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1 Introduction

This paper uses weekly measurements of skills on children in a prototypical home

visiting program, implemented at scale in China, to investigate the mechanisms

producing the growth of multiple skills at early ages. The design of our sample allows

us to bypass concerns about input endogeneity and the incomparability of measures

of skill across people and over ages for the same person.1 Access to detailed weekly

data enables us to determine at what lifecycle stages learning occurs, at what rate,

and how family environments affect it.

We develop and estimate a micro-dynamic model of learning that characterizes

the evolution of skills during early childhood. It is a model of reinforcement learning

that differs substantially from standard models of skill formation used in the current

literature. We measure the impact of information provided to parents on boosting

children’s skills. Different levels of nominally the same skill are characterized by

different production functions.

Versions of the technology of skill formation (Cunha and Heckman, 2007; Cunha

et al., 2010) are currently widely used to characterize the growth of child skills

K(a) at age (stage) a. These technologies are functions of a vector of investments

I(a) (parenting, other interactions with the child by childcare workers, etc.) and

environments G(a) (including neighborhoods, peer effects, parental education, and

public goods, such as schooling, as in Agostinelli et al., 2022):

1See, e.g., Cunha et al. (2021) on the issue of the arbitrariness in scales of test scores. See also
Cawley et al. (1999) and Bond and Lang (2013).
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Skills at
a+1︷ ︸︸ ︷

K(a + 1) = f (a)
(
K(a)︸ ︷︷ ︸
Skills at

a

,

Investment︷ ︸︸ ︷
I(a) , G(a)︸ ︷︷ ︸

Environmental
Variables

)
. (1)

The technology is age-specific, inputs are normalized so that output increases in each

argument. It is usually assumed to be twice differentiable.

Properties of this technology are exposited in Heckman and Mosso (2014). A

recurrent finding of the literature is that enhancements in parenting are associated

with improvements in child outcomes (Garćıa and Heckman, 2023). This paper

studies the impact of a parenting intervention on the growth of child skills. The

intervention promotes parenting, but with different effects for children with different

types of parents and home environments. We study the dynamic impacts of the

program as mediated by these factors.

In addition, we also address the question of how to measure skills and their

growth when scales of skills are arbitrary, and hence, comparisons over time and

across persons are problematic. In the literature, test scores based on assessments of

cognitive, socioemotional, and other skills are widely used.2 It has long been noted

that such measures have intrinsically arbitrary scales (e.g., Uzgiris and Hunt, 1975;

Cunha and Heckman, 2008; Cunha et al., 2010, 2021). Ordinal production functions

that compare ranks across people do not suffer from this problem but, at the same

time, do not provide interpretable measures of levels of attained skill.3 Freyberger

(2022) shows the dramatic consequences of different scalings of skill measures for

2See, e.g., Kautz et al. (2014); OECD (2021).
3Cunha et al. (2010, 2021); Agostinelli and Wiswall (2021); Bond and Lang (2013); Freyberger

(2022).
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estimates of technology.

This paper presents empirical evidence on the learning process. We study the

impacts of home visits that not only teach the skill specific tasks, but also inform

parents about effective parenting strategies and the impact of home visitor quality.

We examine how home environments mediate the impacts of these investments. We

lack data on the specific nature of the induced caregiver-child interactions resulting

from home visiting with caregivers.

We develop and estimate a latent Markov model of skill formation that explains

the growth of measured skills and explains why the growth is not necessarily mono-

tonic with respect to exposure to the program. We formalize intuitive models of

child development used in psychology.4 We investigate the growth of skills at far

more granular levels than previous analyses in economics or psychology.

We address the problem of the arbitrariness of test scores by using scales of skills

constructed to be comparable within well-defined levels of skills but not necessarily

across levels of skills. We do not impose a common scale of skills across levels of

nominally the same skill as is traditionally done in the literature.5

We report the following findings. (1) Our estimated technology is skill and

lifecycle-stage-specific. The estimated technology differs greatly across levels of

nominally the same skill. (2) Investment in caregivers by home visitors promotes

the growth of skills of children; (3) The impact of this investment is mediated by

caregiver and home visitor traits. Grandparents and parents with less education

4See, e.g., Bronfenbrenner (2005) and Thelen (2005). See also Bailey et al. (2020).
5See, e.g., Todd and Wolpin (2007); Cunha and Heckman (2008); Cunha et al. (2010); Attanasio

et al. (2020).
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apparently provide less stimulation in response to the intervention than more edu-

cated caregivers;6,7 (4) Stocks of skills cross-fertilize the growth of other skills but

not symmetrically; (5) Investment in different skills exhibits cross-productivity for

some skills but not others; and (6) There are gender differences in the dynamics of

learning.

Because we lack details on the exact nature of parental responses to home visits,

we do not measure all the channels through which home visits operate. Nonetheless,

we can assess the effects of different home environments on the home visit received.

The paper unfolds in the following way. Section 2 describes the background of the

program we analyze and its curriculum.8 Section 3 presents evidence of learning pat-

terns induced by it. Section 4 presents a latent Markov learning model for skills that

is concordant with the evidence. Section 5 presents estimates and interpretations.

Section 6 concludes.

2 China REACH

The inspiration for the program we analyze is the Jamaican Home Visiting Interven-

tion (Grantham-McGregor and Smith, 2016), a randomized home visiting parenting

intervention given to a sample of 129 children between 9 and 24 months of age.

Substantial positive effects are found for the program through age 34 (i.e., Gertler

et al., 2022, 2014). Its success has spawned replications around the world, e.g., in

6In our sample, grandparent caregivers have on average three years of education while parents
and home visitors have roughly ten years of schooling.

7Heckman et al. (2024) present a more nuanced nonparametric analysis of this point.
8Zhou et al. (2024) describe it in much greater detail.
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Bangladesh, China, Colombia, India, and Peru (see, e.g., Grantham-McGregor and

Smith, 2016).

The program we analyze, China REACH, extends and applies the Jamaican pro-

tocols at scale. Implemented in 2015 by a large-scale randomized control trial, it

enrolled 1,500 subjects (age 6 months-42 months) in 111 villages in Huachi county,

Gansu province, one of the poorest areas of China. Unlike the original program, this

intervention is not focused on stunted children. Severely impaired children do not

participate.

China REACH is a paired-matched RCT that minimizes the mean square errors

of estimates (Bai et al., 2021; Bai, 2022). A non-bipartite Mahalanobis matching

method was used to pair villages and randomly select one village within a pair into

the treatment group and the other village into the control group.9 More details of

the design of the experiment and balance tests for treatment and control groups can

be found in Zhou et al. (2024).

The intervention cultivates multi-dimensional skill development through home-

visiting. Trained home visitors who are roughly at the same level of education of the

mothers of the children studied visit each treated household weekly and provide one

hour of caregiving guidance.

Zhou et al. (2024) evaluate the treatment effects of the intervention using a differ-

ent inventory of outcome measures than the ones used here. Only two measurements

are collected at midline and endline of the intervention in contrast with the weekly

measurements analyzed here. They find that the intervention significantly improves

9See Lu et al. (2011).

6



skill development (e.g., language and cognitive, fine motor, and social-emotional

skills). To interpret treatment effects, they use item responses on measures of skill

to estimate individual latent skills. They decompose treatment effects and find that

enhancement of latent skills explains most of the estimated conventional treatment

effects. Zhou et al. (2023) show that the skill profiles for the growth of skills are

similar to those of the original Jamaica Home Visiting program over ages where

comparable data exist, suggesting the applicability of our analysis to the original

program. Heckman et al. (2024) present evidence on dynamic complementarity. The

focus in this paper is on the growth of skills in the treatment group, and not on

treatment effects per se.

2.1 Enrollment Protocol

The program enrolls all children age 6-42 months as of September 2015. Figure 1

gives the enrollment time frame, and the Denver assessment timing analyzed in Zhou

et al. (2024). It shows that different cohorts defined by age get different exposures

to the program. All caregivers of children of the same age in the program get the

same lesson at the same age. Children are evaluated weekly on their knowledge. The

lessons given are exogenously determined. Visitors are chosen from the target villages

and are essentially homogenous across villages and of the same level of education

as the mothers visited. They are essentially randomly assigned.10 However, the

10According to the information collected by the CDRF field team, 50 villages out of 55 villages
have an average of 9 years of education for home visitors, which is about 90% of all treated villages.
For two villages, the average years of education for home visitors are about six years; for two villages,
it is about 12 years; and for one village, it is about 14 years. For Pearson χ2 statistic (χ2(54) = 9.50),
we cannot reject the null hypothesis that all the villages have the same distributions of years of
education for the home visitors. When we remove the anomalous villages, we get essentially the
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implementation of the lessons received depends on caregivers and home environments.

Older children at entry do not get the training that earlier entrants receive. There

is no attrition from the program (except by death).

Figure 1: China REACH Calendar Time Scales

Intervention Started

Sep 2015

for All Children

6-42 Months Old

Calendar Time Scale:

Midline Denver Assessment

Jul 2016

Endline Denver Assessment

Jul 2017

Older Children Enrolled

25 Months

Curriculum by Age (With 2 Examples) By Age of the Child at Enrollment:

Midline Denver Taken

34 Months

Curriculum Ends

42 Months

No Additional Home Visits

Endline Denver Taken

46 Months

Younger Children Enrolled

15 Months 24 Months

Midline Denver Taken

36 Months

Endline Denver

Home Visits Continued

42 Months

Curriculum Ends

The Denver assessments taken at midline and endline measure child development for

both treatment and control children. They are not analyzed in this paper.11 We

focus on the growth of skills in the treatment group.

Figure 2 plots the distribution of the age of entry into the program in September

2015 of different age cohorts. The cohorts are more or less randomly distributed

between 10-25 months old. Table A.1 in Appendix A documents the balance in

same results. The Pearson statistic is χ2(49) = 12.72 after removing the anomalous villages. We
cannot reject the null hypothesis that all the villages have the same years of education. Estimates
are essentially the same with and without inclusion of these villages.

11They are analyzed in Zhou et al. (2024).
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backgrounds across different enrollment cohorts. Few children older than 25 months

are enrolled.

Figure 2: The Distribution of Monthly Age when Enrolled into the Program
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2.2 Program Protocols

The program teaches and encourages the caregiver to interact with the child through

playing games, making toys, singing, reading, and storytelling to stimulate the child’s

cognitive, language, motor, and socioemotional skill development. The home visit to

the caregiver is the intervention studied. We lack data on the precise way caregivers

act on the information they receive. Using a rich set of observed caregiver char-

acteristics, we estimate how caregivers with different educational attainment and

background mediate the impact of home visits on child development.

Four different skill tasks (gross motor, fine motor, language, and cognitive) are

taught each week. Skills taught are ordered by difficulty levels following profiles
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developed by Palmer (1971) and Uzgiris and Hunt (1975), henceforth UHP.12 These

scales are widely used in the literature on child development. They are the ones

analyzed in this paper. The intervention instructs caregivers at the weekly level

on activities to promote the skills that appear in these scales.13 The caregiver is

the vessel, and as we shall see, different caregivers have different effectiveness in

promoting child development.

Central to our identification strategy is the use of scales that describe valid levels

of knowledge with knowledge content that is the same within each level.14 Child

skills are assessed weekly. There are monthly assessments of the quality of home

visits recorded by supervisors, and data on the quality of home environments are

also collected.

There are 13 difficulty levels for cognitive skills. Table 1 gives the tasks for

cognitive skills taught at specific levels, and Figure 3 presents the timing of the

lessons taught by age. The tasks start with simply understanding a picture by

verbal acknowledgment to using receptive (heard) language to identify pictures.

Although task content progresses by levels, it is designed to be essentially identical

within the same difficulty level. For example, the contents of cognitive skill tasks at

level 1 are described in Table 2. All tasks at that level are virtually identical in task

difficulty and relate to the activity of looking at pictures or objects and vocalizing.

Appendix C gives comparable information for the other skills which follow the same

pattern.

12More details about the curriculum are provided in Appendix B.
13Some of these scales also appear in the Denver test.
14The difficulty levels are ordered based on the average children’s performance (see Palmer,

1971.)
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Table 1: Difficulty Level List for Cognitive Skill Tasks

Level 1 Look at the pictures and vocalize
Level 2 Name the objects and ask the baby to point to the pictures accord-

ingly
Level 3 The child can name the objects in one picture, and point to the

named picture
Level 4 The child can name the objects in two or more pictures, and point

to the named picture
Level 5 The child can point out named pictures, and say names of three or

more
Level 6 The child can point out the picture mentioned and correctly name

the name of six or more pictures
Level 7 The child can talk about the pictures, answer questions, understand,

or name the verbs (eat, play, etc.)
Level 8 The child can follow the storyline, name actions, and answer ques-

tions
Level 9 The child can understand stories, talk about the content in the

pictures
Level 10 The child can keep up with the development of the story
Level 11 The child can say the name of each graph, discuss the role of each

item and then link the graphics in the card together
Level 12 The child can name the things in the picture and link the different

pictures together and discuss some of the activities in the pictures
Level 13 The child can name the things in the picture and talk about the

function of objects

Source: Scales are from Wachs et al. (1971).

Table 2: Cognitive Skill Task Content: Look at the Pictures and Vocalize (Level 1)

Difficulty Level Difficulty Level Aim Month Week Learning Materials Task Aim and Content

Level 1 Look at the pictures and vocal-
ize

10 2 Picture book A Look at the pictures and vocalize: baby makes sound
when looking at the pictures

Level 1 Look at the pictures and vocal-
ize

11 3 Picture book B Look at the pictures and vocalize: baby looks at the
pictures and vocalize

Level 1 Look at the pictures and vocal-
ize

12 3 Picture book A Look at the pictures and vocalize: baby makes sound
when looking at the pictures

Level 1 Look at the pictures and vocal-
ize

13 3 Picture book B Look at the pictures and vocalize: baby looks at the
pictures and vocalize

Level 1 Look at the pictures and vocal-
ize

14 1 Picture book A Look at the pictures and vocalize: baby makes sound
when looking at the pictures

Level 1 Look at the pictures and vocal-
ize

14 2 Baby doll Look at the pictures and vocalize: baby makes sound
when holding a baby doll

Level 1 Look at the pictures and vocal-
ize

15 2 Picture book B Look at the pictures and vocalize: The child pronounces
while looking at the pictures

11



Figure 3: The Timing of Teaching Cognitive Skills (Understand Objects) Tasks across
Difficulty Levels and Two Possible Enrollment Patterns

The fact that the skills taught and assessed within levels are essentially identical is

crucial to our approach.

3 Evidence on Learning

To understand the structure of the data analyzed, it is helpful to introduce some

notation. Let S be the set of skills taught. Let ℓ(s, a) be the level of skill s taught at

age a. Within levels, skills are identical. At the outset of each weekly visit, the home

visitor records a binary measure of whether the child can master the task previously

taught (i.e., whether the child understands the task previously taught). For skill

s, at difficulty level ℓ, and weekly age a, the task item is uniquely determined in
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the curriculum. We use D(s, ℓ, a) to denote whether or not a child knows the task

associated with latent skill s and level ℓ at age a, K(s, ℓ, a), which we characterize

by:

D(s, ℓ, a) =

 1 K(s, ℓ, a) ≥ K̄(s, ℓ)

0 otherwise
(2)

where D(s, ℓ, a) is the data we observe, recording knowledge of skill s at level ℓ at a

given level at age a. K̄(s, ℓ) is the minimum level latent skill required to accomplish

the task at difficulty level ℓ. It is the same for all tasks within level ℓ for each s by

construction.

This characterization is similar to that used in the classical IRT model (Lord and

Novick, 1968) and models of discrete choice (Thurstone, 1927; McFadden, 1981).

Define
¯
a(s, ℓ) as the first age at which skill s is taught at level ℓ, and let ā(s, ℓ)

be the last age at which it is taught at level ℓ. For level ℓ of skill s, indicators of

knowledge in a spell are elements of:
{
D(s, ℓ, a)

}ā(s,ℓ)

¯
a(s,ℓ)

. For example, for cognitive

skill level one,
¯
a(s, ℓ) is age 10 months and 2 weeks and ā(s, ℓ) is age 15 months and

2 weeks. Seven tasks at level one were taught during this age range. Therefore, in

our data, we observe seven indicators to record whether the child had knowledge (or

not) of skill s at age a.

The sample passing rate on the test for skill s at level ℓ at age a is the mean of

D(s, ℓ, a) for children tested on the age a item for the skill s. It is the mean passing

rate for the item. Pr(D(s, ℓ, ā(s, ℓ))) is a measure of final skill s level attainment in

level ℓ.
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3.1 Patterns of Learning

Figure 4 plots the growth of knowledge in language, cognitive, and fine motor skills.15

Average (across people) passing rates by age within each difficulty level for language

and cognitive tasks increase with age, a pattern consistent with learning. When indi-

viduals transition to higher difficulty levels, initial age-specific passing rates decline.

This is consistent with the notion that new skills are taught at each level.16 After ini-

tial declines, age-specific passing rates within levels increase as learning ensues. The

dynamic model presented in Section 4 below captures this phenomenon. At most

levels of fine motor skills, there is—at best—modest learning. Access to detailed

weekly data enables us to determine at what stages learning occurs, at what rate,

and how family environments and caregiver-home visitor interactions affect it.17

Figure 4: Average Task Passing Rates by Order and Level
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Note: The yellow solid lines indicate the last task at each difficulty level. Within difficulty 
levels, tasks are arranged in the order of the children taking them.
*Data are only available at and beyond the second level.

(b) Cognitive
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Note: The yellow solid lines indicate the last task at each difficulty level. Within difficulty 
levels, tasks are arranged in the order of the children taking them.

(c) Fine Motor
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Note: The yellow solid lines indicate the last task at each difficulty level. Within difficulty 
levels, tasks are arranged in the order of the children taking them.

Source: See primary data and the plots in Zhou, Heckman, Wang, and Liu (2023).

15We also measure gross motor skills, but they are not affected by the intervention (Zhou et al.,
2024), so we do not systematically analyze them here.

16Alternatively, this might arise if the difficulty levels of assessments for the same skill increase
across levels. There is nothing in program design that increases difficulty levels of the assessments
in this fasion.

17In Appendix D, we provide the details of the interaction measures.
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Table 3: Ability Categories (Measured over All Levels)

Fast group Pass the first task for more than 80% of difficulty levels, and pass all skill-specific tasks at an
average rate of more than 80%.

Normal group Pass the first task for less than 80% of difficulty levels, and the pass rate is greater than 50%;
or pass the first task for more than 80% of difficulty levels, and the average passing rate of all
skill-specific tasks is between 50% and 80%.

Slow group The average passing rate of all skill-specific tasks is less than 50%.

Figure 5 disaggregates Figure 4 by ability as defined in Table 3, as the speed of

learning across all levels. There is high persistence of this measure of ability across

difficulty levels for the same skill. See Appendix E for a detailed discussion of this

measure. Low-ability children learn more slowly.

Figure 5: By Ability Group: Average Language Task Passing Rates
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The sawtooth patterns arise from the transitions across levels for language skills.

The pattern for normal and low-ability children is consistent with the notion that a

new type of skill is being learned across transitions. High-ability group children, on
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average, have the highest passing rate, a phenomenon that persists across levels and

is found for other skills (See Appendix F, Figures F.1-F.4).

4 Mechanisms Generating Child Learning

To motivate our approach to estimating the weekly dynamics of skill formation, we

consider a simple version of the model for one level of one skill before presenting our

general model. The more general model is the simple model applied to each skill at

each level, with parameters that may vary across levels and skills. We then consider

a model of joint skill formation.

We use the notation previously introduced in Section 3, but suppress the s and

ℓ because we initially only consider one skill at one level. The program fosters skill

at ages a ∈ [0, . . . , Ā]. Lessons are the same for all participants at age a. We define

K(a) as the level of “skill” achieved at age a with the initial value K(0). Lessons

with identical skill content are taught and examined using a series of tasks. A person

exhibits knowledge of the skill at level K̄ at age a if K(a) ≥ K̄. D(a) = 1 if a person

at age a masters the skill, so D(a) = 1
(
K(a) ≥ K̄

)
. Skill level is measured at each

age.

We assume i.i.d. idiosyncratic shocks in growth rates (ε(a)) on a log scale. A

multiplicative version of the model turns out to fit the data on skill growth very
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well.18 Skill acquisition is characterized as a random walk:

lnK(a)− lnK(a− 1)
.
= δ(a)η + V (Q(a)) + ε(a). (3)

η is ability to learn the skill. It is assumed to be individual specific and positive

(η > 0), and δ(a) is the “lesson” at age a for all children enrolled in a. V (Q(a))

captures variables Q(a), such as family background and investments received at

home, as well as autogenic effects that affect the evolution of skills.19 V (Q(a)) also

operates independently of the level of lnK(a − 1). We assume a common scale of

skill within each designated skill level. Skills are assumed to be additive in the metric

that quantifies lnK.

Accounting for initial conditions, we can write Equation (3) as:

lnK(a)
.
= η

a∑
j=1

δ(j) +
a∑

j=1

V (Q(j)) +
a∑

j=1

ε(j)︸ ︷︷ ︸
L(a)

+ lnK(0) (4)

where ε(j) is i.i.d. across all j with E(ε(j)) = 0. Random walk growth in skills was

introduced in Rutherford (1955).

This economic model extends models in psychometrics, in particular the Item

Response Theory (IRT) model (Lord and Novick, 1968), that measure skills at a

18Appendix G compares the empirical performance of multiplicative and additive models. The
additive model uses K in place of lnK in Equation (4). In many aspects, the qualitative results
from each are very similar, but quantitative results are somewhat better for the multiplicative model
as characterized by goodness of fit and model specification tests.

19By autogenic effect, we mean growth not directly attributable to the program, e.g., imitation,
peer effects, etc. Recall that children enter at different ages and may have different levels of
preprogram environmental exposures.

17



point in time. An essential feature of the IRT model is captured by the threshold

crossing feature (2).20 Because of the random walk component in (4), we generalize

the stochastic properties of the IRT model which assumes independence in outcomes

conditional on a scalar unobservable, usually interpreted as “ability.” In our setup,

ability grows across learning occasions unlike in the IRT model.

In this notation, self productivity is:

∂K(a+ 1)

∂K(a)
= exp {δ(a)η + V (Q(a)) + ε(a)︸ ︷︷ ︸

J(a)

}.

Investment productivity is:

∂K(a+ 1)

∂δ(a)
= K(a)η exp (J(a)).

Static complementarity is:

∂2K(a+ 1)

∂K(a)∂δ(a)
= η exp (J(a)).

Dynamic Complementarity is:

∂2K(a+ j + 1)

∂δ(a+ j)δ(a)
= K(0)η2 exp (L(a+ j + 1)).

If η > 0, both static complementarity and investment productivity are positive.

20The Bayesian Knowledge Tracing (BKT) model is captured by the dynamics of the model of
Equation 3. Unlike the BKT model, knowledge K(a) in our model is affected by education and
investment, which is captured by δ(a), so that we depart from its mechanical growth trajectory
feature to account for investment that affects learning. Deonovic et al. (2018) compare the IRT
and BKT models and criticize them for not including investment as a determinant of learning.
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Adding stochastic shocks to learning growth allows for either growth or shrinkage

around deterministic growth paths. Shrinkage could be due to forgetting or distrac-

tion on the test. The decline in latent knowledge is sometimes called “fadeout.” The

literature on fadeout of test scores (see, e.g., Bailey et al., 2020) assumes determinis-

tic growth profiles, whereas we allow for stochastic growth and fadeout of measured

skills within a lifetime.

Define U(a) =
∑a

j=1 ε(j), a random walk, ∆(a) =
∑a

j=1 δ(j) is cumulative lessons,

and Λ(a) =
∑a

j=1 V (Q(j)). In this notation, the probability of mastery of the skill

at age a is Pr(D(a) = 1) = Pr(lnK(0) + U(a) + Λ(a) + η∆(a) > ln K̄), where we

assume η ⊥⊥ ε(j) for all j and shocks are from the same distribution, independent of

ability level. Conditioning on η, assumed to be independent of U(a) and K(0), we

obtain

Pr(D(a) = 1 | η,∆(a),Λ(a), K(0)) =

∫ ∞

ln K̄−η∆(a)−Λ(a)−lnK(0)

dFa(U(a)), (5)

where Fa is the cdf of U(a).

The General Model for Scalar Skills

The general model has the same structure as the simple model applied to skills

at each level where S is the set of skills taught, ℓ(s, a) is the level of skill s taught

at age a, and there are Ls levels of difficulty for each skill s.

Shocks at level ℓ for age a—εℓ(s, a)—are assumed to be independent across a.

Their distributions may vary with ℓ and s. When estimating the model, we assume

that they are i.i.d. within ℓ for each skill s, and across s, but not necessarily across
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ℓ, η(s) may vary by age a21 and δ(a) captures the content of the home visiting

curriculum. Thresholds (passing standards) K̄(s, ℓ) may also change across levels,

as may Vℓ(Q(a)).

By allowing for level-specific shocks, we account for the possibility that different

difficulty levels within an assessment may have different variances. This is, indeed,

what we find in our estimates. We can explain the decline of measured skills within

a lifetime by allowing for shocks ε(s, ℓ) within and across levels and differences in

difficulty across levels.

4.1 Testing for A Common Scale of Skills Across Skill Levels

within the Model

This paper develops and applies a model-based test of a common scale of skills across

levels. By this, we mean that the scale of nominally the same skill is the same across

different difficulty levels, a common assumption in human capital models since Ben-

Porath (1967).22

Under the common scale assumption across levels, latent index lnK(s, ℓ, a) cu-

mulates so measures of knowledge growth are well-defined, at least at the level of

latent skills. This requires, among other things, that in the absence of depreciation

21In our estimates, η includes the interaction measures and a measure of grandmother’s education
when she is the caregiver. Therefore, η changes as lessons change.

22Cunha et al. (2010) impose a common scale assumption. In our dynamic learning model, we do
not need to impose a common scale assumption. Our weekly data are richer, which makes it feasible
to test the common scale assumption. Cunha et al. (2010) also impose linearity on aggregate scores.
Our learning model estimates using item level data. This is a more nuanced approach for studying
the learning process.
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(or appreciation) associated with transitions across levels,

lnK(s, ℓ,
¯
a(s, ℓ))︸ ︷︷ ︸

Initial condition at level ℓ

= lnK(s, ℓ− 1, ā(s, ℓ− 1))︸ ︷︷ ︸
Terminal condition at level ℓ−1

.

This is a property of latent variables at the junction points of levels. Measurement

of these skills is an entirely separate matter. We test for a common scale across

levels, maintaining the assumption of a common scale within levels. Our proof of

model identification in Section 4 Appendix H makes this point precise. The assumed

lack of depreciation (or appreciation) is a property that holds only at junction points

across levels, and not at all ages within levels, which would impose a lack of growth

on the model.

If scales change across levels, but human capital scales are somehow connected,

we write:

lnK(s, ℓ,
¯
a(s, ℓ)) = Γℓ(lnK(s, ℓ− 1, ā(s, ℓ− 1))),

where Γℓ is a general function. If there is total depreciation of skills in that transition

from ℓ− 1 to ℓ, Γℓ is the zero function. The property of a common scale across the

junction between ℓ and ℓ−1 sets Γℓ = I (no depreciation or appreciation)–the identity

function. Depreciation of the same skill across junction point ℓ is Γℓ = 1 − σℓ(s),

where σℓ(s) is depreciation at level ℓ for skill s. σℓ(s) can be negative so there can

be appreciation.23 This paper only considers affine transformations for Γℓ(·):

Γℓ(K(s, ℓ,
¯
a(s, ℓ))) = γ0,ℓ + γ1,ℓ(K(s, ℓ, ā(s, ℓ))). (6)

23This is a one-shot markdown or markup of skill across levels.

21



We use an affine transformation as a first-order linear approximation of a general

function. Setting γ0,ℓ = 0 and γ1,ℓ = 1 captures the notion of a common scale in the

absence of depreciation. With depreciation, γ1,ℓ = 1− σℓ(s) (i.e., σℓ(s) > 0), a one-

shot change in skill level after crossing the boundary. Similarly, with appreciation,

γ1,ℓ = 1− σℓ(s) (i.e., σℓ(s) < 0).

Notice that we are testing how latent skills are connected across levels of nomi-

nally the same skill, but we do not impose linearity on the skill formation process.

The common scale assumption would be violated if new skills emerge at each level,

or if a new transformation of skills would be relevant.

4.2 Model Identification

In order to avoid notational complexity, we use a simplified notation for a single

skill to motivate essential ideas underlying model identification. A formal proof is

presented in Appendix H. We use means and covariances because we assume normal

shocks in estimation. In the appendix, we show that we can nonparametrically

identify the joint distributions of unobserved variables up to normalizations.

Define the latent index lnK(1, a) for skill at level 1 at age a. This corresponds to

lnK(s, 1, a) for a particular skill s, which is kept implicit. We simplify Equation (4)

to read:

lnK(1, a) = η

a∑
j=1

δ1(j)︸ ︷︷ ︸
learning

+ V1(a)︸ ︷︷ ︸
autogenic
growth

+U1(a)︸ ︷︷ ︸
shocks

+ lnK(0), (7)

where lnK(1, a) is the latent index (skill) at difficulty level 1 at weekly age a, and

K(0) is the initial condition. We assume lnK(0) = µ0(Z) + Υ, where Z are back-
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ground variables, E(Υ) = 0, Υ ⊥⊥ η, and Z ⊥⊥ Υ. U1(a) =
∑a

j=1 ε1(j), where ε1(j)

is a task-specific shock at difficulty level 1 at weekly age j, which is assumed to be

i.i.d. with variance σ2
ε(1). We assume that ε1(j) ⊥⊥ (η,Υ) for all j. We parameterize

δ1(a)η(X) = β̄1(X) + ω, where the X are covariates, including various interactions,

background variables, and gender indicators. We assume that X ⊥⊥ [ω, ε1(j)] for all

j. ω is an individual-specific random shock, with E(ω) = 0, and ω ⊥⊥ (Υ, ε1(j)) for

all j. It captures heterogeneity in learning ability. To simplify the analysis, we as-

sume that ωℓ = ω for ℓ ∈ {1, . . . , L}. We can relax this assumption and still achieve

identification. However, if we do so, we have to take a position on the dependence

across ωj.
24 We assume that the learning component δ1(a) is constant within each

level but can differ across levels. V1(a) is shorthand for
∑a

j=1 V1(Q(j)).

Equation (7) can be rewritten in the notation for the general case allowing for

heterogeneity in lnK(0):

lnK(1, a) = µ1 + µ0(Z) + V1(a) + β̄1(X)a+

{
aω +

a∑
j=1

ε1(j) + Υ

}
︸ ︷︷ ︸

Ψ1(a)

(8)

where Var(Ψ1(a)) = a2σ2
ω + aσ2

ε(1) + σ2
Υ := σ2(1, a), where σ2(1, 1) = σ2

ω + σ2
ε(1) + σ2

Υ.

Under conditions given in Matzkin (1992, 2007), with sufficient variation in the

regressors in period j,
¯
a(1) ≤ j ≤ ā(1), we can identify

µ∗
1

σ(1, j)
,

µ0(Z)

σ(1, j)
,

β̄1(X)

σ(1, j)
,

V1(a)

σ(1, j)
,

24One attractive alternative assumption that secures identification is ωj = ρωj−1 + τj , where τj
is mean zero, i.i.d over j.
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where µ∗
1 = µ1 − K̄(1) and µ1 collects any other model intercepts. If any slope

coefficient is common across j and j′, we can identify the ratio of σ(1,j)
σ(1,j′)

. Under

this condition, with one normalization (e.g., σ(1, j) = 1), we can identify µ∗
1, µ0(Z),

β̄1(X), V1(a) up to scale. Since we can identify the ratio of σ(1,j)
σ(1,j′)

, σ(1, a), σ(1, a′) are

identified up to a normalization (e.g., a, a′ ̸= j) (see Heckman, 1981 and Heckman

and Vytlacil, 2007). We discuss the time varying components of X in our data in

the next section when we discuss empirical estimates.

Using the definition of σ2(1, a) := a2σ2
ω + aσ2

ε(1) + σ2
Υ, we have the following

equations:

σ2(1, a) = a2σ2
ω + aσ2

ε(1) + σ2
Υ

σ2(1, a′) = (a′)2σ2
ω + a′σ2

ε(1) + σ2
Υ

σ2(1, j) = j2σ2
ω + jσ2

ε(1) + σ2
Υ.

In these equations, the left-hand sides are identified up to scale after normalizing

σ2(1, j) = 1. On the right-hand sides, there are three unknown terms σ2
ω, σ

2
ε(1), and

σ2
Υ. When a ≥ 3 (i.e., three different tasks at level one), we can identify all three

terms: σ2
ω, σ

2
ε(1), and σ2

Υ with sufficient variation in a and j.

Adopting a similar notation for levels ℓ > 1, if we assume a common scale of

skills across level 1 and level 2 (i.e., γ0,2 = 0, and γ1,2 = 1), we can connect latent

skill lnK(1, ā(1)) (the index of the last age ā(1) of the last task at level 1) to the

initial skill at level 2, lnK(2,
¯
a(2)): lnK(1, ā(1)) = lnK(2,

¯
a(2)). The latent skill at

level 2 at age a can be written as:

24



lnK(2, a) = µ2 + V2(a) + β̄2(X)(a− ā(1)) +
a∑

j=
¯
a(2)

ε2(j) + lnK(1, ā(1))

= µ1 + µ2 + µ0(Z) + V1(ā(1)) + V2(a) + β̄2(X)(a− ā(1)) + β̄1(X)ā(1)

+


a∑

j=
¯
a(2)

ε2(j) + (a− ā(1))ω +

ā(1)∑
j=1

ε1(j) + ā(1)ω +Υ

︸ ︷︷ ︸
Ψ2(a)

. (9)

Given the initial normalization at level 1 (i.e., σ(1, j) = 1) and identification of

the parameters in the first level (up to scale), we can identify V2(a) and β̄2(X) up

to scale σ(2, a), where

Ψ2(a) =
a∑

j=
¯
a(2)

ε2(j) + (a− ā(1))ω +

ā(1)∑
j=1

ε1(j) + ā(1)ω +Υ

σ2(2, a) :=VarΨ2(a)

VarΨ2(a) =σ2
Υ + a2σ2

ω + (a−
¯
a(2))σ2

ε(2) + ā(1)σ2
ε(1).

Since we have already established identification of σ2
ω, σ

2
ε(1), and σ2

Υ, the only

term not identified in VarΨ2(a) is σ
2
ε(2). We now discuss how to identify this term.

Consider the covariance term Cov
(

Ψ2(a)
σ(2,a)

, Ψ2(a′)
σ(2,a′)

)

Cov

(
Ψ2(a)

σ(2, a)
,
Ψ2(a′)

σ(2, a′)

)
=
σ2
Υ + aa′σ2

ω + (ā(1)−
¯
a(1))σ2

ε(1)
+min((a−

¯
a(2)), (a′ −

¯
a(2)))σ2

ε(2)

σ(2, a)σ(2, a′)

=
σ2
Υ + aa′σ2

ω + (ā(1)−
¯
a(1))σ2

ε(1)
+min((a−

¯
a(2)), (a′ −

¯
a(2)))σ2

ε(2)√
σ2
Υ + a2σ2

ω + (a− ā(1))σ2
ε(2)

+ ā(1)σ2
ε(1)

√
σ2
Υ + (a′)2σ2

ω + (a′ − ā(1))σ2
ε(2)

+ ā(1)σ2
ε(1)

In the equation just written, we observe the left-hand side value. On the right-
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hand side, the only unknown term is the variance of shocks at level 2 (i.e., σ2
ε(2)).

Therefore, we can identify the value of σ2
ε(2).

25 After identifying σ2
ε(2), we can identify

the scale of variance term σ2(2, a). Then, we can identify V2(a) and β̄2(X) up to

σ(2, a).

From the previous discussion for all ℓ ≥ 2, we can identify the variance σ(ℓ, a)

without imposing additional normalization at levels ℓ (ℓ ≥ 2). The only normaliza-

tion we need is on the scale of variance term σ(1, j) = 1 at level 1.26

Under conditions established in Matzkin (2007) and Heckman and Vytlacil (2007),

we can nonparametrically identify the distributions of ε1(a) and ε2(a
′) for each a and

a′ in the appropriate intervals and the technologies at each level subject to the ini-

tial normalization. Details concerning nonparametric identification are discussed in

Appendix H.5. We do not develop this point further because we adopt parametric

models in forming our estimates. The conditions just developed extend in a straight-

forward way to higher levels, ℓ > 2, and to the multivariate model discussed below.

All higher-level parameters are identified up to the initial normalization at level 1.

4.2.1 Testing the Common Scale Assumption

Under an assumption of a common scale of skills characterized by Equation (6) with

γ0,ℓ = 0 and γ1,ℓ = 1, we obtain tight restrictions on the coefficients across levels.

25We take positive roots in solving the implicit quadratic equation.
26We can impose any maintained value of σ

(s)
ℓ .
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Relaxing this assumption adds two new parameters (γ0,2, γ1,2) to Equation (9):

lnK(2, a) = γ0,2 + µ2 + V2(a) + β̄2(X)(a− ā(1)) +
a∑

j=
¯
a(2)

ε2(j) + γ1,2 lnK(1, ā(1)).

Notice that the common scale assumption in the form we use it imposes a proportion-

ality restriction across functions common to lnK(2, a) and lnK(1, a). Going across

levels,

Cov

(
Ψ2(a)

σ(2, a)
,
Ψ1(a

′)

σ(1, a′)

)
=γ1,2

{
aa′σ2

ω + (a′ −
¯
a(1))σ2

ε(1) + σ2
Υ

} 1

σ(2, a)σ(1, a′)
,

a > ā(1);
¯
a(1) ≤ a′ < ā(1).

From the previous analysis, the term in braces is identified up to the previously

stated normalization at the first level. Thus γ1,2 is identified, and we can test if

γ1,2 = 1. We can use this logic to identify depreciation operating across junction

points if we maintain a common scale assumption.

Testing γ0,2 = 0 requires stronger assumptions. We need model intercepts to be

invariant across levels, which is difficult to maintain given that K̄(2) is absorbed in

any estimated intercept. We expect that the difficulty levels are increasing in ℓ. As

before, we can estimate ln K̄(2) up to scale net of intercepts, and we can identify the

scale. We impose γ0,2 = 0 without loss of generality because it is absorbed in the

K̄(j), j = 1, . . . , ℓ.
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4.3 Models for Multiple Skills

We have thus far assumed that different types of skills evolve independently. We

extend our model to allow vector skills to evolve jointly. We ask whether the im-

provement in cognitive skills benefits language or motor skills. We also ask if the

common scale across levels holds when we consider multiple skill development jointly.

Here, we develop the model and a sketch of the proof of identification. We present

empirical results for the model in Section 5.

We develop a vector skill formation model, allowing different skill types to evolve

jointly. lnK(a) is a vector of skills at age a: 27

lnK(a) =A′ lnK(a− 1) +B′δ(a)η +C ′V (Q(a)) + ε(a). (10)

Matrix A captures the transition of current latent skills to next-period skills,

and matrix B captures how investments contribute to the skill growth. The term

V (Q(a)) captures environmental effects growth through maturation and other au-

togenic effects. ε(a) is a vector of random shocks at age a.

4.3.1 Identification of the Multivariate Model

Identification of the model under normal errors follows from the application of the

analysis of Heckman (1978, 1976). The reduced form (solving K(a) for all inputs up

to a − 1, back to K(0)) is in the form of the simultaneous latent variable discrete

choice model of Heckman (1978), Case 1. That study draws on the linearity of

27In our model, we consider language, cognitive, and fine motor skills jointly. More details are
provided in Appendix L.
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the system of latent variables and uses standard results in simultaneous equations

theory. These results apply to a simultaneous equations latent variables model. The

only departure from standard theory is the necessity of making normalizations to

the latent variables. We can apply the row–transformation method of Fisher (1966)

to secure identification.

To see how to apply his theory, define the set S ∈ {1, 2, 3} corresponding to the

three skills we study. It is straightforward to show that under the condition the stated

next that there are no admissible row transforms of Equation (10), other than those

postulated. The following conditions suffice: (a) independence of the εℓ(a, s) within

and across equations and levels, and (b) exogeneity of investment across equations

and over time. One normalization is required for each equation, e.g., σ(1, 1, s) = 1

for each skill s ∈ S. There are no exclusion restrictions on X across equations,

although they vary over ages and levels. δ(a, ℓ, s) is allowed to vary with s. For

further details, see Appendix L.2.

5 Estimates

We use the method of simulated moments to estimate two versions of these mod-

els: a) one version allows different skills to develop independently and b) a second

version allows skills to develop jointly (vector case). We use more than one thou-

sand moments as our targeted moments. For example, task passing rates for newly

enrolled children are the targeted moments for initial conditions; to identify level-

specific coefficients, we include each task item passing rate for each difficulty level.
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For the common scale parameters, we include the covariance of different tasks across

adjacent levels. We then report estimates for joint skills. We adjust for clustering in

our sample using the paired cluster bootstrap. Details are provided in Appendix I.

The moments used in forming the estimates are presented in Table J.1 for the scalar

case and in Table L.1 for the vector case. The estimated models pass goodness of fit

tests (see Appendix J and L.3). Appendix J also plots model predictions vs. data

for each skill, with and without a common scale28. In general, imposing the common

scale of skill assumption produces worse fits, a point developed further below. The

estimates reported in the text do not impose this assumption. Estimates imposing

the common scale assumption are presented in Appendix K and L.4. We conduct

parallel analysis for scalar and vector cases.

5.1 Estimates

We first report empirical results by skill level for the scalar model. We then report

results for the vector model. All models allow for discrete measurement errors in the

indicator variables measuring knowledge.

5.1.1 Language Skills – Scalar Case

Figure 6a displays estimates of the minimum skill level required at each level. This

is defined relative to K̄(1), assuming no shift in model intercepts for each skill across

levels apart from that due to skill accumulation. We assume depreciation is not

empirically important but can estimate it under the assumption of a common scale

28See Figures J.1, J.7, and J.13 for language, cognition, and fine motor skills, respectively.
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of skills. As expected, the skill level required to pass tasks monotonically increases

across difficulty levels. We do not impose this restriction on the order of the K̄(ℓ).

The estimates show that, on average, the difficulty levels in the curriculum are con-

sistent with child task performance. The variances of shocks at each level display

different patterns, reflecting differentials in ability. Figure 6b presents estimates of

the variances. The variances at levels 6, 8, and 11 are larger than the variances at

other levels. We plot the task passing rates at these three levels in Figure 7, and

we find that the large variances are associated with a larger range of passing rates.

Passing rates do not monotonically increase by task order within the same level (see

Figure 7). Level-specific shocks can intrude to alter the monotonicity delivered by

the conventional deterministic model and to capture the lack of fit of the model to

the data.29

Figure 6: Language Skill Parameters by Difficulty Level
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Note that “fadeout” as measured by passing rates, appears within levels 6, 8, and

29See Figure J.1b.
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Figure 7: Average Passing Rate of Language Tasks by Age Within Level: p(s, ℓ, a)
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11 as a consequence of the patterns of item difficulties and variances. This occurs

despite the stochastically monotonic increases in skill for all s. Variances of shocks

differ significantly with levels of skill, across levels, and across skills. See Appendix

K for the scalar model and Appendix L.4 for the vector model.

5.1.2 Cognitive Skills – Scalar Case

The pattern for the estimated parameters for cognitive skills is similar to that for

language skills. For certain difficulty levels, passing rates are not monotone within

levels, thus explaining “fadeout” even when, on average, skill levels are increasing.

5.1.3 Fine Motor Skills – Scalar Case

A similar pattern arises for fine motor skills.

Figure 12 shows how our model can capture a “fadeout” effect within our sample.

In our model estimates for language variance of task shocks, the variance for level 8

for language skill is large (see Figure 12(a)). The large variance fits the data pattern

in Figure 12(b) below. Because the data shows that the children’s task performance

at level 8 does not monotonically increase, and to fit this data pattern, the estimate
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Figure 8: Cognitive Skill
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Figure 9: Average Passing Rate of Cognitive Tasks by a: p(s, ℓ, a)
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Figure 10: Fine Motor Skill
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Figure 11: Average Passing Rate of Fine Motor Tasks by Age a: p(s, ℓ, a)
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of the variance of shock at level 8 has to be large. Figure 12(c) shows that our model

fits the data pattern of level 8 very well.

Figure 12: Large Variance to Explain Fadeout
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Note that the fade-out discussed here occurs within the sample. Our model might

explain the fade-out claimed to exist in the literature. Furthermore, the evidence on

fade-out is very weak for high quality programs. See the discussion in Baulos et al.

(2024).

5.2 Learning Components and Task Performance for the

Scalar Model

This section examines how the learning component in our structural model δℓE(η)

explains child task performance. The δℓ term captures the curriculum content at each

difficulty level, which is common across all children (recall tasks within levels have

identical learning contexts). The η(X) term includes interaction quality measures

between home visitors and caregivers/children, home visitors’ teaching quality, and

grandmother rearing during the intervention, and a dummy variable for the gender

35



of the child. These vary with the age of the child and provide important identifying

information as noted in Section 4.

The intervention interaction variables (entered as X in βℓ(X)) are significant

determinants of child learning for each task. This finding is consistent with the

results in Heckman et al. (2024). The interaction between the home visitor and

the caregiver is the only consistently positive interaction that promotes skills (see

Appendix K).30 The grandmother, as the main caregiver, often has significantly

negative effects on learning.31

Rapid learning (high-ability) children have significantly higher values of the learn-

ing component for all skills. This finding is consistent across all difficulty levels for

all skills (see Figure 13). We also find that higher caregiver education levels are

significantly associated with better language skills when children are first enrolled

in the program (see Table K.1). There is learning for children with more educated

mothers.

Figure 13: Estimates of δℓE(η) Across Levels by Ability Group for Scalar Models
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Note: ∗ Intervals are of the form (j − 1, j). The parameter for the interval is indexed by the upper value, j.

30All the estimation results are presented in Appendix K.
31Grandmothers’ education is low on average (3 years).
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Effects for gender vary by skill. Learning rates are greater for language for girls. For

cognitive and fine motor skills, boys learn slightly faster.32

Figure 14a: Learning Component E(η(X)) of Cognitive Tasks by Level – Scalar
Model
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Note: The dashed yellow lines indicate the last task at each difficulty level. Within difficulty levels, 
tasks are arranged in the order of the curriculum design.

We now focus on how the η(X) term affects child performance on tasks. Fig-

ure 14a shows the mean of η(X) for each cognitive task. We identify it using βℓ and

normalizing δ(1) = 1. In general, there is an increasing pattern of estimated E(η)

within difficulty levels. In Figure 14b, we break down the estimated E(η) values by

ability group.33 Children in the normal ability group contribute the most growth in

learning. Children in the fast group master the task quickly, usually on the first try.

Thus, they have little subsequent learning growth when they are instructed on the

same task multiple times. For children in the normal group, performance improves

as they learn the task multiple times. This pattern is consistent with our estimates

showing that the estimated learning component E(η) increases within a difficulty

32The reported results by gender are for a model without the common scale assumption imposed,
a hypothesis we generally reject.

33See Table 3 for the definition of the ability groups.
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level, especially strongly for children in the normal group. This finding is also con-

sistent with other skills.34 For fine motor tasks, there is a similar pattern for tasks

greater than 4, although learning is not substantial at any level. For further results,

see Appendix M, Figure M.3.

Figure 14b: Learning Component E(η(X)) of Cognitive Tasks by Level and Ability
Group
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Normal group: the child doesn't pass the first task, and the pass rate is greater than 50%; or the child passes the first task, and the pass rate is
between 50% and 80%. Slow group: the average pass rate is less than 50%.    2. 95% confidence intervals are shown for three groups.

Appendix Tables M.1-M.3 compare each interaction component by family edu-

cation background, child ability category, and age of enrollment. As expected, the

interaction quality between the home visitor and caregiver contributes the most to

the learning component η. The interaction quality between the home visitor and

the caregiver is higher for households with higher family education levels. Also, the

interaction quality measures are significantly different by ability groups and age of

enrollment.

34See Figures M.1-M.4 in Appendix M.
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5.3 Testing for a Common Scale of Skills Across Levels

γ1,ℓ = 1 is consistent with the validity of a common scale of skills connecting ℓ and

ℓ− 1. Figure 15 shows that estimates of γ1,ℓ for each skill level for models estimated

without imposing the restriction γ1,ℓ = 1. Table 4 shows the χ2 test results for each

level and skill. Our estimates partially support the common scale assumption. For

language and cognitive skills, at some levels, the common scale assumption cannot be

rejected. For example, we cannot reject the assumption for language skills between

levels 8-11 (i.e., 8-9, 9-10, and 10-11).35 However, it is decisively rejected in levels

4-6. Table 5 lists the task content for difficulty levels 8-11; it shows that the task

content is very similar across these different levels. However, the null hypothesis of

a common scale across all levels is rejected. The evidence in favor of a common scale

across levels 8-9, 9-10, and 10-11 makes sense, given the similarity of the tasks at

those levels. See Table 5. Violations of common scale are also consistent with skill

depreciation or appreciation across boundaries.

Figure 15: Tests of the Null Hypothesis of A Common Scale of Skills
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(c) Fine Motor Skill
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35γ1,ℓ = 1 implies the existence of a common scale for latent skill variables between level ℓ and
level ℓ− 1. For example, the coefficient at level 8 for language skills (i.e., 0.562) presents the scale
between level 7 and level 8.
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Table 4: Common Scale Hypothesis Tests by Levels (Scalar Model)

Language Cognitive Fine Motor

Slope(γ1,ℓ) χ2(·) p-value Slope(γ1,ℓ) χ2(·) p-value Slope(γ1,ℓ) χ2(·) p-value

Level 2 0.929 0.012 0.914 1.005 0.000 0.992
Level 3 0.901 0.546 0.460 0.936 0.010 0.922 0.963 0.022 0.883
Level 4 0.645 20.193 0.000 0.621 0.142 0.707 1.446 0.774 0.379
Level 5 0.66 9.382 0.002 2.235 3.899 0.048 0.798 0.720 0.396
Level 6 1.522 5.063 0.024 0.317 17.482 0.000 0.748 1.277 0.258
Level 7 1.125 0.182 0.670 0.791 0.362 0.547 0.955 0.034 0.853
Level 8 0.562 8.195 0.004 1.893 4.237 0.040
Level 9 1.113 0.113 0.737 0.744 3.432 0.064
Level 10 1.006 0.001 0.970 2.068 12.211 0.000
Level 11 1.223 0.375 0.540 2.292 10.927 0.001
Level 12 5.614 14.351 0.000
Level 13 1.420 4.333 0.037
Total 44.051 0.000 71.398 0.000 2.827 0.830

1. For each level we test the null hypothesis that γ1,ℓ=1 .

2. The column of p-value reports the probability of not rejecting the null hypothesis.

3. The row “Total” tests whether the scale invariance assumption is valid across all the levels.

4. Our data for language tasks starts from level 2.

Table 5: Difficulty Level List for Language (Learn words) Tasks

Level 8 The child points to the pictures which are being named, names one or
more pictures, and mimics the sound of the objects.

Level 9 The child points to the pictures which are being named, names two or
more pictures, makes the sound of the objects.

Level 10 The child points at 7 or more than 7 pictures and talks about them.
Level 11 Teach the child some simple descriptive words and the child names ob-

jects at home, and tells the usage of those objects.

Table 4 reports tests for a common scale for cognitive and fine motor skill tasks.

We reject the null of a common scale across virtually all the levels of the cognitive

skill tasks. However, we find evidence in support of a common scale for fine motor

skill tasks, which mainly test drawing skills.
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In sum, our estimates do not support the existence of a common scale across

most levels for both language and cognitive skills, but the assumption cannot be

rejected for some levels and some skills. For example, we cannot reject the common

scale assumption for levels 8, 9, and 10 for language skills. It appears to be a valid

description of fine motor skills at virtually all levels. Taken as a whole, we think these

findings call into question standard practice that relies on an assumed common scale

for analyzing skill growth and value-added. Unless one believes that skill depreciation

and appreciation operate strongly at the granular level for our estimates, and in the

manner just described, we view this as unlikely.

5.4 Joint Skill Formation

In Table 6, we report the estimates of matrix A. ACog−lang indicates how the cogni-

tive skill at period a−1 contributes to the language skill at period a. To simplify the

calculations, we impose a common transition matrix across levels.36 We thus report

a summary estimate of A.

We find that the diagonal elements are the important ones - the same type of

skill is more effective in boosting development. However, skills do not evolve in-

dependently. For example, cognitive skills improve both language and fine motor

skill development. Language skills improve fine motor skill development, but fine

motor skills cannot improve language and cognitive skills. Otherwise, there is little

cross-productivity across skills.

36In principle, we can tailor the estimates by level, but this leads to a profusion of estimates that
are difficult to interpret given the different lesson sequences at the same time across skill levels.
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Table 6: Skill Transition Matrix (A)

ALang−Lang 0.933∗∗∗ ALang−Cog 0.002 ALang−Fine 0.015∗

(0.077) (0.008) (0.009)
ACog−Lang 0.050∗∗ ACog−Cog 0.994∗∗∗ ACog−Fine 0.038∗∗

(0.020) (0.161) (0.014)
AFine−Lang -0.001 AFine−Cog -0.001 AFine−Fine 1.028∗∗∗

(0.007) (0.008) (0.199)

1. Standard errors are calculated by 500 iteration bootstrap and reported in parentheses.

2. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 7: Estimates of the Investment Transition Matrix (B)

BLang−Lang 0.363∗∗∗ BLang−Cog 0.001 BLang−Fine 0.014∗∗∗

(0.035) (0.006) (0.006)
BCog−Lang -0.001 BCog−Cog 1.295∗∗∗ BCog−Fine 0.015∗∗∗

(0.006) (0.134) (0.006)
BFine−Lang -0.002 BFine−Cog -0.000 BFine−Fine 1.812∗∗∗

(0.007) (0.006) (0.113)

1. Standard errors are calculated by 500 iteration bootstrap and reported in parentheses.

2. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

We test for cross-productivity of investments across skills, again imposing a com-

mon B matrix across levels. Table 7 reports these estimates. Cognitive and language

investments enhance the productivity of fine motor skills. Otherwise, there are no

other estimated effects that are statistically significant.

We test the common scale assumption in the multivariate model. Table 8 reports

test results based on the model described above, allowing different skills to evolve

with other skills.37 The tests for a common scale reported in Table 8 generally

support the findings for the scalar model reported in Table 4: the common scale

assumption does not hold globally for both language and cognitive skills, but we

cannot reject it for fine motor skills.

37We report more details in Appendix L.
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Table 8: Common Scale Hypothesis Tests by Levels (Vector Model)

Language Cognitive Fine Motor

Slope(γ1,ℓ) χ2(·) P -value Slope(γ1,ℓ) χ2(·) P -value Slope(γ1,ℓ) χ2(·) P -value

Level 2 1.070 1.235 0.267 1.066 1.814 0.178
Level 3 1.748 7.563 0.006 0.839 6.531 0.011 1.059 0.850 0.357
Level 4 0.833 2.436 0.119 0.409 188.903 0.000 1.017 0.054 0.816
Level 5 1.332 6.231 0.013 2.816 49.930 0.000 0.967 0.473 0.492
Level 6 1.242 6.489 0.011 0.616 135.405 0.000 0.900 7.305 0.007
Level 7 1.546 18.778 0.000 0.556 219.040 0.000 1.013 0.123 0.725
Level 8 2.007 13.910 0.000 3.555 127.810 0.000
Level 9 1.915 3.790 0.052 0.837 2.605 0.107
Level 10 1.000 0.000 1.000 3.051 42.127 0.000
Level 11 0.551 50.794 0.000 2.912 62.423 0.000
Level 12 8.603 932.333 0.000
Level 13 1.748 172.208 0.000

109.991 0.000 1940.549 0.000 10.619 0.101

5.5 Comparing Scalar and Vector Model Estimates

This section compares estimates based on the scalar and vector models. Comparing

estimates of the minimum skill requirement K̄, we find that for later difficulty levels,

the vector model estimates have larger values compared to the estimates from the

scalar model (see Figures L.25-L.27 in Appendix L.5.4).

We next compare estimates of the variance of task shocks. We find that esti-

mates from the scalar and the vector models are very close (see Figures L.28-L.30

in Appendix L.5.4). Both models estimate large variances in the task passing rates,

which do not increase monotonically within the same level. This phenomenon is

called “fadeout” in the literature. Similarly, the estimates of δℓ, which capture in-

vestment components during the intervention, are comparable (see Figures L.31-L.33

in Appendix L.5.4).
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5.6 How We Account for Measurement Error

In this paper, we follow psychometric conventions (Lord and Novick, 1968) and allow

for discrete measurement error when estimating both scalar and vector models. We

allow for the possibility that an observation of the child’s performance that records

a correct answer might come from two sources: a) the child actually knows the task,

and b) the child does not know the task but guesses the right answer. For each item

of each skill, we allow observations to be recorded with mistakes with the probability

qs for each skill type s, which is assumed to be independent across each task given

the skill type s:

D̃(s, ℓ, a) =

 D(s, ℓ, a) with probability 1− q(s)

1−D(s, ℓ, a) with probability q(s)
(11)

where D̃(s, ℓ, a) is the recorded value. We allow measurement errors (i.e., home

visitors could record by mistake (children passed the task but the record failed or

the other way around)).

In Table N.1 in Appendix N, we present the estimates of the probability q(s)

for each skill type. Across all difficulty levels, the estimated error probability is

not large. Also, given the existence of measurement errors, all estimation results

have consistent findings with the model without measurement errors. In a separate

analysis, we analyze individual items one-by-one for all skills and estimate very

small error probabilities by skill and age (Heckman et al., 2024). See Appendix N,

Table N.2 borrows results from that analysis.
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6 Conclusion

This paper uses novel experimental data on a widely-emulated home visiting pro-

gram implemented at scale in rural China. We study the mechanisms underlying

the positive treatment effects reported in Zhou et al. (2024). The prototypical home

visiting intervention we study improves children’s skill development through inter-

actions between the home visitor and the caregiver, and not from direct interactions

with the child.

Technologies differ across levels of the same skill and across different types of

skills. We develop and estimate a latent Markov learning model that captures pat-

terns of learning and explains how skills evolve at weekly levels. We measure the

growth in knowledge across difficulty levels. Our model explains the frequently noted

phenomenon of the decline of measured skills over intervals of time as a consequence

of the stochastic nature of learning and the resulting variation in performance across

skill assessments.38 We introduce learning through investment and stochastic shocks

into the standard IRT and BKT models of psychometrics.

Girls learn language skills more rapidly than boys. Boys learn cognitive and fine

motor skills more rapidly than girls.

We find evidence supporting a common scale of skills across levels for certain

skills at certain difficulty levels. However, within our empirically concordant model,

we reject the assumption as a global characterization, except for fine motor skills.

This finding calls into question the standard practice that assumes the existence of a

common scale across levels of scale for analyzing child development across lifetimes

38This is sometimes called “fadeout.”
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and for comparing children.

Cross-fertilization of skills shapes learning, consistent with the evidence in Cunha

and Heckman (2008) and Cunha et al. (2010). Cognition promotes the acquisition

of both language and fine motor skills. Language skills promote fine motor skills.

Fine motor skills have no cross-complementarity effects on other skills. Cognitive

and language skill investments bolster the productivity of fine motor investments;

otherwise, we find no cross-productivity in investment effects.

This paper uses a concrete measure of investment that consists of educating and

motivating the parent. The investment we study is in the caretaker. Its impact is

mediated by caretaker education levels. Less educated caregivers are less effective

vessels of investment. Program designers need to adapt the intervention to bridge the

gap between visitor and caregiver when the caregiver is a grandparent, or generally

has a lower educational level than the visitor.

The approach taken here enables us to examine the production of skills at a

granular level. The technology we estimate departs from the approach that has

become standard in the literature in several ways. (1) Scales of skills like those

used by Todd and Wolpin (2007), Cunha et al. (2010), and Attanasio et al. (2020)

are generally not valid; (2) The technologies for producing skills have qualitatively

different characterizations across levels; and (3) If depreciation does operate, it does

not operate uniformly across levels of nominally the same skill.
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