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1 Introduction

In classic models of collusion, all firms are forward-looking and take into account their rivals’

dynamic strategies. Short-sighted behavior by rivals is a source of fragility in these models.1

For example, when all firms set prices simultaneously, a single firm facing rivals that maximize

short-run profits cannot profitably choose a price above the competitive (Bertrand-Nash) level

in equilibrium.

The increasing adoption of pricing algorithms across many markets—including online retail,

gasoline, food delivery, among others—introduces behavior that departs from the simultaneous

price-setting or quantity-setting assumption that is standard in the literature. Pricing algorithms

change the nature by which firms update prices, allowing them to select rules that automatically

react to price changes by rivals. Algorithm providers advertise that firms can “set it and forget

it,” implying commitment to a strategy over time.2 Moreover, the use of algorithms has not

been uniform across firms within a market. Recent empirical work has documented that some

firms employ high-speed pricing algorithms that provide a significant advantage in terms of the

ability to monitor and react to price changes by rivals,3 and many large firms, including the

online retailer Amazon, have invested substantial resources to obtain this advantage.4

Motivated by these observations, we develop a model where a firm commits (imperfectly)

to an algorithm across periods. The algorithm is a function of the rival’s price and can update

prices more quickly than its rival within a period. In our baseline analysis, we assume that the

rival simply maximizes profits in the current period. By making this assumption about the rival,

we explore the potential for “robust” supracompetitive prices that occur even when collusive

equilibria are ruled out. We define and characterize a coercive equilibrium where the algorith-

mic firm acts unilaterally to maximize its own profits, subject to the incentive compatibility

constraint of its rival.

Our model characterizes pricing technology as the algorithm’s relative reaction time to rival

prices and the probability that the firm can update its algorithm each period. A faster reaction

time provides a speed advantage that can be interpreted as either the ability to more quickly

update prices or the ability to monitor the price changes of rivals at a higher frequency. When

the firm updates its algorithm, it flexibly chooses an initial price and an update function that

responds to the rival’s price. Despite the fact that our model rules out standard collusive strate-
1Several factors are viewed as important for facilitating collusion, including similarity in size and costs, pre-

dictability of demand, observability of all rivals’ prices, and the possibility of frequent direct communication. See,
e.g., Scherer (1980), Tirole (1988), or Porter (2005).

2See https://www.informedrepricer.com/ (accessed February 2025).
3Brown and MacKay (2023) show that the pricing technology for large online retailers varies from once-per-week

updates to updates that occur multiple times per hour. The adoption of high-speed pricing algorithms has also been
observed in other settings (e.g., Assad et al., 2024; Aparicio et al., 2021).

4The U.S. Federal Trade Commission notes that “Amazon has estimated that for thousands of the most popular
products on Amazon it can detect any price change virtually anywhere on the internet within hours,” and asserts
that Amazon automatically reacts to price changes by other online retailers and by sellers on its marketplace. See
FTC v. Amazon (September, 2023).
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gies, the algorithmic firm can incentivize higher prices by committing to an update function that

punishes deviations from a target price by its rival. Under an assumption that the algorithmic

firm sets the punishment function to be the one-shot best-response function, the equilibrium is

unique.

The model nests the standard Bertrand and sequential-move equilibria as special cases.

When there is no speed advantage and full commitment, the model yields the sequential equi-

librium where the algorithmic firm is the leader. Conversely, when the algorithm can react

instantly but there is no commitment across periods, the equilibrium is that where the algorith-

mic firm is the sequential follower.5

In the presence of both a speed advantage and multi-period commitment, the algorithmic

firm can obtain prices and profits that are substantially higher than the benchmark cases above.

The speed advantage allows the algorithmic firm to coerce its rival into setting higher prices;

commitment across periods prevents the algorithmic firm from deviating from its own optimal

long-run strategy. Intuitively, the algorithmic firm uses the threat to quickly undercut its rival

before its rival can react to push its rival to set a higher price. Commitment to an algorithm

across periods does not directly affect the incentives of the rival, but rather allows the algorith-

mic firm to “tie its hands.”

These results provide context for an understanding of the potential impact of pricing algo-

rithms. Multi-period commitment alone, regardless of the nature of the algorithm, can lead

to higher prices, though profits are disproportionately accrued by the uncommitted rival. By

contrast, a speed advantage enables the algorithmic firm to coerce its rival to raise prices, in-

creasing joint profits relative to the Bertrand equilibrium while also shifting more profits to the

algorithmic firm. With both (even imperfect) commitment across periods and a speed advan-

tage, the algorithmic firm can raise prices such that it earns more than its share of collusive

profits. In some cases, the algorithmic firm may dictate prices high enough such that there is

greater deadweight loss and lower welfare than what would be obtained if the firm and its rival

were able to collude.

We show how coercive equilibrium extends to settings where (a) the rival is forward-

looking, (b) the algorithm employs alternative punishments, including price matching, and

(c) the algorithmic firm faces several rivals. In all cases, the coercive equilibrium demonstrates

a potential to substantially increase prices. With a price matching algorithm, the collusive out-

come is the unique equilibrium when the algorithm enables an immediate reaction. As we

discuss, the algorithmic firm may obtain higher profits with our baseline punishment.

In our baseline results, we assume the algorithmic firm’s rival is fully informed about the

punishment strategy encoded in the algorithm. In an extension, we consider an alternative

where the rival firm observes only its own prices and profits and uses gradient learning to max-
5In earlier work, we considered this latter case and the general possibility of a speed advantage to increase prices

in Markov perfect equilibrium (Brown and MacKay, 2023). This paper did not address multi-period commitment.
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imize profits. With this alternative assumption about naive behavior, the rival does not consider

the price set by the algorithmic firm (or even necessarily its presence). We show conditions in

which the algorithmic firm can still coerce the naive firm to raise prices to supracompetitive

levels using a high-speed pricing algorithm that is linear in the rival’s price, even though this

type of learning results in competitive (Bertrand) prices in a simultaneous game. We derive

the optimal linear pricing rule that maximizes the algorithmic firm’s profits with commitment

and show that gradient learning will always result in supracompetitive prices. Intuitively, the

algorithmic firm is able to make it appear as if residual demand facing the naive firm is more

inelastic by, e.g., quickly decreasing price when the naive firm tries a price that is lower. The

faster the algorithmic firm can adjust prices in response to the rival, the easier it is for the firm

to coerce the rival into setting higher prices.

In a second extension, we consider the implications of our model for platform design. We

endogenize the algorithm technology parameters that govern speed and commitment, allowing

a platform to determine these features for sellers that compete in its market. This is motivated

by our observation that platforms have the ability to determine how frequently sellers can up-

date prices and what pricing software they can access. Our analysis shows that a platform that

prioritizes producer surplus has an incentive to allow some sellers to have pricing algorithms

with commitment and a speed advantage. By doing so, the platform can soften competition on

the platform without coordinating behavior of the sellers. If a platform is vertically integrated

and competes with a seller on the platform, the platform will have an incentive to use faster

pricing and commitment to obtain a competitive advantage.

In practice, pricing algorithms (or “repricing”) providers in online markets offer and ad-

vertise the two features we focus on. Whether using third-party or proprietary algorithms,

firms update the software and pricing rules infrequently, even if the algorithm itself updates

prices at high speed. This implies a level of commitment to a strategy across periods. Algo-

rithm providers describe the benefits of commitment in terms of automation to save time and

protection against short-sighted behavior.6

Algorithm providers also emphasize the value of reacting faster to competitors’ price changes.

For instance, a firm offering an algorithmic pricing tool notes that “businesses can compete more

effectively by responding quickly”.7 Another pricing tool advertises that “a fast reaction to your

competitors’ price variations is essential to be aggressive and competitive in the world of online

commerce.”8 One pricing algorithm provider offers a basic version that updates prices hourly

and a premium version that “reacts to changes your competitors make in 90 seconds” in order

to “beat competitors with super-fast repricing.”9 Similar pricing algorithms exist in offline mar-

6According to one source, a positive aspect of a pricing algorithm is that it “eliminates any rash pricing decisions
that you might have made at the moment.” See https://www.feedbackwhiz.com/blog/pros-and-cons-of-amazons-
automate-pricing-tool/ (accessed February 2025).

7See https://dealhub.io/glossary/dynamic-pricing/ (accessed February 2025).
8See https://competitoor.com/pricing/the-importance-of-dynamic-pricing/ (accessed February 2025).
9See https://www.repricer.com/ (accessed October 2023).
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kets, such as retail gasoline. Providers in these markets advertise methods to “automate your

process for tracking competitive fuel prices” in “real time.”10

Despite the fact that the ability to quickly respond to competitors’ price changes is a key

feature of algorithms, there is little theoretical work examining these issues. One exception is

Brown and MacKay (2023), who provide a theoretical analysis of competitive (Markov perfect)

outcomes when firms may differ in the speed at which they set prices, while documenting that

there are substantial differences in pricing frequencies across major online retailers. Empir-

ically, Assad et al. (2024) find that the adoption of pricing algorithms among retail gasoline

stations in Germany leads to more frequent price changes, and also higher prices. Byrne et al.

(2025) examine what happens when one gasoline retailer could no longer quickly observe and

react to rival price changes due to a legal settlement. They find that asymmetries in pricing

frequency increase prices, highlighting the importance of differences in pricing speed on equi-

librium outcomes.

Our paper is the first to consider the implications when a speed advantage is combined with

multi-period commitment. Commitment (with no speed advantage) has been studied in recent

theoretical papers about algorithms (Salcedo, 2015; Leisten, 2024; Levine, 2024). Brown and

MacKay (2023) show that simultaneous commitment to rules that depend on rival’s prices does

not yield competitive (Bertrand-Nash) prices. Lamba and Zhuk (2025) consider an alternating-

move setting where commitment yields supracompetitive prices. In empirical work, Musolff

(2024) shows that third-party sellers on Amazon demonstrate some degree of commitment to

pricing rules, including rules that undercut a rival’s price and reset to a higher price. Our results

show that, together, commitment and a speed advantage provide the potential for a much more

severe impact on prices, including outcomes that are worse than collusion for consumers.11

There is growing concern that autonomous pricing algorithms can learn collusive strategies,

potentially facilitating collusion in markets such as online retail (Harrington, 2018). The liter-

ature has largely focused on simultaneous-move games with symmetric agents, including a lit-

erature considering the potential for collusion with artificial intelligence (Calvano et al., 2020;

Asker et al., 2024; Banchio and Mantegazza, 2022).12 Hansen et al. (2021) examine symmetric

firms using misspecified learning algorithms. Miklós-Thal and Tucker (2019) and O’Connor and

Wilson (2021) consider the impact of algorithms that provide better demand forecasts on the

sustainability of collusion. Asymmetries among agents, e.g., in costs or demand, are generally
10See https://www.taigadata.com/front-office-platform/competitive-fuel-pricing/ (accessed February 2025). His-

torically, retail gasoline managers often observed their competitor’s prices once per day on the way to work in
the morning and then manually adjusted prices. See https://www.priceadvantage.com/resources/white-papers/10-
fuel-pricing-best-practices/ (accessed February 2025).

11Our coercive equilibrium concept does not rely on software algorithms per se. One can imagine other envi-
ronments with commitment and a speed advantage where coercion may characterize the market outcome, such as
when one firm has an information advantage.

12Waltman and Kaymak (2008) consider Q-learning in a quantity-setting game. A smaller literature has focused
on alternating-move games as in Maskin and Tirole (1988). In particular, Klein (2021) examines collusion with
machine learning algorithms in a sequential game.
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believed to make collusion more difficult (Scherer, 1980; Tirole, 1988).

We argue that the coercive equilibrium in this paper is more robust than standard repeated-

game models of supracompetitive prices, such as collusion. It is well known that in simultaneous-

move games, high-frequency pricing implies a larger per-period discount factor, making collu-

sion easier to sustain when firms have perfect monitoring (e.g., Abreu et al., 1991). Yet, all

firms must be forward-looking to sustain collusion in these models. In contrast, we make the

conservative assumption that the rival simply maximizes current-period profits.13 Our analy-

sis of pricing algorithms that are linear in rival’s price indicates that even naive firms with no

knowledge that their rival is using a pricing algorithm can be coerced into raising prices to

supracompetitive levels. This shares elements with the idea of strategic manipulation of rival

perceptions, as in Fudenberg and Tirole (1986) theory of signal-jamming. In this way, there is

broad scope for high-speed pricing algorithms to raise prices.

Our analysis of platform incentives relates to questions pertaining to platform design and

third-party incentives when sellers use algorithms. Johnson et al. (2023) examine how plat-

forms can use demand-steering policies to increase competition when sellers use algorithms

that collude. Harrington (2022) and Calder-Wang and Kim (2023) address the incentives of

third-party pricing algorithm providers to recommend supracompetitive prices to subscribing

firms. Our contribution is to consider the regulation of features of independent pricing algo-

rithms.

The paper proceeds as follows. We introduce the model in Section 2. In Section 3, we

discuss the equilibrium concept and provide benchmark cases. We characterize the general

problem and provide examples in Section 4. In Section 5, we introduce the idea of learning,

and we show how the algorithmic firm can obtain coercive equilibria even with simple linear

strategies. Section 6 examines the incentives for platform design. Section 7 concludes.

2 Model

We present a duopoly model in which an algorithmic firm can commit to a high-speed algorithm

that automatically updates prices, while its rival simply maximizes current-period profits.

2.1 Environment

Two firms, a and b, each produce a single product with prices given by (pa, pb). Firm a has

a high-speed pricing algorithm while firm b does not. Time is continuous and is given by
13Our paper also relates to a previous literature examining games in which a single long-run player faces a

succession of repeated short-run players. The classic application is one in which an incumbent faces a new (short-
run) potential entrant in each period, as studied by Milgrom and Roberts (1982) and Kreps and Wilson (1982).
Fudenberg and Levine (1989) and Fudenberg et al. (1990) provide folk-theorem style analysis for feasible payoffs
for a general class of games with a single long-run player. In our setting, the algorithmic firm plays the role of the
long-run player while the rival is modeled as a short-run player.
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t ∈ [0,∞), while periods are defined by discrete intervals indexed by t ∈ {0, 1, 2, ...}. We define

the length of a period as the frequency with which firm b, the slower firm, can update prices.

Thus, firm b can update prices at the beginning of each period.

Demand arrives in continuous time. The instantaneous profit flow function for firm i is

time-invariant and is given by πi(pi, p−i, xt), where xt are state variables that affect demand.

We assume the profit functions are quasi-concave and have a unique maximum with respect to

a firm’s own price. We also assume that the products are substitutes and are strategic comple-

ments in prices, such that ∂πi
∂p−i

> 0 and ∂2πi
∂pi∂p−i

> 0.

2.2 The Algorithmic Firm

The algorithmic firm a maximizes discounted profits over an infinite horizon. Firm a has a

discrete discount factor of profits in future periods given by β ∈ [0, 1).14

At time t = 0, and at future opportunities indexed by τ , firm a chooses a pricing algorithm,

Aα,γ
τ (pbt, xt, t). The algorithm is characterized by speed and commitment parameters, α and γ,

which we describe below. In general, an algorithm sets prices according to

pat = Aα,γ
τ (pbt, xt, t) ≡

ρτ (xt) t− ⌊t⌋ ≤ 1− α

στ (pbt, xt) t− ⌊t⌋ > 1− α
(1)

where ⌊t⌋ is the floor function that yields the greatest integer less than t, i.e., the beginning

of the period. The algorithm is characterized by an initial price-setting function ρτ (xt) and an

update function στ (p̂bt, xt) that can depend on observable state variables, xt. The initial price-

setting component ρτ (xt) is used to set prices at the beginning of each period, e.g., pa0 = ρ0(x0)

in period 0. Within each period, the faster firm can observe its rivals price, pbt, and the algorithm

adjusts price according to the update function, e.g., pat = σ0(p̂bt, xt). The parameter α ∈ [0, 1]

captures the speed advantage of the algorithmic firm when updating price in response to the

rival. The algorithmic firm’s initial price is relevant for fraction 1 − α of the period and the

update function is relevant for fraction α of the period.

These assumptions reflect features of software that is used to update prices automatically.

At the beginning of each period, the algorithm may update the price in response to new infor-

mation captured by xt. At the same time as these updates, firm b can also change its price,

but the decision of firm b is not known in advance by the algorithm. However, the algorithm

can observe pbt chosen at the beginning of period t and then update with a lag 1− α. One can

interpret our equilibrium analysis as conditional on a sequence of state variables; therefore,
14For simplicity, we assume there is no within-period discounting, consistent with the idea that the period is very

short in many real-world settings with pricing algorithms. However, it is straightforward to redefine α to account for
within-period discounting. Consider any α and any instantaneous within-period discount rate ν. Then there exists

an objective (non-discounted) speed advantage α̃ such that
∫ 1−α̃
0 e−νtdt∫ 1
0 e−νtdt

= 1−e−ν(1−α̃)

1−e−ν . For a given ν, the mapping

of α to α̃ is one-to-one.
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Figure 1: Timing with Differences in Pricing Speed

Period t Period t+ 1

Firm b

Firm a

1− α α

pbt pbt+1

ρt ρtσt(pbt) σt(pbt+1)

Notes: Figure shows timing of pricing when firm a, the algorithmic firm, sets algorithm Aα,γ
t at the start of

period t and remains committed to the algorithm in period t + 1. Labels show the relevant prices for each
segment given speed advantage α = 3/4.

going forward, we suppress xt in our notation. We return to examining unobserved demand

shocks in Section 5.

Figure 1 shows the timing of price adjustments when α = 3/4. Both firms can adjust prices

at t, firm a can adjust at t + 1 − α, and firm b must wait fraction α until t + 1 to adjust its

price in response. When α = 0, the algorithmic firm has no speed advantage and there is

simultaneous pricing. When α = 1, the algorithmic firm has maximum pricing speed and can

instantly react to pbt. In this way, the timing assumptions can be seen as a generalization of

standard simultaneous pricing and sequential pricing that nests both as special cases.

There are two ways to motivate the timing of the game. Firms may have differences in

pricing systems that allow one firm to set prices more frequently than the other, even when

both firms observe their rival’s price changes immediately. For instance, if firm a can update

price once every 15 minutes and firm b can update price once per hour, then α = 3/4, as only

the first opportunity for firm a to change its price after observing firm b’s price is consequential.

An alternative motivation for the timing in our model is that firms differ in terms of how quickly

they can observe and react to their rival’s price. For example, suppose that both firms can update

prices at any time, but firm a observes firm b’s price with a 15 minute lag and firm b observes

firm a’s price with a 1 hour lag. In this case, the only consequential opportunities for firm a to

adjust price are concurrently with firm b and 15 minutes later. Under this interpretation of the

model, α = 3/4 reflects the ratio of firm a’s time after observing its rival’s price (and before its

rival can react) to firm b’s time to observe their rival’s price. Large differences in the frequency

with which firms can update or observe rival prices have been observed in markets such as

online retail and retail gasoline (Brown and MacKay, 2023; Byrne et al., 2025).

Firm a has an indefinite commitment to the algorithm over future periods, which is cap-

tured by γ. This reflects the fact that a firm re-programs an algorithm only infrequently, even

if the algorithm itself can respond at high speed. When the firm is not updating the algo-

rithm, the price is set automatically by the algorithm at each price change opportunity, e.g.,

t ∈ {1 − α, 1, 2 − α, 2, 3 − α...}. At the beginning of each period, with probability γ, the firm
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remains committed to the algorithm and cannot manually update the algorithm or its price.

With probability 1 − γ, the firm can update the algorithm, at which point it also picks a new

initialization price.

The algorithmic firm’s decisions can be expressed as a dynamic problem:

V0(t) =max
A|pbt

(1− α)πa(ρ, pbt) + απa(σ(pbt), pbt) + βγV1(t+ 1,A) + β(1− γ)V0(t+ 1) (2)

V1(t,A) =(1− α)πa(ρ, p
∗
bt) + απa(σ(p

∗
bt), p

∗
bt) + βγV1(t+ 1,A) + β(1− γ)V0(t+ 1) (3)

starting with t = 0 and for each integer t thereafter. V0(t) provides the value function when

firm a can update the algorithm, and V1(t,A) provides the value function when the firm is

committed to algorithm A. Here, p∗bt gives the optimal reaction by firm b to A. Firm a can

anticipate the optimal response of firm b in future periods while it remains committed to the

algorithm.

2.3 The Rival without an Algorithm

We assume that firm b, the rival, sets prices to simply maximize current-period profits.

Assumption A1. In each period t ∈ {0, 1, 2, ...}, firm b solves the problem

max
pb|Aτ

(1− α)πb(pb, ρτ ) + απb(pb, στ (pb)) (4)

As discussed previously, the period length is defined by the frequency with which firm b updates

prices. Therefore, firm b’s pricing decision is made with respect to the entire period, and its

profit function is based on the full-period average of outcomes resulting from the initial price

and any within-period responses by the algorithmic firm. We assume that firm b does not take

into account future periods, which, in standard models, implies collusion is not attainable.

In this way, assuming firm b does not value future profits is a conservative assumption when

analyzing the potential for supracompetitive prices. We discuss the case in which firm b is

forward looking in Section 4.3.

Under this assumption, firm b does not respond to the fact that firm a makes a commitment

across periods. It does imply that firm b internalizes the algorithmic firm’s reaction within the

current period, i.e., it understands στ . We consider an extension in which firm b is naive about

the use of the algorithm in Section 5.

2.4 Equilibrium

Equilibrium is characterized by a sequence of realized algorithms {At} and prices {pbt} such

that equations (2), (3), and (4) are satisfied for all t. We use a condition akin to the standard

8



Nash equilibrium condition. When choosing an algorithm, firm a takes as given the current

price of firm b. When choosing a price, firm b takes as given the algorithm chosen by a.

With time-invariant profit functions, the problem is stationary. We can exploit the fact that

V0(t) = V0(t
′) for t, t′ ∈ N to express the algorithmic firm’s problem from equations (2) and (3)

as:

Ṽ (t) =max
A|pbt

(1− α)πa(ρ, pbt) + απa(σ(pbt), pbt) (5)

+

∞∑
s=t+1

(βγ)s−t ((1− α)πa(ρ, p
∗
bt) + απa(σ(p

∗
bt), p

∗
bt))

where Ṽ (t) = 1−β
1−βγV0(t). Going forward, we will make use of the fact that

∑∞
s=t+1(βγ)

s−t =
βγ

1−βγ to simplify notation. Because the profit function πa is quasi-concave (with a unique maxi-

mum), Ṽ (t) is quasi-concave.

Taking into account the response of the rival firm, we can reformulate equation (5) as

a constrained optimization problem that specifies whether a target price pair (p†a, p
†
b) can be

maintained in equilibrium. Specifically, we have firm a choose the target prices (p†a, p
†
b) that

maximize its discounted profits, subject to the algorithm technology and the incentive compat-

ibility constraint for firm b. This yields the following objective:

max
(p†a,p

†
b)|pbt

(1− α)πa(ρ, pbt) + απa(σ(pbt), pbt) +
βγ

1− βγ
πa(p

†
a, p

†
b) (6)

s.t. (i) ρ = p†a (7)

(ii) σ(pb) =

p
†
a if pb = p†b

Pa(pb) if pb ̸= p†b

(8)

(iii) πb(p
†
b, p

†
a) ≥ (1− α)πb(p̂b, ρ) + απb(p̂b, σ(p̂b)) ∀p̂b (9)

which is obtained by plugging in the target prices into equation (5).

The objective function is subject to three constraints: (i) firm a chooses the initial price ρ to

be equal to its target price, (ii) the update function provides firm a’s target price as long as firm

b follows its target price, and (iii) the target price for firm b satisfies its incentive compatibility

constraint.

When firm b does not choose pbt = p†b, the update function of the algorithm follows a

potentially arbitrary punishment function, Pa(pb). For our main results, we assume that the

punishment function is simply the one-shot best-response function for firm a:

Assumption A2. The punishment function is equal to firm a’s static best-response function, Pa(·) =
Ra(·).

It is typical in the literature on collusion to assume punishment strategies that are consistent
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with short-run non-cooperative behavior, and we follow that convention. We consider alterna-

tive punishment functions in Section 4.3.

There is a unique Markov perfect equilibrium characterized by the choice of A and pb that

satisfy the above conditions. Uniqueness is obtained under assumptions A1 and A2 when the

profit functions are well-behaved.15 The rival, by assumption, does not account for future prof-

its or respond to the history of play. Thus, its presence eliminates a large class of equilibria that

can be supported in repeated games. We illustrate this with benchmark cases in the following

section.

3 Benchmark Cases

Here, we present four benchmark equilibria under different assumptions about pricing speed

and commitment. These benchmark cases help to build intuition for these features and moti-

vate the general analysis that we present in Section 4. First, we consider the case when the

algorithmic firm has no speed advantage and no commitment. We then consider commitment

only and a speed advantage only as separate cases. The case with a speed advantage but

no multi-period commitment corresponds to the asymmetric commitment model analyzed in

Brown and MacKay (2023). We then consider commitment and speed advantage together in

the limiting case of maximal coercion.

For comparison, we will consider the outcome that maximizes joint profits, which we refer

to as the collusive outcome or collusion. This is the outcome if the rivals could create a perfect

cartel or if they merged and became a multi-product monopolist. The collusive outcome is

obtained when solving the objective function max(pa,pb) πa(pa, pb) + πb(pb, pa). We define each

firm’s share of collusive profits as the profits it earns at the collusive prices.

3.1 Simultaneous Pricing

Consider the case when α = 0 and γ = 0, so that the algorithm provides no commitment and

no speed advantage. The objective functions become

Firm a : max
A|pbt

πa(ρ, pbt) (10)

Firm b : max
pb|Aτ

πb(pb, ρτ ) (11)

which corresponds to the one-shot simultaneous price-setting game. Thus, the only subgame

perfect equilibrium is the Bertrand-Nash equilibrium. Though dynamic price-setting games
15Under more general forms for the punishment function, multiple equilibria can be obtained; thus, assumption

A2 can alternatively be viewed as a device for equilibrium selection.
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may, in general, yield multiple equilibria, the presence of a firm that maximizes current-period

profits greatly reduces the set of outcomes that can be sustained in equilibrium.

3.2 Multi-Period Commitment Only

In some settings, the algorithm may provide a commitment advantage but no speed advantage.

This is the case in the literature on learning algorithms and competition (e.g., Calvano et al.,

2020; Asker et al., 2024; Johnson et al., 2023), in which firms commit to learning algorithms

that set prices simultaneously. The analysis here can be roughly thought of as an extension of

these models, where one firm can endogenously choose the optimal algorithm and the other

firm uses a learning algorithm that recovers its true payoffs. We will not discuss learning here

but instead describe the long-run payoffs.

With no speed advantage, α = 0. Firm a has the objective function

max
A|pbt

πa(ρ, pbt)︸ ︷︷ ︸
Simultaneous

Pricing Incentive

+
βγ

1− βγ
πa(ρ, p

∗
bt)︸ ︷︷ ︸

Leader
Pricing Incentive

(12)

while firm b maximizes maxpb|Aτ
πb(pb, ρτ ). The objective function for firm a differs from that

of the one-shot benchmark due to the term βγ
1−βγπa(ρ, p

∗
bt), which is positive as long as βγ > 0.

The algorithmic firm balances the profits in the current period, conditional on pbt, against the

profits in future periods where the rival with slower pricing might update its price.

The second component in the objective captures the pricing incentive of a leader in a se-

quential pricing game. In equilibrium, p∗bt will be given by firm b’s static best-response function,

p∗bt = Rb(ρ). Because a anticipates profits in future periods that it is committed to the algorithm,

it internalizes the reaction of its rival. We refer to the combined term βγ as commitment, as β

and γ enter the model as a pair. We define full commitment as the limit as βγ goes to 1. In this

case, firm a becomes infinitely patient and has perfect commitment and the outcome is equiva-

lent to a sequential price-setting game in which firm a is the (Stackelberg) leader. For example,

in a setting in which firms update prices once per day, and firm a updates its algorithm once per

month on average, the outcome may be similar to sequential pricing, as firm a will primarily

internalize profits over future periods.

More generally, the equilibrium can be characterized as follows:

Proposition 1. When the algorithm enables commitment (γ > 0) but no speed advantage (α = 0),
the equilibrium lies along firm b’s best response function between the simultaneous price-setting
equilibrium and the sequential price setting equilibrium where the algorithmic firm is the leader.

When firms produce substitute goods and prices are strategic complements, both firms re-

alize higher prices compared to the price-setting (Bertrand-Nash) equilibrium. This follows
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similar logic to Proposition 2 of Brown and MacKay (2023). In contrast to the asymmetric com-

mitment model of Brown and MacKay (2023), when the firms have identical profit functions,

the algorithmic firm has a higher price than the rival.

All proofs are in Appendix A.1.

3.3 Faster Pricing Only

We now consider the case in which firm a has no multi-period commitment (γ = 0) but the

algorithm enables faster pricing updates (α > 0). The period t objective function for firm a

when it can update its algorithm becomes

max
A|pbt

(1− α)πa(ρ, pbt)︸ ︷︷ ︸
Simultaneous

Pricing Incentive

+απa(σ(pbt), pbt)︸ ︷︷ ︸
Follower

Pricing Incentive

(13)

while the objective function for firm b remains as given in equation (4).

This problem is equivalent to the asymmetric commitment model analyzed by Brown and

MacKay (2023). Following that analysis, it is weakly dominant for firm a to choose an update

function that corresponds to its static best-response function, σ(·) = Ra(·), which satisfies our

assumption A2.

In contrast to the above case with only multi-period commitment, the algorithmic firm

balances the simultaneous price-setting incentive with the sequential price-setting incentive

where it acts as the follower. Thus, following Proposition 2 from Brown and MacKay (2023),

the equilibrium lies on the algorithmic firm’s best-response function, between the simultaneous

and the sequential equilibrium. The parameter α indicates how much weight the rival with

slower pricing puts on the portion of the period after the algorithm update. As above, this

results in higher prices for both firms when the products are substitutes and prices are strategic

complements. However, this case will yield lower prices for the algorithmic firm, instead of

higher prices, when the firms have identical profit functions.

In the limiting case where α = 1, the algorithm yields the sequential price-setting equilib-

rium, with firm b acting as the leader and firm a acting as the follower. Thus, the two features

of the algorithms we study—speed and multi-period commitment—can generate sequential

equilibria where the algorithmic firm takes on either the leader or follower role.

3.4 Maximal Coercion

Our model introduces general coercive equilibria in which firm a may have both a speed ad-

vantage (α > 0) and commitment (βγ > 0). As we show, the combination of these features

generates distinct outcomes that benefit the algorithmic firm. Before considering the general

model in Section 4, we focus on the limiting case in which α = 1 and βγ becomes arbitrarily

12



Figure 2: Benchmark Equilibria, with Examples

No Commitment
(βγ = 0)

Full Commitment
(βγ → 1)

No Speed Advantage
(α = 0)

Simultaneous
Bertrand-Nash

(pa, pb) = (1.00, 1.00)

Sequential,
Firm a is Leader

(pa, pb) = (1.14, 1.05)

Fastest Pricing
(α = 1)

Sequential,
Firm a is Follower

(pa, pb) = (1.05, 1.14)

Maximal Coercion
(pa, pb) = (1.93, 2.15)

close to 1. In other words, firm a is infinitely patient, has full commitment, and can instanta-

neously react to the price of firm b in any period. We call this limiting case maximal coercion.

Under maximal coercion, firm a’s constrained optimization problem can be expressed as

max
(p†a,p

†
b)
πa(p

†
a, p

†
b) (14)

s.t. πb(p
†
b, p

†
a) ≥ max

pb
πb(pb, Pa(pb))

where Pa(·) = Ra(·) following Assumption A2. Firm a chooses a target price pair (p†a, p
†
b) such

that the incentive compatibility constraint for firm b, given by the second line, holds. The

incentive compatibility constraint indicates that firm b can deviate from the target price p†b and

receive profits that depend on the punishment function Pa(·) of firm a’s algorithm. Given that

the punishment function is equal to firm a’s static best-response function, firm b earns profits at

least as great as the sequential leader.16

3.5 Numerical Example

We illustrate our results with examples generated from a simple symmetric linear demand

system given by

Di(pi, p−i) = 1−
(
1

4
+
d

2

)
pi +

d

2
p−i (15)

where d ≥ 0 is an inverse measure of product differentiation. This demand system can be

derived from the quasilinear quadratic utility model (Singh and Vives, 1984). The goods do not

compete when d = 0 and are perfect substitutes when d = ∞. Without loss of generality, we

normalize marginal costs to zero.

Figure 2 provides the benchmark cases when d = 1. Prices are significantly higher under

maximal coercion compared to the other cases. In the sequential benchmark, prices are 5

percent and 14 percent higher for the two firms relative to the Bertrand-Nash equilibrium.

16Under standard smoothness conditions, the condition will bind exactly.
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With maximal coercion, the prices are 93 percent and 115 percent higher than Bertrand-Nash.

The maximal coercion equilibrium is obtained at the target price pair (p†a, p
†
b) that solves

equation (14). Here, the solution is (p†a, p
†
b) = (1.93, 2.15), which is obtained with the update

function

σ(pbt) =

1.93 if pbt = 2.15

(2 + pbt)/3 if pbt ̸= 2.15
(16)

Firm b sets price knowing that firm a’s algorithm will instantly update according to this rule. If

firm b sets the target price of 2.15, then its profit is πb(2.15, 1.93) = 0.76. If firm b deviates from

the target price, then firm a punishes by best responding, given by (2 + pbt)/3. Firm b has no

incentive to deviate from the target price since solving maxpb πb(pb, (2 + pb)/3) yields the same

profit as setting the target price.17

The implications of maximal coercion for profits are substantial. The algorithmic firm earns

profits of 0.75 in the Bertrand-Nash, 0.76 as the sequential leader, and 0.82 as the sequential

follower. In the coercive equilibrium, it earns 1.21. Thus, moving from the Bertrand-Nash

benchmark to maximal coercion increases the profits for firm a by 61 percent.

The maximal coercion outcome also benefits the algorithmic firm relative to the collusive

outcome. Given demand, collusive prices are (pa, pb) = (2, 2). With maximal coercion, firm b

is incentivized to set a price higher than the collusive price (2.15 versus 2) and the algorithmic

firm obtains higher profits for itself than its share of collusive profits (1.21 versus 1). In contrast,

firm b earns lower profits than its share of collusive profits.

4 Equilibrium Outcomes

4.1 Prices and Profits

We examine results for the coercive equilibrium. For illustrations, we use the demand system

from Section 3.5 with a differentiation parameter of d = 1.18 Figure 3 presents equilibrium

prices (panel (a)) and profits (panel (b)) in the case with full commitment (βγ → 1) and dif-

ferent values for the algorithmic firm’s speed advantage. The solid blue line represents the

algorithmic firm, while the dashed blue line represents the firm without the algorithm. The

black line shows joint profit-maximizing prices and profits that could be obtained under collu-

sion or if there was a multi-product monopolist. For comparison, we also plot the prices and

profits for Bertrand competition (yellow dotted line).

From this comparison, we obtain the following two results:

17Firm b’s optimal deviation from the maximal coercion equilibrium is to choose a price of 1.14, which would
imply that firm a’s algorithm sets a price of 1.05. These are the sequential leader and follower prices.

18We also simulate the same plot using logit demand and the patterns are quite similar. See Appendix Figure A-7.
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Figure 3: Prices and Profits in Coercive Equilibrium, by Algorithmic Firm’s Pricing Speed
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Notes: Panel (a) shows prices and panel (b) shows profits under Bertrand competition with simultaneous
pricing, coercion with full commitment (βγ → 1), and joint profit maximization. Figure shows the equilibrium
for different values of speed advantage α. Assumes d = 1 under linear demand given by equation (15).

Remark 1. In the coercive equilibrium, prices for some products can be higher than the prices that
maximize joint profits.

Remark 2. In the coercive equilibrium, the algorithmic firm can earn greater than its share of
profits under joint profit maximization.

For our example, joint profits are maximized when prices are set to 2, yielding profits of 1

for each product. Panel (a) shows that the price of the rival firm exceeds this level under full

commitment when the speed advantage for the algorithmic firm is sufficiently high (roughly

α > 0.8). The algorithmic firm has an incentive to coerce its rival to set a price greater than

the collusive level so that consumers substitute to the algorithmic firm’s product. With full

commitment and a speed advantage such that α is roughly more than 0.5, the algorithmic firm

earns more than its share of collusive profits.

We have shown that a speed advantage within periods and commitment across periods can

change the feasible profit set. The next result establishes sufficient conditions under which the

algorithmic firm can capture more than its share of collusive profits.

Proposition 2. There exists values α and βγ such that, for α > α and βγ > βγ, the algorithmic
firm earns profits greater than its share of profits under joint profit maximization, provided that
profits for firm b are higher with collusive prices than when firm b is the sequential leader.

When the algorithm can respond quickly and the level of commitment is high, the collusive

outcome is incentive compatible for firm b if it yields more profits than what it would obtain

by deviating (and facing the “punishment” by firm a’s algorithm). Hence, we require the firm’s
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Figure 4: Prices and Profits in Coercive Equilibrium, by Algorithmic Firm’s Commitment
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(b) Profits
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Notes: Panel (a) shows prices and panel (b) shows profits under Bertrand competition with simultaneous
pricing, coercion with maximum speed (α = 1), and joint profit maximization. Figure shows the equilibrium
for different values of commitment, βγ. Assumes d = 1 under linear demand given by equation (15).

share of collusive profits to exceed those received when it is sequential leader, which occurs for

common models of demand. If the incentive compatibility constraint is slack at collusive prices,

firm a can raise its own target price or lower the rival’s target price to increase its own profits.

Figure 3 indicates that there are three regions that characterize the relative prices of the

algorithmic firm and its rival. In the limiting case with no speed advantage, we obtain the

sequential-move equilibrium as discussed in Section 2. With a weak speed advantage, it is

optimal for the algorithmic firm to lead with a higher price than the rival and to use its threat

of punishment to prevent the rival from lowering its price further. For an intermediate range

of pricing speed, the algorithmic firm is able to incentivize the slower rival to set a higher price

than the algorithmic firm but cannot coerce the rival to set a price above the fully collusive

price. With very fast pricing, the algorithmic firm can coerce its rival into setting prices above

the fully collusive price. In all cases, prices of both firms are above the Bertrand price.

When the algorithmic firm’s speed advantage is small, the rival earns greater profits than

the algorithmic firm. Around α = 0.4, the lines for firm a and firm b intersect. These values

reflect the case when the incentives from commitment and the pricing advantage balance each

other out, yielding symmetric prices and profits.

Figure 4 shows the equilibrium cases when commitment (βγ) varies and α = 1. For these

cases, the algorithmic firm always prices lower than the rival and earns greater profits. Panel

(b) shows that the rival only earns profits equal to the sequential leader profits—close to the

competitive profits—in all cases. Thus, the algorithmic firm can use the threat of an immedi-

ate reaction to incentivize the rival to set higher prices and extract nearly all of the resulting

16



Figure 5: Profits by Pricing Speed and Commitment

(a) Algorithmic firm (firm a) (b) Rival without algorithm (firm b)

Notes: Panels (a) and (b) show profit regions for firm a and firm b for different values of the speed advantage
(α) and commitment (βγ). Region I indicates profits greater than under joint profit maximization (splitting
collusive profits), region II indicates profits greater than those of a sequential follower, region III indicates
profits greater than those of a sequential leader, and region IV indicates profits greater than under Bertrand
competition. Dashed lines show additional isoprofit curves, each indicating increments equal to one-fourth of
the difference between the collusive profits and the sequential follower profits. Assumes d = 1 under linear
demand given by equation (15).

producer surplus. The extent to which the algorithmic firm can do this in equilibrium depends

on its ability to commit. When commitment is low, firm a has a short-run incentive to reduce

prices given the high prices of its rival.

For this example, equilibrium prices are supermodular in speed and commitment. With only

commitment or only a speed advantage, the algorithmic firm is bounded in its ability to raise

prices to the sequential prices and payoffs. Appendix Figures A-3 and A-4 illustrate the cases of

βγ = 0 and α = 0, respectively, showing a modest increase in prices and profits. In the presence

of both features—as illustrated by moving left to right in Figure 3 or Figure 4—an algorithmic

firm can obtain substantially higher prices and profits. These complementarities are apparent

at intermediate values of commitment and speed advantage, as illustrated in Appendix Figures

A-5 and A-6. For example, the algorithmic firm can obtain profits greater than collusive profits

if either βγ = 0.5 or α = 0.5.

Figure 5 plots the profits obtained under all combinations of commitment and pricing speed.

Profit regions for the algorithmic firm are shown in panel (a) and those for the slower rival

are shown in panel (b). Region I indicates profits greater than symmetric collusion, region II

indicates profits greater than those obtained by a sequential follower, region III indicates profits

greater than those obtained by a sequential leader, and region IV indicates profits greater than

under Bertrand competition.

For this demand system, the algorithmic firm can obtain profits greater than the sequen-
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tial leader for almost all values of α and βγ. Moreover, many combinations of commitment

and speed can allow the algorithmic firm to obtain greater profits than the symmetric collusion

payoffs (region I). The slower rival also earns profits greater than the sequential leader for al-

most all values of α and βγ, but the potential increase in profits is lower than that of firm a,

never exceeding the share of profits obtained by joint profit maximization. Appendix Figure A-8

shows that we obtain similar patterns for the maximal coercion equilibrium for different val-

ues of (inverse) product differentiation, d. When the products are closer substitutes, coercion

has a larger effect, as measured by the price increase over the Bertrand equilibrium, the de-

crease in consumer surplus relative to the Bertrand equilibrium, and the increase in profits over

symmetric collusion for the faster firm.

These examples illustrate how speed and commitment benefit the algorithmic firm. We

formalize this for the generic case with the following propositions:

Proposition 3. For the algorithmic firm, profits are increasing in the speed advantage (α).

Proposition 4. For the algorithmic firm, profits are increasing in commitment (βγ).

Intuitively, a speed advantage within each period and commitment across periods are tools that

confer greater coercive power to the algorithmic firm. Greater speed allows the algorithmic firm

to punish more rapidly and coerce its rival to set higher prices. Greater commitment allows the

algorithmic firm to set a high price at the beginning of the period for its long-run benefit at the

expense of short-run profits.

As a corollary, firm a’s profits are greatest with maximal coercion: (α,βγ)=(1, 1). Equation

(14) illustrates why this is the case. Firm a maximizes long-run profits subject to a single

constraint, which is the least restrictive when α = 1.

4.2 Consumer Surplus

Figure 6 plots consumer surplus regions for different combinations of commitment and speed

advantage. Here, the regions are ordered from lowest to greatest consumer surplus. Region

I indicates consumer surplus less than under collusion, region II indicates consumer surplus

less than the sequential-move equilibrium, and region III indicates consumer surplus less than

under Bertrand competition. In this environment, consumers are always weakly worse off

than they would be under the Bertrand-Nash equilibrium. For most cases with this demand

system, consumer surplus is lower than under the sequential-move equilibrium. The dashed

lines indicate increments of consumer surplus equal to one-tenth of the difference between

consumer surplus under collusion and under the sequential-move equilibrium. Within region

II, there is a gradient reflecting a steady decline in consumer surplus as the speed advantage or

commitment increases. Consumer surplus can be closer to collusive levels than Bertrand levels

even with a modest speed advantage or modest degree of commitment.
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Figure 6: Consumer Surplus by Pricing Speed and Commitment

Notes: Figure shows consumer surplus regions for different values of the speed advantage (α) and com-
mitment (βγ). Region I indicates consumer surplus less than under collusion, region II indicates consumer
surplus less than the sequential-move equilibrium, and region III indicates consumer surplus less than under
Bertrand competition. Dashed lines indicate increments of consumer surplus equal to one-tenth of the differ-
ence between consumer surplus under collusion and under the sequential-move equilibrium. Assumes d = 1
under linear demand given by equation (15).

When βγ and α are both close to one, consumer surplus is lower than that obtained under

symmetric collusion (indicated by region I). Since the outcomes in region I also yield lower

joint profits than collusion, total welfare is also lower than the collusive outcome. We state this

as our next result:

Remark 3. Consumer surplus and total welfare can be lower in the coercive equilibrium than
under joint profit maximization.

This result reflects the fact that the algorithmic firm has the power to coerce the rival to set

a price higher than the collusive price when the speed advantage and degree of commitment

are high. Even though the algorithmic firm sets a price slightly lower than the collusive price,

consumers are harmed overall.

This analysis highlights how two features of algorithms—speed and commitment—provide

a substantial advantage to the adopting firm, especially when combined. In the following

sections we highlight that this finding is robust to a number of alternative assumptions.

4.3 Alternative Assumptions

We now consider how alternative assumptions affect our analysis. We consider a rival that

places value on future profits, alternative punishment functions used by the algorithm, and

moving from a duopoly setting to an oligopoly setting in which the algorithmic firm faces

several rivals.
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Forward-Looking Rival

Assumption A1 that firm b is short-sighted helps deliver a unique equilibrium and rules out

dynamic strategies that are used to sustain collusive outcomes. Here, we demonstrate that the

algorithmic coercion equilibrium persists even when the rival is forward-looking.

Suppose instead that firm b maximizes the sum of discounted profits. There exists an equi-

librium strategy where neither firm b nor firm a conditions on the history of play. The optimal

strategy of this form has firm b solving the following dynamic problem:

Vb(t,Aτ ) = max
pb|Aτ

(1− α)πb(pb, ρτ ) + απb(pb, στ (pb)) + β̂γVb(t+ 1,Aτ ) + β̂(1− γ)Vb(t+ 1,At+1)

where β̂ is firm b’s discount factor and At+1 denotes the algorithm chosen by firm a in period

t + 1. The evolution of the state to period t + 1 is independent of the choice of pb in period t.

Thus, a policy of choosing pb to maximize current-period profits is an equilibrium strategy and

the coercive equilibrium we characterize persists when firm b is forward-looking. When firm b

is forward-looking, we can no longer guarantee that there is a unique equilibrium. There may

be equilibria where both firms condition on the history of play, similar to traditional collusive

equilibria.

Alternative Punishment Functions

Our baseline model shows that a best-response punishment by the algorithmic firm is sufficient

to coerce its rival to set a significantly higher price. The assumption that the punishment is

the static best response is conservative and the algorithmic firm could potentially commit to

a harsher punishment. Appendix Figure A-9 shows the equilibrium under an alternative to

Assumption A2 in which firm a can punish by setting price equal to marginal cost (pa = 0 in the

example). The relationship between prices and pricing technology is similar; however, greater

punishment allows firm a to coerce its rival into setting even higher prices, resulting in higher

profits for the algorithmic firm for a given level of commitment.

Next, we consider an alternative assumption that the algorithmic firm employs price match-

ing for its punishment function, Pa(pb) = pb. Price matching, anecdotally, has been used in

online markets, and the literature has noted that such strategies could increase prices (e.g.,

Salop, 1986). Price matching is a less aggressive punishment than our baseline best-response

function. Equilibrium outcomes are shown in Appendix Figure A-10.

Similar to the other punishment strategies, prices and profits are increasing in the speed

advantage. However, when the algorithm can immediately react and the profit functions are

symmetric, the unique outcome is the collusive price, regardless of the level of commitment.

Intuitively, the algorithmic firm has to offer firm b profits greater than what it could obtain

by deviating. When firm b deviates and faces a price-matching punishment, it deviates to the
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collusive price. These simulations imply that the algorithmic firm would prefer to use a more

aggressive punishment, such as the static best response, when commitment is high because

it provides the firm with more than the collusive profits. However, there are cases with low

commitment in which the algorithmic firm may prefer to use a price matching approach.

We also consider a punishment function that is linear in rival’s price in the following section.

As we show, this punishment may be particularly relevant when the rival uses a naive learning

strategy.

N -firm Oligopoly

Our analysis can be extended to a more general oligopoly setting in which a single algorithmic

firm faces several rivals that do not use algorithms. We characterize the objective function of

the algorithmic firm facing multiple rivals in Appendix Section A.2. We show that speed and

commitment play similar roles for the case of a single algorithmic firm and two rivals. We then

examine how the maximal coercion equilibrium changes as the number of rivals increases. For

illustration, we use an extension of the demand system in equation (15). Appendix Figure A-2

shows that prices under maximal coercion are decreasing in the level of competition, but the

decrease is gradual. The coercive equilibrium leads to prices that are still 18 percent higher

than Bertrand prices with 10 rival firms.

5 Extension: Incorporating Learning

In the above analysis, we show how a firm with a high-speed pricing algorithm may unilaterally

implement supracompetitive prices when the slower rival understands (explicitly or implicitly)

the potential punishment strategy and resulting profits. We now consider the case in which the

slower rival is potentially uninformed about the strategy used by the algorithmic firm or its own

profit function. Instead, the rival learns over time by optimizing over price. We ask whether

the algorithmic firm can induce higher prices without announcing a strategy. We then simulate

learning to shed light on the speed of convergence to the long-run equilibrium. We show that

these strategies still converge on average in the presence of time-varying demand shocks.

5.1 Simple Learning and Linear Strategies

In many settings, it may be reasonable to assume that an equilibrium arises not from introspec-

tion by the players but rather from an iterative process of adaptive learning (Fudenberg and

Levine, 2016). Firms may not even internalize the fact that they are playing a game with a

strategic rival.19 Models of learning in economic games include fictitious play, reinforcement
19Given the complexity and number of products, online retailers are known to conduct pricing experiments as-

suming no strategic response by rivals (Hansen et al., 2021).
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learning, and gradient learning. Different learning models can have different convergence

properties. The recent literature has shown that different classes of learning algorithms may or

may not converge to Bertrand-Nash equilibria.20

We focus on gradient learning by the slower firm. Gradient learning is a particularly naive

strategy that requires minimal inputs. The slower rival does not take into account the actions

or strategies of the algorithmic firm, nor does it form beliefs about the economic environment.

Gradient learning captures the fact that many firms simply adjust prices in the direction that

increases current-period profits until profits are maximized. In particular, we assume that the

slow firm starts with two guesses for its optimal price, pb0 = p̂0b and pb1 = p̂1b , with p̂0b ̸= p̂1b . For

period t ≥ 1, the firm updates its price following

pb(t+1) = pbt + λ
∂̂πb
∂pb

∣∣∣
pbt

(17)

where ∂̂πb
∂pb

is the firm’s estimate of the gradient of its profits with respect to its own price.

Gradient learning is also closely related to A/B testing in which firms use price experiments

to determine whether to raise or lower prices, a commonly used approach in online markets.

It has desirable properties for our purposes. In a simultaneous game in which both firms use

gradient learning, the strategies converge to the Bertrand-Nash equilibrium as long as price

adjustments are relatively smooth (λ is not too large).21 We consider the case in which the

slower rival employs gradient learning and ask whether the algorithmic firm can implement

a pricing strategy that results in supracompetitive profits. Throughout, we assume λ is small

enough to ensure convergence.

In contrast to the previous sections, we assume here that the algorithmic firm adopts a

linear punishment strategy instead of the discontinuous trigger strategy in Assumption A2. In

particular, for a target price pair (p†a, p
†
b), the faster firm chooses pa = p†a at the beginning of the

period and then updates its price according to the linear pricing rule:

σ(pb) =

p
†
a − ϕ(p†b − pb) if p†a − ϕ(p†b − pb) ≥ 0

0 otherwise
(18)

Thus, the punishment depends on how far from the target price the slower rival deviates, and

the degree of punishment is captured by ϕ. Note that, by assumption, σ(p†b) = p†a. We focus on

linear strategies because the linearity helps ensure that experimentation by the slower firm will

converge to the desired price of the faster firm as we show below. In practice, pricing strategies
20For example, the Q-learning algorithms studied in Calvano et al. (2020) do not generally converge to Bertrand-

Nash, while Asker et al. (2024) show that imposing additional assumptions on this class of algorithms does lead to
convergence.

21See Anufriev et al. (2013).
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that are linear in rivals’ prices are common.22

Throughout, we assume that the algorithmic firm can fully commit to the linear pricing rule

given by equation (18). This also implies that the firm does not adjust its strategy to manipulate

the rate of learning of the slower firm.

5.2 Coercive Linear Strategies with Simple Learning

We now solve for the pricing rule and equilibrium prices. The algorithmic firm attempts to

induce the target price vector (p†a, p
†
b). To constrain the slope of the reaction by the algorithmic

firm, we assume that the linear slope of the pricing rule passes through the point (0, 0) and the

target price vector. Linear strategies of this form have the property that the faster firm’s price

changes in response to any non-negative price chosen by the slower rival. This implies ϕ = p†a
p†b

.

For expositional clarity, we assume pb ≥ 0.

Under these assumptions, the objective function can be written as:

max
(p†a,p

†
b)
πa(p

†
a, p

†
b) (19)

s.t. p†b = argmax
pb|A

(1− α)πb(pb, p
†
a) + απb(pb, ϕpb) (20)

where the initial price in each period, ρ, is equal to p†a, and where the update function is given

by σ(pb) = ϕpb. As before, the algorithmic firm chooses a target price vector subject to the

incentive compatibility constraint of the slower rival.

The slower rival’s first-order condition can be expressed as

(1− α)
∂πb(pb, p

†
a)

∂pb
+ α

∂πb(pb, ϕpb)

∂pb
+ αϕ

∂πb(pb, ϕpb)

∂pa
= 0 (21)

Because ϕ = p†a
p†b

, the algorithmic firm’s pricing rule can be written in terms of the implicit

function p∗b(p
†
a) that solves the above first-order condition. Let p∗a(p

†
b) be the algorithmic firm’s

price as a function of the target p†b when the constraint p†b = p∗b(p
†
a) holds. Given the implicit

functions p∗a and p∗b , we can express the algorithmic firm’s problem as

max
p†b

πa(p
∗
a(p

†
b), p

†
b). (22)

The solution is given by the first-order condition

∂πa(p
∗
a(p

†
b), p

†
b)

∂pa

∂p∗a(p
†
b)

∂p†b
+
∂πa(p

∗
a(p

†
b), p

†
b)

∂pb
= 0 (23)

22Pricing rules that undercut a competitor’s price by a specific amount are an example of linear strategies and
have been observed in a variety of settings (Chen et al., 2016; Musolff, 2024).

23



Figure 7: Coercive Strategies with Linear Pricing Rule
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Notes: Panel (a) shows prices and Panel (b) shows profits under Bertrand competition with simultaneous
pricing, coercion in which the faster firm uses a linear punishment rule and has full commitment (βγ → 1),
and joint profit maximization. In the coercion case, the firms simultaneously set prices at the beginning of
the period and then the algorithmic firm has speed advantage α. Assumes d = 1 under linear demand given
by equation (15).

This first-order condition provides the optimal target price, p†b, that the algorithmic firm

chooses for the slower rival. The optimal price for the algorithmic firm is then p†a = p∗a(p
†
b). The

solution reflects the fact that the algorithmic firm chooses to coerce the slower rival to set the

target price knowing that the rival will maximize profit.

We depict the (long-run) equilibrium for different values of firm b’s pricing speed in Fig-

ure 7. Panel (a) displays prices for both the algorithmic firm and the slower rival. Prices are

consistently higher than Bertrand prices, and they increase with a greater speed advantage α.

The algorithmic firm’s price is lower than the rival’s price when the speed advantage is suf-

ficiently high. These patterns are similar to the model in the previous section assuming the

firm uses a trigger strategy (Figure 3). However, given the linear restriction on punishment,

the algorithmic firm cannot coerce its slower rival to set prices higher than the collusive price,

indicating that the linearity of the strategies does limit the degree to which prices increase.

Panel (b) of Figure 7 displays the profits. Profits for the algorithmic firm are increasing in

α, but profits for the slower rival are non-monotonic. With a large enough speed advantage,

the algorithmic firm can make higher profits than (its share of) the full collusion profits, even

with the linear restriction on the pricing rule. With α = 1, the slower rival earns higher profits

than in the case with coercive non-linear strategies (Figure 3).

One way to interpret the model is that a high-speed pricing algorithm can effectively modify

a naive rival’s perceived profit function. A naive rival that only considers the impact of its

own price on its profit solves a simple (single-argument) objective function. Given that the
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Figure 8: Perceived Profit Function for the Naive Rival
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Notes: Figure shows perceived profits for firm b as a function of its own price, under three different values of
the algorithmic firm speed advantage, α. α = 0 indicates no pricing speed advantage while α = 1 indicates
fastest pricing. Assumes d = 1 under linear demand given by equation (15).

algorithmic firm’s pricing rule punishes the rival less as the rival raises price, this encourages

the firm to raise price above the Bertrand price. We illustrate this with examples in the following

section.

5.3 The Learning Process and Convergence

The linear strategies we analyze provide smooth, concave objective functions for our demand

system and lead to rapid convergence for the learning firm.

Proposition 5. Under linear demand, when firm a implements the optimal linear pricing rule, firm
b profits are increasing in price for any pb < p†b and decreasing in price for any pb > p†b. Therefore,
provided λ is not too large, the use of gradient learning by firm b will result in convergence to the
target price chosen by firm a for any initial price pair (p̂0b , p̂

1
b).

Figure 8 plots an example of the perceived profit function for the naive rival under different

values of α for the case of linear demand. The dotted yellow line shows the benchmark case

with simultaneous pricing (α = 0) when the algorithmic firm chooses the Bertrand-Nash equi-

librium price. In this case, firm b maximizes profit at pb = 1. When firm a has faster pricing and

uses the linear algorithm, firm b has a smooth, single-peaked perceived profit function much

like under the simultaneous pricing case; however, the profit function is shifted to the right.

Two examples, for α = 0.5 and for α = 1, are shown in Figure 8. The maximum of this function

is obtained at a price of 1.33 when α = 0.5. With α = 1, firm b maximizes its perceived (and

actual) profits at an even higher price, 1.73.
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Figure 9: Simulated Learning with Linear Pricing Rule
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Notes: Charts show simulated price paths when the naive firm is assumed to use gradient learning. The
orange line shows price and profit for firm b, where price is updated in period t + 1 following p̂t+1

b = p̂tb +

λ
πb(p̂

t
b,p

t
a)−πb(p̂

t−1
b

,pt−1
a )

p̂t
b
−p̂t−1

b

where the price adjustment step size, λ, is 0.2. The blue line shows price and profit

for firm a, which uses a linear pricing rule described in Section 5.2 with pricing speed given by α = 0.7.
Assumes d = 1 under linear demand given by equation (15).

In Figure 9, we simulate an example in which firm a implements the linear pricing rule and

has a moderate speed advantage (α = 0.7). Firm b is naive and starts by setting an arbitrary

price and attempts to maximize profits using gradient learning. We assume firm b approximates

the derivative of profits using the most recent two prices and profit realizations. Therefore,

after the firm sets price p̂tb at time t, the firm’s beliefs about the derivative of its profit with

respect to price is given by
∂̂πb
∂pb

∣∣∣
pbt

=
π∗bt − π∗b(t−1)

pbt − pb(t−1)
(24)

where π∗bt is the realized profit for period t. Note that firm b need not observe firm a, only the

profits it received over the period. Then, the firm updates price according to equation 17. We

assign a value of λ = 0.2.

For this simulation, we assume firm b initially tries a price below the Bertrand price. As

shown in Figure 9 Panel (a), firm a initially sets the target price at the start of each period

but undercuts firm b after observing the rival’s price and applying the optimal long-run linear

pricing rule (which we provide in Appendix equation (A-9)). Firm b observes that profits are

increasing in its own price and therefore tries higher and higher prices. This is because the

algorithmic firm’s punishment becomes less severe as firm b tries higher prices. Panel (b) shows

that raising prices above the Bertrand price continues to increase firm b’s period profits until

the equilibrium is reached after about 20 periods. Firm a’s price initially oscillates to coerce the

rival to set a higher price. However, after prices converge to the equilibrium, firm a’s price at
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Figure 10: Convergence of Simulated Learning with Linear Pricing Rule versus Simultaneous
Pricing
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(b) High Price Adjustment Step Size (λ = 0.6)
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Notes: Charts show simulated price paths with different initial prices when the naive firm is assumed to use

gradient learning. Prices are updated in period t+1 following p̂t+1
b = p̂tb +λ
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. The blue

lines show a simultaneous pricing game that results in Bertrand prices. The orange lines show the game in
which the algorithmic firm has maximum pricing speed (α = 1) and uses the linear pricing rule described
in Section 5.2. Panel (a) shows learning with price adjustment step size of 0.2 and Panel (b) shows learning
with a price adjustment step size of 0.6. Assumes d = 1 under linear demand given by equation (15).

the beginning of the period, p†a, is the same as the price calculated using the pricing rule, ra(p
†
b).

Figure 10 examines convergence from multiple starting prices when α = 1. First, we con-

sider the standard case of a simultaneous pricing game as a benchmark for comparison. As is

well known, prices converge to the Bertrand equilibrium from a variety of starting values in a

standard simultaneous pricing game under gradient learning. This is shown by the blue lines.

Convergence takes about 15 periods as seen in both panel (a) with a low step size and panel

(b) with a higher step size. Under coercive linear strategies, the naive firm’s price converges to

a supracompetitive level for a variety of initial values, as illustrated by the orange lines in Fig-

ure 10. Comparing Panel (a) and Panel (b), convergence is somewhat slower than the standard

simultaneous pricing case for a low price adjustment step size but is somewhat faster for a high

price adjustment step size.

Regardless of the initial price, convergence occurs quickly, though it does depend on pricing

speed and the choice of step size, λ. For each value of α and λ, we simulate the price paths for

a grid of 1,000 initial prices. Figure 11 shows the average number of periods to convergence

to within 0.1 percent of the target prices for a range of α and λ.23 Regardless of the value of

the learning parameter, the number of periods to convergence is reasonable in our simulations.
23To ensure that prices have converged, we identify the first instance for which prices fall within a given tolerance

and stay within that tolerance for the next 10 periods in our simulations. Given the nature of gradient learning, this
ensures that the price does not drift outside of this tolerance in future periods.
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Figure 11: Convergence Speed by Pricing Speed and Price Step Size

Notes: Figure shows the number of periods until convergence for different simulation parameters when a
naive firm is assumed to use gradient learning. The x-axis is the speed advantage of the algorithmic firm (α)
and the y-axis is the learning step size (λ). For each value of α and λ, we simulate price paths from 1,000
values of initial starting prices from a grid between 0 and 2 and then average the number of periods until
convergence. Convergence is defined as being within 0.1% of the equilibrium price. Darker color indicates a
larger number of periods until convergence. Simulations assume the algorithmic firm uses the linear pricing
rule described in Section 5.2. Assumes d = 1 under linear demand given by equation (15).

Moreover, for every value of α, there is a learning parameter λ such that the coercive strategies

converge to the target prices in less than 10 periods on average. Higher step sizes tend to

converge faster when α is large. Consistent with Proposition 5, the simulations always converge

to the coercive equilibrium.24

To consider the sensitivity of our results to a static environment, we simulate learning by

firm b in the presence of unobserved demand shocks. We modify our demand system to let

Di(pi, p−i) = xt −
(
1
4 + d

2

)
pi +

d
2p−i where demand shock xt is distributed uniformly and

E[xt] = 1.25 While demand shocks add randomness to the learning process, prices still con-

verge to the same equilibrium on average. This can be seen in Appendix Figure A-12, which

shows simulated prices for different magnitudes of the demand shock affecting the demand

intercept. The presence of demand shocks adds error to firm b’s estimated gradient, causing

firm b to not always adjust prices in the direction that maximizes expected profits. Despite this,

average prices across simulations still converge quickly (on average) to the equilibrium derived
24Appendix Table A-1 provides statistics on the number of periods to convergence under more and less stringent

convergence criteria. When the convergence criterion is within 1 percent of the target price, λ can be chosen such
that convergence takes no longer than 9 periods for a wide range of starting values.

Appendix Figure A-11 shows the mean number of periods until convergence for α = 1 compared to the simulta-
neous pricing case for different learning parameters. The fact that convergence in the coercive linear strategy case is
faster for large step sizes is due in part to the fact that there is less likely to be price oscillations during the learning
process, as seen in Figure 10 Panel (b).

25For this example, if firm a observes demand shock xt, the optimal linear pricing rule remains unchanged; it is
the same as the case where xt = 1.
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in Section 5.2.

These results highlight that when an algorithmic firm uses the coercive linear strategy we

outline above, the coercive equilibrium is robust to a naive firm using gradient learning. Over-

all, convergence is very fast, making it realistic for firms to implement in practice even in the

presence of demand shocks. This can be contrasted with reinforcement learning algorithms,

which may be impractical in some settings since convergence can be quite slow.26

We consider relatively simple pricing algorithms that are linear in rival’s price. Pricing al-

gorithms could in principle take more general forms, allowing greater flexibility in strategically

modifying a rival’s perceived profit function. For instance, a pricing algorithm that is a non-

linear function of rival’s prices could potentially coerce rivals using naive learning strategies to

raise prices to even higher levels than those under linear pricing rules. An algorithm that is

a nonlinear function of rival’s prices could also ensure that a naive firm is maximizing a con-

cave profit function for more general demand systems, ensuring that there is convergence to

supracompetitive prices under a variety of naive learning strategies.

6 Extension: Pricing Algorithms on Platforms

Large online platforms, such as online retailers, are often able to determine the technology

available to different sellers that compete on their platform. Amazon, for example, allows mar-

ketplace retailers to use pricing algorithms provided by Amazon and also algorithms designed

by third parties. Even when providing freedom about which pricing rules sellers employ, a large

platform can regulate, or control, certain features of the algorithms, such as how often they can

update prices and how frequently a firm may switch its pricing rule.

In this section, we consider an environment where a platform can endogenously choose

algorithmic technology parameters governing speed and commitment, α and γ, for sellers on

the platform. We consider this choice in the context of our baseline model, where seller a has

an algorithm that enables faster pricing and commitment and seller b does not. We explore

how different objective functions of a platform can lead to different incentives for algorithmic

technology adoption.

Our analysis shows that a platform that prioritizes producer surplus has an incentive to

allow some sellers to have pricing algorithms with commitment and a speed advantage. By

doing so, the platform can soften competition on the platform without resorting to coordinating

behavior of the sellers. If a platform is vertically integrated and competes with a seller on the

platform, the platform will have an incentive to use faster pricing and commitment to obtain a

competitive advantage.

We assume that the platform cares about profits earned by sellers. For simplicity, we assume

26For instance, den Boer et al. (2022) find that pricing algorithms based on Q-learning algorithms can take tens
of thousands of iterations to converge and argue that these algorithms are “intrinsically slow.”
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Figure 12: Optimal Technology Parameters by Platform Objective Function
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Notes: Shows the optimal speed advantage (α) and commitment (βγ) that solve different objective functions
for a platform where ψ is the weight on consumer surplus. The black line shows the optimal algorithm
characteristics given a platform maximizing a weighted sum of total producer surplus and consumer surplus
where points on the line represent different weights. The dashed blue line shows the optimal algorithm
characteristics given a platform maximizing a weighted sum of firm a’s profits and consumer surplus. The
dotted orange line shows the optimal algorithm characteristics given a platform maximizing a weighted sum
of firm b’s profits and consumer surplus. Assumes d = 1 under linear demand given by equation (15).

the platform earns non-distortionary commissions from these profits. The platform may also

have dynamic incentives to retain consumers. We represent this in its objective function by

placing some weight on consumer surplus.27 We assume the platform commits to technology

parameters for an indefinite period. Due to the stationarity of the model, we can represent

the platform’s surplus as being proportional to current profits and weighted consumer surplus,

yielding the following objective:

max
α,γ

π∗(α, γ) + ψCS∗(α, γ). (25)

Here, π∗(α, γ) represents per-period equilibrium profits and CS∗(α, γ) represents per-period

equilibrium consumer surplus given algorithm speed and commitment α and γ.28 The weight

on consumer surplus is given by ψ. Though stylized, this objective function allows us to capture

the key tradeoff a platform faces in terms of the surplus of different platform participants.

We initially assume π∗(α, γ) represents the joint profits of both sellers a and b. For each

possible value of ψ, we solve for equilibrium prices, profits, and consumer surplus. We then

solve for the pair (α, γ) that maximizes the platform’s objective using the linear demand given

by equation (15) and a value of d = 1.
27This can be microfounded by assuming, for example, that consumers have switching costs and may stop using

the platform if not given enough surplus. See, e.g., Gutierrez (2022).
28Without loss of generality, we let β → 1 and consider only variation in γ.
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Figure 12 plots the optimal technology parameters as a function of ψ. The black line shows

the optimal speed and commitment when π∗(α, γ) represents total producer surplus. For ψ ∈
[1,∞], the optimal technology parameters yield α = 0 and γ = 0, generating the standard

Bertrand-Nash equilibrium with no speed advantage and no commitment. Consistent with

standard intuition in these models, the baseline “competitive” environment maximizes total

surplus (ψ = 1).

When the platform puts less weight on consumer surplus, the platform chooses technology

parameters that provide firm a with a speed advantage (α > 0) and some multi-period commit-

ment (γ > 0). When consumer surplus is valued half as much as profits (ψ = 0.5), the platform

chooses (α, γ) = (0.23, 0.71). That is, it allows partial commitment and a modest speed advan-

tage for firm a. When ψ = 0.25, the platform chooses full commitment (γ = 1) and α slightly

higher than 0.5.

As the relative weight on profits increases, the platform increases α to give firm a an even

greater speed advantage. When maximizing producer surplus only, the platform chooses a

value of α close to 0.8. This yields the outcome with the greatest joint profits.

One can also consider a platform that prioritizes profits for only one seller. This could

be the case if the platform is partially vertically integrated and sells a product that competes

with products sold by an independent seller. Alternatively, the firm could have contractual

arrangements that prioritize one seller. The case in which π∗(α, γ) includes only the profits

of firm a is depicted by the dashed blue line. In contrast to the case where π∗(α, γ) is total

producer surplus, the platform is incentivized to prioritize a speed advantage for firm a. This

is illustrated by the fact that the dashed blue line lies to the left of the black line. As before,

any value of ψ ∈ [1,∞] leads to simultaneous pricing. However, a consumer surplus weight

of 0.5 yields α = 1 and γ ≈ 0.05 as the optimal choice. As ψ decreases, the platform would

continue to increase the value of commitment. When ψ = 0 and the platform is tasked with

maximizing firm a’s profits only, the platform would choose the parameters that yield maximal

coercion. The difference between the black line and the dashed blue line in Figure 12 indicates

that a speed advantage can generate increased profits for firm a at the expense of total producer

surplus.

Finally, one can consider the case in which the platform prioritizes firm b profits (π∗(α, γ)

represents the profits of firm b only). This is depicted by the dotted orange line. In this case, it

is optimal for the platform to prioritize commitment rather than a speed advantage. Even with

ψ = 0, the platform would only allow a modest speed advantage with its pricing algorithms. A

greater speed advantage would reduce the profits of firm b (but yield greater total profits).

This extension illustrates how different welfare weights can lead to different values for

endogenously chosen technology parameters under our equilibrium concept. A social planner

that puts equal weight on the profits of the two firms and consumers would choose simultaneous

pricing—i.e., not allow algorithms that provide a speed advantage or commitment. In contrast,
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a platform placing more weight on producer surplus than consumer surplus has an incentive to

enable pricing algorithms on the platform for a subset of sellers. By providing some firms with

commitment and a speed advantage, the platform can generate coercive equilibria, softening

competition among sellers even when they behave non-cooperatively. This is especially likely to

be the case for a platform with significant market power that places little weight on consumer

surplus. However, a platform aiming to maximize joint profits of sellers does not have an

incentive to allow sellers to engage in maximal coercion (α = 1 and γ = 1).

Another implication is that, if the platform sells its own products on the platform, it will

have an incentive to give itself the pricing algorithm. In this case, the platform will give it-

self maximum pricing speed and commitment to gain a competitive advantage unless it puts

significant weight on consumer surplus. To the extent that the platform cares about consumer

surplus, the platform may only give itself a speed advantage and limited ability to commit.

Finally, if the platform’s objective were more strongly tied to the slow firm, it would prioritize

commitment instead.

7 Conclusion

This paper examines how pricing algorithms that combine speed within a period and commit-

ment across periods can fundamentally alter competitive outcomes. We characterize a coercive

equilibrium in which a fast, algorithmic firm unilaterally induces its rival to set supracompeti-

tive prices, even when that rival is short-sighted and cannot sustain collusion.

We highlight an important interaction between pricing speed and commitment. A firm

with faster pricing than a rival can threaten to quickly undercut a rival’s price unless it sets

a high price. Commitment across periods makes this strategy optimal from the perspective

of the algorithmic firm. An algorithm that enables both a speed advantage and commitment

combines the ability to punish like a follower and the ability to commit to an initial high price

like a leader. In this way, an algorithmic firm can extract a disproportionate share of industry

profits. In some cases, coercion can result in prices that are “supracollusive”, leading to worse

outcomes for consumers and lower overall welfare than collusion. Our analysis of pricing rules

that are a linear function of the slower rival’s price demonstrates that such strategies can lead

to supracompetitive prices while potentially raising less antitrust scrutiny and being robust to

the use of simple learning strategies by the slower firm. We argue that the equilibria explored

in this paper are more robust than standard collusive equilibria, which require all firms to be

forward looking and understand the dynamic strategies of rivals. Coercive equilibrium can arise

even when rivals are naive—they need not understand the nature of the game.

One implication of the model is that, consistent with claims by pricing algorithm providers,

firms always benefit from reacting faster to their competitors’ prices. While we take differences

in pricing speed across competitors as given, there could be an “arms race” in which firms
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compete to price faster than rivals. In other settings, such as high-frequency trading, it has

been noted that such an arms race to invest in technologies that allow for faster responses can

be inefficient (Budish et al., 2015).

Overall, our results suggest a broad scope for firms to strategically increase prices using

high-speed pricing algorithms. Algorithmic firms may be able to manipulate their rivals into

setting prices above the competitive levels even when characteristics of the market would rule

out traditional collusive strategies, such as short-termism or naive learning. There is an oppor-

tunity for future research to examine the extent to which pricing strategies and algorithms used

in practice may raise prices based on the features we identify here.
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Appendix

A.1 Proofs

Proof of Proposition 1

In equilibrium, firm b chooses p∗bt = Rb(ρ), where Rb(ρ) is firm b’s best response. Thus, firm a’s

problem with commitment and no speed advantage can be expressed as

max
ρ|pbt

[
πa(ρ, pbt) +

βγ

1− βγ
πa(ρ,Rb(ρ))

]
(A-1)

Firm a’s problem in a simultaneous price-setting game and in a sequential price-setting game

(where firm a is the leader) are given by maxρ πa(ρ, pbt) and maxρ πa(ρ,Rb(ρ)), respectively.

In (A-1), firm a maximizes a weighted sum of these two objective functions. Given that πa is

quasi-concave, firm a’s equilibrium price lies between the ρ that solves the simultaneous price-

setting game and the ρ that solves the sequential price-setting game where firm a is the leader.

□

Proof of Proposition 2

Denote the joint profit-maximizing (collusive) prices (pCa , p
C
b ) and the sequential-move prices

where firm b is the leader as (pSa , p
S
b ), i.e.,

pSb = argmax
pb

πb(pb, Ra(pb)) (A-2)

pSa = Ra(p
S
b ) (A-3)

andRa(pb) provides firm a’s static best-response function. The collusive prices satisfy (pCa , p
C
b ) =

argmax(pa,pb) [πa(pa, pb) + πb(pb, pa)] and yield the first-order conditions ∂πa
∂pa

+ ∂πb
∂pa

= 0, ∂πb
∂pb

+
∂πa
∂pb

= 0.

It is sufficient to consider the maximal coercion case (α = 1, βγ = 1) where the algorithmic

firm’s objective is:

max
(p†a,p

†
b)
πa(p

†
a, p

†
b) (A-4)

s.t. πb(p
†
b, p

†
a) ≥ max

pb
πb(pb, Ra(pb))

The additional condition used in the proposition is that πb(pCb , p
C
a ) > maxpb πb(pb, Ra(pb)) =

πb(p
S
b , p

S
a ). This establishes that a candidate target price vector (p†a, p

†
b) = (pCa , p

C
b ) satisfies the

incentive compatibility constraint under maximal coercion. Moreover, the constraint is slack

because the inequality is strict.
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Therefore, firm a can profitably deviate by either decreasing p†a or increasing p†b, since:

∂πa(pa, p
C
b )

∂pa
< 0 at pa = pCa (A-5)

∂πa(p
C
a , pb)

∂pb
> 0 at pb = pCb (A-6)

The second inequality holds because products are substitutes, and the first inequality follows

from the sign of the second inequality and the first-order condition for joint profit maximization.

Thus, firm a can choose target prices to increase its profits beyond πa(pCa , p
C
b ) without violating

firm b’s incentive compatibility constraint.

We have shown that a profitable deviation exists for α = 1 and βγ = 1. Because Propositions

3 and 4 establish that profits are increasing in the speed advantage and commitment, there exist

threshold values α and βγ such that, for α > α and βγ > βγ, the algorithmic firm earns profits

greater than its share of profits under joint profit maximization. □

Proof of Proposition 3

We show that this holds for any α > 0, including α arbitrarily close to zero. We establish

that, in equilibrium, the target price p†b is greater than the optimal price firm b would choose

when holding fixed firm a’s price at p†a. We proceed by contradiction. Denote this latter price

as p̃b = argmax
pb|p†a

πb(pb, p
†
a). If p̃b > p†b, then, by the fact that the goods are substitutes,

πa(p
†
a, p̃b) > πa(p

†
a, p

†
b). This contradicts the fact that (p†a, p

†
b) is a solution to firm a’s problem,

because the alternative target price vector (p†a, p̃b) would provide greater profits for firm a while

still satisfying firm b’s incentive compatibility condition. We also have that p̃b ̸= p†b because

p̃b = p†b only when p†b lies on firm b’s best-response function, and with α > 0 this is not the case.

Therefore, p̃b < p†b.

We can express the algorithmic firm’s constrained optimization problem as the Lagrangian

L = πa(p
†
a, pbt) +

βγ

1− βγ
πa(p

†
a, p

†
b) + λ

[
πb(p

†
b, p

†
a)−

[
(1− α)πb(p̂b, p

†
a) + απb(p̂b, Ra(p̂b))

]]
(A-7)

for p̂b that maximizes firm b’s deviation profits.29 The corresponding optimization conditions
29Technically, the incentive compatibility constraint holds for any deviation price by firm b (not just a particular

p̂b), but these constraints are non-binding for other choices of pb and therefore the corresponding Lagrangian
multipliers are zero. p̂b reflects the optimally chosen deviation.
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are:

[p†a] : 0 = π1a(p
†
a, pbt) +

βγ

1− βγ
π1a(p

†
a, p

†
b) + λ

[
π2b (p

†
b, p

†
a)− (1− α)π2b (p̂b, p

†
a)
]

[p†b] : 0 =
βγ

1− βγ
π2a(p

†
a, p

†
b) + λ

[
π1b (p

†
b, p

†
a)
]

[λ] : πb(p
†
b, p

†
a)−

[
(1− α)πb(p̂b, p

†
a) + απb(p̂b, Ra(p̂b))

]
where superscripts indicate derivatives with respect to the first or second argument.

From the second optimization condition, we solve for the Lagrange multiplier:

λ = − βγ

1− βγ

π2a(p
†
a, p

†
b)

π1b (p
†
b, p

†
a)

By the assumption that the products are substitutes, π2a(p
†
a, p

†
b) > 0. Conversely, because p̃b < p†b,

π1b (p
†
b, p

†
a) < 0. Therefore, λ > 0.

To determine the effect of α on the algorithmic firm’s profits, we take the derivative of the

Lagrangian with respect to α. This yields

dL
dα

=π1a(p
†
a, pbt)

∂p†a
∂α

+
βγ

1− βγ
π1a(p

†
a, p

†
b)
∂p†a
∂α

+
βγ

1− βγ
π2a(p

†
a, p

†
b)
∂p†b
∂α

+ λ

[
π1b (p

†
b, p

†
a)
∂p†b
∂α

+ π2b (p
†
b, p

†
a)
∂p†a
∂α

+
[
πb(p̂b, p

†
a)− πb(p̂b, Ra(p̂b))

]]

− λ

[
(1− α)π2b (p̂b, p

†
a)
∂p†a
∂α

]

where we have invoked the envelope theorem with respect to p̂b.

Plugging in the optimization conditions for p†a and p†b, we obtain:

dL
dα

=λ
[
πb(p̂b, p

†
a)− πb(p̂b, Ra(p̂b))

]
Note that p†a > Ra(p̂b) because the products are strategic complements in prices and it must

be that p̂b < p†b, following logic parallel to that at the beginning of this proof (that showed

p̃b < p†b). Then, because the products are substitutes, πb(p̂b, p
†
a) − πb(p̂b, Ra(p̂b)) > 0. Since

λ > 0, we obtain dL
dα > 0. Therefore, profits are increasing in the speed advantage. □
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Proof of Proposition 4

We begin with the Lagrangian introduced in the previous proof. Taking the derivative with

respect to βγ, while invoking the envelope theorem for p†a, p†b, and p̂b, we obtain

∂L
∂βγ

=
1

1− βγ
πa(p

†
a, p

†
b) +

βγ

(1− βγ)2
πa(p

†
a, p

†
b) =

1

(1− βγ)2
πa(p

†
a, p

†
b) (A-8)

Because profits are positive, ∂L
∂βγ > 0. Therefore, profits are increasing in commitment. □

Proof of Proposition 5

For the purposes of the proof, we assume that firm b knows the derivative of its profits at the

chosen price, i.e., its estimate ∂̂πb
∂pb

∣∣∣
pbt

is accurate. For the estimation rule specified in equation

(24), we will also require that the two initial prices p̂0b and p̂1b yield different profits and that λ

is sufficiently small.

First, we solve explicitly for equilibrium target prices

p†a =
6d+ 2

2(1− α)d2 + 4d+ 1

p†b =
2 + 2(α+ 5)d(d+ 1)

(2d+ 1)(2d((1− α)d+ 2) + 1)
.

This yields the pricing rule

σ(pb) =
(2d+ 1)(3d+ 1)

(α+ 5)d(d+ 1)− 1
pb. (A-9)

The slow firm chooses price pb. The slow firm’s profit function is given by π̃b(pb) = (1 −
α)πb(pb, p

†
a) + απb(pb, σ(pb)). We solve for it explicitly:

π̃b(pb) =
pb(d(α− 5(1− α)d− 5)− 1)(2αd(d(2dpb + pb + 2) + 2)− 2d(d+ 1)((2d+ 3)pb − 10)− pb + 4)

4(2d((α− 1)d− 2)− 1)((α+ 5)d(d+ 1) + 1)

For this function, it is the case that ∂π̃b(pb)
∂pb

> 0 when pb > p†b and ∂π̃b(pb)
∂pb

< 0 when pb < p†b.

Thus, gradient learning converges to the optimum and will yield the target prices. □
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A.2 Extension to Oligopoly

While we primarily consider the case where an algorithmic firm faces a single slower rival, it is

straightforward to extend the results to a more general setting in which a single algorithmic firm

faces multiple slower rivals that all have the same pricing frequency. Thus, the speed advantage

α characterizes the reaction time that the faster firm has relative to each of the slower firms.

We consider an n firm oligopoly with one algorithmic firm and n − 1 slower rivals. The

algorithmic firm’s price is given by pa while the vector of prices for slower rivals is given by

r = (r1, r2, . . . , rn−1). Generalizing the model in Section 4, firm a chooses the target price for

itself, p†a, and rivals, r† = (r†1, r
†
2, . . . , r

†
n−1), that maximize its discounted profits, subject to the

algorithm technology and the incentive compatibility constraint for the rival firms:

max
(p†a,r†)|rt

(1− α)πa(ρ, rt) + απa(σ(rt), rt) +
βγ

1− βγ
πa(p

†
a, r

†) (A-10)

s.t. (i) ρ = p†a (A-11)

(ii) σ(r) =

p
†
a if r = r†

Ra(r) if r ̸= r†
(A-12)

(iii) πj(p
†
a, r

†) ≥ (1− α)πj(ρ, r̂j , r
†
−j) + απj(σ(r̂j , r

†
−j), r̂j , r

†
−j) ∀r̂j , ∀j (A-13)

After a fraction 1 − α of period t elapses, the algorithmic firm observes the vector of prices

rt and maintains price p†at if all prices are equal to the target prices for rivals. Otherwise, the

algorithmic firm best responds to rivals, setting price Ra(r).

We examine the case of linear demand that generalizes the duopoly demand given by equa-

tion (15). Demand for the algorithmic firm is given by

Da(pa, r) = 1−
(
1

4
+
d

2

)
pa +

n−1∑
j=1

d

2(n− 1)
rj (A-14)

Demand is symmetric. Therefore, demand for rival j is given by

Dj(pa, r) = 1−
(
1

4
+
d

2

)
rj +

d

2(n− 1)
pa +

∑
k ̸=j

d

2(n− 1)
rk (A-15)

When d = 1, the Bertrand price and joint profit maximization prices are the same as for the

duopoly linear demand given by equation (15).

We simulate equilibrium outcomes for the n = 3 case with d = 1. Appendix Figure A-1

shows equilibrium prices (panel (a)) and profits (panel (b)) with full commitment and different

values for the speed advantage. The chart is qualitatively similar to the case of two firms shown

in Figure 3. As in our previous analysis, prices are increasing in the speed advantage of firm a.
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Figure A-1: Prices and Profits in Coercive Equilibrium with Three Firms

(a) Price vs. Speed
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(b) Profits vs. Speed

0 0.2 0.4 0.6 0.8 1
Speed Advantage (,)

0.7

0.8

0.9

1

1.1

1.2

1.3

P
ro
-
t

Bertrand competition
Coercion (algorithmic -rm)
Coercion (rivals without algorithm)
Collusion

(c) Price vs. Commitment
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(d) Profits vs. Commitment
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Notes: Panels (a) and (b) show equilibrium prices and profits for different values of speed advantage α
under coercion with full commitment (βγ → 1). Panels (c) and (d) show equilibrium prices and profits
under coercion for different values of commitment, βγ, when the faster firm has maximum speed (α = 1).
Outcomes under Bertrand competition with simultaneous pricing and joint profit maximization are displayed
for comparison. Assumes d = 1 under linear demand given by equation (A-14).

Profits of firm a are also increasing in the speed advantage. However, the ability of firm a to

coerce rivals into setting higher prices is somewhat muted compared to the two-firm case due

to the fact that the incentive compatibility constraints are more binding in the three-firm case.

Panels (c) and (d) of Appendix Figure A-1 show equilibrium prices and profits in the case

with maximum speed advantage and different values for the degree of commitment. Again,

the results are similar to Figure 3. Prices and profits are increasing in the degree of commit-

ment; however, prices under full commitment are lower than in Figure 3 given the additional

constraints on firm a. In the two-firm case, the incentive compatibility constraint for the firm
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Figure A-2: Prices and Profits in Maximum Coercive Equilibrium under Oligopoly

(a) Price
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(b) Profits
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Notes: Panel (a) shows prices and panel (b) shows profits under Bertrand competition with simultaneous
pricing, the coercive equilibrium with maximum speed (α = 1) and maximum commitment (βγ → 1), and
joint profit maximization. Assumes d = 1 under linear demand given by equation (A-14).

without the pricing algorithm is determined by (1−α)πb(p̂b, ρ)+απb(p̂b, σ(p̂b)), which does not

depend on the degree of commitment. However, in the three-firm case, the equivalent expres-

sion, πb(p
†
a, r

†
b , r

†
c) ≥ (1 − α)πb(ρ, r̂b, r

†
c) + απb(σ(r̂b, r

†
c), r̂b, r

†
c), does depend on the degree of

commitment since commitment affects the other slow firm’s price, r†c.

Finally, we examine the maximal coercion equilibrium by the number of firms in Appendix

Figure A-2. Given the demand system, the Bertrand price and profits under joint profit maxi-

mization are constant as the number of firms increases. Under the coercive equilibrium, prices

are decreasing as the algorithmic firm faces additional rivals without an algorithm. The al-

gorithmic firm’s profits are also decreasing in the number of rivals. However, the effect of

additional rivals without an algorithm is relatively modest. Prices and profits are still substan-

tially higher relative to the Bertrand equilibrium even with several rivals. With 10 rival firms,

market prices are on average 18 percent higher than the Bertrand equilibrium.
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A.3 Additional Tables and Figures

Figure A-3: Prices and Profits in Coercive Equilibrium: No Commitment

(a) Price
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(b) Profits
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Notes: Panel (a) shows prices and panel (b) shows profits under Bertrand competition with simultaneous
pricing, the coercive equilibrium with no commitment (βγ = 0) and speed advantage α, and joint profit
maximization. Assumes d = 1 under linear demand given by equation (15).

Figure A-4: Prices and Profits in Coercive Equilibrium: No Speed Advantage

(a) Price
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(b) Profits
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Notes: Panel (a) shows prices and panel (b) shows profits under Bertrand competition with simultaneous
pricing, the coercive equilibrium with α = 0 and commitment βγ, and joint profit maximization. Assumes
d = 1 under linear demand given by equation (15).
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Figure A-5: Prices and Profits in Coercive Equilibrium: Partial Commitment

(a) Price
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(b) Profits
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Notes: Panel (a) shows prices and panel (b) shows profits under Bertrand competition with simultaneous
pricing, the coercive equilibrium with partial commitment (βγ = 0.5) and speed advantage α, and joint profit
maximization. Assumes d = 1 under linear demand given by equation (15).

Figure A-6: Prices and Profits in Coercive Equilibrium: Intermediate Speed Advantage

(a) Price
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(b) Profits
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Notes: Panel (a) shows prices and panel (b) shows profits under Bertrand competition with simultaneous
pricing, the coercive equilibrium with α = 0.5 and commitment βγ, and joint profit maximization. Assumes
d = 1 under linear demand given by equation (15).

45



Figure A-7: Prices and Profits in Coercive Equilibrium: Logit Demand

(a) Price vs. Speed
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(b) Profits vs. Speed
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(c) Price vs. Commitment
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(d) Profits vs. Commitment
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Notes: Panels (a) and (b) show equilibrium prices and profits for different values of the speed advantage α
under the coercive equilibrium with full commitment (βγ → 1). Panels (c) and (d) show equilibrium prices
and profits under coercion for different values of commitment, βγ, when the faster firm has maximum speed
(α = 1). Outcomes under Bertrand competition with simultaneous pricing and joint profit maximization
are displayed for comparison. Assumes logit demand given by Di(pi, p−i) = exp(−ηpi)/[ζ + exp(−ηpi) +
exp(−ηp−i)] where η = 2 and ζ = 0.01.
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Figure A-8: Prices and Profits in Coercive Equilibrium, by Product Differentiation

(a) Price
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(b) Profits
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(c) Consumer Surplus Relative to Bertrand
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(d) Consumer Surplus Relative to Joint Profit Max
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Notes: Panel (a) shows prices and panel (b) shows profits under Bertrand competition with simultaneous
pricing, coercion, and joint profit maximization. Panel (c) shows consumer surplus under the coercion equi-
librium relative to Bertrand and panel (d) shows consumer surplus under the coercion equilibrium relative
to joint profit maximization. Considers the maximal coercion case with α = 1 and βγ → 1. Figures show
equilibrium for different differentiation parameters d using linear demand given by equation (15).
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Table A-1: Periods to Convergence for Coercive Equilibrium with Linear Pricing Rule

(a) Convergence Criterion of 1%

10th 25th 50th 75th 90th
λ Mean Min Percentile Percentile Percentile Percentile Percentile Max

0.2 27.8 3 16 23 30 35 36 37
0.4 13.1 3 8 11 14 16 17 17
0.6 7.7 3 6 7 8 9 9 9
0.8 6.7 3 5 5 8 8 9 9
1 7.1 3 4 7 7 8 8 10

1.2 8.3 3 6 7 9 10 10 10

(b) Convergence Criterion of 0.1%

10th 25th 50th 75th 90th
λ Mean Min Percentile Percentile Percentile Percentile Percentile Max

0.2 45.2 3 33 40 48 52 54 55
0.4 20.2 3 15 18 21 23 24 24
0.6 10.6 3 9 10 11 12 12 12
0.8 9.4 6 8 9 10 10 10 10
1 10.6 6 8 10 11 11 12 14

1.2 12.4 7 10 12 13 13 15 15

(c) Convergence Criterion of 0.01%

10th 25th 50th 75th 90th
λ Mean Min Percentile Percentile Percentile Percentile Percentile Max

0.2 62.6 3 51 58 65 70 71 72
0.4 27.4 4 23 25 28 30 31 31
0.6 13.4 6 12 13 14 14 15 15
0.8 12.9 8 10 13 14 14 14 14
1 14.3 9 12 14 15 15 15 17

1.2 16.8 11 13 16 16 19 19 19

Notes: Table shows statistics of the number of periods until convergence when the algorithmic firm uses a linear
pricing rule and the rival is assumed to use gradient learning. Rows indicate values of the price adjustment step
size, λ. Convergence is defined as being within 1% of the equilibrium price for panel (a), within 0.1% of the
equilibrium price for panel (b), and within 0.01% of the equilibrium price for panel (c). For each value of λ, we
simulate price paths from 1,000 values of initial starting prices from a grid between 0 and 2 and report the mean,
min, max, and percentiles. Simulation assumes algorithmic firm has maximum pricing speed (α = 1) and uses
the linear pricing rule described in Section 5.2. Assumes d = 1 under linear demand given by equation (15).
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Figure A-9: Prices and Profits in Coercive Equilibrium: Harsh Punishment

(a) Price vs. Speed
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(b) Profits vs. Speed
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(c) Price vs. Commitment
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(d) Profits vs. Commitment
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Notes: Panels (a) and (b) show equilibrium prices and profits for different values of pricing speed α under co-
ercion with full commitment (βγ → 1). Panels (c) and (d) show equilibrium prices and profits under coercion
for different values of commitment, βγ, when the faster firm has maximum speed (α = 1). Outcomes under
Bertrand competition with simultaneous pricing and joint profit maximization are displayed for comparison.
Unlike Figures 3 and 4, we assume firm a uses a punishment price of 0 rather than the static best response.
Assumes d = 1 under linear demand given by equation (15).
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Figure A-10: Prices and Profits in Coercive Equilibrium: Price Matching Punishment

(a) Price vs. Speed
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(b) Profits vs. Speed

0 0.2 0.4 0.6 0.8 1
Speed Advantage (,)

0.7

0.8

0.9

1

1.1

1.2

1.3

P
ro
-
t

Bertrand competition
Coercion (algorithmic -rm)
Coercion (rival without algorithm)
Collusion

(c) Price vs. Commitment
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(d) Profits vs. Commitment
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Notes: Panels (a) and (b) show equilibrium prices and profits for different values of speed advantage α
under coercion with full commitment (βγ → 1). Panels (c) and (d) show equilibrium prices and profits
under coercion for different values of commitment, βγ, when the faster firm has maximum speed (α = 1).
Outcomes under Bertrand competition with simultaneous pricing and joint profit maximization are displayed
for comparison. Unlike Figures 3 and 4, we assume firm a uses a punishment function that matches rival’s
price rather than the static best response. Assumes d = 1 under linear demand given by equation (15).
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Figure A-11: Convergence Speed with Gradient Learning by Price Step Size
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Notes: Figure shows the mean number of periods until convergence when a naive firm uses gradient learning
with price adjustment step size λ. Convergence is defined as being within 0.1% of the equilibrium price. For
each value of λ, we simulate price paths from 1,000 values of initial starting prices from a grid between 0
and 2 and then average the number of periods until convergence. The blue lines show a simultaneous pricing
game that results in Bertrand prices. The orange lines show the game in which the algorithmic firm has
maximum pricing speed (α = 1) and uses the linear pricing rule described in Section 5.2. Assumes d = 1
under linear demand given by equation (15).
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Figure A-12: Convergence of Simulated Learning with Demand Shocks

(a) Low Variance Shock
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(b) Low Variance Shock
1,000 Simulation Average
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(c) Medium Variance Shock
Single Simulation
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(d) Medium Variance Shock
1,000 Simulation Average
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(e) High Variance Shock
Single Simulation
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(f) High Variance Shock
1,000 Simulation Average
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Notes: Charts show simulated price paths when firm b uses gradient learning with uniformly distributed
demand shocks with mean 1. Top panel shows shock with standard deviation 0.05, middle panel shows shock
with standard deviation 0.1, and bottom panel shows shock with standard deviation 0.5. Demand shock
affects the constant in linear demand given by equation (15). Left charts show a single simulation while
right charts show the average of 1,000 simulations with error bars showing two standard deviations from the
mean. Dashed lines show equilibrium prices derived in the proof for Proposition 5. The figure considers the
maximal coercion case with α = 1 and βγ → 1. 52


