather than coupon bonds.
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2.2 Yield Spread Regressions

According to the expectations theory, the difference between the long k-

period bond and the short 1-period bond should be the markets forecast of the

change in the long bond. Therefore, tests of the expectations theory have

frequently used this yield spread as a regressor. These regression tests have

typically taken two forms. In the first, the yield spread predicts the one-

period change in the long bond:

(k-l) (R'+1 - Rk) — a0 + a1 (R - R') + u11 (3)

where under the expectations theory, a0 — - and a1 —

The second form of the yield spread regression relates the yield spread

to the ex post changes in the short rate over the maturity of the bond:

Z (1 - (i/k)) tR1+ — b0 + b1 (Rk - R1) + (4)
i—i

Here the expectations theory requires b0 — -(1/k) ek and b1 —

By contrast, when risk prernia vary over time, the generalized framework

in (1) implies that the coefficients a1 and b1 will be biased away from one.

In particular, the probability limits are:

plim a1 — 1 - [Cov(ctt, Rk - R1)/ Var(Rkt - R1fl (5)

and
k-2

plini b1 — 1 - (1/k)E [Cov()(i+j,Rk - Rlt)/Var(Rkt - R1fl . (6)

7Other studies with estimates of this regression include Campbell and
Shiller (1989), Shiller (1979), and Mankiw (1986).

8See, for example, Campbell and Shiller (1989).
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Thus, when the holding premia are positively correlated with the yield spread,

the coefficients in the yield spread regressions will be biased downwards.

The first and second columns of Table 1 report the coefficient estimates

of a1 and b1, respectively, for one-month through 12-month U.S. T-Bill rates.

These series come from the Center for Research in Security Prices for the end

of the month over the period of availability from June, 1964 to December, 1988

and are used throughout the empirical analysis below. As the table indicates,

the parameter estimates for a1 are negative and increase in absolute value with

maturity k. All of the coefficients are significantly less than the hypothesized

value of one and even become significantly negative as the maturity horizon

lengthens. Furthermore, this pattern continues with longer maturities up to 10

years, as described in Campbell and Shiller (1989). Therefore, this regression

test points to a strong rejection of the expectations theory.

By contrast, the estimates for b1 are positive, though less than one at

values near .4. Since the residuals contain k overlapping forecast errors under

the null hypothesis, the reported standard errors are corrected for a moving

average component of order k-l. Using these standard errors, the hypothesis that

the coefficients are equal to one are rejected in all cases. But for the longer

maturities investigated in Campbell and Shiller (1989), the point estimates

increase and become insignificantly different than one.

Clearly, these two regression tests suggest different results for the

expectations theory. In terms of the generalized framework in (1), however,

this rejection pattern tells us about the behavior of risk premia across

maturities. To see why, note first that the a1 coefficients less than zero imply

from (5):

Cov( - R') > Var(R - R') > 0,

and from (6) that,

k-2

(1/k) E [Cov('+1, Rk - R') ) > Var(Rkt - R') > 0.
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Taken together, the negative estimates for a1 and the positive estimates for b1

imply that Cov(, Rk - R') > (1/(k-l))E Cov(4t+, Rk - R'). In other

words, the covariance between the yield spread and the current k-period holding

premium is larger than the average of the covariances between the yield spread

and the expected future holding premia.

Such a pattern would likely occur if (a) the Cov(, R - R1) were to

increase with holding premia, j, and if (b) holding premia were stationary so

that the covariances between future prenlia and current yield spreads tend to fall

with the future forecast horizon. To consider the validity of (a), excess

holding returns for bills of maturity j were regressed on each yield spread, Rk

- R'. These excess returns are defined by rewriting (2) and substituting the

actual for expected t÷1 rate giving,

— j R - (j -1) R+1 - — - (j -1) (R'+1 - ER'+I)

Therefore, the coefficients in regressions of holding returns on yield spreads

provide the ratio of Cov(, Rk - R') to the variance of yield spread.

Table 2 reports the results itt these regressions. Each column provides

the regression coefficient for different excess returns on the sane yield spread.

In each case, the covariances of premia with the yield spread increase

systematically with the maturity of the premia, consistent with the relationship

described above. Furthermore, if risk premia are stationary, then the

covariances between the current yield spread and the future risk premia would

tend to fall with the forecast horizon.

More can be learned from the estimates of a1. As Fama (1984) has pointed

out, a finding that a1 is negative indicates that the variance of the risk
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premium is greater than the variance of the yield spread.9 However, as the

third column in Table 1 indicates, the variance of the yield spread also

increases with maturity. These results therefore imply that the variances of

the risk premla grow across maturities at a rate even faster than the variance

in yield spreads. Therefore, if time-varying risk premia are responsible for

the pattern of rejecting the expectations theory, any model of risk prernia must

explain why variances increase so dramatically across maturities.

2.3 Forward Rate Regressions

A second type of regression test involves the "forward rate" for a contract

to buy a bond in the future. Using (1) this rate is given by:

k-2
— k Rkt - (k-i) Rk_l — E R't+k_l + E E - 4,ki1 I

i—n

— E R1tjk_l + -

where is defined as the rate at time t to buy a one-period bond at t+k-l.

This rate equals the expected future, spot rate plus the difference in holding

premia between a k period bond and the k-i period bond over the maturity of the

bond. Hence, the second type of regression test uses as the regressor the

"forward premia", or the difference between the forward rate and the current spot

rate.

These forward rate regressions typically use two different left-hand side

variables: (a) the change in the long bond yield over a short horizon; and

(b) changes in the short rate over a long horizon. In particular, the first form

regresses the excess holding returns on the forward premia:

9To see this, redefine yk — (k-I) (EtRkl+1 - Rk). Then, using (2) and
(5), we have:

plirn (ar) — [(Var(Yk) + Cov(Yk, ))/(Var(Yk) + Var() + 2 Cov(Yk, )fl.

Then a1 < 0 implies (i) Cov(Yk, ) < 0, (ii) I Cov(Yk, ) I > Var(Yk), and (iii)
Var(4,k) >

I Cov(Yk, 4) I > Var(Y). Combining (i) and (iii) together with the
variance of the yield spread implies: Var(4) > Var(Rk - R1).
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hk+i — c0 + c1 (F'' - R') + e1+1 (7)

where, according to the expectations theory, c0 — and c1 — 0. The second form

regresses the ex post realizations of the future short rate on the forward

premia.1° In other words,

- R1 — d0 + d1 ( F' - R') + e2 (8)

where under the expectations theory, d0 — - e'1 and d1 — 1.

The generalized framework in (1) implies:

plim(c1) Cov(, F1 - R')/Var(F' - R') (9)

and

plim(d1) — 1 - Cov(e - - Rit)/Var(Fkt - R1) . (10)

In other words, c1 will differ from zero and d1 will differ from one if the risk

premia are correlated with the forward premia.

The first column of Table 3 reports the coefficient estimates for c1.

Except for the eight month bond, all of the coefficients are significantly

positive, thus rejecting the expectations hypothesis. The second column of Table

3 reports the estimated coefficients for d1. The standard errors are corrected

for the MA(k-1) process in the k period overlapping forecast error. As the

results indicate, all of the coefficients are significantly less than one.

Comparing the rows of Table 3 provides further information about the

behavior of implied risk premia. Here we see that the coefficient estimates for

c1 are always greater than their counterparts for d1. Furthermore, on maturities

greater than 3 months, c1 is also greater than 1 - d1. Comparing (9) and (10),

these estimates imply that, if time-varying risk premia are to blame for

10For example, Fama and Bliss (1987) find that the prediction of the forward
rate increases with the forecast horizon.
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rejecting the expectations theory,

Cov(, Fk_l. - R') > Cov(ek 9k1 Fk1 - R')

Recall that 8k are the sum of expected risk premia 'k over the maturity of the

bond. In other words, we would find this relationship if the difference across

risk premia of adjacent maturities have lower covariability with the forward

premium than does the level of the risk prenila.

In summary, if time-varying risk premia are solely responsible for

rejecting the expectations theory, the forward rate and yield spread regression

results place limits on the dynamics of the risk premia. Among the necessary

requirements implied by the regression results are:

(a) the variance of the risk prernia increase with maturity of the bond;

(b) this variance increases faster than the variance of the yield spreads;

(c) the covariance of the forward premium with the current risk premium is

greater than the sum of covariances of the forward premium with all future

risk premia over the maturity of the bond.

Any model of risk premia must therefore incorporate these features.

3. Regression Tests and Ex Post Biased Forecasts

Our interpretation of the regression results above assumes the forecast

errors are uncorrelated with current information. This would be true if there

were no actual or anticipated switches in the time series process of interest

rates. However, recent studies have shown that this assumption may be incorrect

if agents rationally anticipate future discrete changes in policy or if they are

rationally learning about past discrete changes.'1 Furthermore, studies based

upon survey data find that expectations may be on-average incorrect for

111n addition, they may appear biased if the transition process for policy
regimes is not ergodic. Hodrick (1990) cites non-ergodicity as a source of
anomalies in financial markets.



11

significant periods of time.2 Clearly, this explanation need not exclude the

presence of time-varying risk premia discussed above. But in order to focus

upon the potential effects of ex post biased forecasts in this section, we will

assume that risk premia are constant. Later, In Section 5, we will allow for

both time-varying risk premia and ex post biased forecasts simultaneously.

As described above, ex post biased forecasts may arise in small samples

even though market participants use information efficiently. These forecasts

may be illustrated with an example. Suppose the market believes that the policy

process generating interest rates may change by period t+l with probability, .

Therefore, the market's assessed forecast at time t of the rate at t÷1 is:

ER+1 — (1 - 1r) E°R+ + ,r, EAjR+i (11)

where E°, EA are the expectations operators conditional upon the current, and

alternative policy processes, respectively. But now suppose that ex post the

interest rate process continues to be driven by the current process •13 In

this case, the observed rates would be uncorrelated with the forecasts that were

conditioned upon the current process o. In other words,

E (Rk E° Rk i oII. - t. t+j/

where I is the set of all information available at time t. But the actual

market forecast error may be correlated with current information. The market's

error in forecasting when viewed ex post is the difference between the actual

realized rate and the forecast given in equation (11),

'2For example, see Friedman (1979,1980) and more recently Froot (1989).

13For the following analysis, this condition is more restrictive than we
need. As will be discussed below in Section 4, we require only that any switches
in the process occur infrequently within the sample. We use condition (12) only
to develop the example in this section.
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— - ERk+i — (Rk+j - E° Rk+j) + r(E°R+1 - EAtRt+I) . (13)

Although the first term is uncorrelated with current information, the second term

may depend upon current information when is not zero. As discussed in Lewis

(1989), a similar relationship arises if the market believes that a policy shift

may have recently taken place with probability w.

If expectations appear biased ex post, then the correlation between the

forecast errors and the yield spreads or forward premia will affect the point

estimates in the regression tests above. Then even if the risk premia were

constant, the limits of the regression coefficients in (4) and (5) would be:

plim a1 — 1 + (k- 1) [Cov('+1 , - Rlt),rVar(Rkj_Rlt) 1 (4'
and

plim b1 — 1 + E ((k-i)/k) [Cov( +ji+j,Rk - R1)/ Var(R-R1)). (5')

In this case, both of these sets of estimates in Table 1 indicate that the the

yield spread is negatively correlated with the ex post forecast errors. On

average, when the yield spread was predicting higher interest rates, interest

rates turned out to be lower than expected.

Before proceeding, we should note a caveat to the limits described in (4')

and (5'). If the sample contains ex post biased forecast errors for reasons

discussed above, we would expect this bias to disappear asymptotically.

Therefore, (4') and (5') are the limits if the current sample were representative

of the true asymptotic distribution. We will address this issue more carefully

in Section 5 below.

With this caveat, the conflicting evidence between the signs of the a1 and

b1 estimates imply that:

k-i

k(k-l) > E (k-i) [Cov(c1+11+ ,Rk - R1) /Cov( (kit t+1 Rk - R') 1
i—i
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Thus, even if the covariance between the yield spread and the forecast errors

were the same so that the ratio of covariances were unity, this relation would

hold since k(k-l) > E..(k-i) — (½) k(k-i). Thus, a sufficient condition to find

the rejection pattern is that:

I Cov(t+j_i,+j,Rk - R'L) I Cov('+i, - R1)

This condition seems plausible since the variance of the excess holding returns

increases with maturity as the last column of Table 2 shows.

With ex post biased forecasts and constant risk premia, the coefficient

in the forward preniia regressions given in (9) and (10) would instead be:

piim(c1) — - (k-i) Cov(1t+1 ,F' - R1)/Var(F1 - R') (9')

and

piim(d1) — 1 + Cov('tt+k_l - R1)fVar(F' - R') . (10')

The positive estimates for c1 in Table 3 imply that periods of higher forward

premia are also periods when people forecast interest rates higher than occur

ex post. As noted above, Table 3 also suggests that c1 > 1 - d1 for the

maturities 3 months and greater. But even if the covariances between the yield

spreads and the forecast errors were the same across maturities, we would tend

to find this result since for k > 3,

(k-i) > 1 > Cov('+..1 pk- - R')/ Cov(€+1 , - R')

In summary, if forecast errors within the sample period are correlated with the

yield spread and the forward premia, the conflicting pattern of coefficient

estimates found in the literature would arise under fairly weak conditions.
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4. Summary of Stylized Facts

To this point, we have discovered that empirical evidence in the literature

based upon regression tests places explicit restrictions upon the behavior of

bond returns. Using a unifying framework, we have documented what these results

must imply about either time-varying risk premia or expectational errors under

two polar cases.

Table 4 summarizes these regressions and their implications under each

extreme. Part A gives the results for regressions on the yield spreads. The

first column refers to the left-hand side variable in the regression, while the

second summarizes the point estimates found in Table 1. The third, fourth, and

fifth co]unlns list the Inip] I cd value of the coefficient under the "Expectations

Theory," "If Risk Premia Alone," and "If Forecast Errors Alone." Part in the
table lists these same relationships when the right-hand side variables are

forward premia. Together, the results indicate the implied behavior of risk

premia or expectational errors. Risk premia are capable of explaining the

pattern of rejection if they obey the necessary conditions listed in Table 4.

Generally speaking, expectational errors could explain this pattern if the

covarjance between short-term forecast errors and current information were less

than the covariance between long-term forecast errors and current information.

In reality, both time-varying risk premia and ex post biased market

forecasts could cause rejections of the expectations theory. However, since

these two effects are not separately identifiable, the typical approach has been

to assume that forecasts are ex post unbiased and treat all of the unexplained

component as time-varying risk premia. The rest of this paper will follow this

presumption and ask: can time-varying risk premia explain it all? We will

address this question by testing a condition that must necessarily hold when

time-varying risk premia are both solely responsible for rejecting the theory

and are stationary. Standard models of time-varying risk premia imply that these

must be stationary since they depend upon the time-series properties of the
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change in consumption.'4

For this purpose, we will develop a new test that may also be used to

examine other asset pricing relationships. The basic intuition behind the test

is straightforward. If ex post biased forecast errors are not present in the

sample, the unexplained component of excess bond returns would be the sum of a

white noise forecast error and a stationary time-varying risk premium. In this

case, the unexplained residual must necessarily be stationary. On the other

hand, if ex post biased forecast errors are present in the sample, then the

residual may include runs of serially correlated forecast errors. Since interest

rates are non-stationary, these runs within the sample may make the excess bond

returns appear non-stationary as well. This insight forms the basis of our tests

below.

5. Do risk premia explain it all?

5.1 Time-Varying Risk Premin and Biased Forecasts

As long as time-varying risk premia are stationary, then standard rational

expectations conditions imply that the sum of the risk premia and forecast errors

must also be stationary. Therefore, this minimal condition must hold if there

are no episodes of ex post unbiased forecasts. As an alternative hypothesis,

consider the example above in equation (11) where market participants anticipate

a future shift in policy or are learning about one that occured in the past.

To provide further structure, suppose that the forecast of interest rates

conditional upon a switch in policy can be written as:

t.A ,k t,k 114
t. t+1 t. t+1•

That is, the forecast of the interest rate conditional upon a switch in the

interest rate process, denoted A, depends upon the forecast conditional upon the

14See, for example, Campbell (1987) and Grossman and Shiller (1981).
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current process, denoted o, according to a time-varying parameter, p.

Substituting (14) into (11) and rearranging implies,

ERkt+i — (1 + rt(pt
- 1)) EOtRkt+i. (15)

Or, defining S — (1 + 7r(p,
- 1)), we have ERk+1 — S ER1. In other words,

the actual expected future rate depends upon the efficient forecast conditional

upon the current process according to a parameter that reflects both the
probability of a switch, icc, and the difference between forecasts, (i - 1).

Equation (15) provides a simple and tractable interpretation of

expectations. When 8 is always and everywhere equal to one, we have the standard

rational expectations condition through (12). Rut if 8 varies over time, its

mean within the sample would give the direction of switch people anticipated on-

average. For example, if on-average people anticipated that rates would rise

so that EARk+i > EORk+i, then (14) shows that the mean of p would be greater

than one. In this case, the mean value of S would also exceed unity.

We can also consider this relationship by forming the ex post forecast

error based upon the expectations in (15) (and subsuming the k superscript)

/0 0 \ f O R + /1 CO REt,t+1 t+1 - t t±1' — '. t+1 — t.+1 t*1/ "
- ti t t+1

As long as interest rates follow the current process 'o", the first term on the

right-hand side has mean zero. Thus, the expected mean of forecast errors equals

the expected mean of (1 - &) E°R+1. Clearly, S may vary above and below one

so that forecast errors could in fact still have mean zero. However, if shifts

in the interest rate process are expected, we may find within any finite sample

that S systematically deviates on one-side of unity for significant periods of

time. Since the interest rate process appears non-stationary, forecast errors

within the sample would look highly persistent in this case.

If switches occur within the sample, but market participants believe rates
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may revert back to the old processs (as in Lewis (1991)) or they are learning

about the new process (as in Lewis (1989)), then forecast errors would continue

to have the same basic form as (16).15

5.2 A test of unbiased forecasts with time-varying risk premia

In the empirical results below, we will test a necessary condition for the

hypothesis that 8 is always and everywhere equal to one. In our empirical

analysis, we will require for econometric identification that 5k — 6kl for all

adjacent pairs of k and k-l. Clearly, this is not restrictive since under the

null hypothesis, these parameters are constants where 8k — 6k — 1. Furthermore,

for clarity, we will subsume the k superscript on 6 for the remaining discussion.

'Jhen expectations incorporate process switches, the risk premium may be

written in terms of the current observed process, denoted o. Specifically,

substituting (15) into (2) implies:

— k - (k-I) 6 E° R'+1 - R'. (17)

Substituting the actual for the expected next period interest rate into (17) and

rearranging, the equation can be rewritten.

(k- 1) — a0 + a1 (k - R') + v1 (18)

where a — (l/) , and v1 — -('/5) + (kl)(Rk+i - E0tRlt+i) - a0. Thus,

is the inverse of S, capturing the difference between expected future
interest rates under the alternative processes. When expectations are ex post

unbiased as under standard rational expectations conditions, 6 and cz are always

'51n this case, we would have:

— (R+1 - EAtRt+i) + (1 - (i/6)) EAtRt+i.

With interest rate realizations arising from process "A", (R+1 - E*tRt+i) would
be white noise, while systimatic forecast errors would arise from the second
term.
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and everywhere equal to one. If 6 varies over time, a1 would also vary. Within

any given sample, the average level of a1 would not in general equal one,

although it might coincidentally equal one as described above in (4.2).

Therefore, at a minimum, the null hypothesis of ox post unbiased forecasts

requires that a1 be equal to one. We will test this hypothesis below.

If the variables in (18) were stationary, then we could not obtain an

asymptotically consistent estimate from this regression due to correlation

between the right-hand side variable and the risk premium in the composite

residual, v,÷1 This estimation problem arose repeatedly when examining the

standard regression tests above. But here we formed the regression in terms of

variables that are typically considered non-stationary)6 We developed this

equation in order to exploit a result from recent advances in time-series

analysis of non-stationary variables. Specifically, as long as the residual is

stationary, a regression of a non-stationary variable on another non.stationary

variable will provide an asymptotically consistent coefficient estimate even

though the residual may be correlated with the right-hand side variable.17

This result means that, as long as v1 is stationary, the regression in

(18) provides an estimate of (1/6) that is asymptotically consistent and

independent of the risk premium. But by the definition of v1 in (18), this

residual equals a risk-premium, that is stationary on theoretical grounds, plus

a conditional forecast error that is white noise by construction. Therefore,

we expect v1 to be stationary a priori. In the results below, we also test

this condition with Dickey-Fuller tests.

16See, for example, Mishkin (1989). To verify this non-stationarity with
our data, we tested the hypothesis of unit roots for interest rates using
modified Dickey-Fuller tests,

17See West (1988) for a derivation of the property of asymptotic normality
when non-stationary regressors have drift. For a more general discussion, see
Pagan and Wickens (1989) and references therein.
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In summary, we can test a minimum requirement for risk premia to explain

all of the expectations theory rejections by estimating a1 in equation (18) and

testing whether it is equal to one. Since we have written equation (18) in the

form of non-stationary variables, this provides coefficient estimates of a1 that

are asymptotically consistent even though the yield spread may be correlated with

the risk premia. On the other hand, this estimation introduces some additional

econometric issues to which we now turn.

5.3 Cointegrating Regression Results

Although the regression in (18) provides asymptotically consistent

estimates of a1, correlation between the residual and the right-hand-side

variable will bias these estimates in small samples. Two different methods have

recently been introduced to adjust for this bias. First, Hansen and Phillips

(1989) use the data to generate the asymptotic variance-covariance matrix and

then use this matrix to adjust the small sample bias in the coefficient estimate.

Second, Stock and Watson (1990) propose a method that purges the small sample

bias by including as regressors sufficient leads and lags of (the first-

difference) of the right-hand side variable. We use both methods to test the

hypothesis that — 1 below. Details of these methods are provided in the

appendix.

Before proceeding with the analysis, we should emphasize the relationship

between the asymptotic distribution of equation (18) and the sample distribution.

As long as market participants use information efficiently (and the distribution

is ergodic), the true asymptotic mean of 8 must be equal to one. However, in

this section, we treat the sample data as representative of the long run

distribution to test whether 6 is equal to one. In the next section, we address

the small sample problem more directly with Monte Carlo experiments.

The first column of Table 5 reports the coefficient estimates of 01 for

different (k month) maturities of Treasury Bills. All of the point estimates

are less than one. The second and third columns report the test statistics for
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the null hypothesis that a — 1 using the Hansen and Phillips (H-P) method. As

described in the appendix, this so-called 'C-statistic" is a modified Wald

statistic based upon an estimate of the asymptotic variance-covariance matrix.

When the risk premium and, therefore, v are serially correlated, a consistent

estimator of the covariance matrix must incorporate lagged autocovariances of

the error process. Since we do not know the order of the process for the risk

premium, we calculated the "C-statistics for two extreme truncation lags. In

the first, reported as C0 in column (2), the truncation lag was assumed to be

zero with no serial correlation in Vt. In the second, reported as C5 in column

(3), the process could be correlated as many as 6 months. Inspection of the

regression residuals indicated that this provides a conservatively large

truncation lag of autocorrelation.

These results are reported in the table together with their marginal

significance levels. For the statistics assuming no serial correlation, under

C0, the hypothesis that o equals one is rejected with marginal significance

levels less that 10% for 6 of the. 11 maturities. The more conservative

covariance estimates incorporating autocovariances up to 6 months tend to blow

up the covariance matrix. As a result, the -C5 statistics cannot reject the

hypothesis except for the very short term 2 and 3 month maturities.

Stock and Watson (1990) propose an alternative approach that purges the

small sample bias due to simultaneity between the regressors and the residuals.

They include leads and lags of the first difference of the right-hand side

variable in equations such as (18). In the present case, this yields:

n+1

(k-l) R1+1 — a0 + o (k Rk - R1) + E (k Rk+ - R'+1) + u1. (19)
i-n+1

Intuitively, including the lagged and future changes in the regressor "soaks up'

the correlation between the regressor and the right-hand side variable. This

regression makes the residual independent of the entire sequence of interest rate
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regressors, (k Rk - R1), and thus renders normal the asymptotic distribution

of the OLS estimator for a. As before, the estimated variance-covarjance matrix

of parameters must include autocorrelation lags in order to incorporate potential

serial correlation in the residual.

Column (4) of Table (5) reports the x2(l) Wald test that a1 — 1. These

statistics were calculated assuming that n, the number of leads/lags of the

regressors, equals 2. These results also assume that the truncation lag for

estimating the variance-covariance matrix is 1. The results are not sensitive

to these choices, however. As the results indicate, the hypothesis that a

equals one is rejected only for the two and three month maturities.

The empirical results in this section rely heavily upon the assumption

that, if we were to view an infinite number of observations, they would look like

the sample data. However, this condition may not hold. If agents make forecasts

that appear biased when viewed ex post but use all information efficiently, the

systematic nature of forecast errors would disappear with a sufficiently large

number of observations. Therefore, in the next section, we use Monte Carlo

experiments to calculate the standard errors of a1 directly from the observed

sample.

5.4 fronte Carlo Simulations

When forecasts appear biased ex post due to beliefs about future or past

shifts in the interest rate process, forecast errors will be systematically

biased in one direction for a period before a future shift or after a past shift.

Since interest rates appear non-stationary, runs of these systematic forecast

errors will likely appear very persistent within the sample. Thus, even if these

episodes disappear asymptotically, we may use the data to "bootstrap" the

standard errors of a conditional upon the sample.

For this purpose, we generated time-series for the future interest rate

based upon the data. We constructed the series in two ways that reflect

different assumptions about conditional heteroscedasticity. We considered both
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cases in order to examine the finite sample sensitivity of our Monte Carlo

experiments to assumptions upon heteroscedasticity. As a first case, we

generated a benchmark series allowing for unconditional heteroscedasticity but

assuming conditional homoscedasticity. Specifically, we followed these steps:

(1) Estimate eqn. (19) by OLS, saving the residuals and the estimates of o,

/3 for all 1. (2) For each run, choose alternative values for:

— 0.9 Model A (MA)

0.95 Model B (Me)

0.99 Model C (Mc)

1.00 Model D (Me)

(3) Draw randomly from the distribution of residuals in the data. Using m,

the and the constrained value of o, generate a time-series for (k-i) Rk+I

equal to the number of observations, 294. (4) Estimate the cointegrating

regression (18) by OLS and save a. (5) Repeat (3) and (4) 1000 times.

The second way we calculated the data was to parameterize the conditional

heteroscedasticity with an ARCH process. In this case, we followed the same

steps as above except for the data generating step (3). Here, we substituted

the following step: (3') Take the residuals from (19) and estimate an ARCH

process. Scale the residuals by the predictions of the ARCH model. Then, draw

randomly from the scaled distribution. Rescale the distribution of residuals

using predictions from the ARCH process and use these to generate the time series

process of rates.

In estimating the ARCH process, we used a simple rule of thumb to be

consistent across maturities. We first estimated an ARCH process of order six

and checked to make sure that the implied variances were positive. In the few

instances where negative variances were encountered, we reduced the order of the

ARCH process until variances were always positive.

In Table 5, columns (5), (6), (7), and (8) report the results of these

Monte Carlo experiments for Models A, B, C, and D, respectively. The first
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numbers in each row are the mean of the distribution of a1 coefficients. None

of the mean estimates of the a coefficients from the heteroscedastic Monte Carlo

estimates differed from the homoscedastic Monte Carlo estimates by more than

l0. Therefore we report only mean values of a from the homoscedastjc case

for clarity. The estimates demonstrate the downward-bias in small samples due

to the correlation between the residuals and the right-hand side variables. In

all cases, the Monte Carlo estimates of a1 are below the true a1 used to

construct the time-series.

The numbers in parentheses in columns (5) to (8) report the p-values for

the hypothesis that the point estimates in column (1) are significantly different

from the values of a at the top of each column. The first number in parentheses

is the p-value from the distribution of coefficients when the data are generated

from the conditionally hornoscedastic case. The lower number in parenthesis is

the corresponding p-value based upon the conditionally heteroscedastic case.

These p-values describe the nature of the distribution. We would almost never

reject that the point estimates in column (1) are significantly different than

— .9 as in column (5) or a1 .95 as in column (6) since most of the p-values

are near 1. Furthermore, for most of the maturities, we would not reject a1 is

different than .99.

The numbers in parentheses in column (8) give the p-values for our test

that a — 1. As the table shows, we would reject this hypothesis at the

marginal significance level for all maturities except for 7, 8, and 9 months.

At the 10% level, we would also reject for the 9 month maturity. Therefore, the

null hypothesis that 6 is always and everywhere equal to one is rejected for most

maturities.

These results indicate that stationary risk premia alone do not fully

explain the departure of returns from the expectations theory regression tests.

Intuitively, since interest rates are non-stationary, systematic misprediction

of rates within a finite sample appear non-stationary as well. Hence, the
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empirical finding that forward rates at short maturities deviate from the

subsequent realization of rates by a non-stationary component suggests systematic

ex post bias.

5.5 Are yield spreads and excess returns non-stationary?

According to the cointegratirig regressions in Table 5, the market forecasts

future rates slightly differently than the ex post statistical forecast implies.

If correct, this implies that the residuals should appear to contain non-

stationary components in standard regressions of excess holding returns. Put

differently, substituting the forecast error (16) into the definition of the

holding returns yields:

k - (k-i) Rk_lt+i - — - (kl)(Rkl÷i - E° Rkl+i) (20)

-(k-l)(l-6)E° R1+I.

The first two terms on the right-hand side are, respectively, the risk premia

and the statistical innovation to forecasts of the k-l bond, Hence, both are

stationary. But the last term is proportional to the statistical forecast of

the long rate. If 8, systematically deviates from one for prolonged periods of

time, this component may appear non-stationary since long rates are themselves

non-stationary. Therefore, the evidence for our alternative hypothesis seems

to imply that the holding returns and yield spreads should appear non-stationary.

Because other studies in the literature find no evidence of this behavior, our

alternative model might appear inconsistent with these other studies.

To investigate the effects of the non-stationary expectational errors, we

included additional steps to the Monte Carlo experiments described above. Using

the process for future rates generated by the data, we calculated both the excess

holding returns, hk+1, as in (20), and the yield spreads, R - R'. For each

of these, we conducted a modified Dickey-Fuller test for unit roots using the

method in Phillips and Perron (1987).

Table 6 reports the results of these tests for the case of Model A where
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at a — .9, the parameter deviates the most from one and is therefore the most

likely to appear non-stationary. Column (1) reports the first-order

autocorrelation multiplied by 100. All of these estimates are far away from one.

Colunins (2) and (3) provide the Dickey-Fuller unit-root tests for the excess

holding returns and the yield spreads, respectively. Since the 5% marginal

significance level for 250 observations is -3.43, all of these test statistics

strongly reject the hypothesis of unit roots. These statistics in columns (1)

to (3) were also calculated for Models B, C, and D where a — .95, .99, and 1,

respectively. In all cases, the hypothesis of unit roots would be strongly

rejected. Not surprisingly, the first-order correlation coefficients become even

smaller. For a — .95, the maximum autocorrelation is .04 while for 01 — .99,

the first-order autocorrelations are all negative and near zero. Therefore, our

finding that 6 is significantly different than one (at short maturities) is

completely consistent with standard findings that excess holding returns and

yield spreads are stationary.

5.6 Row do long rates react when expectations include process switches?

In Section 3, we used results from regression tests to infer the behavior

of expectations under the extreme case that risk premia are constant. Under this

view, we found that on-average market participants predicted a higher interest

rate than was realized ex post. This result is consistent with the general

finding in the literature that realized rates are lower than predicted by the

yield spread. But in this section, we have found that this phenomenon is highly

persistent in the data. The persistence of systematic forecast errors suggests

that market participants may anticipate switches in the process of interest

rates.

In order to evaluate the effects of these beliefs on the yield spread, we

calculated the "theoretical spread' that would occur at the average level of 6

as found from the estimates in Table 5. Setting & equal to its mean, 6, and

iterating the risk premium relationship in equation (17), implies,
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k-2
- — (1/k) 3 81 E0tRlt+j - + (1/k) E 6 E (21)

1—0 1—0

Since 5 > 1, the market's forecasts of long rates include the probability that

a shift to higher rates will occur. The probability of the switch increases with

the forecast horizon, pushing up the levels of long term bonds. When 6 — 1, we

have the standard model as in equation (1).

To compare with standard expectations theory assumptions, we calculated

the theoretical yield spread using (21) at both 5 — 1, the standard case, and

the average level of 8. in the sample. For this purpose, we identified and

estimated the process for the short rate as:

— 0.792 tR'1 + c. - 0.862 c R2 — 0.91 (22)

(.161) (.133) (Stand. Error) S.E. 0.83

For both the standard model and at the mean 6, Figure 1 depicts the plots

of the expectations components of the, spread between the 11 month bond and the

one month bond, i.e., (1/k) ELR't+I - R'. Similar pictures were also found

for the other maturities of the long bond. As the figure indicates, the yield

spread varies less than in the standard expectations theory case. In a sense,

long rates underreact to expected future short-rates. This finding is consistent

with the description of long rates found in Mankiw and Summers (1984) and

Campbell and Shiller (1984). Our results suggest that this behavior may be

partially due to market participants anticipating switches in the process for

interest rates.

6. Concluding Remarks

In this paper, we have asked what the pattern of rejecting the expectations

theory implies about the behavior of time-varying risk premia and/or ex post

biased forecasts of interest rates. We uncovered dynamics in either the risk
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premia or forecast errors that must necessarily hold if either variable were

solely responsible for the rejections. Since time-varying risk premia are likely

to be present regardless of expectational errors, we tested a necessary condition

when risk premia are solely responsible. Surprisingly, we rejected this

hypothesis at short maturities. Overall, our evidence using data since 1964

suggests the presence of systematic forecast errors on bonds of short maturities

together with time-varying risk premia. Therefore, a challenge for future

research will be to explain this behavior.
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Appendix

In this appendix, we describe the methods used in Section 4 to adjust for

simultaneous equation bias in the cointegrating regression (18). For more

detailed and thorough discussions, see Hansen and Phillips (1989) and Stock and

Watson (1990). For notational simplicity, note that equation (18) may be written

as,
— + (Al)

— u2, (A2)

where u1 and u2 are stationary, yr (k-l)R1, x — (k R - R'), and the

constant term is omitted for simplicity. We are interested in testing -y — 1.

Since x is endogenous, it is likely that Cov(x,uj) 0. In this case, -y will

be biased in any finite sample. Therefore, test statistics on -y must take

account of this bias. This bias arises even though the estimate of -y remains

consistent with this simultaneity. We use two methods to adjust for the bias.

Below, we give the steps for estimating (Al) and (A2) using each of these

mehods.

A. Hansen and Phillips method

(1) Estimate (Al) and (A2) to get the estimates of u and u and the OLS

estimate of -y. For future reference, define the vector of residual

estimates as: u [ufl, u2j'

(2) Calculate

Yt — ''t - 12 22 LIXt

where ti — [ç2J — T'EfUU + T _lWftEt..r+1(UtUt..r + u.u')

i.e., is the Newey-West estimator of the variance-covariance matrix with

.2 lags of autocovariances and weights u.
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(3) Calculate the "bias-adjusted estimate of y as:

+ — [ E)'txt - T [I, - Q12Q221] [Afl, A22] ] [Ex2J'
where A — [A1 — T'[Euu' + E1tE_+(u u_T')]

(4) Calculate a modified Wald statistic, known as the C-statistic, to test

— 1. This C-statistic is:

— (+ - 1)2 [ 0 (E x2)1]' — X2(1)

where fl112 — - 22 21

Note that subscript refers to the number of lags included in the

estimators ( and A.

Table 5 reports the results for . — 0 and £ — 6 in columns (2) and (3).

B. Stock and Watson Procedure

Rewrite equation (Al) according to,

— + y x + /3(L) Ax + u1 (A3)

where /3(L) is a polynomial in the lag operator, L, i.e., /3(L) — (L + + .

+ L + 1 + L' + . . . + L' + L). The idea to rewriting (Al) in this form is

to include as many of leads and lags of Ax on the right-hand side of the equation

to make u independent of x. This implies that the asymptotic distribution of

the OLS estimator of y is normal. Intuitively, including the leads and lags of

on the right-hand side gets rid of the simultaneous equation bias problem.

Note that since u1 will be serially correlated in general, the Wald test of yl

from (A3) should also use the Newey-West estimator for the covariance matrix.

Column (4) of Table 5 reports the results when n—2 and .2—I. The results are not

sensitive to these choices.
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Table 1

Regression Tests Using Yield Spreads

Regresor:
(Rk_RL)
fork—

Regression Coefficients: Variances:
Change in Perfect Foresight

Long—Bond Spread (Rk_Rl) (Rk_Rl)/(k_1)
(1) (2) (3) (4)

a1 b1

2 42a

(.24) (.12)

.10 .100

3 43a •32a

(.68) (.19)

.15 .075

4 39a

(.61) (.19)

.20 .066

115a •36a

(.68) (.17)

.24 .060

6 127a 38a

(.72) (.20)

.27 .054

7 60a

(.79) (.18)

.31 .051

8 41a
(.83) (.20)

.34 .047

9 37a

(.79) (.17)

.37 .046

10 39a

(.86) (.20)

.39 .043

11 40a

(.88) (.22)

.41 .041

notes: a' indicates significantly less than one at the 95% confidence level.

Column (1) is the regression coefficient using
variable.

(k—1)(R.—R) as dependent

k—i
Column (2) is the regression coefficient using (1/k E (k—i) as dependent

i—l
variable. Standard errors are corrected for an MA(k—1) error.

Covariance matrix estimated using Hansen's (1982) sample moments method.



Table 2
Regression Coefficients of Excess Holding Returns on Yield Spreads

(Cov(h1, R—R)/Var(R—R)]

Yield Spread Maturity
(k)

Variance
2 3 4 5 6 7 8 9 10 11 hi

Re turn

Maturity
(I)

2 1.17
(.24)

.82

(.23)

.64

(.22)

.54

(.20)

.47

(.19)

.37

(.18)

.32

(.17)

.31

(.16)

.29

(.15)

.27

(.15)

.74

3 1.44

(.54)

1.43
(.48)

1.20

(.44)

1.06

(.39)

.94

(.37)

.79

(.34)

.68

(.32)

.68

(.30)

.65

(.29)

.61

(.28)

2.32

4 1.84

(.80)

1.82
(.70)

1.70

(.61)

1.47

(.54)

1.28

(.50)

1.08

(.47)

.92

(.44)

.95

(.41)

.91

(.40)

.85

(.37)

5.09

5 2.38

(1.08)

2.34

(.92)

2.20

(.80)

2.15

(.68)

1.92

(.64)

1.67

(.59)

1.46

(.56)

1.51

(.51)

1.47

(.50)

1.40

(.47)

8.95

6 2.72

(1.28)

2.65

(1.06)

2.47

(.92)

2.43

(.78)

2.27

(.72)

1.98

(.67)

1.74

(.63)

1.81
(.57)

1.76

(.56)

1.68

(.53)

13.00

7 2.91
(1.45)

2.86

(1.18)

2.69
(1.02)

2.70

(.85)

2.48

(.79)

2.29
(.71)

1.99

(.68)

2.05
(.61)

2.02

(.60)

1.92

(.56)

17.60

8 3.36
(1.64)

3.22
(1.34)

2.99
(1.16)

2.96

(.99)

2.71

(.92)

2.52
(.83)

2.26

(.78)

2.33

(.72)

2.28

(.70)

2.15
(.67)

22.72

9

10

11

3.57

(1.85)

3.57

(2.05)

3.49
(2.25)

3.58

(1.51)

3.53

(1.70)

3.48
(1.86)

3.36

(1.30)

3.37

(1.47)

3.29
(1.64)

3.38

(1.10)

3.49

(1.22)

3.56

(1.34)

3.10

(1.01)

3.21

(1.12)

3.29

(1.22)

2.89

(.91)

3.01

(1.01)

3.11
(1.11)

2.57

(.87)

2.66

(.96)

2.75

(1.06)

2.72

(.79)

2.82
(.88)

2.94

(.96)

2.66

(.77)

2.89
(.86)

2.99

(.94)

2.52

(.73)

2.73
(.81)

2.90
(.88)

30.66

39.37

46:76

Vat i a nc C

.10 .15 .20 .24 .27 .31 .34 .37 .39 .39 .41

4otas: Standard •rrorz in parenthesis ars calculated using Hansens (1982) sample moments
method



Table 3
Regression Using Forward Premia

Right—hand

Regression
Left—hand Side

Test:
Variable

Ex Post
Side Variable Excess Return

(k_1)R')_kR_R
Short Rate

1—Ri

2 08a _02C
(.03) (.03)

3 78a
(.26) (.19)

4 .g6 40C

(.34) (.19)

5 105a
(.28) (.08)

6 88a 29C

(.39) (.12)

7 95a .30c
(.36) (.16)

8 79 .27c
(.S8) (.17)

9 .22c
(.52) (.11)

10 151a .18c
(.49) (.12)

11 i.is
(.45) (.18)

Notes: a signif. diff. than 0 at 95% level
C 1 at 95% level



Toi,1.
Son.oo7 of R58r.seioo Test.

L.rt-H..nd Point U if If

sOd. Exp.ctstions Risk Pr.ini. For.c.st Errors
Voriobi.. Eetio.t.s Theory, Alon., Alon.

A. Yield Spread: Y. (R-k)

1.
Cov(#k,Y > Cov(r1

(k-l)(RJ-R) 0 0, — 1, e — 1 -
Cl

— 1 +

(k_l){

2.
k-2 Cov(.Y) k-i

Cov(rtj_i,Yt)
I (l-(.i/k))i.R1 0 0 0 j' — 1. b 1 5 —

b1 1 + I (k-i)
i—i

t 1—0 k Ver(Y) i—i k Vsr(Y

0 b1, — b, Cov(,Y) 0 k(k_i)Cov(ck41,y) 0

I(k-i) Cov((+j_i,Y)

Oth.r N.cesser-y Conditions; Sufficient Conditions;

Cov(#) 0 V.r(Y)
Var() 0 Vsr)1) V J 0

Var() Vsr(R- R)

Vor(1) Vor(R1-R

B. Forward Pormi. ZC (F•— R)

1

0cc c-S c- —-•—---—- c - -
1 1 1 Var(Z) V.r(Z)

: kl R1 a 0 1 d — 1. d1— di — 1t t 1 1
1—0 Vsr(Z) Var(Z)

Cooparisonof c1° 1 - d1 c — d1, Cov(#, Z) c (k-1)ICov(+1,Zt)l 0

Cov4,- IC0V(.t+k_i,5t)I
Sofficient Condition:

ICov(c'+xZ)I

Rot..1 0. tb. u.k prmoiws or ho1din a k'month bond for on. month b..innini j months from now.
— (R+1- Zt.thRt,), or h. error in for.c..tini • k-month bond j months from now b...d upon information

n periods from now.
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