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seat advantage in the House.
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1 Introduction

We combine a model of individual voting decisions with data on general elec-
tions for the U.S. House of Representatives to study how election outcomes
are affected by voter heterogeneity, selective turnout, state voting policies,
and structural biases in the design of congressional districts. Voting plays
an essential role in representative democracies. But because voting is typi-
cally voluntary, election outcomes may not reflect the preferences of the elec-
torate; preferences of particular sociodemographic groups may be over- or
under-represented; policies making it easier/harder to vote can alter not just
turnout but election outcomes; and the effects of such policies depend on which
voters (and how many of them) are on the relevant turnout margins. Likewise,
the partisan effects of district design and gerrymandering depend not just on
the mix of preferences in each district, but also on the associated heterogeneity
across these potential voters in the likelihood of turning out.

To quantify the preferences and selective turnout that drive voting out-
comes, we require a model that allows rich voter heterogeneity while captur-
ing both turnout and candidate choice in one coherent framework. We posit a
Downsian model of voting in two-party elections. Each registered voter has a
cost of voting and preferences over which candidate wins. Voting costs can be
negative for some voters and can be scaled by idiosyncratic beliefs about vote
efficacy, idiosyncratic intensity of preference between candidates, or idiosyn-
cratic taste for expressing one’s preference. This is a discrete choice model,
and the roles of voter heterogeneity and multidimensional selection here have
connections to the roles of consumer heterogeneity and flexible “substitution
patterns” in discrete demand models (e.g., Berry, Levinsohn, and Pakes (1995,
2004), Berry and Haile (2021)). However, both the form of the voting model
and the nature of the data available to us require some new (nonparametric)
identification results and a different estimation approach.

Our data set comes from several sources and covers general elections for
the U.S. House in 2016, 2018, and 2020. For every registered voter in the
country, we observe home location, turnout for each election, and a rich set of
sociodemographic measures (“demographics”) including party affiliation. At
the “contest” (district×year) level, we observe total turnout and vote shares.
We also observe vote shares at the precinct level for a large fraction of precincts.
At the state level, we observe voting policies and up-ballot factors such as
whether there is also a governor’s race or Senate race.

Our empirical approach links the data to our voting model. In our empirical
specification, each voter’s preferences depend on her observed demographics
and two fixed effects: one representing the mean relative attractiveness of the
two candidates (signed to represent the “benefit” of electing the Republican),
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and one representing the mean perceived effective voting cost (“cost”). These
fixed effects are analogs of the product-specific mean utilities in typical discrete
choice demand models (e.g., Berry, Levinsohn, and Pakes (1995, 2004)). In
addition, each voter has a pair of jointly normal shocks—one to benefit and
one to cost. In each contest, voter types are thus two-dimensional conditional
on demographics.

We first estimate the contest-level fixed effects and parameters governing
individual preferences using a likelihood-based approach applied to individual-
and precinct-level data, along with the district-level vote shares. These esti-
mates alone suffice for many of our questions. Our analysis of state voting
policies requires that we estimate how changes in these policies alter the fixed
effects. For this purpose, we estimate reduced forms for the fixed effects. Al-
though this approach has limitations, here it allows counterfactual predictions
to capture both direct effects of policy on voting costs and indirect effects
on benefits and costs. These indirect effects may involve mediating factors—
candidate gender, charisma, policy positions, campaign spending, etc.—that
respond to voting policy changes. Moreover, our approach does not require
us to observe all mediating factors or have sufficient structure and sources of
variation to identify a more complex model that includes their equilibrium de-
termination. When we address nonparametric identification, our results will
cover both this approach and the more typical alternative in which one does
observe, model, and instrument for endogenous factors. 1

Our estimates reveal substantial variation in voter preferences and per-
ceived voting costs. Individuals with high costs tend to prefer Democrats—an
association reflecting both observables and unobservables at the individual
level. As a result, election outcomes overall are heavily skewed toward Repub-
lican candidates relative to the majority preferences of each district. We find
that marginal voters in most districts also have a strong tendency to prefer the
Democrat. This supports the conventional wisdom that, in our data period,
more restrictive voting policies tend to benefit Republicans. This remains the
case even after accounting for countervailing responses that are implied by
our contest-level reduced forms. Groups most affected by changes in voting
policies include Blacks, Hispanics, younger voters, low-education voters, and
recently registered voters.

The magnitudes of these policy impacts are potentially significant but nu-
anced. For example, if states with more permissive policies shifted to more

1Examples of this more traditional approach include Gerber (1998), Gillen, Moon, Mon-
tero, and Shum (2019), Gordon and Hartmann (2013), Cox (2024), Iaryczower, Montero, and
Kim (2022), and Longuet-Marx (2025). These studies limit attention to a small number of
contest-level endogenous variables—e.g., the level of campaign spending and/or candidates’
positions in a one-dimensional policy space—that can be measured and instrumented.
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restrictive policies (matching the 90th percentile of each policy measure), we
predict a total loss of Democratic votes sufficient to reverse the Democratic
majorities in the House in 2018 and 2020. However, the potential gains to
Democrats from more permissive policies (shifting to 10th percentile policies
in more restrictive states) would yield only modest gains in the number of
Democratic seats won. This asymmetry reflects a finding that states in which
partisan outcomes are most sensitive to voting policies tend to already have
more permissive policies.

We also use our estimates to examine the “partisan bias” of each state’s
congressional district maps. Across states we find a mix of biases, some fa-
voring each party. However, biases favoring Republicans dominate, both in
number and magnitude. We estimate that if, in each state, the relative appeal
of Republican and Democratic candidates were adjusted in each district to
achieve a 50-50 balance in the statewide vote share for the two parties, Re-
publicans would win a majority of House seats in each of the three ye ars we
study, with nearly a 55-45 advantage on average.

Our work connects to several literatures in economics and political science.
Most closely related is other work using turnout and/or vote shares to estimate
voting models and construct counterfactual voting outcomes.2 One approach
is to model voters’ choice of candidate conditional on voting (e.g., Alvarez
and Nagler (1998), Glasgow (2001), Jessee (2010), Merlo and de Paula (2017),
Huang and He (2021), Longuet-Marx (2025)). Other work models turnout and
voting jointly as a standard random utility discrete choice problem: a potential
voter abstains if no candidate is sufficiently appealing, otherwise choosing the
candidate she likes best. Examples include Gillen, Moon, Montero, and Shum
(2019), Gordon and Hartmann (2013), Iaryczower, Montero, and Kim (2022),
and Cox (2024).3

Our “calculus of voting” approach differs in specifying utilities over
election outcomes and the perceived cost of voting. Abstention (for voters
with positive voting costs) then reflects an insufficiently strong preference
between candidates rather than a dislike of the available options. An
important example in this line is Kawai, Toyama, and Watanabe (2021)
(“KTW”), who studied preference aggregation in the 2004 U.S. presidential

2As typical in this literature, we do not model registration. However, given reliable data
on unregistered eligibles, our approach could be extended to account for registrations as an
additional cost of turning out for those not already registered.

3A variation considered by Ujhelyi, Chatterjee, and Szabó (2021) accounts for a partici-
pating voter’s option (in their application) to select “none of the above” candidates.
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election.4 We build on their model, generalizing by incorporating contest-level
observables; allowing contest-level factors (observed or not) to respond to
counterfactual interventions; and allowing for (correlated) two-dimensional
voter-level unobservables—thus, more flexible selection into voting. Our
results indicate that this multidimensional selection is important.5 Despite
these generalizations, we show that the parametric assumptions exploited by
KTW are not necessary for identification. Our nonparametric identification
results build on those of Berry and Haile (2024) for differentiated products
demand, although our model and observables differ in ways that necessitate
new results.6

Our multi-level data structure is similar to that used by Ainsworth (2020)
to study gerrymandering in North Carolina. He noted the extreme complexity
of the likelihood for observed vote shares in such a setting and proposed a
normal approximation that we adopt in the first step of our estimation. His
data covers all questions on each ballot, and his model accounts for all of
them. This is potentially important (e.g., Knight (2017)) but leads to some
compromises in the links between turnout and the preferences driving decisions
in the voting booth. By focusing exclusively on voting for the U.S. House, we
make a different set of modeling compromises, relying on a combination of fixed
effects, indicators for other races on the ballot, and contest-level unobservables
to capture the effects of other ballot questions.7

Substantively, our analysis connects to prior work studying the effects of
voting policies, typically using the empirical methods of program evaluation
to estimate certain causal effects. This literature alone is extensive, and an
excellent survey is offered by Cantoni, Pons, and Schäfer (2024). We take
a complementary empirical approach, exploiting a unified model of individual
turnout and voting that allows us to capture multiple forces and outcomes
within one coherent framework; to study multiple policies at once; and to
simulate counterfactual outcomes at local, national, and group levels. This

4Alternative models of turnout and/or candidate choice are estimated by, e.g., Degan
and Merlo (2011), Coate and Conlin (2004), Coate, Conlin, and Moro (2008), and Merlo
and de Paula (2017).

5Multidimensional selection has been shown to be important in other contexts, includ-
ing insurance markets (e.g., Einav, Finkelstein, and Cullen (2010), Bundorf, Levin, and
Mahoney (2012)).

6Merlo and de Paula (2017) provided conditions (using precinct vote shares) for non-
parametric identification in an n-party ideal point model in which voting is compulsory,
party positions are exogenous, and voters within a precinct differ only in their positions in
ideological space.

7Our substantive focus is also complementary although we overlap in predicting U.S.
House seat shares for North Carolina when its state vote is split 50-50. His prediction of
74% is very similar to our prediction of 72%.
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approach exploits both within- and cross-state policy variation, controlling for
rich observed and unobserved heterogeneity at the individual level, as well
as a rich set of observables at the district, contest, and state levels. Our
broad findings regarding these policies are also complementary, demonstrating
that restrictive voting policies discourage participation by minorities and oth-
ers more likely to favor Democrats, but can have somewhat modest impacts
on election outcomes, depending on the particular policy changes and states
considered.8 As noted already, however, we identify a potentially important
asymmetry between parties, resulting from the cross-state heterogeneity in the
number and preferences of voters on the relevant margins in each state.

There is also a large literature evaluating states’ congressional district de-
signs by measures of “partisan symmetry” in the implied mappings from votes
to seats.9 Such measures—including the “partisan bias” measure we study—
typically require one to predict the distribution of district-level vote shares at
particular hypothetical state-level vote shares. We accomplish this by adjust-
ing the relative attractiveness of the parties’ candidates in each state, letting
the model reveal how turnout and vote shares in each district would respond.
This contrasts with typical approaches that directly specify district-level vote
share regression functions, creating counterfactual vote shares by adding ap-
propriate constants (the so-called “uniform partisan swing”). Although there
is no single correct way to create hypothetical statewide vote shares, ours
allows clear interpretation and accounts for the multi-dimensional selection
underlying actual outcomes.

2 Data

2.1 Individual-Level Data

Our individual-level data are drawn from the voter data set of the commercial
data provider L2. This data set covers all registered voters—roughly 170
million in each of the three election years we study. Key elements of the L2
voter data reflect information taken directly from state voter files, such as
each registered voter’s name, address, party registration (if any), and turnout
(voted or not) for each election. The L2 data set also includes an extensive set
of demographic measures. These reflect information originating from official
state voter files, commercial sources, and census data.

8See, e.g., Fraga and Miller (2021), Thompson, Wu, Yoder, and Hall (2020), and Cantoni
and Pons (2021a).

9See, e.g., Tufte (1973), Grofman and King (2007), King (1990) King and Browning
(1987), Gelman and King (1994), Katz, King, and Rosenblatt (2020a), Coate and Knight
(2007), and Ainsworth (2020).
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Table 1 summarizes the individual-level variables we use in our analysis.
Across all contested races,10 there are more than 500 million individual-level
observations on demographics and turnout. Most of the demographic variables
are binary.11 For others, we scale the variable to have a range of approximately
0 to 1 in order to ease interpretation of parameter estimates later. In addi-
tion to demographic measures, we construct an indicator for newly registered
voters—those who registered within the same calendar year.

Voters may be influenced by their neighbors, as through peer effects or
perceived competitiveness (Shachar and Nalebuff (1999)). We use our data on
party affiliation to construct measures of the partisanship of each individual’s
neighbors within two concentric “rings”—the individual’s own census tract and
the next 10 closest census tracts. We construct three measures: (a) R/(R+D),
(b) %I, and (c) |R − D|/(R + D), where R and D represent the number of
registered Republicans and Democrats, respectively, and %I is the percentage
of registered independents. Here, (a) is a measure of the partisan skew among
partisans; (b) measures the share of nonpartisans; and (c) is a measure of
partisan homogeneity. These measures may also serve—e.g., via residential
sorting—as additional proxies for relevant heterogeneity across voters.

In Table 1 we saw that a little more than 70% of registered voters turn out
to vote. Table 2 provides summary statistics for the selected sample of these
actual voters. Actual voters tend to be older, wealthier, whiter, and more
Republican. Those who vote are less likely to be recent registrants.

Although the L2 data represent the current state of the art and are widely
used by practitioners, there are important caveats. First, state voter files differ
across states, both in the information collected and in completeness (e.g., due
to variations in privacy regulations and update frequencies).12 Second, these
differences may affect L2’s success in linking state voter files to commercial
data sources to obtain additional demographics.

Third, some measures are imputed for some or even all registered voters,
using proprietary models and algorithms (performed by the L2’s data consult-
ing firm Haystaq DNA). For example, only 31 states have partisan registration,

10Contests that do not have a Republican or Democrat running as non-write-ins (which
the FEC reports in their elections results tables), are considered uncontested. There were
64 uncontested races in 2016, 41 in 2018, and 27 in 2020. Republicans won 29, 3, and 7 of
these, respectively. We exclude uncontested races when estimating the model (we discuss
their treatment in counterfactuals below). Summary statistics are similar for the full sample.

11Income is binned, with eleven bins for incomes up to $250,000. We use the midpoint
of each bin as the associated income level. For the top-coded (12th) bin, we use an income
level of $275,000.

12See, e.g., Cao, Kim, and Alvarez (2022) and Kim and Fraga (2022). A summary of
information collected by each state is available at https://www.eac.gov/sites/default/
files/voters/Available_Voter_File_Information.pdf.
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Table 1: Summary Statistics: Registered Voters
2016-2018-2020

Variable Mean Std. Dev. Min. Max.
Votes 0.700 0.458 0 1
Age/100 0.505 0.184 0.180 1.010
Income/$250 0.364 0.235 0 2.010
Male 0.468 0.499 0 1
Education/16 0.798 0.074 0 1.125
White 0.649 0.477 0 1
Hispanic 0.111 0.314 0 1
Black 0.098 0.298 0 1
Family size/4 0.514 0.239 0.250 2.500
Recent registration 0.08 0.272 0 1
Republican 0.323 0.468 0 1
Democrat 0.387 0.487 0 1
Urban 0.313 0.464 0 1
Suburban 0.435 0.496 0 1
Nearby tract Republican 0.307 0.151 0 0.967
Nearby tract Democrat 0.395 0.174 0 1
Own tract Republican 0.323 0.169 0 1
Own tract Democrat 0.387 0.186 0 1
Near tract R/(R +D) 0.442 0.203 0 1
Near independent share 0.298 0.129 0 1
Near tract |R−D|/(R +D) 0.340 0.250 0 1
Own tract R/(R +D) 0.457 0.219 0 1
Own tract independent share 0.290 0.132 0 1
Own tract |R−D|/(R +D) 0.363 0.258 0 1

Observations 513,171,413

The sample covers registered voters in district-years with a contested House race.

and individual party affiliation is imputed for registered voters in the remain-
ing states.13 Such imputations may be especially troubling when a primary
goal is to assess the causal effects of particular demographics. However, we
employ demographics primarily as proxies for underlying voter heterogeneity,
adding flexibility to the model and limiting the roles played by unobserved
individual heterogeneity. Even imputed proxies can serve this purpose, and
our approach is to use the best available micro data while being cognizant

13Our results are robust to treating the party registration measures as different variables
in the registration and non-registration states.
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Table 2: Summary Statistics: Actual Voters
2016-2018-2020

Variable Mean Std. Dev. Min. Max.
Votes 1 0 1 1
Age/100 0.529 0.178 0.180 1.010
Income/$250 0.381 0.243 0 2.010
Male 0.459 0.498 0 1
Education/16 0.803 0.075 0 1.125
White 0.680 0.467 0 1
Hispanic 0.095 0.293 0 1
Black 0.086 0.280 0 1
Family size/4 0.528 0.233 0.250 2.500
Recent reg. 0.070 0.255 0 1
Republican 0.371 0.483 0 1
Democrat 0.396 0.489 0 1
Urban 0.300 0.458 0 1
Suburban 0.447 0.497 0 1
Nearby tract Republican 0.314 0.149 0 0.912
Nearby tract Democrat 0.387 0.169 0 1
Own tract Republican 0.334 0.166 0 1
Own tract Democrat 0.377 0.178 0 1
Near tract R/(R +D) 0.452 0.199 0 1
Near independent share 0.299 0.126 0 0.957
Near tract |R−D|/(R +D) 0.330 0.242 0 1
Own tract R/(R +D) 0.471 0.213 0 1
Own tract independent share 0.289 0.127 0 1
Own tract |R−D|/(R +D) 0.351 0.250 0 1

Observations 359,183,410

The sample covers all actual voters in district-years with a contested House race.

of the potential limitations. A secondary role of demographics is to describe
some of the heterogeneity in responses to counterfactuals. Imputation implies
some qualifications for that purpose. For example, when we find that restric-
tive voting policies disproportionately affect Black registered voters, a precise
statement will be that the disproportionate effect is on those who are either
Black or viewed as likely to be Black according to the L2 imputations.
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2.2 Precinct-Level Data

Although the L2 micro data provide individual-level turnout, individual votes
are, of course, not observed. Thus, we supplement the L2 data with vote
shares at the precinct and contest levels, primarily sourced from the Harvard
Election Database.14 We also obtained precinct shape files from the Voting
and Election Science Team and Redistricting Data Hub. Mapping individual
addresses from the L2 data to the corresponding precincts allows us to link
the individuals turning out to the corresponding precinct-level vote shares.15

We are able to match registered voters to precincts for most precincts in most
states. However, some voters cannot be mapped to precincts due to missing
maps or geographic misidentification. For each contest, we put all such voters
into a separate “super-precinct,” treated as a standard precinct for estimation.
For districts where digitized precinct maps are not available at all, the entire
district is treated as one super-precinct.

2.3 Contest-Level Data

Table 3 summarizes our data at the contest level. We use the L2 data to
construct district demographic averages (and the measures of partisanship
discussed above) for each year. We obtained state-level measures of policies
affecting voting costs from the Cost of Voting Index (COVI) database (Li,
Pomante, and Schraufnagel (2018), Pomante (2025)). This source documents
a set of voting laws and related administrative policies across states. Because
we model voting by registered voters, we focus on the voting cost measures,
leaving aside COVI measures related to voter registration. We use voting
cost measures for two broad categories: voting “inconvenience” (e.g., polling
station food/drink, paid postage, wait times, number of polling locations), and
voter identification requirements.16

We collected two advertising cost measures commonly used as instruments
for candidate spending (e.g., Snyder and Strömberg (2010), Gordon and Hart-
mann (2013), Spenkuch and Toniatti (2018), Wang, Lewis, and Schweidel

14Baltz, Agadjanian, Chin, Curiel, DeLuca, Dunham, Miranda, Phillips, Uhlman, Wimpy
et al. (2022) discuss the data quality issues with precinct-level data.

15There are on average, roughly 1,000 registered voters per mapped precinct. Congres-
sional districts in our sample period were targeted to have approximately 750,000 residents.

16COVI measures are collected for each presidential election year. We use the 2016 values
for the 2018 midterm elections. Because the set of COVI measures collected grows over time,
we use the individual components to construct consistently defined category-level indices the
election years in our sample.
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Table 3: Contest-Level Variables

Variable Mean Std. Dev. Min. Max.

District Average Demographics (by Year)

Republican 0.323 0.129 0.039 0.726
Democrat 0.389 0.147 0.090 0.837
Independent 0.289 0.115 0.047 0.653
Male 0.468 0.013 0.402 0.511
Age/100 0.504 0.025 0.431 0.601
White 0.641 0.185 0.100 0.932
Black 0.096 0.138 0.000 0.669
Hispanic 0.121 0.146 0.009 0.793
Education/16 0.796 0.038 0.675 0.936
Income/$250k 0.360 0.088 0.134 0.68
Urban 0.319 0.256 0.000 1.000
Suburban 0.426 0.277 0.000 1.000
Family size/4 0.514 0.032 0.392 0.630
Recent registration 0.081 0.027 0.021 0.219
R/(R +D) 0.457 0.171 0.047 0.849
|R−D|/(R +D) 0.279 0.217 0.001 0.905

State Voting Policy Indices and Up-Ballot Factors (by Year))

Voting inconveniences 5.265 2.247 0 10
Voter ID laws 1.262 1.401 0 4
Governor’s race has open seat 0.159 0.365 0 1
State has governor’s race 0.354 0.478 0 1
Senate race has open seat 0.090 0.286 0 1
State has Senate race 0.666 0.472 0 1

Other Contest-Level Variables

Local ad price (CPP) 888 1,049 50 3,860
Media market overlap 83 21 22 100
Registered 437,486 69,307 196,057 726,298
Vote 306,209 70,912 111,377 595,727
Votes D 154,560 58,696 32,405 396,274
Votes R 151,649 63,697 5,240 335,909

Number of Competitive Contests 1,173

The sample includes all district-years with a contested House race.
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(2018)). One is a measure of local media advertising cost.17 The second is
the overlap between the congressional district and the media market (DMA),
obtained from the Daily Kos. State-level measures of up-ballot factors for
each election year were obtained from Dave Leip’s U.S. Election Atlas. These
measures are binary indicators for whether there is a governor’s race or senate
race on the same ballot, and whether these involve open seats.

Contest-level vote shares were taken from the Harvard Election Database.18

The map in Figure 1 shows average outcomes (across the three years) in house
elections, with red indicating Republican wins.

Figure 1: Republican Vote Shares
3 year average

3 Model

3.1 Random Utilities

We posit a “calculus of voting” model (Downs (1957), Riker and Ordeshook
(1968)), building on that in KTW. For each contest dt there are two candidates
j ∈ {1, 2}.19 For clarity, all random variables include dt among their subscript
indices. There is a population of registered voters (“voters”) for each contest.
Voters have heterogeneous preferences over contest outcomes—i.e., over which
candidate wins—and may have beliefs about the efficacy of their vote. Voters

17We use CPP for the local TV late news time slot all-adults demographic, for the October
one year prior to the election. These data were obtained from Guideline Solutions, Inc.

18For districts with non-standard plurality rule voting (majority rule in GA, MS, and LA,
and ranked-choice voting in ME since 2018), we use the final run-off vote tally.

19In our empirical work we adopt the convention that candidate 1 is the Republican.
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also face heterogeneous costs of voting and this cost may sometimes be neg-
ative. Each voter chooses one of three mutually exclusive options: voting for
candidate 1, voting for candidate 2, and not voting.

Let Vijdt ∈ R denote the utility voter i would obtain from election of
candidate j ∈ {1, 2} in contest dt. Let Kidt ∈ R denote i’s cost of voting. This
cost of voting accounts for the utility voter i obtains from voting itself and
so it need not be positive.20 If we suppose that Pidt > 0 represents voter i’s
perceived likelihood of pivotality in contest dt, then voter i’s expected utility
from voting for candidate 1 takes the form21

Ũi1dt = Pidt (Vi1dt − Vi2dt)−Kidt,

Similarly, the expected utility from voting for candidate 2 is

Ũi2dt = −Pidt (Vi1dt − Vi2dt)−Kidt.

Without loss, we normalize the location of voter i’s utilities by setting the
expected utility Ũi0dt from not voting (labeled option 0) to zero. Each voter
selects the option j ∈ {0, 1, 2} with the highest expected utility.

We have followed KTW in describing Pidt as a voter’s perceived pivotality,
and one plausible model of voting is that many voters act as if their pivotality
were larger than its true value. But this interpretation is unnecessarily narrow.
We do not impose rational expectations or even require Pidt ∈ [0, 1]. Broader
interpretations include treating Pidt as a shifter of preference intensity, a mea-
sure of i’s political engagement, a shifter of perceived civic duty, or a shifter
of the utility i gains from expressing her preference for her favored candidate.

Some of these possibilities become clearer if we define

Bidt = Vi1dt − Vi2dt (1)

and

Cidt =
Kidt

Pidt

. (2)

20As in Riker and Ordeshook (1968), a voter may obtain satisfaction from “compliance
with the ethic of voting, . . . affirming allegiance to the political system . . . affirming a
partisan preference . . . deciding, going to the polls, etc. . . . affirming one’s efficacy in the
political system . . . [or] other satisfactions that do not occur to us at the moment.”

21This representation requires a technical assumption when Pidt is interpreted as i’s per-
ceived pivotality. It is sufficient to assume that voters place probability zero on ties, so
that voting when pivotal implies that one’s chosen candidate wins. Alternatively, one may
assume each voter treats as equally likely the following outcomes, absent her own vote: (i)
1 and 2 will tie, leading to a coin toss; (ii) 1 will win by one vote; (iii) 2 will win by one
vote. See, e.g., KTW, Riker and Ordeshook (1968), and Myerson and Weber (1982).
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Then the expected utilities

Ui1dt = Bidt − Cidt (3)

Ui2dt = −Bidt − Cidt (4)

Ui0dt = 0 (5)

provide a representation of voter preferences equivalent to that implied by the

utilities
(
Ũi0dt, Ũi1dt, Ũi2dt

)
. Here Bidt (respectively, −Bidt) can be interpreted

as the “benefit” of voting for 1 (respectively, 2), while Cidt is the effective
“cost” of voting. From (2) it is clear that Pidt modulates the effective cost of
voting Cidt. When Kidt > 0, the Kidt/Pidt determines the threshold level of
preference intensity–i.e., magnitude of |Bidt|—necessary for i to vote. When
Kidt ≤ 0, voter i votes for her preferred candidate regardless of her preference
intensity or perceived pivotality.

Although we refer to Cidt as a cost of voting, this is shorthand for the
broader notion of a voter’s perceived effective cost of voting. As the definition
(2) makes clear, it will not be possible to distinguish between the roles of Pidt

and those of Kidt without additional restrictions.
22 However, many important

positive and normative questions can be addressed without decomposing the
effective voting cost Cidt into the components Kidt and Pidt.

23

3.2 Model Variables

We model Bidt and Cidt as functions of contest-level observables, voter-level
observables, contest-level unobservables, and voter-level unobservables:

Bidt = B (zidt, xdt, ydt, ξBdt, ϵiBdt) (6)

Cidt = C (zidt, xdt, ydt, ξCdt, ϵiCdt) . (7)

Here, individual-level demographics are denoted by zidt. Unobserved shocks
to voter-level benefit and cost are denoted by ϵiBdt and ϵiCdt. Thus, voter-level
heterogeneity within a contest is represented by the vector (zidt, ϵiBdt, ϵiCdt). At
the contest level, exogenous observables are denoted by xdt, with endogenous
observables denoted by ydt. Contest-level unobservables are represented by the
two scalars ξBdt and ξCdt, one each for benefit and cost. The exogeneity of xdt
is defined by an assumption that it is mean independent of the contest-level
unobservables (ξBdt, ξCdt).

22KTW provide one set of such restrictions.
23One important implication is that anything affecting Bidt could also affect Cidt through

Pidt, ruling out certain exclusion restrictions.
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The assumption that unobservables at the choice set (contest) level are
represented by two scalars is restrictive but standard in discrete choice models
when unobservables at the level of the choice set are acknowledged at all (see
e.g., Berry, Levinsohn, and Pakes (1995), Berry and Haile (2021)). We allow
for dependence and serial correlation of ξBdt and ξCdt within each district. We
assume (ϵiBdt, ϵiCdt) are independent of (zidt, xdt, ydt, ξBdt, ξCdt). This specifies
that (zidt, xdt, ydt, ξBdt, ξCdt) alter the distribution of (Bidt, Cidt) through their
role as arguments of the functions B and C rather than through effects on
the joint distribution of (ϵiBdt, ϵiCdt).

24 Although our model and identification
results require no restriction on the dimension of ϵiBdt or ϵiCdt, in our empirical
specification these will be two scalars.

3.3 Voting Choice Functions

Define ξdt = (ξBdt, ξCdt), and let F denote the joint distribution of (ϵiBdt, ϵiCdt).
In contest dt, candidate 1 is chosen by voter i when

Bidt − Cidt > max {0,−Bidt − Cidt} ,

whereas candidate 2 is chosen when

−Bidt − Cidt > max {0, Bidt − Cidt} .
Thus, given a particular realization (z, x, y, ξ) of (zidt, xdt, ydt, ξdt), choice prob-
abilities for each option are given by the voting choice functions

σ1(z, x, y, ξ) =

∫
1
{
B (z, x, y, ξB , ϵB) > max {0, C (z, x, y, ξC , ϵC)}

}
dF (ϵB , ϵC) (8)

σ2(z, x, y, ξ) =

∫
1
{
−B (z, x, y, ξB , ϵB) > max {0, C (z, x, y, ξC , ϵC)}

}
dF (ϵB , ϵC) (9)

σ0 (z, x, y, ξ) = 1− σ1 (z, x, y, ξ)− σ2 (z, x, y, ξ) . (10)

Figure 2 illustrates the determination of these choice probabilities, repre-
senting voters by points in the space of the random variables (Bidt, Cidt). Voters
in the grey region do not vote; those in the pink region vote for candidate 1,
and those in the blue region vote for candidate 2. The choice probabilities
in (8)–(10) correspond to the probability measure on each region conditional
on a given value of (zidt, xdt, ydt, ξdt) = (z, x, y, ξ).25 Figure 3 shows the same

24If (zidt, xdt, ydt, ξBdt, ξCdt) could freely alter the joint distribution of (ϵiBdt, ϵiCdt), there
would be no need to include (zidt, xdt, ydt, ξBdt, ξCdt) as arguments of B and C: one could
set (Bidt, Cidt) = (ϵiBdt, ϵiCdt) without loss.

25Observe that if Cidt is set to a constant Cd for all voters in district d with the same
observables, as in KTW, choices vary across voters (conditional on observables) only with
the value of Bidt. In that case, one obtains an ordered choice problem, represented by a
single horizontal line segment (at height Cd) in Figure 2.
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information when we represent voters as points in the space of the expected
utilities (Ui1dt, Ui2dt) defined by (3) and (4). Again, voters in the grey region
do not vote; those in the pink region vote for candidate 1, and those in the
blue region vote for candidate 2. The probability masses on each region are,
by construction, identical to those in Figure 2. Indeed, Figure 3 is simply a
rotation (225 degrees clockwise) of Figure 2.

The graphical representation of choice outcomes in Figure 3 is identical
to that for a standard random utility discrete choice model (e.g., Thompson
(1989)). Nonetheless, there are some important differences. First, although
a voter can choose not to vote for either candidate, one of the two will still
be elected. Thus, even the decision of whether to vote depends in part on
the difference between the utilities associated with the two contest outcomes,
not on the level of these utilities relative to a normalized outside option.
Second, the two utilities Ui1dt and Ui2dt are both formed as linear combina-
tions of Bidt and Cidt. Thus, the model necessarily lacks independence and
exclusivity conditions built into typical random utility discrete choice mod-
els: here, Ui1dt and Ui2dt are each affected by all factors—including the latent
(ξBdt, ξCdt, ϵiBdt, ϵiCdt)—that affect Bidt and Cidt. We will see some implications
of these differences as we discuss estimation and identification.

3.4 Empirical Specification

We use a more restrictive specification for our empirical work, imposing both
an index structure linking to the identification results of Berry and Haile (2024)
and an assumption that the individual-level observables and taste shocks enter
linearly, as in standard random utility models. We specify

Bidt = zidtαB + ψB(xdt, ydt) + ξBdt + ϵiBdt (11)

Cidt = zidtαC + ψC(xdt, ydt) + ξCdt + ϵiCdt. (12)

We assume (ϵiBdt, ϵiCdt) to be multivariate normal, with mean zero and (nor-
malized) covariance matrix denoted by Σ.

Observe that in (11) and (12) the terms

δBdt ≡ ψB(xdt, ydt) + ξBdt, (13)

and
δCdt ≡ ψC(xdt, ydt) + ξCdt (14)

form two contest-level “fixed effects” that capture all observed and unobserved
heterogeneity across contests. Thus, we have

Bidt = zidtαB + δBdt + ϵiBdt (15)

Cidt = zidtαC + δCdt + ϵiCdt. (16)
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Figure 2

Bidt

Cidt

Cidt = BidtCidt = −Bidt

The origin is the point (0, 0). Voters in the grey region do
not vote; those in the pink region vote for candidate 1;
and those in the blue region vote for candidate 2.

Figure 3

Ui1dt

Ui2dt

Ui1dt = Ui2dt

Ui1dt = Bidt − Cidt and Ui2dt = −Bidt − Cidt. The origin
is the point (0, 0). Voters in the grey region do not vote;
those in the pink region vote for candidate 1; and those in
the blue region vote for candidate 2.
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Defining
θ1 ≡ (αB, αC ,Σ),

we can (abusing notation slightly) also write the choice probability functions
in (8)–(10) more simply as

σj (zidt; θ1, δ) , j = 0, 1, 2.

4 Contest-Level Reduced Forms

For most of the questions we explore, it suffices to have estimates only of the
parameters (αB, αC ,Σ) and fixed effects (δBdt, δCdt) appearing in (15)–(16).
However, our analysis of state voting policies requires that we quantify their
effects on the contest-level fixed effects. A natural approach, then, is to also
estimate the structural equations (13) and (14), along with any additional
equations necessary to characterize the responses of endogenous contest-level
factors ydt to counterfactual policies. This could be interpreted as estimat-
ing the “supply” of candidates/candidate characteristics in addition to the
“demand” for candidates.

Such an approach is both natural and necessary for some questions. But
it presents significant challenges in our setting. The overall effects of changes
in voting policies can reflect not only direct effects on voting costs, but also
indirect effects arising through endogenous “supply” responses—e.g., changes
in party or candidate spending patterns, policy positions, campaign efforts,
or even the identity of candidates selected in primaries. Accounting for these
mediated effects is possible when modeling and estimating the equilibrium
determination of the mediating factors. But in our setting, this introduces
significant challenges, due to the large number of endogenous factors and am-
biguities regarding appropriate supply-side modeling.

A more fundamental challenge is that we do not observe all relevant medi-
ating factors. We have data on several endogenous contest-level variables that
could respond to voting policy changes—e.g., candidate gender, age, incum-
bency, and campaign spending. But we lack data on many others—e.g., the
charisma of each candidate, their positions on various policy questions, the
sizes of their volunteer campaign staffs, and the content and targeting of their
ad campaigns. This obviously precludes estimating structural models of these
factors. To the extent that omitted factors are affected by the observed exoge-
nous variables xdt (or by candidate instruments for endogenous variables that
are observed), these omitted variables introduce problems for the identification
of any (even partial) causal effects of the voting policies.

Given these challenges, we instead focus on reduced forms for the fixed
effects. Reduced forms, by definition, exclude all endogenous variables but
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represent the map from exogenous variables (and reduced-form errors) to ul-
timate outcomes. We assume the reduced forms follow the linear specification

δBdt = β0B + xdtβxB + wdtβwB + λBdt (17)

δCdt = β0C + xdtβxC + wdtβwC + λCdt, (18)

where λBdt and λBdt represent contest-level unobservables and wdt are exoge-
nous observables (instruments) that would enter the structural model for ydt
(or for unobserved endogenous factors) but not that for the fixed effects δdt di-
rectly. Linearity of the reduced forms is assumed only for parsimony, reflecting
the relatively modest number of contests in our sample. But the restriction
to a single scalar error in each equation is important and restrictive. This is
analogous to our assumption on contest-level unobservables in the structural
model, following standard discrete choice specifications. Such restrictions are
often imposed without comment, but they are restrictive. Here this structure,
as well as the linearity in (xdt, wdt), can (for example) be derived by assuming
linearity of ψB, ψC , and the reduced forms for all endogenous contest-level
factors.26

The model we estimate then combines the individual-level voting choice
model based on the benefit and cost specification (11)–(12) with the reduced
forms (17)–(18) for the contest-level fixed effects. We emphasize that this
approach requires assumptions, has limitations, and will not always be ap-
propriate.27 For our purposes, this approach has the advantage of allowing
us to characterize the total effects of counterfactual changes in voting policies
without observing all mediating factors and imposing structure sufficient to
ensure identification of an expanded structural model.

5 Estimation

We follow a two-step estimation approach, broadly similar to that of Berry,
Levinsohn, and Pakes (2004). In the first step we match the model predictions
to the data on individual turnout, precinct-level vote shares, and district-level
vote shares. This step is based on maximum likelihood and yields estimates

26Abusing notation by letting ydt now represent all endogenous contest-level factors

(observed or not), suppose the reduced form for each component y
(k)
dt takes the form

y
(k)
dt = χ(k) (xdt, wdt) + ν

(k)
dt , where χ

(k) is linear and ν
(k)
dt is potentially correlated with

(ξBdt, ξBdt). Substituting this into (11) and (12) and imposing the assumed linearity of ψB

and ψC yields (17) and (18).
27An analogous approach typically will not be helpful in applications to discrete choice

demand because primary structural features of interest involve the demand responses to
exogenous changes in endogenous choice set characteristics—namely prices.
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of the micro parameters θ1 and contest-level fixed effects δ ≡ {δBdt, δCdt}(d,t).
We give additional detail below.

In the second step, we estimate the reduced-form parameters

θ2 ≡ (β0B, β0C , βxB, βwB, βxC , βwC)

by GMM, stacking the OLS normal equations for the two reduced forms. The
second-step is required only when we examine state-level voting costs in sec-
tion 9 below.28 The GMM specification assumes independence across districts
of the reduced form errors (λBdt, λCdt)t=1,2,3 but leaves the associated six-by-six
covariance matrices for each district fully flexible. This clustering allows arbi-
trary cross-district heteroskedasticity, contemporaneous within-district corre-
lation, and serial correlation within each district.

In the first-step, the contest-level fixed effects are chosen in a nested fixed
point routine that fits district-level turnout and vote shares. This follows
the usual practice in discrete choice demand estimation of solving for mean
utilities that allow the model to match market shares exactly in large markets.
Here, contests are the analogs to markets, and the number of registered voters
per contest (i.e., per pair of fixed effects) is roughly 400,000. More generally,
the first step utilizes hundreds of millions of individual turnout decisions and
hundreds of thousands precinct-level vote shares. This contrasts with 1,173
contests, which is the number of observations in the second step.

To describe the first-step objective function in more detail, let Ipdt denote
the set of registered voters in precinct p. Let IApdt denote the subset of Ipdt who
turn out (actual voters), with nA

pdt =
∣∣IApdt∣∣. For j ∈ {0, 1, 2} let

sijdt = 1 {i chooses option j}

and recall the model prediction

σj (zidt; θ1, δ) = E [sijdt|zidt; θ1, δ] = Pr (sijdt = 1|zidt; θ1, δ) .

Let
σA
j (zidt; θ1, δ) = σj (zidt; θ1, δ) / (1− σ0 (zidt; θ1, δ))

denote the model’s predicted probability that individual i votes for candidate
j conditional on turning out. Let

s̄1pdt =
1

nA
pdt

∑
i∈IApdt

si1dt

28Like Berry, Levinsohn, and Pakes (2004) but in contrast to Berry, Levinsohn, and Pakes
(1995), the second-step orthogonality conditions are required only for identification of θ2.
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denote the vote share (among actual votes) for candidate 1 in precinct p.
The first-step likelihood can be written as the likelihood of the turnout

decisions generating IApdt, multiplied by the precinct vote share likelihoods con-
ditional on that turnout. This likelihood is

L(θ1, δ) =
∏
t

∏
d

∏
p

L0
(
IApdt; θ1, δ

)
× L1

(
s̄1pdt|IApdt; θ1, δ

)
where

L0
(
IApdt; θ1, δ

)
=
∏
i∈Ipdt

σ0 (zidt; θ1, δ)
si0dt (1− σ0dt (zi; θ1, δ))

1−si0dt

and

L1
pdt

(
s̄1pdt|IApdt; θ1, δ

)
=

∑
I⊂IApdt:

|I|=s̄1pdt×nA
pdt

∏
i∈I

σA
1 (zidt; θ1, δ)

∏
i′∈{IApdt−I}

σA
2 (zidt; θ1, δ)

 .

Each term L1
pdt

(
s̄1pdt|IApdt; θ1, δ

)
above takes the form of a Poisson-Binomial

probability and is computationally intractable. For example, for a precinct
with 500 actual voters and a 50% Republican vote share in a given contest,
the likelihood contribution involves

(
500
250

)
—roughly 10150—terms. However,

we can exploit the fact that the Poisson-Binomial is well approximated by a
normal distribution and, deriving an approach similar to Ainsworth (2020),
replace each L1

pdt

(
s̄1pdt|IApdt; θ1, δ

)
with its normal approximation. We provide

details in Appendix C. We construct standard errors for the resulting estimate
of θ1 using a GMM analog of this estimator in which the score (with respect
to θ1) of the quasi-likelihood forms the set of moment conditions.

6 Nonparametric Identification

Although practical considerations dictate the use of a parametric model for
estimation, such restrictions are not necessary for identification of the model.
Developing formal nonparametric identification results requires a significant
detour. Thus, despite the importance of these results, we provide only a high-
level summary here, leaving the details to Appendix A.

A key result addresses identification of functions

σ̃j(zidt, xdt, wdt, λdt) ≡ Pr(i chooses option j|zidt, xdt, wdt, λdt) (19)

for all j, along with the reduced-form errors λdt. The functions σ̃j represent the
structural relationship between demographics and voting choice probabilities
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conditional on the exogenous contest-level variables (xdt, wdt) and the reduced-
form errors λdt. Thus, their identifiability provides a nonparametric foundation
for our empirical approach combining our model of individual-level choice with
contest-level reduced forms. We also provide conditions for identification of
the joint distribution of (Bidt, Cidt) conditional on {zidt, xdt, wdt, λdt}. Although
not necessary for identification of the counterfactual quantities we examine
below, this aids interpretation by ensuring nonparametric identification of the
underlying random utility model.29

Some of our identification results rely on those obtained by Berry and Haile
(2024) for demand models using micro data linking consumer characteristics
to the goods they choose. However, two features of the present setting prevent
applying those results directly. One is the type of micro data available: we
observe characteristics of registered voters and whether they vote, but not the
candidate selected by any voter. We overcome this shortcoming by exploiting
the observability of demographic distributions and vote shares at the precinct
level.30 The second distinction reflects the nature of the choice problem: in
contrast to goods in standard discrete choice demand models, the available op-
tions here are not “weak gross substitutes.” For example, an improvement in
the quality of candidate 1 can (all else equal) drive up the share of nonpartic-
ipation, due to the presence of voters whose relative preference for candidate
2 now becomes insufficient to overcome their costs of voting. This implies
violation of properties typically used to demonstrate invertibility of choice
probability mappings (see, e.g, Berry, Gandhi, and Haile (2013)).31 However,
we show that natural conditions on the voting model imply invertibility.

With these two issues resolved, the key results can be obtained following
Berry and Haile (2024). Broadly speaking, these results combine two sources
of “clean” variation in the voting context: (a) variation across voters within
a given contest (i.e., where all contest-level unobservables are fixed) and (b)
cross-contest variation driven by exogenous contest-level observables. This
combination of within-contest and cross-contest variation is essential: with-
out additional a priori structure, data from a single contest (no matter how
large the population of precincts and potential voters) does not suffice for
identification (see Berry and Haile (2024)).

29The appendix also covers identification of the functions σj in (8)–(10) (and the corre-
sponding conditional distribution of (Bidt, Cidt)) when one observes and instruments for all
endogenous variables.

30This result extends to other discrete choice or demand settings in which one observes
share data at a finer (“sub-market”) level than that at which the choice set varies.

31Invertibility is a key property exploited to obtain identification of models in which
multiple structural errors determine each observed outcome. See, e.g., Berry (1994), Berry,
Levinsohn, and Pakes (1995), Matzkin (2008, 2015), and Berry and Haile (2014, 2018, 2021).
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7 Estimates

7.1 Micro Parameters and Contest Level Fixed Effects

Tables 4–6 display our estimates of the first-step “micro” parameters θ1. Most
signs are consistent with conventional wisdom about the association between
voter demographics and preferences, even though that conventional wisdom
may reflect partial correlations rather than the ceteris paribus relations esti-
mated here. Voters are more likely to prefer the Republican candidate when
they are men, older, white, or richer. In contrast, the Democrat tends to be
preferred by voters who are non-white, more educated, or non-rural.

Table 4: Micro Coefficients: Benefit

Variable Coefficient Standard Error
Republican 0.648 0.044
Democrat −0.132 0.025
Male 0.096 0.005
Age/100 0.416 0.046
White 0.003 0.005
Black −0.259 0.015
Hispanic −0.080 0.007
Education/16 −0.537 0.026
Income/$250k 0.076 0.012
Urban −0.067 0.005
Suburban −0.042 0.004
Family Size/4 0.065 0.012
Recent Registration −0.156 0.012
Near tract R/(R +D) 0.075 0.013
Near independent share 0.004 0.019
Near tract |R−D|/(R +D) −0.018 0.007
Own tract R/(R +D) 0.306 0.019
Own tract independent share −0.081 0.024
Own tract |R−D|/(R +D) −0.005 0.006

In Table 5, we see that several of the observed factors associated with voting
Republican are also associated with lower voting costs. All else equal, regis-
tered Republicans have lower voting costs than registered Democrats (whose
costs are lower than those of independents). Older voters and richer voters also
have lower voting costs, as do White voters and non-urban residents. Running
the opposite direction, more highly educated voters have lower voting costs,
while men have somewhat higher voting costs, all else equal.
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Table 5: Micro Coefficients: Cost

Variable Coefficient Standard Error
Republican −0.621 0.040
Democrat −0.324 0.021
Male 0.031 0.006
Age/100 −1.482 0.011
White −0.102 0.003
Black 0.196 0.018
Hispanic 0.115 0.005
Education/16 −0.922 0.070
Income/$250k −0.353 0.006
Urban 0.023 0.006
Suburban −0.013 0.004
Family size/4 −0.423 0.007
Recent registration 0.106 0.012
Near tract R/(R +D) 0.074 0.013
Near independent share −0.189 0.023
Near tract |R−D|/(R +D) 0.044 0.007
Own tract R/(R +D) −0.413 0.017
Own independent share 0.339 0.030
Own tract |R−D|/(R +D) 0.143 0.008

Table 6: Micro Parameters of Joint Normal Errors

Variable Coefficient Standard Error
Std Dev of ϵCidt 1 —
Std Dev of ϵBidt 0.496 0.023
Corr(ϵBidt, ϵCidt) −0.515 0.073

In Table 6, we see a similar pattern for voter-level unobservables: the nor-
mal shocks ϵBidt and ϵCidt are negatively correlated, enhancing the association
between turning out and preferring the Republican candidate. However, the
correlation is far less than perfect, implying that a single dimension of unob-
served heterogeneity would not be sufficient to describe voting behavior.

The contest-level fixed effects are also estimated in the QMLE first step.
Figure 4 displays the mean (over the three election years) estimated benefit
fixed effect within each district. Compared to the map of electoral wins in
Figure 1, this figure shows significantly more Democratically leaning districts.
This points to the role costs in driving vote shares through selective turnout.
Figure 5 displays the mean estimated cost fixed effects for each district. One
feature that stands out is that costs tend to be higher in the South.
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Figure 4: Mean Benefit Fixed Effects (B − ϵB) by District

Figure 5: Mean Cost Fixed Effects (C − ϵC) by District

24



7.2 Reduced-Form Parameters

Table 7 shows our estimates of the reduced-form parameters θ2.
32 Recall that

the micro portion of our model already accounts for the demographics of voters
themselves, their close neighbors (same census tract), and their more distant
neighbors (nearby census tracts), assuming that these are the demographic
measures that either directly affect voter preferences or proxy for latent factors
that do. The role of the district-level demographics here is different. District-
wide demographics shape the preferences of voters in the entire district and,
therefore, affect things like which candidates run (or win in the primaries),
their positions on various policies, their campaign spending, or social norms
with respect to turnout. However, while the potential influence of these demo-
graphics on the benefit and cost fixed effects is clear,33 the expected signs of the
coefficients are not, in part because the unmodeled endogenous contest-level
measures like campaign spending or policy positions are equilibrium outcomes
in a competitive election.

Although a similar difficulty applies when predicting signs of some other
measures in Table 7, the expected signs are clearer (and confirmed) for several
of these. For example, if advertising is thought to intensify voter preferences
or to enhance perceived vote efficacy, the coefficient on media advertising cost
would be positive in the voting cost fixed effect column. The 2018 fixed effects
reveal both the typical midterm backlash against the presidential party (e.g.,
Erikson (1988)) and an increase in voting cost consistent with the a reduction
in incentives for turnout in midterm elections, all else equal. The two measures
of state voting policies affect mean voting costs in the expected direction. In
contrast, the expected effects of these measures on the mean benefit (i.e.,
preference for the Republican candidate) are not clear, and our results suggest
a mix of small effects, among which the only positive coefficient on voter
identification policies is significant. This suggests the potential for equilibrium
responses to soften the impacts of changes in these policies.

32Shares of registered Independents are omitted from the reduced forms, since the shares
of Democrats, Republicans, and Independents sum to one.

33In addition to possible direct effects, recall that anything altering the benefit potentially
affects the perceived vote efficacy and, therefore, the perceived effective voting cost.
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Table 7: Contest-Level Reduced Forms

Benefit FE Cost FE
Variable Estimate SE Estimate SE

Contest-Level Average Demographics

Republican −0.297 0.107 1.073 0.311
Democrat 0.008 0.079 0.419 0.165
Male 0.545 0.442 −3.282 1.175
Age/100 −0.647 0.185 1.090 0.528
White 0.258 0.089 −0.186 0.181
Black 0.309 0.087 −0.375 0.190
Hispanic 0.272 0.091 −0.184 0.178
Education/16 −0.448 0.257 −0.327 0.581
Income/$250k 0.224 0.144 −0.315 0.363
Urban −0.013 0.032 0.045 0.060
Suburban −0.013 0.029 −0.112 0.053
Family size 0.208 0.199 1.244 0.527
Recent registration −0.367 0.177 −2.104 0.458
R/(R +D) 0.299 0.123 −0.685 0.326
|R−D|/(R +D) −0.100 0.022 0.051 0.050

State Voting Cost Indices and Up-Ballot Measures

Voting inconveniences 0.000 0.002 0.007 0.004
Voter ID Laws 0.006 0.003 0.036 0.007
Gov. race has open seat 0.016 0.008 −0.138 0.017
State has governor’s race −0.012 0.007 0.055 0.015
Senate race has open seat −0.008 0.012 −0.003 0.018
State has Senate race 0.010 0.004 −0.002 0.006

Other Contest-Level Variables

Log(ad price) −0.011 0.006 0.029 0.010
Media market overlap −0.055 0.024 0.052 0.058
Constant −0.063 0.353 2.658 0.764
Year=2018 −0.129 0.008 0.339 0.020
Year=2020 0.003 0.007 −0.104 0.014

Observations 1,173 1,173
R2 0.487 0.677
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8 Selection, Preference Aggregation, and the

Preferences of Marginal Voters

8.1 Selective Turnout and Preference Aggregation

Several important questions concern the effects of selective turnout on election
outcomes and representation. One can already see evidence of the potential
role of selection in the maps above. For example, consider Texas District 23—
the distinctively large district at the southwest edge of the state. We saw
in Figure 1 that votes in this district were split almost evenly—e.g., 50.38%
for Republicans in 2018. In that same year we estimate that only 35.17% of
registered voters preferred the Republican (see Figure 4). Figure 5 suggests
why the discrepancy is possible: this district has high average effective voting
costs.

Of course, the difference between the preferences of registered voters and
those of actual voters is not explained by high voting costs alone: the strong
positive association between voting cost and preference for Democrats is also
important. Our estimates reveal that this dependence reflects both voter-level
observables and voter-level unobservables; thus, our rich demographics allow
this association to vary substantially across districts. In this district, Figure 6,
shows all registered voters in (Bidt, Cidt)-space for 2018, using their observed
demographics, the estimated model, and simulated draws of (ϵBidt, ϵCidt). Here
we also show the “Y”-shaped partition of (Bidt, Cidt)-space into the implied
voting choices (recall Figure 2). As illustrated here, the model predicts that
a substantial fraction of registered voters will fail to turn out, and that these
are disproportionately registered voters who prefer Democrats.

Figure 6: Benefit & Cost, Individual Level
TX23, 2018
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The Texas 23rd is, of course, just one district, although it illustrates the
potentially important role of multidimensional selection in determining vote
outcomes. One way to generalize this to the entire country is to consider
a hypothetical setting in which all voting costs are zero—i.e., when every
registered voter turns out and votes for their preferred candidate.34 Table
8 compares the resulting Republican seat count in the House to the actual
count for each election year. All of our counterfactual confidence intervals use
percentile 95% intervals from a parametric bootstrap with 1000 replications.35

Table 8: Republican Seats Under 100% Turnout

Baseline Counterfactual
Year Seats Seats
2016 241 196

[162,220]
2018 200 76

[51,107]
2020 213 155

[140,167]

95% bootstrap confidence intervals in brackets.

The gap between the baseline and counterfactual seats is striking, with
Republicans losing a large fraction of seats under 100% turnout. However, the
results in this table should be interpreted with some caution. Although zero
(even negative) voting costs are within the support of our estimates, driving
costs to zero for all voters requires a prediction far from the sample. Further-
more, by altering cost but not benefit, this exercise cannot be interpreted as an
equilibrium counterfactual in which, for example, candidates might take differ-
ent policy positions knowing that all registered voters will turn out. Nonethe-

34A complication in any analysis of counterfactual vote outcomes is the existence of un-
contested races in the data (recall that uncontested races are excluded in estimation). We
follow a common convention in the literature of imputing a vote share of 75% for the uncon-
tested party (see, e.g., Katz, King, and Rosenblatt (2020b) and Gelman and King (1994)).
Setting the reduced-form cost error λCdt to its unconditional mean (zero), we then back
out the reduced-form benefit error λBdt that would rationalize the imputed vote share. We
substitute these imputed values of (λBdt, λCdt) for their missing estimates before proceeding
to the counterfactual computations. Our results are virtually unchanged if, instead of a 3–1
imputed vote ratio we use 2–1 or 4–1. We also obtain virtually identical average results
(but with more year-to-year variability) if we take the more extreme approach of holding
vote outcomes fixed in uncontested races—equivalent to imputing an 100% vote share for
the uncontested party and, thus, an infinitely large (positive or negative) λBdt.

35Our bootstrap procedure follows Nevo (2001). For each bootstrap replication we draw a
θ1 vector from its estimated asymptotic normal distribution and calculate the implied fixed
effects δ(θ1). Using these values we then calculate the counterfactual quantity of interest.
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less, the results again suggest a strong tendency for Democratic preference to
be underrepresented among actual voters.

8.2 The Preferences of Marginal Voters

A less extreme way to examine the importance of selective turnout is to iso-
late the preferences of voters close to the turnout margin. We do this here
by examining the estimated model’s predicted votes of marginal voters in a
district-level 5% swing in turnout. To construct the set of marginal voters,
for each district we first calculate the change in mean voting cost that would
reduce turnout by 2.5%. Similarly, we find the reduction in mean voting cost
that would increase turnout by 2.5%. We then examine the model’s predicted
vote share for the voters whose turnout status changes in this simulated -2.5%
to +2.5% swing in turnout.

Figure 7: Republican Vote Share among 5% Marginal Voters

Figure 7 illustrates the results.36 In most districts, Democratic votes dom-
inate among marginal voters, although by varying margins. The Republican
candidate is preferred by a majority of marginal voters in just 7 out of 435 dis-
tricts. Furthermore, the systematic preference for Democrats among marginal
voters is strong: 72% of districts are shaded dark blue, indicating that Re-
publicans are predicted to receive less than 35% of the votes among the 5%
marginal voters. This is consistent with conventional wisdom that making it
easier to vote tends to benefit Democrats, all else equal.

In Table 9 we compare the average demographics of the 5% marginal voters
to those of actual voters and of all registered voters. We saw in Tables 1 and

36We provide the underlying point estimates and confidence intervals in Appendix D Table
14. For 2016, the mean share for marginal is 0.286, [0.233, 0.336], for 2018 is 0.273, [0.225,
0.319], and for 2020 is 0.269, [0.216, 0.320].
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2 that actual voters differ from the population of registered voters in these
observable dimensions. Table 9 shows that marginal voters differ from the
pool of actual voters. For example, voters on the margin tend to be younger,
less white, recently registered, and less likely to be registered Republicans. In
most dimensions, the mean demographics of the 5% marginal voters are very
similar to those of the full population of registered voters. A notable exception
is party affiliation: marginal voters are somewhat more likely to be registered
Democrats, and substantially less likely to be registered Republicans.

Table 9: Demographics of Marginal Voters

Demographic 5% Marginal Actual Registered
Age/100 0.475 0.529 0.505
Income/$250 0.342 0.381 0.364
Male 0.467 0.459 0.468
Education/16 0.790 0.803 0.798
White 0.593 0.680 0.649
Hispanic 0.143 0.095 0.111
Black 0.117 0.086 0.098
Family size/4 0.499 0.528 0.514
Recent reg. 0.098 0.070 0.080
Republican 0.230 0.371 0.323
Democrat 0.414 0.396 0.387
Urban 0.341 0.300 0.313
Suburban 0.415 0.447 0.435

The sample covers district-years with a contested House race.

9 The Effects of State Voting Policies

The results above suggest that perceived voting costs have significant effects
on election outcomes. Some of these voting costs are affected by state-level
policies, although the effects of particular policies depend on who is marginal.
To explore the role of voting policies, we exploit our model’s implication that
states can be ranked by the two policy indices—voter inconveniences and voter
ID requirements. We focus on two counterfactuals. The first examines out-
comes with policies that yield low voting costs in every state. Here we set the
policy indexes in each state to the minimum of their actual values and the
10th percentile values among all states. Thus, in the low-cost counterfactual
all states have voting policies at or below the component-wise 10th percentiles.
Similarly, we consider a high-cost simulation in which state voting cost policies
are all at or above the component-wise 90th percentile values.
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In both counterfactuals, we allow the change in policies to alter both δC and
δB through the estimated reduced forms. Unlike our examination of marginal
voters, this allows a variety of potential equilibrium responses to the policy
changes.37 In addition, while our analysis of marginal voters considered a 5%
swing in every district, here the turnout responses will differ across districts.
This reflects the cross-state differences in baseline policies, differences in how
many voters are close to the turnout margin, and the nonlinearity in turnout
responses to changes in voting costs.

9.1 Voting Policies and Turnout

Figures 8 and 9 illustrate the changes in turnout (abstention) by state under
the low and high cost counterfactuals, respectively. In all states, the direct
effect of the policy-controlled voting costs dominate, implying larger turnout
when voting policies are more lenient. The effects are heterogeneous across
states, both because states differ in their baseline policies and because different
numbers of voters will be on the turnout margin in each state. Tables 15 and
16 in Appendix D shows the point estimates and confidence intervals.38

We can also use our model to show how the turnout responses in these
counterfactuals differ across demographic groups. In Table 10 we see that the
predicted effects of the policy are largest for Blacks, Hispanics, younger voters,
low education voters, and recently registered voters—all groups with notably
low baseline turnout. Registered Republicans (or, in states without partisan
registration, voters imputed to have Republican affiliation) are both the group
with the highest baseline turnout and the group whose turnout responds least
to the policy changes.

9.2 Voting Policies and Election Outcomes

Figures 10 and 11 illustrate the changes in vote shares by state. Restrictive
(high costs) policies help Republicans, while more permissive (low cost) policies
help Democrats. This is consistent with conventional wisdom and our analysis
of marginal voters in section 8. Note that we estimated a modest positive
coefficient on the voter ID policy measure in the reduced form for the benefit
(of electing the Republican), working against the conventional wisdom. This

37Note also that any equilibrium effects of voting policies on voters’ perceived vote efficacy
would be captured by the reduced form for δC and, thus, accounted for here.

38Here we extend our parametric bootstrap procedure (see footnote 35), drawing both
θ1 and θ2 from their asymptotic normal distribution in each replication. These values of
the parameters and the implied fixed effects δ(θ1) and reduced-form errors are then used to
construct the bootstrap replication of the counterfactual quantity of interest.
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Table 10: Turnout by Demographics
High- and Low-Cost Counterfactuals

Base- High Low
Demographic line Cost %∆ Cost %∆
Overall 0.70 0.65 -6.9% 0.72 3.6%

[0.639, 0.667] [0.710, 0.725]

Republican 0.80 0.77 -3.5% 0.82 2.0%
[0.765, 0.784] [0.810, 0.821]

Democrat 0.71 0.66 -7.6% 0.73 3.5%
[0.645, 0.678] [0.725, 0.741]

Male 0.68 0.64 -7.1% 0.70 3.7%
[0.627, 0.654] [0.696, 0.711]

White 0.73 0.70 -5.7% 0.75 3.2%
[0.682, 0.707] [0.746, 0.760]

Black 0.60 0.56 -8.4% 0.64 6.6%
[0.540, 0.572] [0.626, 0.649]

Hispanic 0.59 0.54 -10.9% 0.61 3.5%
[0.518, 0.555] [0.606, 0.620]

Urban 0.66 0.62 -8.3% 0.69 3.8%
[0.600, 0.631] [0.677, 0.693]

Suburban 0.72 0.67 -6.7% 0.74 3.2%
[0.660, 0.687] [0.729, 0.744]

Recent Reg. 0.61 0.56 -9.4% 0.63 4.7%
[0.539, 0.571] [0.622, 0.639]

Age > Median 0.78 0.74 -5.0% 0.80 2.8%
[0.728, 0.752] [0.789, 0.802]

Age < Median 0.62 0.57 -8.8% 0.64 4.5%
[0.551, 0.581] [0.630, 0.648]

Ed > Median 0.75 0.71 -6.3% 0.77 2.8%
[0.694, 0.721] [0.761, 0.774]

Ed < Median 0.54 0.48 -11.5% 0.56 4.7%
[0.466, 0.613] [0.550, 0.675]

Inc > Median 0.74 0.70 -6.3% 0.76 2.7%
[0.680, 0.710] [0.745, 0.764]

Inc < Median 0.65 0.61 -7.5% 0.68 4.5%
[0.595, 0.628] [0.668, 0.690]

95% percentile bootstrap confidence intervals in brackets.
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Figure 8: Low Cost Simulation: Effects on Abstention

Figure 9: High Cost Simulation: Effects on Abstention

the conventional wisdom in any state.
The magnitudes of the effects differ across states in the two counterfactuals.

This reflects a combination of (i) differences in baseline policies, (ii) differences
in turnout responses, and (iii) differences in the preferences of the marginal
voters. We explore this asymmetry further below.

Figures 10 and 11 show only the change in vote shares, and only for con-
tested races. We can also look at predicted election outcomes, accounting for
uncontested races as well (recall footnote 34). Table 11 shows the resulting
changes in the composition of the House under both counterfactuals. There
we see that the high-cost counterfactual predicts nontrivial gains for Republi-
cans: gains of 10, 24, or 18 seats depending on the election year. In both 2018
and 2020, our point estimates imply a predicted Republican gain that would
have reversed the Democratic majority (ignoring independents, 218 seats are
needed for a majority). Averaging over the three years, the mean predicted
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Figure 10: Low Cost Simulation: Changes in Vote Share

Figure 11: High Cost Simulation: Changes in Vote Share

gain of 17 seats for Republicans represents 3.9 percent of House seats. Such
a swing from one party to the other would have been sufficient to reverse the
majority in the House in 8 of the 13 Congresses since 2001.

The low-cost counterfactual shows somewhat more modest effects.
Democrats gain from more permissive voting policies, but only 5 seats on
average across years. This asymmetry is possible in part because baseline
voting policies are not randomly assigned. For example, it is consistent with
voting policies already being relatively permissive in the states whose seat
outcomes are most sensitive to policy-driven voting costs.

Figure 12 shows that this is indeed the case. Here the horizontal axis is
the state-level cost policy index (the sum of the two policy-driven terms in
the estimated reduced form for voting cost). The vertical axis is the predicted
seat change when moving from the low-cost to high-cost counterfactual. Each
point plotted in the figure represents a state. Here we see that states in which

34



changes voting policy generate the largest predicted change in seats are dispro-
portionately those for which actual voting policies are less restrictive.39 Even
when accounting for the many states in which we predict no seat change, the
relationship shows distinct downward slope (the solid line). To the extent that
the observed range of voting policies reflects the feasible set, this indicates an
asymmetry between the two parties in terms of incentives to alter state=level
voting policies: Republicans have more to gain from making policies more
restrictive than Democrats do from making them less restrictive.

Table 11: Voting Policy and Prediced Seat Sensitivity

Counterfactual Baseline Counterfactual Percent
Year Type Seats Seats Change

2016 High cost 241 251 4.15
[246,258]

2018 High cost 200 224 12.00
[211,234]

2020 High cost 213 231 8.92
[221,243]

2016 Low cost 241 240 -0.41
[239,242]

2018 Low cost 200 193 -3.50
[185,197]

2020 Low cost 213 206 -7.98
[202, 211]

95% percentile bootstrap confidence intervals in brackets.

39This offers a possible reconciliation of our findings with those of Cantoni and Pons
(2021b), whose difference-in-difference analysis finds only small effects of stricter voter ID
laws in the states that adopted them between 2008 and 2018.
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Figure 12: Status Quo Policy Index and
Republican Seat Share Difference (Mean): High vs. Low Cost

Each dot represents a state average. A regression line is shown.

10 Partisan Bias of State District Designs

A major political and legal issue in the U.S. is how congressional district
boundaries are drawn in states with more than one congressional seat.40 Dis-
trict design can have significant effects on the representation of each state’s
voters’ preferences and even on the overall composition of the U.S. House.
Quantitative measurement of bias in favor of one party or the other is chal-
lenging: it requires both a measure of distortion relative to some “neutral”
ideal and, often, prediction of counterfactual voting outcomes.

One standard measure for this purpose is “partisan bias,” a measure of
asymmetry between parties in transforming votes to seats. Take a given state
and let τ denote its total number of seats (districts). For party j ∈ {D,R},
let τj(s) denote the seat share party j would win if the statewide vote share
for party j were s. Partisan bias at the target vote share s is defined as

PB(s) = [τR(s)− τD(s)]/τ.

Positive (negative) values indicate bias in favor of Republicans (Democrats).
For example, at s = 0.5, a negative value means that votes are aggregated
in a way allowing Democrats to win more than half the state’s seats when
statewide votes are split equally.

Partisan bias cannot be calculated from vote and seat outcomes alone.
It is defined by counterfactuals involving the target statewide vote share s.

40Eguia (2022) discusses the legal status of partisan gerrymandering and competing no-
tions of fairness for evaluating district designs.
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There is, of course, no single “right” way to adjust statewide vote shares. But
our model suggests an approach that accounts for differences in how districts
respond to forces driving statewide changes in vote shares. Fix a state and
election year t. For party j and target share s, we predict τj(s) by adding

a constant κt(s) to our estimated fixed effects δ̂Bdt, choosing κt(s) so that
the statewide vote share for party j in year t is s.41 We then use the model
predictions of district-level outcomes, aggregating these to predict the fraction
of seats won at the state level.

Figure 13: Partisan Bias at 50-50 Statewide Votes

Figure 13 illustrates the partisan bias at a vote share of 50%, averaged
over the three election years.42 Because seats are lumpy, we should not expect
the bias to be exactly zero even with neutral district designs.43 Overall,
however, states with a Republican bias outnumber those with a Democratic
bias almost 2 to 1. This pattern can be seen more clearly in Figure 14, where
we consider a weighted average of partisan bias measures centered at the 50%
vote share.44 The horizontal axis measures the number of seats in the state (we
exclude single-district states). The vertical axis is the estimated partisan bias
in absolute value, with colors indicating the direction of the bias. The units

41Although there is no need to estimate the reduced forms to perform this exercise, it can
be interpreted as adding a shock of size κt(s) to each of the state’s district-level reduced-form
errors λBdt.

42For counterfactual quantities presented graphically in this section and those that follow,
we provide the underlying point estimates and standard errors in Appendix D.

43In single-district states, partisan bias is always zero by definition. When considering
House-level outcomes under 50-50 statewide votes, we allocate half a seat to each party in
the single-district states.

44This is based on target vote shares for each election year ranging from 0.4 to 0.6 with
weight 1/3 on 0.5 and 1/6 on each share 0.4, 0.45, 0.55, 0.6.
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describe a percentage advantage for one party; for example, partisan bias of
0.05 favoring Republicans means that despite an equally split statewide vote,
Republicans are predicted to win 5% more of the state’s seats on average.
There are many states with estimated bias close to zero, but also many with
partisan bias much larger than 5% in absolute value. The vast majority of
states with substantial partisan bias (e.g., above 0.05 in absolute value) favor
Republicans. This includes 15 of the 17 states whose estimated bias exceeds
0.1 in absolute value, 6 of 7 states with absolute bias above 0.2, and all 3 states
with absolute bias above 0.25.

Figure 14: Absolute Partisan Bias at (smoothed) 50-50 Statewide Votes

Although partisan bias allows a type of apples-to-apples comparison across
states, the effect of a given state’s bias on the composition of the House depends
on its size (number of seats). In Figure 15 we rescale each state’s partisan
bias by its number of congressional seats. The resulting values represent the
number of expected “excess” seats won by the advantaged party when the state
vote share is split 50-50. Here we see that the relatively modest partisan bias
in California favoring Democrats accounts for a significant number of excess
Democratic seats. However, excess Republican seats still dominate.

We can see this dominance directly by examining the predicted makeup of
the full House under the hypothetical 50-50 vote share in every state. Table
12 shows the results. Averaging over the three years, Republicans would win
an estimated 54.5% of seats in the House (vs. 45.5 for Democrats) when votes
are evenly split within each state. To put this 9.0 percentage point advantage
in context, in the 13 Congresses this century, the average advantage of the
majority party is approximately 7.5 percentage points.

Another way to describe the aggregate asymmetry between parties is to
show, for each party, the predicted share of all House seats won as a function
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Figure 15: Excess Seats at (smoothed) 50-50 Vote Shares

Table 12: Predicted Republican Seats at 50-50 Statewide Vote Shares

Year Republican Seats Won Share
2016 250.5 57.59

[248.5, 250.5]
2018 232.5 53.45

[231.5, 234.5]
2020 228.5 52.53

[227.5, 229.5]

95% bootstrap confidence intervals in brackets.

of statewide vote shares. Figure 16 shows these nationwide “votes-to-seats”
curves (e.g., Niemi and Deegan (1978)), focusing on shares between 0.25 and
0.75.. These curves require predictions farther out of sample. However, for
both parties the estimated votes-seats curve is S-shaped and steeper than
45 degree line in the most relevant range, especially for vote shares between
40% and 60%.45 Over this range, the votes-seats curves for the two parties
have similar slopes—similar “responsiveness” of seats to votes on the margin.
However, Republicans enjoy an advantage through most of this range. This
relative advantage is reversed at more extreme vote shares.

45Such a shape arises naturally from the lumpiness of representation for each state. Under
our approach for simulating target statewide vote shares, there is also an automatic sym-
metry property: the Democratic seat share at a target vote share s equals the Republican
seat share at target (1− s).
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Figure 16: Nationwide Votes-Seats Curves

11 Conclusion

We have examined how election outcomes are influenced by preferences, policy,
and multi-dimensional selection into voting. We found that marginal voters
have a strong tendency to prefer Democrats, and that the composition of the
U.S. House over-represents preferences for Republicans. State voting policies
have the potential to affect the overall balance of the House. But because states
whose representation is most sensitive to voting policy already tend to have
relatively permissive rules, Republicans have more to gain from making voting
policies more restrictive than Democrats have to gain from making them less
so—at least when considering policies in the range currently observed. We also
found that many states have congressional maps exhibiting partisan biases in
one direction or the other, but with an overall bias favoring Republicans. This
compounds the effects of selective turnout in favoring Republicans on net.

Of course, any effort to characterize counterfactual voting outcomes or the
preferences of non-voters requires a model. A Downsian model—no matter how
flexible—imposes restrictions that surely do not characterize the motivations
of very potential voter. And while our estimation approach has a number of
advantages, it also relies on important assumptions and does not allow us to
answer all questions. Thus, further complementary evidence from alternative
voting models and research designs will be valuable. Other promising avenues
for future work include analyzing district design beyond partisan bias and
extending the analysis to include voter registration.
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Appendices

A Nonparametric Identification

In this appendix we provide conditions sufficient for nonparametric identifica-
tion of the key features of interest discussed in the text. For clarity we will (in
this appendix only) use uppercase to denote random variables, with lowercase
representing particular realizations.46 Because we rely on results from Berry
and Haile (2024) we focus initially on the case (analogous to theirs) in which
one observes and instruments for all endogenous contest-level variables ydt.
This allows us to cite their results directly at key steps and leads to results for
identification of the voting choice functions σj in (8)–(10). The extension to
identification of the functions σ̃j in 19 is then straightforward.

The observables are, for each contest dt:

• zidt and turnout for all registered voters;

• xdt, ydt;

• wdt, a set of excluded instruments for ydt;

• Pdt, the set of precincts p;

• vote shares spdt = (s1pdt, s2pdt) and sdt = (s1dt, s2dt) at the precinct and
district level, respectively; and

• the distributions ζpt and ζdt, of Zidt for each precinct p and district d,
respectively.

We assume throughout that Zidt has at least two components. When Zidt

has more than two components, the “extra” components can be treated fully
flexibly.47 Thus, we henceforth condition on any such extra components, sup-
press them from the notation, and let Zidt now denote the two-dimensional
voter-level observables. Let Zdt = suppZidt|dt and Y = suppYdt.

A.1 Index Structure

The following assumptions introduce the index structure.48

46Recall that Ξ and Λ are uppercase versions of ξ and λ, respectively. To avoid confusion
with the expectations operator E, we use E as uppercase ϵ.

47Although these extra components are not required for identification, in practice their
variation will contribute to the precision of estimates.

48Our empirical model provides an example satisfying this structure. See also the examples
and discussion in Berry and Haile (2024).
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Assumption 1. B (Zidt, Xdt, Ydt,ΞBdt, EiBdt) = B (γB (Zidt, Xdt,ΞBdt) , Xdt, Ydt, EiBdt),
with γB (Zidt, Xdt,ΞBdt) = gB(Zidt, Xdt) + ΞBdt.

Assumption 2. C (Zidt, Xdt, Ydt,ΞCdt, EiCdt) = C (γC (Zidt, Xdt,ΞCdt) , Xdt, Ydt, EiCdt),
with γC (Zidt, Xdt,ΞCdt) = gC (Zidt, Xdt) + ΞCdt.

Assumption 3. B is strictly increasing in γB (Zidt, Xdt,ΞBdt) ; C is strictly
increasing in γC (Zidt, Xdt,ΞCdt)

Assumptions 1 and 2 are nonparametric index restrictions. Assumption 1,
for example, requires that voter characteristics Zidt and the shock ΞBdt affect
Bidt only through an index that excludes the endogenous characteristics Ydt.
Assumptions 2 places the same type of structure on Cidt. An important impli-
cation is that, in terms of voter behavior, variation in voter characteristics Zidt

can compensate for contest-level variation in unobservables ΞBdt and ΞCdt. In
particular, fixing (Xdt, Ydt), any change in Ξkdt could be offset (in terms of con-
ditional vote shares) by an equal-sized change in gk (Zidt, Xdt). Assumption 3
specifies that the latent shocks ΞBdt and ΞCdt can be interpreted as “vertical”
characteristics for voting options 1 and 0, respectively. That is, a higher value
of ξBdt makes candidate 1 more attractive for all voters in contest dt, while
a higher value of ξCdt makes nonparticipation more attractive.49 By Assump-
tions 1 and 2, the same monotonicity then holds with respect to gB(Zidt, Xdt)
and gC (Zidt, Xdt), respectively.

For simplicity, we henceforth condition on Xdt and suppress it from the
notation, treating it fully flexibly.50 Let γ(Zidt,Ξdt) represent the index vector
(γB(Zidt,Ξdt), γC(Zidt,Ξdt)). Given γ(Zidt,Ξdt) = γ and Ydt = y, vote shares
can then be written as

σ1(γ, y) =

∫
1 {B (γB, y, ϵB) > max {0, C (γC , y, ϵC)}} dF (ϵB, ϵC) (A.1)

σ2(γ, y) =

∫
1 {−B (γB, y, ϵB) > max {0, C (γC , y, ϵC)}} dF (ϵB, ϵC) (A.2)

σ0 (γ, y) = 1− σ1 (γ, y)− σ2 (γ, y) . (A.3)

49Note that an increase in the value of ΞCdt can be interpreted as (1) raising voting cost,
(2) reducing the perceived likelihood of pivotality, or (3) reducing the intensity of preference
between the candidates.

50Formally the remainder of the discussion is to be interpreted conditional on an arbitrary
value of Xdt, and can be repeated at all such values.
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A.2 Injectivity

Define the set of interior choice probability vectors

∆
∗
= {(s1, s2) : s1 > 0, s2 > 0, 1− s1 − s2 > 0} .

For y ∈ Y , let G∗
y denote the pre-image of ∆

∗
under σ(·, y). We will demon-

strate, for all y, injectivity of σ(·, y) on G∗
y under the following assumptions.

Assumption 4. Conditional on any y ∈ Y and γ ∈ G∗
y , (Bidt, Cidt) are con-

tinuously distributed and have support with non-empty convex interior I(γ, y).

Assumption 5. Conditional on any y ∈ Y and γ ∈ G∗
y ,

Pr (Bidt > Cidt |Bidt > 0, γ (Zidt,ΞBdt) = γ, Ydt = y) < 1, and
Pr (−Bidt > Cidt |Bidt < 0, γ (Zidt,ΞBdt) = γ, Ydt = y) < 1.

Assumption 4 requires continuously distributed (Bidt, Cidt) conditional on
all values of (Zidt,ΞBdt,ΞCdt). It implies that in every district and at all values
of Zidt, there are voters on each margin of indifference. This is a type of non-
degeneracy condition, as is Assumption 5, which requires that the probability
of not voting be nonzero among voters who prefer candidate 1 and among
those who prefer candidate 2. In typical parametric models, both conditions
are implied by the presence of idiosyncratic choice-specific taste shocks with
full support, as in multinomial probit or logit models.

For y ∈ Y , let A (γ, y) denote the pre-image of I(γ, y) under the mapping
(B (γB, y, ·) , C (γC , y, ·)) . Our injectivity result is given in Lemma 3 below. It
relies on two preliminary results. Because Lemma 2 follows from argument
analogous to that given for Lemma 1, we omit its proof.

Lemma 1. Let Assumptions 1–5 hold. For all y ∈ Y and γ ∈ G∗
y , σ1 (γ, y) is

strictly increasing in γB and strictly decreasing in γC .

Proof. Take y ∈ Y and γ ∈ G∗
y . From (A.1) and Assumption 3, it is immediate

that σ1 (γ, y) is weakly increasing in γB and weakly decreasing in γC . By As-
sumption 4, both monotonicity properties will be strict if there exists (ϵB, ϵC) ∈
A (γ, y) such that B (γB, y, ϵB) > 0 and B (γB, y, ϵB) = C (γC , y, ϵC). Proceed-
ing by contradiction, suppose first that B (γB, y, ϵB) ≤ 0 for all (ϵB, ϵC) ∈
A (γ, y). Then we would have σ1 (γ, y) = 0, contradicting γ ∈ G∗

y . So suppose
instead that for all (ϵB, ϵC) ∈ A (γ, y), B (γB, y, ϵB) < C (γC , y, ϵC) when-
ever B (γB, y, ϵB) > 0. Then we would again have σ1 (γ, y) = 0. Finally,
if for all (ϵB, ϵC) ∈ A (γ, y) we had B (γB, y, ϵB) > C (γC , y, ϵC) whenever
B (γB, y, ϵB) > 0, Assumption 5 would be violated. □
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Lemma 2. Let Assumptions 1–5 hold. For all y ∈ Y and γ ∈ G∗
y , σ2 (γ, y) is

strictly decreasing in γB and in γC.

Lemma 3. Let Assumptions 1–5 hold. For all y ∈ Y , σ(·, y) is injective on
G∗
y .

Proof. Take y ∈ Y . Proceeding by contradiction, suppose that for distinct
γ̃ and γ in G∗

y we had σ (γ̃, y) = σ (γ, y). By Lemma 1, σ1 (γ̃, y) = σ1 (γ, y)
requires that the differences γ̃B − γB and γ̃C − γC have the same sign. But
then by Lemma 2, σ2 (γ̃, y) = σ2 (γ, y) could not hold. □

A.3 Micro Vote Shares

Let sjdt(·) denote the vote share of option j ∈ {0, 1, 2} in contest dt as a
function of Zidt. Although in every contest we observe s0dt(z) for all z ∈ Zdt,
we do not observe s1dt(z) or s2dt(z) for any z. However, the panel structure
of precincts within districts can allow identification of s1dt (z) and s2dt (z) on
Zdt.

Assumption 6. For each contest dt, the family of distributions {ζpt : p ∈ Pdt}
is boundedly complete with respect to ζdt.

Assumption 6 is a standard bounded completeness condition, specifying
what is meant by sufficiently rich cross-precinct variation in ζpt.

51 Without
further restrictions, this is a demanding requirement, reflecting the need to dis-
criminate between all (even arbitrarily similar) nonparmetric functions. But
it is also standard in a range of other contexts. For example, it is the notion
of instrument “relevance” needed for nonparametric identification in separa-
ble regression models with bounded regression functions (Newey and Powell
(2003)). If any elements of Zidt are continuous, this completeness condition
requires a continuum of precincts and should, obviously, be thought of as an
approximation. With discrete Zidt, (bounded) completeness is a full rank as-
sumption on a matrix of conditional probabilities ρpt (zk), where k indexes the
points in Zdt (Newey and Powell (2003)).

Lemma 4. Under Assumption 6, the functions s1dt (·) and s2dt (·) are identified
for all d.

51See, e.g, Lehmann and Scheffe (1950), Newey and Powell (2003), Chernozhukov and
Hansen (2005), and Andrews (2017). A necessary and sufficient condition for (bounded)
completeness is that if for all (bounded) functions ϕ : Zdt → R we have Ez[φ (z) |p] = 0 for
almost all p ∈ Pdt, then φ (z) = 0 a.s.–ζdt. Of course, bounded completeness is weaker than
completeness.
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Proof. Proof. Take arbitrary j ∈ {1, 2}. By definition,

sjpdt =

∫
sjdt (z) dζp(z) = EZidt

[sjdt (Zidt) |p] . (A.4)

This implies
EZidt

[sjpdt − sjt (Zidt) |p] = 0 ∀p ∈ Pdt. (A.5)

Noting that shares are bounded, identification of sjdt (·) follows from Assump-
tion 6. □

Note that his result implies that the mapping s0dt (·) is identified for each
contest dt without using the fact that the conditional shares s0dt (z) are directly
observed. This provides a strong overidentifying restriction and emphasizes a
sense in which this result is stronger than necessary in our context. In practice,
particularly with the addition of parametric structure, the observability of
s0dt (·) (and the identity A.3) will play a substantial role in pinning down
s1dt (·) and s12dt (·). However, the formal result makes clear that the panel
structure of precincts-within-districts is also powerful.

A.4 Voting Choice Functions

Lemmas 3 and 4 address the two fundamental distinctions (see p. 21) between
the voting model and the class of demand models with micro data consid-
ered by Berry and Haile (2024). In particular, we can treat the micro-level
choice probabilities sjdt(z) as observed, and the conditional choice probability
mapping can be inverted. Identification of the conditional vote probability
mappings σ1(·) and σ2(·) then follows from the results of Berry and Haile
(2024) under the following additional assumptions.

Assumption 7. Zdt = Z.

Assumption 8. g(·) is injective on Z.

Assumption 9. The sets Z and suppΞdt|Ydt are open and connected.

Assumption 10. (i) g(·) is uniformly continuous and continuously differen-
tiable; (ii) σ(·) is continuously differentiable; (iii) ∂g(z)/∂z and ∂σ(γ)/∂γ are
nonsingular almost surely on Z and G, respectively.

Assumption 11. (i) E [Ξℓdt|Xt,Wt] = 0 almost surely for ℓ = B,C;
(ii) In the class of functions Ψ(Xt, Yt) with finite expectation,
E [Ψ (Xt, Yt) |Xt,Wt] = 0 almost surely implies Ψ(Xt, Yt) = 0 almost surely.
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Recalling that we have conditioned on Xdt, Assumption 7 specifies that
suppZidt is the same in all districts conditional on Xd. Because we do not
restrict variation in the observed distributions ζdt across contests, this is not
very restrictive. And, as discussed in Berry and Haile (2024), this condition
can be relaxed at the cost of expositional clarity. Assumption 8 adds to the
index structure a requirement that, given fixed values of (ΞBdt,ΞCdt), distinct
values of Zidt map to different values of the index. Assumptions 9 and 10
require continuously distributed Zidt and technical conditions that together
facilitate the use of calculus and continuity arguments in Berry and Haile
(2024). We refer readers to Berry and Haile (2024) for additional discussion of
these three assumptions, including how these and other assumptions exploited
here may be relaxed. Theorem 2 in Berry and Haile (2024) then yields the
following identification result.

Theorem 1. Under Assumptions 1–11, the index mapping g(·), the voting
choice functions σj for j = 0, 1, 2, and the values of (ξBdt, ξCdt) for all contests
dt are identified.

Extending this result to identification of the functions σ̃j follows the same
argument. These functions take the same form as the functions σj with three
alterations: (a) Xdt is now interpreted to include the instruments Wdt; (b) the
endogenous Ydt are dropped as arguments; and (c) the structural errors Ξdt are
replaced by their reduced-form analogs Λdt. After making these substitutions
above, the identification argument carries through without change. Of course,
when Ydt is dropped, the IV relevance condition (part (ii) of Assumption 11)
holds trivially.

A.5 Joint Distribution of (Bidt, Cidt)

Here we drop our conditioning on Xdt for clarity and provide additional con-
ditions allowing us to obtain partial or full identification of the joint density
of (Bidt, Cidt) conditional on either (Zidt, Xdt, Ydt,Ξdt) or (Zidt, Xdt,Wdt,Λdt).
To avoid additional notation, we will focus on the former conditioning set;
however, the argument in either case is the same.

Suppose that

Bidt = γB(Zidt, Xdt, Ydt,ΞBdt) + µBid (A.6)

Cidt = γC(Zidt, Xdt, Ydt,ΞCdt) + µCid, (A.7)

where (µBid, µCid) are independent of (Zidt,Ξdt) and have joint distribu-
tion Fµ(µBid, µCid|Xdt, Ydt) conditional on (Xdt, Ydt). This is an additional
nonparametric restriction on the functional forms of Bidt and Cidt. Note
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that this specification permits random coefficients on Xdt and Ydt.
52

Let fµ(µBid, µCid|Xdt, Ydt) denote the conditional density associated with
Fµ(µBid, µCid|Xdt, Ydt). With the functions σj known, Given Theorem 1 and
the structure (8)–(10), we may treat the index functions and the realizations
of the structural errors (ξBdt, ξCdt) as known.

53 For this paragraph, we will fix
(Xdt, Ydt) = (x, y) and suppress these arguments in the notation. The voting
choice function for candidate 1 takes the form

σ1(γ) =

∫ ∞

−γB

∫ γB+µiB−γC

−∞
fµ(µiB, µiC) dµiC dµiB (A.8)

and

σ2(γ) =

∫ −γB

−∞

∫ −γB−µiB−γC

−∞
fµ(µiB, µiC) dµiC dµiB. (A.9)

Taking directional derivatives in the direction v = (1,−1), we obtain

∇v σ1(γ) =

∫ −γc

−∞
fµ(−γB, µiC) dµiC + 2

∫ ∞

−γB

fµ(µiB, µiB + γB − γC) dµiB

and

∇v σ2(γ) = −
∫ −γc

−∞
fµ(−γB, µiC) dµiC .

Given the identification results above, the left side of each expression is known.
Summing the right side of these expressions yields

2

∫ ∞

−γB

fµ(µiB, µiB + γB − γC) dµiB.

Differentiating this expression in the direction of ṽ = (1, 1) yields

2fµ(−γB,−γC).

52It is possible to also let Fµ depend on Zidt, although such specifications are not typical
in practice. In this case the variation used in the final step of the argument here would be
only that created by variation in Ξdt.

53The analysis in Berry and Haile (2024) employed a “rotation” normalization on the
index vector that is without loss for their focus on demand, but which need not preserve the
interpretation of indices appearing in a random utility specification that one might posit
to generate this demand. Here, rotations of the index would be rotations of utilities; and
when choice probabilities are defined by (8)–(10), rotations of the true model are no longer
observationally equivalent; i.e., specifying the underlying structure as we do here imposes
the “true rotation.”
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And although we conditioned on a particular value of (x, y), the same argument
can be repeated at all values of (Xdt, Ydt). This demonstrates the following
result.

Theorem 2. Let Assumptions 1–10 hold and suppose Bidt and Cidt take the
forms (A.6) and (A.7), with (µBid, µCid) |= (Zidt,Ξdt). Then the joint density
fµ(·|Xdt, Ydt) is identified on the support of (−γB(Zidt,ΞBdt),−γC(Zidt,ΞCdt))
conditional (Zidt, Xdt, Ydt,Ξdt).

Because the realizations of Ξdt ≡ (ΞBdt,ΞCdt) are already identified, vari-
ation in both Zidt and Ξdt can provide the variation in the index vector that
“traces out” the joint density f(·|Xdt, Ydt). Depending on the extent of this
variation, Theorem 2 may yield identification of each conditional density on
only some (rather than all) of its support. This is analogous to standard iden-
tification results for discrete choice models relying on special regressors with
large support. Here we have no special regressors—there are no factors that
alter only the utility of voting for candidate i; nonetheless, large support for
(−γB(Zidt,ΞBdt),−γC(Zidt,ΞBdt)) conditional (Zidt, Xdt, Ydt,Ξdt) would deliver
full rather than partial identification.

Figure 17

µBidt

µCidt

(a)

µBidt

µCidt

(b)

The origin is an initial value (γ̂B ,−γ̂C) of the index vector (γB , γC). Shaded areas represent
changes in turnout resulting from a shifts in (γB , γC) in the direction (1,−1) before (panel
(a)) and after (panel (b)) a shift in the direction (1, 1). Voters in red—those approximately
at the origin—are responsible for the observed difference in turnout response across the two
panels.

Figure 17 illustrates the argument. Here we fix a value of (Xdt, Ydt) and
suppress these in the notation. In panel (a) the solid “Y” shape partitions
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voters into their choices at an arbitrary initial value (γ̂B, γ̂C) of the index
vector (γB, γC) (recall Figure 2). The dashed “Y” shows the partition after
adding (h,−h) to (γB, γC), with h > 0. The shaded area represents voters who
turn out only after the change. Panel (b) shows the same comparative static
starting from an index vector (γ̂B+h, γ̂C+h). The shaded area again represents
voters turning out only after the index vector shifts by (h,−h). These voters
include those shaded in panel (a) but also those in the red shaded area. As
h→ 0, panel (a) represents

∇v σ1(γ̂B, γ̂C) +∇v σ2(γ̂B, γ̂C)

while the difference between the two shaded areas—i.e., the red region—
represents

∇v ∇ṽ (σ1(γ̂b, γ̂C) + σ2(γ̂B, γ̂C)) .

In this limit, the voters in red are those at the origin—i.e., those for whom
(µBidt, µCidt) = (−γ̂B,−γ̂C).
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B Supplemental Appendix: Data

Table 13 summarizes the component measures used to construct our measures
of state-level policies affecting voting costs.

Table 13: State Level Voting Policies

Variable Mean Std. Dev. Min. Max.

Voting inconvenience
Absentee excuse req 0.378 0.488 0 1
No absentee in person 0.230 0.424 0 1
No state holiday (state empl.) 0.733 0.439 0 1
No early vote 0.514 0.503 0 1
No voting centers 0.784 0.414 0 1
No permanent absentee 0.811 0.394 0 1
No time off vote 0.419 0.497 0 1
No time off pay 0.595 0.494 0 1

ID requirements
No voter id 0.351 0.481 0 1
Non strict id 0.270 0.447 0 1
Non strict photo 0.189 0.394 0 1
Strict id 0.068 0.253 0 1

The sample includes all state-years.

C Supplemental Appendix: Estimation

Here we provide additional details regarding our estimation procedure, includ-
ing derivation of our quasi-likelihood. Recall key notation from the text:

• Ipdt, the set of registered voters in precinct p

• IApdt, the subset of Ipdt who turn out, with nA
pdt =

∣∣IApdt∣∣
• sijdt = 1 {i chooses option j}, for j ∈ {0, 1, 2}

• σj (zidt; θ1, δ) = E [sijdt|zidt; θ1, δ] = Pr (sijdt = 1|zidt; θ1, δ) ,

• σA
j (zidt; θ1, δ) = σj (zidt; θ1, δ) / (1− σ0 (zidt; θ1, δ)), the probability of

voting for j, conditional on turning out
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• s̄1pdt =
1

nA
pdt

∑
i∈IApdt

si1dt, the vote share (among actual votes) for candi-

date 1 in precinct p, with the associated random variable denoted S̄1pdt.

Let ωidt(θ1, δ) denote the binomial variance

var
(
si1dt|i ∈ IApdt, θ1, δ

)
= σA

1 (zidt; θ1, δ)
(
1− σA

1 (zidt; θ1, δ)
)
.

Let

µ1pdt(θ1, δ) = E
[
s̄1pdt|IApdt, θ1, δ

]
=

1

nA
pdt

∑
i∈IApdt

σA
1 (zidt; θ1, δ)

denote expected vote share in precinct p, conditional on turnout. Let

Ωpdt(θ1, δ) =
1

nA
pdt

∑
i∈IApdt

ωidt(θ1, δ),

which may be interpreted as the average variance of si1pdt across i ∈ IApdt. Let
(θ01, δ

0) denote the true values of the parameter θ1 and the contest-level fixed
effects.

As described in the text, the first-step likelihood takes the form

L(θ1, δ) =
∏
t

∏
d

∏
p

L0
(
IApdt; θ1, δ

)
× L1

(
s̄1pdt|IApdt; θ1, δ

)
where

L0
(
IApdt; θ1, δ

)
=
∏
i∈Ipdt

σ0 (zidt; θ1, δ)
si0dt (1− σ0 (zi; θ1, δ))

1−si0dt

and

L1
pdt

(
s̄1pdt|IApdt; θ1, δ

)
=

∑
I⊂IApdt:

|I|=s̄1pdt×nA
pdt

∏
i∈I

σA
1 (zi; θ1, δ)

∏
i′∈{IApdt−I}

σA
2 (zi′dt; θ1, δ)

 .

To address the computational infeasibility of this likelihood (see the text),
we follow Ainsworth (2020) in exploiting an approximation to each term L1

pdt.
This approximation is based on the fact that, by an appropriate central limit
theorem (e.g., Lyapunov),√

nA
pd

(
s̄1pd − µ1pd(θ

0
1, δ

0)
)
→ N

(
0,Ωpd(θ

0
1, δ

0)
)
.
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The normal approximation is known to be very good, even for moderate nA
pdt,

when µ1pdt is not too close to 0 or 1.
Using this fact, we approximate the log-likelihood with the log-quasi-

likelihood

L̃(θ1, δ) =
∑
t

∑
d

∑
p

{
L0

pdt

(
IApdt; θ1, δ

)
+ L̃1

pdt

(
s̄1pdt|IApdt; θ1, δ

)}
,

where L0
pdt

(
IApdt; θ1, δ

)
= lnL0

pdt

(
IApdt; θ1, δ

)
and (letting ϕ denote the standard

normal pdf)

L̃1
pdt

(
s̄1pdt|IApdt; θ1, δ

)
= lnϕ

 s̄1pdt − µ1pdt(θ1, δ)√
Ωpdt(θ1, δ)/nA

pdt


= ln

 1√
2πΩpdt(θ1, δ)/nA

pdt

exp

(
−(s̄1pdt − µ1pdt(θ1, δ))

2

2Ωpdt(θ1, δ)/nA
pdt

)
=

[
− ln

(√
2π/nA

pdt

)
− ln

√
Ωpdt(θ1, δ)−

nA
pdt

2

(s̄1pdt − µ1pdt(θ1, δ))
2

Ωpdt(θ1, δ)

]
.

Using this quasi-likelihood, we estimate θ1 using interior point minimiza-
tion with a known gradient. As noted in the text, we compute the contest-level
fixed effects δ(θ1) in a nested fixed point algorithm, matching contest-level
turnout and vote shares exactly, following typical practice in the analogous
demand estimation setting (Berry, Levinsohn, and Pakes (1995, 2004)). Let
s̄jdt denote the observed choice share for option j in contest dt, and let µj(θ1, δ)
denote the share predicted by the model. At each candiate value of θ1, we solve
the system of equations s̄jdt−µj(θ1, δ) = 0 ∀(j, d, t) using Newton’s method.
Our estimator of θ1 is thus the solution to

min
θ1

−L̃(θ1, δ) s.t. δ = argsolv
δ′

[s̄jdt − µjdt(θ1, δ
′) = 0 ∀j, d, t]

For inference, we use standard errors derived from the Generalized Method
of Moments (GMM) equivalent of our approach. Let ιdt denote the exogenous
variables “instruments” (xdt, wdt) entering the reduced forms. Define the mo-
ment vector for each contest dt as

gdt(θ1, θ2) =

 ∂Ldt(θ1,δ(θ1))
∂θ1

ι⊤dt(δBdt − αB − xdtγxB − wdtγwB)
ι⊤dt(δCdt − αC − xdtγxC − wdtγwC)

 ,

57



where the first moment is the score vector of the contest dt log-likelihood with
respect to the parameters θ1, and other two moments are the least squares
normal equations at the contest level.54 We compute the optimal weighting
matrix using the inverse of the asymptotic variance-covariance matrix for the
moments. As described in the text, this covariance matrix treats the first-
step and second-step parameters as independent, consistent with the much
larger first-step sample size and our imposition of a perfect fit to district-level
vote shares in the first step. The covariance structure for the second-step
estimates is clustered at the district level, allowing arbitrary cross-district
heteroskedasticity and dependence (over time and between the shocks to costs
and benefits) within district.

54Whereas the full set of moments gdt(θ1, θ2) at the parameter estimates (θ̂1, θ̂2) is used
for inference, the optimally weighted stacked normal equations are also used for estimation
of θ2, as described in the text.
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D Supplemental Appendix: Additional Ta-

bles Referenced in the Text

Table 14: Vote Shares Among 5% Marginal Voters

State Republican Share State Republican Share

AK 0.331 MT 0.277
[0.271, 0.387] [0.217, 0.338]

AL 0.397 NC 0.291
[0.344, 0.445] [0.236, 0.344]

AR 0.414 ND 0.399
[0.353, 0.471] [0.328, 0.465]

AZ 0.276 NE 0.395
[0.223, 0.327] [0.334, 0.452]

CA 0.196 NH 0.254
[0.154, 0.240] [0.200, 0.308]

CO 0.238 NJ 0.223
[0.183, 0.293] [0.176, 0.270]

CT 0.201 NM 0.248
[0.155, 0.246] [0.200, 0.296]

DE 0.224 NV 0.258
[0.179, 0.268] [0.208, 0.308]

FL 0.288 NY 0.205
[0.235, 0.340] [0.165, 0.245]

GA 0.302 OH 0.312
[0.251, 0.352] [0.255, 0.366]

HI 0.137 OK 0.434
[0.103, 0.172] [0.371, 0.491]

IA 0.289 OR 0.236
[0.231, 0.346] [0.188, 0.284]

ID 0.349 PA 0.295
[0.280, 0.416] [0.243, 0.346]

IL 0.230 RI 0.196
[0.185, 0.275] [0.153, 0.240]

IN 0.342 SC 0.335
[0.285, 0.396] [0.282, 0.385]

KS 0.356 SD 0.422
[0.297, 0.411] [0.359, 0.479]

KY 0.428 TN 0.366
[0.371, 0.481] [0.308, 0.420]

LA 0.413 TX 0.310
[0.355, 0.466] [0.260, 0.358]

MA 0.160 UT 0.363
[0.120, 0.202] [0.298, 0.424]

MD 0.197 VA 0.262
[0.157, 0.237] [0.212, 0.311]

ME 0.250 VT 0.147
[0.198, 0.302] [0.111, 0.185]

MI 0.272 WA 0.236
[0.222, 0.321] [0.189, 0.285]

MN 0.225 WI 0.295
[0.173, 0.280] [0.243, 0.344]

MO 0.342 WV 0.418
[0.286, 0.394] [0.355, 0.474]

MS 0.356 WY 0.382
[0.300, 0.407] [0.308, 0.454]
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Table 15: Voting Cost Counterfactual: Change in Shares

State Baseline High Cost Low Cost
AK 0.554 0.586 0.544

[0.570, 0.603] [0.538, 0.549]
AL 0.627 0.643 0.608

[0.636, 0.650] [0.596, 0.620]
AR 0.678 0.697 0.660

[0.688, 0.707] [0.651, 0.668]
AZ 0.491 0.501 0.469

[0.489, 0.512] [0.458, 0.480]
CA 0.365 0.394 0.365

[0.378, 0.412] [0.365, 0.365]
CO 0.470 0.492 0.464

[0.474, 0.510] [0.460, 0.468]
CT 0.379 0.402 0.370

[0.390, 0.415] [0.356, 0.386]
DE 0.397 0.421 0.388

[0.409, 0.434] [0.377, 0.399]
FL 0.508 0.525 0.492

[0.517, 0.533] [0.483, 0.501]
GA 0.537 0.538 0.505

[0.531, 0.545] [0.491, 0.519]
HI 0.251 0.267 0.241

[0.251, 0.283] [0.236, 0.246]
IA 0.519 0.550 0.516

[0.535, 0.566] [0.511, 0.522]
ID 0.669 0.682 0.655

[0.676, 0.689] [0.646, 0.665]
IL 0.412 0.444 0.412

[0.427, 0.463] [0.412, 0.412]
IN 0.577 0.578 0.541

[0.572, 0.583] [0.525, 0.557]
KS 0.603 0.605 0.571

[0.593, 0.617] [0.556, 0.586]
KY 0.642 0.667 0.631

[0.656, 0.680] [0.620, 0.643]
LA 0.651 0.668 0.633

[0.661, 0.676] [0.623, 0.642]
MA 0.292 0.319 0.291

[0.304, 0.336] [0.284, 0.300]
MD 0.346 0.375 0.346

[0.360, 0.392] [0.346, 0.347]
ME 0.444 0.477 0.443

[0.461, 0.494] [0.435, 0.453]
MI 0.480 0.496 0.463

[0.489, 0.504] [0.452, 0.473]
MN 0.470 0.495 0.469

[0.481, 0.510] [0.465, 0.474]
MO 0.584 0.608 0.575

[0.598, 0.619] [0.566, 0.584]
MS 0.589 0.589 0.551

[0.589, 0.589] [0.531, 0.570]

State Baseline High Cost Low Cost
MT 0.556 0.579 0.549

[0.567, 0.591] [0.543, 0.554]
NC 0.520 0.551 0.518

[0.537, 0.567] [0.509, 0.528]
ND 0.696 0.703 0.676

[0.697, 0.710] [0.666, 0.686]
NE 0.643 0.675 0.642

[0.661, 0.691] [0.639, 0.645]
NH 0.463 0.486 0.454

[0.474, 0.499] [0.440, 0.470]
NJ 0.402 0.434 0.402

[0.418, 0.451] [0.398, 0.406]
NM 0.436 0.470 0.436

[0.452, 0.489] [0.435, 0.437]
NV 0.467 0.503 0.467

[0.485, 0.522] [0.465, 0.468]
NY 0.355 0.385 0.354

[0.371, 0.401] [0.348, 0.361]
OH 0.552 0.561 0.528

[0.555, 0.567] [0.516, 0.539]
OK 0.682 0.707 0.673

[0.697, 0.719] [0.667, 0.679]
OR 0.424 0.457 0.424

[0.437, 0.479] [0.424, 0.424]
PA 0.500 0.528 0.499

[0.514, 0.544] [0.487, 0.512]
RI 0.343 0.360 0.327

[0.351, 0.368] [0.315, 0.339]
SC 0.568 0.584 0.548

[0.577, 0.593] [0.533, 0.563]
SD 0.672 0.691 0.656

[0.680, 0.702] [0.648, 0.663]
TN 0.613 0.615 0.582

[0.604, 0.625] [0.568, 0.596]
TX 0.528 0.552 0.516

[0.540, 0.565] [0.511, 0.521]
UT 0.642 0.669 0.635

[0.652, 0.686] [0.631, 0.639]
VA 0.473 0.482 0.453

[0.478, 0.487] [0.441, 0.464]
VT 0.270 0.293 0.269

[0.280, 0.306] [0.262, 0.277]
WA 0.429 0.453 0.422

[0.434, 0.471] [0.419, 0.426]
WI 0.498 0.500 0.466

[0.493, 0.506] [0.451, 0.481]
WV 0.646 0.683 0.643

[0.665, 0.701] [0.641, 0.644]
WY 0.697 0.718 0.697

[0.705, 0.730] [0.695, 0.700]
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Table 16: High Cost Counterfactual: Abstention Share

State Baseline High Cost Low Cost
AK 0.374 0.426 0.357

[0.410, 0.443] [0.351, 0.362]
AL 0.359 0.384 0.321

[0.371, 0.398] [0.305, 0.337]
AR 0.339 0.369 0.311

[0.353, 0.385] [0.297, 0.325]
AZ 0.297 0.320 0.259

[0.307, 0.334] [0.248, 0.270]
CA 0.287 0.353 0.287

[0.331, 0.375] [0.283, 0.292]
CO 0.164 0.207 0.155

[0.190, 0.226] [0.152, 0.158]
CT 0.301 0.342 0.274

[0.328, 0.356] [0.257, 0.289]
DE 0.354 0.399 0.328

[0.385, 0.413] [0.315, 0.341]
FL 0.293 0.323 0.261

[0.313, 0.333] [0.250, 0.271]
GA 0.325 0.333 0.271

[0.322, 0.344] [0.255, 0.287]
HI 0.342 0.397 0.317

[0.374, 0.422] [0.309, 0.325]
IA 0.254 0.306 0.246

[0.291, 0.322] [0.241, 0.251]
ID 0.140 0.157 0.120

[0.152, 0.163] [0.113, 0.127]
IL 0.341 0.409 0.341

[0.389, 0.432] [0.339, 0.343]
IN 0.359 0.364 0.301

[0.357, 0.370] [0.284, 0.317]
KS 0.294 0.305 0.247

[0.292, 0.317] [0.232, 0.262]
KY 0.379 0.418 0.355

[0.406, 0.432] [0.342, 0.368]
LA 0.361 0.389 0.330

[0.377, 0.401] [0.318, 0.341]
MA 0.290 0.351 0.282

[0.327, 0.378] [0.267, 0.299]
MD 0.320 0.391 0.319

[0.369, 0.413] [0.318, 0.320]
ME 0.282 0.339 0.274

[0.322, 0.357] [0.266, 0.283]
MI 0.332 0.362 0.295

[0.354, 0.371] [0.281, 0.308]
MN 0.136 0.177 0.133

[0.165, 0.191] [0.130, 0.136]
MO 0.295 0.335 0.274

[0.322, 0.347] [0.262, 0.284]
MS 0.399 0.399 0.331

[0.392, 0.405] [0.309, 0.353]

State Baseline High Cost Low Cost
MT 0.161 0.195 0.149

[0.185, 0.206] [0.144, 0.153]
NC 0.269 0.320 0.261

[0.305, 0.337] [0.251, 0.270]
ND 0.156 0.170 0.129

[0.164, 0.176] [0.122, 0.137]
NE 0.268 0.322 0.265

[0.306, 0.338] [0.260, 0.270]
NH 0.241 0.277 0.217

[0.265, 0.289] [0.202, 0.231]
NJ 0.320 0.383 0.316

[0.365, 0.403] [0.312, 0.320]
NM 0.327 0.394 0.326

[0.374, 0.416] [0.325, 0.327]
NV 0.324 0.389 0.322

[0.369, 0.410] [0.320, 0.324]
NY 0.390 0.455 0.383

[0.435, 0.476] [0.374, 0.392]
OH 0.290 0.307 0.249

[0.301, 0.313] [0.237, 0.260]
OK 0.303 0.344 0.286

[0.331, 0.358] [0.280, 0.293]
OR 0.288 0.359 0.288

[0.334, 0.384] [0.286, 0.291]
PA 0.261 0.309 0.249

[0.293, 0.326] [0.236, 0.262]
RI 0.372 0.405 0.333

[0.393, 0.417] [0.318, 0.347]
SC 0.350 0.375 0.308

[0.367, 0.384] [0.289, 0.327]
SD 0.295 0.327 0.269

[0.313, 0.342] [0.257, 0.281]
TN 0.318 0.328 0.270

[0.316, 0.340] [0.255, 0.285]
TX 0.362 0.408 0.342

[0.392, 0.424] [0.335, 0.349]
UT 0.223 0.269 0.213

[0.251, 0.287] [0.210, 0.217]
VA 0.273 0.291 0.230

[0.284, 0.297] [0.216, 0.244]
VT 0.258 0.316 0.250

[0.297, 0.336] [0.236, 0.265]
WA 0.250 0.304 0.239

[0.283, 0.327] [0.233, 0.244]
WI 0.358 0.364 0.297

[0.355, 0.372] [0.281, 0.313]
WV 0.380 0.439 0.375

[0.420, 0.458] [0.374, 0.377]
WY 0.065 0.089 0.063

[0.081, 0.098] [0.062, 0.065]
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Table 17: Partisan Bias State Estimates

State 50-50 Smoothed 50-50
AK 0 0

AL 0.333 0.191
[0.333, 0.333] [0.175, 0.206]

AR 0.500 0.056
[0.333, 0.500] [0.000, 0.083]

AZ -0.037 -0.086
[-0.037, -0.037] [-0.099, -0.074]

CA -0.107 -0.071
[-0.107, -0.082] [-0.078, -0.059]

CO 0.048 0.048
[0.048, 0.048] [0.048, 0.048]

CT -0.067 0.022
[-0.200, -0.067] [-0.022, 0.022]

DE 0 0

FL 0.086 0.004
[0.086, 0.086] [0.000, 0.012]

GA 0.238 0.175
[0.238, 0.238] [0.175, 0.183]

HI 0.000 0.000
[0.000, 0.000] [0.000, 0.000]

IA -0.167 -0.028
[-0.167, -0.167] [-0.028, -0.028]

ID 0.000 0.000
[0.000, 0.000] [0.000, 0.000]

IL -0.111 -0.080
[-0.111, -0.111] [-0.080, -0.080]

IN 0.333 0.148
[0.333, 0.333] [0.148, 0.148]

KS 0.000 0.083
[0.000, 0.000] [0.056, 0.083]

KY 0.333 0.185
[0.333, 0.333] [0.185, 0.204]

LA 0.667 0.333
[0.667, 0.667] [0.296, 0.333]

MA -0.185 -0.049
[-0.185, -0.185] [-0.074, -0.049]

MD -0.500 -0.222
[-0.500, -0.500] [-0.222, -0.222]

ME 0.000 0.056
[0.000, 0.000] [0.056, 0.056]

MI 0.143 0.103
[0.143, 0.143] [0.103, 0.103]

MN 0.333 0.111
[0.333, 0.333] [0.111, 0.111]

MO 0.333 0.208
[0.250, 0.333] [0.181, 0.208]

MS 0.500 0.278
[0.500, 0.500] [0.278, 0.306]

State 50-50 Smoothed 50-50
MT 0 0

NC 0.436 0.188
[0.385, 0.436] [0.162, 0.188]

ND 0 0

NE -0.111 -0.074
[-0.111, -0.111] [-0.074, -0.037]

NH 0.000 0.000
[0.000, 0.000] [0.000, 0.000]

NJ 0.000 -0.009
[0.000, 0.000] [-0.009, -0.009]

NM -0.333 -0.074
[-0.333, -0.333] [-0.074, -0.074]

NV -0.333 -0.139
[-0.333, -0.333] [-0.139, -0.139]

NY -0.012 -0.025
[-0.012, -0.012] [-0.025, -0.021]

OH 0.333 0.201
[0.333, 0.333] [0.201, 0.201]

OK 0.333 0.089
[0.200, 0.333] [0.044, 0.089]

OR 0.067 -0.022
[0.067, 0.067] [-0.044, -0.022]

PA 0.148 0.148
[0.148, 0.185] [0.142, 0.161]

RI 0.000 0.000
[0.000, 0.000] [0.000, 0.000]

SC 0.429 0.159
[0.429, 0.429] [0.159, 0.159]

SD 0 0

TN 0.482 0.259
[0.482, 0.482] [0.247, 0.259]

TX 0.037 -0.006
[0.037, 0.056] [-0.006, 0.003]

UT 0.000 -0.028
[0.000, 0.000] [-0.028, -0.028]

VA 0.152 0.071
[0.152, 0.152] [0.071, 0.071]

VT 0 0

WA 0.000 0.044
[0.000, 0.000] [0.033, 0.044]

WI 0.250 0.208
[0.250, 0.250] [0.208, 0.208]

WV 0.111 0.074
[0.111, 0.111] [0.074, 0.074]

WY 0 0
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Table 18: Smoothed 50-50 Excess Seats Estimates

State Estimate State Estimate

AK 0 MT 0

AL 1.333 NC 2.444
[1.222, 1.444] [2.111, 2.444]

AR 0.222 ND 0
[0.000, 0.333]

AZ -0.778 NE -0.222
[-0.889, -0.667] [-0.222, -0.111]

CA -3.778 NH 0.000
[-4.111, -3.111] [0.000, 0.000]

CO 0.333 NJ -0.111
[0.333, 0.333] [-0.111, -0.111]

CT 0.111 NM -0.222
[-0.111, 0.111] [-0.222, -0.222]

DE 0 NV -0.556
[-0.556, -0.556]

FL 0.111 NY -0.667
[0.000, 0.333] [-0.667, -0.556]

GA 2.444 OH 3.222
[2.444, 2.556] [3.222, 3.222]

HI 0.000 OK 0.444
[0.000, 0.000] [0.222, 0.444]

IA -0.111 OR -0.111
[-0.111, -0.111] [-0.222, -0.111]

ID 0.000 PA 2.667
[0.000, 0.000] [2.556, 2.889]

IL -1.444 RI 0.000
[-1.444, -1.444] [0.000, 0.000]

IN 1.333 SC 1.111
[1.333, 1.333] [1.111, 1.111]

KS 0.333 SD 0
[0.222, 0.333]

KY 1.111 TN 2.333
[1.111, 1.222] [2.222, 2.333]

LA 2.000 TX -0.222
[1.778, 2.000] [-0.222, 0.111]

MA -0.444 UT -0.111
[-0.667, -0.444] [-0.111, -0.111]

MD -1.778 VA 0.778
[-1.778, -1.778] [0.778, 0.778]

ME 0.111 VT 0
[0.111, 0.111]

MI 1.444 WA 0.444
[1.444, 1.444] [0.333, 0.444]

MN 0.889 WI 1.667
[0.889, 0.889] [1.667, 1.667]

MO 1.667 WV 0.222
[1.444, 1.667] [0.222, 0.222]

MS 1.111 WY 0
[1.111, 1.222]
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Table 19: Partisan Bias Republican Seat Shares by State Vote Share

State Vote Share Seat Share State Vote Share Seat Share
0.25 0.014 0.55 0.670

[0.013, 0.016] [0.669, 0.672]
0.30 0.038 0.60 0.759

[0.035, 0.040] [0.758, 0.762]
0.35 0.116 0.65 0.831

[0.115, 0.118] [0.829, 0.834]
0.40 0.219 0.70 0.883

[0.217, 0.221] [0.882, 0.884]
0.45 0.394 0.75 0.933

[0.390, 0.397] [0.930, 0.936]
0.50 0.545

[0.543, 0.548]
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