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1.  Introduction 

Since 2010, over 6.1 million plug-in hybrid and battery electric vehicles have been sold in the 

United States, including approximately 1.56 million in 2024, accounting for nearly 10 percent of 

all new light-duty vehicle sales (Isenstadt and Slowik, 2025).  Public discussions and scholarly 

research have focused on the electric vehicles’ potential for addressing climate change through 

reduced tailpipe emissions. In contrast, relatively little attention has been given to the health 

improvements that may result from cleaner air.  These local benefits may represent some of the 

most immediate and tangible benefits of EVs, with potential implications for healthcare costs, 

quality of life, and public support for clean energy initiatives.  

This paper aims to fill this gap by providing a comprehensive analysis of the effects of EV 

adoption on air pollution and infant health.  We focus on infants given previous evidence that they 

are particularly susceptible to the harmful effects of air pollution.  Maternal exposure to elevated 

air pollution levels during pregnancy has been strongly linked to adverse birth outcomes such as 

reduced birth weight, preterm birth, and impaired fetal growth (Alexander and Schwandt, 2022; 

Currie and Walker, 2011; Currie and Neidell, 2005; Knittel et al., 2016).1 Similarly, early-life 

exposure to traffic-related air pollution has been associated with higher risks of respiratory 

illnesses, including asthma (Bettiol et al., 2021; Simeonova et al., 2021; Zanobetti et al., 2024). 

Yet, despite this growing evidence on the harms of pollution, little empirical research has asked 

whether EV adoption has in fact delivered measurable health benefits.   

We address this question by assembling data for 2010 to 2021 on county-level vehicle 

registrations by fuel type as well as year-end county snapshots of the vehicle fleet from S&P 

Global; locations and opening dates for all EV charging stations from the U.S. Department of 

Energy (U.S. DOE, n.d.); daily air pollution levels for NO2 and PM2.5 from EPA air quality 

monitors as well as satellite-based pollution estimates from van Donkelaar et al. (2021); restricted-

access geocoded U.S. Vital Statistics Natality records with detailed birth outcomes and maternal 

characteristics at the county level; and restricted-access outpatient visit and diagnosis data from 

nine states provided by the Healthcare Cost and Utilization Project (HCUP).   

Causal inference about the effects of EV adoption is complicated by the fact that adoption 

is unlikely to be random. Wealthier households are more likely to be able to afford EVs and tend 

to reside in areas with better air quality and health outcomes. In addition, policy incentives, such 

as tax rebates and investments in charging infrastructure, often target specific areas or 

demographics that may already have preferences for cleaner technologies or healthier 

 
1 The biological mechanisms linking prenatal exposure to air pollution and adverse infant health are well-documented 
in the medical literature. Pollutants can disrupt placental transfer of oxygen and essential nutrients vital for healthy 
fetal development. See Bekkar et al. (2020) and Stieb et al. (2012) for detailed discussions and systematic reviews of 
related literatures. 
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environments.  It is also possible that areas with severe air pollution are more likely to enact 

policies encouraging EV adoption.   

Potential bias caused by the endogeneity of EV adoption is addressed in two ways.  First, 

we estimate two-way fixed effects models controlling for county and month-by-year fixed effects, 

state-by-year fixed effects, and a rich set of county-level controls.  This approach leverages within-

county changes in EV adoption over time, but its validity depends on the parallel trends 

assumption that without changes in EV adoption, counties on different adoption paths would have 

experienced similar trends in pollution and infant health outcomes.  Event study analyses provide 

empirical support for this assumption.  Second, we estimate Instrumental Variable (IV) models, 

leveraging the strategic placement of charging stations along federally designated Alternative Fuel 

Corridors (AFCs).  These new charging stations are strongly predictive of EV adoption.  Their 

placement was determined primarily by connectivity goals, spacing requirements, and the location 

of existing interstate routes rather than local demographic, economic, or environmental conditions.  

Hence, it is plausible to assume that charging stations affected pollution and health outcomes only 

through their effects on EV take-up, rather than reflecting local concerns about air quality or health 

outcomes that might themselves drive EV adoption. These two approaches are complementary; 

TWFE providing estimates for the full sample assuming parallel trends, while IV identifies causal 

effects in areas influenced by the quasi-random placement of AFC stations, assuming the location 

of new stations was exogenous. 

Both methods indicate that increased EV adoption is significantly associated with 

reductions in NO₂ concentrations.  TWFE models suggest that a one standard deviation increase 

in EVs (about 11.98 per 1,000 vehicles) reduced the NO₂ Air Quality Index (AQI) by 1.62 percent.  

IV estimates are larger, implying that the same increase would reduce NO₂ AQI by 4.0 percent.  

These larger IV estimates are consistent with the new AFC charging stations being located in areas 

that have worse baseline air quality because they are located near highways.  

Turning to health outcomes, a one standard deviation increase in EVs is estimated to 

reduce the incidence of very low birth weight (VLBW) by between 0.8 percent (TWFE) and 2.6 

percent (IV) with similar estimated reductions in the incidence of very premature births. We also 

find that a one standard deviation change in EVs is associated with an 11.3 percent reduction in 

asthma visits in children under five in TWFE models.  The estimates are consistent when we use 

alternative specifications, different EV exposure measures (e.g., EVs per population vs. EVs as a 

share of the fleet), and the exclusion of the COVID-19 lockdown period. The estimated effects 

are even larger when attention is restricted to battery electric vehicles, which represent roughly 80 

percent of the market, rather than also including hybrid vehicles. 
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This study makes several contributions to the literature on the effects of motor vehicles on 

pollution and health (e.g. Currie and Walker, 2011, Garcia et al., 2023; Knittel et al., 2016; and 

Alexander and Schwandt, 2022).  First, we show that increased EV adoption leads to significant 

reductions in key air pollutant, namely NO₂, which is directly linked to vehicle emissions.  This 

is true even after accounting for pollution created by the increased electricity generation needed 

to fuel the EVs.   

Second, we provide a comprehensive nationwide analysis of the impact of EV adoption 

on air pollution and infant health.  Health at birth is an important measure that has been shown to 

have long-term consequences such as impaired cognitive development, lower educational 

attainment, and lower socioeconomic later in life (Currie, 2011; Black, Devereux, and Salvanes, 

2007; Elder et al., 2020; Figlio et al., 2014; Isen, Rossin-Slater, and Walker, 2017; Bütikofer, 

Løken, and Salvanes, 2019).   

Third, in addition to examining infant health we examine the impact of EV adoption on 

emergency department (ED) visits for respiratory conditions in young children. This extension 

shows that the health benefits of cleaner transportation extend to young children, who are at an 

age when vulnerability to environmental exposures remains high. 

Greater understanding of the health risks associated with exhaust from gasoline-powered 

cars, and the health benefits associated with electrification of the vehicle fleet could influence 

consumer behavior and lead to better informed policy decisions.2 Our back-of-the-envelope 

estimates suggest that reductions in the incidence of VLBW births alone could generate annual 

benefits of $1.2 to $4.0 billion.  These results show that the health gains from EV adoption have 

substantial economic value. 

The rest of the paper is organized as follows.  Section 2 provides background information 

about EV penetration, and the AFC rollout and provides a brief overview of the relevant literature.  

Section 3 describes the data sources used in the analysis, including information on vehicle 

registrations, air pollution measures, and infant and child health outcomes.  Section 4 discusses 

the empirical strategies.  Results are presented in Section 5.  Section 6 concludes, summarizing 

the key findings and discussing their broader policy implications. 

2. Background 

2.1 Previous research on health effects of motor vehicle emissions and the effects of EVs 

Our study is closely related to the broader literature on the relationship between air pollution from 

traffic emissions and infant health.  Within that literature, only a small number of studies focus on 

specific policy or technological interventions.  Currie and Walker (2011) examine the health 

 
2 Users of traditional vehicles are partially exposed to their own emissions (Alexander and Schwandt, 2022; 
Campagnolo et al., 2023; Harik et al., 2017), so better understanding of the health effects may influence consumer 
behavior even when individuals are unconcerned about the externalities they impose on others. 
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effects of reduced traffic congestion using the introduction of EZ Pass electronic toll stations as a 

natural experiment that reduced pollution due to vehicle idling near toll plazas. They find 

significant improvements in infant health, with reductions in prematurity and low birth weight 

among mothers living near toll plazas.  Knittel et al. (2016), focus on traffic-related air pollution 

in California, and construct instrumental variables based on the interaction of traffic and weather 

conditions.  They find substantial impacts on weekly infant mortality, particularly among 

vulnerable subpopulations such as low birth weight or premature infants.  Simeonova et al. (2021) 

examine the introduction of congestion pricing in Stockholm and find that it reduced asthma 

admissions in young children. 

Most recently, Alexander and Schwandt (2022) leverage the Volkswagen emissions-

cheating scandal as a natural experiment to evaluate the health impacts of diesel pollution. As they 

point out, the cheating diesel vehicles emitted pollutants at a rate up to 150 times greater than gas-

fueled vehicles, and did so in relatively clean areas.  They find that increased air pollution from 

cheating diesel vehicles led to worse birth outcomes, higher infant mortality, and a rise in asthma-

related emergency visits among young children.  

EV adoption can be viewed as the reverse experiment, replacing dirty gasoline-powered 

cars with cleaner vehicles.  In what follows, we focus on documenting the relationship between 

EV adoption and nitrogen oxides (NOₓ) because they are the pollutant most closely linked to cars.  

Motor vehicles are the largest contributors to U.S. nitrogen oxides (NOₓ) emissions with 

transportation sources contributing approximately 50 to 60 percent of total emissions between 

2010 and 2024 (U.S. EPA, 2025).  Power plants are the other major source of NOₓ emissions, but 

we are able to control directly for annual county-level emissions from power plants.  In 

comparison, motor vehicles accounted for only 3 to 9 percent of total primary fine particulate 

matter (PM2.5), which comes from many other sources including industrial activity, residential 

heating, agriculture, and, increasingly, wildfires.   

Although battery electric vehicles produce zero tailpipe emissions, they are not entirely 

“clean.”  Emissions of PM2.5 are significantly influenced by non-exhaust sources such as tire wear, 

brake wear, and road surface abrasion, which are not eliminated by switching to EVs. In fact, 

because EVs tend to be significantly heavier than gasoline-powered cars, they may generate more 

non-exhaust particulates.3  Hence, the added weight of EVs may partially offset the gains from 

reduced tailpipe pollution by contributing to higher levels of non-exhaust PM2.5 (Timmers and 

Achten, 2016). For these reasons, NOₓ arguably provides a more direct and policy-relevant 

 
3 For example, the Ford F-150 Lightning, the electric version of the F-150 pickup, weighs 6500-7000 pounds 
compared to 4700-5200 pounds for the gas-powered model. Non-exhaust emissions now account for the majority of 
PM2.5 from road traffic (Harrison et al., 2021; Grigoratos and Martini, 2014). Accordingly, while EV adoption 
significantly reduces nitrogen oxides and other tailpipe pollutants, its impact on PM2.5 is less clear. 
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measure of the environmental impact of EV adoption than PM2.5.  While we also estimate models 

for PM2.5, it is less clear that EV adoption will significantly affect this outcome. 

Electricity for charging EVs may rely on coal, natural gas, or cleaner renewable sources, 

and may be generated at great distance from places with high EV adoption.  Hence, the net 

emissions impact varies substantially by region, depending on the nature of the electricity grid 

(Holland et al., 2016; Holland et al., 2021). We therefore explore the spatial distribution of 

upstream pollution from electricity generation.  Both the electricity grid and the gasoline fleet 

have become cleaner over time, while EVs have become more energy efficient.  We argue that on 

net, EVs reduce exposure to NOₓ and show that estimates of the effects of EVs on infant health 

outcomes are robust to controlling for pollution from the increased electricity generation that EVs 

require.  Clearly, however, the benefits of EVs can only be fully realized when supported by clean 

sources of electric power. 

Despite the potential for EV adoption to deliver significant health benefits through 

reductions in air pollution, most previous studies rely on model-based projections rather than 

empirical measurement, making it uncertain whether the anticipated gains are actually realized in 

real-world settings.4  Assumptions underlying these projections, such as uniform EV adoption 

rates and pollutant dispersion patterns, may be critical to their estimates.  Garcia et al. (2023) use 

actual zip-code level observational data from California for 2013-2019 (rather than projections) 

and relate within-zip code changes in EV counts to NO₂ and asthma related ED visits using 

random-effects models.5  They find that a within-zip code increase of 20 EVs per 1,000 population 

is associated with a 0.41 ppb decrease in NO₂ levels and a 3.2 percent reduction in age-adjusted 

overall asthma ED visits.  This paper builds on these past investigations by providing the first 

multi-state analysis linking observed EV adoption to actual changes in pollution levels and infant 

and child health outcomes. 

2.2 The Alternative Fuel Corridors program and the spread of charging stations 

 
4 Examples include Peters et al. (2020), Choma et al. (2021), and Schmitt et al. (2024). Peters et al. (2020) assess the 
public health and climate impacts of U.S. EV adoption under six scenarios with varying levels of EV penetration (25 
percent or 75 percent) and energy sources (combustion-based, current grid, and emission-free).  They report 
significant climate benefits with avoided damages ranging from $16.8 to $70 billion annually and the highest health 
co-benefits when clean energy is used. Similarly, Choma et al. (2021) evaluates the health and climate benefits of 
reductions in on-road transportation emissions in the U.S. from 2008 to 2017, estimating $270 billion in PM2.5-related 
benefits in 2017 by comparing four counterfactual emission scenarios from earlier years to 2017 data. Schmitt et al. 
(2024) examine the projected air quality and health impacts of light-duty vehicle electrification in the U.S. from 2022 
to 2050, finding that electrification could result in $84–$188 billion in air quality-related health benefits with 
continued grid decarbonization but could lead to $32–$71 billion in additional health costs if the 2022 grid is 
maintained.  There are also a large number of model-based studies projecting health benefits of EV adoption within 
narrower geographic contexts, including Turin, Italy (Rizza et al., 2021), Paris, France (Maesano et al., 2020), 
Rotterdam, Netherlands (Tobollik et al., 2016), the Toronto/Hamilton area in Canada (Gai et al., 2020), Houston, 
Texas (Pan et al., 2019), and Seattle, Washington (Filigrana et al., 2022).   
5 Technically, they look at zero-emission vehicles (ZEVs) which includes fuel cell electric vehicles as well as EVs, 
but relatively few vehicles run on fuel cells.  
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Currently, the United States has nearly 70,000 EV charging stations with more than 206,000 

charging ports (Caporal, 2025; Federal Highway Administration (FHA), 2025). As a result, 39 

percent of Americans now live within one mile of a public charging station, and 64 percent have 

a charging station within two miles of their homes (Bestvater and Shah, 2024). 

Some of this growth in charging infrastructure was incentivized by the strategic placement 

of EV charging stations along federally designated Alternative Fuel Corridors (AFCs). The AFC 

program, established under the Fixing America’s Surface Transportation (FAST) Act of 2015, 

aimed to create a nationwide network of alternative fuel infrastructures to promote cleaner 

transportation technologies.6 Administered by the Federal Highway Administration (FHWA), the 

program designated highway routes to support infrastructure development for EV charging 

stations, hydrogen fueling, and compressed natural gas. A key goal of the AFC initiative was to 

address range anxiety—a significant barrier to EV adoption—by ensuring that drivers had reliable 

access to charging facilities along critical transportation corridors (Federal Highway 

Administration, 2023). 

States nominated routes for AFC status and received federal funds to create the corridors 

and construct charging stations to fill in gaps along the routes.  To qualify as an AFC, designated 

routes had to meet specific requirements. Charging stations had to be spaced no more than 50 

miles apart and located within one mile of the highway. These criteria aimed to ensure consistent, 

accessible charging options, enabling uninterrupted long-distance EV travel. Initially, the program 

focused on interstate highways, which form the backbone of the U.S. transportation network. 

Subsequent expansions included state and regional routes to encourage broader EV adoption 

(Federal Highway Administration, 2016). 

Figure 1 presents maps of AFC charging stations, non-AFC charging stations, and 

alternative fuel corridors. The top panel shows stations for the whole country, while the bottom 

panel focuses on the greater Chicago area. These figures indicate that the AFC program was 

national in scope, with charging stations being added across the country.  AFC stations represent 

48 percent of all charging stations established during this period, underscoring the program’s 

significant role in expanding EV infrastructure.  We argue that the program created differential 

access to EV charging stations across counties in a manner unrelated to local air pollution or health 

 
6 According to the Federal Highway Administration (2023), the program’s environmental objectives were central to 
its mission, because EV adoption was regarded as a critical strategy for reducing greenhouse gas emissions and 
improving air quality, aligning with national and global climate change goals. The AFC program was identified as a 
cornerstone effort in decarbonizing transportation and enhancing environmental and public health outcomes. 
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conditions, providing a credible source of exogenous variation in EV adoption that we exploit in 

IV estimation. 

3. Data 

This section reviews the main sources of data on vehicles, air pollution, infant and child health, 

and county characteristics, including weather patterns and factors such as power plant emissions, 

and state-level vehicle miles driven.    

3.1. Data on the motor vehicle fleet and electric vehicle shares 

Data on the motor vehicle fleet for 2010 to 2021 comes from S&P Global, a commercial provider 

that makes cleaned and standardized vehicle registration records available to researchers and 

industry (S&P Global Mobility, 2010-2021).  These records are obtained from state Departments 

of Motor Vehicles (DMVs).  EV adoption is measured using year-end county-level snapshots of 

vehicle registrations.  Monthly data is created by interpolating vehicle counts between annual 

snapshots following the approach of Alexander and Schwandt (2022).  We also repeat the analyses 

using annual data, which abstracts from seasonal vehicle sales or administrative registration 

cycles. EVs are defined to include both battery electric vehicles (BEVs) and plug-in hybrid electric 

vehicles (PHEVs), as both vehicle types contribute to reductions in tailpipe emissions relative to 

internal combustion engine vehicles.7  The EV share is defined as the ratio of all electric vehicles 

to the total number of registered vehicles in a given county and month. This metric reflects the 

evolving composition of the vehicle fleet and serves as the main indicator of local EV adoption. 

Figures 2 and 3 illustrate the rapid growth and spatial evolution of EV adoption across the 

United States.  Figure 2 shows the overall growth in EVs from 2010 to 2021 in both levels (in 

thousands) and as a share of all registered vehicles. Both metrics trend steeply upwards reflecting 

the rapid adoption of EVs nationwide, particularly after 2015.   

Figure 3 complements this time series by mapping the county-level distribution of EV 

adoption at three points in time: 2010, 2016, and 2021.  The 2010 map shows minimal EV 

presence across most U.S. counties. By 2016, adoption begins to cluster in urban and coastal 

regions, particularly in California and the Northeast. The 2021 map reveals broader nationwide 

diffusion, though EV penetration remains highly uneven across counties ranging from around a 

quarter of new vehicle sales in California to a negligible amount in Mississippi (Bui and Slowik, 

2024).  This spatial and temporal variation helps to identify the impact of EVs on pollution and 

health outcomes. 

Data on an important control variable, the monthly number of vehicle miles travelled in 

each state, comes from the Federal Highway Administration (U.S. Department of Transportation, 

Office of Highway Policy Information, 2010-2021). 

 
7 As we show below, our findings are robust to using an alternative definition based solely on BEVs. 
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3.2. Data on air pollution 

The Environmental Protection Agency (EPA) provides daily measures of air pollution from 

hundreds of monitoring stations through its Air Quality System (U.S. EPA, AQS, 2010-2021).8 

These stations provide data averaged to the monthly level as well as an Air Quality Index (AQI).9  

To create consistent county-level data, we use a single monitoring station per county, selecting 

the station with the largest coverage over the analysis period.10 

The primary focus is on nitrogen dioxide (NO₂), a harmful air pollutant strongly linked to 

vehicle emissions and widely used as an indicator of traffic-related air pollution. NO₂ is part of 

the broader category of nitrogen oxides (NOₓ), a group of reactive gases generated during 

combustion. As both a direct emission and a secondary byproduct of NOₓ, NO₂ plays a central 

role in the formation of ground-level ozone and smog. Exposure to NO₂ has been associated with 

a range of adverse respiratory and cardiovascular outcomes, particularly for vulnerable 

populations (Huang et al., 2021; Stieb et al., 2020).  Aggregate plant-level annual NOₓ emissions 

at the county level come from the U.S. EPA’s Clean Air Markets Program Data (U.S. EPA, 

CAMPD, 2010-2021).   

One limitation of the AQS data is that the availability of monitoring stations varies across 

pollutants and regions, with stations frequently added or discontinued over time. Moreover, many 

county-months are lacking monitor data, and cannot be included in the pollution analysis.11  For 

PM2.5, the AQS monitor data is therefore supplemented with satellite-based pollution estimates 

obtained from van Donkelaar et al. (2021) which are available for all U.S. counties.12  

Supplementary analyses also draw on annual electricity generation and emissions data 

from the U.S. EPA’s eGRID program (U.S. EPA, eGRID, 2010–2021). The eGRID database 

identifies the regional electricity grid associated with each county.  

 
8 Each daily observation includes pollutant concentrations measured in micrograms per cubic meter (µg/m³) or parts 
per billion (ppb), along with information on the monitoring station’s location and characteristics. 
9 The AQI is a scaled measure from 0 to 500 which converts pollutant concentrations (in parts per billion) into a 
scaled value based on predefined breakpoints corresponding to health impact categories (e.g., Good, Moderate, 
Unhealthy).  
10 We exclude county-month observations above the 95th percentile of county-specific distributions of monthly mean 
NO2 concentrations to reduce the influence of extreme pollution events. This restriction helps ensure that the estimates 
reflect typical variation in local air quality that might be affected by EVs rather than being driven by outliers 
associated with extreme events, such as wildfires or industrial accidents that are not related to routine traffic 
emissions. The results are robust to relaxing this criterion. 
11 Specifically, the analysis begins with 252 daily pollution monitors across 166 counties reporting data between 
2010 and 2021. Following Alexander and Schwandt (2022), we retain, for each county, the monitor with the largest 
number of observations, resulting in a final sample of 166 monitors. 
12 These estimates combine satellite observations of aerosol optical depth, chemical transport model simulations, and 
information from EPA ground monitors and use AI models to predict PM2.5 for all U.S. counties, including those 
lacking ground-based monitors.  These measures may include prediction errors, particularly for areas with very high 
pollution levels (Fowlie, Rubin, and Walker, 2019). 
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3.3.  Infant health data 

Data on infant health outcomes come from restricted-use Vital Statistics Natality files with county 

identifiers provided by the National Center for Health Statistics (NCHS, 2010-2021).  This dataset 

includes all live births in the United States from 2010 to 2021 with detailed information on birth 

outcomes and maternal demographic and health characteristics.  County identifiers in the data 

allow each birth to be linked to local measures of air pollution and the share of EVs.  

The main birth outcomes considered include VLBW (birth weight less than 1,500 grams) 

and very premature birth (gestation under 32 weeks) both measured as a rate per 1,000 live births. 

These outcomes are widely recognized to be critical indicators of infant health that are predictive 

of long-term developmental, educational, and economic consequences.  Several secondary 

outcomes are also analyzed, including admission to a neonatal intensive care unit (NICU), assisted 

ventilation, surfactant administration, and stillbirth. These variables provide complementary 

indicators of infant morbidity and acute health needs at birth though we have less power to detect 

effects on these rarer outcomes. 

These data also include maternal characteristics such as maternal age, race, education 

level, marital status, parity (birth order), and smoking during pregnancy. Observations with a 

gestational length of less than 23 weeks are excluded, since these may reflect data entry errors. 

The sample is also restricted to single births to avoid confounding due to the unique health risks 

associated with multiple births (Almond et al., 2005; Dursun et al., 2024; Koppensteiner and 

Menezes, 2024).  

3.4. Data on emergency department visits for children 0-5  

Data on ED visits come from State Emergency Department Databases (SEDD) available from the 

Agency for Healthcare Research and Quality’s Healthcare Cost and Utilization Project (HCUP, 

2010-2021).13 State governments collect data on all hospital ED visits which are then shared with 

the federal government.  A subset of states allows these data to be shared with qualified researchers 

through the HCUP.   

The analysis draws on SEDD data from nine states, including Arizona, Florida, Kentucky, 

Maryland, Minnesota, New Jersey, New York, North Carolina, and Wisconsin, that have 

information about county and quarter of discharge.  These data are available for varying periods 

of across states: 2010–2021 for Arizona and Kentucky; 2010–2020 for Florida, Maryland, North 

Carolina, and New Jersey; 2010–2019 for Minnesota and New York; and 2012–2021 for 

Wisconsin.14  These data include diagnosis and patient characteristics including age, gender, race, 

and insurance status. 

 
13 See https://hcup-us.ahrq.gov/seddoverview.jsp for details. 
14 The SEDD databases are available for purchase from the AHRQ. We obtained the data from the National Bureau 
of Economic Research which has a reuse agreement with HCUP. These are the nine states NBER has access to that 

https://hcup-us.ahrq.gov/seddoverview.jsp
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County-by-quarter rates of ED visits are constructed for children aged 0 to 5. years.15  The 

primary outcome is the rate of asthma-related visits per 1,000 children in this age group, since 

asthma has been previously linked to air pollution and is a major cause of ED visits among young 

children.  However, since it can be difficult to diagnose asthma in young children, we also examine 

the broader category of acute respiratory diagnoses, though that includes many more conditions 

including some that may be less sensitive to air pollution.   

3.5. County characteristics and weather data 

Several additional variables are included as controls in our models.  Annual county population 

estimates come from the US Census Bureau’s Population Estimates program (U.S. Census 

Bureau, County Population Totals, 2010-2021). Overall poverty rates and child poverty rates 

come from the Small Area Income and Poverty Estimates program (U.S. Census Bureau, SAIPE, 

2010-2021). County-level monthly weather data, including average temperature and precipitation, 

comes from the PRISM Climate Group at Oregon State (Vose et al. 2014).  Monthly wind speed 

and wind direction information come from the National Oceanic and Atmospheric 

Administration’s daily weather station data (NOAA, 2010-2021). 

3.6. Descriptive Statistics 

Table 1 presents summary statistics for key variables, reported separately for counties in the 

bottom quartile, middle 50 percent, and top quartile of the EV adoption distribution, where 

quartiles are defined using the average EV share over the analysis period.  On average, counties 

in the top quartile have 26.4 electric vehicles per 1,000 registered vehicles, compared with only 

5.7 in the bottom quartile.  There are significant differences between counties in the bottom and 

top quartiles of EV adoption in terms of sociodemographic characteristics, environmental 

exposure, and health outcomes. 

Panel A reports air pollution measures from both ground monitors and satellite sources. 

Ground-monitored NO₂ levels average 8.13 ppb in top-quartile EV share counties, more than 

double the 3.73 ppb observed in the bottom quartile of counties by EV share. The corresponding 

AQI values show a similar pattern, with an average of 16.4 in the top quartile versus 8.1 in the 

bottom. In contrast, PM2.5 concentrations are similar across the EV share distribution. These 

patterns suggest that higher EV adoption is associated with greater NO₂ exposure, possibly 

reflecting urbanization or traffic patterns, while PM2.5 concentrations are relatively stable across 

counties with varying levels of EV uptake. The lack of an apparent relationship between EV 

adoption and PM2.5, is consistent with the idea that non-exhaust sources of PM2.5, such as tire and 

brake wear, limit the extent to which EVs reduce PM2.5 concentrations. 

 
provide on county of residence and discharge quarter for our period. Seven states provide discharge month, but we 
use quarterly data in order to retain the largest possible number of states. 
15 We also report results for individuals aged 65 to 79 in Appendix Table A9. 



 13 

Panel B shows that infant health outcomes are somewhat worse in counties with higher 

EV shares: Rates of VLBW and very premature births are 15.0 and 17.3 per 1,000 births, 

respectively in the top quartile compared to 13.6 and 15.6 in the bottom quartile. NICU admission 

is also more common in the top quartile, while assisted ventilation, surfactant use, and stillbirth 

rates are similar across the two groups. 

Panel C presents maternal and birth characteristics and shows clear socioeconomic 

differences across the EV share distribution. Mothers in counties with higher EV adoption tend to 

be older on average, have higher levels of education, and are less likely to smoke during 

pregnancy. The racial and ethnic composition also differs, with a greater share of White and 

Hispanic mothers and a smaller share of Black mothers in top-quartile counties. In addition, 

mothers in high-EV share counties are more likely to be married. 

Panel D shows statistics on ED visits for children, from the HCUP data. Overall, 

respiratory-related visits are more common in counties with lower EV adoption. Asthma-related 

ED visits average 2.3 per 1,000 children ages 0–5 in bottom-quartile counties, compared with 1.7 

per 1,000 in the top quartile. A similar gradient appears for acute respiratory disease visits, which 

are highest in the bottom quartile (36.6 per 1,000) and lowest in the top quartile (26.9 per 1,000). 

Injury-related ED visits, which serve as a placebo outcome, also follow this pattern, with higher 

rates in the bottom quartile than in the top quartile. 

Finally, Panel E highlights large differences in county characteristics. High-adoption 

counties are far more urban, with an average population of nearly 258,000 residents and 98,500 

registered vehicles, compared to about 22,000 residents and 7,800 vehicles in the bottom quartile. 

They also report more vehicle travel and greater access to alternative fuel charging stations. 

Poverty and child poverty rates are lower in high-EV counties than in the bottom quartile.  

Together, the patterns across panels highlight that counties with greater EV adoption tend 

to be larger, more economically advantaged, and more educated, but also more urban. These 

counties face higher ambient NO₂ levels and experience higher rates of VLBW and very premature 

births. In contrast, ED visits due to respiratory conditions are lower in high-EV counties, which 

may reflect differences in access to alternative sources of health care. These differences 

underscore the importance of accounting for underlying geographic and demographic factors in 

assessing the impacts of EV penetration. 

Overall, Table 1 indicates that counties with higher levels of EV adoption differ 

systematically from those with lower adoption across a broad set of observable characteristics. 

These differences underscore the importance of addressing potentially endogenous EV adoption 

as discussed in the next section. 
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4. Empirical Methodology 

We implement two complementary empirical strategies to address the potential endogeneity of 

EV adoption.  The first is to estimate two-way fixed effects (TWFE) models that exploit within-

county variation in EV shares over time while controlling for county, month-by-year, and state-

by-year fixed effects, as well as observable county-level covariates. This approach accounts for 

time-invariant county characteristics and common temporal shocks.  The second strategy is to use 

the rollout of Alternative Fuel Corridors as an instrument for EV adoption.   

The two approaches are complementary.  TWFE uses variation across the full sample to 

compute treatment effects but requires relatively strong assumptions to return causal average 

treatment effects.  This framework is essentially a difference-in-differences design, relying on the 

assumption of parallel trends between treatment and control counties and homogeneous treatment 

effects.  For example, it might be the case that increasing the EV share has different effects 

depending on baseline EV shares. We investigate the plausibility of these assumptions below.   

The IV strategy addresses time-varying confounders by exploiting plausibly exogenous 

variation in EV adoption driven by the federally coordinated rollout of AFC charging 

infrastructure.  A limitation of the IV strategy, however, is that it reflects the impact of the 

treatment on the treated, that is, EV adoption in counties affected by the rollout.  By construction, 

these must be counties with eligible road segments, i.e. interstate highways where AFC charging 

stations could be constructed within one mile of the road, and at the right intervals along the 

highways.  Hence, these estimates should be interpreted as the effect of the treatment on the treated 

counties and are not necessarily representative of what would have happened in non-treated 

counties.  These estimates also depend on the assumption that the AFC stations affected pollution 

and health outcomes only through their effects on EV adoption. 

4.1. Two-Way Fixed Effects estimation 

We first ask how changes in EV adoption affected air pollution levels at the county level.  If there 

is no “first-stage” effect on air pollution levels, then there should be no downstream effect on 

infant health.  The estimation equation is:   

(1)			𝑁𝑂2!"# = 𝛼$ + 𝛼%𝐸𝑉!"# + 𝑿𝑐𝑦′ 𝜶& +𝑾𝑐𝑚𝑦
′ 𝜶' + 𝛼(𝑀)"# + 𝝀! + 𝝀"# + 𝝀)# + 𝜀!"# , 

where 𝑁𝑂2!"#	measures air pollution in county c, in month m, in year y.  𝐸𝑉!"# is the share of 

electric vehicles among all registered vehicles. The vector 𝑿%&'  includes log population, total 

poverty and child poverty rates, total number of registered vehicles, and NOₓ emissions from 

power plants, all measured annually. The vector 𝑾%(&
'  includes county-by-month weather 

conditions, including average temperature and precipitation and these variables squared, average 

wind speed, and eight indicators for average wind direction. 𝑀)"# is state total miles driven by 

month in each year.   
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The term 𝝀! denotes county fixed effects, which control for unobserved, time-invariant 

differences across counties. The term 𝝀"# represents month-by-year fixed effects, which account 

for shocks that are common across all counties. States with more rapid EV adoption may 

simultaneously experience other changes correlated with air pollution, such as the implementation 

of environmental regulations. Additionally, urbanization or environmental awareness could also 

differ across states and over time. State-by-year fixed effects (𝝀)#) are included in Equation (1) 

to account for such influences.16 Finally, 𝜀!"# is an idiosyncratic error which is clustered at the 

county level to allow for correlations between observations due to shared county-level factors. 

Turning to the effects of EV adoption on infant health, we estimate the following model:17   
(2)			𝐼𝐻%(& = 𝛽) + 𝛽*𝐸𝑉_𝐺𝑒𝑠𝑡%(& + 𝑿%&' 𝜷+ + 𝚪%(&' 𝜷, + 𝛽-𝑀.(& + 𝝀% + 𝝀(& + 𝝀.& + 𝜖%(& , 

where 𝐼𝐻!"# represents one of the infant health indicators in county c, during month m, and year 

y.  Conception month is calculated using the birth date and gestational age.  𝐸𝑉_𝐺𝑒𝑠𝑡	!"#	denotes 

the average EV share that infants were exposed to during their 9-month period in utero. This 

measure is calculated as the 9-month average of EV shares in county c, starting from conception 

month m in year y.  

The vector 𝑿%&'  includes the same variables as Equation (1). The vector 𝚪%(&'  in Equation 

(2) includes county-level averages of various measures derived from the Vital Statistics data.  

These measures, aggregated at the monthly level, include the child’s birth order, gender, maternal 

age, race, maternal education, marital status, and maternal smoking status. The weather variables 

included in 𝚪%(&'   are 9-month averages of the monthly weather variables that were included in 

Equation (1). 𝑀.(& is also calculated as a 9-month average over the period of gestation.  The data 

used for estimating Equation (2) are collapsed at the county-conception-month-year level and the 

regression is weighted by the number of births in each conception month-year-county cell.   

The key identifying assumption underlying equations (1) and (2) is that counties on 

different paths of EV adoption would have followed similar trends in the absence of adoption.  

Any systematic differences in pre-adoption dynamics correlated with the timing or intensity of 

EV take-up could otherwise bias the estimates.  To address this potential contamination, we 

specify modified versions of equations (1) and (2) adding leads and lags of treatment following 

the event-study framework of de Chaisemartin and D’Haultfoeuille (2024).18   

 
16 The results are similar when we control for state-specific linear time trends instead. 
17 Because these data include measures of both air pollution and infant health, we can investigate the relationship 
between these two variables in a unified framework. However, to conserve space, and given a large previous literature 
doing so (see for example, Currie and Neidell, 2005; Currie et al., 2009; Currie, 2013) we do not present or discuss 
these results here. They are available from the authors upon request. 
18 These estimates use the did_multiplegt_dyn command from de Chaisemartin and D’Haultfoeuille (2024), which 
addresses the limitations of TWFE estimators in staggered adoption settings.  In particular, the estimator avoids 
inappropriate comparisons and negative weightings.  
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In our implementation, monthly county EV shares are discretized into bins (i.e., quintiles), 

and “treatment” is defined as crossing a bin boundary.  The treatment measure is categorical, 

defined by the quintile distribution of county-level EV shares.  Leads and lags of this switching 

indicator are included to estimate dynamic effects. Specifically, we estimate: 

(3)			𝑌%(& = 𝛾) + < 𝛾*
(0)

023

024,

	𝐸𝑉%(&
(0) + 𝑿𝒄𝒚' 𝜸𝟐 +𝐖𝒄𝒎𝒚

' 𝜸𝟑 + 𝛾-𝑀.(& + 𝚪%(&' 𝜸, + 𝝀% + 𝝀(& + 𝑣%(& , 

where 𝑌%(& denotes either air pollution or an infant health outcome.  The variable 𝐸𝑉%(&
(0) 	indicates 

that county 𝑐 in month-year 𝑚𝑦 is 𝑙 months relative to the month when it transitions into a higher 

EV adoption bin. The set of controls is consistent with the corresponding baseline models: 𝑿!#* , 

𝑾!"#
* , and 𝑀)"# are defined as in equation (1), and in the infant health specifications, 𝚪!"#* 	is 

defined as in equation (2).  All specifications include county fixed effects 𝝀% and month-by-year 

fixed effects 𝝀(& .  Standard errors are clustered at the county level, and the infant-health 

regressions are weighted by births.  The coefficients 𝛾*
(0) thus provide a test of the parallel trends 

and no-anticipation assumptions and trace out the dynamic effects of EV adoption after treatment. 

4.2. Instrumental Variable Strategy 

The instrumental variable is constructed using data on charging stations that opened between 2016 

and 2021 and were located within one mile of designated AFCs.  Stations that opened before 2016 

preceded the AFC rollout under the FAST Act and were therefore not affected by the AFC 

program.  Forty-eight percent of all new charging stations established during this period were 

along AFC corridors, underscoring the program’s significant role in expanding EV infrastructure.  

The instrument is the stock of AFC charging stations per 10,000 population in each county and 

month.19   

The first identifying assumption underlying the IV estimates is that the AFC charging 

stations incentivized EV ownership.  Previous work suggests that charging infrastructure is a key 

driver of EV adoption, as it reduces range anxiety and enhances the convenience of EV use 

(Sierzchula et al., 2014; Shen et al., 2019).  We will show that the availability of new AFC 

charging stations is strongly predictive of increases in EV shares at the county level.   

A second identifying assumption is that AFC charging stations only affected outcomes 

through their effects on EV shares.  In turn, this assumption implies that in the absence of the new 

AFC charging stations, counties that received these stations would have continued on the same 

trends as other counties.  To assess this assumption, we perform an event-study analysis that 

 
19 Results are robust to scaling the instrument by the number of registered vehicles rather than population. We prefer 
population scaling here because it provides a more stable denominator, and avoids potential endogeneity concerns 
that may arise if the total number of vehicles responds to changes in charging infrastructure. 
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examines trends in EV shares in counties that eventually became part of the AFC program.  The 

event study is based on an equation of the following form: 

(4)			𝐸𝑉!# =	𝛿$ 	+ 	𝐴𝐹𝐶! ∗ 𝑰#	𝜹% +	𝑿𝑐𝑦′ 𝜹& + 𝛿'𝑀)# + 𝝀! + 𝝀# + 𝝀)# + 𝑧!# , 

where 𝐴𝐹𝐶! is a flag indicating that the county was eventually treated by acquiring new AFC 

charging stations.  This flag is fully interacted with a vector of year indicators, 𝑰#, so that it is 

possible to see if trends in 𝐸𝑉!# began to diverge in recipient counties relative to other counties 

prior to the rollout of the AFC program.   

The regression equation representing the first stage is specified as follows for the pollution 

outcomes: 

(5)	𝐸𝑉!"# 	= 	 𝜃$ 	+ 		𝜃%𝐴𝐹𝐶!"# 	+ 	𝑿𝑐𝑦′ 𝜽& +𝑾𝑐𝑚𝑦
′ 𝜽' + 𝜃(𝑀)"# + 𝝀! + 𝝀"# + 𝝀)# + 𝑢!"# , 

where 𝐴𝐹𝐶!"# denotes the stock of AFC charging stations per 10,000 population in county c in 

month m in year y, and the other variables are as defined above.  In IV models with infant health 

outcomes, all variables are measured using the 9-month average from the month of conception.   

The second stage uses the predicted values of EV shares from the first stage to estimate 

the causal effect of EV adoption on air pollution and infant health outcomes.  That is, we estimate 

versions of Equations (1) and (2) in which 𝐸𝑉!"# and 𝐸𝑉_𝐺𝑒𝑠𝑡!"#  are replaced by their predicted 

values from the first stage.  

5. Estimates 

5.1 Event studies testing parallel trends 

Figure 4 presents the event-study estimates for nitrogen dioxide (NO₂), while Figures 5a and 5b 

report the corresponding estimates for very low birth weight (VLBW) and very premature (VP) 

births.  The coefficients 𝛾*
(0)		measure changes in outcomes from three months before to five 

months after a county transition into a higher EV adoption bin, relative to the month just before 

the transition.  The control group at each event time consists of counties that have not yet crossed 

into a higher bin, ensuring that the estimates compare switchers to counties that remain in lower 

adoption categories.20   

Across all outcomes, the pre-treatment coefficients are close to zero and statistically 

insignificant, supporting the validity of the parallel trends and no-anticipation assumptions 

necessary for valid TWFE estimation.  In the post-treatment period, Panel (a) of Figure 4 shows 

that NO₂ concentrations fall sharply once counties transition into higher EV adoption bins.  The 

 
20 A simple DiD would pool early and late adopters and implicitly assume homogeneous effects of crossing into a 
higher EV adoption bin.  In contrast, the estimator developed by de Chaisemartin and D’Haultfoeuille (2024) allows 
treatment effects to vary across cohorts and over time by comparing switchers to never treated and not-yet-treated 
units and aggregating these cohort-specific effects into dynamic estimates. All event-study estimates are based on the 
monitor counties sample used in the air pollution analysis in order to overcome computational constraints associated 
with implementing the did_multiplegt_dyn estimator on the full set of counties. 
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reduction is apparent within the first few months after the transition and persists throughout the 

post-period.  Panels (a) and (b) of Figure 5 show that infant health outcomes follow a similar 

dynamic pattern.  Counties that cross into higher EV adoption bins experience sustained declines 

in both VLBW and VP births.  The point estimates indicate reductions in adverse birth outcomes 

of several cases per 1,000 births, which represent meaningful improvements relative to baseline 

rates.21  Together, these findings suggest that improvements in local air quality associated with 

EV adoption translate into tangible health benefits for newborns. 

Appendix Figure A1 replicates the infant health event-study analysis using deciles of 

county EV shares rather than quintiles.  Using deciles increases the number of potential crossings, 

but also implies stronger linearity assumptions, that is, that transitions between low deciles are 

similar to transitions among higher deciles.  The dynamic patterns are very similar, with small 

pre-treatment coefficients consistent with flat pre-trends, followed by persistent post-treatment 

declines in VLBW and very premature births. This robustness check confirms that the event study 

results are not driven by the choice of binning scheme and that the health benefits of EV adoption 

emerge consistently across alternative specifications. 

Figure 6 plots the estimated 𝜹% coefficients from equation (4), which asks whether, in 

counties that eventually received an AFC charging station, EV shares had begun to change prior 

to the rollout of the AFC program.  The figure shows that there was no differential growth in EV 

adoption prior to 2015, while after the program began in 2015, the coefficients become positive 

and statistically significant, reflecting a marked increase in EV shares in treated counties.  

5.2 Balancing tests 

To further investigate the assumptions underlying the TWFE estimates, we perform a series of 

balancing exercises in which each of the child and maternal characteristic is regressed on the EV 

share (Currie and Walker, 2011; Alexander and Schwandt, 2022).  As shown in Appendix Table 

A1, the results show that 9-month averages of EV shares during pregnancy are largely orthogonal 

to demographic as well as maternal and child characteristics once the other variables included in 

Equations (1) and (2) are included.22 These findings suggest that the variation in EV adoption is 

largely exogenous to maternal and child characteristics. 

To evaluate the exogeneity of the instrument, we perform an additional balancing exercise 

asking whether the adoption of AFC charging station was correlated with county maternal and 

 
21 For example, in Figure 5a, the third post-treatment coefficient for VLBW is –0.77 (s.e. = 0.33), indicating that 
three months after a county crosses into a higher EV adoption quintile, the incidence of VLBW falls by about 0.8 
cases per 1,000 births relative to the pre-transition baseline.  This effect is statistically significant at the 5 percent 
level and corresponds to a 5.7 percent decline relative to the sample mean incidence of 13.57 per 1,000 births. 
22 The sole exception is that there is a negative relationship between the share of mothers who are Hispanic and EV 
shares within counties.  Given that Hispanic mothers tend to have better birth outcomes than other mothers after 
conditioning on other characteristics (e.g., Giuntella, 2016; Shaw and Pickett, 2013), this correlation may bias the 
estimated effects of EV adoption on infant health towards zero.   
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child characteristics. The results are shown in Appendix Table A2.  The percent Hispanic shows 

a statistically significant but very small association with the instrument, and the other estimated 

coefficients are all statistically insignificant. Appendix Table A3 shows the results of a second 

exercise, which asks whether places that higher pollution levels in the previous six months or in 

the previous year were more likely to get AFC charging stations.  There is no evidence that this is 

the case.  

5.3 Effects of electric vehicles on air pollution and infant health 

Table 2 presents estimates of Equation (1), which captures the impact of EVs on NO2. Columns 

(1) and (2) show estimates from the TWFE model, while columns (3) and (4) present IV estimates.  

Estimates are reported for the AQI for NO₂ and the arithmetic mean of daily NO₂ concentrations.  

The TWFE estimates suggest that a one-unit increase in EVs per 1,000 vehicles is 

associated with a significant 0.020-point reduction in the NO₂ AQI (Column 1) and a 0.019 ppb 

decline in the arithmetic mean of NO₂ concentrations (Column 2). These estimates correspond to 

reductions of approximately 0.14 percent and 0.27 percent, respectively, relative to the sample 

means. Scaling the estimates by a one-standard deviation increase in EV share (11.98 vehicles per 

1,000) implies declines of 1.62 percent in AQI and 3.19 percent in mean NO₂ levels.  

The IV estimates in Columns (3) and (4) are larger, with a one-unit increase in EVs per 

1,000 vehicles associated with a 0.050-point reduction in AQI and a 0.043 ppb drop in the 

arithmetic mean. These effects translate to declines of 0.34 percent and 0.60 percent, respectively. 

When scaled by a one-standard deviation increase in the instrumental variable, i.e., the number of 

EV charging stations along the AFC corridor per 10,000 people, the estimates imply reductions 

of 0.8 percent in AQI and 1.4 percent in mean NO₂ concentrations.  

The first stage estimates shown in Appendix Table A4 indicate that AFC charging stations 

are strongly predictive of EV take up, with each additional charging station per 10,000 population 

being associated with an increase in EV shares of 10 per 1,000 vehicles.  The Kleibergen-Paap F-

statistic is 17.9. The reduced form estimates reported in Appendix Table A4 indicate that the 

presence of AFC stations is associated with significant reductions in NO₂ concentrations, as 

measured by both the AQI and the arithmetic mean. Taken together, these results imply that the 

expansion of charging infrastructure not only promotes EV adoption but also leads to 

improvements in local air quality. 

A supplementary analysis of effects on PM2.5 is shown in Appendix Table A5.  EV 

adoption does not have a statistically significant effect on this outcome, although the point 

estimates are consistently negative.  These findings suggest that while EV adoption may yield 

modest reductions in PM2.5, its effectiveness is far more pronounced for pollutants like NO₂ that 
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are directly tied to combustion.  As discussed above, EVs may generate significant amounts of 

PM2.5 from non-combustion sources like tire wear and tear. 

Table 3 presents estimates of the impact of EV adoption on VLBW and very premature 

births, Columns (1) and (2) show estimates from the TWFE models, where a one-unit increase in 

EVs per 1,000 vehicles (measured as the 9-month average during gestational period) is associated 

with statistically significant declines in both very low birth weight and very premature births—by 

0.009 and 0.0109 per 1,000 births, respectively. These estimates translate into percent reductions 

of approximately 0.1 percent at the sample means. When scaled by a one-standard deviation 

increase in EV share, the implied declines are around 0.8 percent for both outcomes.  

Columns (3) and (4) report IV estimates.  The estimated effects are larger implying that a 

one-unit increase in EVs per 1,000 vehicles leads to a 0.03 decline in VLBW and a 0.04 decline 

in very premature births per 1,000 births. These estimates correspond to percentage reductions of 

about 0.2 percent relative to their respective means and imply that a one-standard deviation 

increase in AFC station availability translates into roughly 0.5 percent declines in both outcomes. 

The first stage estimates shown in Appendix Table A6 indicate that each additional AFC station 

per 10,000 population increases EV adoption by about 9.1 vehicles per 1,000.  The reduced-form 

estimates show that a one-unit increase in AFC station availability per 10,000 population is 

associated with declines of 0.27 and 0.35 cases of VLBW and very premature births per 1000 

births respectively. The reduced form estimates are shown in Appendix Table A6 and are in line 

with the IV estimates. 

The IV estimates reported in Tables 2 and 3 are notably larger than the TWFE estimates, 

suggesting that IV identifies a local average treatment effect specific to AFC settings.  Because 

AFC stations are typically located near highways, average AQI and NO₂ levels are 26 to 30 percent 

higher within one mile of an AFC, and 11 to 14 percent higher within five miles.  Similarly, areas 

near an AFC also experience worse infant health, with the incidence of VLBW about 54 percent 

higher and the incidence very premature births about 57 percent higher within five miles along an 

AFC compared to the full sample.   Hence the comparison between TWFE and IV suggests that 

the effects of EV adoption are greater in high pollution settings. 

Table 4 focuses on counties with pollution monitors that are within five miles of an AFC 

to assess whether the larger IV estimates indeed reflect the higher baseline pollution and health 

risks in communities located near AFC infrastructure. The first four columns report estimates for 

air quality measured by AQI and mean NO₂, while Columns 5 through 8 report estimates for infant 

health outcomes measured by VLBW and very premature births. Columns (1) and (2) show TWFE 

estimates which suggest that EV adoption is associated with substantially larger improvements in 

air quality than in the full sample, with coefficients roughly 50 percent larger in magnitude than 
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those reported in Table 2. In contrast, the IV estimates in Columns (3) and (4) are close to those 

reported previously. These results support the idea that the IV is capturing larger effects of EV 

adoption in high-pollution areas. 

The infant health results in Columns (5) through (8) show a similar pattern. Both the 

TWFE and IV estimates are larger in the restricted sample than in the full sample, consistent with 

the higher baseline incidence of adverse birth outcomes in these counties. The TWFE estimates 

point to stronger improvements in VLBW and very premature births, and the IV estimates likewise 

yield somewhat larger coefficients in the restricted sample than in the full sample.  Taken together, 

the results support the interpretation that EV adoption generates particularly large health benefits 

in communities located near AFC infrastructure, where both pollution levels and infant health 

risks are greatest. 

A supplementary analysis of a broader range of birth outcomes is shown in Appendix 

Table A7: Neonatal intensive care (NICU) admissions, assisted ventilation, surfactant therapy, 

and stillbirth, and an index that includes these variables along with VLBW and very premature.23 

The effects of EVs on these adverse outcomes are consistently negative, but mostly imprecisely 

estimated.  The TWFE models indicate that a one-unit increase in EVs per 1,000 vehicles is 

associated with a statistically significant 0.0352 decrease in surfactant therapy per 1,000 births 

(p<0.01), and with a significant effect on the index. The IV estimates suggest that there is a 

significant negative effect on stillbirths. 

5.4 Robustness  

Table 5 presents a series of robustness checks to evaluate the consistency of the main findings.  

Panel A shows that using annual EV shares rather than monthly shares produces very similar 

estimates, mitigating concerns about using interpolated monthly data.   

Panel B excludes data from the COVID-19 lockdown period (March to June 2020) to 

account for potential disruptions in economic activity, pollution, and driving patterns.24 The 

results are consistent with the main findings, demonstrating significant reductions in NO₂ 

concentrations. This analysis confirms that the observed effects are not driven by temporary 

pandemic-related anomalies. 

 
23 According to the CDC, a stillbirth refers to the loss of a baby at 20 weeks of pregnancy or later, occurring either 
before or during delivery. The composite index follows Currie et al. (2022). It combines VLBW and very premature 
birth with NICU admissions, assisted ventilation, surfactant therapy, and stillbirths, all measured per 1,000 births. 
Each component is oriented so that higher values reflect worse outcomes, standardized using the mean and standard 
deviation of the control group, and then summed to create the index. 
24 The rationale for selecting June 2019 is that the lockdown began in March 2020, and the analysis uses a 9-month 
average of EV shares to measure exposure during the in utero period.  Vehicle usage declined sharply at the start of 
the pandemic in March 2020 but had largely returned to near pre-pandemic levels by July 2020, as illustrated by the 
daily average vehicle miles travelled shown in Appendix Figure A2. 
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In Panel C, the treatment is redefined using EVs per 1,000 population rather than per 1,000 

registered vehicles. While the units are different, both TWFE and 2SLS models yield negative and 

statistically significant coefficients, suggesting that the main results are not sensitive to how EV 

penetration is scaled.  

Panel D focuses exclusively on battery electric vehicles (BEVs), which account for about 

80 percent of electric vehicles and generate zero tailpipe emissions.  Since plug-in hybrid EVs 

may still emit pollutants through gasoline usage, the estimated effects are expected to be larger 

when we focus on BEV-only, a prediction that is confirmed by the data. 

Panel E shows estimates controlling for non-AFC charging stations in the analyses.  Again, 

the estimates are very similar to the baseline shown in Table 2, suggesting that the observed 

improvements in air quality in the IV are specifically driven by EV adoption spurred by the 

exogenous location of AFC charging stations rather than by broader trends captured by the 

expansion of charging networks outside the AFC program.   

Finally, Panel F restricts the analysis to counties with populations of at least 250,000 since 

EV adoption and monitoring infrastructure may differ in rural and urban settings. The estimates 

are similar to the baseline, suggesting that the improvements in air quality are concentrated in 

larger, more urban settings where both EV penetration and pollution concerns are greatest. 

Table 6 presents a range of largely similar robustness checks examining the relationship 

between EV adoption and infant health outcomes. Panel A shows estimates based on annual rather 

than monthly data. Panel B excludes births conceived during the COVID-19 lockdown period. 

Panel C excludes births to mothers younger than 18 years old, who may face elevated risks for 

adverse birth outcomes for reasons unrelated to pollution exposure. Panel D includes births with 

gestational ages below 23 weeks, which had been excluded due to concerns about measurement 

error or data quality. Panel E excludes county-month-year cells with fewer than five conceptions 

to ensure that the results are not driven by small-sample noise. Across these specifications, the 

estimates are similar to those reported in Table 3. 

Panel F redefines EV penetration using EVs per 1,000 population rather than per 1,000 

registered vehicles. Although the units differ, the results are consistent with the baseline, with both 

TWFE and 2SLS estimates indicating statistically significant improvements in infant health 

outcomes. Panel G focuses exclusively on battery electric vehicles, which produce zero tailpipe 

emissions, and finds somewhat larger effects, consistent with expectations.  

Panel H restricts the analytic sample to counties with NO₂ monitoring data. While the point 

estimates for VLBW are somewhat larger in the TWFE models, the overall pattern is consistent 

with the full sample of counties, and IV estimates are not statistically different. Panel I includes 

controls for non-AFC charging stations, showing that the main results are not affected by the 
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inclusion of these controls. Finally, Panel J restricts the sample to counties with populations of at 

least 250,000. The estimates are negative and statistically significant in most specifications. 

Overall, these robustness checks demonstrate the consistency of the main findings, 

highlighting the significant role of EV adoption in reducing harmful air pollutants and improving 

infant health.  

5.5 Effects of electric vehicles on Emergency Department visits 

The estimates discussed above indicate sizeable effects of EV adoption on infant health at birth. 

This section extends the analysis of health outcomes to children under five in the nine states where 

we have quarterly HCUP data.  Given limitations of the HCUP data described below which result 

in smaller sample sizes, we report only TWFE estimates. Nonetheless, the IV results were 

qualitatively similar and yield statistically significant effects for asthma-related ED visits. 

Before turning to healthcare utilization, we first confirm that the negative relationship 

between EVs and air pollution holds in these states. The TWFE estimates in Appendix Table A8 

show that an additional EV per 1,000 vehicles reduces the NO₂ AQI by 0.100 points relative to a 

mean of 17.6 (a decline of about 0.6 percent) and lowers average NO₂ concentrations by 0.081 

ppb relative to a mean of 8.7 (a decline of roughly 0.9 percent). These estimates are consistent 

with the nationwide analysis.  

Next, Table 7 presents the main estimates for ED visits for children 0–5.25 TWFE estimates 

show that an additional EV per 1,000 vehicles is associated with a statistically significant decline 

of 0.022 asthma-related ED visits per 1,000 children, which corresponds to roughly 1.1 percent of 

the mean rate. For acute respiratory visits, the coefficient is also negative (–0.016 relative to a 

mean of 31.3), though the estimate is not statistically significant for this broader measure.  The 

final column in Table 7 reports the estimate for injury-related ED visits, which serves as a placebo 

outcome. The coefficient is small and statistically insignificant. 

Overall, these estimates support the main findings, showing that improvements in air 

quality from greater EV adoption translate into reductions in healthcare utilization, underscoring 

that young children are particularly sensitive to vehicular pollution and that EV adoption can be 

effective in mitigating asthma risks. 

To provide additional context, we also estimated models for older adults (ages 65–79) as 

shown in Appendix Table A9.  Elderly people are also especially sensitive to air pollution (Walker 

and Schlenker, 2016; Deryugina et al. 2019).  Although we find little evidence of an effect on 

asthma-related ED visits, there is a statistically significant decline in acute respiratory visits: an 

additional EV per 1,000 vehicles is associated with a reduction of 0.018 visits per 1,000 older 

adults, equivalent to about 0.5 percent of the mean rate.  The final column reports estimates for 
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injury-related visits, which serve as a placebo outcome. The coefficient is close to zero and 

statistically insignificant.  Overall, these results suggest that while asthma appears less responsive 

in this age group, EV adoption still contributes to measurable improvements in respiratory health 

among older adults, particularly for acute respiratory conditions. 

Although the HCUP ED data are highly detailed, they have limitations.  First, the ED 

discharge records only include patients who were discharged directly from the emergency 

department and therefore exclude patients who were subsequently admitted to hospital. This 

restriction may lead to an undercounting of the most serious respiratory cases. Second, the HCUP 

data are only available for a subset of states, which reduces the variation available for analysis 

and may limit generalizability. The number of counties that can be included in the analysis of 

pollution is further limited because not all counties in these 9 states have monitor data.  In total, 

we observe usable pollution measures for 26 counties. Finally, we analyse HCUP data at the 

quarterly rather than monthly level which also limits the number of observations.  

5.6 EVs and their evolving environmental footprint  

While electric vehicles reduce local tailpipe emissions, charging them requires electricity that may 

be generated from fossil fuels. Upstream pollution from power plants may reduce or offset some 

of the air quality gains from EVs. Moreover, the places that benefit from EVs may not be the same 

as those that suffer from the increased electricity generation, leading to environmental inequities. 

Understanding these trade-offs requires information about trends in several quantities 

which are shown in Appendix Table A10.  The first is how much pollution is created by the 

electricity generation needed to power EVs.  Given the on-going decarbonization of the electricity 

grid and improvements in the efficiency of EVs, emissions from EV charging have declined 

substantially, falling from 4.33 pounds of nitrogen oxides per vehicle per year in 2010 to just 1.51 

pounds in 2021.26  Appendix Figure A3 complements this analysis for California, which is one of 

the largest EV markets, by showing how the mix of California’s electricity imports has evolved 

over time.27 The figure highlights a clear shift toward cleaner sources for energy imported, with 

declining reliance on coal and growing shares of hydroelectric and other renewable sources. These 

changes suggest that spillover emissions, those generated elsewhere by EV energy demands, also 

fall over time. 

The second quantity is how much pollution is averted when EVs replace gasoline powered 

cars.  This quantity has also been falling over time as the gasoline fleet has become cleaner and 

 
26 Estimates combine average NOₓ emissions per megawatt-hour of electricity generation from EPA’s eGRID (2010–
2021) with annual electricity demand per EV from EV-Database.org and sales-weighted model averages. For 
comparison, we also obtain gasoline-vehicle emission estimates based on EPA’s MOVES model (U.S. Bureau of 
Transportation Statistics, 2025). See Appendix Table A10. 
27 To our knowledge, California is the only state that consistently reports fuel sources for electricity generated within 
California and outside of the state (California Energy Commission, 2009-2023). 
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more efficient.  Exhaust emissions from conventional gasoline vehicles fell from 29.33 pounds 

per vehicle in 2010 to 5.50 pounds in 2021.  However, Appendix Table A10 shows that the 

reduction in pollution from substitution of EVs for gasoline cars is still substantial.   

A third factor that is important to understand is how the burden of pollution from electricity 

generation is distributed, and how much of it falls in the same places that benefit from local 

reductions in pollution following EV adoption.  Appendix Table A11 gets at this question for 

California.  Column 1 shows the huge growth in the number of EVs.  Column 2 shows trends in 

the amount of tailpipe NOₓ averted by these EVs (based on the calculations in Appendix Table 

A10).  Column 3 shows the growth in in-state NOₓ emissions required to power these vehicles.  

Column 4 indicates that EV adoption led to net pollution reductions within California, even when 

power plant emissions are accounted for.  In 2021, EVs displaced more than 4200 tons of nitrogen 

oxides from tailpipes while generating approximately 850 tons from electricity use. This implies 

a net reduction of roughly 3400 tons.  

However, some of California’s electricity is generated out-of-state.  The last column shows 

the burden that California EV adoption imposes on other states in the same electricity grid.  This 

amount is relatively small but does represent a negative externality of California EV adoption. 

Finally, we re-evaluate the pollution-reducing impact of electric vehicle (EV) adoption 

accounting for NOₓ emissions produced by the power plants supplying electricity to EVs within 

the same energy grid nationally.  First, we calculate the total number of registered EVs within 

each grid using county-level vehicle registration data and the total annual electricity demand from 

EVs in each grid. This demand is then allocated across power plants based on each plant’s share 

of total annual generation within its grid, allowing us to estimate the emissions attributable to EV 

charging for each power plant. Finally, these EV-related emissions are aggregated to the county 

level based on the geographic location of each plant. Appendix Tables A12 and A13 report 

estimates of the effects of EVs on pollution and health controlling for the spillover effects of EV 

adoption to all counties within the same grid. 

The findings are consistent with recent studies that use dynamic modelling to assess the 

environmental and welfare implications of EV adoption. For example, Holland et al. (2020) 

document a sharp decline in pollution from electricity generation between 2010 and 2017. They 

attribute this shift primarily to changes in the generation mix and improvements in plant-level 

emissions performance. Building on this work, Holland et al. (2021) show that these reductions 

in power sector emissions have significantly improved the environmental footprint of EVs in 

recent years. 
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These results suggest that EV adoption has delivered meaningful air quality benefits even 

after accounting for emissions from electricity generation as electricity generation continued to 

decarbonize over time. 

6. Conclusions 

This study provides a first nationwide look at the environmental and health benefits of EV 

adoption within the same framework. To address the potential endogeneity of EV adoption, we 

employ two empirical strategies, two-way fixed effects and an instrumental variables approach 

that exploits the staggered rollout of Alternative Fuel Corridors. We find that greater EV 

penetration leads to significant reductions in NO₂, a primary pollutant associated with vehicle 

emissions and adverse health outcomes. These improvements in air quality translate into 

meaningful health benefits for infants and young children (as well as the elderly, though they are 

not our main focus). Specifically, we document significant declines in adverse birth outcomes, 

including VLBW and very premature births, as well as reductions in asthma-related emergency 

department visits among children aged 0-5. These results highlight the dual role of EV adoption 

in improving environmental quality and protecting public health. 

IV estimates suggest that the largest benefits are concentrated in high-pollution 

communities located near AFCs, where both baseline NO₂ levels and the incidence of adverse 

infant health outcomes are substantially higher. This result highlights the disproportionate burden 

of vehicle pollution borne by some communities and suggests that strategic EV adoption could 

play an important role in reducing health inequities. 

To assess the economic implications of these health benefits, we provide back-of-the-

envelope estimates of potential benefits. On average during the study period, there were about 3.7 

million singleton births per year in the United States, with approximately 1.36 percent, or 50,215 

births, classified as VLBW. Based on our estimates, a one standard deviation increase in EV 

adoption (equivalent to 11.98 EVs per 1,000 vehicles) reduces the incidence of VLBW births by 

about 0.79 percent in the TWFE specification and 2.63 percent in the IV specification. These 

estimates correspond to preventing approximately 398 to 1,318 VLBW births annually. Given that 

the average lifetime cost associated with one VLBW birth is estimated at 3.06 million in 2024 

dollars, the resulting savings range from 1.22 billion to 4.03 billion dollars per year.28 These 

savings likely represent only a fraction of the broader societal benefits, which also include 

reductions in respiratory illnesses in other age groups and may have other as yet undocumented 

health benefits. 

 
28 See Appendix Table A14 for details on lifetime cost calculations for VLBW births and the estimated savings from 
electric vehicle adoption.  Burlig et al. (2021) point out that EVs may not fully replace gas-powered vehicles as 
consumers tend to drive them less, but this could be due in part to incomplete charging networks. 
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The IV findings underscore the important role of investment in EV infrastructure in 

supporting EV adoption.  The estimates suggest that targeting areas with high pollution and high 

rates of adverse birth outcomes for EV infrastructure investments was an effective way to improve 

health in these areas.  Alternative policies such as tax rebates, subsidies, and public awareness 

campaigns promote EV adoption, but have been shown to do so relatively inefficiently, suggesting 

that building out EV charging infrastructure might be one of the more effective policies tools 

available.29 

To further accelerate the transition to zero traffic emissions, President Biden signed an 

Executive Order in 2021 setting a goal of deploying 500,000 EV charging stations by 2030 with 

the ultimate aim of having 50 percent of all U.S. vehicles sold be net-zero greenhouse gas emitters 

by that date.  In January 2025, the U.S. Department of Transportation’s Federal Highway 

Administration (FHWA) announced $635 million in grants to continue building out EV charging 

and alternative fuelling infrastructure (FHA, 2025), funding subsequently cancelled by the new 

administration.  Unfortunately, in the United States, EV adoption has become a highly partisan 

issue (Davis et al., 2025).  Elsewhere, the European Union has set ambitious targets for EV 

infrastructure, aiming to install one million public charging points by 2025, and three million by 

2030 to support its growing electric vehicle fleet.30  

The reductions in adverse birth outcomes and respiratory illnesses that we document 

underscore the need to look beyond politics and consider the long-term societal benefits of EV 

adoption, including potential reductions in healthcare costs and improvements in human capital 

in addition to effects on climate. Framing transport electrification as a public health intervention 

in addition to an environmental strategy, might help to build a stronger, more comprehensive case 

for infrastructure investments supporting clean transportation. 

  

 
29 Xing et al. (2024) find that many EV subsidies go to people who would have purchased EVs in any case, and that 
subsidies targeted to people who would otherwise be driving, older, dirty, gasoline vehicles would be more effective.  
Allcott et al. (2024) argue that subsidies calibrated to the size of the externalities generated by EVs would also be 
more effective.  Beyond access, the quality of the infrastructure may also matter, as higher charging speeds generate 
substantial benefits for EV users in the form of reductions in the time costs of recharging (Dorsey et al., 2025).   
30 These goals are part of Fit for 55.  This is a comprehensive package of laws intended to reduce greenhouse gas 
emissions in the EU by at least 55 percent by 2030, and to place the region on a path toward climate neutrality by 
2050 (European Council, n.d.). 
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Figure 1: Alternative Fuel Corridors and Electric Vehicle Charging Sta-
tions

(a) Contiguous United States

(b) Greater Chicago Area

Notes: The figure displays the locations of Alternative Fuel Corridors (AFC) shown in green and electric
vehicle (EV) charging stations in contiguous United States and greater Chicago area based on data from
U.S. Department of Energy and Federal Highway Administration. Blue dots represent stations opened
after 2015 within one mile of a corridor. Red dots represent all other stations, including those located
farther from corridors or established before the initial AFC announcement.
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Figure 2: Adoption of Electric Vehicles in the U.S. Over Time
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Notes: The figure displays total number of EVs (electric vehicle) in thousands (blue line on the left axis)
and share of registered EVs among all registered vehicles (red dashed line on the right axis) for the entire
U.S. in a given month. Vehicle registration data come from S&P Global.
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Figure 3: County Level Evolution of Electric Vehicle Shares

(a) Share of Electric Vehicles in 2010

(b) Share of Electric Vehicles in 2016

(c) Share of Electric Vehicles in 2021

Notes: The figure displays the evolution of county shares of registered EVs (electric vehicle) among all
registered vehicles. Vehicle registration data come from S&P Global.
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Figure 4: Event-Study Results for Air Quality

(a) Arithmetic Mean, NO2

(b) Air Quality Index, NO2

Notes: This figure plots event-study estimates of the effect of EV adoption on nitrogen dioxide NO2

concentrations, based on equation (3). Estimates are obtained using the did multiplegt dyn estimator of
de Chaisemartin and D’Haultfoeuille (2024), with county and month-by-year fixed effects, and controls
for county demographics, weather, and state miles driven. The outcome is the monthly average NO2

concentration in the monitor counties sample. The coefficients trace dynamic effects from three months
before to five months after a county transitions into a higher EV adoption quintile, with the month
prior to transition as the omitted category. 95 percent confidence intervals, based on county-clustered
standard errors, are shown.
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Figure 5: Event-Study Results for Adverse Birth Outcomes

(a) Very Low Birth Weight per 1,000 births

(b) Very Premature per 1,000 births

Notes: This table reports event-study estimates of the effect of EV adoption on infant health outcomes,
based on equation (3). The outcomes are the incidence of very low birth weight (VLBW,<1500g) and very
preterm (VP, <32 weeks) births per 1,000 live births, measured at the county–conception month level.
Estimates are obtained using the did multiplegt dyn estimator of de Chaisemartin and D’Haultfoeuille
(2024), with county and month-by-year fixed effects, and controls for county demographics, maternal
characteristics from Vital Statistics, weather, and state miles driven. The treatment is defined as crossing
into a higher quintile of EV adoption; three pre-treatment leads and five post-treatment lags are included,
with the month prior to transition omitted. Standard errors are clustered at the county level, and
regressions are weighted by births. 95 percent confidence intervals, based on county-clustered standard
errors, are shown.
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Figure 6: Dynamic Effects of Alternative Fuel Corridors by Year
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Notes: The figure displays the effects of Alternative Fuel Corridor (AFC) project on electric vehicle (EV)
share, that is annual share of EVs among all registered vehicles for counties that began to receive EV
charging stations on Alternative Fuel Corridors following the announcement in 2015. Figure plots the
coefficients on the interaction between the indicator variable for AFC county inficator and year for the
period between 2010 and 2021. Vehicle registration data come from S&P Global. AFC project data
come from the Federal Highway Administration.
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Table 1: Descriptive Statistics

Mean Mean Mean Mean SD

Top 25 perc. Middle 50 perc. Bottom 25 perc. Full Full
EV share EV share EV share sample sample

EVs per 1000 vehicles 26.37 11.46 5.67 13.79 11.98

Panel A: Pollution Outcomes
Monthly mean AQI NO2 16.41 13.18 8.1 14.76 8.27
Monthly arithmetic mean NO2 8.13 6.08 3.73 7.14 4.88
Monthly mean AQI PM2.5 31.61 33.09 33.5 32.36 10.02
Monthly arithmetic mean PM2.5 7.98 8.29 8.36 8.14 2.94
Satellite-based monthly mean concentration PM2.5 6.68 7.05 6.94 6.93 2.03

Panel B: Infant Health Outcomes
Very Low Birth Weight per 1000 births 15.01 12.84 13.61 13.57 65.65
Very Premature per 1000 births 17.32 15.09 15.59 15.77 71.84
Admission to NICU per 1000 births 77.32 72.44 72.63 73.72 112.43
Assisted Ventilation per 1000 births 16.72 17.06 16.06 16.73 60.78
Surfactant Use per 1000 births 6 6.4 6.27 6.27 41.11
Stillbirth per 1000 births 2.03 1.84 2 1.92 22.2

Panel C: Birth and Maternal Characteristics
Share first baby 0.32 0.3 0.3 0.31 0.15
Share male 0.49 0.49 0.49 0.49 0.16
Mother’s age 28.62 27.1 26.5 27.34 2.23
Share mothers education w/< high school 0.11 0.14 0.15 0.14 0.13
Share mothers high school 0.24 0.3 0.31 0.29 0.17
Share mothers education w/> high school 0.6 0.53 0.47 0.53 0.22
Share Black mothers 0.08 0.08 0.18 0.11 0.18
Share White mothers 0.85 0.88 0.77 0.85 0.2
Share Hispanic mothers 0.16 0.12 0.09 0.12 0.18
Share married mothers 0.64 0.59 0.53 0.58 0.2
Share mothers smoking during pregnancy 0.06 0.05 0.08 0.06 0.22

Panel D: Child Health Outcomes
Asthma-related visits per 1,000 pop. ages 0-5 1.73 1.93 2.29 1.97 1.90
Acute respiratory disease visits per 1,000 pop. ages 0-5 26.88 30.95 36.61 31.35 22.40
Injury-related visits per 1,000 pop. ages 0-5 22.86 26.87 31.15 26.94 11.19

Panel E: County Characteristics
Total vehicles registered (1000s) 98.46 25.54 7.76 39.5 126.02
Monthly vehicle miles traveled by state (millions) 8629.66 7168.24 5537.51 7135.73 6144.34
AFC stations per 10000 population 0.09 0.03 0.01 0.04 0.24
Total Population (1000s) 257.75 67.39 21.79 104.03 329.07
Poverty rate 0.13 0.15 0.2 0.16 0.06
Child poverty rate 0.17 0.22 0.29 0.22 0.1
Annual NOx emissions from power plants (1000 tons) 0.39 0.57 0.34 0.47 2.03
Monthly mean temperature (degrees Fahrenheit) 53.98 54.86 56.78 55.11 17.86
Monthly mean precipitation (inches) 3.38 3.34 3.55 3.4 2.52
Monthly mean wind speed (m/s) 2.53 2.38 2.18 2.37 1.39

Observations 104535 209674 101978 416187 –

Notes: First three columns report summary statistics separately for counties in the bottom quartile, middle 50 percent, and top quartile of the EV adoption distribution, where
quartiles are defined using the average EV share over the analysis period. Vehicle registration data come from S&P Global. Annual county characteristics are from the US Census
Bureau. Vehicle miles travel are based on Traffic Volume Trends from Federal Highway Administration. Alternative Fuel Corridor (AFC) stations data are from the US Depart-
ment of Energy. Power plant emissions data come from the US EPA Clean Air Markets Program. Monthly weather and wind data are from PRISM Group and NOAA. Pollutant
data come from the EPA daily monitor datasets and van Donkelaar et al. (2021). Infant health outcomes and birth characteristics are monthly county averages based on birth
records from National Center for Health Statistics. Quarterly emergency department (ED) visits data are from HCUP.
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Table 2: EV Shares and Air Quality

Pollutant = NO2

TWFE Estimates 2SLS Estimates

AQI Arithmetic mean AQI Arithmetic mean

(1) (2) (3) (4)

EVs per 1,000 vehicles -0.020** -0.019*** -0.050*** -0.043***
(0.009) (0.006) (0.017) (0.011)

Dep Var Mean 14.8 7.1 14.8 7.1
F-stat (Kleibergen-Paap) 17.9 17.9
Observations 22502 22498 22502 22498

Notes: EVs per 1,000 vehicles is county number of electric vehicles (EV) × 1,000 divided by number
of all registered vehicles in a given month. Vehicle registration data come from S&P Global. Pollutant
data are monthly averages calculated from the EPA daily monitor readings. For NO2 (nitrogen dioxide),
AQI stands for air quality index and arithmetic mean refers to the monthly mean concentration reported
in ppb (parts per billion). All regressions control for county and month-by-year fixed effects, state-by-
year fixed effects, log total population, poverty rate, child poverty rate, total vehicles registered, state
monthly total miles driven, annual county NOx emissions from power plants in tons, and monthly county
weather variables including mean temperature and precipitation (plus squared), wind speed and eight
wind direction dummies. Observations at the county-by-month level span from 2010 to 2021. Standard
errors are clustered at the county level. *** p<0.01,** p<0.05,* p<0.1.
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Table 3: EV Shares and Adverse Birth Outcomes

TWFE Estimates 2SLS Estimates

VLBW Very Premature VLBW Very Premature
per 1,000 births per 1,000 births per 1,000 births per 1,000 births

(1) (2) (3) (4)

EVs per 1,000 vehicles (9-month average) -0.0090∗∗ -0.0109∗∗ -0.0298∗∗∗ -0.0385∗∗∗

(0.0040) (0.0049) (0.0111) (0.0134)
Dep Var Mean 13.6 15.8 13.6 15.8
F-stat (Kleibergen-Paap) 50.0 50.0
Observations 416187 416187 416187 416187

Notes: EVs per 1,000 vehicles is county number of electric vehicles (EV) × 1,000 divided by number of all registered vehicles in a given
month. We calculate and use nine-month average starting from the month of conception. Vehicle registration data come from S&P Global.
Birth data are from National Center for Health Statistics restricted files. Adverse birth outcomes are county monthly average incidence
rates for very low birth weight (VLBW) and very premature (VP) births per 1,000 births conceived in that month. All regressions control
for county and conception-month-by-year fixed effects, state-by-year fixed effects, log total population, poverty rate, child poverty rate,
total vehicles registered, and annual county NOx emissions from power plants (tons). We also control for the nine-month average of state
monthly total miles driven; county mean temperature and precipitation (and their squares); wind speed; and eight wind direction dummies.
Additional controls include county incidence rates for birth and maternal characteristics. Observations at the county-by-conception-month
level span from 2010 to 2021. Regressions are weighted by births in each county–month–year cell. Standard errors clustered at the county
level. *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Restricting Sample to Counties with monitors within five miles of an Alternative Fuel Corridor

Air Quality Adverse Birth Outcomes

TWFE Estimates 2SLS Estimates TWFE Estimates 2SLS Estimates

AQI A. Mean AQI A. Mean VLBW VP VLBW VP

(1) (2) (3) (4) (5) (6) (7) (8)

EVs per 1,000 vehicles -0.030∗∗∗ -0.028∗∗∗ -0.051∗∗∗ -0.048∗∗∗

(0.010) (0.006) (0.014) (0.011)
EVs per 1,000 vehicles -0.0140∗∗ -0.0120∗ -0.0480∗∗∗ -0.0553∗∗∗

(9-month average) (0.0060) (0.0071) (0.0131) (0.0177)

Dep Var Mean 16.5 8.1 16.5 8.1 21.4 24.3 21.4 24.3
F-stat (Kleibergen-Paap) 15.0 15.0 16.6 16.6
Observations 18028 18027 18028 18027 18336 18336 18336 18336

Notes: EVs per 1,000 vehicles is county number of electric vehicles (EV) × 1,000 divided by number of all registered vehicles in a given
month. For infant health results in Columns (5)-(9), we use nine-month average starting from the month of conception. Vehicle registration
data come from S&P Global. Pollutant data are monthly averages calculated from the EPA daily monitor readings. For NO2 (nitrogen
dioxide), AQI stands for air quality index and A. Mean refers to the monthly mean concentration reported in ppb (parts per billion). Birth
data are from National Center for Health Statistics restricted files. Adverse birth outcomes are county monthly average incidence rates
for very low birth weight (VLBW) and very premature (VP) births per 1,000 births conceived in that month. All regressions control for
county and month-by-year fixed effects, state-by-year fixed effects, log total population, poverty rate, child poverty rate, total vehicles reg-
istered, state monthly total miles driven, annual county NOx emissions from power plants in tons, and monthly county weather variables
including mean temperature and precipitation (plus squared), wind speed and eight wind direction dummies. For infant health results, we
calculate and use nine-month average for monthly controls starting from the month of conception and we include county incidence rates
for birth and maternal characteristics. Observations at the county-by-month level span from 2010 to 2021. Infant health regressions are
weighted by births in each county–month–year cell. Standard errors are clustered at the county level. *** p<0.01,** p<0.05,* p<0.1.
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Table 5: Robustness Exercises for Air Quality

Pollutant = NO2

TWFE Estimates 2SLS Estimates

AQI Arithmetic mean AQI Arithmetic mean

(1) (2) (3) (4)

Panel A: Using annual EV shares
EVs per 1,000 vehicles -0.023∗∗ -0.021∗∗∗ -0.051∗∗∗ -0.043∗∗∗

(0.009) (0.006) (0.017) (0.011)
Observations 22502 22498 22502 22498
Panel B: Excluding COVID-19 Lockdown Period
EVs per 1,000 vehicles -0.020∗∗ -0.018∗∗∗ -0.050∗∗∗ -0.043∗∗∗

(0.009) (0.006) (0.016) (0.011)
Observations 21840 21835 21840 21835
Panel C: Using per-population EV shares
EVs per 1,000 population -0.031∗ -0.037∗∗∗ -0.128∗∗∗ -0.109∗∗∗

(0.019) (0.012) (0.048) (0.032)
Observations 22502 22498 22502 22498
Panel D: Using only battery electric vehicles
BEVs per 1,000 vehicles -0.054∗∗∗ -0.050∗∗∗ -0.093∗∗∗ -0.079∗∗∗

(0.019) (0.010) (0.034) (0.022)
Observations 22502 22498 22502 22498
Panel E: Controlling for non-AFC electric vehicle charging stations
EVs per 1,000 vehicles -0.025∗∗∗ -0.023∗∗∗ -0.064∗∗∗ -0.054∗∗∗

(0.009) (0.005) (0.017) (0.012)
Observations 22502 22498 22502 22498
Panel F: Restricting to counties with 250,000 population or more
EVs per 1,000 vehicles -0.025∗∗ -0.028∗∗∗ -0.054∗∗∗ -0.055∗∗∗

(0.012) (0.007) (0.017) (0.014)
Observations 13304 13304 13304 13304

Notes: EVs per 1,000 vehicles is county number of electric vehicles (EV) × 1,000 divided by number of
all registered vehicles in a given month, unless otherwise indicated. Vehicle registration data come from
S&P Global. Pollutant data are monthly averages from EPA daily monitor readings. For NO2, AQI de-
notes air quality index and arithmetic mean denotes monthly mean concentration (ppb). Panel A uses
the annual share of registered EVs among all registered vehicles at year-end. Panel B excludes observa-
tions during the COVID-19 lockdown period (Mar–Jun 2020). Panel C uses EVs per 1,000 population
instead of per 1,000 vehicles. Panel D uses only battery electric vehicles (BEVs) per 1,000 vehicles.
Panel E controls for county number of all non-AFC electric vehicle charging stations per 10,000 popula-
tion. Panel F restricts analysis sample to counties with 250,000 population or more in 2010. All regres-
sions control for county and month-by-year fixed effects, state-by-year fixed effects, log total population,
poverty rate, child poverty rate, total vehicles registered, state monthly total miles driven, annual county
NOx power-plant emissions (tons), and monthly county weather (mean temperature and precipitation
and their squares), wind speed, and eight wind-direction dummies. Observations at the county-by-month
level span from 2010 to 2021, unless otherwise indicated. Standard errors clustered at the county level.
*** p<0.01, ** p<0.05, * p<0.1.
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Table 6: Robustness Exercises for Adverse Birth Outcomes

TWFE Estimates 2SLS Estimates

VLBW Very Premature VLBW Very Premature
per 1,000 births per 1,000 births per 1,000 births per 1,000 births

(1) (2) (3) (4)

Panel A: Using annual EV shares
EVs per 1,000 vehicles (9-mo average) -0.0085∗∗ -0.0105∗∗ -0.0297∗∗∗ -0.0380∗∗∗

(0.0039) (0.0047) (0.0113) (0.0137)
Observations 416187 416187 416187 416187
Panel B: Excluding COVID-19 Lockdown Period
EVs per 1,000 vehicles (9-mo average) -0.0098∗∗ -0.0107∗∗ -0.0360∗∗∗ -0.0406∗∗

(0.0041) (0.0052) (0.0119) (0.0159)
Observations 404015 404015 404015 404015
Panel C: Excluding mothers below age 18
EVs per 1,000 vehicles (9-mo average) -0.0087∗∗ -0.0109∗∗ -0.0298∗∗∗ -0.0380∗∗∗

(0.0040) (0.0048) (0.0112) (0.0137)
Observations 416029 416029 416029 416029
Panel D: Including births with GL < 23 wks
EVs per 1,000 vehicles (9-mo average) -0.0100∗∗ -0.0119∗∗ -0.0324∗∗∗ -0.0399∗∗∗

(0.0044) (0.0052) (0.0118) (0.0144)
Observations 416448 416448 416448 416448
Panel E: Excluding county-month-year cells with fewer than five conceptions
EVs per 1,000 vehicles (9-mo average) -0.0090∗∗ -0.0102∗∗ -0.0291∗∗∗ -0.0385∗∗∗

(0.0040) (0.0049) (0.0111) (0.0134)
Observations 370075 370075 370075 370075
Panel F: Using per-population EV shares
EVs per 1,000 population (9-mo average) -0.0211∗∗ -0.0266∗∗ -0.0708∗∗∗ -0.0914∗∗∗

(0.0088) (0.0107) (0.0245) (0.0298)
Observations 416187 416187 416187 416187
Panel G: Using only battery electric vehicles
BEVs per 1,000 vehicles (9-mo average) -0.0253∗∗∗ -0.0369∗∗∗ -0.0531∗∗∗ -0.0685∗∗∗

(0.0088) (0.0103) (0.0173) (0.0211)
Observations 416187 416187 416187 416187
Panel H: Restricting to NO2 monitor sample
EVs per 1,000 vehicles (9-mo average) -0.0138∗∗ -0.0109∗ -0.0426∗∗∗ -0.0481∗∗∗

(0.0053) (0.0066) (0.0122) (0.0169)
Observations 22779 22779 22779 22779
Panel I: Controlling for non-AFC electric vehicle charging stations
EVs per 1,000 vehicles (9-mo average) -0.0090∗∗ -0.0103∗∗ -0.0325∗∗∗ -0.0395∗∗∗

(0.0041) (0.0050) (0.0118) (0.0146)
Observations 416187 416187 416187 416187
Panel J: Restricting to counties with 250,000 population or more
EVs per 1,000 vehicles (9-mo average) -0.0114∗∗ -0.0083 -0.0304∗∗ -0.0411∗∗

(0.0050) (0.0060) (0.0143) (0.0171)
Observations 35785 35785 35785 35785

Notes: EV share is calculated as a nine-month average starting from the month of conception unless otherwise indicated. Panel A uses
the annual share of registered EVs among all registered vehicles in a county at the end of each year. Panel B excludes births conceived
during the COVID-19 lockdown period (Mar–Jun 2020). Panel C excludes births to mothers younger than age 18. Panel D includes
births with gestational length less than 23 weeks. Panel E excludes county-month-year cells with fewer than five conceptions. Panel F
uses the number of EVs per 1,000 population instead of per 1,000 vehicles. Panel G uses only battery electric vehicles (BEVs) per 1,000
vehicles. Panel H restricts the sample to counties with non-missing pollutant monitor data for NO2. Panel I controls for county average
number of all non-AFC electric vehicle charging stations per 10,000 population for nine months starting from the month of conception.
Panel J restricts analysis sample to counties with 250,000 population or more in 2010. Vehicle registration data come from S&P Global.
Birth data are from National Center for Health Statistics restricted files. Adverse birth outcomes are county monthly average incidence
rates per 1,000 births conceived in that month. We report results for VLBW and very premature births; the composite outcomes index
is omitted. All regressions control for county and conception-month-by-year fixed effects, state-by-year fixed effects, log total population,
poverty rate, child poverty rate, total vehicles registered, and annual county NOx emissions from power plants (tons). Additional con-
trols include the nine-month average of state monthly total miles driven, county mean temperature and precipitation (and their squares),
wind speed, and eight wind direction dummies, plus county incidence rates for birth and maternal characteristics. Observations at the
county-by-conception-month level span from 2010 to 2021, unless otherwise indicated. Regressions are weighted by county births in each
conception-month-year cell. Standard errors clustered at the county level. *** p<0.01, ** p<0.05, * p<0.1.
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Table 7: EV Shares and Emergency Department Visits for Ages 0-5

Asthma Acute Respiratory Injury
per 1,000 pop. per 1,000 pop. per 1,000 pop.

(1) (2) (3)

EVs per 1,000 vehicles -0.022∗ -0.016 0.013
(0.012) (0.054) (0.030)

Dep Var Mean 2.0 31.3 26.9
Observations 24648 24648 24648

Notes: EVs per 1,000 vehicles is county number of electric vehicles (EV) × 1,000 divided by number of all reg-
istered vehicles in a given quarter. Vehicle registration data come from S&P Global. Emergency department
visits data are from HCUP for nine states: AZ, FL, KY, MD, MN, NJ, NY, NC, WI. Dependent variable is
quarterly total visits from each cause per 1,000 population ages 0-5 from Census. See text for details on vari-
able construction. All regressions control for county and quarter-by-year fixed effects, log total population,
poverty rate, child poverty rate, total vehicles registered, and annual county NOx emissions from power plants
(tons). We also control for the quarterly county share of ED visits by race (Black and White), sex (male), and
insurance coverage (Medicaid, private, and self-pay); quarterly state total miles driven and county weather
(mean temperature and precipitation and their squares), wind speed, and eight wind-direction dummies. Ob-
servations span 2010–2021. Regressions are weighted by county population. Standard errors clustered at the
county level. *** p<0.01, ** p<0.05, * p<0.1.
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Figure A.1: Event-Study Results for Adverse Birth Outcomes: Grouping
EV Shares into Deciles

(a) Very Low Birth Weight per 1,000 births

(b) Very Premature per 1,000 births

Notes: This figure replicates the infant health event-study analysis using deciles of county EV shares
rather than quintiles. Estimates are based on equation (3) and obtained with the did multiplegt dyn esti-
mator of de Chaisemartin and D’Haultfoeuille (2024). Outcomes are the incidence of very low birth weight
(VLBW, <1500g) and very preterm (VP, <32 weeks) births per 1,000 live births at the county–conception
month level. The specification includes county and month-by-year fixed effects, and controls for county
demographics, maternal characteristics from Vital Statistics, weather, and state miles driven. Coeffi-
cients trace dynamic effects from three months before to five months after a county transitions into
a higher EV adoption decile, with the month prior to transition as the omitted category. 95 percent
confidence intervals, based on county-clustered standard errors, are shown.
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Figure A.2: Daily Vehicle Travel During the COVID-19 Public Health
Emergency

Notes: The figure displays the passenger vehicle miles traveled daily during the COVID-19 provided by
Bureau of Transportation Statistics (https://www.bts.gov/covid-19/daily-vehicle-travel).
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Figure A.3: Sources of California’s Electricity Imports Over Time

Notes: Energy source information are from California’s Total System Electric Generation Reports (Cal-
ifornia Energy Commission, 2009-2023).
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Table A.1: Balanced Covariates

Share Share Share Share Mothers Share Share Low Share High
Male Black White Hispanic Age Married Education Education

(1) (2) (3) (4) (5) (6) (7) (8)

EVs per 1,000 vehicles 0.0000 -0.0001 -0.0001 -0.0006∗∗∗ -0.0007 0.0002 -0.0002 0.0003
(9-mo average) (0.0000) (0.0001) (0.0001) (0.0001) (0.0009) (0.0004) (0.0002) (0.0002)

Dep Var Mean 0.5 0.1 0.8 0.1 27.3 0.6 0.4 0.5
Observations 416187 416187 416187 416187 416187 416187 416187 416187

Notes: EV share is calculated as nine-month average over county number of EVs times 1,000 divided by all registered vehicles
starting from the month of conception. Vehicle registration data come from IHS Markit. Maternal and birth characteristics are
monthly county averages based on birth records from National Center for Health Statistics. Each column regresses a separate covari-
ate on average EV share. All regressions control for county and conception-month-by-year fixed effects, state-by-year fixed effects,
log total population, poverty rate, child poverty rate, total vehicles registered, and annual county NOx emissions from power plants
in tons. We also calculate and control for nine-month average over monthly variables including state monthly total miles driven,
county mean temperature and precipitation (plus squared), wind speed and eight wind direction dummies. Observations at county-
by-conception-month level span from 2010 to 2021. Regressions are weighted by the number of births in each county-month-year
cell. Standard errors are clustered at the county level.*** p<0.01,** p<0.05.
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Table A.2: Balanced Covariates, AFC

Share Share Share Share Mothers Share Share Low Share High
Male Black White Hispanic Age Married Education Education

(1) (2) (3) (4) (5) (6) (7) (8)

AFC stations per 10,000 pop. -0.000 -0.003 0.004 -0.004** 0.025 0.007 0.000 -0.001
(9-mo average) (0.000) (0.002) (0.002) (0.002) (0.025) (0.008) (0.002) (0.004)

Dep Var Mean 0.5 0.1 0.8 0.1 27.3 0.6 0.4 0.5
Observations 416187 416187 416187 416187 416187 416187 416187 416187

Notes: AFC stations per population is 9-month average of county stock of EV charging stations opened after 2015 within 1 mile from
an Alternative Fuel Corridor (AFC) per 10,000 population. Station and AFC project data come from the U.S. Department of Energy
and Federal Highway Administration. Maternal and birth characteristics are monthly county averages based on birth records from
National Center for Health Statistics. Each column regresses a separate covariate on the instrument, AFC stations per 10,000 popu-
lation. All regressions control for county and conception-month-by-year fixed effects, state-by-year fixed effects, log total population,
poverty rate, child poverty rate, total vehicles registered, and annual county NOx emissions from power plants in tons. We also calcu-
late and control for nine-month average over monthly variables including state monthly total miles driven, county mean temperature
and precipitation (plus squared), wind speed and eight wind direction dummies. Observations at county-by-conception-month level
span from 2010 to 2021. Regressions are weighted by the number of births in each county-month-year cell. Standard errors are clus-
tered at the county level.*** p<0.01,** p<0.05.
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Table A.3: Lagged Air Pollution and AFC Station Openings

Monthly AFC station openings
per 10,000 population

(1) (2)

Panel A: Mean NO2 levels during...
Months -1 to -6 -0.00027

(0.00036)
Months -1 to -12 -0.00312

(0.00171)

Observations 10811 9749

Panel B: Mean PM2.5 levels during...
Months -1 to -6 -0.00004

(0.00009)
Months -1 to -12 0.00008

(0.00017)

Observations 24766 21958

Notes: Outcome of interest is monthly Alternative Fuel Corridor (AFC)
station openings per 10,000 population for the period between 2015 and
2021. AFC station data refer to EV charging stations opened after 2015
within 1 mile of an AFC route, based on data from the U.S. Department
of Energy and Federal Highway Administration. The key independent
variables are mean air quality indices (AQI) for NO2 and PM2.5 aver-
aged over months -1 to -6 or months -1 to -12 prior to each observation.
Pollution data are calculated from EPA daily monitor readings. All re-
gressions include county and month-by-year fixed effects, state-by-year
fixed effects, and control for log total population, total poverty and child
poverty rates, total vehicles registered, state monthly total miles driven,
and annual county-level NOx emissions from power plants. Weather con-
trols include mean temperature (plus squared), precipitation, wind speed,
and eight wind direction dummies. Standard errors are clustered at the
county level. *** p<0.01, ** p<0.05.
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Table A.4: EV Shares and Air Quality: IV Analysis Results

Pollutant = NO2

AQI Arithmetic mean

(1) (2)

Panel A: Two-stage least squares
EVs per 1,000 vehicles -0.050∗∗∗ -0.043∗∗∗

(0.017) (0.011)
Panel B: Reduced form
AFC stations per 10,000 pop. -0.50∗∗ -0.43∗∗∗

(0.23) (0.16)
Panel C: First stage
AFC stations per 10,000 pop. 10.05∗∗∗ 10.06∗∗∗

(2.37) (2.37)
F-stat (Kleibergen-Paap) 17.9 17.9
Observations 22502 22498

Notes: Vehicle registration data come from S&P Global. AFC stations per population
is county stock of EV charging stations opened after 2015 within 1 mile from an Al-
ternative Fuel Corridor (AFC) per 10,000 population. Station and AFC project data
come from the U.S. Department of Energy and Federal Highway Administration. Pol-
lutant data are monthly averages calculated from the EPA daily monitor readings. For
NO2 (nitrogen dioxide), AQI stands for air quality index and arithmetic mean refers
to the monthly mean concentration reported in ppb (parts per billion). All regressions
control for county and month-by-year fixed effects, state-by-year fixed effects, log total
population, poverty rate, child poverty rate, total vehicles registered, state monthly to-
tal miles driven, annual county NOx emissions from power plants in tons, and monthly
county weather variables including mean temperature and precipitation (plus squared),
wind speed and eight wind direction dummies. Observations at the county-by-month
level span from 2010 to 2021. Standard errors are clustered at the county level. ***
p<0.01,** p<0.05,* p<0.1.
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Table A.5: EV Shares and Air Quality: PM2.5 Results

TWFE Estimates 2SLS Estimates

Satellite-based PM2.5 Monitors PM2.5 & NO2 Monitors Satellite-based PM2.5 Monitors PM2.5 & NO2 Monitors

AQI Arith. mean AQI Arith. mean AQI Arith. mean AQI Arith. mean

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

EVs per 1,000 vehicles -0.002∗ -0.018 -0.006 -0.037 -0.013 0.002 -0.044 -0.013 -0.092 -0.027
(0.001) (0.022) (0.007) (0.041) (0.013) (0.010) (0.043) (0.013) (0.057) (0.018)

Dep Var Mean 6.9 32.4 8.1 32.9 8.3 6.9 32.4 8.1 32.9 8.3
Observations 425079 53846 53849 12658 12659 425079 53846 53849 12658 12659

Notes: Vehicle registration data come from S&P Global. Columns 1 and 6 usessatellite-based estimates from van Donkelaar et al. (2021). Columns 2-3 and 7-8 use the EPA daily pol-
lutant data from PM2.5. Columns 4-5 and 9-10 restrict attention to monitors that report data on both PM2.5 and NO2. AQI stands for air quality index and arithmetic mean refers to
the monthly mean concentration. All PM2.5 data is reported in µg/m3. All regressions control for county and month-by-year fixed effects, state-by-year fixed effects, log total population,
poverty rate, child poverty rate, total vehicles registered, state monthly total miles driven, annual county NOx emissions from power plants in tons, and monthly county weather variables
including mean temperature and precipitation (plus squared), wind speed and eight wind direction dummies. Observations at the county-by-month level span from 2010 to 2021. Stan-
dard errors are clustered at the county level. *** p<0.01,** p<0.05,* p<0.1.
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Table A.6: EV Shares and Adverse Birth Outcomes: IV Analysis Results

VLBW Very Premature
per 1,000 births per 1,000 births

(1) (2)

Panel A: Two-stage least squares
EVs per 1,000 vehicles (9-mo average) -0.029∗∗∗ -0.038∗∗∗

(0.010) (0.013)
Panel B: Reduced form
AFC stations per 10,000 pop. -0.27∗∗ -0.35∗∗

(0.12) (0.15)
Panel C: First stage
AFC stations per 10,000 pop. 9.14∗∗∗ 9.14∗∗∗

(1.29) (1.29)
F-stat (Kleibergen-Paap) 50.0 50.0
Observations 416187 416187

Notes: EV share is calculated as a nine-month average starting from the month of conception: county
EVs × 1,000 divided by all registered vehicles. Vehicle registration data come from S&P Global. AFC
stations per population is the county stock of EV charging stations opened after 2015 within one mile of
an Alternative Fuel Corridor (AFC), per 10,000 population. Station and AFC project data come from the
U.S. Department of Energy and Federal Highway Administration. Birth data are from National Center for
Health Statistics restricted files. Outcomes are county monthly average incidence rates per 1,000 births
conceived in that month. We report results for very low birth weight (VLBW) and very premature births
only; the composite outcomes index is omitted. All regressions control for county and conception-month-
by-year fixed effects, state-by-year fixed effects, log total population, poverty rate, child poverty rate, total
vehicles registered, and annual county NOx emissions from power plants (tons). We also control for the
nine-month average of state monthly total miles driven; county mean temperature and precipitation (and
their squares); wind speed; and eight wind direction dummies. Additional controls include county incidence
rates for birth and maternal characteristics. Observations span 2010–2021. Regressions are weighted by
the number of births in each county–month–year cell. Standard errors clustered at the county level. ***
p<0.01, ** p<0.05, * p<0.1.
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Table A.7: EV Shares and Other Adverse Birth Outcomes

NICU Asst. Vent. Surfactant Stillbirth Severe Birth
per 1,000 births per 1,000 births per 1,000 births per 1,000 births Outcomes Index

(1) (2) (3) (4) (5)

Panel A: TWFE Estimates
EVs per 1,000 vehicles (9-mo average) -0.1199 -0.0251 -0.0352∗∗∗ -0.0052 -0.0005∗∗

(0.1022) (0.0246) (0.0119) (0.0037) (0.0002)

Panel B: 2SLS Estimates
EVs per 1,000 vehicles (9-mo average) 0.1052 -0.0405 -0.0161 -0.0129∗∗ -0.0003

(0.1139) (0.0471) (0.0167) (0.0053) (0.0003)

Dep Var Mean 73.7 16.7 6.3 1.9 –
Observations 406821 406821 406821 406870 406821

Notes: EV share is calculated as a nine-month average starting from the month of conception: county EVs × 1,000 divided by all registered vehicles. Vehi-
cle registration data come from S&P Global. Birth data are from National Center for Health Statistics restricted files. Adverse birth outcomes are county
monthly average incidence rates per 1,000 births conceived in that month, calculated for admission to NICU, assisted ventilation, surfactant use, stillbirth,
and the Severe Birth Outcomes Index (composite; see text). All regressions control for county and conception-month-by-year fixed effects, state-by-year
fixed effects, log total population, poverty rate, child poverty rate, total vehicles registered, and annual county NOx emissions from power plants (tons). We
also control for the nine-month average of state monthly total miles driven; county mean temperature and precipitation (and their squares); wind speed;
and eight wind-direction dummies. Additional controls include county incidence rates for birth and maternal characteristics. Observations span 2010–2021.
Regressions are weighted by births in each county–month–year cell. Standard errors clustered at the county level. *** p<0.01, ** p<0.05, * p<0.1.
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Table A.8: EV Shares and Air Quality: Estimates from the HCUP States

Pollutant = NO2

AQI Arithmetic mean

(1) (2)

EVs per 1,000 vehicles -0.100∗∗∗ -0.081∗∗∗

(0.030) (0.026)

Dep Var Mean 17.6 8.7
Observations 3531 3530

Notes: EV share is calculated as number of all registered electric vehicles
× 1,000 divided by all registered vehicles. Vehicle registration data come
from S&P Global. Pollutant data are monthly averages calculated from the
EPA daily monitor readings. For NO2 (nitrogen dioxide), AQI stands for
air quality index and arithmetic mean refers to the monthly mean concen-
tration reported in ppb (parts per billion). Regressions repeat the TWFE
analysis on air quality by restricting the sample to nine states covered in
HCUP dataset: AZ, FL, KY, MD, MN, NJ, NY, NC, WI. All regressions con-
trol for county and month-by-year fixed effects, log total population, poverty
rate, child poverty rate, total vehicles registered, state monthly total miles
driven, annual county NOx emissions from power plants in tons, and monthly
county weather variables including mean temperature and precipitation (plus
squared), wind speed and eight wind direction dummies. Observations at the
county-by-month level span from 2010 to 2021. Standard errors are clustered
at the county level. *** p<0.01,** p<0.05,* p<0.1.
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Table A.9: EV Shares and Emergency Department Visits for Ages 65-79

Asthma Acute Respiratory Injury
per 1,000 pop. per 1,000 pop. per 1,000 pop.

(1) (2) (3)

EVs per 1,000 vehicles 0.001 -0.018∗∗∗ -0.002
(0.001) (0.006) (0.015)

Dep Var Mean 0.3 3.3 15.7
Observations 24648 24648 24648

Notes: EV share is calculated as number of all registered electric vehicles × 1,000 divided by all registered
vehicles for each county in a given quarter. Vehicle registration data come from S&P Global. Emergency de-
partment visits data are from HCUP for nine states: AZ, FL, KY, MD, MN, NJ, NY, NC, WI. Dependent
variable is quarterly total visits from each cause per 1,000 population ages 65-79 from Census. See text for
details on variable construction. All regressions control for county and quarter-by-year fixed effects, log total
population, poverty rate, child poverty rate, total vehicles registered, and annual county NOx emissions from
power plants (tons). We also control for the quarterly county share of ED visits by race (Black and White),
sex (male), and insurance coverage (Medicaid, private, and self-pay); quarterly state total miles driven and
county weather (mean temperature and precipitation and their squares), wind speed, and eight wind-direction
dummies. Observations span 2010–2021. Regressions are weighted by county population. Standard errors
clustered at the county level. *** p<0.01, ** p<0.05, * p<0.1.
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Table A.10: Per-Vehicle NOx Emission Calculations

NOx emissions Energy demand NOx emissions Exhaust NOx emissions
per MWh per EV per EV per gas car

lb/MWh MWh/yr lb/yr lb/yr
Year (1) (2) (1) × (2) = (3) (4)

2010 1.12 3.87 4.33 29.23
2012 0.95 4.06 3.85 20.32
2014 0.93 3.58 3.32 15.61
2016 0.72 3.29 2.37 11.43
2018 0.62 3.00 1.85 8.31
2019 0.57 2.92 1.66 7.35
2020 0.49 2.96 1.45 6.03
2021 0.51 2.94 1.51 5.50

Notes: Column (1) reports average NOx emissions per megawatt-hour (MWh) of electricity generated
in the U.S., based on data from the EPA’s eGRID database (U.S. EPA, eGRID, 2010–2021). Column
(2) provides estimated annual electricity demand per electric vehicle (EV), derived from model-level
consumption data compiled by EV-Database.org and sales-weighted averages based on top-selling
EV models in each year. Column (3) multiplies emissions per MWh by energy demand to yield the
estimated annual NOx emissions attributable to each EV. Column (4) shows annual tailpipe NOx

emissions from an average gasoline-powered passenger vehicle, based on observed emissions data that
incorporate actual driving behavior, traffic patterns, and weather conditions (U.S. Bureau of Trans-
portation Statistics, 2025)
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Table A.11: NOx Emission Calculations for California

Number of EVs Exhaust NOx NOx from elec. gen. Net NOx from elec. gen.
registered averted In-state savings Out-of-state

000s tons/yr tons/yr tons/yr tons/yr
Year (1) (2) (3) (2)-(3)=(4) (5)

2010 329 4,811 479 4,331 199
2012 428 4,348 494 3,854 255
2014 676 5,274 718 4,556 353
2016 987 5,640 807 4,832 376
2018 1,234 5,124 762 4,362 354
2019 1,374 5,054 851 4,203 328
2020 1,498 4,517 791 3,726 339
2021 1,546 4,253 853 3,400 368

Notes: Column (1) shows the number of electric vehicles (EVs) registered in California (in thousands), based on
county vehicle registration data. Column (2) estimates the total annual NOx emissions averted by replacing gasoline-
powered vehicles with EVs, using real-world tailpipe emissions factors (U.S. Bureau of Transportation Statistics, 2025)
that reflect actual driving conditions including traffic, weather, and road types. Column (3) calculates NOx emissions
from electricity generation required to power EVs, considering only in-state power plants and their annual generation
and emissions data from the EPA’s eGRID program. Column (4) represents the net emissions savings, computed as
the difference between averted tailpipe emissions and emissions from in-state electricity generation. Column (5) sep-
arately reports the additional NOx emissions attributable to imported electricity used to charge EVs, based on Cal-
ifornia’s grid import profile and the average emission intensity of out-of-state generation sources (California Energy
Commission, 2009-2023).
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Table A.12: EV Shares and Air Quality: Accounting for Spillover Effects

Pollutant = NO2

TWFE Estimates 2SLS Estimates

AQI Arithmetic mean AQI Arithmetic mean

(1) (2) (3) (4)

EVs per 1,000 vehicles -0.022∗∗ -0.019∗∗∗ -0.046∗∗∗ -0.041∗∗∗

(0.009) (0.006) (0.017) (0.011)
EV-caused NOx emissions 0.013 0.004 0.014 0.005

(0.013) (0.007) (0.013) (0.007)

Dep Var Mean 14.8 7.1 14.8 7.1
F-stat (Kleibergen-Paap) 17.6 17.6
Observations 15093 15084 15093 15084

Notes: EVs per 1,000 vehicles is county number of electric vehicles (EV) × 1,000 divided by number
of all registered vehicles in a given month. Vehicle registration data come from S&P Global. Pollutant
data are monthly averages calculated from the EPA daily monitor readings. For NO2 (nitrogen diox-
ide), AQI stands for air quality index and arithmetic mean refers to the monthly mean concentration
reported in ppb (parts per billion). EV-caused NOx emissions are annual emissions from each county’s
power plants to power all electric vehicles within the electricity grid region, which come from US EPA
eGRID database. All regressions control for county and month-by-year fixed effects, state-by-year fixed
effects, log total population, poverty rate, child poverty rate, total vehicles registered, state monthly to-
tal miles driven, and monthly county weather variables including mean temperature and precipitation
(plus squared), wind speed and eight wind direction dummies. Observations at the county-by-month
level span years 2010, 2012, 2014, 2016, 2018, 2019,2020,2021, for which grid-level data is available.
Standard errors are clustered at the county level. *** p<0.01,** p<0.05,* p<0.1.
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Table A.13: EV Shares and Adverse Birth Outcomes: Accounting for
Spillover Effects

TWFE Estimates 2SLS Estimates

VLBW Very Premature VLBW Very Premature
per 1,000 births per 1,000 births per 1,000 births per 1,000 births

(1) (2) (3) (4)

EVs per 1,000 vehicles (9-mo average) -0.0112∗∗ -0.0122∗∗ -0.0337∗∗∗ -0.0425∗∗∗

(0.0045) (0.0052) (0.0105) (0.0142)
EV-caused NOx emissions 0.0077∗ 0.0006 0.0108∗∗∗ 0.0047

(0.0043) (0.0044) (0.0039) (0.0049)

Dep Var Mean 15.8 18.4 15.8 18.4
F-stat (Kleibergen-Paap) 50.4 50.4
Observations 269696 269696 269696 269696

Notes: EVs per 1,000 vehicles is county number of electric vehicles (EV) × 1,000 divided by number of all registered vehicles in a given
month. We calculate and use nine-month average starting from the month of conception. Vehicle registration data come from S&P
Global. EV-caused NOx emissions are annual emissions from each county’s power plants to power all electric vehicles within the elec-
tricity grid region, which come from US EPA eGRID database. Birth data are from National Center for Health Statistics restricted files.
Adverse birth outcomes are county monthly average incidence rates for very low birth weight (VLBW) and very premature (VP) births
per 1,000 births conceived in that month. All regressions control for county and conception-month-by-year fixed effects, state-by-year
fixed effects, log total population, poverty rate, child poverty rate, and total vehicles registered. We also control for the nine-month
average of state monthly total miles driven; county mean temperature and precipitation (and their squares); wind speed; and eight
wind direction dummies. Additional controls include county incidence rates for birth and maternal characteristics. Observations at
the county-by-month level span years 2010, 2012, 2014, 2016, 2018, 2019,2020,2021, for which grid-level data is available. Regressions
are weighted by births in each county–month–year cell. Standard errors clustered at the county level. *** p<0.01, ** p<0.05, * p<0.1.
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Table A.14: Estimated Savings Related to Very Low Birth Weight Births

Channel Estimate Source

(1) Cost due to infant death = $1,337,113
Change in infant mortality per VLBW x 0.206 Matthews et al. (2015)

Cost of infant mortality $6,490,839 Cutler and Meara (2000)
(2) Infant medical care cost = $260,108 Rogowski (1998)
(3) Childhood disability cost = $68,740

Change neurosensory disability per VLBW x 0.1 Hack et al. (2002)
Cost of childhood disability (18 years) $687,398 Stabile and Allin (2012)

(4) Cost due to reduction in adult income = $21,517
Average lifetime income x $652,030 American Communities Survey

Percent income loss from VLBW 0.033 Bharadwaj et al. (2018)
(5) Cost of adult disability (medical care) = $69,822

Change in adult disability per VLBW x 0.1 Hack et al. (2002)
Cost of adult disability medical care (ages 19 to 67) $698,220 Anderson et al. (2010)
(6) Cost of long-term mortality risk = $1,300,661

Average change in life expectancy x 11.6 Bharadwaj et al. (2018)
Statistical value of year of life $112,126 Lee et al. (2009)

Estimated savings by 1-SD increase in EV share
∆ VLBW × [(1) + (2) + (3) + (4) + (5) + (6)] = $1,217,370,835

Notes: This table calculates estimated savings from eliminating very low birth weight (VLBW) births as a result of in-
creasing EV share by one standard deviation. We use the estimated effect on number of VLBWs per 1,000 births from
our two-way fixed effects model (-0.009, see Table 3). We multiply number this by standard deviation of EV share (11.98
per 1,000 vehicles, see Table 1). We then multiply the change in share of VLBW births by total number of VLBW births
annually during our sample period (50,215), where ∆V LBW is estimated as 398.10. All costs per VLBW birth are re-
ported in 2024 US dollars adjusted using the US consumer price index. For infant mortality, we conservatively assume
that upon eliminating the risk of VLBW, infants face the mortality risk associated with low birth weight (LBW). For cal-
culating average lifetime income and life expectancy, we follow the methods outlined in Currie et al. (2022).
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