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1 Introduction

Weather shocks pose a ubiquitous and salient source of economic risk with the potential to
disrupt employment dynamics. Since labor markets are characterized by frictions - contracts
are lumpy, matching takes time, and separations are costly - adverse weather can not only
reduce hours worked and productivity (Garg et al., 2020; Graff Zivin and Neidell, 2014;
LoPalo, 2023; Neidell et al., 2021; Somanathan et al., 2021), it can sever employment rela-
tionships entirely, increase unemployment duration or discourage job search and hiring. With
expected changes in weather due to climate change, understanding the impacts of weather
shocks can help economies prepare for and adapt to the ensuing labor market disruptions.

This paper investigates the impact of temperature on unemployment, the workforce dy-
namics driving this effect, and the underlying mechanisms. We develop a theoretical model
of firm and worker decisions and labor market matching to characterize the margins where
temperature may impact unemployment. For instance, temperature can influence unemploy-
ment through both firms and workers: cold weather may reduce labor demand by making
certain activities temporarily infeasible, and may also alter workers’ willingness to supply
labor when outdoor conditions become unpleasant or unsafe. Using high-frequency weather
data linked to three decades of monthly Current Population Survey microdata consisting of
over 15 million observations, we estimate the effect of temperature exposure in the past three
months on the probability that an individual is unemployed. Following the literature before
us, we estimate models with multiple fixed effects to isolate causal impacts of temperature
and control for temperature flexibly by using a binned approach. Informed by our theoretical
model, we then analyze the effects of weather shocks on various measures of unemployment
inflows and outflows, and bring additional data on time use and job postings to analyze the
drivers of these workforce dynamics.

Our main finding is that cold, but not hot, temperatures significantly increase unem-

ployment risk. This effect is concentrated among individuals in industries with high risk of



climate exposure but is largely non-existent for those with low risk. Our estimates imply
that a one standard deviation increase in the share of days below 5°C increases unemploy-
ment by approximately 2.7 percent, while the corresponding effect in high-risk industries is
roughly 7.3 percent. These impacts are driven by both higher job separation rates (higher
unemployment inflows) and slower transitions back to employment (lower unemployment
outflows).

On the mechanisms driving the inflow side, we find that cold temperatures increase
layoffs but not quits or the end of temporary contracts. Among employed workers, cold
temperatures also lead to higher rates of weather-related work absences, consistent with
heightened operational disruptions that may be early signals contributing to fragility in the
employment relationship, with prior evidence linking absenteeism to the onset of job loss
(Grgnstad and Bernstrgm, 2025; Ichino and Maggi, 2000). Moreover, our results provide
suggestive evidence of a moderating role of unions, perhaps driven by increased bargaining
power and employment protection, as the effects are attenuated in areas with more unionized
sectors.

We also explore mechanisms behind the decrease in unemployment outflow at the lower
end of the temperature distribution by exploring job search effort and hiring activity to better
understand demand and supply-side factors. Using the American Time Use Survey, we find
that cold weather is not statistically significantly related to job search activities. Using the
Job Openings and Labor Turnover Survey, we find, however, that cold temperatures lead
to important reductions in employer vacancy postings. These findings imply that the lower
unemployment outflows due to cold weather are likely demand-driven: firms reduce hiring
activity in response to cold shocks.

Our finding that colder weather increases unemployment while hotter weather does not
differs from prior studies that emphasize the negative effect of heat on worker productivity.

We believe this contrast arises because much of the existing literature focuses on immediate



and intensive-margin labor supply responses, such as daily reductions in hours worked or pro-
ductivity, typically using same-day temperature exposure. Instead, we examine extensive-
margin labor market responses to prolonged temperature exposure over longer periods of
time. It is plausible that sustained exposure to cold leads to more severe and persistent
employment disruptions than exposure to heat. In fact, the nature of weather-related dis-
ruptions differ substantially by weather. Many tasks face hard thresholds in cold weather
below which they cannot proceed, such as concrete pouring, asphalt paving, and masonry
work that become less feasible below 5°C due to freezing risks. In contrast, high tempera-
tures are less likely to make tasks outright infeasible, at least at levels currently experienced
in most of the world, but instead slow productivity. Cold weather also depresses product
demand considerably more than heat in climate-exposed industries (Chan and Wichman,
2020, 2022; Kuruc et al., 2025), which may lead firms to scale back hiring or lay off work-
ers. Thus, while heat may reduce productivity, extreme cold may impose both operational
constraints and reductions in product demand, helping to explain the observed asymmetric
effect on unemployment.

These asymmetric results suggest that the cold-weather burden on the labor market may
decline under milder future winters expected under climate change. As a result, there may
be a reduced need for labor market intervention, such as seasonal unemployment insurance,
in milder winters. However, any full evaluation of climate change’s net impact on the econ-
omy requires a broader accounting of impacts beyond the channel of unemployment. A large
body of work documents that hot temperatures harm population health, impede child devel-
opment, reduce mental well-being, increase mortality, lower labor productivity, slow long-run

economic growth, and raise energy demand.! Thus, while our study points to the benefit of

IFor examples, see Albanese et al. (2025); Aragén et al. (2021); Auffhammer et al. (2017); Barreca et al.
(2015, 2016); Baylis (2020); Baylis et al. (2018); Belloc et al. (2025); Bilal and Kénzig (2024); Burgess et al.
(2014, 2017); Burke and Emerick (2016); Burke et al. (2018, 2015); Carleton and Hsiang (2016); Chen and
Yang (2019); Dell et al. (2012, 2014); Deschénes (2014, 2022); Deschénes and Greenstone (2011); Deschénes
and Moretti (2009); Evans et al. (2025); Garg et al. (2020, 2024); Graff Zivin and Neidell (2014); Graff Zivin
and Shrader (2016); Guirguis et al. (2018); Heutel et al. (2021); Hsiang (2010); Jain et al. (2020); LoPalo
(2023); Miller et al. (2021); Mullins and White (2019); Neidell et al. (2021); Noelke et al. (2016); Rode et al.



warming in a specific context, it should not be interpreted as a comprehensive assessment
of the overall economic effects of climate change, but instead as providing evidence relevant
to understanding the ways in which we might develop adaptation policies in response to
warmer temperatures.

This paper also contributes to the broader labor economics literature that studies how
shocks shape unemployment dynamics. Much of this literature has focused on policy-induced
variation in unemployment insurance (Chodorow-Reich et al., 2019; Farber et al., 2015;
Hagedorn et al., 2013; Johnston and Mas, 2018; Karahan et al., 2025), trade or tariff shocks
(Furceri et al., 2018; Kim and Vogel, 2021; Yi et al., 2024), or large-scale layoffs. The latter
have been studied either as macro shocks (Davis and Von Wachter, 2011), more localized
shocks such as mass layoff at the firm-level (Flaaen et al., 2019) or military base closures
(Dahlberg et al., 2024). Our work is most closely related to this last strand, which treats
the termination of employment contracts as plausibly exogenous but is complicated by the
fact that displaced workers simultaneously flood local labor markets. By contrast, our use
of temperature as a shock provides a novel and clean source of exogenous variation: weather
shocks are sharp, transitory, and arguably orthogonal to underlying labor market conditions,
allowing us to isolate their causal impact on both inflows into and outflows from unemploy-
ment. In doing so, our study complements prior work that primarily examines worker search
behavior or firm responses to changing outside options, by bringing new evidence on how
exogenous environmental shocks disrupt labor market matching and alter the incidence and
duration of unemployment. Our paper also contributes to the literature on the determinants
of unemployment inflows and outflows (Elsby et al., 2019, 2010; Elsby and Michaels, 2013)
by introducing weather shocks as a novel driver of these flows.

The remainder of the paper is organized as follows. Section 2 develops a theoretical
framework for understanding the effect of temperature on unemployment. Section 3 describes

the data sources. Section 4 outlines the empirical strategy. Section 5 presents the main

(2021); Severen et al. (2018); Somanathan et al. (2021); White (2017); Zhang et al. (2018).



results and robustness checks. Section 6 examines the underlying mechanisms. Section 7

concludes.

2 Theoretical Framework

We begin with a conceptual framework to characterize how temperature affects unemploy-
ment through its influence on firm decisions, worker behavior, and the efficiency of labor
market matching. This framework informs our empirical approach by identifying the mar-

gins along which temperature-induced shocks can alter the risk of unemployment.

2.1 Firm Behavior

Firms produce output using labor, and choose employment levels to maximize profits. We
assume competitive product and labor markets, so that firms take both the output price p
and the wage w as given. Productivity is sensitive to temperature, which affects both worker

performance and broader business operations. We denote the firm’s static profit function as:

w(T)=p-AT) - L—w-L, (1)

where L is labor employed, and A(T) is total productivity per workers, which depends on

temperature 7. We define:
A(T) = g(Aw(T), Ap(T)), (2)

where Ay (T') captures the effect of temperature on worker-specific productivity (e.g., fa-
tigue, absenteeism, injury risk), and Ag(T') captures the effect of temperature on firm-level
productivity beyond worker performance (e.g disruptions to firm operations, demand fluc-
tuations, supply chain instability). We do not impose a functional form to g(-) but assumes

that it increases with Ay (7') and Ag(T).



A job is destroyed when the marginal revenue product of labor falls below the wage:

p-A(T) < w. (3)

The job destruction rate d(T') therefore increases in response to reductions in Ay (7T') or
Ag(T) induced by temperature changes.
Vacancy posting is similarly responsive to temperature. Let J; denote the number of

vacancies:

Jy = h(T)’ (4)

where h(-) reflects the expected profitability of hiring. It may be non-monotonic, accommo-

dating the possibility that extreme cold or heat discourages vacancy creation.

2.2 Worker Behavior and Reservation Wages

Workers derive utility from wages w and disutility from working under adverse temperature
conditions. Utility is given by:
V =V(w) = F(T), (5)

where V' (w) is increasing and concave, and F'(T') captures thermal discomfort, health risks,
or other costs of labor supply. We assume F(7") is minimized at an interior optimum and
increases on either side, such that F”(7) > 0. This allows both extreme heat and cold to
reduce the attractiveness of work. Workers compare this to the utility of their outside option
b (e.g., unemployment benefits, home production).

Acceptance occurs when:

Viw) = F(T) = b, (6)



which implies a reservation wage:

w(T) =V~ Hb+ F(T)). (7)

The quit rate is similarly temperature-dependent:

q(T) = Prlw < w™(T)]. (8)

2.3 Matching Efficiency and Labor Market Flows

Employment transitions occur through a matching process that depends on vacancies, un-

employment, and matching efficiency. We define the matching function as:

m(Ut7 It T) = M(T) ) f(Ut7 Jt)? (9>

where Uy is unemployment, J; is vacancies, f(-) is a standard Cobb-Douglas function, and
w1(T) is a temperature-dependent efficiency term. Temperature may reduce p(7") by impeding

mobility, lowering search effort, or delaying hiring processes.

2.4 Law of Motion for Unemployment

Let u(t) denote the unemployment rate and normalize the size of the labor force to one.
The unemployment rate dynamics reflect the difference between inflows (job destruction and

quits) and outflows (matches):

u(t) =d(T) - (1 —u) +q(T) - (1 —u) —m(Us, Ji, T). (10)



Differentiating with respect to temperature yields:
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As this equation shows, temperature affects labor market dynamics through its impact
on the rate at which workers flow into and out of unemployment through three channels.
Job destruction may rise when temperature depresses productivity. Quits may increase as
temperature raises the disutility of work and the reservation wage. Temperature may also
affect matching efficiency, with firms reducing vacancy postings and the unemployed having
less incentives to engage in job search. These forces jointly contribute to higher steady-state
unemployment and longer unemployment durations.

Note that we have so far implicitly assumed firms and workers to be homogeneous.
However, our framework accommodates heterogeneity (e.g. some firms or workers may be
more temperature-sensitive) by simply allowing all components in Equation (10) to vary
across groups g € {1,...,G}.

The remainder of the paper provides an empirical test of the framework developed above.
We begin by assessing whether temperature systematically affects unemployment in the ag-
gregate, then examine heterogeneity across groups with different temperature-sensitiveness,
and finally investigate the relative contribution of each modeled mechanisms to the observed

responses.



3 Data Sources

3.1 Current Population Survey Data

The main source of labor market information used in this paper is the Current Population
Survey (CPS), a monthly household survey conducted jointly by the U.S. Census Bureau and
the Bureau of Labor Statistics. The CPS has been administered on a consistent monthly basis
since 1948 and remains the primary instrument for producing official labor force statistics in
the United States. We use data from 1994 to 2023.

Each month, the CPS collects data from approximately 60,000 eligible households, yield-
ing information on roughly 100,000 individuals. The survey gathers detailed data on em-
ployment status, hours worked, occupation, industry, unemployment duration, and reason
for job separation. In addition to labor force indicators, the CPS includes rich demographic
characteristics such as age, gender, ethnicity, education, and household structure. The CPS
also contains information on the county of residence of individuals when they are inter-
viewed, which we use to merge the CPS dataset with our weather dataset on the history of
temperature conditions at the county-day level.?

Among unemployed respondents, the CPS records the length of the unemployment spell
(in weeks) and a categorical indicator for the reason for separation, such as layoff, voluntary
quit, or the end of a temporary job. For employed individuals, the CPS tracks whether
the respondent was absent from work during the reference week and, if so, the reason for
the absence (e.g., illness, family obligations, or weather-related disruptions). These features
make the CPS particularly well suited for studying not only the incidence of unemployment,

but also the mechanisms underlying labor market transitions.

2For 48.47% of the sample, the data only identifies their Metropolitan Statistical Area (MSA) of residence,
not their specific county. For these cases, we use the population distribution as a proxy for likely residence,
assigning individuals to the most populous county within their MSA.
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3.2 American Time Use Survey Data

To further investigate the mechanisms underlying the impact of temperature on unemploy-
ment, we use the American Time Use Survey (ATUS) data. The ATUS is administered by
the U.S. Census Bureau on behalf of the Bureau of Labor Statistics, which conducts ap-
proximately 8,500 interviews annually. Respondents complete a 24-hour time diary referring
to the day before the interview, which provides minute-level information on all activities
undertaken during the diary day. Activities are classified into 4-digit categories, allowing
us to observe in detail how individuals allocate their time. Importantly, this allows us to
construct precise measures of time spent searching for a job - our outcome of interest for
examining supply-side behaviors.

In addition to activity data, the ATUS contains detailed information on demographic
characteristics and geographic identifiers, including the date of the interview and the re-
spondent’s county of residence. This enables us to merge the ATUS with National Oceanic

and Atmospheric Administration weather data at the county-day level.

3.3 Job Openings and Labor Turnover Survey Data

We use the Job Openings and Labor Turnover Survey (JOLTS) dataset to provide additional
evidence on the mechanisms behind the effect of temperature on unemployment. The JOLTS
is a monthly survey conducted by the U.S. Bureau of Labor Statistics at the national level.
The JOLTS collects data from approximately 21,000 nonagricultural business establishments
across all 50 states and the District of Columbia, providing estimates of job openings, hires,
and separations. While the JOLTS dataset only provides information at the state-by-month
level - providing less granular data than our aforementioned county-level analyses - its rich
information on employers and labor shortages makes it a valuable source to analyze demand-

side factors contributing to the effect of temperature on unemployment.
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3.4 Weather Data

To measure individuals’ exposure to temperature, we use weather data from the National
Oceanic and Atmospheric Administration (NOAA). NOAA compiles daily meteorological
information from more than 9,000 weather stations across the United States, including max-
imum and minimum temperatures, average temperature, precipitation, and snowfall.

We link these data to each of the above to implement our analyses, aggregating the
station-day-level observations at the finest geographic levels available in our other datasets
(county—day for CPS and ATUS and state-month for JOLTS). Because the effect of tem-
perature on unemployment may take some time to materialize, we construct weather expo-
sure measures capturing the history of weather conditions over the months preceding each
county—day (we provide a more detailed description of our main independent variables when
describing our empirical strategy). Given the more than 3,000 counties in the United States,
this results in a panel weather dataset containing more than 32 million county-day observa-
tions. The high spatial and temporal resolution of this dataset allows us to exploit granular

variation in the exposure to temperature conditions.

4 Empirical Strategy

We estimate the following empirical model throughout the analysis:

7
Ui,c,s,m,y = Z ﬁTTempT,c,s,m,y + d)Xz + 50 + 6y + 5s,m + Ei,c,s,m,y (11)
T=1

where ¢ stands for individual, ¢ for county, s for state, m for the month and y for the
year of the interview. U;.qm, is a binary variable taking a value of one if individual ¢ is
unemployed during month m of year y and zero otherwise.

Our independent variables of interest, Tempr ¢ sm,y, comprise of continuous variables of

the share of days with a maximum temperature falling in interval T over the last three
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months prior to month m of year ¢ in county ¢. We measure temperature over the three
months prior to the month of the survey interview to allow sufficient time for temperature
conditions to affect unemployment. As detailed below, we also explore alternate windows of
time before the survey interview (1 month and 6 months). To allow for nonlinear effects, we
use seven temperature intervals 7' (in degrees Celsius): lower or equal to 5°C; 5-10°C; 10-
15°C; 15-20°C; 25-30°C; higher or equal to 30°C, with 20-25°C as the reference category. Our
main estimates of interest can be interpreted as the effect of an increase of one percentage
point in the proportion of days with maximum temperatures within a temperature interval
during the three months prior to the survey interview on unemployment relative to being
exposed to temperatures within the benchmark temperature range (i.e., between 20 and 25
°C).

We include county fixed effects, d., to absorb time-invariant cross-county differences in
unemployment that may be correlated with temperature or economic conditions. Year fixed
effects, ¢,, control for time-varying changes in our dependent and independent variables at
the national level, such as macroeconomic cycles. Finally, d5,, denote state-by-month fixed
effects, which allow us to flexibly account for seasonality that may differ systematically across
states, for instance, capturing the fact that January in Minnesota differs from January in
Florida. Together, this set of fixed effects enables us to identify the relationship between tem-
perature and unemployment from within-county, within-year, and within-season-state fluc-
tuations in weather. Individual covariates are denoted by X;, which includes pre-determined
characteristics of the individual (gender, a quadratic function of the individual’s age and a
dummy for respondents identifying as ‘white’).? Standard errors are clustered at the county
level to account for the grouped nature of temperature exposure and serial correlation in
temperature over time.

We estimate Equation 11 using an estimation sample pooling the aforementioned CPS

3Race categories in the CPS have changed over time, making it difficult to construct a consistent set
of detailed categories across our sample period. To maintain comparability over time, we define race as a
binary indicator for respondents identifying as ‘white’ versus ‘non-white.’
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monthly microdata from 1994 to 2023. We restrict the sample to individuals under the
age of 65 and exclude respondents with missing information on labor force status, age or
gender. We also exclude individuals for whom we cannot observe the temperature to which
they have been exposed (i.e. for whom there is no information available on their county or
Metropolitan Statistical Area of residence). Applying these criteria yields a final sample of
15,227,914 individual-month observations.

Estimating Equation 11 with this final sample yields estimates of the average impact
of temperature across all workers. But differences in climate exposure across workers may
mask important heterogeneity in impacts. To explore this, we use the classification scheme in
Graff Zivin and Neidell (2014) and assign each individual to high- or low-risk of temperature
exposure based on their industry. Specifically, we label high-risk of exposure for workers in
the agriculture, mining, construction, manufacturing, entertainment or transportation indus-
tries, and low-risk to the remainder; and estimate Equation 11 separately for each.* We also
explore alternative definitions of risk using occupational classification developed by Park and
Stainier (2021), with results described in Section 5.2. If extreme weather creates systemic
disruptions to labor markets, such as road closures or power outages, we would expect all
workers to be impacted by weather, irrespective of their sector or occupation. On the other
hand, if the impacts are driven by conditions on the job, then workers in outdoor environ-
ments or facilities with limited climate control should experience greater effects from weather
shocks than workers in climate-controlled environments, who may experience no impacts at
all. As such, our heterogeneity analysis not only reveals how impacts are distributed across
workers, but also clarifies the channels through which temperature affects labor outcomes.

Table 1 provides descriptive statistics of our main independent and dependent variables
for our sample separately for all, low-risk and high-risk workers. The mean unemployment

rate is 3.5 percent. The sample is 47.4 percent female, and the average respondent is 40.5

4One could argue that some industries, such as entertainment, may fall under either category. While our
main definition of temperature-exposure groups assigns ambiguous industries to high-risk industries, we have
estimated these models using alternative definitions of temperature-exposure group and find similar results.
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years old. High-risk workers make up approximately 27 percent of the sample, have higher
unemployment, are less female and slightly older. In terms of weather, on average, 11.7
percent of days during the three months preceding the CPS interviews fall below 5°C, and
9.4 percent fall between 5-10°C, while the warmest category - days exceeding 30°C - accounts

for 16.8 percent.

5 Temperature and Unemployment

5.1 Main Results

We begin by estimating the effect of past temperature exposure on the likelihood of being
unemployed at the time of the CPS interview for all workers and separately by exposure
risk. The analysis leverages the merged CPS-NOAA dataset introduced in Section 4, and
employs Equation 11 as the baseline specification. The left panel of Figure 1 plots the esti-
mated coefficients associated with each temperature interval alongside their 95% confidence
intervals.

In contrast to the typical U-shaped effects of temperature, the figure shows that recent
exposure to cold weather leads to a statistically significant increase in the probability of
unemployment, but heat has a smaller and statistically insignificant impact. To place these
impacts in context, we first focus on the lowest temperature bin. The coefficient of 0.004
implies that a one standard deviation increase in the share of days with maximum tem-
peratures below 5°C in the three months prior to the CPS interview (corresponding to a
20.9 percentage point rise) leads to a 0.094 percentage point increase in the probability of
unemployment. While modest in absolute terms, this effect amounts to approximately a 2.7
percent increase relative to the sample mean unemployment probability of 3.5 percent. A
one standard deviation rise in the share of days with maximum temperatures between 5°C

and 10°C (an increase of 12.1 percentage points) is also associated with a 0.094 percentage
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point increase in unemployment probability. By contrast, the estimates for hot weather ex-
posure are closer to zero and statistically insignificant, indicating that heat does not appear
to influence contemporaneous unemployment risk. For example, a one-standard—deviation
increase in the share of days with maximum temperatures above 30°C leads to a 0.038 per-
centage point increase in unemployment probability. The pattern in the left panel of Figure
1 thus points to an asymmetric relationship: cold temperatures elevate unemployment risk,
while heat has no discernible impact.

Turning to the estimates by risk of temperature exposure in the remaining panels of
Figure 1, we find, as expected, the effect of temperature on unemployment is substantially
stronger for workers in high-risk exposure industries.®> A day below 5°C has a four times larger
impacts for high-risk workers compared to all. A one standard deviation increase in the share
of days below 5°C raises the unemployment probability by 0.359 percentage points, or roughly
7.3 percent relative to a higher baseline unemployment rate of 4.9 percent. By contrast,
the estimates for individuals in low-risk exposure industries are smaller in magnitude and
generally statistically indistinguishable from zero. This pattern of results provides strong
support for our earlier contention that impacts are driven by sector-specific reductions in
labor demand and constraints on supply arising from direct exposure to ambient conditions,
rather than systemic disruptions that affect employment across the board.®

Lastly, it is important to note that the asymmetric effect of cold compared to hot days
on unemployment risk may be driven by differences in the duration of daily exposure to

the maximum temperature. For example, a day with a maximum temperature of 30°C will

®Cold-related increases in unemployment within high-risk exposure industries are more pronounced among
men and among workers with lower levels of education (see Appendix Figure A1l). This pattern likely reflects
differences in job tasks and exposure: higher-educated workers and women in these industries are more often
in supervisory or administrative roles (Castafieda-Burciaga et al., 2025), while men and less-educated workers
are more frequently engaged in outdoor or physically demanding activities where temperature shocks are
most consequential.

6In Appendix Figure A2, we show the impacts of temperature on unemployment separately for tradeable
and non-tradeable industries. The similarity in the estimates across sectors underscores the importance of
supply-side disruptions (presumably driven by lower productivity or disrupted operations and supply chains
under extreme cold), as weather-related changes in consumer demand would only manifest for non-tradeables.
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include cooler hours in the morning and evening, implying that workers average experienced
temperature throughout the workday is less extreme than what is implied by measures of
maximum temperature. By contrast, maximum temperature of 0°C implies that the rest of
the workday is, if anything, more extreme. Since maximum temperatures generally occur in
the middle of the workday (as opposed to minimum temperatures which occur in the early
hours of the morning), this also implies a much more limited scope for intraday adjustments
to work schedules in order to limit exposure to extreme cold temperatures. This asymmetry
in exposure intensity has been identified as a key factor in accounting for the persistent
effects of cold, but not hot, temperatures on mortality (Deschénes and Moretti, 2009). Later
in the paper, we provide extensive evidence of the mechanisms underlying the relationship

between temperature and unemployment risk.

5.2 Sensitivity Analysis

This section assesses the robustness of our baseline estimates along several dimensions. All
results are reported in Appendix Figures A3, A4 and A5. First, we examine the potential
confounding for individual-level covariates by removing the set of demographic controls to
Equation 11. The exclusion of these variables leaves the temperature coefficients virtually
unchanged.

Second, we explore the possibility that our baseline estimates conflate the effect of re-
cent temperatures with that of longer exposure, given serial correlation in local weather
conditions. To address this concern, we augment Equation 11 by controlling for tempera-
ture exposure during the prior three-month window (months -6 to -3 relative to the CPS
interview). Specifically, we include as controls the full vector of temperature bin shares from
this earlier period, denoted Z;Zl Temp36r.csmy- The point estimates for all the baseline
temperature bins remain essentially unchanged, providing reassurance that serial correlation

in temperature is not driving our results. Note that the coefficients for the earlier-period
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temperature variables are small and almost always not different from zero. Hence, the im-
pact of cold weather on unemployment is short-lived: once recent conditions are accounted
for, we find no evidence of persistent or delayed effects from past temperatures.

Then, we assess the sensitivity of our results to the length of the temperature exposure
window. While our baseline model considers temperature exposure over the three months
preceding the survey interview, this choice is somewhat arbitrary. Appendix Figure A3
shows the estimated coefficients when we instead measure exposure over the single month
prior to the survey interview. We focus on short-run temperature exposure because, as
shown in the prior sensitivity test, earlier temperature conditions do not have an effect on
unemployment. The point estimates using the one-month window are similar in direction,
magnitude and statistical significance to the baseline results, suggesting that our findings
are robust to variation in the definition of the exposure period.

We also assess whether the relationship between temperature and unemployment could
be mediated by other weather conditions. Appendix Figure A3 reports specifications where
we control for the share of days with rainfall during the previous three months and for the
share of days with snowfall. While the inclusion of these variables leave most temperature
coefficients unchanged, controlling for snowfall brings the coefficient of the coldest bin to
zero. This finding is consistent with snow mediating part of the effect of cold temperatures.
As snowfall is itself a function of temperature, however, it likely constitutes a ‘bad control’
(Angrist and Pischke, 2009), so we interpret this result with caution.

Lastly, our baseline model includes county, year, and state-by-month fixed effects. This
set of controls is designed to absorb time-invariant spatial heterogeneity, temporal changes
at the national level, and seasonal variation at the state level. We view this as a credible
identification strategy for isolating plausibly exogenous variation in temperature, however,
we test the sensitivity of our baseline estimates to using alternative combinations of fixed

effects. Appendix Figure A3 presents the results of replicating Equation 11 under alternative
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fixed effect structures. Across these specifications, the core result - that recent cold exposure
increases unemployment risk - holds consistently.

When using less demanding fixed effects than in our baseline model, the coefficients
for the highest two temperature bins increase in magnitude and become statistically sig-
nificant, suggesting that heat may also impact unemployment. Since the hot temperature
bins’ significance disappears and magnitude decreases with more stringent fixed effects, we
view the impacts of heat on unemployment with caution. Regardless, the coefficients for
heat are considerably smaller than for cold, supporting the general finding that cold impacts
unemployment.

As argued in Park and Stainier (2021), categorizing exposed workers solely on industry
classifications may mischaracterize heterogeneity in workplace temperature risks. We com-
plement our industry-based analysis with an occupational classification developed by those
authors, which ranks occupations based on average access to air conditioning. Although they
only focus on air conditioning exposure, we interpret this as a proxy for exposure to climate-
controlled environments more generally. Applying this classification to our data results in a
loss of approximately one-third of observations due to incomplete matching between the oc-
cupation codes in Park and Stainier (2021) and those available in the CPS. We re-estimate
Equation 11 separately for workers in the bottom quartile of AC access and for those in
the top three quartiles. The coefficients associated with the temperature bins from these
regressions are reported in Appendix Table A1. As expected, we find that the effects of cold
temperatures on unemployment are substantially larger among occupations with limited ac-
cess to climate control. This pattern reinforces the view that physical exposure to ambient

conditions is a key determinant of weather-induced labor market vulnerability.
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6 Mechanisms

Given that the unemployment effects of temperature are concentrated among individuals
with high exposure to ambient conditions (where the theorized mechanisms are most salient),

the remainder of the analysis focuses on this subgroup.

6.1 Joblessness Dynamics

The theoretical framework outlined in Section 2 highlights that two non-mutually exclusive
mechanisms can account for the observed increase in unemployment following exposure to
cold temperatures. First, cold weather may raise job separations (voluntary or involuntary),
increasing inflows into unemployment. Second, it may reduce the rate at which unemployed
individuals exit unemployment - either by constraining job search or decreasing hiring -
thereby prolonging unemployment spells and lowering outflows. In this subsection, we ex-
amine the relative contribution of these two channels to the overall effect of temperature on
unemployment.

Disentangling unemployment inflow and outflow dynamics is inherently challenging, but
the CPS provides a useful proxy in the form of self-reported unemployment duration. Given
the results in Figure 1, which established that cold weather in the preceding three months
is associated with a higher probability of unemployment but that additional lags in tem-
perature do not, we leverage the reported unemployment durations to gain traction on
mechanisms. Specifically, if exposure to cold over the past three months predicts a higher
likelihood of unemployment spells exceeding three months, this can only reflect a reduction
in unemployment outflows, since those individuals entered unemployment before the relevant
temperature window. By contrast, an increase in the share of individuals unemployed for less
than three months may reflect either increased inflows, reduced outflows or a combination of
both. Thus, long spells provide a lower bound on the contribution of outflows, while short

spells provide an upper bound on the contribution of inflows.
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To explore this, we re-estimate Equation 11 separately for the probability of being un-
employed for less than three months and for more than three months (relative to being
employed). The corresponding estimates are plotted in Figure 2.

We begin with the right panel of the Figure, which shows a clear positive relationship
between cold temperatures in the preceding three months and the likelihood of reporting an
unemployment duration longer than three months. This pattern provides direct evidence
that cold weather reduces unemployment outflows by extending the duration of joblessness.

The left panel shows that cold weather also predicts a higher likelihood of having become
unemployed during the last three months. While this result is consistent with increased
unemployment inflows, it cannot be interpreted as definitive evidence of that channel. Some
of the individuals with recent job separations may have exited employment for reasons unre-
lated to weather, but remain unemployed longer due to cold conditions hindering job search
or hiring.

The sum of the estimated effects in the left and right panels of Figure 2 equals the total
temperature effect on unemployment reported in the right panel of Figure 1, allowing us to
bound the relative contribution of inflows and outflows. The coefficient on long unemploy-
ment spells (right panel) provides a lower bound on the contribution of reduced outflows,
since these individuals entered unemployment before the relevant temperature window. The
coefficient on short spells (left panel) provides an upper bound on the contribution of inflows,
as it may also include some slower re-employment among recent job losers. Taken together,
this decomposition suggests that at least 72 percent of the total effect of the coldest tem-
perature bin on unemployment arises from reduced outflows (0.0126 out of 0.0175), with at

most 28 percent attributable to higher inflows into unemployment (0.0049 out of 0.0175).
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6.2 On temperature and job separation

As discussed above, the fact that past cold temperatures predict recent unemployment is not,
by itself, sufficient to establish a direct effect of temperature on job separations. To more
credibly test this channel, we turn to self-reported reasons for unemployment, which are
available in the CPS. Among the unemployed, respondents report whether they are jobless
due to a layoff, voluntary quit, or the end of a temporary contract (three of the most common
categories). We re-estimate Equation 11 and use as dependent variables each of these three
reasons for job separation. Figure 3 displays the estimates by temperature for each reason.

The left panel shows that the likelihood of recent unemployment due to the expiration
of a temporary contract is not statistically significantly related to past cold temperatures,
suggesting this margin is unrelated to weather. The middle panel reveals no evidence that
cold weather increases the likelihood of voluntary quits, ruling out voluntary inflows posited
by the model. By contrast, the right panel shows a statistically significant increase in the
probability of reporting a layoff as the reason for unemployment following recent exposure to
cold weather. This pattern suggests that a rise in temperature-related recent unemployment
inflows is driven by layoffs, not quits or the scheduled end of contracts.

Our theoretical model further predicts that cold-induced layoffs should reflect disruptions
to worker productivity and/or firm operations. While the CPS does not include direct
measures of these mechanisms, employed respondents are asked whether they were absent
from work in the past week and, if so, why. We exploit this feature to construct proxies
for temperature-sensitive labor supply and firm demand disruptions. Specifically, we use
responses indicating absence due to illness or family obligations as a proxy for reductions
in worker productivity, as the CPS does not include a direct measure of productivity, and
responses indicating absence due to weather as a proxy for disruptions to production that
are more likely to be firm-driven.

While the “weather” category could, in principle, reflect either supply or demand factors
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- for instance, a worker choosing not to commute due to snow or a firm suspending operations
- the wording of the CPS response option lends support to the latter interpretation. Among
the listed reasons for absence, respondents can select “weather affected job,” which frames
the disruption as originating from the nature or availability of the job itself. This phrasing
implies that the absence is more likely due to firm-side constraints, such as halted operations
or unsafe working conditions, rather than a discretionary decision by the worker. As such,
we interpret absences due to weather as the setting in which firm-side disruptions are most
salient, even though some supply-side response cannot be ruled out.

Although not all absences lead to job separations, prior work suggests that absenteeism
can act both as a precursor to job loss and as a consequence of deteriorating organizational
conditions, such as downsizing (Grenstad and Bernstrgm, 2025; Ichino and Maggi, 2000).
We therefore interpret temperature-induced absences as indicative of both exposure to op-
erational risk and greater vulnerability in the employment relationship.

We then re-estimate Equation 11 within the sample of employed individuals, using each
reason-specific absence indicator as the dependent variable. Because the absence question
refers to the week prior to the interview, we construct temperature exposure based on the
distribution of daily maximum temperatures over the preceding month, which is better suited
to capture the salience and timing of potential disruptions.” The results from these regres-
sions are presented in Figure 4. The left and middle panels show no systematic relationship
between cold temperatures and absences due to illness or family responsibilities, suggesting
that recent weather shocks do not impair worker productivity through these channels. In
contrast, the right panel reveals a strong and statistically significant increase in the proba-
bility of being absent from work due to weather-related reasons following exposure to cold
temperatures. Taken together, this evidence points to cold weather as a source of opera-

tional disruption for firms, with weather-induced absences acting as a potential precursor to

"Results using the three-month temperature window yield smaller but directionally consistent point esti-
mates.
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unemployment.

While our theoretical framework allows for both voluntary and involuntary job separa-
tions - potentially arising from either labor supply or labor demand factors - the set of results
we have presented so far points toward the latter: the absence of a relationship between cold
temperatures and job quits, combined with the significant estimates of the effect of cold tem-
peratures on both layoffs and weather-related absences, suggests that the observed increase
in unemployment appears primarily involuntary and driven by firm-side constraints.

To further probe this interpretation, we ask: what would happen if workers held greater
bargaining power? If cold-induced separations are indeed involuntary and demand-driven,
their incidence should be lower in labor markets with stronger employment protection. To
test this, we stratify the analysis by industry-level union coverage. Specifically, we re-
estimate the model from the left panel of Figure 3 - where the dependent variable is a
dummy for reporting a layoff as the reason for unemployment - separately for industries
with low and high unionization rates. Union coverage is measured at the industry-by-year
level, and industries are classified as “high union coverage” if their coverage rate exceeds the
top quartile of the distribution in a given year (and “low union coverage” otherwise).

Figure 5 plots the temperature estimates separately for each group. In the low-coverage
group (left panel), we replicate the earlier result: cold temperatures significantly increase
the probability of layoff. In contrast, no such pattern is observed in high union coverage
industries (right panel), where the temperature coefficients are smaller and not statistically
distinguishable from zero. While the coldest-bin estimates are not significantly different
across groups, the pattern is suggestive of some moderating role for worker protections.
Greater bargaining power may impose a floor on weather-induced separations, though even
in unionized settings, some layoffs likely remain unavoidable when firms face binding opera-

tional disruptions during cold spells.
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6.3 On temperature and longer unemployment spells

As with temperature-induced job separations, the observed reduction in unemployment exit
- reflected in longer unemployment durations - may be driven by either labor supply or labor
demand forces, or a combination of both. On the supply side, cold weather may increase
the costs of job search, reducing the intensity with which unemployed workers pursue re-
employment. On the demand side, firms may respond to adverse weather by decreasing
hiring, leading to a contraction in vacancies and fewer available job matches.

Since the CPS does not measure these variables, we turn to two datasets that provide
richer information on job search and labor market dynamics to assess the relative importance
of supply- versus demand-side frictions: the American Time Use Survey (ATUS) and the

Job Openings and Labor Turnover Survey (JOLTS) .

6.3.1 Temperature and job search intensity

We begin by investigating whether cold temperatures impact job search effort among the
unemployed. To do so, we merge our NOAA temperature data with the ATUS dataset,
which records detailed information on how individuals allocate their time on a given day
(using a 4-digit level classification), including time spent looking for work and interviewing.
We provided a detailed description of this dataset in Section 3.

We re-estimate our baseline model using indicators for whether individuals spent any time
on job search as the dependent variable. The ATUS dataset provides detailed information
on the county of residence of individuals, which allows us to exploit granular variation in the
exposure to temperature conditions as we did in the CPS. Our estimation sample includes
all unemployed respondents between 2004 and 2023, yielding a total sample size of 5,679
observations. Descriptive statistics are reported in Appendix Table A2. Half of our ATUS
sample is female, and is on average about 40 years old. Moreover, 17.6% of unemployed

individuals search for a job on the diary date.
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Columns (1) to (2) of Table 2 report the estimated effects of temperature, using exposure
windows of one and three months. Using a window of three months allows for better compa-
rability with our estimates based on CPS data. Adopting a window of one month allows us
to test whether the impact of temperature on job search effort might manifest more rapidly
than the effect of temperature on unemployment duration. Across both specifications, we
do not find a statistically significant relationship between temperature and the likelihood of
engaging in job search. However, the direction of the point estimates indicate a decrease in
search activity as temperature cools, and the magnitudes of the estimates are not trivial. Our
estimates imply that a one standard deviation increase in exposure to cold weather predicts
a reduction in job search probability of approximately 1.3 to 2.4 percentage points in the
three-month window, and 0.7 to 2.0 percentage points in the one-month window. Relative
to the baseline prevalence of job search in our sample (17.6 percent), these implied effects
correspond to reductions of roughly 4 to 14 percent. While not statistically significant, the
direction of these estimates suggest that cold-induced reductions in job search effort may

contribute to the slowdown in unemployment outflows observed in colder periods.®

6.3.2 Temperature and job openings

We next turn to the role of labor demand in explaining the observed reduction in unem-
ployment outflows during colder periods. If cold weather leads firms to decrease hiring or
scale back recruitment efforts, we should observe a decline in job openings, thereby limiting
the ability of unemployed individuals to re-enter the labor market, regardless of their search
effort.

To test this hypothesis, we merge our NOAA temperature data with the JOLTS dataset.

8We also examine time spent on job interviewing as a secondary outcome. While potentially informative,
interviewing is an equilibrium outcome shaped by both supply and demand forces, which complicates inter-
pretation. As with job search, we find no statistically significant effect of cold temperatures on the likelihood
of interviewing. However, the point estimates are consistently negative and of similar magnitude, suggesting
that cold-related slowdowns in labor demand may extend to the later stages of the job matching process.
Results are available upon request.
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As explained in Section 3, the JOLTS dataset provides detailed information on the number of
job openings, hires, and separations. While the JOLTS only provides this information at the
state-by-month level - limiting the granularity of the analysis and reducing statistical power
- it remains a valuable data source for directly assessing the responsiveness of labor demand
to temperature variation. We have information on the number of job openings in each state
and month between 2000 and 2023 and use a sample of a total of 13,517 observations to
conduct our empirical analysis. Descriptive statistics are reported in Appendix Table A2.
We estimate Equation 11 using the logarithm of the number of job openings in each
state and month as the dependent variable to reduce the influence of outliers. Temperature
exposure is defined over the past one and three months, in the same way as we did in our
analysis based on individual-level ATUS data. The last two columns of Table 2 report the
results. In both specifications, we find that colder conditions lead to significant declines in
job postings: a one standard deviation increase in exposure to cold weather predicts a 1
to 2 percent reduction in job openings.® In line with the evidence linking cold weather to
increased layoffs and weather-related work absences, these findings point to the demand side
of the labor market as a key driver of the slowdown in unemployment exit during colder

periods.

7 Conclusion

This paper provides novel evidence of the relationship between temperature exposure and
unemployment risk in the United States. Using individual-level data from the CPS merged
with high-resolution weather data, we find that colder-than-usual conditions in the months
preceding the survey interview increase the probability of individuals reporting being unem-

ployed. The impact is economically meaningful and concentrated among workers in industries

9Some of the results suggest that hot temperatures also reduce job postings, which is consistent with the
results of some of the specifications of our sensitivity analysis suggesting that heat may increase unemploy-
ment risk.
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highly exposed to ambient conditions.

Our evidence reveals that cold temperatures increase unemployment inflows and slows
down transitions back to employment. On the unemployment inflow side, cold exposure
increases the likelihood of layoffs, but has no discernible effect on quits or the expiration
of temporary contracts, suggesting that involuntary separations are the key margin of ad-
justment. The rise in layoffs is mirrored by an increase in weather-related absences from
work, a common precursor to job loss. Our results also provide suggestive evidence that the
incidence of cold-induced layoffs is muted in more unionized sectors, consistent with the idea
that greater worker bargaining power offers a buffer against weather-driven separations.

We turn to two additional datasets providing rich information on time use and labor
market dynamics to explore the mechanisms driving the reduced unemployment outflow due
to cold temperatures. Using American Time Use Survey data, we show that that while job
search effort could be a contributing factor of the reduced unemployment outflows, it is un-
likely to be the dominant mechanism. Using data from the Job Openings and Labor Turnover
Survey, we show that cold weather considerably depresses the number of job openings, point-
ing to labor demand as the binding constraint. Taken together, our results suggest that cold
weather reduces employment primarily through demand-driven, involuntary separations and
hiring slowdowns — rather than changes in worker behavior.

More broadly, our findings shed light on an unexplored dimension of labor market vul-
nerability: short-run cold weather shocks increase unemployment. By showing the frictional
channels driving this impact - colder-than-usual conditions disrupt hiring and increase in-
voluntary separations - this paper also highlights the role of weather variability in shaping
labor market flows. Our paper underscores the importance of incorporating transitory cli-
matic shocks into models of unemployment dynamics, and provides evidence of the impor-
tance of accounting for climatic conditions in the design of optimal labor market policies.

Since climate change will lessen the frequency of cold temperatures in the future, this may
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reduce unemployment rates in weather-exposed industries, and require adjustments in terms
of employment protection legislation and optimal unemployment insurance. Whether this
translates into tangible welfare gains, however, depends on a range of general equilibrium

macro-level adjustments whose investigation is beyond the scope of this paper.
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Tables and Figures

Table 1: Descriptive Statistics

Full sample  Low-risk exposure High-risk exposure

N=15,227,914 N=11,046,123 N=4,181,791
Mean SD  Mean SD Mean SD
Unemployment outcomes:
Unemployed 0.035 0.184 0.030 0.171 0.049 0.215
Unemployed for less than three months 0.020 0.141 0.017 0.130 0.028 0.166
Unemployed for less than three months - Reasons:
Layoft 0.013 0.115 0.011 0.104 0.020 0.141
Quit 0.004 0.060 0.004 0.061 0.003 0.054
End of temporary contract 0.003 0.057 0.004 0.051 0.005 0.070
Unemployed for three months or more 0.015 0.121 0.013 0.113 0.020 0.141
Reasons for not working last week:
Ilness’ 0.007 0.084 0.007 0.081 0.009 0.092
Family responsibilities’ 0.002 0.045 0.002 0.045 0.002 0.044
Weather affected job! 0.001  0.027 0.000 0.017 0.002 0.044
Sociodemographic characteristics:
Female 0.474 0.499 0.555 0.497 0.259 0.438
Age 40.46 12.39 40.22 12.46 41.09 11.95
White 0.813 0.390 0.803 0.398 0.841 0.366
Maximum temperature (share of days):
< 5°C 0.117 0.209 0.117 0.208 0.118 0.211
5-10°C 0.094 0.121 0.094 0.121 0.093 0.120
10-15°C 0.116 0.115 0.116 0.115 0.116 0.116
15-20°C 0.139 0.121 0.139 0.121 0.140 0.121
20-25°C 0.161 0.128 0.161 0.128 0.163 0.129
25-30°C 0.204 0.199 0.205 0.200 0.202 0.194
> 30°C 0.168 0.253 0.168 0.253 0.168 0.253

Notes: These statistics refer to the 1994-2023 CPS respondents included in the estimation samples used throughout the
analysis. Statistics for the variables marked with T are calculated on the subsample of CPS jobholders. The number of
counties for which there is weather information is 508.
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Table 2: Temperature and mechanisms of unemployment outflows

ATUS JOLTS
Job search activities Job openings
(1) (2) (3) (4)
Maximum temperature (share of days):
<5°C -0.188 -0.068 -0.087  -0.046*
(0.135) (0.091) (0.054)  (0.024)
5-10°C -0.161 -0.138 -0.216™*  -0.063**
(0.161) (0.088) (0.070)  (0.027)
10-15°C -0.152 -0.107 0.011 0.005
(0.108) (0.081) (0.038)  (0.025)
15-20°C -0.196* 0.041 -0.284"  -0.063**
(0.115) (0.067) (0.066)  (0.028)
20-25°C Ref. Ref. Ref. Ref.
25-30°C 0.010 0.014 -0.254*  -0.060*
(0.105) (0.061) (0.096)  (0.030)
> 30°C 0.005 0.008 -0.214*  -0.041*
(0.095) (0.060) (0.085)  (0.021)
Observations 5,679 5,679 13,517 13,517
Temperature window (in months) Three One Three One

Notes: Columns (1) and (2) report estimates from linear probability models using the ATUS estimation sample restricted
to respondents who report being unemployed. The dependent variable is a binary indicator equal to one if the respondent
spent any time on the diary day in job search activities. Standard errors are clustered at the county level. ATUS
regressions control for a female indicator, age and age squared, county fixed effects, year-of-interview fixed effects, and
state-by-month-of-interview fixed effects. Columns (3) and (4) report estimates from OLS regressions based on the JOLTS
firm-level sample, where the dependent variable is the logarithm of the number of job openings at the state-year-month
level. Standard errors are clustered at the state level. JOLTS specifications include year-of-interview fixed effects and
state-by-month-of-interview fixed effects. Statistical significance is denoted as follows: *p < 0.10, **p < 0.05, ***p < 0.01.
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Figure 1: Temperature and unemployment by risk of temperature exposure
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Notes: The figure plots the point estimates of the temperature intervals from the linear probability model described
in Equation 11. The dependent variable is a dummy variable taking a value of one if the individual is unemployed
at the time of the survey interview and zero otherwise. The estimation samples (from the the left to the right panel,
respectively) include the 15,227,914, 11,046,123 and 4,181,791 CPS respondents described in Table 1. Controls include
a female indicator, age and age squared, a dummy variable for CPS respondent identifying as ‘white’, county fixed
effects, year-of-interview fixed effects, and state-by-month-of-interview fixed effects. Standard errors are clustered at

the county level, and 95% confidence intervals are reported.
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Figure 2: Temperature and unemployment by duration, high-risk sample
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Notes: The figure plots the point estimates of the temperature intervals from the linear probability model described
in Equation 11. The dependent variables used in the left and right panel of the figure are dummies taking a value of
one if the individual has been unemployed for more and less than three months at the time of the survey interview,
and zero otherwise. The estimation sample includes the 4,181,791 high-risk exposure CPS respondents described in
Table 1. Controls include a female indicator, age and age squared, a dummy variable for CPS respondent identifying
as ‘white’, county fixed effects, year-of-interview fixed effects, and state-by-month-of-interview fixed effects. Standard
errors are clustered at the county level, and 95% confidence intervals are reported.
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Figure 3: Temperature and unemployment by reason for unemployment, high-risk sample
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Notes: The figure plots the point estimates of the temperature intervals from the linear probability model described
in Equation 11. The dependent variables used in the left, middle, and right panel of the figure are dummies taking a
value of one if the individual is unemployed at the time of the survey interview due to (i) the end of their temporary
contract, (ii) quitting, and (iii) due to a layoff, and zero otherwise, respectively. The estimation sample includes the
4,181,791 high-risk exposure CPS respondents described in Table 1. Controls include a female indicator, age and age
squared, a dummy variable for CPS respondent identifying as ‘white’, county fixed effects, year-of-interview fixed effects,
and state-by-month-of-interview fixed effects. Standard errors are clustered at the county level, and 95% confidence
intervals are reported.
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Figure 4: Temperature and absences from work, high-risk sample
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Notes: The figure plots the point estimates of the temperature intervals from the linear probability model described in
Equation 11. The dependent variables used in the left, middle, and right panel of the figure are dummies taking a value
of one if the individual has been absent from work in the week preceding the survey interview due to (i) illness, (ii)
family responsibilities, and (iii) weather disruptions, and zero otherwise, respectively. The estimation sample includes
only the CPS respondents with a job among the 4,181,791 high-risk exposure CPS respondents described in Table 1.
Controls include a female indicator, age and age squared, a dummy variable for CPS respondent identifying as ‘white’,
county fixed effects, year-of-interview fixed effects, and state-by-month-of-interview fixed effects. Standard errors are
clustered at the county level, and 95% confidence intervals are reported.
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Figure 5: Temperature and unemployment by union coverage, high-risk sample
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Notes: The figure plots the point estimates of the temperature intervals from the linear probability model described
in Equation 11. The dependent variable is a dummy variable taking a value of one if the individual has been laid off at
the time of the survey interview and zero otherwise. The estimation sample includes the 4,181,791 high-risk exposure
CPS respondents described in Table 1. We estimate our model separately for individuals working in industries with an
union coverage rate above and below the top quartile of the distribution in a given year, respectively. Controls include
a female indicator, age and age squared, a dummy variable for CPS respondent identifying as ‘white’, county fixed
effects, year-of-interview fixed effects, and state-by-month-of-interview fixed effects. Standard errors are clustered at
the county level, and 95% confidence intervals are reported.
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Online Appendix

Figure A1l: Temperature and unemployment by groups of workers - High-risk sample
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Notes: The figure plots the point estimates of the temperature intervals from
the linear probability model described in Equation 11. The dependent variable
is a dummy variable taking a value of one if the individual is unemployed at
the time of the survey interview and zero otherwise. The estimation sample
includes the 4,181,791 high-risk exposure CPS respondents described in Table
1. Controls include a female indicator, age and age squared, a dummy variable
for CPS respondent identifying as ‘white’, county fixed effects, year-of-interview
fixed effects, and state-by-month-of-interview fixed effects. Standard errors are
clustered at the county level, and 95% confidence intervals are reported.
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Figure A2: Temperature and unemployment by industry tradeability
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Notes: The figure plots the point estimates of the temperature intervals from the linear probability model described
in Equation 11. The dependent variable is a dummy variable taking a value of one if the individual is unemployed
at the time of the survey interview and zero otherwise. The estimation samples (from the the left to the right panel,
respectively) include the 5,579,310 and 9,648,604 CPS respondents in tradeable and non-tradeable industries. Controls
include a female indicator, age and age squared, a dummy variable for CPS respondent identifying as ‘white’, county
fixed effects, year-of-interview fixed effects, and state-by-month-of-interview fixed effects. Standard errors are clustered
at the county level, and 95% confidence intervals are reported.
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Figure A3: Temperature and unemployment: Robustness checks - Full sample
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Notes: The figure plots the point estimates of the baseline temperature intervals
using different specifications described in detail in Section 5.2. The dependent vari-
able is a dummy variable taking a value of one if the individual is unemployed at
the time of the survey interview and zero otherwise. The estimation sample includes
the 15,227,914 CPS respondents described in Table 1. Standard errors are clustered
at the county level, and 95% confidence intervals are reported.
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Figure A4: Temperature and unemployment: Robustness checks - Low-risk sample
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Notes: The figure plots the point estimates of the baseline temperature intervals using different
specifications described in detail in Section 5.2. The dependent variable is a dummy variable
taking a value of one if the individual is unemployed at the time of the survey interview and
zero otherwise. The estimation sample includes the 11,046,123 low-risk exposure CPS respondents
described in Table 1. Standard errors are clustered at the county level, and 95% confidence intervals
are reported.
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Figure A5: Temperature and unemployment: Robustness checks - High-risk sample
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Notes: The figure plots the point estimates of the baseline temperature intervals using different
specifications described in detail in Section 5.2. The dependent variable is a dummy variable
taking a value of one if the individual is unemployed at the time of the survey interview and
zero otherwise. The estimation sample includes the 4,181,791 high-risk exposure CPS respondents
described in Table 1. Standard errors are clustered at the county level, and 95% confidence intervals

are reported.



Table Al: Temperature and unemployment using alternative risk classifications

P(Unemployment)

AC-exposure by occupation
Park and Stainier (2021)

Full sample Low exposure High exposure

(1) (2) 3)
Maximum temperature (share of days):
<5°C 0.006* -0.000 0.024***
(0.004) (0.003) (0.007)
5-10°C 0.010*** 0.008*** 0.016**
(0.003) (0.003) (0.007)
10-15°C 0.009** 0.007* 0.013**
(0.004) (0.004) (0.006)
15-20°C 0.009** 0.005 0.020***
(0.003) (0.003) (0.006)
20-25°C Ref. Ref. Ref.
25-30°C 0.002 0.000 0.007
(0.003) (0.003) (0.005)
> 30°C 0.002 0.001 0.006
(0.002) (0.002) (0.005)
Observations 9,698,650 7,255,508 2,443,142
Adjusted R? 0.011 0.008 0.018

Notes: The table presents the point estimates of the temperature intervals independent
variables from the linear probability model described in Equation 11. The dependent variable
is a dummy taking a value of one if the individual is unemployed at the time of the survey
interview and zero otherwise. Controls include a female indicator, age and age squared, a
dummy for CPS respondent identifying as ‘white’, county fixed effects, year-of-interview fixed
effects, and state-by-month-of-interview fixed effects. The estimation sample of column (1)
consists of the 9,698,650 CPS respondents with non-missing AC-exposure measure (Park and
Stainier, 2021). Columns (2)—(3) split this sample into workers in the top three quartiles
of AC access and in the bottom quartile. Statistical significance is denoted as follows:
*p < 0.10, **p < 0.05, and ***p < 0.01.
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Table A2: Descriptive Statistics

ATUS JOLTS
N=5,679 N=13,517

Mean SD Mean SD

Maximum temperature (share of days):
Three months prior interview

< 5°C 0.103 0.201 0.105 0.199
5-10°C 0.085 0.116 0.086 0.112
10-15°C 0.116 0.119 0.115 0.109
15-20°C 0.142 0.123 0.143 0.115
20-25°C 0.167 0.130 0.167 0.114
25-30°C 0.199 0.182 0.205 0.180

> 30°C 0.188 0.272 0.179 0.248

One month prior interview
<5°C 0.109 0.241 0.105 0.229
5-10°C 0.086 0.145 0.086 0.135
10-15°C 0.115 0.154 0.115 0.140
15-20°C 0.139 0.162 0.143 0.149
20-25°C 0.162 0.175 0.167 0.153
25-30°C 0.196 0.228 0.205 0.215
> 30°C 0.192 0.313 0.179 0.279

Outcomes:
Job search activities 0.176 . ) .
Job openings (in log) : : 11.94 1.018
Sociodemographic characteristics:
Female 0.549 . . .
Age 39.21 13.43 . :

Notes: These statistics refer to the 2004-2023 ATUS respondents and 2000-2023
JOLTS observations included in the estimation samples used in Table 2.
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