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1 Introduction

Weather shocks pose a ubiquitous and salient source of economic risk with the potential to

disrupt employment dynamics. Since labor markets are characterized by frictions - contracts

are lumpy, matching takes time, and separations are costly - adverse weather can not only

reduce hours worked and productivity (Garg et al., 2020; Graff Zivin and Neidell, 2014;

LoPalo, 2023; Neidell et al., 2021; Somanathan et al., 2021), it can sever employment rela-

tionships entirely, increase unemployment duration or discourage job search and hiring. With

expected changes in weather due to climate change, understanding the impacts of weather

shocks can help economies prepare for and adapt to the ensuing labor market disruptions.

This paper investigates the impact of temperature on unemployment, the workforce dy-

namics driving this effect, and the underlying mechanisms. We develop a theoretical model

of firm and worker decisions and labor market matching to characterize the margins where

temperature may impact unemployment. For instance, temperature can influence unemploy-

ment through both firms and workers: cold weather may reduce labor demand by making

certain activities temporarily infeasible, and may also alter workers’ willingness to supply

labor when outdoor conditions become unpleasant or unsafe. Using high-frequency weather

data linked to three decades of monthly Current Population Survey microdata consisting of

over 15 million observations, we estimate the effect of temperature exposure in the past three

months on the probability that an individual is unemployed. Following the literature before

us, we estimate models with multiple fixed effects to isolate causal impacts of temperature

and control for temperature flexibly by using a binned approach. Informed by our theoretical

model, we then analyze the effects of weather shocks on various measures of unemployment

inflows and outflows, and bring additional data on time use and job postings to analyze the

drivers of these workforce dynamics.

Our main finding is that cold, but not hot, temperatures significantly increase unem-

ployment risk. This effect is concentrated among individuals in industries with high risk of
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climate exposure but is largely non-existent for those with low risk. Our estimates imply

that a one standard deviation increase in the share of days below 5°C increases unemploy-

ment by approximately 2.7 percent, while the corresponding effect in high-risk industries is

roughly 7.3 percent. These impacts are driven by both higher job separation rates (higher

unemployment inflows) and slower transitions back to employment (lower unemployment

outflows).

On the mechanisms driving the inflow side, we find that cold temperatures increase

layoffs but not quits or the end of temporary contracts. Among employed workers, cold

temperatures also lead to higher rates of weather-related work absences, consistent with

heightened operational disruptions that may be early signals contributing to fragility in the

employment relationship, with prior evidence linking absenteeism to the onset of job loss

(Grønstad and Bernstrøm, 2025; Ichino and Maggi, 2000). Moreover, our results provide

suggestive evidence of a moderating role of unions, perhaps driven by increased bargaining

power and employment protection, as the effects are attenuated in areas with more unionized

sectors.

We also explore mechanisms behind the decrease in unemployment outflow at the lower

end of the temperature distribution by exploring job search effort and hiring activity to better

understand demand and supply-side factors. Using the American Time Use Survey, we find

that cold weather is not statistically significantly related to job search activities. Using the

Job Openings and Labor Turnover Survey, we find, however, that cold temperatures lead

to important reductions in employer vacancy postings. These findings imply that the lower

unemployment outflows due to cold weather are likely demand-driven: firms reduce hiring

activity in response to cold shocks.

Our finding that colder weather increases unemployment while hotter weather does not

differs from prior studies that emphasize the negative effect of heat on worker productivity.

We believe this contrast arises because much of the existing literature focuses on immediate
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and intensive-margin labor supply responses, such as daily reductions in hours worked or pro-

ductivity, typically using same-day temperature exposure. Instead, we examine extensive-

margin labor market responses to prolonged temperature exposure over longer periods of

time. It is plausible that sustained exposure to cold leads to more severe and persistent

employment disruptions than exposure to heat. In fact, the nature of weather-related dis-

ruptions differ substantially by weather. Many tasks face hard thresholds in cold weather

below which they cannot proceed, such as concrete pouring, asphalt paving, and masonry

work that become less feasible below 5°C due to freezing risks. In contrast, high tempera-

tures are less likely to make tasks outright infeasible, at least at levels currently experienced

in most of the world, but instead slow productivity. Cold weather also depresses product

demand considerably more than heat in climate-exposed industries (Chan and Wichman,

2020, 2022; Kuruc et al., 2025), which may lead firms to scale back hiring or lay off work-

ers. Thus, while heat may reduce productivity, extreme cold may impose both operational

constraints and reductions in product demand, helping to explain the observed asymmetric

effect on unemployment.

These asymmetric results suggest that the cold-weather burden on the labor market may

decline under milder future winters expected under climate change. As a result, there may

be a reduced need for labor market intervention, such as seasonal unemployment insurance,

in milder winters. However, any full evaluation of climate change’s net impact on the econ-

omy requires a broader accounting of impacts beyond the channel of unemployment. A large

body of work documents that hot temperatures harm population health, impede child devel-

opment, reduce mental well-being, increase mortality, lower labor productivity, slow long-run

economic growth, and raise energy demand.1 Thus, while our study points to the benefit of

1For examples, see Albanese et al. (2025); Aragón et al. (2021); Auffhammer et al. (2017); Barreca et al.
(2015, 2016); Baylis (2020); Baylis et al. (2018); Belloc et al. (2025); Bilal and Känzig (2024); Burgess et al.
(2014, 2017); Burke and Emerick (2016); Burke et al. (2018, 2015); Carleton and Hsiang (2016); Chen and
Yang (2019); Dell et al. (2012, 2014); Deschênes (2014, 2022); Deschênes and Greenstone (2011); Deschênes
and Moretti (2009); Evans et al. (2025); Garg et al. (2020, 2024); Graff Zivin and Neidell (2014); Graff Zivin
and Shrader (2016); Guirguis et al. (2018); Heutel et al. (2021); Hsiang (2010); Jain et al. (2020); LoPalo
(2023); Miller et al. (2021); Mullins and White (2019); Neidell et al. (2021); Noelke et al. (2016); Rode et al.
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warming in a specific context, it should not be interpreted as a comprehensive assessment

of the overall economic effects of climate change, but instead as providing evidence relevant

to understanding the ways in which we might develop adaptation policies in response to

warmer temperatures.

This paper also contributes to the broader labor economics literature that studies how

shocks shape unemployment dynamics. Much of this literature has focused on policy-induced

variation in unemployment insurance (Chodorow-Reich et al., 2019; Farber et al., 2015;

Hagedorn et al., 2013; Johnston and Mas, 2018; Karahan et al., 2025), trade or tariff shocks

(Furceri et al., 2018; Kim and Vogel, 2021; Yi et al., 2024), or large-scale layoffs. The latter

have been studied either as macro shocks (Davis and Von Wachter, 2011), more localized

shocks such as mass layoff at the firm-level (Flaaen et al., 2019) or military base closures

(Dahlberg et al., 2024). Our work is most closely related to this last strand, which treats

the termination of employment contracts as plausibly exogenous but is complicated by the

fact that displaced workers simultaneously flood local labor markets. By contrast, our use

of temperature as a shock provides a novel and clean source of exogenous variation: weather

shocks are sharp, transitory, and arguably orthogonal to underlying labor market conditions,

allowing us to isolate their causal impact on both inflows into and outflows from unemploy-

ment. In doing so, our study complements prior work that primarily examines worker search

behavior or firm responses to changing outside options, by bringing new evidence on how

exogenous environmental shocks disrupt labor market matching and alter the incidence and

duration of unemployment. Our paper also contributes to the literature on the determinants

of unemployment inflows and outflows (Elsby et al., 2019, 2010; Elsby and Michaels, 2013)

by introducing weather shocks as a novel driver of these flows.

The remainder of the paper is organized as follows. Section 2 develops a theoretical

framework for understanding the effect of temperature on unemployment. Section 3 describes

the data sources. Section 4 outlines the empirical strategy. Section 5 presents the main

(2021); Severen et al. (2018); Somanathan et al. (2021); White (2017); Zhang et al. (2018).
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results and robustness checks. Section 6 examines the underlying mechanisms. Section 7

concludes.

2 Theoretical Framework

We begin with a conceptual framework to characterize how temperature affects unemploy-

ment through its influence on firm decisions, worker behavior, and the efficiency of labor

market matching. This framework informs our empirical approach by identifying the mar-

gins along which temperature-induced shocks can alter the risk of unemployment.

2.1 Firm Behavior

Firms produce output using labor, and choose employment levels to maximize profits. We

assume competitive product and labor markets, so that firms take both the output price p

and the wage w as given. Productivity is sensitive to temperature, which affects both worker

performance and broader business operations. We denote the firm’s static profit function as:

π(T ) = p · A(T ) · L− w · L, (1)

where L is labor employed, and A(T ) is total productivity per workers, which depends on

temperature T . We define:

A(T ) = g(AW (T ), AB(T )), (2)

where AW (T ) captures the effect of temperature on worker-specific productivity (e.g., fa-

tigue, absenteeism, injury risk), and AB(T ) captures the effect of temperature on firm-level

productivity beyond worker performance (e.g disruptions to firm operations, demand fluc-

tuations, supply chain instability). We do not impose a functional form to g(·) but assumes

that it increases with AW (T ) and AB(T ).
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A job is destroyed when the marginal revenue product of labor falls below the wage:

p · A(T ) < w. (3)

The job destruction rate d(T ) therefore increases in response to reductions in AW (T ) or

AB(T ) induced by temperature changes.

Vacancy posting is similarly responsive to temperature. Let Jt denote the number of

vacancies:

Jt = h(T ), (4)

where h(·) reflects the expected profitability of hiring. It may be non-monotonic, accommo-

dating the possibility that extreme cold or heat discourages vacancy creation.

2.2 Worker Behavior and Reservation Wages

Workers derive utility from wages ω and disutility from working under adverse temperature

conditions. Utility is given by:

V = V (ω)− F (T ), (5)

where V (ω) is increasing and concave, and F (T ) captures thermal discomfort, health risks,

or other costs of labor supply. We assume F (T ) is minimized at an interior optimum and

increases on either side, such that F ′′(T ) > 0. This allows both extreme heat and cold to

reduce the attractiveness of work. Workers compare this to the utility of their outside option

b (e.g., unemployment benefits, home production).

Acceptance occurs when:

V (ω)− F (T ) ≥ b, (6)
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which implies a reservation wage:

ω∗(T ) = V −1(b+ F (T )). (7)

The quit rate is similarly temperature-dependent:

q(T ) = Pr[ω < ω∗(T )]. (8)

2.3 Matching Efficiency and Labor Market Flows

Employment transitions occur through a matching process that depends on vacancies, un-

employment, and matching efficiency. We define the matching function as:

m(Ut, Jt, T ) = µ(T ) · f(Ut, Jt), (9)

where Ut is unemployment, Jt is vacancies, f(·) is a standard Cobb-Douglas function, and

µ(T ) is a temperature-dependent efficiency term. Temperature may reduce µ(T ) by impeding

mobility, lowering search effort, or delaying hiring processes.

2.4 Law of Motion for Unemployment

Let u(t) denote the unemployment rate and normalize the size of the labor force to one.

The unemployment rate dynamics reflect the difference between inflows (job destruction and

quits) and outflows (matches):

u̇(t) = d(T ) · (1− ut) + q(T ) · (1− ut)−m(Ut, Jt, T ). (10)
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Differentiating with respect to temperature yields:

du̇

dT
= (

∂AW (T )

∂T
· ∂d(T )

∂AW (T )
+

∂AB(T )

∂T
· ∂d(T )

∂AB(T )
) · (1− ut)︸ ︷︷ ︸

Job destruction

+ (
∂F (T )

∂T
· ∂q(T )
∂F (T )

) · (1− ut)︸ ︷︷ ︸
Quits

−
[
∂µ(T )

∂T
· f(Ut, Jt) + µ(T ) · ∂f(Ut, Jt)

∂Jt
· ∂Jt
∂T

]
︸ ︷︷ ︸

Matching efficiency and vacancies

.

As this equation shows, temperature affects labor market dynamics through its impact

on the rate at which workers flow into and out of unemployment through three channels.

Job destruction may rise when temperature depresses productivity. Quits may increase as

temperature raises the disutility of work and the reservation wage. Temperature may also

affect matching efficiency, with firms reducing vacancy postings and the unemployed having

less incentives to engage in job search. These forces jointly contribute to higher steady-state

unemployment and longer unemployment durations.

Note that we have so far implicitly assumed firms and workers to be homogeneous.

However, our framework accommodates heterogeneity (e.g. some firms or workers may be

more temperature-sensitive) by simply allowing all components in Equation (10) to vary

across groups g ∈ {1, . . . , G}.

The remainder of the paper provides an empirical test of the framework developed above.

We begin by assessing whether temperature systematically affects unemployment in the ag-

gregate, then examine heterogeneity across groups with different temperature-sensitiveness,

and finally investigate the relative contribution of each modeled mechanisms to the observed

responses.
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3 Data Sources

3.1 Current Population Survey Data

The main source of labor market information used in this paper is the Current Population

Survey (CPS), a monthly household survey conducted jointly by the U.S. Census Bureau and

the Bureau of Labor Statistics. The CPS has been administered on a consistent monthly basis

since 1948 and remains the primary instrument for producing official labor force statistics in

the United States. We use data from 1994 to 2023.

Each month, the CPS collects data from approximately 60,000 eligible households, yield-

ing information on roughly 100,000 individuals. The survey gathers detailed data on em-

ployment status, hours worked, occupation, industry, unemployment duration, and reason

for job separation. In addition to labor force indicators, the CPS includes rich demographic

characteristics such as age, gender, ethnicity, education, and household structure. The CPS

also contains information on the county of residence of individuals when they are inter-

viewed, which we use to merge the CPS dataset with our weather dataset on the history of

temperature conditions at the county–day level.2

Among unemployed respondents, the CPS records the length of the unemployment spell

(in weeks) and a categorical indicator for the reason for separation, such as layoff, voluntary

quit, or the end of a temporary job. For employed individuals, the CPS tracks whether

the respondent was absent from work during the reference week and, if so, the reason for

the absence (e.g., illness, family obligations, or weather-related disruptions). These features

make the CPS particularly well suited for studying not only the incidence of unemployment,

but also the mechanisms underlying labor market transitions.

2For 48.47% of the sample, the data only identifies their Metropolitan Statistical Area (MSA) of residence,
not their specific county. For these cases, we use the population distribution as a proxy for likely residence,
assigning individuals to the most populous county within their MSA.
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3.2 American Time Use Survey Data

To further investigate the mechanisms underlying the impact of temperature on unemploy-

ment, we use the American Time Use Survey (ATUS) data. The ATUS is administered by

the U.S. Census Bureau on behalf of the Bureau of Labor Statistics, which conducts ap-

proximately 8,500 interviews annually. Respondents complete a 24-hour time diary referring

to the day before the interview, which provides minute-level information on all activities

undertaken during the diary day. Activities are classified into 4-digit categories, allowing

us to observe in detail how individuals allocate their time. Importantly, this allows us to

construct precise measures of time spent searching for a job - our outcome of interest for

examining supply-side behaviors.

In addition to activity data, the ATUS contains detailed information on demographic

characteristics and geographic identifiers, including the date of the interview and the re-

spondent’s county of residence. This enables us to merge the ATUS with National Oceanic

and Atmospheric Administration weather data at the county-day level.

3.3 Job Openings and Labor Turnover Survey Data

We use the Job Openings and Labor Turnover Survey (JOLTS) dataset to provide additional

evidence on the mechanisms behind the effect of temperature on unemployment. The JOLTS

is a monthly survey conducted by the U.S. Bureau of Labor Statistics at the national level.

The JOLTS collects data from approximately 21,000 nonagricultural business establishments

across all 50 states and the District of Columbia, providing estimates of job openings, hires,

and separations. While the JOLTS dataset only provides information at the state-by-month

level - providing less granular data than our aforementioned county-level analyses - its rich

information on employers and labor shortages makes it a valuable source to analyze demand-

side factors contributing to the effect of temperature on unemployment.
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3.4 Weather Data

To measure individuals’ exposure to temperature, we use weather data from the National

Oceanic and Atmospheric Administration (NOAA). NOAA compiles daily meteorological

information from more than 9,000 weather stations across the United States, including max-

imum and minimum temperatures, average temperature, precipitation, and snowfall.

We link these data to each of the above to implement our analyses, aggregating the

station-day-level observations at the finest geographic levels available in our other datasets

(county–day for CPS and ATUS and state–month for JOLTS). Because the effect of tem-

perature on unemployment may take some time to materialize, we construct weather expo-

sure measures capturing the history of weather conditions over the months preceding each

county–day (we provide a more detailed description of our main independent variables when

describing our empirical strategy). Given the more than 3,000 counties in the United States,

this results in a panel weather dataset containing more than 32 million county-day observa-

tions. The high spatial and temporal resolution of this dataset allows us to exploit granular

variation in the exposure to temperature conditions.

4 Empirical Strategy

We estimate the following empirical model throughout the analysis:

Ui,c,s,m,y =
7∑

T=1

βTTempT,c,s,m,y + ϕXi + δc + δy + δs,m + εi,c,s,m,y (11)

where i stands for individual, c for county, s for state, m for the month and y for the

year of the interview. Ui,c,s,m,y is a binary variable taking a value of one if individual i is

unemployed during month m of year y and zero otherwise.

Our independent variables of interest, TempT,c,s,m,y, comprise of continuous variables of

the share of days with a maximum temperature falling in interval T over the last three
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months prior to month m of year t in county c. We measure temperature over the three

months prior to the month of the survey interview to allow sufficient time for temperature

conditions to affect unemployment. As detailed below, we also explore alternate windows of

time before the survey interview (1 month and 6 months). To allow for nonlinear effects, we

use seven temperature intervals T (in degrees Celsius): lower or equal to 5°C; 5-10°C; 10-

15°C; 15-20°C; 25-30°C; higher or equal to 30°C, with 20-25°C as the reference category. Our

main estimates of interest can be interpreted as the effect of an increase of one percentage

point in the proportion of days with maximum temperatures within a temperature interval

during the three months prior to the survey interview on unemployment relative to being

exposed to temperatures within the benchmark temperature range (i.e., between 20 and 25

°C).

We include county fixed effects, δc, to absorb time-invariant cross-county differences in

unemployment that may be correlated with temperature or economic conditions. Year fixed

effects, δy, control for time-varying changes in our dependent and independent variables at

the national level, such as macroeconomic cycles. Finally, δs,m denote state-by-month fixed

effects, which allow us to flexibly account for seasonality that may differ systematically across

states, for instance, capturing the fact that January in Minnesota differs from January in

Florida. Together, this set of fixed effects enables us to identify the relationship between tem-

perature and unemployment from within-county, within-year, and within-season-state fluc-

tuations in weather. Individual covariates are denoted by Xi, which includes pre-determined

characteristics of the individual (gender, a quadratic function of the individual’s age and a

dummy for respondents identifying as ‘white’).3 Standard errors are clustered at the county

level to account for the grouped nature of temperature exposure and serial correlation in

temperature over time.

We estimate Equation 11 using an estimation sample pooling the aforementioned CPS

3Race categories in the CPS have changed over time, making it difficult to construct a consistent set
of detailed categories across our sample period. To maintain comparability over time, we define race as a
binary indicator for respondents identifying as ‘white’ versus ‘non-white.’
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monthly microdata from 1994 to 2023. We restrict the sample to individuals under the

age of 65 and exclude respondents with missing information on labor force status, age or

gender. We also exclude individuals for whom we cannot observe the temperature to which

they have been exposed (i.e. for whom there is no information available on their county or

Metropolitan Statistical Area of residence). Applying these criteria yields a final sample of

15,227,914 individual-month observations.

Estimating Equation 11 with this final sample yields estimates of the average impact

of temperature across all workers. But differences in climate exposure across workers may

mask important heterogeneity in impacts. To explore this, we use the classification scheme in

Graff Zivin and Neidell (2014) and assign each individual to high- or low-risk of temperature

exposure based on their industry. Specifically, we label high-risk of exposure for workers in

the agriculture, mining, construction, manufacturing, entertainment or transportation indus-

tries, and low-risk to the remainder; and estimate Equation 11 separately for each.4 We also

explore alternative definitions of risk using occupational classification developed by Park and

Stainier (2021), with results described in Section 5.2. If extreme weather creates systemic

disruptions to labor markets, such as road closures or power outages, we would expect all

workers to be impacted by weather, irrespective of their sector or occupation. On the other

hand, if the impacts are driven by conditions on the job, then workers in outdoor environ-

ments or facilities with limited climate control should experience greater effects from weather

shocks than workers in climate-controlled environments, who may experience no impacts at

all. As such, our heterogeneity analysis not only reveals how impacts are distributed across

workers, but also clarifies the channels through which temperature affects labor outcomes.

Table 1 provides descriptive statistics of our main independent and dependent variables

for our sample separately for all, low-risk and high-risk workers. The mean unemployment

rate is 3.5 percent. The sample is 47.4 percent female, and the average respondent is 40.5

4One could argue that some industries, such as entertainment, may fall under either category. While our
main definition of temperature-exposure groups assigns ambiguous industries to high-risk industries, we have
estimated these models using alternative definitions of temperature-exposure group and find similar results.
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years old. High-risk workers make up approximately 27 percent of the sample, have higher

unemployment, are less female and slightly older. In terms of weather, on average, 11.7

percent of days during the three months preceding the CPS interviews fall below 5°C, and

9.4 percent fall between 5–10°C, while the warmest category - days exceeding 30°C - accounts

for 16.8 percent.

5 Temperature and Unemployment

5.1 Main Results

We begin by estimating the effect of past temperature exposure on the likelihood of being

unemployed at the time of the CPS interview for all workers and separately by exposure

risk. The analysis leverages the merged CPS-NOAA dataset introduced in Section 4, and

employs Equation 11 as the baseline specification. The left panel of Figure 1 plots the esti-

mated coefficients associated with each temperature interval alongside their 95% confidence

intervals.

In contrast to the typical U-shaped effects of temperature, the figure shows that recent

exposure to cold weather leads to a statistically significant increase in the probability of

unemployment, but heat has a smaller and statistically insignificant impact. To place these

impacts in context, we first focus on the lowest temperature bin. The coefficient of 0.004

implies that a one standard deviation increase in the share of days with maximum tem-

peratures below 5°C in the three months prior to the CPS interview (corresponding to a

20.9 percentage point rise) leads to a 0.094 percentage point increase in the probability of

unemployment. While modest in absolute terms, this effect amounts to approximately a 2.7

percent increase relative to the sample mean unemployment probability of 3.5 percent. A

one standard deviation rise in the share of days with maximum temperatures between 5°C

and 10°C (an increase of 12.1 percentage points) is also associated with a 0.094 percentage
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point increase in unemployment probability. By contrast, the estimates for hot weather ex-

posure are closer to zero and statistically insignificant, indicating that heat does not appear

to influence contemporaneous unemployment risk. For example, a one–standard–deviation

increase in the share of days with maximum temperatures above 30◦C leads to a 0.038 per-

centage point increase in unemployment probability. The pattern in the left panel of Figure

1 thus points to an asymmetric relationship: cold temperatures elevate unemployment risk,

while heat has no discernible impact.

Turning to the estimates by risk of temperature exposure in the remaining panels of

Figure 1, we find, as expected, the effect of temperature on unemployment is substantially

stronger for workers in high-risk exposure industries.5 A day below 5°C has a four times larger

impacts for high-risk workers compared to all. A one standard deviation increase in the share

of days below 5°C raises the unemployment probability by 0.359 percentage points, or roughly

7.3 percent relative to a higher baseline unemployment rate of 4.9 percent. By contrast,

the estimates for individuals in low-risk exposure industries are smaller in magnitude and

generally statistically indistinguishable from zero. This pattern of results provides strong

support for our earlier contention that impacts are driven by sector-specific reductions in

labor demand and constraints on supply arising from direct exposure to ambient conditions,

rather than systemic disruptions that affect employment across the board.6

Lastly, it is important to note that the asymmetric effect of cold compared to hot days

on unemployment risk may be driven by differences in the duration of daily exposure to

the maximum temperature. For example, a day with a maximum temperature of 30°C will

5Cold-related increases in unemployment within high-risk exposure industries are more pronounced among
men and among workers with lower levels of education (see Appendix Figure A1). This pattern likely reflects
differences in job tasks and exposure: higher-educated workers and women in these industries are more often
in supervisory or administrative roles (Castañeda-Burciaga et al., 2025), while men and less-educated workers
are more frequently engaged in outdoor or physically demanding activities where temperature shocks are
most consequential.

6In Appendix Figure A2, we show the impacts of temperature on unemployment separately for tradeable
and non-tradeable industries. The similarity in the estimates across sectors underscores the importance of
supply-side disruptions (presumably driven by lower productivity or disrupted operations and supply chains
under extreme cold), as weather-related changes in consumer demand would only manifest for non-tradeables.
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include cooler hours in the morning and evening, implying that workers average experienced

temperature throughout the workday is less extreme than what is implied by measures of

maximum temperature. By contrast, maximum temperature of 0°C implies that the rest of

the workday is, if anything, more extreme. Since maximum temperatures generally occur in

the middle of the workday (as opposed to minimum temperatures which occur in the early

hours of the morning), this also implies a much more limited scope for intraday adjustments

to work schedules in order to limit exposure to extreme cold temperatures. This asymmetry

in exposure intensity has been identified as a key factor in accounting for the persistent

effects of cold, but not hot, temperatures on mortality (Deschênes and Moretti, 2009). Later

in the paper, we provide extensive evidence of the mechanisms underlying the relationship

between temperature and unemployment risk.

5.2 Sensitivity Analysis

This section assesses the robustness of our baseline estimates along several dimensions. All

results are reported in Appendix Figures A3, A4 and A5. First, we examine the potential

confounding for individual-level covariates by removing the set of demographic controls to

Equation 11. The exclusion of these variables leaves the temperature coefficients virtually

unchanged.

Second, we explore the possibility that our baseline estimates conflate the effect of re-

cent temperatures with that of longer exposure, given serial correlation in local weather

conditions. To address this concern, we augment Equation 11 by controlling for tempera-

ture exposure during the prior three-month window (months -6 to -3 relative to the CPS

interview). Specifically, we include as controls the full vector of temperature bin shares from

this earlier period, denoted
∑7

T=1 Temp36T,c,s,m,y. The point estimates for all the baseline

temperature bins remain essentially unchanged, providing reassurance that serial correlation

in temperature is not driving our results. Note that the coefficients for the earlier-period
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temperature variables are small and almost always not different from zero. Hence, the im-

pact of cold weather on unemployment is short-lived: once recent conditions are accounted

for, we find no evidence of persistent or delayed effects from past temperatures.

Then, we assess the sensitivity of our results to the length of the temperature exposure

window. While our baseline model considers temperature exposure over the three months

preceding the survey interview, this choice is somewhat arbitrary. Appendix Figure A3

shows the estimated coefficients when we instead measure exposure over the single month

prior to the survey interview. We focus on short-run temperature exposure because, as

shown in the prior sensitivity test, earlier temperature conditions do not have an effect on

unemployment. The point estimates using the one-month window are similar in direction,

magnitude and statistical significance to the baseline results, suggesting that our findings

are robust to variation in the definition of the exposure period.

We also assess whether the relationship between temperature and unemployment could

be mediated by other weather conditions. Appendix Figure A3 reports specifications where

we control for the share of days with rainfall during the previous three months and for the

share of days with snowfall. While the inclusion of these variables leave most temperature

coefficients unchanged, controlling for snowfall brings the coefficient of the coldest bin to

zero. This finding is consistent with snow mediating part of the effect of cold temperatures.

As snowfall is itself a function of temperature, however, it likely constitutes a ‘bad control’

(Angrist and Pischke, 2009), so we interpret this result with caution.

Lastly, our baseline model includes county, year, and state-by-month fixed effects. This

set of controls is designed to absorb time-invariant spatial heterogeneity, temporal changes

at the national level, and seasonal variation at the state level. We view this as a credible

identification strategy for isolating plausibly exogenous variation in temperature, however,

we test the sensitivity of our baseline estimates to using alternative combinations of fixed

effects. Appendix Figure A3 presents the results of replicating Equation 11 under alternative
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fixed effect structures. Across these specifications, the core result - that recent cold exposure

increases unemployment risk - holds consistently.

When using less demanding fixed effects than in our baseline model, the coefficients

for the highest two temperature bins increase in magnitude and become statistically sig-

nificant, suggesting that heat may also impact unemployment. Since the hot temperature

bins’ significance disappears and magnitude decreases with more stringent fixed effects, we

view the impacts of heat on unemployment with caution. Regardless, the coefficients for

heat are considerably smaller than for cold, supporting the general finding that cold impacts

unemployment.

As argued in Park and Stainier (2021), categorizing exposed workers solely on industry

classifications may mischaracterize heterogeneity in workplace temperature risks. We com-

plement our industry-based analysis with an occupational classification developed by those

authors, which ranks occupations based on average access to air conditioning. Although they

only focus on air conditioning exposure, we interpret this as a proxy for exposure to climate-

controlled environments more generally. Applying this classification to our data results in a

loss of approximately one-third of observations due to incomplete matching between the oc-

cupation codes in Park and Stainier (2021) and those available in the CPS. We re-estimate

Equation 11 separately for workers in the bottom quartile of AC access and for those in

the top three quartiles. The coefficients associated with the temperature bins from these

regressions are reported in Appendix Table A1. As expected, we find that the effects of cold

temperatures on unemployment are substantially larger among occupations with limited ac-

cess to climate control. This pattern reinforces the view that physical exposure to ambient

conditions is a key determinant of weather-induced labor market vulnerability.
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6 Mechanisms

Given that the unemployment effects of temperature are concentrated among individuals

with high exposure to ambient conditions (where the theorized mechanisms are most salient),

the remainder of the analysis focuses on this subgroup.

6.1 Joblessness Dynamics

The theoretical framework outlined in Section 2 highlights that two non-mutually exclusive

mechanisms can account for the observed increase in unemployment following exposure to

cold temperatures. First, cold weather may raise job separations (voluntary or involuntary),

increasing inflows into unemployment. Second, it may reduce the rate at which unemployed

individuals exit unemployment - either by constraining job search or decreasing hiring -

thereby prolonging unemployment spells and lowering outflows. In this subsection, we ex-

amine the relative contribution of these two channels to the overall effect of temperature on

unemployment.

Disentangling unemployment inflow and outflow dynamics is inherently challenging, but

the CPS provides a useful proxy in the form of self-reported unemployment duration. Given

the results in Figure 1, which established that cold weather in the preceding three months

is associated with a higher probability of unemployment but that additional lags in tem-

perature do not, we leverage the reported unemployment durations to gain traction on

mechanisms. Specifically, if exposure to cold over the past three months predicts a higher

likelihood of unemployment spells exceeding three months, this can only reflect a reduction

in unemployment outflows, since those individuals entered unemployment before the relevant

temperature window. By contrast, an increase in the share of individuals unemployed for less

than three months may reflect either increased inflows, reduced outflows or a combination of

both. Thus, long spells provide a lower bound on the contribution of outflows, while short

spells provide an upper bound on the contribution of inflows.

20



To explore this, we re-estimate Equation 11 separately for the probability of being un-

employed for less than three months and for more than three months (relative to being

employed). The corresponding estimates are plotted in Figure 2.

We begin with the right panel of the Figure, which shows a clear positive relationship

between cold temperatures in the preceding three months and the likelihood of reporting an

unemployment duration longer than three months. This pattern provides direct evidence

that cold weather reduces unemployment outflows by extending the duration of joblessness.

The left panel shows that cold weather also predicts a higher likelihood of having become

unemployed during the last three months. While this result is consistent with increased

unemployment inflows, it cannot be interpreted as definitive evidence of that channel. Some

of the individuals with recent job separations may have exited employment for reasons unre-

lated to weather, but remain unemployed longer due to cold conditions hindering job search

or hiring.

The sum of the estimated effects in the left and right panels of Figure 2 equals the total

temperature effect on unemployment reported in the right panel of Figure 1, allowing us to

bound the relative contribution of inflows and outflows. The coefficient on long unemploy-

ment spells (right panel) provides a lower bound on the contribution of reduced outflows,

since these individuals entered unemployment before the relevant temperature window. The

coefficient on short spells (left panel) provides an upper bound on the contribution of inflows,

as it may also include some slower re-employment among recent job losers. Taken together,

this decomposition suggests that at least 72 percent of the total effect of the coldest tem-

perature bin on unemployment arises from reduced outflows (0.0126 out of 0.0175), with at

most 28 percent attributable to higher inflows into unemployment (0.0049 out of 0.0175).
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6.2 On temperature and job separation

As discussed above, the fact that past cold temperatures predict recent unemployment is not,

by itself, sufficient to establish a direct effect of temperature on job separations. To more

credibly test this channel, we turn to self-reported reasons for unemployment, which are

available in the CPS. Among the unemployed, respondents report whether they are jobless

due to a layoff, voluntary quit, or the end of a temporary contract (three of the most common

categories). We re-estimate Equation 11 and use as dependent variables each of these three

reasons for job separation. Figure 3 displays the estimates by temperature for each reason.

The left panel shows that the likelihood of recent unemployment due to the expiration

of a temporary contract is not statistically significantly related to past cold temperatures,

suggesting this margin is unrelated to weather. The middle panel reveals no evidence that

cold weather increases the likelihood of voluntary quits, ruling out voluntary inflows posited

by the model. By contrast, the right panel shows a statistically significant increase in the

probability of reporting a layoff as the reason for unemployment following recent exposure to

cold weather. This pattern suggests that a rise in temperature-related recent unemployment

inflows is driven by layoffs, not quits or the scheduled end of contracts.

Our theoretical model further predicts that cold-induced layoffs should reflect disruptions

to worker productivity and/or firm operations. While the CPS does not include direct

measures of these mechanisms, employed respondents are asked whether they were absent

from work in the past week and, if so, why. We exploit this feature to construct proxies

for temperature-sensitive labor supply and firm demand disruptions. Specifically, we use

responses indicating absence due to illness or family obligations as a proxy for reductions

in worker productivity, as the CPS does not include a direct measure of productivity, and

responses indicating absence due to weather as a proxy for disruptions to production that

are more likely to be firm-driven.

While the “weather” category could, in principle, reflect either supply or demand factors
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- for instance, a worker choosing not to commute due to snow or a firm suspending operations

- the wording of the CPS response option lends support to the latter interpretation. Among

the listed reasons for absence, respondents can select “weather affected job,” which frames

the disruption as originating from the nature or availability of the job itself. This phrasing

implies that the absence is more likely due to firm-side constraints, such as halted operations

or unsafe working conditions, rather than a discretionary decision by the worker. As such,

we interpret absences due to weather as the setting in which firm-side disruptions are most

salient, even though some supply-side response cannot be ruled out.

Although not all absences lead to job separations, prior work suggests that absenteeism

can act both as a precursor to job loss and as a consequence of deteriorating organizational

conditions, such as downsizing (Grønstad and Bernstrøm, 2025; Ichino and Maggi, 2000).

We therefore interpret temperature-induced absences as indicative of both exposure to op-

erational risk and greater vulnerability in the employment relationship.

We then re-estimate Equation 11 within the sample of employed individuals, using each

reason-specific absence indicator as the dependent variable. Because the absence question

refers to the week prior to the interview, we construct temperature exposure based on the

distribution of daily maximum temperatures over the preceding month, which is better suited

to capture the salience and timing of potential disruptions.7 The results from these regres-

sions are presented in Figure 4. The left and middle panels show no systematic relationship

between cold temperatures and absences due to illness or family responsibilities, suggesting

that recent weather shocks do not impair worker productivity through these channels. In

contrast, the right panel reveals a strong and statistically significant increase in the proba-

bility of being absent from work due to weather-related reasons following exposure to cold

temperatures. Taken together, this evidence points to cold weather as a source of opera-

tional disruption for firms, with weather-induced absences acting as a potential precursor to

7Results using the three-month temperature window yield smaller but directionally consistent point esti-
mates.
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unemployment.

While our theoretical framework allows for both voluntary and involuntary job separa-

tions - potentially arising from either labor supply or labor demand factors - the set of results

we have presented so far points toward the latter: the absence of a relationship between cold

temperatures and job quits, combined with the significant estimates of the effect of cold tem-

peratures on both layoffs and weather-related absences, suggests that the observed increase

in unemployment appears primarily involuntary and driven by firm-side constraints.

To further probe this interpretation, we ask: what would happen if workers held greater

bargaining power? If cold-induced separations are indeed involuntary and demand-driven,

their incidence should be lower in labor markets with stronger employment protection. To

test this, we stratify the analysis by industry-level union coverage. Specifically, we re-

estimate the model from the left panel of Figure 3 - where the dependent variable is a

dummy for reporting a layoff as the reason for unemployment - separately for industries

with low and high unionization rates. Union coverage is measured at the industry-by-year

level, and industries are classified as “high union coverage” if their coverage rate exceeds the

top quartile of the distribution in a given year (and “low union coverage” otherwise).

Figure 5 plots the temperature estimates separately for each group. In the low-coverage

group (left panel), we replicate the earlier result: cold temperatures significantly increase

the probability of layoff. In contrast, no such pattern is observed in high union coverage

industries (right panel), where the temperature coefficients are smaller and not statistically

distinguishable from zero. While the coldest-bin estimates are not significantly different

across groups, the pattern is suggestive of some moderating role for worker protections.

Greater bargaining power may impose a floor on weather-induced separations, though even

in unionized settings, some layoffs likely remain unavoidable when firms face binding opera-

tional disruptions during cold spells.
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6.3 On temperature and longer unemployment spells

As with temperature-induced job separations, the observed reduction in unemployment exit

- reflected in longer unemployment durations - may be driven by either labor supply or labor

demand forces, or a combination of both. On the supply side, cold weather may increase

the costs of job search, reducing the intensity with which unemployed workers pursue re-

employment. On the demand side, firms may respond to adverse weather by decreasing

hiring, leading to a contraction in vacancies and fewer available job matches.

Since the CPS does not measure these variables, we turn to two datasets that provide

richer information on job search and labor market dynamics to assess the relative importance

of supply- versus demand-side frictions: the American Time Use Survey (ATUS) and the

Job Openings and Labor Turnover Survey (JOLTS) .

6.3.1 Temperature and job search intensity

We begin by investigating whether cold temperatures impact job search effort among the

unemployed. To do so, we merge our NOAA temperature data with the ATUS dataset,

which records detailed information on how individuals allocate their time on a given day

(using a 4-digit level classification), including time spent looking for work and interviewing.

We provided a detailed description of this dataset in Section 3.

We re-estimate our baseline model using indicators for whether individuals spent any time

on job search as the dependent variable. The ATUS dataset provides detailed information

on the county of residence of individuals, which allows us to exploit granular variation in the

exposure to temperature conditions as we did in the CPS. Our estimation sample includes

all unemployed respondents between 2004 and 2023, yielding a total sample size of 5,679

observations. Descriptive statistics are reported in Appendix Table A2. Half of our ATUS

sample is female, and is on average about 40 years old. Moreover, 17.6% of unemployed

individuals search for a job on the diary date.
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Columns (1) to (2) of Table 2 report the estimated effects of temperature, using exposure

windows of one and three months. Using a window of three months allows for better compa-

rability with our estimates based on CPS data. Adopting a window of one month allows us

to test whether the impact of temperature on job search effort might manifest more rapidly

than the effect of temperature on unemployment duration. Across both specifications, we

do not find a statistically significant relationship between temperature and the likelihood of

engaging in job search. However, the direction of the point estimates indicate a decrease in

search activity as temperature cools, and the magnitudes of the estimates are not trivial. Our

estimates imply that a one standard deviation increase in exposure to cold weather predicts

a reduction in job search probability of approximately 1.3 to 2.4 percentage points in the

three-month window, and 0.7 to 2.0 percentage points in the one-month window. Relative

to the baseline prevalence of job search in our sample (17.6 percent), these implied effects

correspond to reductions of roughly 4 to 14 percent. While not statistically significant, the

direction of these estimates suggest that cold-induced reductions in job search effort may

contribute to the slowdown in unemployment outflows observed in colder periods.8

6.3.2 Temperature and job openings

We next turn to the role of labor demand in explaining the observed reduction in unem-

ployment outflows during colder periods. If cold weather leads firms to decrease hiring or

scale back recruitment efforts, we should observe a decline in job openings, thereby limiting

the ability of unemployed individuals to re-enter the labor market, regardless of their search

effort.

To test this hypothesis, we merge our NOAA temperature data with the JOLTS dataset.

8We also examine time spent on job interviewing as a secondary outcome. While potentially informative,
interviewing is an equilibrium outcome shaped by both supply and demand forces, which complicates inter-
pretation. As with job search, we find no statistically significant effect of cold temperatures on the likelihood
of interviewing. However, the point estimates are consistently negative and of similar magnitude, suggesting
that cold-related slowdowns in labor demand may extend to the later stages of the job matching process.
Results are available upon request.
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As explained in Section 3, the JOLTS dataset provides detailed information on the number of

job openings, hires, and separations. While the JOLTS only provides this information at the

state-by-month level - limiting the granularity of the analysis and reducing statistical power

- it remains a valuable data source for directly assessing the responsiveness of labor demand

to temperature variation. We have information on the number of job openings in each state

and month between 2000 and 2023 and use a sample of a total of 13,517 observations to

conduct our empirical analysis. Descriptive statistics are reported in Appendix Table A2.

We estimate Equation 11 using the logarithm of the number of job openings in each

state and month as the dependent variable to reduce the influence of outliers. Temperature

exposure is defined over the past one and three months, in the same way as we did in our

analysis based on individual-level ATUS data. The last two columns of Table 2 report the

results. In both specifications, we find that colder conditions lead to significant declines in

job postings: a one standard deviation increase in exposure to cold weather predicts a 1

to 2 percent reduction in job openings.9 In line with the evidence linking cold weather to

increased layoffs and weather-related work absences, these findings point to the demand side

of the labor market as a key driver of the slowdown in unemployment exit during colder

periods.

7 Conclusion

This paper provides novel evidence of the relationship between temperature exposure and

unemployment risk in the United States. Using individual-level data from the CPS merged

with high-resolution weather data, we find that colder-than-usual conditions in the months

preceding the survey interview increase the probability of individuals reporting being unem-

ployed. The impact is economically meaningful and concentrated among workers in industries

9Some of the results suggest that hot temperatures also reduce job postings, which is consistent with the
results of some of the specifications of our sensitivity analysis suggesting that heat may increase unemploy-
ment risk.
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highly exposed to ambient conditions.

Our evidence reveals that cold temperatures increase unemployment inflows and slows

down transitions back to employment. On the unemployment inflow side, cold exposure

increases the likelihood of layoffs, but has no discernible effect on quits or the expiration

of temporary contracts, suggesting that involuntary separations are the key margin of ad-

justment. The rise in layoffs is mirrored by an increase in weather-related absences from

work, a common precursor to job loss. Our results also provide suggestive evidence that the

incidence of cold-induced layoffs is muted in more unionized sectors, consistent with the idea

that greater worker bargaining power offers a buffer against weather-driven separations.

We turn to two additional datasets providing rich information on time use and labor

market dynamics to explore the mechanisms driving the reduced unemployment outflow due

to cold temperatures. Using American Time Use Survey data, we show that that while job

search effort could be a contributing factor of the reduced unemployment outflows, it is un-

likely to be the dominant mechanism. Using data from the Job Openings and Labor Turnover

Survey, we show that cold weather considerably depresses the number of job openings, point-

ing to labor demand as the binding constraint. Taken together, our results suggest that cold

weather reduces employment primarily through demand-driven, involuntary separations and

hiring slowdowns — rather than changes in worker behavior.

More broadly, our findings shed light on an unexplored dimension of labor market vul-

nerability: short-run cold weather shocks increase unemployment. By showing the frictional

channels driving this impact - colder-than-usual conditions disrupt hiring and increase in-

voluntary separations - this paper also highlights the role of weather variability in shaping

labor market flows. Our paper underscores the importance of incorporating transitory cli-

matic shocks into models of unemployment dynamics, and provides evidence of the impor-

tance of accounting for climatic conditions in the design of optimal labor market policies.

Since climate change will lessen the frequency of cold temperatures in the future, this may
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reduce unemployment rates in weather-exposed industries, and require adjustments in terms

of employment protection legislation and optimal unemployment insurance. Whether this

translates into tangible welfare gains, however, depends on a range of general equilibrium

macro-level adjustments whose investigation is beyond the scope of this paper.
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Barreca, A., K. Clay, O. Deschênes, M. Greenstone, and J. S. Shapiro (2015). Convergence in

adaptation to climate change: Evidence from high temperatures and mortality, 1900–2004.

American Economic Review 105 (5), 247–251.
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Severen, C., C. Costello, and O. Deschênes (2018). A forward-looking ricardian approach: Do

land markets capitalize climate change forecasts? Journal of Environmental Economics

and Management 89, 235–254.

Somanathan, E., R. Somanathan, A. Sudarshan, and M. Tewari (2021). The impact of tem-

perature on productivity and labor supply: Evidence from indian manufacturing. Journal

of Political Economy 129 (6), 1797–1827.

White, C. (2017). The dynamic relationship between temperature and morbidity. Journal

of the Association of Environmental and Resource Economists 4 (4), 1155–1198.

Yi, M., S. Müller, and J. Stegmaier (2024). Industry mix, local labor markets, and the

incidence of trade shocks. Journal of Labor Economics 42 (3), 837–875.
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Tables and Figures

Table 1: Descriptive Statistics

Full sample Low-risk exposure High-risk exposure
N=15,227,914 N=11,046,123 N=4,181,791

Mean SD Mean SD Mean SD

Unemployment outcomes:
Unemployed 0.035 0.184 0.030 0.171 0.049 0.215
Unemployed for less than three months 0.020 0.141 0.017 0.130 0.028 0.166
Unemployed for less than three months - Reasons:
Layoff 0.013 0.115 0.011 0.104 0.020 0.141
Quit 0.004 0.060 0.004 0.061 0.003 0.054
End of temporary contract 0.003 0.057 0.004 0.051 0.005 0.070

Unemployed for three months or more 0.015 0.121 0.013 0.113 0.020 0.141
Reasons for not working last week:
Illness† 0.007 0.084 0.007 0.081 0.009 0.092
Family responsibilities† 0.002 0.045 0.002 0.045 0.002 0.044
Weather affected job† 0.001 0.027 0.000 0.017 0.002 0.044

Sociodemographic characteristics:
Female 0.474 0.499 0.555 0.497 0.259 0.438
Age 40.46 12.39 40.22 12.46 41.09 11.95
White 0.813 0.390 0.803 0.398 0.841 0.366

Maximum temperature (share of days):
≤ 5°C 0.117 0.209 0.117 0.208 0.118 0.211
5-10°C 0.094 0.121 0.094 0.121 0.093 0.120
10-15°C 0.116 0.115 0.116 0.115 0.116 0.116
15-20°C 0.139 0.121 0.139 0.121 0.140 0.121
20-25°C 0.161 0.128 0.161 0.128 0.163 0.129
25-30°C 0.204 0.199 0.205 0.200 0.202 0.194
≥ 30°C 0.168 0.253 0.168 0.253 0.168 0.253

Notes: These statistics refer to the 1994–2023 CPS respondents included in the estimation samples used throughout the
analysis. Statistics for the variables marked with † are calculated on the subsample of CPS jobholders. The number of
counties for which there is weather information is 508.
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Table 2: Temperature and mechanisms of unemployment outflows

ATUS JOLTS

Job search activities Job openings

(1) (2) (3) (4)

Maximum temperature (share of days):
≤ 5°C -0.188 -0.068 -0.087 -0.046∗

(0.135) (0.091) (0.054) (0.024)
5-10°C -0.161 -0.138 -0.216∗∗∗ -0.063∗∗

(0.161) (0.088) (0.070) (0.027)
10-15°C -0.152 -0.107 0.011 0.005

(0.108) (0.081) (0.038) (0.025)
15-20°C -0.196∗ 0.041 -0.284∗∗∗ -0.063∗∗

(0.115) (0.067) (0.066) (0.028)
20-25°C Ref. Ref. Ref. Ref.

. . . .
25-30°C 0.010 0.014 -0.254∗∗ -0.060∗

(0.105) (0.061) (0.096) (0.030)
≥ 30°C 0.005 0.008 -0.214∗∗ -0.041∗

(0.095) (0.060) (0.085) (0.021)

Observations 5,679 5,679 13,517 13,517
Temperature window (in months) Three One Three One

Notes: Columns (1) and (2) report estimates from linear probability models using the ATUS estimation sample restricted
to respondents who report being unemployed. The dependent variable is a binary indicator equal to one if the respondent
spent any time on the diary day in job search activities. Standard errors are clustered at the county level. ATUS
regressions control for a female indicator, age and age squared, county fixed effects, year-of-interview fixed effects, and
state-by-month-of-interview fixed effects. Columns (3) and (4) report estimates from OLS regressions based on the JOLTS
firm-level sample, where the dependent variable is the logarithm of the number of job openings at the state-year-month
level. Standard errors are clustered at the state level. JOLTS specifications include year-of-interview fixed effects and
state-by-month-of-interview fixed effects. Statistical significance is denoted as follows: *p < 0.10, **p < 0.05, ***p < 0.01.

38



Figure 1: Temperature and unemployment by risk of temperature exposure

-.0
1

0
.0

1
.0

2
.0

3
P(

U
ne

m
pl

oy
m

en
t)

≤5
°C

5-1
0°C

10
-15

°C
15

-20
°C

20
-25

°C
25

-30
°C

≥3
0°C

Maximum temperature
(share of days over the last three months)

Full sample

-.0
1

0
.0

1
.0

2
.0

3
P(

U
ne

m
pl

oy
m

en
t)

≤5
°C

5-1
0°C

10
-15

°C
15

-20
°C

20
-25

°C
25

-30
°C

≥3
0°C

Maximum temperature
(share of days over the last three months)

Low-risk exposure

-.0
1

0
.0

1
.0

2
.0

3
P(

U
ne

m
pl

oy
m

en
t)

≤5
°C

5-1
0°C

10
-15

°C
15

-20
°C

20
-25

°C
25

-30
°C

≥3
0°C

Maximum temperature
(share of days over the last three months)

High-risk exposure

Notes: The figure plots the point estimates of the temperature intervals from the linear probability model described
in Equation 11. The dependent variable is a dummy variable taking a value of one if the individual is unemployed
at the time of the survey interview and zero otherwise. The estimation samples (from the the left to the right panel,
respectively) include the 15,227,914, 11,046,123 and 4,181,791 CPS respondents described in Table 1. Controls include
a female indicator, age and age squared, a dummy variable for CPS respondent identifying as ‘white’, county fixed
effects, year-of-interview fixed effects, and state-by-month-of-interview fixed effects. Standard errors are clustered at
the county level, and 95% confidence intervals are reported.
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Figure 2: Temperature and unemployment by duration, high-risk sample
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Notes: The figure plots the point estimates of the temperature intervals from the linear probability model described
in Equation 11. The dependent variables used in the left and right panel of the figure are dummies taking a value of
one if the individual has been unemployed for more and less than three months at the time of the survey interview,
and zero otherwise. The estimation sample includes the 4,181,791 high-risk exposure CPS respondents described in
Table 1. Controls include a female indicator, age and age squared, a dummy variable for CPS respondent identifying
as ‘white’, county fixed effects, year-of-interview fixed effects, and state-by-month-of-interview fixed effects. Standard
errors are clustered at the county level, and 95% confidence intervals are reported.
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Figure 3: Temperature and unemployment by reason for unemployment, high-risk sample
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Notes: The figure plots the point estimates of the temperature intervals from the linear probability model described
in Equation 11. The dependent variables used in the left, middle, and right panel of the figure are dummies taking a
value of one if the individual is unemployed at the time of the survey interview due to (i) the end of their temporary
contract, (ii) quitting, and (iii) due to a layoff, and zero otherwise, respectively. The estimation sample includes the
4,181,791 high-risk exposure CPS respondents described in Table 1. Controls include a female indicator, age and age
squared, a dummy variable for CPS respondent identifying as ‘white’, county fixed effects, year-of-interview fixed effects,
and state-by-month-of-interview fixed effects. Standard errors are clustered at the county level, and 95% confidence
intervals are reported.
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Figure 4: Temperature and absences from work, high-risk sample
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Notes: The figure plots the point estimates of the temperature intervals from the linear probability model described in
Equation 11. The dependent variables used in the left, middle, and right panel of the figure are dummies taking a value
of one if the individual has been absent from work in the week preceding the survey interview due to (i) illness, (ii)
family responsibilities, and (iii) weather disruptions, and zero otherwise, respectively. The estimation sample includes
only the CPS respondents with a job among the 4,181,791 high-risk exposure CPS respondents described in Table 1.
Controls include a female indicator, age and age squared, a dummy variable for CPS respondent identifying as ‘white’,
county fixed effects, year-of-interview fixed effects, and state-by-month-of-interview fixed effects. Standard errors are
clustered at the county level, and 95% confidence intervals are reported.
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Figure 5: Temperature and unemployment by union coverage, high-risk sample
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Notes: The figure plots the point estimates of the temperature intervals from the linear probability model described
in Equation 11. The dependent variable is a dummy variable taking a value of one if the individual has been laid off at
the time of the survey interview and zero otherwise. The estimation sample includes the 4,181,791 high-risk exposure
CPS respondents described in Table 1. We estimate our model separately for individuals working in industries with an
union coverage rate above and below the top quartile of the distribution in a given year, respectively. Controls include
a female indicator, age and age squared, a dummy variable for CPS respondent identifying as ‘white’, county fixed
effects, year-of-interview fixed effects, and state-by-month-of-interview fixed effects. Standard errors are clustered at
the county level, and 95% confidence intervals are reported.
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Online Appendix

Figure A1: Temperature and unemployment by groups of workers - High-risk sample
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Notes: The figure plots the point estimates of the temperature intervals from
the linear probability model described in Equation 11. The dependent variable
is a dummy variable taking a value of one if the individual is unemployed at
the time of the survey interview and zero otherwise. The estimation sample
includes the 4,181,791 high-risk exposure CPS respondents described in Table
1. Controls include a female indicator, age and age squared, a dummy variable
for CPS respondent identifying as ‘white’, county fixed effects, year-of-interview
fixed effects, and state-by-month-of-interview fixed effects. Standard errors are
clustered at the county level, and 95% confidence intervals are reported.
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Figure A2: Temperature and unemployment by industry tradeability

-.01

-.005

0

.005

.01

.015

P(
U

ne
m

pl
oy

m
en

t)

≤5
°C

5-1
0°C

10
-15

°C

15
-20

°C

20
-25

°C

25
-30

°C

≥3
0°C

Maximum temperature
(share of days over the last three months)

Tradeable industry

-.01

-.005

0

.005

.01

.015

P(
U

ne
m

pl
oy

m
en

t)

≤5
°C

5-1
0°C

10
-15

°C

15
-20

°C

20
-25

°C

25
-30

°C

≥3
0°C

Maximum temperature
(share of days over the last three months)

Non-tradeable industry

Notes: The figure plots the point estimates of the temperature intervals from the linear probability model described
in Equation 11. The dependent variable is a dummy variable taking a value of one if the individual is unemployed
at the time of the survey interview and zero otherwise. The estimation samples (from the the left to the right panel,
respectively) include the 5,579,310 and 9,648,604 CPS respondents in tradeable and non-tradeable industries. Controls
include a female indicator, age and age squared, a dummy variable for CPS respondent identifying as ‘white’, county
fixed effects, year-of-interview fixed effects, and state-by-month-of-interview fixed effects. Standard errors are clustered
at the county level, and 95% confidence intervals are reported.
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Figure A3: Temperature and unemployment: Robustness checks - Full sample
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Baseline No individual covariates Controlling for prior temperature
Temperatures prior month Controlling for rainfall Controlling for snowfall
No imputed county County + year + month FE County + year + season FE
County + year + season-by-state FE Season-by-county + year FE County + season-by-year FE

Notes: The figure plots the point estimates of the baseline temperature intervals
using different specifications described in detail in Section 5.2. The dependent vari-
able is a dummy variable taking a value of one if the individual is unemployed at
the time of the survey interview and zero otherwise. The estimation sample includes
the 15,227,914 CPS respondents described in Table 1. Standard errors are clustered
at the county level, and 95% confidence intervals are reported.
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Figure A4: Temperature and unemployment: Robustness checks - Low-risk sample
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Notes: The figure plots the point estimates of the baseline temperature intervals using different
specifications described in detail in Section 5.2. The dependent variable is a dummy variable
taking a value of one if the individual is unemployed at the time of the survey interview and
zero otherwise. The estimation sample includes the 11,046,123 low-risk exposure CPS respondents
described in Table 1. Standard errors are clustered at the county level, and 95% confidence intervals
are reported.
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Figure A5: Temperature and unemployment: Robustness checks - High-risk sample
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Notes: The figure plots the point estimates of the baseline temperature intervals using different
specifications described in detail in Section 5.2. The dependent variable is a dummy variable
taking a value of one if the individual is unemployed at the time of the survey interview and
zero otherwise. The estimation sample includes the 4,181,791 high-risk exposure CPS respondents
described in Table 1. Standard errors are clustered at the county level, and 95% confidence intervals
are reported.
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Table A1: Temperature and unemployment using alternative risk classifications

P(Unemployment)

AC-exposure by occupation
Park and Stainier (2021)

Full sample Low exposure High exposure
(1) (2) (3)

Maximum temperature (share of days):
≤ 5°C 0.006∗ -0.000 0.024∗∗∗

(0.004) (0.003) (0.007)
5-10°C 0.010∗∗∗ 0.008∗∗∗ 0.016∗∗

(0.003) (0.003) (0.007)
10-15°C 0.009∗∗ 0.007∗ 0.013∗∗

(0.004) (0.004) (0.006)
15-20°C 0.009∗∗ 0.005 0.020∗∗∗

(0.003) (0.003) (0.006)
20-25°C Ref. Ref. Ref.

. . .
25-30°C 0.002 0.000 0.007

(0.003) (0.003) (0.005)
≥ 30°C 0.002 0.001 0.006

(0.002) (0.002) (0.005)

Observations 9,698,650 7,255,508 2,443,142
Adjusted R2 0.011 0.008 0.018

Notes: The table presents the point estimates of the temperature intervals independent
variables from the linear probability model described in Equation 11. The dependent variable
is a dummy taking a value of one if the individual is unemployed at the time of the survey
interview and zero otherwise. Controls include a female indicator, age and age squared, a
dummy for CPS respondent identifying as ‘white’, county fixed effects, year-of-interview fixed
effects, and state-by-month-of-interview fixed effects. The estimation sample of column (1)
consists of the 9,698,650 CPS respondents with non-missing AC-exposure measure (Park and
Stainier, 2021). Columns (2)–(3) split this sample into workers in the top three quartiles
of AC access and in the bottom quartile. Statistical significance is denoted as follows:
*p < 0.10, **p < 0.05, and ***p < 0.01.
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Table A2: Descriptive Statistics

ATUS JOLTS
N=5,679 N=13,517

Mean SD Mean SD

Maximum temperature (share of days):
Three months prior interview
≤ 5°C 0.103 0.201 0.105 0.199
5-10°C 0.085 0.116 0.086 0.112
10-15°C 0.116 0.119 0.115 0.109
15-20°C 0.142 0.123 0.143 0.115
20-25°C 0.167 0.130 0.167 0.114
25-30°C 0.199 0.182 0.205 0.180

≥ 30°C 0.188 0.272 0.179 0.248
One month prior interview
≤ 5°C 0.109 0.241 0.105 0.229
5-10°C 0.086 0.145 0.086 0.135
10-15°C 0.115 0.154 0.115 0.140
15-20°C 0.139 0.162 0.143 0.149
20-25°C 0.162 0.175 0.167 0.153
25-30°C 0.196 0.228 0.205 0.215
≥ 30°C 0.192 0.313 0.179 0.279

Outcomes:
Job search activities 0.176 . . .
Job openings (in log) . . 11.94 1.018

Sociodemographic characteristics:
Female 0.549 . . .
Age 39.21 13.43 . .

Notes: These statistics refer to the 2004–2023 ATUS respondents and 2000-2023
JOLTS observations included in the estimation samples used in Table 2.
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