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1 Introduction

Economic damages from extreme weather have increased sharply in recent decades.1 Climate sci-

entists link the increased frequency of extreme weather to global warming (National Academies

of Sciences, Engineering, and Medicine (2016)). After the unprecedented floods in Brazil’s Rio

Grande Sul, which displaced 600,000 people and destroyed 200,000 homes, the magazine The

Economist naturally wondered whether this is a harbinger of disasters to come, and whether

and how society can adapt to extreme weather in the age of climate change? Such questions

are also becoming commonplace with more frequent heatwaves during summer months (Perkins-

Kirkpatrick and Lewis (2020)). Relative to carbon emissions abatement, climate adaptation has

thus far been under-emphasized both in climate change research and policy discussion (Bouwer,

Crompton, Faust, Höppe, and Pielke Jr (2007)).

We propose an empirical framework for estimating the economic effects of extreme-weather

events in the presence of adaptation. Our approach takes into consideration three key features.

First, there is considerable uncertainty regarding the consequence of global warming for extreme

weather. For instance, according to a survey of tropical-cyclone models (Knutson, Camargo,

Chan, Emanuel, Ho, Kossin, Mohapatra, Satoh, Sugi, Walsh, et al. (2020)), the median model

projects a modest 13% increase in the frequency of major tropical cyclones in a 2oc world relative

to pre-industrial era. The most pessimistic climate model projects a two-fold increase, while

the most optimistic model projects a slight decrease.

Second, society does not just observe, but learns from unfolding extreme events, attributing

global warming to certain types of extreme weather events such as flooding and heatwaves (Sisco,

Bosetti, and Weber (2017)). Third, learning induces a possibly non-linear relation between

economic damages and disaster risks due to state-dependent adaptation. We use an economic

specification of damage to economic growth that is guided by Hong, Wang, and Yang (2023),

1According to the National Oceanic and Atmospheric Administration (NOAA), the US since 1980 has ex-
perienced 391 events with CPI-adjusted losses reaching or exceeding a billion dollars and totalling 2.75 trillion
dollars.
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who recently generalized the neoclassical growth model with disasters (Rietz (1988), Barro

(2006), Pindyck and Wang (2013)) to allow optimizing consumers and firms to learn and adapt.

Our approach involves a two-step estimation procedure to provide country-specific esti-

mates of disaster risk as extreme-weather events unfold, and state-dependent marginal effects

of extreme-weather damages on economic growth. We apply our approach to two panels of

extreme-weather data: one on tropical cyclones making landfall, and one on extremely high

annual temperatures that correspond to heatwaves during summer months. (See Dell, Jones,

and Olken (2012) and Hsiang and Jina (2014)), among others, for analysis using data from the

same sources.) Our paper estimates the economic effects of these extreme-weather events and

quantifies the return to adaptation.

In the first step, we fit a model with a time-varying arrival rate for extreme-weather events

in a given country. The model is characterized by three key parameters: the arrival rate in a

bad climate state, the arrival rate in a good climate state, and the prior belief on the arrival

rate of the bad state.2 Unexpected arrivals increase the posterior probability that our model

attaches to the bad climate state, and this probability can be thought of as a measure of the

risk of future strikes. Over time, there is resolution of uncertainty on whether a country faces

a good or bad climate state, i.e., mild or adverse consequences from climate change.

We set the prior belief to the historical arrival rate for a country between 1960 and 1980.

Then using the history of extreme-weather arrivals in the country from 1980 to 2019, we use

the simulated method of moments (Duffie and Singleton (1993)) to estimate the two remaining

parameters using five moments from extreme-weather arrivals: the mean, variance, third mo-

ment, fourth moment and first-order autocorrelation coefficient. Our model generates highly

non-linear updates of posteriors when a disaster strikes, depending on the risk a country faces.

These revisions serve as the exogenous time-series variation for us to identify the return to

2Earlier work in asset pricing (Collin-Dufresne, Johannes, and Lochstoer (2016) and Wachter (2013)) uses
learning to generate time-varying disaster risk (Gabaix (2012)) so as to explain asset-price behavior like the
equity risk premium.
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adaptation.

In the second step, we allow for economic damages arising from extreme-weather events

to vary non-linearly with arrival risk as predicted by the model. Bad news elevates extreme-

weather risk, which leads households and firms to learn and adapt, thereby lowering damages

for each subsequent disaster arrival. For each country, we estimate a tractable regression that

is motivated by a Taylor approximation of the nonlinear damage function in the Hong, Wang,

and Yang (2023) model around the prior on disaster risk.

Absent learning or revision of priors, this second-step regression collapses to the linear spec-

ification often used to estimate the economic damage from extreme weather, but in a pooled

panel setting. Though introducing an interaction term in the panel setting to allow economic

damage to vary with a country’s historical exposure to disasters can accommodate adaptation

(see discussion of related literature below), it would not capture the state dependence suggested

by learning. In particular, as disasters destroy capital, theory suggests that recovery and re-

building of the capital stock should depend on the time-varying beliefs of households and firms

regarding future strikes.

Our approach provides estimates of several objects of interest. First, the posterior estimates

are instructive about how agents’ beliefs about disaster risk change with climate conditions.

Second, the country-level estimates shed light on the extent to which adaptation differs across

countries, while still allowing an average effect to be estimated as a (cross-section) weighted

average of country-level estimates using any weights of choice. In contrast, pooled regressions

only give an estimate of the average effect. Third, the specification allows for a decomposition

of the coefficient measuring marginal damage into two terms: (1) the impact of an extreme-

weather arrival holding fixed beliefs and adaptation at the initial prior; and (2) the reduction

in damage due to the change in adaptation that comes with a revision of beliefs from the prior.

Our empirical findings are as follows. First, we reject a time-invariant arrival-rate model of

extreme weather in favor of a time-varying arrival-rate model. Unexpected arrivals of extreme-
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weather events are associated with more future arrivals. Hence, the arrival of an extreme weather

event not only potentially damages economic activity but also serves as a signal that future such

events are more likely, consistent with time-varying extreme-weather risk.

Second, we reject the time-invariant regression specification for damages in favor of state

dependence due to learning and adaptation. The state-dependence implies that a country with

low prior experience in extreme weather is less adapted or prepared and suffer more damages.

But this country will make larger revision in its beliefs upon arrival of extreme weather and

hence benefit more from adaptation (net of the costs), compared to a country at high risk and

that has already converged in its belief.

Third, we conduct a number of additional analyses, including model diagnostics to verify that

a linear model is misspecified and robustness checks to address common time trends. Evaluating

a typical country in our cyclone sample at its prior risk equal to 0.3, a cyclone reduces GDP

growth by 90 basis points. As this country’s risk increases to 0.8, the damage to GDP growth

per cyclone falls to 83 basis points. Evaluating a typical country in our extreme-temperatures

sample at its prior risk of 0.1, an extreme-temperature event reduces GDP growth by 69 basis

points. As this country’s risk increases to 0.6, the damage per event falls to 63 basis points.

Finally, to gauge the aggregate returns to adaptation, we calculate a counterfactual of what

income in 2019 would have been absent learning and state-dependent adaptation as captured

by estimates of our time-varying nonlinear model. Country income in 2019 would on average

be 7.5% lower for cyclones and four percent lower for heatwaves if damage and adaptation were

fixed at prior risk levels.

We then use simulations to consider how income might evolve over the next century in the

face of increasing extreme weather, and how that depends on learning and adaptation. We

expand on the exercise of Burke, Hsiang, and Miguel (2015). We use SSP5 growth-rate projec-

tions (Kriegler, Bauer, Popp, Humpenöder, Leimbach, Strefler, Baumstark, Bodirsky, Hilaire,

Klein, et al. (2017)) and then account for extreme weather using our model of time-varying
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risk and economic damage estimated from 1980-2019. For the cyclone (heatwave) sample, mean

income in 2100 would be 33.3% (36%) lower under the scenario where damage and adaptation

were fixed are prior risk levels than under the learning scenario with state-dependent adaptation

to extreme weather. The difference in the return of adaptation out of sample compared to in

sample— around 5 times larger—has to do with the importance of uncertainty resolution and

learning over the long run regarding global warming for extreme weather in a given country.

Related literature. A widely-used approach to estimating the value of adaptation to disas-

ters such as tropical cyclones (Bakkensen and Mendelsohn (2016), Hsiang and Narita (2012),

Hsiang and Jina (2014)) is to measure how economic damage conditional on a disaster arrival

significantly declines cross-sectionally with the historical experience of a locale with disasters

(see, e.g., Dell, Jones, and Olken (2014) for a review).3 Locales or countries with more prior

experience are found to have less damage per disaster, consistent with adaptation. Studies exam-

ining the value of adaptation for temperature also utilize aspects of this approach (Auffhammer

(2022), Gourio and Fries (2020), Carleton, Jina, Delgado, Greenstone, Houser, Hsiang, Hultgren,

Kopp, McCusker, Nath, Rising, Rode, Seo, Viaene, Yuan, and Zhang (2022)).

This time-invariant approach is a special case of our setting when we assume that there is

no learning, i.e. the level of adaptation is fixed at prior risk levels. However, the assumption

of no learning is unlikely to hold4, and hence leads to regression misspecification. Even in our

short sample period, countries have seen significant time-series fluctuations in their disaster

risk. Importantly, we solely utilize the time series of a country to identify the return to state-

dependent adaptation, whereas the literature uses cross-locale variation in prior risks or disaster

experiences to value adaptation.

A fundamental challenge in the literature is to consider how adaptation will affect outcomes

3This time-invariant approach, which goes back to earlier work on identifying the impact of temperature on
agricultural yields (Deschênes and Greenstone (2007) and Schlenker and Roberts (2009)), relies on location and
time fixed effects to address unobserved heterogeneities in the panel data.

4For instance, Barreca, Clay, Deschenes, Greenstone, and Shapiro (2016) document a declining relationship
over time in temperature-mortality relationship due to increasing adaptation in the form of air conditioning.
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in the long run, i.e., standing today, how would income in 2100 differ with adaptation? Taking

into account learning and state-dependent adaptation is particularly crucial for this exercise. A

country at low prior risk standing in 2019 but which then receives bad realizations and moves

to high risk over time has scope to adapt. Hence, ignoring this learning dimension will overstate

damages for these countries going forward.

By explicitly modeling the learning or belief process in the first-stage, we are able to not

only estimate the returns to adaptation in sample, but to also assess the value of adaptation

in the long-run by simulating the evolution of beliefs based on the parameters of the disaster

process that we have estimated for each country.

Such projections are valuable inputs for calibrating integrated assessment models (Nordhaus

(2017), Golosov, Hassler, Krusell, and Tsyvinski (2014)), as is emphasized by Barnett, Brock,

and Hansen (2020). At the same time, we do not model the potential spillovers of learning

and adaptation across countries. Such a spatial dimension and the role of government policies

or heterogeneity are addressed typically in a within-country setting (Bilal and Rossi-Hansberg

(2023), Hsiao (2023), Fried (2022)), though without learning and state-dependent adaptation.

It would be fruitful to combine both the learning and the spatial dimensions in future research.

2 Data

We consider two widely-studied extreme-weather events in the literature: tropical cyclones and

abnormal temperatures. We first describe the data in Section 2 and then present some key

stylized facts in Section 3 to motivate the importance of integrating time-varying extreme-

weather risk as a state variable into estimation of economic damages.

Tropical cyclones. Our data comes from the International Best Track Archive for Climate

Stewardship (IBTrACS) database. It is the most complete global database for tropical cyclone

observations. Our largest sample contains annual observations for the real GDP per capita
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growth rate and cyclone landfalls across 109 countries from 1980 to 2019 with 4,264 county-year

observations in total.5 These are the same set of countries and places as in Hsiang and Jina

(2014), but excludes Taiwan for which there is no GDP data from the World Bank Development

Indicator. For countries covering large areas — such as the U.S., China, and Canada, we

consider data only from the eastern regions that are the most prone to cyclone landfall to avoid

any potential bias that might arise if we include large areas mostly unaffected by cyclones. Let

Landfalli,t be an indicator variable that equals one if and only if country i experienced at least

one cyclone landfall that is “tropical storm” or higher in year t.

To concisely summarize the data, we assign the 109 countries into four regions: North

Atlantic (including North America, the Caribbean, and West Europe), West Pacific (including

Oceania), North India (including North India, Middle East, North Africa, and Central Europe),

and South Atlantic (including Latin America and Sub-Saharan Africa). Globally, a country

experiences a tropical cyclone landfall once every 7.4 years on average, as the disaster arrival

rate is 0.135 per annum. There is variation across regions, with West Pacific countries getting

hit more frequently (at a rate of 0.515 per annum).

Temperature. Our temperature panel contains annual observations of temperature across

139 countries from the year 1980 to 2019, similar to the one used in Dell, Jones, and Olken

(2014) and Burke, Hsiang, and Miguel (2015)).6 The data, which come from Willmott and

Matsuura (2018), contain 0.5 degree gridded monthly average temperature for all land areas

over the period 1900-2017. Data for 2018 and 2019 are taken from Berkeley Earth.7 As in

Burke, Hsiang, and Miguel (2015), we first aggregate the 0.5 degree grid cell temperature values

to the country-month level, weighting by population density in the year 2000 using data from

5We use pre-1980 data, from 1960-1979, to inform the prior beliefs.
6Our temperature sample starts in 1980 so as to overlap with our cyclones sample and with economic data.

Another reason is that data from recent decades are more likely to be informative about the consequences of
climate change than data from earlier decades (see Section 5.1). We use pre-1980 data, from 1960-1979, to set
the prior beliefs.

7Data source: http://berkeleyearth.org/.
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Table 1: Summary statistics of extreme weather data, 1980:2019

This table shows the summary statistics of cyclone (Panel A) and extreme temperature arrivals (Panel B) for
our sample of global country. The regions for cyclone in Panel A are: North Atlantic (including North America,
the Caribbean, and West Europe), West Pacific (including Oceania), North India (including North India, Middle
East, North Africa, and Central Europe), and South Atlantic (including Latin America and Sub-Saharan Africa).
The regions for heatwaves in panel B are: (1) EUNA: Europe and North America, (2) ASME: Asia, Middle East
and North Africa, (3) CLAC: Caribbean and Latin America, and (4) SSAF: Sub-Saharan Africa.

Panel A: Cyclone arrival frequency

Region (1) Total # of (2) Total # of (3) Freq. of landfall = (2)/(1):
country-year obs. cyclone landfall obs. Disaster arrival intensity λ

North Atlantic 1249 181 0.145
West Pacific 501 258 0.515
North India 561 52 0.093
South Atlantic 1953 82 0.042

Global 4264 573 0.134

Panel B: Heatwave arrival frequency

Region (1) Total # of (2) Total # of (3) Freq. of heatwave = (2)/(1):
country-year obs. heatwave disaster obs. Disaster arrival intensity λ

EUNA 1319 298 0.226
ASME 1431 284 0.198
CLAC 1031 249 0.242
SSAF 1742 382 0.219

Global 5523 1213 0.220
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the Gridded Population of the World hosted by CIESIN at Columbia University.8 Then we

aggregate to the country-year level by averaging monthly values across all months in a year for

each country. We define a country as being hit by heatwaves if the mean summer temperature

is, relative to historical summer norms, above 1oC.9

For this data, we classify countries into the following regions: (1) EUNA (Europe and North

America), (2) ASME (Asia, Middle East and North Africa), (3) CLAC (Caribbean and Latin

America), and (4) SSAF (Sub-Saharan Africa).10 Panel B of Table 1 shows the summary

statistics of summer extreme temperature of 1.0◦C+ in each global region in our sample. The

typical country faces an arrival rate of 0.22 or is hit by a summer extreme temperature once

every 5 years or so.

Economic Data The key economic indicators of interest — the growth rate of real GDP per

capita (g), investment ratio (i) (to lagged output), depreciation rate (δ), and Tobin’s q. Tobin’s

(average) q is calculated using the market value of the stock market of that country divided by

the book value of capital stock of that country. In addition, we calculate the GDP growth rate

net of the difference between the investment and depreciation rates (g − (i − δ)), as it will be

the a natural variable of interest according to our model of the impact of extreme weather on

the macroeconomy.

These economic variables are constructed using COMPUSTAT andWorld Bank data sources.

Panel A of Table 2 reports the mean of the economic data for the cyclone sample. The mean

GDP growth rate is 1.75% (st.dev. of 4.8%). The mean investment ratio is 0.21 (st.dev. of 0.08).

8See Gridded Population of the World (GPW), v3, https://sedac.ciesin.columbia.edu/data/

collection/gpw-v3.
9Heatwaves occur in the summer and can last anywhere from days to weeks. We will refer to heatwaves and

an extremely hot summer interchangeably.
10In Dell, Jones and Olken (2012), there are 6 regions in total, with a separate Middle East & North Africa

and an Eastern Europe & Central Asia region. Since the number of observations in the separate Middle East
& North Africa and Eastern Europe & Central Asia regions are small, we merge these two regions with other
bigger regions to have a more balanced number of observations in each region. We merge the Middle East &
North Africa region with the Asia region to form our region (2), and assign the countries in the Eastern Europe
& Central Asia region to our region (1) and (2) accordingly, so we have 4 regions in total.
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The mean Tobin’s q is 2.45 (st.dev. 4.70). The net GDP growth rate has a mean of -0.17 with

a standard deviation of 0.26, suggesting that investment net of depreciation is an important

driver of GDP growth. As seen in Panel B of Table 2, the mean of the economic indicators for

the extreme temperature sample are comparable to cyclone sample.

Table 2: Summary statistics of economic variables

This table shows the summary statistics of the economic variables for our sample of global countries. Panel A
and B show the summary statistics for the cyclone and heatwave samples respectively. GDP denotes growth rate
of real GDP per capita (in percentages). Investment ratio denotes investment scaled by lagged output. GDPnet
denotes GDP growth net of (it−1 − δ) (lagged investment rate minus depreciation). Tobin’s q denotes market
value of equity market divided by book value of capital. The sample is from 1980 to 2019.

Panel A: Cyclone

Mean S.D. Median P10 P90

GDP (%) 1.75 4.80 2.11 -3.56 6.53
Investment ratio 0.21 0.08 0.20 0.12 0.31
GDPnet (%) -0.17 0.26 -0.13 -0.45 0.06
Tobin’s q 2.45 4.70 1.50 0.61 3.65

Panel B: Heatwave

Mean S.D. Median P10 P90

GDP (%) 1.65 5.96 2.02 -3.71 6.68
Investment ratio 0.22 0.08 0.21 0.13 0.32
GDPnet (%) -0.18 0.30 -0.15 -0.53 0.08
Tobin’s q 2.33 3.95 1.51 0.64 3.52

3 Stylized Facts

We start with a constant-coefficient linear panel regression model that is widely used to estimate

the impact to an economic outcome Yit from extreme-weather arrivals (see, e.g., Dell, Jones,

and Olken (2014)):

Yit = ϕDit + ui + vt + εit, (1)

where Dit is an indicator variable that equals 1 when country i is hit by an extreme event in

year t. In the literature, the main dependent variable of interest Yit is typically GDP growth of
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a country. The regression includes ui a country fixed effect and vt a time fixed effect.11 Thus

in this linear model (1), the coefficient ϕ captures the impact of an extreme event on economic

outcome Yit.

Table 3: Panel regressions of economic variables on extreme weather arrivals

This table shows the result from a baseline climate-economy panel regression that regresses an economic variable
on an indicator for extreme weather events (tropical cyclone or heatwave arrivals). Panel A shows the cyclone
sample results while Panel B shows the heatwave sample results. The dependent variables are GDP growth net
of (it−1−δ) (column 1), investment ratio (scaled by lagged output) (column 2), Tobin’s q (column 3), and scaled
future arrival, defined as the number of future arrivals in a 3-year bin from t+ 1 to t+ 3 divided by 3 (column
4). The main explanatory variable is the extreme weather arrival indicator at t, i.e., Dt. We control for country
fixed effects and year fixed effects in all regressions. t-statistics with clustered robust standard errors are shown
in parentheses below the estimates. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels
respectively. The sample is from 1980 to 2019.

Panel A: Cyclone

(1) (2) (3) (4)
GDPnet Investment ratio Tobin’s q Future arrivals

ϕ̂ -0.916*** -1.005*** -0.107** 0.036**
(-5.04) (-4.12) (-2.29) (2.50)

Country FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Panel B: Heatwave

(1) (2) (3) (4)
GDPnet Investment ratio Tobin’s q Future arrivals

ϕ̂ -0.767*** -0.855*** -0.172*** 0.078***
(-4.11) (-3.59) (-2.86) (3.14)

Country FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

In Table 3, we report results for four definitions of outcome Yit: GDP growth, aggregate

investment, Tobin’s q, and scaled future extreme-weather arrivals. In column (1), we report the

impact of an extreme event for GDP growth that is adjusted for investment and depreciation.

The coefficient of interest is -0.916 with a t-statistics of -5.04 for tropical cyclones and -0.767

with a t-statistic of -4.11 for heatwaves. The economic effect of an extreme-weather event for

a typical country in our sample is quite adverse — lowering economic growth of 77 to 92 bps.

11Alternatively, the literature sometime replaces the time fixed effect with a region x time fixed effect.
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These are well-known findings in the literature.

In columns (2) and (3), we consider the investment-to-lagged output ratio and Tobin’s q

as the dependent variables of interest. We find that there is also a pronounced decline in

both investment and Tobin’s q. This set of findings (columns (2)-(3)) are inconsistent with a

neoclassical model of investment with time-invariant arrival rate of disasters (Pindyck and Wang

(2013)). To see why, first observe that the arrival of a disaster destroys capital stock, which

of course leads to a drop in contemporaneous growth rate of output. However, investment and

Tobin’s q are forward looking variables. If agents in the economy perceive the risk of extreme

weather as being unchanged, then they should not change their investment plans and Tobin’s q

should be unchanged. If anything, a disaster that destroys capital should mechanically lead to

a higher investment-to-capital output ratio.

In column (4) the dependent variable Yit is the number of extreme-weather arrivals for

country i in a 3-year bin from t+1 to t+3 divided by 3, i.e. Yit =
1
3
(Dit+1+Dit+2+Dit+3). We

find that the arrival of an extreme-weather event is also associated with the country experiencing

more frequent strikes over the next three years. That is, the risk of extreme-weather events is

time-varying and persistent. Hence, to simultaneously rationalize columns (1)-(4) one can model

time-varying disaster risk so that agents learn as this risk varies. The reason investment and

Tobin’s q are lower following a disaster is that agents in the economy perceive extreme-weather

risk as being elevated. Rather than invsting, society presumably shifts those resources to costly

adaptation to better protect capital.

Papers in the empirical literature on damages to GDP growth do not explicitly model time-

varying risk (see further discussion in Section 4.2). As such, we now turn to a state-dependent

approach to modeling damages to economic growth, which can help us improve on the empir-

ical specifications used in the literature. We are particularly focused on developing empirical

specifications that allow us to estimate the return of adaptation to extreme weather.
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4 Extreme-Weather Damages: Theory and Estimation

Our empirical approach builds on a couple of key features of Hong, Wang, and Yang (2023),

who generalize the neoclassical growth model to allow optimizing agents to adapt to disasters.

In their continuous-time model, an economy (subsequently indexed by i, and suppressed in this

subsection to simplify notation), disasters arrive according to a Poisson process with intensity λ

which can take on one of two values: λG (good) or λB (bad), with λB > λG.The representative

agent (of economy i) has a prior belief π0 that the true value of λ is λB. At each t, the agent

forms a posterior belief πt = Pt(λ = λB) based on observed signals, where Pt(·) is the conditional

probability at t. A higher value of πt corresponds to a belief that state B is more likely. The

expected disaster arrival rate at t given πt is

Et(λ; πt) = λBπt + λG(1− πt)

Signals arrive in the form of jumps dJt, which equals one if there is a disaster and zero other-

wise.12 Given a pre-jump belief of πt−, belief evolves according to dπt = σπ(πt−)(dJt − λt−dt).

Specifically, after a disaster at t, beliefs change in an unfavourable way to

πJ
t = = πt− + σ(πt−) =

πt−λB
Et(λt; πt−)

> πt−. (2)

where σ(πt−) =
πt−(1−πt−)(λB−λG)

λ(πt−)
is the size of the jump (i.e. revision in prior) with the arrival

of an event. If there is no arrival over interval dt (i.e. dJv = 0 for v ∈ (s, t)), then beliefs

evolve according to a logistic differential equation dπt

dt
= −σπ(πt−)Et(λ; πt−) whose closed-form

12Note that if the number of arrivals per interval of time is Poisson distributed, the length of time between
occurrences has an exponential distribution.
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solution is given by

πNJ
t =

πs exp

(
− (λB − λG)(t− s)

)
1 + πs

[
exp

(
− (λB − λG)(t− s)

)
− 1

] .

Their model predicts that agents will adapt to disasters, in the sense that economic out-

comes (such as economic growth, Tobin’s q and equity risk premium) will be different from the

case when there is no learning. For example, output growth gt (adjusted for investment and

depreciation) will take the form

gt = (i(πt−)− δ)dt+ F (πt−)dJt + σdWt. (3)

where i is the investment-to-capital ratio, δ is the depreciate rate, F (πt−) is an adaptation

function that mediates damage to growth caused by the jump dJt and depends on beliefs πt,

and dWt is an idiosyncratic Brownian shock. The output response to disasters (dJt = 1) is

state dependent with two features: it is time varying (to the extent that πt− varies with t) and

possibly non-linear (to the extent that F (·) is non-linear). As πt− rises, there is more adaptation

spending which lowers economic damage.

4.1 Estimating Time-Varying Extreme-Weather Risk

Both features of the model can be seen by simulating the model in discrete time given country-

specific parameters θ = (λB, λG). We initialize λ̄0 = π0λB+(1−π0)λG with π0 set to a country’s

1960-1979 mean arrival rate. For t > 1, we simulate a Poisson jump arrival based on the mean

λ̄t−1 = λBπt−1 + λG(1 − πt−1). Defining Dt = 1 when an arrival occurs, posterior beliefs are
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updated as13

πt =


πt−1λB

πt−1λB + (1− πt−1)λG
if Dt = 1

πt−1 exp(−(λB − λG))

1 + πt−1[exp(−(λB − λG))− 1]
if Dt = 0 .

(4)

Since countries are heterogeneous, we simulate one model for each country i = 1, . . . , N .

Though the true country-specific parameters {θ0}Ni=1 are unknown, we have data on extreme

weather events Di = (Di1, . . . , DiT )
′ from which we can compute sample moments ψ̂(Di, θ

0
i ) for

each i. Assuming that the binding function ψ(·) is invertible, we can estimate θi country-by-

country using moments ḡi = ψ̂(Di, θ
0
i )− ψ̂(θ) whose asymptotic variance Ωi can be consistently

estimated by Ω̂i. As ψ(·) is not tractable, we approximate it by simulations. Let ψ̂S(θ) =

1
S

∑S
s=1 ψ̂(D

s
i , θ) be the moments computed from data Ds

i simulated under θ using the s draw

of errors, s = 1, . . . , S. Let ḡSi = ψ̂(Di, θ
0
i )− ψ̂S(θ). Under regularity conditions in (Duffie and

Singleton (1993)), the SMM estimator θ̂Si = argminθḡ
S
i (θ)

′Ω̂−1
i ḡSi (θ) is root-T consistent and

asymptotically normal.

4.2 Estimating State-Dependent Damages

Studies in the climate economics literature recognize the potential importance of adaptation in

making inferences about damage to GDP growth from extreme weather. They augment the

linear model (1) for GDP growth by estimating the following panel regression:

git = ϕDit + (ψ · ni)×Dit + ui + vjt + εit, (5)

where ni is the variable measuring the number of extreme weather events a country i has

experienced historically, ui is a country fixed effect, and vjt is a region-by-time fixed effect.

13See also By Lipster and Shiryaev (2001, Theorem 19.6) for optimal filtering of point processes, and Example
1 on p.333.
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Adaptation studies typically find that ψ is negative, i.e., countries with more extreme weather

arrivals historically (measured by high ni values) would experience lower damage for an given

event Dit. Thus in this reduced-form model (5), the coefficient ϕ captures the conditional

damage without adaptation and the coefficient ψ captures the adaptation effect.

Though simple and intuitive, there are several limitations to this regression. While the model

allows for heterogeneity through individual and time fixed effects, a linear model with time

constant parameters would not encompass the possible effects of learning and state-dependent

adaptation. But when the coefficients are heterogeneous, pooled estimation has its drawbacks.

As reviewed in Baltagi (2008) in the context of linear models, if the slope parameters are

homogeneous, pooling is efficient when N is large and T is small. But pooling becomes less

appealing when the slope coefficients are heterogeneous especially in the presence of dynamics.

Pesaran and Smith (1995) showed that the average effect will be inconsistent if the omitted

heterogeneity induces a correlation between the serially correlated regressors and the regression

error.

An alternative to pooling is unit by unit estimation which will yield consistent estimates

when T is large. Arguably, we have enough disaster observation for each country to consider

individual level estimation. The main appeal is that there is more flexibility to estimate a

model with the desired state dependent effects at the country level. After country-by-country

regressions, we can still compute the average.

Equation (3) suggests a flexible alternative to the linear model

git − (iit−1 − δit−1) = µi + F (πit−1)Dit + εit, (6)

where F (πit−1) is the adaptation-induced damage function. Rather than modeling the growth

rate git, we will instead work with GDP growth net of the difference between the investment

rate and depreciation rate, i.e. gnit = git − (iit−1 − δit−1). That is, we will net out the previous
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level of investment and also adjust for depreciation to give us a mean zero dependent outcome.

Note that all variables in the regression are country-specific. The linear model in Equation 1

obtains as a special case when F (πit−1) is a constant ζ1i = F (πi0), i.e. when there is no learning.

Then

gnit = µi + ζ1iDit + εit. (7)

The growth of an economy depends on investment (based on πit−1). We expect the constant

term µi to be zero. (See also discussion in Section 2.).

If we were only interested in a ‘ghat’ that allows for time-varying parameters, we could use

a non-parametric model (such as a kernel, a neural-net, or a random forest) with π̂it and Dit

as predictors. But we are interested in the marginal effects of learning and adaptation, so the

‘beta-hat’ is of interest. We use a first-order Taylor expansion of F (πit−1) around πi0 to obtain

gnit = µi + F (πi0)︸ ︷︷ ︸
damage at

prior adaptation

Dit + F ′(πi0)(πit−1 − πi0)︸ ︷︷ ︸
return to state-dependent

adaptation

Dit + εit

= µi + β1iDit + β2iπ̃it−1Dit + εit

= µi + χit + εit (8)

where π̃it−1 = (πit−1 − πi0) and χit = β1iDit + β2iπ̃it−1Dit is the total damage in the presence of

learning and adaptation. The F (πi0) term is economic damage with adaptation fixed at prior

risk πi0. The F
′(πi0)π̃it−1 term is the return to state-dependent adaptation induced by learning

or revision of beliefs, which is net of the costs of adaptation to society.

Note that F (πi0) and F
′(πi0) suffice for identifying the first-order effects of Dt, being

E[gnit|Dit = 1] = F (πi0)︸ ︷︷ ︸
βi1<0

+F ′(πi0)︸ ︷︷ ︸
βi2>0

π̃it−1 (9)

The constraints β1 < 0 and β2 > 0 will be imposed in estimation. Equation (8) nests the linear
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model (7) in which F is constant (no state-dependent adaptation) and (πt−1 − π0) = 0 (no

learning). Equation (8) also nests (5) in which Dit is not interacted with past beliefs, πit−1.

Omitting dependence on πi0 and πit−1 could bias the estimates of economic damages.

5 Estimation Results

This section has four parts. Subsection 1 presents results for first step estimation of the struc-

tural model for extreme weather arrivals. Subsection 2 presents the second stage estimates of

the damage function. Subsection 3 explores the relation between the first step estimates of πit

and the βi parameters of the damage function in the second step.

5.1 First-Stage Estimates of Extreme-Weather Risk

For a given definition of extreme weather (which can be cyclone or extreme temperature), the

structural parameters of the model in Section 4 are θ = (λB, λG)
′. Countries’ π0 values are fixed

to their pre-1980 historical extreme-weather arrival frequencies. From 4, for tropical cyclones,

the mean of π̂0 is 0.33 and the median is 0.2. For heatwaves, the mean of π̂0 is 0.11 and

the median is 0.05. Countries standing in 1980 face a greater prior risk from cyclones than

heatwaves.

We estimate θi for each country i = 1, . . . , N by simulated method of moments. The five

sample moments matched to the model are the mean (M1), variance (Var), 3rd central moment

(M3), 4th central moment (M4), and first-order autocorrelation (AC). The country-specific

moments are given in Table A.1 and A.2 of the Appendix. As we alluded to in Section 2, we

are using only the recent four decades of data to discipline our time-varying risk model. We

think this is reasonable choice since the recent decades are likely to be more informative about

a changing climate than data early in the twentieth century.

The estimates of θi are summarized in Table 4. For the tropical cyclone sample in Panel A,
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the mean of λ̂Bi, the estimated arrival rate in the bad state, is 0.84 (or once in every 1.2 years),

with 95% of the estimates being significant. The mean estimate of λGi is 0.16 (or once in every

6.5 years), with 95% of the estimates being significant. For the extreme temperature sample,

the mean estimate of λBi is 0.727, with 98.3% of the estimates being significant. For estimates

of λG,i, the mean is 0.138 with again 98.3% of the estimates being significant.

Table 4: Estimates of the arrival model

This table shows the summary statistics over all countries of country-level parameter estimates of the time-
varying arrival-rate model of extreme weather in Section 4. π̂0,i is set to a country’s arrival rate in 1960-1979

sample. Estimates for λB,i and λG,i, λ̂B,i and λ̂G,i, are from simulated method of moments targeting the five
moments over the sample of 1980-2019 as specified in Appendix Tables A.1 and A.2. % Sig. in the second column
denotes the percentage of country-level estimates that are significant at the 5% level.

Panel A: Cyclone

Mean % Sig. Median Min Max
π̂0,i 0.33 0.2

λ̂B,i 0.841 95.1% 0.802 0.638 0.989

λ̂G,i 0.155 95.1% 0.059 0.026 0.347

Panel B: Heatwave

Mean % Sig. Median Min Max
π̂0,i 0.11 0.05

λ̂B,i 0.727 98.3% 0.731 0.639 0.933

λ̂G,i 0.138 98.3% 0.136 0.023 0.199

Cyclones in Fiji and heatwaves in Germany. To better understand the implications of

time-varying arrival model, Panel A of Figure 1 plots the path of π̂it implied by the cyclone

model estimated from data for Fiji, along with the actual arrivals of cyclones (the gray bars).

In this case, the cluster of arrivals in the 1990s lead the model to shift its posterior to near 1.

But the absence of subsequent cyclones until 2013 leads the posterior to shift down to close to

0 in the late 2000s until recently when π̂it−1 started to shift up again due to another cluster of

arrivals.

Panel B performs a similar plot, but using heatwave data for Germany. The path of π̂it

for Germany’s extreme-temperature is quite different. The π̂it series stays close to zero until a
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cluster of arrivals in the 2000s lead the risk posterior to rise dramatically. In spite of several

abnormally hot summers in the late eighties and early nineties, π̂it does not shoot up because

the prior risk πit is close to zero. According to Equation 2, the size of the jump with the arrival

of an event is given by σ(πt−) =
πt−(1−πt−)(λB−λG)

λ(πt−)
. Notice that σ(πt−) is nonlinear in πt−, and

equal to 0 when πt− equals 0 or 1. When the risk is extremely low or extremely high, the arrival

of an event triggers only a small revision in posteriors, i.e. society is already pretty sure that it

is at low or high risk. The largest revisions are typically for intermediate values of πt−.

Figure 1: Arrivals and evolution of π̂it: two illustrative examples

This figure shows the arrivals and evolution of π̂it for two illustrative examples: Fiji with cyclone data (Panel
A) and Germany with heatwave data (Panel B). In each example, the path of π̂it computed from the fixed prior
π̂i0 is plotted in the solid black line, and the ones from π̂i0±(the standard deviation of arrivals in the pre-1980
period) are plotted in dotted lines. The gray bars indicate years when there is an arrival.

Panel A: Cyclone example, Fiji

Panel B: Heatwave example, Germany
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5.2 Second-Stage Estimates of the Damage Function

The average effect of economic damages is typically estimated by pooled estimation of a linear

model controlling for time and fixed effects. We differ in that we allow the damage function to

vary with πi0 and πit−1, and we impose sign restrictions on the parameters. Furthermore, we

perform constrained time series estimation country-by-country, and then aggregate the individ-

ual estimates to obtain an estimate of the average effect of interest. The cost to flexibility is

that the sample size for the country level regressions is limited by data availability which might

affect the estimate of the average effect.

Before turning to non-linear estimation, we want to be confident that our country-by-country

approach gives estimates of the average that are similar to panel estimation of the constant

parameter linear model gnit = µ+ ζ1iDit + ϵit. To this end, Figure 2 plots the density, estimated

using the Epanchnikov kernel, of the individual ζ̂1i estimated from the linear model (7). Also

shown is the simple average ζ̂1 =
1
N

∑
i ζ̂1i, as well as the pooled panel estimate ζ̃1 (black dotted

line). They are −0.90 (the average) and −0.93 (the pooled) for the cyclone data, and −0.69

(the average) and −0.68 (the pooled) for the extreme temperature data. We see that ζ̂1 and ζ̃1

are quite similar.

We thus proceed with second-stage estimation of a model with learning and adaptation, ie.

gnit = µi + β1iDit + β2iπ̃i,t−1Dit + εit

For each country i, the damage parameter β1i is constrained to be negative and the adap-

tation parameter β2i is constrained to be positive. The density of the estimates are shown in

Figure 3. For both the cyclone and extreme temperature data, the density of β̂1i is slightly

skewed. From β̂1i and β̂2i, we define β̂1 = 1
N

∑N
i=1 β̂1i and β̂2 = 1

N

∑N
i=1 β̂2i and use bootstrap

to obtain their standard errors.14 We obtain a β̂1 of −0.904 with a standard error of 0.38 in

14Precisely, estimation using the b-th bootstrap sample of data for country i gives β̂b
1i. This yields an average

estimate in the b-replication of β̂b
1i = 1

N

∑N
i=1 β̂

b
1i. The standard error of β̂1 is estimated by the standard
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Figure 2: Density of ζ̂1i

This figure plots the density (estimated using the Epanchnikov kernel) of the individual ζ̂1i estimated from the

linear model (7). The blue solid line is the density. The red dashed line is ζ̂1 = 1
N

∑N
i=1 ζ̂1i. The black dashed

line is the estimate of the average effect from a linear panel regression of growth on arrivals with country and
region-by-year fixed effects.

Panel A: Cyclone data Panel B: Heatwave data

the cyclone data, and −0.693 with a standard error of 0.21 in the extreme temperature data;

both significant at the 5% level. Interestingly, β̂1 implied by the non-linear model is close to

the average estimate ζ̂1 and the pooled estimate ζ̃1 for the linear model shown earlier in Figure

2. However, while a linear model constrains β2i to zero, our model with adaptation treats this

as a free parameter. The bottom of Figure 3 shows that many of the β̂2i are non-zero. The

average estimate β̂2 is 0.145 with a standard error of 0.06 for the cyclone data, and is 0.126

with a standard error of 0.05 for the extreme temperature data. Both estimates are significant

at the 5% level.

To put these estimates into context, the arrival of a cyclone leads to a decline of 90.4 basis

points of economic growth for a typical country at its prior risk (the mean π0 is 0.3). Suppose

that the country’s risk increases by 0.5 from its prior, i.e. (πt−1 − π0) is 0.5, so that its πt−1

equals 0.8. This would mean that an extreme-weather arrival reduces economic growth only

deviation in {β̂b
1}, b = 1, . . . B. Similar calculations are performed for β̂2.
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Figure 3: Density of β̂1i and β̂2i

This figure plots the density (estimated using the Epanchnikov kernel) of the individual β̂1i and β̂2i estimated
from the non-linear model (8). The blue solid line is the density. The red dashed line is the simple average over
countries, and the black dashed line is the estimate from a pooled linear regression of growth on arrivals with
country and region-by-year fixed effects.

Panel A: Density plot of β̂1i

Cyclone β̂1i Heatwave β̂1i

Panel B: Density plot of β̂2i

Cyclone β̂2i Heatwave β̂2i

23



by 0.904− 0.145× 0.5 or 0.83. In other words, state-dependent adaptation on net ameliorates

damage due to cyclones by 7 basis points.

The benefits of state-dependent adaptation are similar for extreme temperature. For the

typical country at its risk prior which is 0.1, the damage to growth from an episode of extreme

temperature is 69.3 basis points. If that country’s risk rises by 0.5 to 0.6, the damage per arrival

of an extreme-weather event falls to 63 basis points. This is a 6.3 basis points reduction.

GDP growth of Fiji and Germany. To better understand the variation we are using

to isolate β2i, we return to our Fiji and Germany examples. Figure 4 contains scatter plots

of GDP growth (net of (it − δ)) against π̂it−1 at extreme-weather arrival years for our two

illustrative country examples. For Fiji, β̂1i = −0.93 and β̂2i = 0.15. For Germany, β̂1i = −0.72

and β̂2i = 0.12. The positive estimate of β2i can be seen from the positive slopes of the

scatterplots. The higher is π̂it−1, the smaller is the damage to GDP growth with an arrival. The

coefficient β1i is determined by a comparison of these arrival year observations with non-arrival

year observations, which are not shown.

Figure 4: Scatter plots of GDP growth against π̂it−1 at arrival years, two illustrative examples

This figure scatter plots GDP growth (net of (it−1 − δ)) against π̂it−1 at extreme-weather arrival years for our

two illustrative country examples. For Fiji, (β̂1i = −0.93, β̂2i = 0.15). For Germany, (β̂1i = −0.72, β̂2i = 0.12).

Panel A: Fiji Panel B: Germany
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6 Model Diagnostics

Our approach differs from the approach in the literature in the following dimensions. First,

we convert historical weather experience into an extreme-weather risk prior using a Bayesian

learning model. Second, we incorporate learning and revision of priors into the country-by-

country estimation. This learning term would ordinarily be swept up in the error term. But

we show that explicitly accounting for the revisions in priors is important for long-horizon

projections. Third, we allow for a nonlinear relationship between adaptation and risk priors.

This non-linearity is typically absent in current models which assume that the effect of a disaster

arrival on GDP growth is decreasing linearly in arrival experience.

In this section, we provide diagnostics to show (i) limitations of a time-invariant structural

model for extreme weather arrivals model used in the first stage; (ii) limitations of linear model

used in the second stage; (iii) new insights from our approach over linear event studies in

estimating the damage function.

6.1 Disaster Arrivals: Constant versus State-Dependent Parameters

We first test for adequacy of our 2-parameter (unrestricted) time-varying extreme-weather ar-

rivals model against a restricted time-invariant Poisson arrivals model. This restricted model

which sets λB = λG is also estimated using SMM with the five moments specified in Appendix

Tables A.1 and A.2. The distance statistic is the difference between the value of the SMM ob-

jective function in the restricted Poisson model and our unrestricted extreme-weather arrivals

model (both evaluated at their respective SMM estimates) multiplied by T . This test statistic

has an asymptotic χ2 distribution with one degree of freedom.

In Table 5, we present the result of this test, which shows the percentage of countries that

rejects the null (restricted model). It is clear that for the vast majority of countries, we reject

a time-invariant Poisson arrival model of extreme weather in favour of our time-varying arrival
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rate model at the usual significance levels. For instance, for cyclones, 92.8% of the countries

are rejected at the 10% significance level and 76.8% at the 5% significance level. For extreme

temperatures, 95% of countries are rejected at the 10% significance level and 87.6% at the 5%

significance level.

6.2 Linear vs Nonlinear Damage Function

We can check the adequacy of the linear model (7) used in the second stage. Let ε̂t be the

residuals from estimation of (7) for a given country. Theory suggests that economic outcomes

should depend not only on Dt, but also on πt in a possibly non-linear way. Consider the

regression

ε̂t = γ0 + γ1Dt + γ2Dtπt−1 + γ3πt−1 + errt. (10)

Under the null hypothesis that the linear model is correct, πt and the interaction term should

have no explanatory power and the R2 of the above regression should be small. The LM test

statistic T ·R2 has a χ2 distribution with two degrees of freedom. As shown below, the results

resoundingly reject the null hypothesis. On average, the R2 in these regressions is over 0.18,

indicating non-trivial explanatory power in the omitted terms. Table 5 shows the percentage of

countries for which the LM test rejects the null hypothesis of the linear model being correctly

specified. We can see that for most of countries, the LM test rejects at the usual statistical

significance levels. This result suggests omitted non-linear terms from the linear model that can

explain nearly 20% of the variations in the residuals.

6.3 Residual serial correlation test of nonlinear model

To further confirm the adequacy of our model with learning and adaptation, we conduct tests for

first-order residual serial correlations of our nonlinear model in Section 4.2 with the estimates

given in Section 5.2. We find no evidence of serial correlation in Table 5. For the 10% level of
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Table 5: Specification Tests: % of countries rejecting null hypothesis H0 at 10 and 5% signifi-
cance levels

This table presents the results of our model diagnostics. The first row shows the summary statistics over all
countries of country-level model specification tests for testing the first-stage 2-parameter extreme-weather arrival
model versus the restricted simple Poisson arrival model (one constant λ) estimated using SMM with the five
moments specified in Table A.3. The second row shows the summary statistics over all countries of country-level
LM tests for the adequacy of the linear damage function model against the alternative adaptation model with
additionalDtπt−1 and πt−1 terms. The third row shows the summary statistics of country-level Breusch–Godfrey
tests for 1st-order residual serial correlations in the adaptation regression.

Model Equation H0 Cyclone Heatwave
10% 5% 10% 5%

Disaster Arrival (4) λB = λG 92.8 76.8 95.0 87.6
Residual of linear model (10) γ1 = γ2 = γ3 = 0 91.3 72.5 92.6 71.2

Residual of nonlinear model (8) Breusch-Godfrey 2.2 0 4.1 0

significance, we find that only in 3% of countries can we reject the null hypothesis of no serial

correlation in the residuals for cyclones. For the 5% level of significance, it is 0%. For the

extreme temperature model, only in 4% of the countries can we reject the null at the 10% level

and 0% at the 5% level of significance.15

6.4 Robustness Check

Detrending. For our key estimation equation (8), we detrend the variables as follows. For

any variable wit where i indexes country and t indexes time, define w̄i· = (1/T )
∑T

t=1wit,

w̄·t = (1/N)
∑N

i=1wit, w̄ = (1/N)(1/T )
∑N

i=1

∑T
t=1wit, and the detrended version of wit is

ẅit = wit − w̄i· − w̄·t + w̄. Then we estimate the following detrended version of our main

equation (8) country by country

ÿit = αi + βi1D̈it + βi2ẍit + ϵit

15Because the residuals from our nonlinear model are serially uncorrelated, it does not matter if we also
control for lagged GDP growth and the interaction of lagged GDP growth with the disaster arrival indicator Dit

in our empirical analysis.
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where yit = git−(iit−1−δit−1), xit = π̃it−1Dit, and αi is statistically equal to zero. This detrending

is equivalent to removing the country and time effects from a pooled panel regression model.16

We show the detrended results in Figure A.1. The estimates of β1 and β2 are quite close to our

baseline model estimates in Figure 3. Hence detrending has no impact on our main findings.

Panel regression estimates of the state-dependent model. We estimate our state-

dependent model in a pooled panel regression with country and year fixed effects as another

robustness check. The estimates, which are similar to those that we obtain by averaging our

country-by-country estimates, are shown in Table A.4.

7 Counterfactuals

7.1 In Sample: 1980-2019

We are interested in comparing the real GDP per capita in 2019 to the counterfactual 2019

income assuming that there had been no learning and state-dependent adaptation over our

sample of 1980-2019. We can make this comparison using the actual in sample GDP growth

rates git for our countries along with estimates of our non-linear time-varying extreme-weather

risk model from Section 5.

The counterfactual GDP per capita in each year of our sample is:

GDPCF
it = GDPCF

it−1 × (1 + git − β̂i2π̃it−1Dit), (11)

where GDPCF denotes the counterfactual real GDP per capita, π̃it−1 = (πit−1 − πi0) and Dit

equals 1 if the country is hit by a disaster and zero otherwise.17 β̂i2 is from our estimates

16See Greene (2012), chapter 11.4 for reference.
17Strictly speaking, β̂i2 is estimated using growth rates of GDP net of (it−1 − δ). However, the growth rates

of GDP and GDP per capita are extremely correlated.
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summarized in Figure 3. Equation 11 is a recursive relationship where the initial condition is

set to the 1980 real GDP per capita.

Table 6 reports the 2019 country real per capita GDP compared to the counterfactual if there

were no learning and state-dependent adaptation for cyclones and heatwaves, respectively. The

counterfactual 2019 income for tropical cyclones would be 6.5% lower for the mean or median

country income. For heatwaves, the counterfactual 2019 income is around 4% lower.

Panel A of Figure 5 plots the evolution of in-sample and counterfactual country incomes for

our cyclone sample. We can see from this figure (and also the summary statistics in Table 6)

that the return to adaptation varies across countries — higher for very high and very low income

countries. Panel B of Figure 5 plots the evolution of actual and counterfactual incomes absent

adaptation for heatwaves. Notice that the countries in the heatwaves sample differ somewhat

from the tropical cyclone samples, which is reflected in the larger standard deviation in the

heatwave sample.

Table 6: Summary statistics of counterfactual real GDP per capita in 2019

This table presents the summary statistics of the counterfactual real GDP per capita across countries in 2019 by
shutting down the state-dependent adaptation channel and using the in-sample extreme weather arrival data.
Real GDP per capita is in thousands of constant 2015 USD.

Counterfactual real GDP per capita in 2019

Cyclone sample Heatwave sample
In-sample at 2019 Counterfactual In-sample at 2019 Counterfactual

Mean 14.2 13.3 15.2 14.6
S.D. 19.5 19.1 21.5 21.9
Median 5.2 4.7 4.9 4.6
P25 2.0 1.5 1.6 1.5
P75 14.5 11.4 19.0 16.0

Evolution of π̂it in sample. To see why income absent adaptation is lower, it is instructive

to see how π̂it changes over our sample. Figure 6 plots π̂it for 1989, 1999, 2009 amd 2019.

Consider the heatwave or extreme temperature sample. Here, we see that in 1979 there is

little risk of heatwaves as most countries’ values of π̂it are at around 0.2. However, over the
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Figure 5: In-sample counterfactual real GDP per capita absent learning and state-dependent
adaptation

This figure shows the in-sample counterfactual (without state-dependent adaptation) real GDP per capita com-
pared to the actual time-series of real GDP per capita from 1980 to 2019. Panel A shows the results for the
cyclone sample and Panel B for the heatwave sample. The left figure in each panel (Actual) shows the actual
in-sample time-series paths of real GDP per capita, while the right figure shows the counterfactual income with
no learning and state-dependent adaptation. Real GDP per capita is shown in thousands of constant 2015 USD.

Panel A: Cyclone sample Panel B: Heatwave sample

Left: Actual. Right: Counterfactual Left: Actual. Right: Counterfactual
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ensuing decades, some of these countries transition to higher π̂it.
18 The benefit of adaptation

is largest for the countries that start from a low π̂it in the beginning of the sample and move

to a high π̂it at the end of the sample. The reason is that these countries are being hit more

frequently by disasters and hence lack of adaptation gets penalized more in Equation (11). At

the same time, countries that start with a moderate risk and transition to lower π̂it over time

would be less likely to get hit and hence the adjustment accounting for adaptation matters less

for these countries.

A similar logic applies to tropical cyclones. Notice that for cyclones, we see a more dispersed

πi0 across countries in 1979 than for heatwaves. For instance, there are some countries with

values of πit above 0.8, but most the countries are clustered below 0.2. Over time, notice that

there are more countries at the extremes of the πit distribution.
19

Figure 6: In-sample evolution of πit

This figure plots the in-sample evolution of πit from 1979 to 2019. The scatter plot of πit values is shown at
each decade end. The darker color the more country observations for those values of πit.

18These countries, all with priors between 0.15 and 0.3, include Zambia, Nicaragua, Lebanon, Norway, Mon-
golia, Spain, The Bahamas, Algeria, Kuwait, Tunisia.

19These countries include Honduras, Cambodia, El Salvador, Belize, Fiji, Panama, Dominican Republic,
Costa Rica, Guatemala, Nicaragua.
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7.2 Out of Sample: 2020 to 2099

Another way to demonstrate the usefulness of our model is to consider the following common

exercise in the climate literature, which is to project the impact of extreme weather events on

economic growth over the coming century. We use the estimates from our constant-coefficient

model and varying-coefficient model to generate projected future changes in GDP (i.e., growth

rates). In particular, the evolution of real GDP per capita in country i in year t is given by:

GDPit = GDPit−1 × (1 + ηit + χitDit), (12)

where GDP denotes the real GDP per capita. We take 2019 to be t = 0. The exercise starts

from t = 1 and ends in t = 101 for year 2100.

In Equation (12), ηit is the growth rate of GDP of country i in year t absent any climate

(extreme weather) damage. As in the literature (e.g., Burke et al., 2015), we take this base

growth rate from the SSP5.20 Dit as before is the dummy variable denoting the extreme weather

arrival event for country i in year t. The key quantity is χit, which is the estimated damage of

an extreme weather event. We consider two different models for χit:

a. The damage estimates from the time-invariant regression model. In this case, χit is a

constant, ∀(i, t), i.e. where adaptation is fixed at prior risk. We call this projection

“Fixed Adaptation”.

b. The damage estimates from the time-varying model with learning and adaptation, which

are shown in Figure 3. In this case, χit =
(
F (πi0) + F ′(πi0)π̃it−1

)
, which depends on

beliefs πit−1. We call this projection “State-dependent Adaptation”.

We use the time-varying extreme-weather arrivals model to simulated paths of future extreme

weather arrivals. This simulation is rather similar to the one used in our earlier simulated

20SSP5: Shared Socio-Economic Pathway, Scenario 5, called “Fossil-Fueled Development” — see Kriegler,
Bauer, Popp, Humpenöder, Leimbach, Strefler, Baumstark, Bodirsky, Hilaire, Klein, et al. (2017)
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method of moments estimation for beliefs in Section 4. Specifically, for any country i at future

year t, we simulate the extreme weather arrival at t from the mixed Poisson process: with

probability πit−1 we draw from the high Poisson jump arrival rate λiB, and with probability

(1 − πit−1) we draw from the low arrival rate λiG. Then we update beliefs πit according to

the belief-updating equation in Section 4. The simulation runs iteratively from t = 1: year

2020 to t = 101: year 2100 (remember we have already estimated all the learning parameters

θ = (πi0, λiB, λiG)
′ in Section 4 for each country), and we obtain the simulate path of future

extreme weather arrivals (as well as future beliefs).

Table 7: Summary statistics of projected real GDP per capita in 2100

This table presents the summary statistics of projected real GDP per capita across countries in 2100 using SSP5
and simulated arrivals from the time-varying extreme-weather arrivals model (Section 4) for both the cyclone and
the heatwave sample. Real GDP per capita is in thousands of constant 2015 USD. We consider two scenarios:
adaptation fixed at prior risk and state-dependent adaptation.

Projected real GDP per capita in 2100, time-varying arrivals model simulation

Cyclone sample Heatwave sample
Fixed State-dependent Fixed State-dependent

Mean 59.2 88.0 49.8 77.7
S.D. 37.1 50.0 34.0 56.6
Median 48.9 72.9 38.2 55.8
P5 20.5 39.1 16.7 25.1
P25 32.1 53.0 25.3 40.6
P75 75.3 105.6 69.1 99.3
P95 123.6 189.2 115.4 194.2

In Table 7, we report the projections for GDP in 2100, both for the cyclone sample and

the extreme temperature sample. For the tropical cyclones sample, there is a significant differ-

ence in projected income depending on whether one accounts for learning and state-dependent

adaptation. Using the constant-coefficient model that does not account for heterogeneity in

state-dependent adaptation across countries, the mean income is 59.2 thousand dollars. Adding

learning and state-dependent adaptation increases income from 59.2 thousand to 88.0 thousand

dollars. That is, income with fixed adaptation would be nearly 32% lower than with state-

dependent adaptation. For extreme temperature, income with fixed adaptation would be nearly

33



36% lower than with state-dependent adaptation. In other words, ignoring learning considerably

overstates the damage from extreme-weather risks over long horizons.

Figure 7: Projections of real GDP per capita

This figure shows projections of real GDP per capita using simulated arrivals from the Bayesian learning model.
Panel A shows the results for the cyclone sample and Panel B for the heatwave sample. The left figure in each
panel (State-dependent Adaptation) uses adaptation estimates from the varying coefficient model and belief
updates according to the simulated arrivals, while the right figure (Fixed Adaptation) uses damage estimates from
the constant coefficient model. Real GDP per capita is shown in thousands of constant 2015 USD. Projections
are shown from 2019 to 2100. We run 10,000 simulations for each country and take the median of the simulations
as its projection. The baseline GDP growth projections without extreme weather damages come from the SSP5
(Shared Socio-Economic Pathway, Scenario 5, called “Fossil-Fueled Development” — Kriegler, Bauer, Popp,
Humpenöder, Leimbach, Strefler, Baumstark, Bodirsky, Hilaire, Klein, et al. (2017)).

Panel A: Cyclone sample Panel B: Heatwave sample

Left: State-dependent Right: Fixed Left: State-dependent Right: Fixed
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To see these differences country by country, in Figure 7, we report the projections for GDP

using simulations of the time-varying arrivals model of Section 4. In Panel A, for the tropical

cyclones sample, there is a significant difference depending on whether we account for learning

(left side of the graphs) versus not doing so (right side of the graphs). The same is true for the

extreme temperature sample in Panel B.21

Resolution of uncertainty in long run. To understand why adjusting for learning is more

important for sample projections than in-sample counterfactuals, we plot in Figure 8 the evo-

lution of πit for all countries from the beginning of the end of our sample in 2019 to the end of

projection period in 2099. We show the scatter plot of πit values.

Compare the cyclone-risk evolution out of sample in Figure 8 to the analogous in-sample

Figure 6. We can see considerably more dispersion in outcomes across countries in 2100. The

same is true for the heatwave sample. This dispersion driven by uncertainty resolution means

that adaptation becomes more valuable over the long run.

Figure 8: Evolution of πit over time

This figure plots the evolution of πit over time at each decade end from the sample end to the projection end.
The scatter plot of πit values is shown at each decade end.

21In Table A.5, we show that the results from a second-order Taylor approximation of the non-linear damage
function are the same as those from a first-order Taylor approximation.
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8 Conclusion

Global warming is expected to lead to more frequent occurrences of extreme weather but the

effects for any given region is highly uncertain. As society learns from the arrivals of these events

and changes spending on adaptations, the damage from extreme weather will vary over time.

This learning channel is absent in linear models of economic damage with homogeneous and

time-invariant parameters. We develop an approach to account for learning and adaptation.

Our approach provides country-specific estimates of disaster risk as extreme-weather events

unfold, and state-dependent marginal effects of extreme-weather damage on economic growth.

Using data for tropical cyclones and extreme temperature from 1980-2019, we find that income

in 2019 absent learning and state-dependent adaptation would be several percent lower. The

return to state-dependent adaptation rises considerably in the future due to the resolution of

uncertainty regarding extreme weather at long horizons.
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Appendices

Table A.1: Cyclone sample moments for each country

ISO Code Country Name M1 Var M3 M4 AC

AUS Australia 0.976 0.024 -0.023 0.022 0.975
BGD Bangladesh 0.195 0.157 0.096 0.083 0.050
BHS Bahamas, The 0.098 0.088 0.071 0.065 0.025
BLZ Belize 0.293 0.207 0.086 0.078 0.100
BRA Brazil 0.049 0.046 0.042 0.040 0.000
BRN Brunei Darussalam 0.220 0.171 0.096 0.083 0.075
BWA Botswana 0.049 0.046 0.042 0.040 0.000
CAN Canada 0.634 0.232 -0.062 0.071 0.425
CHN China 0.976 0.024 -0.023 0.022 0.975
COL Colombia 0.049 0.046 0.042 0.040 0.000
CRI Costa Rica 0.293 0.207 0.086 0.078 0.100
CUB Cuba 0.463 0.249 0.018 0.063 0.125
DOM Dominican Republic 0.293 0.207 0.086 0.078 0.075
ESP Spain 0.098 0.088 0.071 0.065 0.000
FJI Fiji 0.244 0.184 0.094 0.082 0.100
FRA France 0.049 0.046 0.042 0.040 0.000
GBR United Kingdom 0.073 0.068 0.058 0.054 0.000
GIN Guinea 0.049 0.046 0.042 0.040 0.000
GNB Guinea-Bissau 0.049 0.046 0.042 0.040 0.000
GRL Greenland 0.049 0.046 0.042 0.040 0.000
GTM Guatemala 0.220 0.171 0.096 0.083 0.075
HND Honduras 0.220 0.171 0.096 0.083 0.075
HTI Haiti 0.171 0.142 0.093 0.081 0.050
IDN Indonesia 0.220 0.171 0.096 0.083 0.075
IND India 0.805 0.157 -0.096 0.083 0.375
IRL Ireland 0.049 0.046 0.042 0.040 0.000
IRN Iran, Islamic Rep. 0.049 0.046 0.042 0.040 0.000
ISL Iceland 0.049 0.046 0.042 0.040 0.000
JAM Jamaica 0.049 0.046 0.042 0.040 0.000
JPN Japan 0.976 0.024 -0.023 0.022 0.950
KHM Cambodia 0.244 0.184 0.094 0.082 0.100
KOR Korea, Rep. 0.707 0.207 -0.086 0.078 0.450
LAO Lao PDR 0.902 0.088 -0.071 0.065 0.850
LKA Sri Lanka 0.049 0.046 0.042 0.040 0.000
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Cyclone sample moments for each country, continued

ISO Code Country Name M1 Var M3 M4 AC

MDG Madagascar 0.829 0.142 -0.093 0.081 0.675
MEX Mexico 0.976 0.024 -0.023 0.022 0.950
MNG Mongolia 0.049 0.046 0.042 0.040 0.000
MOZ Mozambique 0.561 0.246 -0.030 0.064 0.325
MUS Mauritius 0.049 0.046 0.042 0.040 0.000
MWI Malawi 0.049 0.046 0.042 0.040 0.000
MYS Malaysia 0.220 0.171 0.096 0.083 0.075
NAM Namibia 0.049 0.046 0.042 0.040 0.000
NGA Nigeria 0.049 0.046 0.042 0.040 0.000
NIC Nicaragua 0.317 0.217 0.079 0.076 0.100
NOR Norway 0.049 0.046 0.042 0.040 0.000
NZL New Zealand 0.122 0.107 0.081 0.073 0.050
OMN Oman 0.049 0.046 0.042 0.040 0.000
PAK Pakistan 0.098 0.088 0.071 0.065 0.000
PAN Panama 0.293 0.207 0.086 0.078 0.100
PHL Philippines 0.951 0.046 -0.042 0.040 0.900
PNG Papua New Guinea 0.049 0.046 0.042 0.040 0.000
PRI Puerto Rico 0.122 0.107 0.081 0.073 0.050
PRT Portugal 0.049 0.046 0.042 0.040 0.000
RUS Russian Federation 0.610 0.238 -0.052 0.068 0.350
SEN Senegal 0.073 0.068 0.058 0.054 0.025
SLB Solomon Islands 0.073 0.068 0.058 0.054 0.025
SLV El Salvador 0.293 0.207 0.086 0.078 0.100
SWZ Eswatini 0.049 0.046 0.042 0.040 0.000
THA Thailand 0.780 0.171 -0.096 0.083 0.625
TTO Trinidad and Tobago 0.049 0.046 0.042 0.040 0.000
SGP Singapore 0.220 0.171 0.096 0.083 0.075
TZA Tanzania 0.561 0.246 -0.030 0.064 0.600
USA United States 0.976 0.024 -0.023 0.022 0.975
VEN Venezuela, RB 0.073 0.068 0.058 0.054 0.025
VNM Vietnam 0.976 0.024 -0.023 0.022 0.950
VUT Vanuatu 0.122 0.107 0.081 0.073 0.025
YEM Yemen, Rep. 0.049 0.046 0.042 0.040 0.000
ZAF South Africa 0.049 0.046 0.042 0.040 0.000
ZWE Zimbabwe 0.122 0.107 0.081 0.073 0.025
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Table A.2: Heatwave sample moments for each country

ISO Code Country Name M1 Var M3 M4 AC

AGO Angola 0.200 0.160 0.096 0.083 0.154
ALB Albania 0.425 0.244 0.037 0.065 0.308
ARE United Arab Emirates 0.150 0.128 0.089 0.079 0.103
AUS Australia 0.225 0.174 0.096 0.083 0.205
AUT Austria 0.200 0.160 0.096 0.083 0.051
BDI Burundi 0.425 0.244 0.037 0.065 0.308
BEL Belgium 0.325 0.219 0.077 0.075 0.154
BEN Benin 0.050 0.048 0.043 0.041 0.000
BFA Burkina Faso 0.350 0.228 0.068 0.072 0.256
BGR Bulgaria 0.300 0.210 0.084 0.078 0.205
BHS Bahamas, The 0.350 0.228 0.068 0.072 0.205
BOL Bolivia 0.250 0.188 0.094 0.082 0.205
BRA Brazil 0.300 0.210 0.084 0.078 0.231
BWA Botswana 0.375 0.234 0.059 0.070 0.154
CAF Central African Republic 0.175 0.144 0.094 0.082 0.154
CAN Canada 0.200 0.160 0.096 0.083 0.051
CHE Switzerland 0.100 0.090 0.072 0.066 0.026
CHL Chile 0.025 0.024 0.023 0.023 0.000
CHN China 0.050 0.048 0.043 0.041 0.000
CIV Cote d’Ivoire 0.150 0.128 0.089 0.079 0.077
CMR Cameroon 0.275 0.199 0.090 0.080 0.256
COD Congo, Dem. Rep. 0.175 0.144 0.094 0.082 0.103
COG Congo, Rep. 0.050 0.048 0.043 0.041 0.000
COL Colombia 0.225 0.174 0.096 0.083 0.205
CPV Cabo Verde 0.225 0.174 0.096 0.083 0.154
CRI Costa Rica 0.600 0.240 -0.048 0.067 0.436
CUB Cuba 0.025 0.024 0.023 0.023 0.000
CYP Cyprus 0.075 0.069 0.059 0.055 0.000
DEU Germany 0.275 0.199 0.090 0.080 0.128
DNK Denmark 0.250 0.188 0.094 0.082 0.128
DOM Dominican Republic 0.100 0.090 0.072 0.066 0.051
DZA Algeria 0.525 0.249 -0.012 0.063 0.385
ECU Ecuador 0.250 0.188 0.094 0.082 0.205
EGY Egypt, Arab Rep. 0.300 0.210 0.084 0.078 0.282
ESP Spain 0.400 0.240 0.048 0.067 0.231
ETH Ethiopia 0.275 0.199 0.090 0.080 0.205
FIN Finland 0.450 0.248 0.025 0.064 0.308
FJI Fiji 0.225 0.174 0.096 0.083 0.205
FRA France 0.250 0.188 0.094 0.082 0.103
GAB Gabon 0.125 0.109 0.082 0.073 0.103
GBR United Kingdom 0.050 0.048 0.043 0.041 0.000
GEO Georgia 0.250 0.188 0.094 0.082 0.154
GHA Ghana 0.200 0.160 0.096 0.083 0.154
GIN Guinea 0.275 0.199 0.090 0.080 0.231
GMB Gambia, The 0.225 0.174 0.096 0.083 0.205
GNB Guinea-Bissau 0.100 0.090 0.072 0.066 0.026
GNQ Equatorial Guinea 0.325 0.219 0.077 0.075 0.282
GRC Greece 0.125 0.109 0.082 0.073 0.051
GTM Guatemala 0.900 0.090 -0.072 0.066 0.872
HND Honduras 0.500 0.250 0.000 0.063 0.359
HUN Hungary 0.275 0.199 0.090 0.080 0.103
IRL Ireland 0.075 0.069 0.059 0.055 0.026
IRN Iran, Islamic Rep. 0.350 0.228 0.068 0.072 0.256
IRQ Iraq 0.375 0.234 0.059 0.070 0.256
ISL Iceland 0.200 0.160 0.096 0.083 0.077
ISR Israel 0.075 0.069 0.059 0.055 0.051
ITA Italy 0.250 0.188 0.094 0.082 0.154
JAM Jamaica 0.050 0.048 0.043 0.041 0.000
JOR Jordan 0.250 0.188 0.094 0.082 0.231
JPN Japan 0.075 0.069 0.059 0.055 0.026
KEN Kenya 0.300 0.210 0.084 0.078 0.205
KHM Cambodia 0.075 0.069 0.059 0.055 0.026
KOR Korea, Rep. 0.050 0.048 0.043 0.041 0.000
KWT Kuwait 0.475 0.249 0.012 0.063 0.333
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Heatwave sample moments for each country, continued

ISO Code Country Name M1 Var M3 M4 AC

LAO Lao PDR 0.225 0.174 0.096 0.083 0.128
LBN Lebanon 0.600 0.240 -0.048 0.067 0.538
LKA Sri Lanka 0.150 0.128 0.089 0.079 0.077
LSO Lesotho 0.225 0.174 0.096 0.083 0.205
LUX Luxembourg 0.150 0.128 0.089 0.079 0.051
LVA Latvia 0.575 0.244 -0.037 0.065 0.385
MAR Morocco 0.375 0.234 0.059 0.070 0.256
MDG Madagascar 0.250 0.188 0.094 0.082 0.231
MEX Mexico 0.225 0.174 0.096 0.083 0.205
MLI Mali 0.275 0.199 0.090 0.080 0.128
MNG Mongolia 0.475 0.249 0.012 0.063 0.333
MOZ Mozambique 0.100 0.090 0.072 0.066 0.026
MRT Mauritania 0.100 0.090 0.072 0.066 0.026
MUS Mauritius 0.125 0.109 0.082 0.073 0.077
MWI Malawi 0.450 0.248 0.025 0.064 0.333
MYS Malaysia 0.025 0.024 0.023 0.023 0.000
NAM Namibia 0.450 0.248 0.025 0.064 0.256
NER Niger 0.125 0.109 0.082 0.073 0.077
NGA Nigeria 0.075 0.069 0.059 0.055 0.026
NIC Nicaragua 0.525 0.249 -0.012 0.063 0.385
NLD Netherlands 0.375 0.234 0.059 0.070 0.179
NOR Norway 0.325 0.219 0.077 0.075 0.205
NPL Nepal 0.100 0.090 0.072 0.066 0.051
NZL New Zealand 0.025 0.024 0.023 0.023 0.000
OMN Oman 0.225 0.174 0.096 0.083 0.205
PAK Pakistan 0.075 0.069 0.059 0.055 0.026
PAN Panama 0.150 0.128 0.089 0.079 0.051
PER Peru 0.300 0.210 0.084 0.078 0.231
PNG Papua New Guinea 0.225 0.174 0.096 0.083 0.205
POL Poland 0.300 0.210 0.084 0.078 0.128
PRT Portugal 0.125 0.109 0.082 0.073 0.051
PRY Paraguay 0.250 0.188 0.094 0.082 0.205
QAT Qatar 0.400 0.240 0.048 0.067 0.282
RWA Rwanda 0.350 0.228 0.068 0.072 0.205
SAU Saudi Arabia 0.175 0.144 0.094 0.082 0.103
SDN Sudan 0.175 0.144 0.094 0.082 0.128
SEN Senegal 0.325 0.219 0.077 0.075 0.231
SLE Sierra Leone 0.050 0.048 0.043 0.041 0.000
SLV El Salvador 0.625 0.234 -0.059 0.070 0.513
SWE Sweden 0.175 0.144 0.094 0.082 0.077
SWZ Eswatini 0.225 0.174 0.096 0.083 0.103
SYR Syrian Arab Republic 0.325 0.219 0.077 0.075 0.205
TCD Chad 0.225 0.174 0.096 0.083 0.128
TGO Togo 0.275 0.199 0.090 0.080 0.231
THA Thailand 0.025 0.024 0.023 0.023 0.000
TTO Trinidad and Tobago 0.300 0.210 0.084 0.078 0.231
TUN Tunisia 0.550 0.248 -0.025 0.064 0.462
TUR Turkey 0.250 0.188 0.094 0.082 0.179
TZA Tanzania 0.025 0.024 0.023 0.023 0.000
UGA Uganda 0.300 0.210 0.084 0.078 0.205
URY Uruguay 0.050 0.048 0.043 0.041 0.000
USA United States 0.125 0.109 0.082 0.073 0.051
VEN Venezuela, RB 0.225 0.174 0.096 0.083 0.128
VUT Vanuatu 0.250 0.188 0.094 0.082 0.231
ZAF South Africa 0.200 0.160 0.096 0.083 0.179
ZMB Zambia 0.475 0.249 0.012 0.063 0.282
ZWE Zimbabwe 0.300 0.210 0.084 0.078 0.205
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Table A.3: Summary statistics of sample moments across all countries

This table shows the summary statistics of country-level cyclone and heatwave sample moments across all
countries. M1 is the mean of arrivals, Var is the variance, M3 is the 3rd central moment, M4 is the 4th central
moment, and AC is the first-order autocorrelation, defined as the sample analogue of E[DtDt−1].

Panel A: Cyclone sample moments

Mean S.D. Median P10 P90

M1 0.29 0.32 0.12 0.05 0.95
Var 0.10 0.07 0.07 0.05 0.21
M3 0.04 0.05 0.04 -0.04 0.09
M4 0.06 0.02 0.05 0.04 0.08
AC 0.19 0.31 0.05 0.00 0.90

Panel B: Heatwave sample moments

Mean S.D. Median P10 P90

M1 0.25 0.16 0.23 0.05 0.45
Var 0.16 0.07 0.17 0.05 0.24
M3 0.06 0.04 0.08 0.02 0.10
M4 0.07 0.02 0.07 0.04 0.08
AC 0.17 0.14 0.15 0.00 0.31

Table A.4: Panel regression estimates of the state-dependent model

This table shows the estimation results of our state-dependent model in a pooled panel regression. t-statistics
(with bootstrapped standard errors) are shown in parentheses. ***, **, and * denote statistical significance at
the 1%, 5%, and 10% levels respectively.

Cyclone Heatwave

β̂1 -0.992*** -0.682***
(-15.0) (-13.4)

β̂2 0.177** 0.148***
(2.28) (2.63)

Country FE Yes Yes
Year FE Yes Yes
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Figure A.1: Density of β̂1i and β̂2i after detrending

This figure plots the density (estimated using the Epanchnikov kernel) of the individual β̂1i and β̂2i estimated
from the detrended version of our main equation (8).

Panel A: Density plot of β̂1i

Cyclone β̂1i Heatwave β̂1i

Panel B: Density plot of β̂2i

Cyclone β̂2i Heatwave β̂2i
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Table A.5: Summary statistics of projected real GDP per capita in 2100, higher order Taylor
approximation

This table presents the summary statistics of projected real GDP per capita across countries in 2100 using the
Bayesian model simulation for both the cyclone and the heatwave sample. Real GDP per capita is in thousands
of constant 2015 USD. Adaptation is our main adaptation function with the first-order Taylor approximation.
Adaptation order 2 is the adaptation function with the second-order Taylor approximation.

Projected real GDP per capita in 2100, higher order Taylor approximation

Cyclone sample Heatwave sample
Adaptation Adaptation order 2 Adaptation Adaptation order 2

Mean 88.0 89.6 77.7 80.5
S.D. 50.0 50.5 56.6 57.0
Median 72.9 74.4 55.8 58.2
P5 39.1 40.0 25.1 26.1
P25 53.0 54.6 40.6 41.9
P75 105.6 110.2 99.3 101.6
P95 189.2 195.3 194.2 198.3
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