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1 Introduction

Present bias, or hyperbolic discounting, is one of the most widely documented and studied biases

in economics (e.g., Phelps and Pollack 1968; Laibson 1997). Agents that suffer from this bias

value the present too much relative to the future in a time-inconsistent manner. Although present

bias alters consumption–savings choices and hence equilibrium discounting, the prevailing view

is that the bias is not important for understanding standard asset pricing puzzles (e.g., Luttmer

and Mariotti 2003).

We incorporate recent experimental and neuroscientific findings on present bias into a stan-

dard asset-pricing framework and show that present bias has first-order effects on the level and

variation of asset risk premia. First, we model the degree of present bias and agents’ abil-

ity to forecast their future tastes as time-varying. Evidence from neuroscience and psychology

shows that stress impairs individuals’ executive functions (planning and self-control), amplify-

ing present-biased behavior (Arnsten 2009; Sapolsky 2017). Consequently, shifts in economic or

technological conditions, recessions, and traumatic events can exacerbate cognitive distortions,

raising present bias. Second, we assume that agents recognize others’ time inconsistency but

not their own, consistent with Fedyk (2025). This misperception generates forecast errors about

their own future consumption, which allows us to calibrate the time variation in bias using survey

data.

Our first contribution is empirical. We show that individuals’ expectations about their own

consumption growth display systematic, state-dependent pessimism consistent with time-varying

present bias and time-varying awareness of that bias. To see the link between present bias

awareness (often referred to as partial naiveté) and expectational errors, consider the following.

A present-biased agent overconsumes today. If näıve about this bias, the agent forecasts that

future selves will not overconsume; when the future arrives, overconsumption recurs. Thus,

consumption growth forecasts appear pessimistic as expected growth on average is below realized

growth. If stress amplifies this bias, agents will exhibit more pessimistic forecasts of their own

consumption growth in bad times. A fully sophisticated agent anticipates future overconsumption

and therefore does not exhibit systematically pessismistic forecasts.
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We test for systematic forecast errors using the New York Fed’s Survey of Consumer Expecta-

tions (SCE). The SCE provides roughly ten years of panel data with individual-level expectations

and realizations of real consumption growth. These data allow a direct test of predictability in

individual forecast errors. Under the rational expectations benchmark forecast errors are orthog-

onal to information available at the time of the forecast and thus are not predictable.

Individuals’ realized consumption growth exceeds their own forecasts, yielding an average

annual forecast error of about 2 percentage points. The bias is concentrated among more bias-

susceptible groups, notably those with lower education and income. Using a cross-sectional

difference-in-differences design, we show that forecast pessimism intensifies in periods of economic

stress for these groups, consistent with evidence on stress-induced present bias. For the most

susceptible agents, the average annual error is about 6 percentage points and ranges from 2

to 10 percentage points across stress states; for the least susceptible agents, mean errors are

statistically indistinguishable from zero. The pattern is inconsistent with simple extrapolation,

which would generate both predictably positive and negative forecast errors, whereas we observe

predominantly predictably negative forecast errors.

At first glance, these errors need not imply asset-pricing consequences. The evidence concerns

expectations about own consumption, not aggregates. If agents understand others’ present bias,

they will not misperceive aggregate outcomes or payoffs.1 Nevertheless, we show, as a second

contribution of the paper, that this bias gives rise to a novel source of discount rate risks that

can have first-order asset pricing implications.

We first analyze the implications of this bias in the simplest possible setting: agents have log

utility, aggregate consumption is constant, and there is a continuum of agents with time-varying

degree of present bias. At time t an agent assigns probability θt that her t + 1 self remains

present-biased and probability 1− θt that from t+ 1 onwards she becomes time-consistent with

exponential discounting.2 We allow θt to vary over time and to be common across agents,

1This is not to say the literature has not found evidence of bias in expectations about aggregate outcomes
(see, e.g. Hirshleifer, Li, and Yu 2015; Nagel and Xu 2022), but the effect of naive present-biased agents is on
their individual consumption expectations which is the focus of this paper.

2This modeling choice follows the literature on partial awareness of the present bias, except that we allow the
subjective probability to be time-varying. In particular, the agent displays partial naiveté as in O’Donoghue and
Rabin (2001), Eliaz and Spiegler (2006) and Heidehues and Kőszegi (2010). In the setting of Eliaz and Spiegler
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capturing systematic movements in awareness. Thus, the effect of an increase in θt is that all

agents believe they are more likely to remain present-biased in the future which raises economy-

wide impatience. In reality, all agents remain present-biased forever.

Even though there is no aggregate risk in this economy, a risk premium on the aggregate

wealth claim arises. The driver is agents’ beliefs about their own future consumption. In real-

ity, all agents consume a constant amount as no agent ever actually switch type. Subjectively,

however, an agent does consider the possibility that they will change type. If an agent were to

become time-consistent next period, she would choose to consume a fixed share of wealth given

the standard log utility preferences; hence, when an unexpected rise in θt+1 raises impatience

economy-wide, discount rates rise, asset values fall, and wealth declines. Conditional on switch-

ing, the agent would then consume less because consumption is proportional to wealth. Thus,

the agent subjectively believes that her own consumption growth comoves positively with the

return on aggregate wealth, implying a positive premium on the aggregate claim for markets to

clear. Moreover, the premium is time-varying as the subjective probability of switching is 1− θt.

For example, if θt = 1, the agent is sure they will not switch type, and therefore the previous

mechanism is not at play so the risk premium is zero. By contrast, conventional hyperbolic

discounting with a constant bias (e.g., Luttmer and Mariotti 2003) and standard time-varying

discounting with rational agents and constant aggregates (e.g., Albuquerque et al. 2016) deliver

risk-neutral pricing in this environment.

The economic mechanism put forth in this paper delivers a novel discount-rate risk. Beyond

this baseline model, we analyze (i) a heterogeneous-agent log-utility economy with a rational

subset that discounts exponentially, and (ii) an overlapping-generations model with Epstein–Zin

preferences and aggregate consumption risk. We also in the online appendix consider a limited-

participation setting in which present-biased agents do not trade equities, and different speci-

fications with time-varying present-bias, including a case where agents are sophisticated about

their bias. The core intuition survives in all environments. Calibrating the level and dynamics of

present bias to the survey evidence, even a small wealth share of present-biased agents generates

(2006) agents with θ = 0 are defined as fully naive, while agents with θ = 1 are sophisticated.
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large, priced discount-rate risk and improves the fit for the equity premium, excess volatility, the

positive slope of the real term structure, and return predictability. Similar asset-pricing results

obtain when present-biased agents are fully sophisticated, although a model with agents that are

sophisticated about their bias cannot account for the survey evidence we document. We conclude

that time-varying present bias is a plausible first-order driver of asset risk premiums.

Related literature. Research on present-biased preferences and hyperbolic (or quasi-hyperbolic)

discounting dates to Strotz (1956) and Laibson (1997). A core prediction is that sophisticated

agents demand illiquidity as a commitment device to curb overconsumption. Recent work refines

this link between present bias and intertemporal choice: Maxted (2025), building on Harris and

Laibson (2013), analyzes consumption and illiquid-asset demand and the welfare implications

in a general consumption–savings environment; Maxted, Laibson, and Moll (2025) show that

present bias amplifies the effect of monetary policy while slowing its transmission. These stud-

ies keep the degree of present bias fixed. Complementary microfoundations can generate state

variation in the strength of present bias. Gabaix and Laibson (2022) model imperfect foresight

in which delayed consequences are harder to anticipate than immediate ones, producing as-if

hyperbolic discounting whose intensity varies across states. Hertzberg (2024) shows that even

time-consistent household members can exhibit overconsumption through a dynamic commons

problem, with stronger incentives to pool savings when intra-household relative-wealth risk is

high. If stress increases imperfect foresight or intra-household risk, these mechanisms rational-

ize time-variation in present bias. Our survey evidence indicates that forecasting one’s future

decisions is harder in bad times.

Our paper also relates to asset-pricing models with present-biased agents. Luttmer and

Mariotti (2003) show that constant present bias does not affect risk premiums. Khapko (2023)

theoretically studies state-dependence in both present bias and risk aversion in a representative

agent setting, where the agent is sophisticated about their bias and does not make forecast

errors. Andries, Eisenbach, and Schmalz (2024) analyze time-inconsistence in risk aversion and

address the term structure of risk premia. Contract-theoretic models with time inconsistency and

partial naiveté examine principal–agent interactions and menu design rather than competitive
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asset trading and aggregate price dynamics (e.g., DellaVigna and Malmendier 2004; Eliaz and

Spiegler 2006; Heidhues and Kőszegi 2010; Gottlieb and Zhang 2021; Citanna and Siconolfi 2022).

The model is also connected to work on time-varying discount-rate risk. In our framework

the driver is not fundamentals (e.g., Bansal and Yaron 2004; Wachter 2013), nor time-varying

or heterogeneous effective preferences at the aggregate level (e.g., Campbell and Cochrane 1999;

Bhamra and Uppal 2009; Albuquerque et al. 2016), nor biased beliefs or learning about aggre-

gates (e.g., Dumas, Kurshev, and Uppal 2009; Collin-Dufresne, Johannes, and Lochstoer 2016;

Nagel and Xu 2022). Instead assets load on agents’ time-varying subjective consumption risk

that arises from shocks to awareness of present bias. Using a general empirical approach, Kozak

and Santosh (2020) document a large negative price of discount-rate risk that helps explain risk

premia across stocks and bonds. Our mechanism is consistent with this factor and reproduces

its negative price of risk.

The rest of the paper is organized as follows. Section 2 presents a log-utility benchmark

that isolates the channel. Section 3 describes the survey evidence on time-varying present bias.

Section 4 develops the overlapping-generations model with Epstein–Zin preferences and aggregate

risk and states equilibrium conditions. Section 5 reports the calibration disciplined by the survey

evidence and the asset-pricing implications. Section 6 discusses robustness to alternative model

assumptions. Section 7 concludes.

2 Model setup and economic channel

Before the full heterogeneous-agent overlapping-generations model with Epstein–Zin utility and

aggregate risk, we study two log-utility benchmarks with no aggregate risk: (i) a representative

present-biased agent and (ii) a heterogeneous-agent economy. These environments isolate the

mechanism. Time variation in the degree of present bias generates discount-rate risk and a

time-varying premium on the aggregate consumption (wealth) claim, even though aggregate

consumption is constant. This channel is absent under conventional hyperbolic discounting with

a constant bias (e.g., Luttmer and Mariotti 2003) and under time-varying discounting with

rational beliefs (e.g., Albuquerque, et al. 2016), which both yield risk-neutral pricing in these
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benchmark cases.

2.1 Agents

2.1.1 Time-varying present bias

We consider a continuum of infinitesimal present-biased agents who value current consumption

too much relative to future consumption in a time-inconsistent manner (see Phelps and Pollack

1968; Laibson 1997). Recent literature documents prominent features inherent to an individual

who displays this bias. First, Fedyk (2025) shows empirically that such an individual is aware

of other agents’ bias but is naive about the extent of their own. Second, recent research in

psychology and neuroscience (see Arnsten 2009; Sapolsky 2017) shows that the level of present

bias varies with the state of nature and increases under stress. To model these features we follow

Eliaz and Spiegler (2006) and let the agent have the following preferences:

Ut = log(Ct) + βδES
t [Ũt+1 ], where (1)

Ũt+1 =

 Ut+1, if the agent remains present-biased

Et+1

∑∞
j=0 β

j log(Ct+1+j), if the agent becomes time-consistent.

Every agent believes that they will remain present-biased and impatient next period with

probability θt (using discount factor βδ, where δ ∈ (0, 1) captures the present bias) or become

time consistent and more patient with probability 1− θt (using discount factor β). Following the

literature on present-bias, the agent believes that if they become time consistent they will remain

so forever. Importantly, we model the agents as naive about their bias in the sense that in reality

the agent always remains present-biased and never becomes time consistent.3 This expectational

error is captured by the subjective expectation ES
t [·] and the fact that θt < 1 for at least some t.

The degree of present bias θt varies over time, but every period it is identical for all individuals,

3In the online appendix we consider the case where the agents are sophisticated about their bias.
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capturing the systematic changes in the bias.4 The agents have rational expectations about all

other shocks in the economy. With E[·] denoting expectations taken under the true probabilities,

the preferences can be written:5

Ut = log(Ct) + βδEt[θtUt+1 + (1− θt)
∞∑
j=0

βj log(Ct+1+j)]. (2)

To capture the recent experimental evidence documented by Fedyk (2025), we assume that

agents are not aware of their own bias, but anticipate the bias of others. Hence, every agent

believes that while they individually may become time consistent at t+1 with probability 1−θt,

all other agents remain present-biased with probability 1. Thus, each agent believes aggregate

wealth is unaffected if they turn time consistent, since no one else will. For this reason each agent

i understands the actual wealth they will have, Wi,t+1, as a function of the aggregate state, even

though they may mispredict their own consumption Ci,t+1. In other words, the fact that agents

are naive about their future type results in expectation errors about their individual consumption

growths, but does not lead to expectation errors about aggregate quantities.

Next, we derive implications for asset prices and the stochastic discount factor in this simple

economy where there is no aggregate risk. The time variation in the agent’s subjective belief

about their own future type, θt ∈ [0, 1], is then the only source of uncertainty in the economy.

For analytical and numerical convenience we assume that θt can take values θ̂, where

θ̂ ≡


θ̂1
...

θ̂K

 (3)

4Eliaz and Spiegler (2006) term this feature partial naiveté and assume a constant θ that is different for each
individual agent. O’Donoghue and Rabin (2001) model partial naiveté as an underestimation of the individual’s

degree of present bias in the future δ̂, where 0 < δ ≤ δ̂ ≤ 1. In the online appendix we consider a case with
time-varying δt.

5Note that, unlike the case where agents are sophisticated about their own bias (e.g., Luttmer and Mariotti,
2001), solving the value function does not involve solving a game between current and future selves.
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with transition probability matrix Π and individual transition probabilities given by πk,l ≡

P(θt+1 = θ̂l|θt = θ̂k). Note that we only consider state-contingent claims for each possible

realization of θt+1, which in this case means that state-contingent claims with payoff 1θ̂k (an

indicator that takes the value 1 if θt+1 = θ̂k and 0 otherwise) are available for all possible states

θ̂k next period. We do not allow claims with payoffs contingent on whether the agent becomes

time consistent6.

Given this process for θt, we can explore the consumption-savings choice of the agent. In

particular, the agent’s wealth-consumption ratio, ϕ, as a function of the possible values for θt, θ̂

(see appendix A for derivations), is:

ϕ(θ̂) =
(
I − βδD(θ̂)Π

)−1 (
1+ βδ(1− θ̂)ϕTC

)
, (4)

where D(x) = diag(x) and ϕTC = (1− β)−1 is the constant wealth-consumption ratio the agent

would have if she became time consistent. Thus, unlike the standard log utility case, the wealth-

consumption ratio of a TI agent in our model varies over time with the current value of θt. A

natural assumption is that the θt process is persistent.
7 Thus, a high value of θt means the agent

expects to be impatient also in the near future, whereas a low θt means the agent believes it

is highly likely they will become time consistent and therefore more patient. Higher patience

pushes the wealth-consumption ratio up as agents are more willing to forego consumption today

relative to the future (i.e. ϕ(θt) and θt are negatively correlated). Through market clearing, this

pushes the price of the consumption claim up and discount rates down.

It may seem that individuals’ time-varying degree of naiveté about their own present-bias

is isomorphic to a model with time-varying (exponential) discounting, as in Albuquerque et al.

(2016). We show in the following that this is not the case. In particular, the stochastic discount

factor reflects the beliefs of the TI agent and therefore is based on a weighted average of the

6Since each agent correctly perceives that the probability of others becoming time consistent is zero, allowing
these claims would lead to arbitrage. Furthermore, if such claims were traded, it is not clear how anyone could
verify that the TI agent in question indeed did remain TI. This is because the agent would have strong incentives
to pretend to be a TC agent if she had bought claims that would pay off in the event she became TC. Thus, the
claims would need to be contracts tailored for each individual to ensure that the individual would always choose
to reveal her type truthfully. Although interesting, this is beyond the scope of this paper.

7We give technical conditions on Π in appendix A.
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consumption growth in case the agent remains TI or becomes TC next period (see appendix A

for derivations):

Mt+1 = βδ

(
θt

Ct
CTI
t+1

+ (1− θt)
Ct
CTC
t+1

)
= βδ

(
θt + (1− θt)

ϕTC

ϕ(θt+1)

)
. (5)

For intuition, consider an infinitesimal agent i. Today this agent faces the same problem as

all other agents and will in equilibrium choose to hold the consumption claim. The agent’s wealth

next period will therefore be proportional to aggregate wealth. The agent correctly understands

that all other agents will remain present-biased next period and that they in equilibrium will

choose consumption proportional to aggregate consumption. Thus, if she remains present-biased,

which she believes will happen with probability θt, her consumption growth is the same as

that of the other agents and equal to
CTI

t+1

Ct
= 1.8 However, if she becomes time consistent,

which she (wrongly) believes will happen with probability 1 − θt, her t + 1 consumption will

be CTC
t+1 = Wi,t+1/ϕ

TC . Her consumption growth can then be written
CTC

t+1

Ct
= ϕ(θt+1)/ϕ

TC < 1.

Since ϕ(θt+1) and θt+1 are negatively correlated, a positive shock to θt+1 is associated with high

marginal utility for this agent. On the other hand, the return on aggregate wealth decreases with

θt+1:

RC,t+1 =
ϕ(θt+1)

ϕ(θt)− 1
. (6)

In sum, the agent believes that with probability 1− θt her next period consumption growth will

be low and her marginal utility will be high, exactly when the return to aggregate wealth RC,t+1

is low. This risk is reflected in the above pricing kernel via the term (1 − θt)
ϕTC

ϕ(θt+1)
as every

agent has the same subjective beliefs θt. Since the return on the consumption claim is negatively

correlated with the pricing kernel, a positive aggregate risk premium arises even though there is

no aggregate consumption risk.

8Recall that aggregate consumption is assumed constant in this section, and thus aggregate consumption
growth equals 1.
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Furthermore, observe that the risk premium will be time-varying. To see this, it is enough

to consider two cases: θt = 1 and θt = 0. In the first case, each agent correctly understands

that they will remain present-biased next period and therefore faces no consumption risk. As a

consequence, when θt = 1, the dependence on ϕ(θt+1) drops out and there is no risk premium. On

the other hand, when θt = 0, each agent is sure they will become time consistent next period and

that their consumption growth will be perfectly correlated with the return on the consumption

claim, which gives rise to a positive risk premium. More generally, the risk premium will be

positive if and only if θt < 1.

This novel discount rate risk is generated by the time-varying present bias of the agent.

When θ is constant, as in the conventional hyperbolic discounting case, the wealth-consumption

ratio is constant, resulting in risk-neutral pricing and no additional risk due to present bias.

Next, we show that the economic channel causing discount rate risk is distinct from the case

with time-consistent agents with time-varying degree of exponential discounting.

2.1.2 Time-varying discounting

As a benchmark, we consider a model with time-varying, but time-consistent, exponential dis-

counting similar to Albuquerque, et al. (2016). The continuum of agents have preferences:

UTV
t = log(Ct) + βtEt [UTV

t+1 ], (7)

where we assume that βt follows a similar process to θt and can take values β̂ =
(
β̂1, . . . , β̂K

)′
,

with transition probability matrix Πβ.

In contrast to the present-biased agents, this agent has rational expectations about future

discounting and does not make predictable forecast errors about her own future consumption

growth. The wealth-consumption ratio only depends on the current βt (see online appendix for

derivations):

ϕTV (β̂) =
(
I −D(β̂)Πβ

)−1

1. (8)

The stochastic discount factor with these preferences is Mt+1 = βtCt/Ct+1. With constant
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aggregate consumption, the stochastic discount factor is simply Mt+1 = βt, which implies risk-

neutral pricing. The returns to the consumption claim are not constant, however, as the risk-free

rate is time-varying:

RC,t+1 =
ϕTV (βt+1)

ϕTV (βt)− 1
. (9)

Nevertheless, this variation in discount rates is not priced in this case. Intuitively, in an economy

with a continuum of agents that apply standard time-varying discounting, each agent is rational

and understands that their consumption will be the same as that of all other agents. In the

absence of aggregate risk, this consumption is risk-free, and therefore the agent does not require

a risk premium.

2.1.3 Individual consumption growth expectations

As discussed above, an individual present-biased agent i believes she will become time consistent

with probability 1−θt, but also believes no other agent will change type. In reality, the agent al-

ways remains present-biased. This leads to predictable forecast errors in individual consumption

growth. In particular, following the earlier discussion, under agent i’s beliefs their consumption

growth forecast can be written as:

Fi,t

(
Ci,t+1

Ci,t

)
= θt × 1 + (1− θt)× Et [ϕ(θt+1)] /ϕ

TC . (10)

Since her actual consumption growth simply equals 1, the expected consumption growth

forecast error is:

Et
[
Ci,t+1

Ci,t
− Fi,t

(
Ci,t+1

Ci,t

)]
= (1− θt)

(
1− Et [ϕ(θt+1)] /ϕ

TC
)
. (11)

In words, since ϕ(θt+1) < ϕTC (see appendix A) forecast errors are predictably positive, which

implies that agents are too pessimistic about their own future consumption. Based on the

expression, we can see that the forecast error is driven by two channels. First, higher θt lowers

forecast errors, keeping Et [ϕ(θt+1)] constant, as the agent becomes more aware of her true future
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type. Second, forecast errors are decreasing in Et [ϕ(θt+1)], keeping θt constant: since ϕ(θt) is

decreasing in θt, Et [ϕ(θt+1)] is decreasing in θt if ϕ(θt) is persistent. The expected forecast error

is 0 only if θt = 1. Thus, the forecast error will initially grow as we lower θt from 1, but the

pattern might be hump-shaped, i.e. depending on the persistence of θt, the forecast errors might

reach their maximum value at θ∗ ∈ (0, 1) rather than at θt = 0.

We emphasize that the forecast errors induced by present bias refer only to the agents’ own

consumption growth, not for aggregate consumption, as each agent correctly anticipates that

other agents will never actually become time consistent. Further, it is immediate that the time-

varying discount rate model does not imply such predictable forecast errors as in this model

agents have rational expectations about their own future preferences.

2.2 Heterogeneous agents economy

We next introduce time-consistent agents with a constant rate of time preference into the econ-

omy. This facilitates risk-sharing and endogenous consumption choices that in turn affect the

risk-return trade-off. We for now maintain the assumptions of log felicity functions and no

aggregate risk.

In particular, let there be a continuum of two types of infinitesimal infinitely-lived agents –

time inconsistent (TI) and time consistent (TC). The preferences of the TI and TC agents are:

UTI
t = log(CTI

t ) + βδEt[θtUTI
t+1 + (1− θt)U

TC
t+1] (12)

UTC
t = log(CTC

t ) + βEt[UTC
t+1], (13)

where market clearing implies that the two agents’ consumption sums up to aggregate consump-

tion (CTI
t + CTC

t = Ct).

The aggregate wealth-consumption ratio in this economy is:

ϕt =

(
st

ϕTI(θt)
+

1− st
ϕTC

)−1

, (14)

where st is the wealth share of the TI agents, ϕTI is given in equation (4) and ϕTC = (1− β)−1.
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See appendix A for derivations.

Since there is no aggregate risk, one might have expected that TI and TC agents would trade

such that their marginal utilities are identical across all states θt+1 next period, implying no risk

premium in the economy. This does not happen as each TI agent wrongly believes that with

probability 1 − θt they themselves will become TC and prefer the TC portfolio. In particular,

the TI agent believes that with probability θt their marginal utility next period is that of a TI

agent and therefore decreasing in θt+1, whereas with a probability 1− θt it is that of a TC agent

and therefore increasing in θt+1. As a result, their actual portfolio positions are between the

portfolio position the agent would have taken if she knew she would remain TI next period and

the portfolio position of a TC agent.

These dynamics are reflected in the equilibrium stochastic discount factor (see appendix A

for derivations):

Mt+1 = β
(1− st)ϕ

TI(θt) + stδ
(
θt + (1− θt)

ϕTC

ϕTI(θt+1)

)
ϕTC

stϕTC + (1− st)ϕTI(θt)
, (15)

where st is the wealth share of the TI agents. Thus, the stochastic discount factor correlates

negatively with the TI agent’s future wealth-consumption ratio ϕTIt+1. From equation (14) we

see that the aggregate wealth-consumption ratio is positively related to ϕTI(θt) which in turn is

negatively related to θt. Hence, the stochastic discount factor and the return on the consumption

claim are negatively correlated, which implies a positive market risk premium.

In contrast, if we replace the TI agents in this economy with agents with standard, but time-

varying, exponential discounting, the shocks to their utility discount factor is traded away with

the TC agents. Under the maintained assumption of no aggregate consumption risk, this results

in a locally deterministic stochastic discount factor (risk-neutral pricing) and no risk premiums

(see the online appendix for derivations and detailed discussion of this case). Thus, time-varying

present bias gives rise to a novel source of discount rate risk relative to existing preference shock

channels.
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3 Survey evidence on own consumption expectations

The present-biased agents in our model make systematic forecast errors when forecasting their

own consumption growth, as discussed in the previous section. In particular, they tend to

overconsume next period relative to their expectations. In this section, we show that expectations

data from a survey of U.S. consumers are consistent with this implication of the model. We

estimate both the level and the time-variation of the bias and use these results in the subsequent

calibration of our quantitative model.

3.1 Data

We use data from the New York Fed’s Survey of Consumer Expectations, which is a survey of

a population-representative rotating panel of 1,300 U.S. household heads, who own, buy or rent

their home. The Core module includes monthly records of a total of 21,222 unique individuals over

the sample period June 2013 until July 2023. Each consumer is observed for up to 12 consecutive

months and there are about 1,000 respondents on average every month. The Spending module

of the survey spans the period December 2014 until December 2022, but only takes place three

times per year and includes 12,579 unique individuals.

We construct individuals’ realized real consumption growth and their expected real consump-

tion growth to assess if the agents exhibit predictable forecast errors. The expected consumption

growth is available in the Core module under the question: “By about what percentage do you

expect your total household spending to [increase/decrease] over the next 12 months?”. In order

to obtain expected real consumption growth we subtract expected inflation, which is also reported

in the survey under the question: “What do you expect the rate of [inflation/deflation] to be over

the next 12 months?”. The realized nominal consumption growth is recorded in the Spending

module under the combined answers to the questions “How does your current monthly household

spending compare with your household’s monthly spending 12 months ago?” and ”In percentage

terms, by how much has your current monthly household spending [increased/decreased] com-

pared to 12 months ago?”. We obtain the realized real consumption growth after subtracting

the actual inflation rate from FRED.
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Table 1 reports the summary statistics of the main variables of interest from the raw, un-

filtered New York Fed’s Survey data. In the first two rows we can already see that individuals’

average realized real consumption growth is higher than their expected real consumption growth

(1.05% vs. −1.12%), which suggests that agents on average underestimate the amount they will

consume next period. This is exactly the kind of expectation error we would expect from an

agent that suffers from present bias. However, before conducting our formal statistical tests,

we note that both variables have extreme outliers (e.g., maximum values above 9, 000%, and

minimum values below −100%). We therefore trim the data cross-sectionally at the 1% and 99%

levels each time period, where the respective values reported in Table 1 are reasonable. Finally,

we limit the sample to individuals who respond to both the Core and the Spending modules to

make sure we observe both their expected and realized consumption growth. After filtering the

final sample includes 11,928 individuals.

The Core module also contains information about the individuals’ demographic characteris-

tics. Education is recorded as the highest obtained degree ranging from Less than High School

(1) to Professional Degree (8). We classify them into three categories, High School, Some College

and College education, consistent with the classification of the New York Fed’s Survey, normal-

ized to 1, 0.5 and 0, respectively. To ensure that the individuals have already completed their

education at the time of the survey and to clean errors such as the maximum reported age of

891, we exclude individuals below the age of 25 and above or equal the age of 80. Afterwards, we

classify individuals in age cohorts below 40, between 40 and 60, and above 60, consistent with

the categories provided by the survey. Income ranges from Less than $10, 000 (1) to $200, 000 or

more (11), that we classify in three cohorts consistent with the survey categories: Below $50, 000,

Between 50, 000 and $100, 000, and Above $100, 000, encoded as 1, 0.5 and 0, respectively. The

risk tolerance is available in the Core survey under the question “On a scale from 1 to 7, how

would you rate your willingness to take risks regarding financial matters?”. We group the indi-

viduals in three categories, low, medium and high risk tolerance: 1, 0.5 and 0, respectively. The

last variable reported in Table 1 is an indicator of saving in general available in the Spending

module under the question “People budget in different ways. Do you (and your family) generally
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try to focus more on trying to save regular amounts of money?”. We define it such that it takes

the value of 1, if individuals do not save in general, and 0 otherwise.

We also analyze how the individuals’ consumption growth forecast errors vary with stress

factors. In particular, we focus on state-level annual changes in unemployment rates available in

FRED, as well as state-level economic conditions indicators. The unemployment rate is available

on a monthly frequency at the beginning of the month, so we use the lagged value in order to

make sure the information is available to the agents at the time of completing the survey. The

economic indicators are developed by Baumeister, Leiva-León and Sims (2024) and available

online at a weekly frequency. They are broad indices capturing the mobility, labor market, real

activity, and financial conditions of households in the 50 U.S. states. The database does not

include the District of Columbia. A value of zero indicates growth equal to the national long-run

growth, negative values of the indicators correspond to lower than average growth and positive

values denote higher than average growth. We multiply the variable by -1 such that positive

values indicate lower than average growth and therefore higher degree of stress. We use the

two-month lagged observations of the last week of the month in order to make sure the data is

available at the time agents complete the survey.

To show that our results are not driven by financially constrained agents, we run our tests

in a sub-sample of only financially unconstrained individuals. Questions that are relevant for

defining financial constraints are available in the Credit access module of the survey. In addition

to our standard data filters, we limit our sample to the ones who participate in that module,

which consists of 7,546 unique consumers. We define individuals as financially constrained and

drop them from the sample, if they satisfy one of the following criteria. First, they answer

“Yes” to the question: “Over the past 12 months, did you max out (borrow up to the limit)

on any of your credit cards?”. Second, they respond “I did not think I would get approved” to

the question “You just indicated that you did not apply for any new loans or credit cards over

the past twelve months, nor did you make any request for an increase in limits, or refinancing.

What is the reason for that?”. Third, they respond “I did not think I would get approved” to

the question “You just indicated that it is very unlikely that you will apply for any new loans
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or credit cards over the past twelve months, nor did you make any request for an increase in

limits, or refinancing. What is the reason for that?”. Fourth, they answer “No, my request was

rejected” to the question “Was your request for [new loans or credit cards] granted?”. Finally,

to show that biased consumers are not more pessimistic about aggregate quantities, we use the

answers to the question “What do you think is the percent chance that 12 months from now the

unemployment rate in the U.S. will be higher than it is now?”, available in the Core module of

the survey. Higher values correspond to higher degree of unemployment pessimism.

3.2 Individual consumption expectations and realizations

In this section we show that the individuals’ expectations about their real consumption growth

are on average negatively biased. Less sophisticated individuals exhibit stronger average bias

and increasing bias in times of economic stress.

The final sample gives us expected and realized annual real consumption growth for a broad

set of individuals over the period from December 2014 to December 2022. To establish departures

from rationality, we would ideally run regressions with the forecast error, ∆cit+1−Ei
t

(
∆cit+1

)
, on

the left hand side of the regression and predictors known at time t, xit, on the right hand side.

However, survey participants report their realized consumption growth over the last year along

with the expectation of their consumption for the next year. This limits the specifications we

are able to run to document the bias as we now have ∆cit − Ei
t

(
∆cit+1

)
on the left hand side of

the regression, which can be predictable based on variables known at time t also under rational

expectations.

To overcome this challenge, we first establish that agents on average are pessimistic about

future consumption and that this bias is stronger for individuals that are likely to be less sophis-

ticated. In particular, columns (1) and (2) of Table 2 give the estimate of the average forecast

error µ from the regression

∆cit − Ei
t

(
∆cit+1

)
= µ+ εit. (16)

The estimates are 1.6% and 2%, respectively, where the latter restricts the sample to only include

the pre-Covid period. Thus, agents on average, across time and agents, expect their consumption
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growth to be substantially lower than the realized growth is. Since we only have 8 years of time

series data available, one may worry that there are time trends in the data that the standard

errors do not accurately capture. Columns (3) and (4) of the same table show regressions

∆cit − Ei
t

(
∆cit+1

)
= µt + µs + β⊤xit + εit, (17)

where µt and µs refer to time and state fixed effects, respectively, so the identification is cross-

sectional, within-state. The xit are agent i’s level of education, income, whether they save gener-

ally, age, and risk tolerance. The three former demographic variables are statistically significant

at the 5% level or lower, while the two latter are not. All variables, except age, are coded into

brackets between 0 and 1, as discussed in the previous section, where a higher value arguably

indicates less sophisticated individuals. For instance, no high school education is coded as a

1, while a graduate degree is coded as a 0. The regression coefficients on the three significant

coefficients are all positive, which indicates that less sophisticated agents are more pessimistic,

where the difference in pessimism from the most to the least sophisticated is about 3% per year

for education, 2% per year for income and 0.5% per year for save generally.

The timing issue that we highlight above is not an issue for this regression as long as

Cov (∆cit, x
i
t) = Cov

(
∆cit+1, x

i
t

)
, where the covariance is taken across time and agents, con-

trolling for time and state fixed effects. If the level of education, for instance, is set years before

an agent enters the sample, this condition is likely to be satisfied. Similarly, the “Do you save

regularly?” question refers to a longer-run condition of the agent that is unlikely to affect this

covariance. The income brackets could be problematic, however, as an agent that had unexpect-

edly high income last year also might have consumed more than expected, but this would not

necessarily affect the forward-looking expectation. In this case, the high income agent would

appear pessimistic relative to the low income agent, which is the opposite of what we find. That

said, the income brackets are very coarse, making it unlikely that an agent changes brackets so

these shifts are in any case a small part of the variation in the data. Nevertheless, some agents

likely do change income brackets (we cannot assess this directly with the data at hand as the

survey participants only answer the income once), so this coefficient should be interpreted with
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caution. In the online appendix, we show that all our results are robust to removing the income

variable from the regressions.

Next, we turn to whether this bias is varying with economic conditions. This makes the timing

issue in the data more salient as it entails conditioning on variables that affect the conditional

distribution at time t of t + 1 outcomes. To address this, we create cohorts based on the

characteristics we have shown are related to the bias – education, income, and saving generally.

Importantly, these characteristics are not changing with the conditioning variables. Income and

education take values 0, 0.5, and 1, while saving generally takes values 0 and 1. We create cohorts

by state for each of these variables individually, as well as for a combination of all three variables

where we use the predicted bias from a regression predicting individual pessimism, similar to

that in Table 2, but only using the three variables (i.e., not age or risk tolerance). An example

of this cohort, which we term the bias cohort, is individuals with no high school education (the

education variable equal to 1), income bracket 0.5, and that save generally. Thus, the agents

who are most susceptible to the bias are indicated by 1 and the least biased by 0. At each time

t, we compute the average realized and expected consumption growth for each cohort for each

state, ∆cjs,t and E
j
t (∆cs,t+1), where j refers to the cohort.

We then run regressions of the form:

∆cjs,t+1 − Ej
t (∆cs,t+1) = µt + µs + β1x

j
t + β2zst + β3x

j
tzst + εjs,t+1, (18)

where xjt is the variable that defines a cohort, e.g. education level, and zst is a state-level indi-

cator of economic stress. The economic stress variable is either a state-level economic condition

indicator (see, Baumeister, Leiva-Leon, and Sims 2021) or state-level change in unemployment.

In the regressions, we sign both variables such that high values indicate bad times. As before, the

cohort variable is high for the less sophisticated. Note that in this regression the timing of the

left hand side variable is the usual definition of a forecast error due to the use of representative

cohorts to construct the realized and expected consumption growth.

The main coefficient of interest is β3, which asks whether the sensitivity of the bias to the

cohort variable is changing with economic conditions. A positive β3 implies that less sophisticated
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agents get more pessimistic about their future consumption growth in bad times. This is indeed

the case for each variable – cohorts associated with proxies for less sophistication are more

pessimistic on average (β1) and even more so in bad times (β3). Thus, in Column (4) of Table 3,

we can see that the most biased agents have an average annual forecast error of about 6%, relative

to the least biased agents who do not make any mistakes on average, and that error increases to

about 10%, if the stress indicators rise by 2 standard deviations. In Table 5, we show summary

statistics of the implied forecast errors. The annualized average error is the average prediction

based on the significant explanatory variables from the regression model in Table 3, Panel B,

Column 4 (based on bias cohorts and the economic condition indicator using all the available data

on a weekly frequency). The annualized standard deviation of the forecast errors is estimated as

the projected standard deviation of the economic conditions indicator in the regression model.

Confidence intervals are shown in brackets below. The persistence of the forecast errors is based

on the annualized autocorrelation of the economic conditions indicator. We use these values as

an upper bound for the forecast errors we calibrate our model to in the next section (see Column

(2), Table 5). Notably, the coefficient on the economic indicators are insignificant, indicating

that the bias is not related to aggregate (in this case, state level) economic outcomes in general.

In the online appendix, we show that the results are not driven by agents that are financially

constrained, the use of trimming in consumption outcomes, the inclusion of the income variable,

or the pessimism in aggregate quantities.

4 Model with Epstein-Zin preferences

In this section, we consider quantitative implications of the model in a stationary equilibrium

where the agents have recursive preferences. We still keep the model ingredients simple, however,

to emphasize the economics and facilitate easy benchmarking to existing models.
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4.1 The Economy

In order to get a stationary equilibrium, we consider a very simple overlapping-generations (OLG)

model where all wealth is financial and the wealth of agents who die is equally redistributed among

newborn agents9. Each time t a mass of λ agents are born and a randomly chosen proportion λ

die, such that the survival probability at each point in time is 1− λ. Thus, agents born at time

b ≤ t represent a λ(1− λ)t−b fraction of the population and at each date t the total population

of all agents born between −∞ and t sums to 1.

The economy is populated by two types of agents: time-consistent (TC) and time-inconsistent

(TI). The TI agents make up a fraction ζ of the overall population. Since the wealth of agents

who die are equally redistributed among newborn agents, the wealth share of newborn TI and

TC agents are λζ and λ(1− ζ), respectively.

Aggregate consumption growth is assumed to be i.i.d. log-normal with growth rate µc and

volatility σc:

log

(
Ct+1

Ct

)
= µc −

σ2
c

2
+ σcεt+1. (19)

Let ϕt ≡ Wt

Ct
denote the aggregate wealth-consumption ratio at time t, where wealth is mea-

sured cum-consumption. The return on the aggregate wealth portfolio (i.e. the claim that pays

aggregate consumption as dividends) is then:

RC,t+1 =
ϕt+1

ϕt − 1

Ct+1

Ct
. (20)

We assume that the financial markets are complete with respect to shocks to θt and aggregate

consumption. In equilibrium, the optimal portfolio of TI agents at time t is one that pays off

a fraction gTI(θt+1; θt, st) ∈ (0, 1) of aggregate wealth Wt+1 at time t + 1, where st denotes the

current wealth share of TI agents. The equilibrium dynamics of TI agents wealth share will

therefore be:

st+1 = (1− λ)gTI(θt+1; θt, st) + λζ. (21)

9The results are very similar in a discrete time version of the Blanchard (1985) and Gârleanu and Panageas
(2015) overlapping-generations model.
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Finally, we also consider the pricing of a levered claim to aggregate output, which proxies

for the equity market in our model. The log dividend growth of this portfolio is:

log

(
Dt+1

Dt

)
= µd + ϱd log

(
Ct+1

Ct

)
− σ2

d

2
+ σdεd,t+1, (22)

where ϱd > 1 represents leverage and εd,t+1 ∼ N(0, 1) i.i.d. The expected growth rate of dividends

is µd + ϱdµc and σd denotes the “idiosyncratic” volatility.

4.2 Investor preferences

Both types of agents have Epstein-Zin preferences (Epstein and Zin 1989; Weil 1989) with iden-

tical elasticity of intertemporal substitution (EIS) parameter ψ, where ρ = 1 − 1
ψ
, risk aversion

level γ, where α = 1 − γ, and time discount factor β. An individual i who is a time-consistent

(TC) agent therefore has the following value function:

UTC,t(Wi,t) = max
[
Cρ
i,t + (1− λ)βEt

[
Uα
TC,t+1(Wi,t+1)

] ρ
α

] 1
ρ
, (23)

where Et denotes the rational expectation conditional on all available information at time t, and

Ci,t denotes the TC agent i’s consumption. It is also useful to denote the wealth of this agent as

Wi,t.

Next, the value function of an individual TI agent i is:

UTI,t(Wi,t) = max
[
Cρ
i,t + (1− λ)βδEt

[
θtU

α
TI,t+1(Wi,t+1) + (1− θt)U

α
TC,t+1(Wi,t+1)

] ρ
α

] 1
ρ
, (24)

where Ci,t denotes the TI agent i’s consumption. The agent’s wealth is denoted by Wi,t.

As in section 2, TI agents anticipate the bias of others, but not of themselves. Hence, each

(representative) TI agent believes that while she will be time consistent at t+1 with probability

1− θt, the rest of the agents of her type will remain present-biased with probability 1. Since we

rule out claims whose payoffs are contingent on whether an individual becomes TC or not, this

again means that each TI agent is rational about the dynamics of asset returns and thus their
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wealth, Wi,t+1.

4.3 Equilibrium

We find the equilibrium consumption and portfolio choice according to the TI and TC agents’

beliefs as of time t.10 It is convenient to denote their wealth-consumption ratios by ϕTC,t and

ϕTI,t, respectively.

Since all agents of the same type are identical except for the level of initial wealth, the

equilibrium wealth-consumption ratio of an individual agent is equal to the wealth-consumption

ratio of her type. As usual with Epstein-Zin preferences, we can express the agents’ value

functions at any period t using a general recursive formulation of their wealth-consumption

ratios. We provide a proof of the proposition in appendix B.

Proposition 1. The maximized value functions of an agent i who is either time-consistent or

time-inconsistent with time-varying degree of present bias at any period t are given by:

UTI,t(Wi,t) = ΨTI,tWi,t (25)

UTC,t(Wi,t) = ΨTC,tWi,t, (26)

where ΨTI,t = ϕ
1−ρ
ρ

TI,t and ΨTC,t = ϕ
1−ρ
ρ

TC,t and the wealth-consumption ratios take the following form:

ϕTI,t ≡ 1 + [(1− λ)βδ]
1

1−ρEt
[(
θtϕ

α(1−ρ)
ρ

TI,t+1 + (1− θt)ϕ
α(1−ρ)

ρ

TC,t+1

)
Rα
TI,t+1

] ρ
α(1−ρ)

(27)

ϕTC,t ≡ 1 + [(1− λ)β]
1

1−ρEt
[
ϕ

α(1−ρ)
ρ

TC,t+1R
α
TC,t+1

] ρ
α(1−ρ)

, (28)

where RTI,t+1 and RTC,t+1 denote the return on the TI and TC agents’ portfolios, respectively.

As in the log utility case in Section 2, we only consider time t state-contingent claims for each

possible realization of (θt+1, εt+1), which we refer to as a semi-complete market. Since the market

is complete with respect to these shocks, the agents’ intertemporal marginal rates of substitution

10O’Donoghue and Rabin (1999, 2001) term this a perception-perfect equilibrium.
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are equalized state-by-state with respect to these shocks. In the below proposition, we give the

equilibrium stochastic discount factor of each type of agent projected onto (θt+1, εt+1). For the

TI agent, this is effectively a projection of their marginal intertemporal rates of substitution onto

these shocks conditional on the current state vector (θt, st), where the projection integrates out

the (perceived) uncertainty related to switching type from TI to TC.

Proposition 2. The stochastic discount factors (projected onto the state-space generated by θt+1

and εt+1) of the time-consistent agent and time-inconsistent agent with time-varying degree of

present bias in semi-complete markets are equal state by state and given by:

MTI,t+1(θt+1, εt+1; θt, st) =MTC,t+1(θt+1, εt+1; θt, st), (29)

where

MTI,t+1 = [(1− λ)δβ]
α
ρ

[
θt

(
ϕTI,t+1

ϕTI,t − 1

) (1−ρ)α
ρ

+ (1− θt)

(
ϕTC,t+1

ϕTI,t − 1

) (1−ρ)α
ρ

]
Rα−1
TI,t+1 (30)

MTC,t+1 = [(1− λ)β]
α
ρ

(
ϕTC,t+1

ϕTC,t − 1

) (1−ρ)α
ρ

Rα−1
TC,t+1. (31)

The term (1 − θt)
(
ϕTC,t+1

ϕTI,t−1

) (1−ρ)α
ρ

reflects risk perceived by the TI agent associated with a

change of type to TC.

5 Numerical results: Epstein-Zin preferences

In this section we report numerical results for our heterogeneous agents general equilibrium model

with Epstein-Zin utility, disciplined to match the consumption growth forecast errors documented

in the New York Fed’s survey of consumer expectations. Based on this calibration we show that

the novel discount rate risk channel induced by time variation in the present bias has first-order

asset pricing implications.
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5.1 Calibration and consumption growth forecast errors

We choose standard preference, aggregate consumption growth, and OLG parameter values, given

in Table 4. Aggregate consumption and dividend growth are i.i.d.. The volatility of consumption

growth is set to 2.7%, while the dividend leverage parameter is set to 3. The risk aversion γ

of both types of agents is 10, their EIS parameter ψ is 2, and their discount factor β is 0.984

per year. We set the annual mortality probability to 0.02%, which gives a life-expectancy of 50

years. The fraction of newborn TI agents is ζ = 0.5 (as in Halevy, 2015). We solve the model

on a grid of S = 201 TI wealth share values st ∈ (0, 1).

The novel part of our paper relates to the dynamics of θt and its calibration. The log utility

case in Section 2 describes how TI agents make predictable forecast errors about their own

future consumption growth, measured as the difference between their objective and subjective

consumption growth expectations. This feature carries over to the Epstein-Zin case. We calibrate

the parameters governing the dynamics of θt, conditional on the other standard parameters given

above, such that the model is consistent with the magnitude of agents’ consumption growth

forecast errors documented in the survey. We set δ = 0.9 on an annual basis, corresponding to

an extra discounting of about 10.5% per year, which is on the conservative side based on the time

inconsistency literature. We model the subjective belief of the TI agent about their own future

type, θt, as a Markov process bounded between 0 and 1 and consistent with the persistence of

the forecast errors in the survey:

θt =

(
ext

1 + ext

)φ
. (32)

The shape of the θt function is determined by φ, while xt is a first-order Gaussian autoregressive

process with parameters κx = 0.85 and σx = 5 governing its persistence and unconditional

volatility. At the average value of xt, θ(µx) is 0.10, which means that the TI agents are quite

naive about their own present bias, consistent with the evidence in Fedyk (2025). To solve the

model numerically we assume that xt can take K = 101 values x̂ with transition probability

matrix Πx calibrated to match its AR(1) dynamics (e.g., Rouwenhorst 1995) with individual

transition probabilities given by πk,l ≡ P(xt+1 = x̂l|xt = x̂k). This implicitly also defines the

transition probabilities for θ, Π.
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Table 5 gives the annual mean, standard deviation and autocorrelation of forecast errors

both from the New York Fed survey and those implied by our calibrated model. The numbers

from the survey correspond to the “Bias” column of Table 3 when the bias variable is set to 1

and the stress variable is the “economic conditions”-variable. The model-implied forecast error

is calculated as the TI agents’ expectation of their own consumption growth subtracted from the

rational expectation of their consumption growth. In terms of magnitude, the average forecast

error of the TI agents in the model is about 6%, similar to that in the survey, which means

that TI agents’ forecasts are too low relative to actual consumption. The standard deviation of

model-implied forecast errors is about 8%, which is higher than the standard deviation of 2%

implied by the survey regressions. However, this is the total variation in forecast errors, while

the survey regressions only capture the part projected onto the “economic conditions”-variable.

When we do a similar projection within the model, projecting the forecast errors onto measures

of the state of the economy – the conditional variance of market returns – the projection has

a volatility slightly higher than 1%, which is well within the standard errors in the data. We

conclude that the mean and volatility of the forecast errors in the model are consistent with

those in the data.

To understand better the interaction between the forecast errors and the degree of present

bias, we plot the forecast error as a function of θ after integrating out the TI agent wealth share,

st. Figure 1 reveals a hump-shaped pattern. On the left hand side of the graph, when θ is low, the

forecast error is small. This seems at first counter-intuitive, but is happening as a low θt today

means θt+1 also is likely to be low given it is a persistent process. In these states, the next period

TI and TC wealth-consumption ratios are quite similar, since the agent, if she remains TI, will

believe she is likely to become TC very soon given a low θt+1. Thus, next period’s consumption

growth is perceived to be similar whether the agent is TI or TC, and thus the forecast error is low.

As θ increases, there are two opposing effects on the forecast error that drive the hump shape:

(1) the TI and TC agents’ wealth-consumption ratios diverge more as the agent perceives that

they will likely not change to TC for a while, which means their consumption growth diverge,

and (2) the TI agent becomes less wrong about her type next period. Once θ reaches 1, the
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TI agent correctly understands she will in fact remain TI next month and therefore correctly

forecasts one month ahead consumption growth. However, since there is a positive probability

that θ two months from now will be lower than 1, she thinks there is a positive probability to

become TC in the future. As a consequence, the TI agent with current θ = 1 will still have

forecast errors for longer forecast horizons, e.g. annual as in Figure 1.

The figure also gives the unconditional distribution of θ in the gray area – most of the time θ

is low, but there is a long right tail of higher values for θ that gives rise to larger forecast errors.

5.2 Asset pricing implications

To obtain model predictions, we simulate 20,000 years of monthly data from our model. After

discussing the properties of the main calibration, we consider model sensitivity to the share of

TI agents in the economy, a constant θ case, and the benchmark case where all agents are TC.

In the latter case, risk premiums are low and discount rates are constant since consumption

growth is i.i.d. This is a natural benchmark against which to contrast the impact of time-varying

present-bias.

Table 6 gives asset pricing moments of our various calibrations. Panel A gives the uncondi-

tional mean and volatility of the TI wealth share, aggregate consumption-claim return, levered

equity return, risk-free rate, and slope of the default-free yield curve. Panel B gives the volatility

of conditional risk premiums, as well as the correlation between risk premiums and the price-

dividend ratio and the slope of the term structure.

The mean wealth share of the TI agents in our baseline calibration (column (1)) is about 15%,

despite half of all agents being TI. This is because their present-bias leads to over-consumption

and low savings, which means their wealth is relatively low. Despite the low wealth share their

presence still has strong effects on asset prices. For instance, the risk premium on the consump-

tion and dividend claim are about 2.2% and 3.7% per year, respectively. This is compared to

0.7% and 2.2% for the benchmark case when all agents are TC (given in Column (5) of the

table). Part of this increase is due to higher stock return volatility. In particular, the benchmark

TC case has 2.7% and 9.6% return volatilities for the consumption and dividend claims, respec-
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tively, while the baseline calibration yields 7.0% and 11.8%. This excess volatility is due to the

time-variation in the present bias, which induces time-varying discount rates. This can be seen

in Panel B which shows that the volatilities of the conditional risk premiums are 2.5% and 2.7%

for the consumption and dividend claim, respectively. Further, this discount rate risk is priced,

as we can see from the increase in the Sharpe ratio of the dividend claim, which is 0.23 when all

agents are TC and 0.31 in the baseline calibration. The price of discount rate risk generated in

our model is negative, consistent with the empirical evidence in Kozak and Santosh (2020) and

as explained in Section 2.

Notably, when the degree of present bias is constant, as shown in columns (3) and (4) of the

table, there is no increase in the risk premiums or return volatilities relative to the benchmark

case when all agents are TC. This is because, as can be seen from Panel B of Table 6, the

constant θ cases yield no time-variation in discount rates. This is consistent with Luttmer and

Mariotti (2003), who make this point for constant hyperbolic discounting in the case where

agents are sophisticated about their present-bias. Columns (3) and (4) show the asset pricing

implications of constant θ, equal to 0.1 and 0.9, respectively, where the former is the median θ

in our baseline calibration. The moments that depend strongly on the level of θ are the wealth

shares of TI agents and the level of the risk-free rate. With θ = 0.1 the agent believes they with

90% probability become TC next period and forever thereafter. Therefore their consumption

and portfolio choice are both close to the TC agent. For this reason, the average wealth share

is high and the risk-free rate low relative to the high θ case. In the θ = 0.9 case, the agent

over-consumes and under-saves much more strongly, which leads to a lower average wealth share

and a higher risk-free rate.

Consistent with stylized facts, the baseline calibration also has an on average upward-sloping

term structure, where the average slope of the yield curve is 0.6% with volatility 1.7%. This

result is consistent with the findings of Albuquerque, et al. (2016), Duffee (2018), Gomez-Cram

and Yaron (2020), and Chernov, Lochstoer, and Song (2025), who show that variation in real

rates rather than inflation expectations is the main driver of the positive slope in nominal yields.

Again the positive bond risk premium is due to negatively priced discount rate risk. Column
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(2) reports asset pricing moments for the time-varying θt case when there are more TI agents

in the economy (80%). In this case, as is intuitive, there is even more variation in discount

rates, which leads to a further increase in risk premiums, return volatilities, and Sharpe ratios.

Panel B further documents that, consistent with the data, the price-dividend ratio is negatively

correlated with conditional expected excess market returns, and the slope of the term structure is

positively correlated with conditional expected excess bond returns. Thus, the model is broadly

consistent with stylized facts on excess return predictability.

5.3 Inspecting the mechanism

To further inspect the mechanism driving discount rate risks, Figure 2 shows the conditional asset

pricing moments in our baseline calibration as a function of the time t degree of present bias θt

after integrating out the TI agent wealth share st. We can see that the equity risk premium, just

like the forecast error, is time-varying and increasing in the degree of present bias, θt (except for

when θt is very close to one). For the most frequently observed values (θt < 0.5) the conditional

risk premium ranges between 2% and 7% per year. However, in more rare states with higher θt it

can exceed 20%. Note that an important driver of fluctuations in the conditional risk premium

is variation in the price of risk (maximum Sharpe ratio), which ranges between 0.3 and 0.8,

rather than just variation in the conditional volatility of returns. The bond term premium is

hump-shaped in θt, ranging between 0% and 2% per year.

The increasing discount rates and Sharpe ratios in θt is due to increasing, priced discount

rate risk. To understand this, it is useful to take the perspective of the TI agent. This agent

believes they will become TC next period with probability 1 − θt. If we for argument’s sake

pretend θt is a constant θ, the expected time to becoming TC is 1/(1− θ). The derivative of this

“duration” metric is 1/(1− θ)2, which is small when θ is close to zero and large as θ approaches

one. Thus, the expected time to becoming TC is very sensitive to shocks to θt when θt is high.

As is well-understood, the wealth-consumption ratio of an agent is strongly impacted by the

time-discounting, which in turn depends on the expected time to becoming TC. Thus, shocks to

θt have a stronger impact on the TI agent’s wealth-consumption ratio, and thus marginal utility,
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when θt is high than when θt is low.

Next, we calculate impulse-responses from a positive shock to θt to a selection of endogenous

variables.11 We calculate these impulse response functions for all values of θt and for three

different levels of the TI wealth-share at time t (30th, 50th, and 70th percentiles) conditioning

out the dependence on θt using its unconditional distribution. Figure 3 plots the resulting

“average” impulse response functions. There are two general takeaways worth noting. First,

the patterns for all variables are qualitatively similar across initial TI wealth shares. Secondly,

higher TI wealth-shares magnify the impulse-responses.

From the top-left panel in Figure 3 we see the impact of the θt-shock on future TI wealth-

shares. At impact, the TI wealth-share goes up significantly, e.g. in the case of initial TI

wealth-share at the 70th percentile it increases by about 1 percentage point. This is due to TI

agents choosing portfolios that pay off more when there are positive shocks to θt. However, after

the initial impact, the TI wealth share falls each of the following months until it actually drops

below its initial starting point. This is due to the TI wealth-consumption ratio on “average”

being a decreasing function of θt. Thus, the positive shock to θt initially increases TI wealth

through a high portfolio return, but then draws down that wealth thereafter due to higher TI

consumption.

From the remaining panels in Figure 3 we see that the risk-premium, volatility, Sharpe ratio

and the variance risk premium on the dividend claim all jump up at the impact of the shock

before gradually reverting. For instance, the immediate impact in the risk-premium and volatility

when the initial TI wealth-share is at its median is about 2 and 4 percentage points annualized,

respectively. We also see that the log dividend-price ratio and the risk-free rate declines at the

impact of the shock before gradually reverting back. Finally, the yield curve slope (the difference

in yield-to-maturity on a 10 year bond and the 1 month bond) also jumps up at the impact of

the shock.

In sum, time-variation in θt gives rise to economically significant priced discount rate risks

across all asset prices. Next, we discuss how these risks relate to the existing literature on

11The magnitude of the shock corresponds to a one standard deviation positive shock to xt, which is driving
θt per Equation (32).

30



discount rate risk and the stochastic discount factor.

5.4 Present-bias and discount rate risk: decomposing the SDF

To further understand the mechanisms that give rise to our results and to relate it to the existing

literature, it is useful to decompose shocks to the log SDF as follows, letting z̃t+1 denote zt+1 −

Et(zt+1):

m̃t+1 = − γ − 1

ψ − 1
˜lnϕTC,t+1 − γ r̃TC,t+1

= − γ − 1

ψ − 1
˜lnϕTC,t+1 − γ ˜ln(1− gTI,t+1)− γ l̃nϕt+1 − γ ˜lnCt+1, (33)

where γ−1
ψ−1

> 0 since γ > 1 and ψ > 1 in our calibration. From this decomposition, we see

that the marginal utility of the agents at time t + 1 is high when either the growth in the TC

wealth-consumption ratio is low, or the portfolio return of the TC agent is low. The latter can be

low because: 1) the “active portfolio bet” made by TC agents results in a lower TC wealth-share

(of TC agents alive at time t) 1−gTI,t+1 at t+1; 2) the aggregate wealth-consumption ratio ϕt+1

is low; or 3) aggregate consumption growth is low. Only the last component, shocks to aggregate

consumption growth, remains as a risk factor in the case where all agents are TC. This is also

the cash flow risk of the consumption claim. The other components are thus, from the aggregate

perspective, drivers of discount rate risk.

Campbell, Giglio, Polk and Turley (2018; CGPT) argue that shocks to stock market cash

flows, expected return and return volatility are all priced and thus correlate with the stochas-

tic discount factor. In Table 7 we project the log SDF onto shocks to expected returns, return

volatility, and cash flows of either the consumption or dividend claim (columns (1) or (2), respec-

tively). Consistent with CGPT, the sign in the projections on cash flows are negative, while the

signs on discount rates are positive. Thus, higher discount rates are associated with bad states,

while high cash flows are associated with good states. The fraction of variation explained by

each component is given in parenthesis under the projection coefficients. We see that while cash

flows are the dominant component, discount rate and volatility risk are important drivers of risk
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in the economy. These projections, however, do not capture all variation in the SDF. The R2’s

of the projections are 75% and 58%, respectively. This is because the model is highly nonlinear

with strong conditional dynamics. Thus, the one-period ahead shocks we project linearly onto

are not sufficient to capture these elements. Column (3) shows a projection of the log SDF onto

the aggregate consumption shock and discount rate components of the SDF – that is the shock

to aggregate consumption versus the other components of the SDF. This projection gives a 100%

R2 by construction and reveals that about 57% of the variation in the SDF are due to cash flow

shocks while 43% are due to the components that give rise to discount rate shocks in the model.

5.5 Discount-rate risk and portfolio choice

Given that discount rates are time-varying and priced in our model, a relevant question becomes

who bears this risk and why. Figure 4 plots the unconditional correlations between log returns

on the TI and TC portfolios, as well as on the aggregate consumption claim, with shocks to

consumption growth and one period expected return and return variance of the consumption

claim return. In the final panel, we also plot the correlation with shocks to the “discount rate

component” of the SDF, as defined above.

The TI agent’s portfolio return is positively correlated with shocks to discount rates (top

left and bottom right panels of Figure 4) and shocks to the return variance of the consumption

claim, (bottom left panel), while both the TC portfolio return and the consumption claim return

are negatively correlated with these shocks. The reason is that discount rates and variances tend

to spike when the TI agents become more impatient. However, when TI agents are impatient,

their value function is also low for a given level of consumption, which is a high marginal utility

state of the world for the TI agents. The TI agents seek to hedge this risk, and therefore buy

a portfolio that pays off more when discount rates increase. TC agents on the other hand,

face better investment opportunities when discount rates are higher, resulting in a larger value

function. The TC agents are therefore willing to accommodate TI agents by taking on more

discount rate risk than just passively holding the aggregate consumption claim.

The sharing of risk varies with θt. When θt is close to 0, the TI agents are almost sure
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they will be TC agents next period, and therefore wish to have similar risk exposures in their

portfolio. As a consequence, TI and TC agents hold very similar portfolios, which is very close

to the aggregate consumption claim. However, since θt is the subjective probability of remaining

TI, and therefore having the marginal utility of a TI rather than TC agent next period, a higher

θt results in diverging portfolio choices. As a consequence, when TI agents are more impatient,

they are also less willing to take on discount rate risk, and thus their portfolio return will be

more positively correlated with innovations to discount rates.

6 Robustness to alternative model assumptions

In the online appendix we discuss the effects of alternative modeling choices. We consider (1)

time-varying present bias through a time-varying δt instead of using our current time-varying

θt specification, (2) the case where TI investors are precluded from investing in stocks (limited

market participation), and (3) the case where TI agents are sophisticated about their bias. The

asset pricing implications are qualitatively the same — time-varying present-bias remains a novel

source of substantial, priced discount rate risks.

7 Conclusion

Present bias is well documented. The prevailing view in benchmark models is that it does not

affect risk premiums (Luttmer and Mariotti 2003). Recent empirical and experimental findings

emphasize that present-bias is time-varying and stronger during times of stress. Incorporating

such time-varying present-bias generates priced discount-rate risk that shifts both conditional

and unconditional asset-pricing moments in otherwise standard environments. Assets load on this

risk, altering Sharpe ratios and the dynamics of expected returns. This mechanism aligns with

evidence that discount-rate risk is central to the risk–return trade-off and asset-price dynamics.

We discipline the model by calibrating the bias to survey evidence on individual consumption-

growth forecast errors. These data show that a subset of agents exhibits state-dependent pes-

simism about own future consumption, consistent with our mechanism. Calibrated to this ev-
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idence, quantitative effects are large even when such agents control a small wealth share. We

show theoretically that time-varying present bias is distinct from time-varying but exponential

discounting and time-varying risk aversion. Unlike these alternatives, time-varying present bias

generates priced discount-rate risk even in the absence of aggregate risks.

The paper offers an alternative mechanism for the large swings in discount rates observed in

financial markets (e.g., Cochrane 2011), grounded in evidence from neuroscience and psychology

and in household consumption–expectation data. An interesting question for future research

is to what extent investors indeed show substantial heterogeneity in holdings of discount rate

sensitive assets, as predicted by the model.
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Table 1: Summary statistics
The table reports the summary statistics of the New York Fed’s Survey of Consumer Expectations raw,
unfiltered data. Detailed explanations of the variables are provided in Section 3.1.

Mean St. dev. N Min P1 P99 Max
(1) (2) (3) (4) (5) (6) (7)

∆c 1.05 63.60 27,819 -477.77 -41.85 42.86 9,997.86
F [∆c] -1.12 90.11 156,756 -11,190 -65 50 24,965
Education level 0.28 0.34 157,041 0 0 1 1
Income level 0.53 0.40 155,920 0 0 1 1
Age 50.54 15.54 157,399 0 23 82 891
Risk tolerance 0.39 0.30 121,145 0 0 1 1
Not save generally 0.66 0.47 24,604 0 0 1 1
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Table 2: Consumption growth forecast errors and demographics
The table reports the difference between individuals’ realized and expected consumption growth based
on the New York Fed’s Survey of Consumer Expectations data. Column (1) presents the average
consumption growth forecast error based on the full sample period (December 2014 until December
2022), while Column (2) focuses on the Pre-Covid (pre-2020) period. Columns (3) and (4) report the
estimates of a regression with time and state fixed effects of consumption growth forecast errors on
demographic characteristics: education, income, age, risk tolerance (each classified in three normalized
categories 0, 0.5 and 1, consistent with the New York Fed’s categorization), and an indicator of not
saving in general. Individuals with the lowest level of education and income are assigned the value of
1. The realized and expected consumption growth are trimmed at 1% by time. Individuals between 25
and 80 years old are included in the final sample of 11,928 unique individuals. The t-statistics, reported
in brackets below, are based on Driscoll-Kraay standard errors using 5 lags. Significance at 10%, 5%
and 1% is denoted by *, **, and ***, respectively.

(1) (2) (3) (4)

Education 3.461*** 3.367***
(3.725) (3.516)

Income 1.727*** 1.732***
(4.591) (5.288)

Not save generally 0.357*** 0.341***
(4.156) (2.911)

Age 0.293
(0.972)

Risk tolerance -0.529*
(-1.904)

Constant 1.596*** 2.025***
(5.000) (6.065)

Time and State FE N N Y Y
Driscoll-Kraay SE Y Y Y Y
Pre-Covid period N Y N N
R-squared 0.000 0.000 0.020 0.020
N 25,817 16,494 23,398 22,529
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Table 3: Time variation in consumption growth forecast errors
The table reports the estimates of a regression with time and state fixed effects of average consumption
growth forecast errors on demographic characteristic cohorts, a stress indicator, and the interaction
between cohort and stress. In Panel A the stress variable zj,t−1 is a state-level economic conditions
indicator (as in Baumeister, Leiva-León, and Sims, 2021) and in Panel B – a state-level change in un-
employment compared to the year before (available in FRED). Columns (1), (2), and (3) report the
estimates using demographic characteristics education, income, and indicator of not saving in general,
respectively. Column (4) presents the results based on a bias composed from the previous three indi-
cators and estimated the online appendix. The expected and realized consumption growth along with
demographic characteristics are available in the New York Fed’s Survey of Consumer Expectations data
for the sample period from December 2014 until December 2022. The realized and expected consump-
tion growth are trimmed at 1% by time and individuals between 25 and 80 years old are included in
the final sample of 11,928 unique individuals. The t-statistics, reported in brackets below, are based on
clustered by cohort and state standard errors. Significance at 10%, 5% and 1% is denoted by *, **, and
***, respectively.

Education Income Save Bias
(1) (2) (3) (4)

Panel A: State-level change in unemployment

Cohort 3.663*** 2.252*** 1.245*** 6.250***
(9.203) (7.162) (4.608) (10.809)

Stress indicator -0.342 -0.191 -0.245 -0.348
(-1.278) (-0.972) (-1.143) (-1.504)

Cohort × Stress indicator 0.695** 0.480** 0.338** 0.775**
(2.394) (2.105) (2.083) (2.134)

Time and State FE Y Y Y Y
Clustered SE Y Y Y Y
R-Squared 0.072 0.072 0.095 0.049
N 2,576 2,769 1,800 5,557

Panel B: State-level economic conditions indicator

Cohort 3.628*** 2.191*** 1.263*** 6.283***
(9.035) (6.964) (4.700) (10.795)

Stress indicator -0.498 -0.523* -0.403 -0.422
(-1.367) (-1.793) (-1.258) (-1.360)

Cohort × Stress indicator 0.928*** 0.546*** 0.395** 0.896**
(2.781) (2.902) (2.497) (2.482)

Time and State FE Y Y Y Y
Clustered SE Y Y Y Y
R-Squared 0.073 0.075 0.094 0.050
N 2,552 2,750 1,778 5,549
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Table 4: Parameters for numerical solution
The table reports the calibration parameters used in the simulation based on the model with time-
inconsistent (TI) and time-consistent (TC) agents and Epstein-Zin preferences. Parameter values related
to the economy, preferences and OLG are organized in columns and presented at an annual frequency,
where applicable. The parameters are explained in detail in Section 5.

Economy Value Preferences Value OLG Value

µc 0.018 β 0.984 λ 0.02
µd -0.018 δ 0.90 ζTI 0.50
σc 0.027 γ 10
ϱd 3 ψ 2
σd 0.05
θ(µx) 0.10
σx 5
#σx 4.5
κx 0.85
φ 0.25
K 101
S 201
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Table 5: Individual consumption growth forecast errors
The table reports summary statistics for the individual consumption growth forecast errors. Column
“Survey data” presents the estimated forecast errors (with 95% confidence interval in brackets below)
based on the regression analysis in Table 3 using the New York Fed’s Survey of consumer expectations
data and the economic conditions indicator as a stress variable (sample period from December 2014
until December 2022). Column “Model” shows the forecast errors computed as the difference between
the objective and subjective TI consumption growth expectations in the model with TI and TC agents
and Epstein-Zin preferences. Column “Model projection” shows the forecast errors when projected onto
the conditional variance of market returns. The calibration parameters of the model are given in Table
4.

Survey data Model Model projection

Mean 6.19 6.46 6.46
[5.04, 7.34]

St. dev. 2.00 7.83 1.23
[0.42, 3.58]
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Table 6: Asset pricing moments
The table reports asset pricing moments for the OLG model with TI and TC agents and Epstein-Zin
preferences. The calibration parameters are given in Table 4. E(x) and σ(x) denote the unconditional
mean and variance of x, respectively, while corr(x, y) denotes the correlation between x and y. SR
stands for Sharpe ratio, st is the TI agent wealth share, RC,t is the return to the aggregate consumption
claim, Rm,t is the return to the dividend claim, Rf,t is the one-period real risk-free rate, R10,t is the

return to a 10-year default-free, real, zero-coupon bond, y
(n)
t is the yield of the n-maturity, default-free,

real zero-coupon bond, and PDt is the price-dividend ratio of the dividend claim. All moments, except
for correlations, are annualized.

Baseline 80% TI
agents

Constant
θ ≡ 0.1

Constant
θ ≡ 0.9

All TC

(1) (2) (3) (4) (5)

Panel A: Unconditional moments

E (st) 15.53 17.20 49.29 12.39 0.00
σ (st) 6.79 8.82 0.00 0.00 0.00

E (RC,t −Rf,t) 2.18 3.83 0.73 0.73 0.73
σ (RC,t −Rf,t) 6.96 10.75 2.71 2.71 2.71

E (Rm,t −Rf,t) 3.71 5.54 2.20 2.20 2.20
σ (Rm,t −Rf,t) 11.79 14.81 9.58 9.58 9.58
SR (Rm,t −Rf,t) 0.31 0.37 0.23 0.23 0.23

E (Rf,t) 2.44 0.78 4.01 4.43 3.99
σ (Rf,t) 1.70 3.02 0.00 0.00 0.00

E
(
y
(10)
t − y

(1)
t

)
0.55 0.83 0.00 0.00 0.00

σ
(
y
(10)
t − y

(1)
t

)
1.71 3.04 0.00 0.00 0.00

Panel B: Conditional moments

σ (Et (RC,t+1 −Rf,t+1)) 2.53 4.86 0.00 0.00 0.00
σ (Et (Rm,t+1 −Rf,t+1)) 2.72 5.31 0.00 0.00 0.00

σ
(
Et

(
R

(10)
t+1 −Rf,t+1

))
1.82 3.26 0.00 0.00 0.00

Corr (PDt, Et (Rm,t+1 −Rf,t+1)) -0.55 -0.50 0.00 0.00 0.00

Corr
(
y
(10)
t − y

(1)
t , Et (R10,t+1 −Rf,t+1)

)
0.72 0.75 0.00 0.00 0.00
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Table 7: Price of risk estimates
The table reports the coefficients from a projection of innovations to the log SDF onto innovations to
expected log returns, cash-flows and variance of log returns. The calibration parameters of the model
are given in Table 4. Column (1) and (2) present the projections of the log SDF innovations on the
innovations to log cash flow, log expected return and variance based on the consumption and dividend
claims, respectively. Column (3), report a decomposition of the log SDF into a discount rate component:
(1−ρ)α

ρ log(
ϕTC,t+1

ϕTC,t
)+(α−1) log(ϕt+1

ϕt
)+(α−1) log(

1−gTI,t+1

1−st ) and log consumption growth. The fraction

of SDF variance explained by each variable is reported in parentheses.

SDF projection

(1) (2) (3)

Discount rate innovations 12.02 12.45 1.00
(12.03) (13.28) (42.46)

Variance innovations 11.43 6.46
(3.73) (2.39)

Growth innovations -10.00 -2.42 -10.00
(57.54) (41.70) (57.54)

R-Squared 73.30 57.37 100.00
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Figure 1: Consumption growth forecast error
This figure plots the model-implied annualized forecast error of the time-inconsistent (TI) agent expected
consumption growth (left y-axis) against the degree of present bias θ (x-axis) after integrating out the
TI agent wealth share (sTI). The gray shaded area (right y-axis) shows the probability density function
of θ. The forecast error is calculated as the difference between the TI agent own realized and expected
consumption growth. In this setting both the TI and TC agents have Epstein-Zin preferences and the
calibration parameters are given in Table 4.
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Figure 2: Asset pricing moments
This figure plots the annualized risk-free rate, risk premium on the dividend claim, return volatility,
price of risk, term premium, and variance risk premium (left y-axis) against the present bias parameter
θ (x-axis) after integrating out the time-inconsistent agent wealth share sTI . The gray shaded area
(right y-axis) shows the probability density function of θ. In this setting both the TI and TC agents
have Epstein-Zin preferences and the calibration parameters are given in Table 4.
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Figure 3: Impulse response functions
This figure plots the impulse response functions of asset pricing moments (y-axis) 0-60 month (x-
axis) after a one standard deviation shock (ϵx) to xt, where the present bias parameter is given by

θt =
(

ext
1+ext

)φ
. The functions are presented for different initial wealth shares of the time-inconsistent

agent s0. In this setting both the TI and TC agents have Epstein-Zin preferences and the calibration
parameters are given in Table 4.
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Figure 4: Return correlations
This figure plots the correlations between log returns to the TI and TC portfolios and the consumption
claim with: shocks to expected log return and variance of the consumption claim (Panels A and B),
with shocks to log consumption growth (Panel C), and shocks to the discount rate component of the

log SDF given by (1−ρ)α
ρ log

ϕTC,t+1

ϕTC,t
+ (α− 1) log

1−gTI,t+1

1−st + (α− 1) log ϕt+1

ϕt
. In this setting both the TI

and TC agents have Epstein-Zin preferences and the calibration parameters are given in Table 4.
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A Model solution: Log utility

A.1 General solution

A.1.1 TI value function

The problem of a TI agent is

UTI
t (Wt, θt) = max

Ct,ωt

logCt + βδEt
[
θtU

TI
t+1(Wt+1, θt+1) + (1− θt)U

TC
t+1(Wt+1)

]
, (A.1)

subject to Wt+1 = (Wt − Ct)(Rf,t + ω⊤
t R

e
t+1) where R

e
t+1 denotes a vector of excess returns. Let

RTI,t+1 = Rf,t + ω∗⊤
t Re

t+1 denote the optimized TI portfolio return.

The TC value function is given by

UTC
t (Wt) = max

Ct,ωt

logCt + βEt
[
UTC
t+1(Wt+1)

]
, (A.2)

subject to Wt+1 = (Wt − Ct)(Rf,t + ω⊤
t R

e
t+1). Again, let RTC,t+1 = Rf,t + ω∗⊤

t Re
t+1 denote the

optimized TC portfolio return. It is straightforward to show that the TC value function can be

expressed as

UTC
t (Wt) = ϕTC logWt + ATCt , (A.3)

where ATCt is not a function of current wealth and ϕTC = 1
1−β denotes the optimal wealth-

consumption ratio of a TC agent.

Let ϕTIt ≡ Wt

Ct∗ denote the optimized wealth-consumption ratio of a TI agent. Since Wt+1 =

(Wt − Ct)RTI,t+1 = Wt
ϕTI
t −1

ϕTI
t

RTI,t+1 for an agent who was TI at time t, we have

Wt+1+j = Wt

j∏
i=0

ϕTIt+i − 1

ϕTIt+i
RTI,t+1+i (A.4)
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for an agent who was TI until time t+ j. Iterating (A.1) forward therefore yields

UTI
t (Wt, θt) = max

Ct,ωt

logCt + βδEt
[ ∞∑
j=0

( j∏
i=0

θt+i

)
(βδ)j logC∗

t+1+j

+
∞∑
j=0

( j−1∏
i=0

θt+i

)
(βδ)j(1− θt+j)U

TC
t+1+j(Wt+1+j)

]
= logC∗

t + βδEt
[ ∞∑
j=0

( j∏
i=0

θt+i

)
(βδ)j log

Wt+1+j

ϕTIt+1+j

+
∞∑
j=0

( j−1∏
i=0

θt+i

)
(βδ)j(1− θt+j)

(
ϕTC logWt+1+j + ATCt+1+j

)]

= log
Wt

ϕTIt
+ βδEt

[
∞∑
j=0

( j∏
i=0

θt+i

)
(βδ)j log

Wt

∏j
i=0

ϕTI
t+i−1

ϕTI
t+i

RTI,t+1+i

ϕTIt+1+j

+
∞∑
j=0

( j−1∏
i=0

θt+i

)
(βδ)j(1− θt+j)

(
ϕTC log

(
Wt

j∏
i=0

ϕTIt+i − 1

ϕTIt+i
RTI,t+1+i

)
+ ATCt+1+j

)]

≡

[
1 + βδEt

∞∑
j=0

(βδ)j

(( j∏
i=0

θt+i

)
+
( j−1∏
i=0

θt+i

)
(1− θt+j)ϕ

TC

)]
logWt

+ ATIt (θt). (A.5)

Since θt is a Markov process with a K ×K transition probability matrix Π, the conditional

expectation Et
∏j

i=0 θt+i can take K values. In particular, if θ̂ denotes the K × 1 vector of

possible states for θt, then, with a slight abuse of notation, E(θt+1|θt = θ̂) = Πθ̂ is the K × 1

vector of conditional expectations. Furthermore, E(θtθt+1|θt = θ̂) = D(θ̂)E(θt+1|θt = θ̂) =

D(θ̂)Πθ̂ and E(θtθt+1θt+2|θt = θ̂) = D(θ̂)E(E(θt+1θt+2|θt+1 = θ̂)|θt = θ̂) = D(θ̂)ΠE(θt+1θt+2) =

D(θ̂)ΠD(θ̂)Πθ̂. Similarly, E(θt(1−θt+1)|θt = θ̂) = D(θ̂)E(1−θt+1|θt = θ̂) = D(θ̂)Π(1− θ̂). Thus,

E
( j∏
i=0

θt+i

∣∣∣θt = θ̂
)

=
( j∏
i=1

D(θ̂)Π
)
θ̂ =

(
D(θ̂)Π

)j
θ̂ (A.6)

E
( j−1∏
i=0

θt+i(1− θt+j)
∣∣∣θt = θ̂

)
=

( j−1∏
i=0

D(θ̂)Π
)
(1− θ̂) =

(
D(θ̂)Π

)j
(1− θ̂), (A.7)
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where for a matrix A, we mean Aj = AAj−1 and A0 = I. It is then clear that

KTI(θ̂) ≡ 1+ βδEt

[
∞∑
j=0

(βδ)j

(( j∏
i=0

θt+i

)
+
( j−1∏
i=0

θt+i

)
(1− θt+j)ϕ

TC

)∣∣∣θt = θ̂

]

= 1+ βδ

[
∞∑
j=0

(βδ)j
(
D(θ̂)Π

)j(
θ̂ + (1− θ̂)ϕTC

)]

= 1+ βδ
(
I − βδD(θ̂)Π

)−1(
θ̂ + (1− θ̂)ϕTC

)
=

(
I − βδD(θ̂)Π

)−1[(
I − βδD(θ̂)Π

)
1+ βδ

(
θ̂ + (1− θ̂)ϕTC

)]
=

(
I − βδD(θ̂)Π

)−1[
1− βδD(θ̂)1+ βδ

(
θ̂ + (1− θ̂)ϕTC

)]
=

(
I − βδD(θ̂)Π

)−1(
1+ βδ(1− θ̂)ϕTC

)
, (A.8)

where we used Π1 = 1 (i.e. transition probabilities must sum to 1) and D(θ̂)1 = θ̂. Let KTI(θt)

denote the (scalar) value of KTI(θ̂) corresponding to the specific row k s.t. θ̂k = θt. We can then

express (A.5) as follows

UTI
t (Wt, θt) = KTI(θt) logWt + ATIt (θt). (A.9)

A.1.2 Optimal wealth-consumption ratios and TI SDF

To find the optimal TI wealth-consumption ratio, substitute (A.9) and (A.3) for the continuation

value functions in (A.1) to get

UTI
t (Wt, θt) = max

Ct,ωt

logCt + βδEt
[
θt

(
KTI(θt+1) logWt+1 + ATIt+1(θ̂)

)
+ (1− θt)

(
ϕTC logWt+1 + ATCt+1

)]
= max

Ct,ωt

logCt + log(Wt − Ct)βδEt
[
θtK

TI(θt+1) + (1− θt)ϕ
TC
]

+ βδEt
[(
θtK

TI(θt+1) + (1− θt)ϕ
TC
)
log
(
Rf,t + ω⊤

t R
e
t+1

)
+ θtA

TI
t+1(θt+1) + (1− θt)A

TC
t+1

]
. (A.10)

The first-order condition w.r.t. consumption is

ϕTI(θt) ≡ Wt

C∗
t (Wt, θt)

= 1 + βδEt
[
θtK

TI(θt+1) + (1− θt)ϕ
TC
]
. (A.11)
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Stacking up the conditional wealth-consumption ratios in a vector gives us

ϕTI(θ̂) = 1+ βδD(θ̂)ΠKTI(θ̂) + βδ(1− θ̂)ϕTC

= 1+ βδD(θ̂)Π
(
I − βδD(θ̂)Π

)−1(
1+ βδ(1− θ̂)ϕTC

)
+ βδ(1− θ̂)ϕTC

=
[
I + βδD(θ̂)Π

(
I − βδD(θ̂)Π

)−1](
1+ βδ(1− θ̂)ϕTC

)
=

[(
I − βδD(θ̂)Π

)
+ βδD(θ̂)Π

](
I − βδD(θ̂)Π

)−1(
1+ βδ(1− θ̂)ϕTC

)
= KTI(θ̂). (A.12)

Using (A.12) in (A.9) we get that

UTI
t (Wt, θt) = ϕTI(θt) logWt + ATIt (θt). (A.13)

The first-order conditions w.r.t. portfolio weights are

0 = Et
[(
θtϕ

TI(θt+1) + (1− θt)ϕ
TC
)
R−1
TI,t+1R

e
t+1

]
. (A.14)

Combining (A.11) and (A.14), we get that the SDF of a TI agent is

MTI
t+1 = βδ

(
θt
ϕTI(θt+1)

ϕTI(θt)− 1
+ (1− θt)

ϕTC

ϕTI(θt)− 1

)
R−1
TI,t+1. (A.15)

A.1.3 Proof: TI wealth-consumption ratio is lower than TC wealth-consumption
ratio

To show this, recall from (A.12) that

ϕTI(θ̂) =
(
I − βδD(θ̂)Π

)−1(
1+ βδ(1− θ̂)ϕTC

)
. (A.16)

Consider (
I − βδD(θ̂)Π

)
1ϕTC =

(
1− βδθ̂

)
ϕTC , (A.17)
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and subtract 1+ βδ(1− θ̂)ϕTC to obtain(
1− βδθ̂

)
ϕTC − [1+ βδ(1− θ̂)ϕTC ] = (ϕTC − 1− βδϕTC)1 =

( 1

1− β
− 1− βδ

1

1− β

)
1

=
β(1− δ)

1− β
1 > 0. (A.18)

Thus, we have established(
I − βδD(θ̂)Π

)
1ϕTC > 1+ βδ(1− θ̂)ϕTC . (A.19)

Note that
(
I − βδD(θ̂)Π

)−1

=
∑∞

j=0(βδD(θ̂)Π)j. Since each element of βδD(θ̂)Π is non-

negative, each element of (βδD(θ̂)Π)j must be non-negative as well. Thus,
(
I − βδD(θ̂)Π

)−1

=∑∞
j=0(βδD(θ̂)Π)j contains only non-negative elements. Therefore, the inequality in (A.19) is

preserved by multiplying by
(
I − βδD(θ̂)Π

)−1

which establishes the result:

1ϕTC =
(
I − βδD(θ̂)Π

)−1(
I − βδD(θ̂)Π

)
1ϕTC

>
(
I − βδD(θ̂)Π

)−1(
1+ βδ(1− θ̂)ϕTC

)
= ϕTI(θ̂). (A.20)

A.1.4 Proof: TI wealth-consumption ratio decreasing in θt

Assume:

1. θ̂ is ordered from smallest to largest, i.e. θ̂l − θ̂k ≥ 0 for all l ≥ k.

2.
∑m

i=1(Πk,i − Πl,i) ≥ 0 for all m = 1, . . . , K and for all l ≥ k.

Consider the recursion

x(1) ≡ 1ϕTC (A.21)

x(n+1) ≡ 1+ βδ
[
D(θ̂)Πx(n) + (1− θ̂)ϕTC

]
= (1 + βδϕTC)1− βδD(θ̂)(1ϕTC − Πx(n)). (A.22)

We have that

lim
n→∞

x(n) =
∞∑
j=0

(βδD(θ̂)Π)j[1+ βδ(1− θ̂)ϕTC ] =
(
I − βδD(θ̂)Π

)−1

[1+ βδ(1− θ̂)ϕTC ] = ϕTI(θ̂).

(A.23)
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Furthermore, for all n, 0 < x(n+1) ≤ 1ϕTC . This is easily seen in the case of n = 2 as x(2) =

(1+βδϕTC)1−βδD(θ̂)(1ϕTC−Π1ϕTC) = (1+βδϕTC)1 < (1+βϕTC)1 = ϕTC1. For the general

pattern, suppose 0 < x(n) < 1ϕTC . Then, since Πx(n) is just a weighted average of the elements

of x(n) where x(n) < 1ϕTC , we have Πx(n) ≤ 1ϕTC , thus D(θ̂)Πx(n) + (1− θ̂)ϕTC ≤ 1ϕTC which

in turn implies x(n+1) = 1+ βδ
[
D(θ̂)Πx(n) + (1− θ̂)ϕTC

]
≤ 1+ βδ1ϕTC < 1+ β1ϕTC = 1ϕTC .

The positivity of the sequence x(n) is trivial.

As we have already established, the sequence x(n) converges to ϕTI(θ̂) as n → ∞. Since x
(1)
i

is non-increasing in i, i.e. x
(1)
k − x

(1)
l ≥ 0 for all l ≥ k, our proof consists of establishing that if

the elements x
(n)
i are such that x

(n)
k − x

(n)
l ≥ 0 for all l ≥ k, then that implies x

(n+1)
k − x

(n+1)
l ≥ 0

for all l ≥ k.

Let l ≥ k. From (A.22) we have that

x
(n+1)
k − x

(n+1)
l = βδ

[
θ̂l

(
ϕTC −

K∑
i=1

Πl,ix
(n)
i

)
− θ̂k

(
ϕTC −

K∑
i=1

Πk,ix
(n)
)]
. (A.24)

Note that

ϕTC −
K∑
i=1

Πl,ix
(n)
i ≥ ϕTC −

K∑
i=1

Πk,ix
(n)
i ⇔ −

K∑
i=1

Πl,ix
(n)
i ≥ −

K∑
i=1

Πk,ix
(n)
i ⇔

K∑
i=1

(Πk,i − Πl,i)x
(n)
i ≥ 0. (A.25)

Clearly, since 0 < x
(n)
i ≤ ϕTC and x

(n)
i is non-increasing in i, (A.25) is satisfied by assumption 2

above. Thus

x
(n+1)
k − x

(n+1)
l = βδ

[
θ̂l

(
ϕTC −

K∑
i=1

Πl,ix
(n)
i

)
− θ̂k

(
ϕTC −

K∑
i=1

Πk,ix
(n)
)]

≥ βδ(θ̂l − θ̂k)
(
ϕTC −

K∑
i=1

Πk,ix
(n)
i

)
≥ 0, (A.26)

where we used Assumption 1: θ̂l − θ̂k ≥ 0. To establish our result, take the limit of (A.26) to
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obtain

lim
n→∞

x
(n+1)
k − x

(n+1)
l = ϕTI(θ̂k)− ϕTI(θ̂l) = βδ

[
θ̂l

(
ϕTC −

K∑
i=1

Πl,iϕ
TI(θ̂i)

)
− θ̂k

(
ϕTC −

K∑
i=1

Πk,iϕ
TI(θ̂i)

)]
≥ βδ(θ̂l − θ̂k)

(
ϕTC −

K∑
i=1

Πk,iϕ
TI(θ̂i)

)
≥ 0. (A.27)

A.2 Continuum of infinitesimal (“representative”) TI agents

Suppose the economy is populated by a unit-mass continuum of identical and infinitesimal TI

agents. Each agent faces the optimization problem (A.1). Furthermore, we assume that each

agent is fully aware of the bias of others, i.e. he understands they will never become TC.

Since all agents are identical, individual and aggregate wealth-consumption ratios are the

same, i.e. ϕTI(θ̂) = ϕ(θ̂), where ϕ(θ̂) denotes the aggregate wealth-consumption ratio. Fur-

thermore, all agents must find it optimal to hold the same portfolio in equilibrium, which must

therefore be the same as the aggregate consumption claim, RTI,t+1 = RC,t+1. Finally, all agents

must have identical consumption growth in equilibrium,
CTI,t+1

CTI,t
= Ct+1

Ct
where the left-hand side

denotes the optimized TI consumption and the right-hand side denotes the aggregate consump-

tion endowment. We have

RTI,t+1 = RC,t+1 =
ϕ(θt+1)

ϕ(θt+1)− 1

Ct+1

Ct
. (A.28)

Since all agents are identical, all individual SDFs will be identical as well. Thus, let Mt+1 =

MTI
t+1 denote the SDF. Substituting in (A.28) into (A.15) gives us

Mt+1 = βδ

(
θt
ϕ(θt+1)

ϕ(θt)− 1
+ (1− θt)

ϕTC
ϕ(θt)− 1

)( ϕ(θt+1)

ϕ(θt+1)− 1

Ct+1

Ct

)−1

= βδ

(
θt + (1− θt)

ϕTC
ϕ(θt+1)

)(Ct+1

Ct

)−1

. (A.29)

In the special case of constant aggregate consumption, this simplifies further to

Mt+1 = βδ

(
θt + (1− θt)

ϕTC
ϕ(θt+1)

)
. (A.30)
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A.3 Heterogeneous agents

Let st denote the share of aggregate wealth held by TI agents and let the remaining share 1− st

be held by TC agents. By market-clearing for consumption, we have that the sum of TI and TC

consumption must equal aggregate consumption, i.e.

Ct = CTI,t + CTC,t =
WTI,t

ϕTI(θt)
+
WTC,t

ϕTC
=
( st
ϕTI(θt)

+
1− st
ϕTC

)
Wt ⇔

ϕ(st, θt) ≡
Wt

Ct
=
( st
ϕTI(θt)

+
1− st
ϕTC

)−1

= ϕTI(θt)ϕ
TC
(
stϕ

TC + (1− st)ϕ
TI(θt)

)−1
. (A.31)

The pricing kernel for a TC agent takes the familiar form:

MTC
t+1 =

1

RTC,t+1

=
( WTC,t+1

WTC,t − CTC,t

)−1

=
( (1− st+1)Wt+1

ϕTC−1
ϕTC (1− st)Wt

)−1

= β
1− st
1− st+1

Wt

Wt+1

= β
Ct
Ct+1

1− st
1− st+1

ϕt
ϕt+1

, (A.32)

where RTC
t+1 denotes the optimized portfolio return of the TC agent and ϕTC−1

ϕTC =
1

1−β
−1

1
1−β

= β.

Substituting for RTI,t+1 in (A.15) gives us the TI pricing kernel

MTI
t+1 = βδ

(
θt
ϕTI(θt+1)

ϕTIt − 1
+ (1− θt)

ϕTC

ϕTI(θt)− 1

)( WTI,t+1

WTI,t − CTI,t

)−1

= βδ

(
θt
ϕTI(θt+1)

ϕTI(θt)− 1
+ (1− θt)

ϕTC

ϕTI(θt)− 1

)( st+1Wt+1

ϕTI(θt)−1
ϕTI(θt)

stWt

)−1

= βδ

(
θt
ϕTI(θt+1)

ϕTI(θt)
+ (1− θt)

ϕTC

ϕTI(θt)

)
st
st+1

Wt

Wt+1

= βδ
Ct
Ct+1

(
θt
ϕTI(θt+1)

ϕTI(θt)
+ (1− θt)

ϕTC

ϕTI(θt)

)
st
st+1

ϕt
ϕt+1

. (A.33)

The evolution of the wealth-share of TI agents is given by

st+1 ≡ WTI,t+1

Wt+1

=
WTI,t − CTI,t
Wt+1 − Ct

RTI,t+1

RC,t+1

=

ϕTI(θt)−1
ϕTI(θt)

stWt

ϕ(st,θt)−1
ϕ(st,θt)

Wt

RTI,t+1

RC,t+1

= st
ϕTI(θt)− 1

ϕTI(θt)

ϕ(st, θt)

ϕ(st, θt)− 1

RTI,t+1

RC,t+1

. (A.34)
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A.3.1 “Semi-complete” markets

With semi-complete markets we allow the agents to trade assets that span the state-space gener-

ated by all aggregate shocks such as shocks to θt+1 or to Ct+1. However, we do not allow agents

to trade claims whose payoffs are contingent on an individual agent’s type.

In equilibrium with semi-complete markets, the two SDFs must equal state-by-state on the

state-space generated by the aggregate shocks. Using (A.32) and (A.33)

MTC
t+1 = MTI

t+1 ⇔ β
Ct
Ct+1

1− st
1− st+1

ϕ(st, θt)

ϕ(st+1, θt+1)

= βδ
Ct
Ct+1

(
θt
ϕTI(θt+1)

ϕTI(θt)
+ (1− θt)

ϕTC

ϕTI(θt)

)
st
st+1

ϕ(st, θt)

ϕ(st+1, θt+1)
⇔

1− st
1− st+1

= δ

(
θt
ϕTI(θt+1)

ϕTI(θt)
+ (1− θt)

ϕTC

ϕTI(θt)

)
st
st+1

⇔

(1− st)st+1 = δ

(
θt
ϕTI(θt+1)

ϕTI(θt)
+ (1− θt)

ϕTC

ϕTI(θt)

)
st(1− st+1)

st+1 =
δst
(
θtϕ

TI(θt+1) + (1− θt)ϕ
TC
)

(1− st)ϕTI(θt) + δst (θtϕTI(θt+1) + (1− θt)ϕTC)
. (A.35)

The TC agents’ wealth-share next period must therefore be given by

1− st+1 =
(1− st)ϕ

TI(θt)

(1− st)ϕTI(θt) + δst (θtϕTI(θt+1) + (1− θt)ϕTC)
. (A.36)

We see immediately that the TC agents’ portfolio will pay off a larger fraction of aggregate

wealth when TI agents’ wealth-consumption ratio is low.

Thus, substituting (A.35) and (A.36) into (A.31) at t+ 1, we see that next period aggregate

wealth-consumption ratio is given by:

ϕ̃(θt+1; st, θt) ≡ ϕ(st+1, θt+1) = ϕTCϕTI(θt+1)
(
st+1ϕ

TC + (1− st+1)ϕ
TI(θt+1)

)−1

= ϕTCϕTI(θt+1)
[δst (θtϕTI(θt+1) + (1− θt)ϕ

TC
)
ϕTC + (1− st)ϕ

TI(θt)ϕ
TI(θt+1)

(1− st)ϕTI(θt) + δst (θtϕTI(θt+1) + (1− θt)ϕTC)

]−1

= ϕTC
(1− st)ϕ

TI(θt) + stδ
(
θtϕ

TI(θt+1) + (1− θt)ϕ
TC
)

(1− st)ϕTI(θt) + stδ
(
θt + (1− θt)

ϕTC

ϕTI(θt+1)

)
ϕTC

, (A.37)

which is clearly increasing in next-period TI wealth-consumption ratio. As a consequence, the

realized return on the consumption claim
(
RC,t+1 =

ϕ̃(θt+1;st,θt)
ϕ(st,θt)−1

Ct+1

Ct

)
will be increasing in the TI
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wealth-consumption ratio.

Substituting (A.31), (A.35), and (A.37) into (A.33), we get the following expression of the

equilibrium SDF:

Mt+1 = β
Ct
Ct+1

(1− st)ϕ
TI(θt) + stδ

(
θt + (1− θt)

ϕTC

ϕTI(θt+1)

)
ϕTC

stϕTC + (1− st)ϕTI(θt)
, (A.38)

which under the assumption of constant aggregate consumption simplifies to

Mt+1 = β
(1− st)ϕ

TI(θt) + stδ
(
θt + (1− θt)

ϕTC

ϕTI(θt+1)

)
ϕTC

stϕTC + (1− st)ϕTI(θt)
. (A.39)
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B Model solution: Epstein-Zin utility

In this section we present the model with Epstein-Zin utility and overlapping generations (OLG).

All individual agents i of a given type TC or TI have identical preferences and face identical

risks. In particular, there are no differences between older and younger agents, except the wealth

they enter the period with. Therefore, we will solve the problem for some arbitrary individual

belonging to the group of TI or TC agents respectively, without explicitly indicating their birth

cohort.

The problem of an individual TC or TI agent i can be written

UTC,t(Wi,t) = max
Ci,t,ωi,t

[
Cρ
i,t + (1− λ)βEt

[
UTC,t+1(Wi,t+1)

α
] ρ

α

] 1
ρ

(B.1)

UTI,t(Wi,t) = max
Ci,t,ωi,t

[
Cρ
i,t + (1− λ)βδEt

[
θtUTI,t+1(Wi,t+1)

α + (1− θt)UTC,t+1(Wi,t+1)
α
] ρ

α

] 1
ρ

(B.2)

subject to the budget constraint Wi,t+1 = (Wi,t − Ci,t)(Rf,t + ω⊤
i,tR

e
t+1) where R

e
t+1 denotes the

vector of excess returns.

Since all agents of a given type are the same (except for the level of their wealth), the wealth-

consumption ratio of any individual agent who is TC will be ϕTC,t and for any individual agent

who is TI it will be ϕTI,t. Similarly, all agents of the same type will hold the same portfolio, i.e.

RTC,t+1 and RTI,t+1, respectively.

Let us guess the following form of the value functions:

UTC,t+1(Wi,t+1) = ϕ
1−ρ
ρ

TC,t+1Wi,t+1 (B.3)

UTI,t+1(Wi,t+1) = ϕ
1−ρ
ρ

TI,t+1Wi,t+1. (B.4)

Using (B.3) and (B.4) along with the budget constraint, we can write the objective functions as
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follows

UTC,t(Wi,t) = max

[
Cρ
i,t + (1− λ)β(Wi,t − Ci,t)

ρEt
[
ϕ

(1−ρ)α
ρ

TC,t+1R
α
TC,t+1

] ρ
α

] 1
ρ

(B.5)

UTI,t(Wi,t) = max

[
Cρ
i,t + (1− λ)βδ(Wi,t − Ci,t)

ρEt
[(
θtϕ

(1−ρ)α
ρ

TI,t+1 + (1− θt)ϕ
(1−ρ)α

ρ

TC,t+1

)
Rα
TI,t+1

] ρ
α

] 1
ρ

.

(B.6)

We need to show that the value functions at time t take the same forms as (B.3) and (B.4).

The first-order condition w.r.t. time t consumption for a TC agent is

0 = Cρ−1
i,t − (1− λ)β(Wi,t − Ci,t)

ρ−1Et
[
ϕ

(1−ρ)α
ρ

TC,t+1R
α
TC,t+1

] ρ
α ⇔(

Wi,t − Ci,t
Ci,t

)1−ρ

= (1− λ)βEt
[
ϕ

(1−ρ)α
ρ

TC,t+1R
α
TC,t+1

] ρ
α ⇔

(ϕTC,t − 1)1−ρ = (1− λ)βEt
[
ϕ

(1−ρ)α
ρ

TC,t+1R
α
TC,t+1

] ρ
α
. (B.7)

Similarly, for a TI agent we get

(ϕTI,t − 1)1−ρ = (1− λ)βδEt
[(
θtϕ

(1−ρ)α
ρ

TI,t+1 + (1− θt)ϕ
(1−ρ)α

ρ

TC,t+1

)
Rα
TI,t+1

] ρ
α
. (B.8)

Using the expressions for the wealth-consumption ratios (B.7) and (B.8) in the objective functions

(B.5) and (B.6) yields what we want to show:

UTC,t(Wi,t) =
[
Cρ
i,t + (Wi,t − Ci,t)

ρ(ϕTC,t − 1)1−ρ
] 1

ρ

=

[(
Wi,t

ϕTC,t

)ρ
+

(
Wi,t

ϕTC,t

)ρ
(ϕTC,t − 1)ρ(ϕTC,t − 1)1−ρ

] 1
ρ

= [1 + (ϕTC,t − 1)]
1
ρ
Wi,t

ϕTC,t
= ϕ

1
ρ
−1

TC,tWi,t

= ϕ
1−ρ
ρ

TC,tWi,t (B.9)

UTI,t(Wi,t) =
[
Cρ
i,t + (Wi,t − Ci,t)

ρ(ϕTI,t − 1)1−ρ
] 1

ρ

= ϕ
1−ρ
ρ

TI,tWi,t. (B.10)
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The first-order conditions w.r.t. portfolio choice are

0 = Et
[
ϕ

(1−ρ)α
ρ

TC,t+1R
α−1
TC,t+1R

e
t+1

]
(B.11)

0 = Et
[(
θtϕ

(1−ρ)α
ρ

TI,t+1 + (1− θt)ϕ
(1−ρ)α

ρ

TC,t+1

)
Rα−1
TI,t+1R

e
t+1

]
. (B.12)

Combining the first-order conditions w.r.t. consumption, (B.7) and (B.8), with the first-order

conditions w.r.t. portfolio choice, (B.11) and (B.12), we see that

MTC,t+1 = [(1− λ)β]
α
ρ

(
ϕTC,t+1

ϕTC,t − 1

) (1−ρ)α
ρ

Rα−1
TC,t+1 (B.13)

MTI,t+1 = [(1− λ)βδ]
α
ρ

[
θt

(
ϕTI,t+1

ϕTI,t − 1

) (1−ρ)α
ρ

+ (1− θt)

(
ϕTC,t+1

ϕTI,t − 1

) (1−ρ)α
ρ

]
Rα−1
TI,t+1 (B.14)

are the pricing kernels for any TC and TI agent respectively.

B.1 Semi-complete markets

Assume that traded assets span the state-space generated by aggregate shocks, i.e. shocks to

aggregate consumption and θt+1. In this case, we have MTC,t+1 =MTI,t+1 =Mt+1 state-by-state

in the state-space generated by (θt+1, εt+1).
12 It is easy to see that it is sufficient if for any

current state (st, θt), agents can trade contracts with payoffs χθt+1=θ̂k
Wt+1, where χθt+1=θ̂k

is an

indicator function that takes the value 1 if θt+1 = θ̂k and 0 otherwise.

Let gi(θ̂k; st, θt) denote the fraction of the contract with payoff χθt+1=θ̂k
Wt+1 agent i buys if

current state is (st, θt). Then, the wealth of agent i contingent on being alive at t + 1 will be

Wi,t+1 = gi(θt+1; st, θt)Wt+1. Let

gTI(θt+1; st, θt) ≡
∫
i∈TI

gi(θt+1; st, θt)di (B.15)

gTC(θt+1; st, θt) ≡
∫
i∈TC

gi(θt+1; st, θt)di (B.16)

WTI,t ≡
∫
i∈TI

Wi,tdi (B.17)

WTC,t ≡
∫
i∈TC

Wi,tdi. (B.18)

12We do not allow contracts contingent on whether a given TI agent becomes a TC agent next period, as this
is a positive probability event for the TI agent in question, but a zero probability event for all other agents.
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Since all agents of a given type (TI or TC) are identical, we must have gi(θt+1;st,θt)
Wi,t

= gTI(θt+1;st,θt)
WTI,t

for all agents i who are TI and gi(θt+1;st,θt)
Wi,t

= gTC(θt+1;st,θt)
WTC,t

for all agents i who are TC.

It is clear that market clearing in the asset markets require

gTC(θt+1; st, θt) = 1− gTI(θt+1; st, θt). (B.19)

By assumption, the wealth of old agents who died between t and t + 1 are redistributed

equally among new-born agents. Thus, since a fraction λ of agents die each period, a total

wealth λWt+1 needs to be redistributed among new-born agents at the beginning of t+ 1. Since

a fraction ζTI of new-born agents are TI, new-born TI agents get a total wealth ζTIλWt+1 at

the beginning of t + 1. Furthermore, the old TI agents at time t had bought claims for a total

wealth of gTI(θt+1; st, θt)Wt+1 at the beginning of t+1, but only a fraction 1−λ actually survives.

Therefore, it follows that the TI wealth-share evolves as follows:

st+1 = (1− λ)gTI(θt+1; st, θt) + λζTI ≡ s(θt+1; st, θt) (B.20)

Importantly, the wealth-share of TI agents next period does not depend on aggregate consump-

tion shocks - it only depends on shocks to θt+1. Thus, with a slight abuse of notation, we write

ϕTC,t+1 = ϕTC(st+1, θt+1) = ϕTC(θt+1; st, θt), ϕTI,t+1 = ϕTI(st+1, θt+1) = ϕTI(θt+1; st, θt), and

ϕt+1 = ϕ(st+1, θt+1) = ϕ(θt+1; st, θt).

The returns on the equilibrium TI and TC portfolios (conditional on surviving) can therefore

be written

RTI,t+1 =
gTI(θt+1; st, θt)Wt+1

WTI,t − CTI,t
=

ϕTI,t
ϕTI,t − 1

gTI(θt+1; st, θt)

st

Wt+1

Wt

(B.21)

RTC,t+1 =
gTC(θt+1; st, θt)Wt+1

WTC,t − CTC,t
=

ϕTC,t
ϕTC,t − 1

1− gTI(θt+1; st, θt)

1− st

Wt+1

Wt

. (B.22)
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Substituting (B.21) and (B.22) into (B.13) and (B.14) gives us

MTC,t+1 = [(1− λ)β]
α
ρ

(
ϕTC,t+1

ϕTC,t − 1

) (1−ρ)α
ρ ( ϕTC,t

ϕTC,t − 1

1− gTI(θt+1; st, θt)

1− st

ϕt+1

ϕt

)α−1(Ct+1

Ct

)α−1

(B.23)

MTI,t+1 = [(1− λ)βδ]
α
ρ

[
θt

(
ϕTI,t+1

ϕTI,t − 1

) (1−ρ)α
ρ

+ (1− θt)

(
ϕTC,t+1

ϕTI,t − 1

) (1−ρ)α
ρ

]

×
( ϕTI,t
ϕTI,t − 1

gTI(θt+1; st, θt)

st

ϕt+1

ϕt

)α−1(Ct+1

Ct

)α−1

. (B.24)

Only the part
(
Ct+1

Ct

)α−1

depends on aggregate consumption growth. The remaining parts of the

SDFs are functions of θt+1 conditional on (st, θt).

Equalizing (B.23) and (B.24) yields:

MTC,t+1 =MTI,t+1

⇔
(
ϕTC,t+1

ϕTC,t − 1

) (1−ρ)α
ρ ( ϕTC,t

ϕTC,t − 1

)α−1(1− gTI(θt+1; st, θt)

1− st

)α−1

= δ
α
ρ

[
θt

(
ϕTI,t+1

ϕTI,t − 1

) (1−ρ)α
ρ

+ (1− θt)

(
ϕTC,t+1

ϕTI,t − 1

) (1−ρ)α
ρ

]( ϕTI,t
ϕTI,t − 1

)α−1(gTI(θt+1; st, θt)

st

)α−1

⇔
(
ϕTC,t+1

ϕTC,t − 1

) (1−ρ)α
ρ(α−1) ϕTC,t

ϕTC,t − 1

1− gTI(θt+1; st, θt)

1− st

= δ
α

(α−1)ρ

[
θt

(
ϕTI,t+1

ϕTI,t − 1

) (1−ρ)α
ρ

+ (1− θt)

(
ϕTC,t+1

ϕTI,t − 1

) (1−ρ)α
ρ

] 1
α−1

ϕTI,t
ϕTI,t − 1

gTI(θt+1; st, θt)

st

⇕

gTI(θt+1; st, θt) = st

(
ϕTC,t+1

ϕTC,t − 1

) (1−ρ)α
ρ(α−1) ϕTC,t

ϕTC,t − 1
×

[
st

(
ϕTC,t+1

ϕTC,t − 1

) (1−ρ)α
ρ(α−1) ϕTC,t

ϕTC,t − 1

+ (1− st)δ
α

(α−1)ρ

(
θt

(
ϕTI,t+1

ϕTI,t − 1

) (1−ρ)α
ρ

+ (1− θt)

(
ϕTC,t+1

ϕTI,t − 1

) (1−ρ)α
ρ

) 1
α−1

ϕTI,t
ϕTI,t − 1

]−1

. (B.25)

The conditions in (B.7), (B.8), (B.20), (B.25) along with the market clearing condition for current
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consumption:

Ct = CTI,t + CTC,t =
WTI,t

ϕTI,t
+
WTC,t

ϕTC,t
=
( st
ϕTI,t

+
1− st
ϕTC,t

)
Wt ⇔

ϕt =
( st
ϕTI,t

+
1− st
ϕTC,t

)−1

(B.26)

make up the equilibrium conditions in the economy.

Our solution method is backward induction on an S ×K grid for current states (st, θt). For

each current state, we take as given the S×K grids of next period TI and TC wealth-consumption

ratios and use interpolation over TI wealth share to get TI and TC wealth-consumption ratios

as continuous functions of st+1, and solve for current TI and TC wealth-consumption ratios. We

initialize both the TI and TC wealth-consumption ratios at the constant wealth-consumption

ratio that would have been optimal in a representative TC economy with the same parameters.
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