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1 Introduction

In the past few years, many universities have dropped their SAT and ACT requirements,
switching to a test-optional or test-blind admission procedure. While most schools ini-
tially did so to accommodate applicants during the worst of the COVID-19 pandemic, the
shift away from score requirements has become popular even as threats from the pan-
demic recede. Education experts — including economists, other social scientists, policy
makers, and practitioners — debate whether dropping the SAT and ACT requirements
contributes to better admission outcomes, especially in light of the education inequalities
across applicants of different family and economic backgrounds.

This paper focuses on one important but understudied factor in this debate: when
students have the option to disclose or hide their standardized test scores, this decision
is likely strategic. Schools’ admission office may or may not take such strategic behavior
into account, but students’ strategic decision would depend on their belief of how the
admission office would interpret non-reporting, which in turn affects the final admission
outcomes.

Existing evidence already points to the potential importance of selective reporting.
According to Freeman, Magouirk and Kajikawa (2021), the percent of students reporting
SAT score in college application has declined sharply from 73% during the 2019-2020 sea-
son to 40% in 2020-2021 while the percent of common app member colleges that did not
require test scores rose from roughly one-third to 89%. This is opposite to the classical dis-
closure theory (Milgrom, 1981; Grossman, 1981), which predicts that a rational receiver of
the disclosure signal should assume all non-reported students have the worst test scores
and therefore all students except for those with the worst scores should report. Clearly,
the reality is far from the unraveling equilibrium.1 Given such selection, it is not surpris-
ing that most colleges ranked top 100 by the US News & World Report have seen their
distribution of SAT scores of the admitted class improve in the past few years, because
this distribution is conditional on the admitted students that had reported SAT scores to
the college. 2

One may argue that strategic reporting is of little importance because standardized
test score is only one of many student attributes that admission officers may consider in a

1Take the University of Texas Austin as an example. Its press release on March 11, 2024 states that 42%
of its freshman applications for Fall 2024 reported their standardized scores and the median SAT score of
these reporting students is much higher than that of those who did not report (1420 versus 1160). Source:
https://news.utexas.edu/2024/03/11/ut-austin-reinstates-standardized-test-scores-in-admissions/.

2Figures A.1 and A.2 show the trends in SAT and ACT scores in the last few years. Among applicants
who submitted their SAT/ACT scores and got admitted to the top-100 schools ranked by U.S. News, there
was an increasing trend in average test scores in the past few years.
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college application. Admission officers may be able to guess the non-reported test scores
because these observable factors are correlated with test scores. However, such correla-
tion is often imperfect. Growing evidence suggests that standardized test scores such as
SAT and ACT are highly predictive of students’ academic performance in college as well
as career earnings even after controlling for other observable student attributes (Bettinger,
Evans and Pope, 2013; Sanchez and Comeaux, 2020; Chetty, Deming and Friedman, 2023;
Cascio et al., 2024). Some of these findings — or the logic behind them — may have driven
schools like MIT, Dartmouth, Yale, Brown, and the University of Texas at Austin to return
to the test-required policy. However, the vast majority of colleges are still test-optional,
some schools (such as University of California) have gone to the extreme of test-blind
(namely not accepting any score reporting even if the student volunteers to disclose it).
These ongoing developments motivate us to study the incentive and consequences of
voluntary reporting of standardized test scores.

The key questions we ask in this paper are three-fold: First, how do students choose
to report or not report their standardized test score when they observe their own score
in private but recognize that their other application materials (GPA, family economic sta-
tus, activities, etc.) are observable to the college? Second, how would students’ strategic
reporting behavior affect the college’s admission outcome in terms of academic prepared-
ness and diversity of admitted students? Third, how should a college choose among test-
required, test-blind and test-optional policies if it appreciates both academic preparedness
and diversity of the admitted class?

We answer these questions in a clean lab setting where a number of human subjects
(applicants) play a simple college admission game for 50 rounds. In each round, each
subject receives a private endowment A and a public endowment B. The endowments
are randomly drawn with a positive correlation between A and B. Each student’s B is
automatically observable to the college but students choose whether to report A to the
college. Upon student choice of reporting or non-reporting, the college (simulated by
computer) admits half of the applicants that it believes to have the best total endowment
(A+B).

A simplified college admission game highlights two strategic incentives in student re-
porting. First, students with a higher score are more likely to report, and this incentive
is stronger when the college interprets non-reported score more harshly. If the school in-
terprets non-reporting as the worst score possible, everyone would have an incentive to
report except for those of the worst score, leading to the classical unraveling equilibrium.
However, if the school interprets non-reporting strictly above the worst score (for an ideo-
logical reason for example), only those that have a score above the school’s interpretation

2



of non-reporting would have an incentive to disclose. We refer to this threshold-based
incentive as “partial unraveling.”

While the partial unraveling incentive focuses on the applicant’s own score, the sec-
ond incentive of strategic reporting also depends on the other application materials that
the college observes on the applicant. This is modeled as the public endowment in our
model and experiment. To the extent that the school believes in a positive correlation
between the public and private endowments of the student, it will infer a non-reporting
student’s private endowment based on her public endowment. This conditional inter-
pretation introduces a ”reverse unraveling” incentive because students with better public
endowment would expect more favorable interpretation of non-reporting by the school,
which in turn discourages her from reporting.

Not only does the reverse unraveling incentive reduce information available to a test-
optional school and therefore force it to rely more on the public endowment in admis-
sion decision, it but also affects the distribution of the admitted class. More specifi-
cally, students with high public endowment but low private endowment (e.g. high-SES-
low-achieving students) can better hide behind their high public endowment under test-
optional than test-required, at the expense of low public endowment high private en-
dowment (low-SES-high-achieving) students. This leads to less diversity as measured by
the standard deviation of the public endowment of admitted students and less academic
preparedness as measured by the average private endowment of admitted students.

Test-blind is even worse than test-optional in both dimensions, because it deprives
any opportunity of low-SES-high-achieving students standing out via voluntary report
of test score, and maximize the favorable mask on high-SES-low-achieving students. The
lack of information on private endowment implies that a test-blind school has to rely on
public endowment only to predict each applicant’s total endowment. Given the positive
correlation between private and public endowments, it ends up admitting students with
the highest public endowment. This reduces diversity and academic preparedness of the
admitted class, relative to all test-optional and test-required policies.

In short, our illustrative model suggests that the perceived tradeoff between aca-
demic preparedness and diversity does not exist if students are all rational and have
perfect information on the school’s interpretation of non-reporting. Test-required would
Pareto dominate test-optional in both dimensions, which further dominates test-blind. Of
course, in reality, students may not be fully rational and may not have perfect information
on the school’s interpretation of non-reporting. To mimic the real world, we informed our
lab subjects that A and B are randomly drawn but positively correlated, we allowed sub-
jects to learn their own admission outcome in each round, we also told subjects the 25th
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and 75th percentiles of the private endowment of the students that reported their private
endowment and got admitted in the last round (akin the US News Report in reality). By
design, the subjects do not know how the school interprets non-reporting exactly but they
can learn about it round by round through the observed admission outcomes and admis-
sion distributions. Within this framework, we test two test-optional policies (T1 and T2),
with T2 being more lenient than T1 in the school’s interpretation of non-reporting.

Despite the imperfect information, we observe strong evidence in support of par-
tial unraveling and reverse unraveling. In particular, when the school interprets non-
reporting as having a private endowment equal to half of the 25th percentile of the dis-
closed private endowment of admitted students in the last round (our T1 treatment), the
average reporting rates increase monotonically from 21.7% to 93.5% if the subject’s pri-
vate endowment A goes from the lowest (1) to the highest (5). Most of these reporting
rates decrease if the school interprets non-reporting more leniently as having a private
endowment equal to the average of the 25th and 75th percentiles of the reported private
endowment among students admitted in the last round (our T2 treatment). These pat-
terns suggest that higher-score students are more likely to report, especially when the
school interprets non-reporting harshly, confirming the partial unraveling incentive.

Furthermore, within the same treatment, if we compare students with exactly the same
private endowment (say A = 3) but different public endowment, those with the lowest
public endowment (B = 1) are most eager to report (89.6% in T1 and 81.9% in T2), but
the vast majority of those with the highest public endowment (B = 5) are reluctant to
report (only 21.4% report in T1 and 11.9% report in T2). The sharp drop of reporting rate
by public endowment confirms the reverse unraveling incentive.

Because the reverse unraveling incentive counters the partial unraveling incentive and
the two endowments are positively correlated, the unconditional probability of reporting
(across all values of private endowment in the same treatment) is still higher for those
with the highest public endowment. This is consistent with the real world statistics re-
ported by the University of Texas Austin – the SAT reporting rate is higher for students in
the top 6% of their high school class than all applicants in total (49% vs. 42%), although
the majority in both groups choose non-reporting. This also suggests that a simple com-
parison of reporting rate by public endowment alone can be misleading because even if
the reverse unraveling incentive cancels out the partial unraveling incentive on average,
their seemingly comparability masks important distributional changes driven by strate-
gic reporting.

To enhance our understanding of subjects’ belief of the school’s admission policy, we
estimate a logit model of subject disclosure decision. We use both a Heuristic model and a
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Bayesian updating model to capture subject learning at any point in the experiment. The
average distance between the actual reporting rates and the model predicted reporting
rates is roughly 1.2-1.5 percentage points.

In addition to the partial and reverse unraveling incentives, we find evidence that sub-
jects learn round by round about the hidden admission policy, but in the meantime, there
is a small probability that subjects follow a naive rule of thumb of not reporting until their
private endowment is strictly above the population average regardless of the admission
history they can observe in the lab. These imperfections in rationality and information set
do not overturn the insights from the model with perfect information. When we use the
empirically estimated parameters to simulate reporting decision and admitted outcomes
across 16 test-optional policies, we find test-required performs better in both the average
preparedness and diversity of the admitted students than 11 of the 16 test-optional poli-
cies, and test-blind is always the worst in both dimensions. The few test-optional policies
that are not dominated by test-required demonstrate more diversity but lower academic
preparedness than test-required. This tradeoff occurs because our subjects do not possess
perfect information of the school policy. In particular, when the school imposes a harsh
penalty on non-reporting but some students with better observable attributes underes-
timate this penalty, the school can admit more students that have worse observable at-
tributes but report. When we simulate under perfect information, these two test-optional
policies are also dominated by test-required in both dimensions.

Finally, using our structural model, we extend the stylized college application problem
to examine the tradeoff between academic preparedness and diversity when we allow for
applicant-group admission quota, resource constraints in test-taking, or an additional di-
mension of student application profile that signals the student’s academic ability besides
the standardized test score. In most cases, our previous findings remain robust: test-
required is the best for academic merit and demonstrates little sacrifice in diversity than
most versions of test-optional, while test-blind is the worst in both dimensions. How-
ever, when schools impose a strict interpretation of non-reporting, test-optional policies
can introduce a meaningful tradeoff between average preparedness and diversity as com-
pared to test-required, especially if standardized test score is a noisy measure of academic
merit. As in our baseline model, this tradeoff disappears if students have perfect infor-
mation about the school’s interpretation of non-reporting, and standardized test score
(albeit noisy) is sufficiently informative of the student’s true merit. When standardized
test score is very noisy and less informative than the school’s other signal about student
merit, our simulation suggests some room for test optional policies to increase diversity
of the admitted class, usually at the expense of average academic preparedness.
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Our findings have far-reaching policy implications. For higher education, the findings
suggest that, as long as the market can learn from cohort to cohort and standardized test
score is sufficiently informative about student’s academic ability, it is difficult to justify
test-optional or test-blind as a policy better than test-required, as far as the goal of admis-
sion is to improve the merit and diversity of the admitted class and regardless of how the
school values these two admission outcomes relatively. One may argue that college ad-
mission is a once-a-lifetime decision for most students, and thus imperfect information is
more realistic than perfect information; in that case, the potential gain of diversity under
test-optional with imperfect information may be worth pursuing even if it may reduce
the average academic preparedness of the admitted class. This argument is subject to
two caveats. First, while perfect information is hard to achieve in reality, we do observe
meaningful learning in the lab. In reality, key market players — including parents, high
schools, and private counseling services — all have strong incentives to learn and dis-
seminate the information, especially when the decision could be life-changing. In such an
environment, the potential gain of diversity from test-optional is hardly sustainable in the
long run. Second, the test-optional policies that could bring some gain in diversity tend
to put harsh penalty on non-reporting (although not as harsh as the unraveling theory
describes). This harshness is at odds with the messages from many test-optional schools
that try to convince students that non-reporting will not put students at a disadvantage.
If schools’ admission practice is consistent with these messages, our results suggest that
there may not be much gain of diversity in the first place.

Related literature. Our study contributes to two strands of the literature. First, we add
to the literature on the role of standardized test in college admissions. While test-optional
policies were largely concentrated in selective liberal arts colleges, the last decade has
witnessed the expansion of test-optional adoption to an abundance of schools of vari-
ous types. This expansion was further accelerated by the COVID-19 pandemic. Early
papers have empirically studied the effects of test-optional policies using pre-pandemic
data (Belasco, Rosinger and Hearn, 2015; Saboe and Terrizzi, 2019; Bennett, 2022). They
find limited effect of test-optional policies on increasing the application volume and the
diversity of enrolled students, including the proportion of Pell Grant recipients enrolled.
Test-optional policies did result in higher reported SAT scores, which could boost the
ranking of schools (Dynarski et al., 2023). A recent empirical study analyzes applicants
to 50 major U.S. colleges for entry in Fall 2021, and find strategic disclosure of test scores
among these applicants (McManus, Howell and Hurwitz, 2023). Consistent with our find-
ings, they find applicants withheld low scores and disclosed high scores, and that their
disclosure choices are dependent on their other academic characteristics, colleges’ selec-

6



tivity and testing policy statements. They do not find large differences in test disclosure
strategies by applicants’ race and socioeconomic status.

In addition to these empirical studies, there is also a theoretical literature on test-
optional college admissions. Borghesan (2022) develop an equilibrium model that allows
applicants to endogenously determine their test-taking and school-application decisions,
and colleges to adjust admissions thresholds to maximize their objectives. The model
predicts reduced student quality at elite schools and negligible increase in college atten-
dance for low-income students under a test-blind policy. While reduced standardized-test
weight in college admission seems unappealing from previous studies, Dessein, Frankel
and Kartik (2023) argue that social pressure could justify test-optional policies. They
propose a model in which college disagrees with the society on the desired composi-
tion of admitted students, and show that a test-optional policy could help college reduce
the “disagreement cost” with society. Related to our discussion of the tradeoff between
academic preparedness and diversity, Liang, Lu and Mu (2021) study the tradeoff be-
tween accuracy and fairness in a broader context. They show that excluding test scores
is welfare-reducing as long as group identity (e.g., race) is a permissible input in admis-
sion decisions, while it might be preferred with an affirmative action ban. Finally, (Garg,
Li and Monachou, 2020) develop a model where the school can design their admissions
procedure and choose the information that it requires the applicants to submit. They
find that eliminating standardized test scores may improve welfare in the presence of
the effect of access barriers on the applicant pool size. They further provide a threshold
characterization regarding when removing a feature improves both academic merit and
diversity.

Our study is different from the above test-optional literature in that we use lab experi-
ments to exclude endogeneity concerns, while focusing on applicants’ strategic reporting
behavior. This allows us to elicit subject beliefs, construct a model of applicant reporting
decision, and simulate reporting behavior and admission outcome for any given counter-
factual school policies. Nevertheless, our model does not capture the cost of test prepara-
tion and other barriers to college applications.

Beyond college admissions, standardized exams are used for screening in many other
contexts. Most related to our work is Moreira and Pérez (2022), who study the impact of
the 1883 Pendleton Act. They find that the introduction of competitive exams increased
the representation of individuals with high education but limited connections, and re-
duced the share of lower-socioeconomic status federal employees selected.

Second, our study is related to the literature on voluntary disclosure of verifiable infor-
mation. The classical unraveling results suggest that the same outcome from mandated
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disclosure can be achieved if the (voluntarily) disclosed information is verifiable and the
related costs are close to zero (Milgrom, 1981; Grossman, 1981). In practice, however,
voluntary disclosure is far from complete in many industries (Dranove and Jin, 2010; Jin,
Luca and Martin, 2021; Feltovich, Harbaugh and To, 2002; Eyster and Rabin, 2005; Board,
2009; Hirshleifer and Teoh, 2003). The voluntary disclosure of standardized test is no dif-
ferent: less than half of college applicants submitted SAT or ACT scores in the year of
2022-2023.3 Unraveling does not arrive in our model because school’s belief about non-
disclosed test scores does not degenerate to the worst possible score and is dependent
on the applicant’s non-test characteristics. When the quality is multi-dimensional and the
voluntarily disclosed element is correlated with other elements, the receiver (school) does
not necessarily interpret non-reporting as the worst. This disincentivizes the disclosure
of non-favorable information.

This paper proceeds as follows. Section 2 defines the college application problem and
uses an illustrative model to compare the admission outcomes of test-required, test-blind
and test-optional policies. Section 3 outlines the experiment design. Section 4 discusses
the results from the experiments. Section 5 presents a structural model of subject report-
ing decision and Section 6 presents a welfare analysis. Section 7 concludes.

2 The College Application Problem

In this section, we first describe a simplified college application problem and discuss the
predicted admission outcomes under test-required, test-blind, and test-optional policies.
This illustrative model aims to highlight students’ strategic choice of score reporting and
the important role that the school’s interpretation of non-reporting plays in this process.
Then we outline the college application problem in our experiments, which allows sub-
jects to have imperfect information on the school’s interpretation of non-reporting.

2.1 A Simplified Problem

Setting. Consider a single-college application problem, with N student applicants. Each
student’s application profile has two components: a private endowment A (standardized
test scores) and a public endowment B (e.g., high school GPA, letters of recommenda-
tion, extracurricular activities). The student observes her own private and public endow-
ments and chooses to either report or not report the private endowment. All students

3Source: https://s3.us-west-2.amazonaws.com/ca.research.publish/Deadline+Updates/
DeadlineUpdate-\_030223.pdf.
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understand that private and public endowments are positively correlated in the appli-
cant population, and everyone’s public endowment is automatically observable to the
college. Without loss of generality, we can rewrite A as:

A = αB + e (1)

where α > 0 and e is independent of B. In words, e represents the “new” information
in a student’s A that cannot be inferred from her public endowment B. The student
observes her own A and B and thus e, but the college cannot observe her A or e unless
she reports A. After each student makes the reporting decision, the college takes a guess
on each student’s private endowment, and admits N/2 students based on each student’s
perceived total endowment T . For simplicity, we assume B and e conform to a uniform
distribution between 0 and 1 independently.

School. The school admits students based on T = Ā+B, where Ā is the school’s belief
of a student’s private endowment based on the student’s reporting decision (R). If A was
reported (R = 1), Ā is equal to the true A. If A was not reported (R = 0), Ā would be
given by the function g(B), which takes the form:

g(B) = αB + c (2)

where c is a constant and α is the same as the α in Equation 1 because the positive cor-
relation between A and B is assumed to be public knowledge. One can also interpret α
as the probability under which the school interprets non-reported private endowment as
perfectly identified by the student’s public endowment; otherwise, the school interprets
non-reported private endowment as a constant (c/(1 − α)). Either way, higher α denotes
stronger correlation between the two endowments, and therefore less new information
contained in private endowment conditional on public endowment. Given α, higher c

implies that the school would interpret the non-reported A more leniently. We can sum-
marize the school’s expectation of A as:

Ā =

A if R = 1

αB + c if R = 0.
(3)

Student. If students have perfect information on the school-belief function g(B) and
they act fully rational to maximize the admission probability, they should report if their
private endowment is higher than school’s expectation of non-reported private endow-
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ment. In other words, they follow the reporting rule:

R = 1

{
A > αB + c

}
= 1

{
e > c

}
(4)

where the student reports if her private endowment A is above the threshold αB + c.
Put it another way, conditional on the student’s public endowment B, she would only
report if the new information contained in her private endowment is above the school’s
interpretation of this new information upon non-reporting (e > c).

Two incentives are worth highlighting. First, students with higher A are more likely to
report A. This selection has been well documented in the classical unraveling literature:
higher quality firms are more motivated to disclose their product quality to the public
because their true quality exceeds consumer interpretation of non-disclosed quality. Con-
ditional on α and B, the threshold of reporting (αB + c) increases with c, which suggests
that a more lenient interpretation of non-reporting would motivate more students to hide
the score. When the school has the harshest interpretation (c = 0), every one discloses
because e > 0 everywhere, leading to the classical unraveling equilibrium. But as long
as c > 0, students with e < c would choose non-reporting. We refer to this incentive
as “partial unraveling.” More lenient interpretation of non-reporting leads to less partial
unraveling.

The second incentive of strategic reporting is less obvious: since public and private
endowments are positively correlated (α > 0), students with higher public endowment
(higher B) face a higher reporting threshold (αB + c). Put it another way, if a student
earns a relatively high but not full score in the standardized test, she is more reluctant to
report the score if she comes from a high-income family, enrolls in a good high school,
has high GPAs, etc. This happens because the school would interpret her non-reported
score more favorably based on her high public endowment, a logic we refer to as “reverse
unraveling.”4

In our model, partial unraveling and reverse unraveling cancel out each other, because
we assume α is public knowledge and e is independent of B by definition. This leads to an
overall reporting rule of e > c regardless of B. If the school’s belief of α (or the students’
understanding of the school’s belief of α) is different from the actual α, the two incentives

4Note that this is different from the counter-signaling effect shown in Feltovich, Harbaugh and To
(2002); Bederson et al. (2018). Counter-signaling is more complicated than reverse unraveling, because
to ensure counter-signaling as a subgame perfect equilibrium one needs the disclosed signal to be coarser
than the true quality and the presence of another exogenous but noisy signal. Otherwise, the equilibrium
with rational expectation boils down to classical unraveling. Here we shy away from multiple and coarse
signals but allow the school’s interpretation of non-reporting to be exogenous and non-rational so that the
interpretation may not coincide with the average private endowment of those who choose non-reporting.
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may not completely cancel out each other.
Admission outcome. Figure 1 shows the composition of the admission cohort under

different admission policies. In each of the six panels, the square represents a uniform
distribution of e and B in the applicant population. Panels (a), (b) and (c) present the
admission outcome under test-required, test-blind, and test-optional, respectively. Panel
(d) highlights the difference between test-required and test-blind; Panel (e) highlights the
difference between test-required and test-optional; and Panel (f) highlights the difference
between two test-optional policies of different leniency.

Let us first consider the test-required policy. Because we assume T = A + B = (1 +

α)B+e, the indifferent curve that represents a particular value of T is a downward sloping
straight line with slope −(1+α). To maximize total endowment of admitted students, the
school would find an indifferent curve that represents the population median of total
endowment and admit every student with a total endowment above it. This corresponds
to the blue shaded area in Panel (a). More specifically, the school would reject anyone
with B < 1

2
− 1

2(1+α)
regardless of their test score (referred to as “straight reject”), accept

anyone with B > 1
2
+ 1

2(1+α)
(referred to as “straight accept”), and trade off between B and

e for any students in between (referred to as “tradeoff group”). A higher α implies less
new information in test score, which makes the T-indifferent curve steeper and therefore
expands the straight reject and straight accept groups. As a result, test score matters for
fewer students in the tradeoff group.

Following the same logic, when a school adopts a test-blind policy, it can only admit
students based on expected total endowment, which can be written as E(T |B) = E((1 +

α)B + e|B) = (1 + α)B + 1
2
. The indifference curve representing a particular value of

E(T |B) is a straight vertical line and the school would admit any students with a public
endowment above the population median. This gives us the blue shaded area in Panel
(b).

Putting test-required and test-blind in one graph, Panel (d) shows that test-blind ben-
efits the students that have high public endowment but low private endowment (in the
yellow shaded area), since they are able to hide their less-favorable standardized test
scores behind their above-average public endowment. It hurts applicants with low pub-
lic endowment but high private endowment (in the green shaded area) because it shuts
down the channel (standardized test) through which they can stand out and showcase
their competence.

Compared to test-required, test-blind reduces the academic preparedness and diver-
sity of admitted students, if we define academic preparedness as the average A and diver-
sity as the standard deviation of B of the admitted class. To see this, imagine we replace
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a random student in the green area with a random student in the yellow area. It is easy to
show that the replaced student always have a higher A = αB+e and a lower B than the re-
placing student, which will pull down the average academic preparedness and diversity
of the admitted class. This implies that test-required would Pareto dominate test-blind if
the school appreciates both academic preparedness and diversity.

Test-optional lies somewhere in between test-required and test-blind. As shown in
Panel (c), when the school interprets non-reported A as Ā = αB + c, any student with
e > c would report A and any student with e < c would not report. This implies that
the school’s expected total endowment for a student depends on her reporting decision
R, namely E(T |B,R) = E((1 + α)B + e|B,R) = (1 + α)B + max(e, c). This means the
T-inference curve is kinked at e = c, with a downward slope of −(1 + α) when e > c

and a slope of infinity when e < c. Again, the school looks for a T-indifference curve that
corresponds to the population median and admits all students with the expected total
endowment above it. This corresponds to the blue shaded area in Panel (c).

Similar to the case of test-required, the school rejects every student with B < 1
2
− 1−c2

2(1+α)

no matter whether the student reports or does not report A (straight reject), admits every
student with B > 1

2
+ (1−c)2

2(1+α)
(straight accept), and trade offs between B and the reported

A for any student in between (“tradeoff group”). Any student in this tradeoff group but
does not report A would be rejected. Note that these cutoffs depend on c: when the
school adopts a more lenient interpretation of non-reported score (higher c), it expands
the straight reject and straight accept groups. As a result, the tradeoff group shrinks and
fewer students choose to report, both of which diminish the information value of test
score. When c is extremely lenient (c = 1), it eliminates the tradeoff group and the regime
is equivalent to test-blind. When c is extremely harsh (c = 0), it motivates every student
to report and the complete unraveling makes the regime equivalent to test-required.

Panel (e) of Figure 1 further compares the discrepancy of admission outcomes be-
tween test-required and test-optional. Similar to test-blind, test-optional rejects the low-
SES-high-achieving students in the green area and admits the high-SES-low-achieving
students in the yellow area. It is easy to show that replacing a random student in the
green area with a random student in the yellow area would lead to a strict decline of A
and a strict increase of B, pulling down the average academic preparedness and diversity
of the admitted class. In short, test-required Pareto dominates any test-optional policy if
the school appreciates both academic preparedness and diversity.

Panel (f) compares two test-optional policies with different leniency. As discussed be-
fore, a harsher interpretation of non-reporting would motivate more students to report,
which pushes the downward sloping boundary of the admitted group to the left among
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reported students and the vertical boundary of the admitted group to the right among
non-reported students. Consequently, a harsher test-optional policy rejects the high-SES-
low-achieving students in the yellow area in exchange for the low-SES-high-achieving
students in the green area, which increases the average academic preparedness and di-
versity of the admitted class.

Overall, the illustrative model concludes that the perceived tradeoff between aca-
demic preparedness and diversity is non-existent in the simplified admission problem:
when private and public endowments are positively correlated, the school’s interpreta-
tion of non-reporting is known to students, and all students are rational in their strategic
reporting behavior, the Pareto dominance follows the order of:

Test-required ≫ Harsh test-optional ≫ Lenient test-optional ≫ Test-blind.

Is there any scenario where this order of Pareto dominance may break down if we
change some assumptions in the illustrative model? The lab experiment presented be-
low would relax the assumption of student rationality and perfect information. Here we
briefly discuss how the model would change if the school has different preferences on the
students’ private and public endowments.

It is not difficult to show that, as long as the school has a positive marginal utility
on A and B and treat the two as perfect substitutes, we can redefine one of the two en-
dowments, re-scale the total endowment function and the positive correlation between
the two endowments, and make it equivalent to the illustrative model. The model will
change if the school has a negative marginal utility on B but a positive marginal utility
on A.

This would introduce a tradeoff between (1) a positive preference on B because higher
B implies higher A, and (2) a fundamental distaste on B. If we assume (1) dominates (2)
so that the school still prefers to admit students with higher B if A is not observable,
then test-optional (or test-blind) could increase the average academic preparedness of
admitted students above that of test-required. This is because it replaces some low-SES-
high-achieving students with some high-SES-low-achieving students but the definition of
high-achieving is compromised due to the school’s fundamental distaste of B. As before,
test-optional (or test-blind) still reduces the diversity of admitted students as compared
to test-required, so we may have a tradeoff between lower diversity and better academic
preparedness by different admission policies. The rest of the paper ignores this theoret-
ical possibility because it is unrealistic to assume a typical college in the US would have
a fundamental distaste on other application materials such as GPA and extracurricular
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activities.

2.2 A College Application Problem Without Perfect Information

One key assumption that we make in the simplified problem is that students have perfect
information on the school’s interpretation of non-reported private endowment under a
test-optional policy. This, however, is rarely the case in reality as colleges do not fully dis-
close that information. Thus, college applicants’ actual reporting behavior and admission
outcome may deviate from what one would predict under perfect information. To better
reflect the reality, this subsection extends the simplified problem by allowing students
to play the admission game in multiple rounds, to obtain their own admission outcome
in each round, and to observe some statistics of the college’s admission outcomes in the
past. The extended model is outlined below.

School. In period t, each student has a public endowment, Bt, and a private endow-
ment, At. The school admits students based on Tt = Āt+Bt, where Āt is the school’s belief
of a student’s private endowment. Let the school’s belief of a student’s non-reported pri-
vate endowment be given by the function g(Bt, xt−1, yt−1), where xt−1 and yt−1 are the
25th and 75th percentile of At−1 of those who reported it and got admitted in the previ-
ous period (mimicking the 25th and 75th score percentiles reported in the U.S. News).
Specifically, define gt = g(Bt, xt−1, yt−1) as:

g(Bt, xt−1, yt−1) =

Bt with prob. α

γ0 + γ1xt−1 + γ2yt−1 with prob. 1− α.
(5)

With probability α, the school interprets non-reported private endowment as perfectly
identified by the student’s public endowment; with probability (1 − α), the school in-
terprets non-reported SAT/ACT scores as a linear function of admission statistics of the
previous entering cohort. Here we use three parameters (γ0, γ1, γ2) to describe the func-
tion gt because the classical unraveling theory implies that the school should interpret
all non-reported A as the worst possible outcome, but the school may deviate from the
classical unraveling theory for ideology reasons. In particular, a generous interpretation
of non-reported A may imply a a high γ2 and a low γ1, but a cynical interpretation of non-
reporting may imply a high γ1 and a low γ2. As described later, our experiment introduces
some variations in γs to represent different school interpretation of non-reporting.

Moreover, students do not have perfect information on the school-belief function gt.
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Assume a student’s belief of gt takes the form

ĝ(Bt, xt−1, yt−1) =

Bt with prob. α̂

γ̂0 + γ̂1xt−1 + γ̂2yt−1 with prob. 1− α̂
(6)

so that a student’s subjective expectation of the school’s guess, Āt, is:

Es[Āt|Bt, xt−1, yt−1, Rt = 0] = α̂Bt + (1− α̂)[γ̂0 + γ̂1xt−1 + γ̂2yt−1] (7)

Student. Let p denote the probability of admission, and let Ua, U r (Ua > U r) denote
the utilities from admission and rejection, respectively. A student’s utility maximization
problem in period t is: given Bt, maxRt∈{0,1} EU = ptU

a + (1 − pt)U
r. We can write pt as

a weakly increasing function f of total endowment, Tt. It follows that maximizing EU is
equivalent to maximizing pt = f(Tt) = f(Bt + Āt). Then, a student reports in period t if

f(Bt + At)︸ ︷︷ ︸
Admission prob. from reporting

> α̂f(Bt +Bt) + (1− α̂)f(Bt + γ̂0 + γ̂1xt−1 + γ̂2yt−1)︸ ︷︷ ︸
Expected admission prob. from non-reporting

= f(Bt + Es[Āt|Bt, xt−1, yt−1, Rt = 0]− π(ρ))

(8)

where π(ρ) is an increasing function of some measure of risk aversion. The second equal-
ity gives the value of total endowment such that the student would be indifferent between
having that value and a lottery indicated by the RHS of the first inequality. Since f(Tt) is
increasing in Tt, the decision rule is simplified to:

Rt = 1

{
At > Es[Āt|Bt, xt−1, yt−1, Rt = 0]− π(ρ)

}
(9)

Note that π(ρ) does not represent aversion to the admission probability. It can be inter-
preted as the aversion to the uncertainty in student’s mind about how the school would
interpret non-reporting (i.e. the uncertainty about the true α and γs). Note that the uncer-
tainty may still exist even if the students chooses to report, because different school inter-
pretation of non-reporting may affect her relative ranking among all applicants. Holding
everything else constant, more risk averse players may be more or less likely to report
their private endowment, At, depending on how she perceives the uncertainty would
affect her differently in the case of reporting versus non-reporting.
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3 Experiment Design

In our experiments, subjects completed 50 rounds of game and additional tasks depend-
ing on the treatment. Instructions of the experiment were presented and read to the sub-
jects at the beginning of the session. The Appendix contains the full instructions. At the
end of each session, subjects were paid, privately and in cash, their show-up fee plus any
additional earnings from the experiment.

Our main sessions were conducted at the Experimental Economics Lab at the Univer-
sity of Maryland (EEL-UMD). 5 In this laboratory, subjects were separated with dividers,
and each subject was provided with a personal computer terminal.

Each Round. In our experiments, the subject was the sender (or the “applicant”) and
the computer was the receiver (or the “program”). In each round and for each player,
the computer randomly drew a whole number from the set {1, 3, 5}, called the “public
endowment”. Each number in the set was equally likely to be drawn. Then, for each sub-
ject, the computer drew a second whole number, called the “private endowment”, with
the following rule: with 50% chance the private endowment is equal to the public endow-
ment, with 50% chance the private endowment is chosen from the set {1, 2, 3, 4, 5} with
equal probability on each number in the set. For example, if the randomly chosen public
endowment was 3, then with 60% chance the private endowment would be 3, and each
number in the set {1, 2, 4, 5} has 10% chance of being chosen. The rule was designed such
that the correlation between the public and private endowment was around 0.5, a num-
ber close to the reported correlation between high school GPA and SAT scores (Westrick
et al., 2020).

Each subject was shown her public endowment and private endowment. Subjects
were made aware of the state spaces of both endowments and the positive correlation
between the two, but were not told the probability distribution of either endowment.
Each subject was also shown the admission statistics from the previous round: the 25th
and 75th percentiles of the private endowment for those who reported it and were subse-
quently admitted, and the mean of the public endowment for those who were admitted.
Then, subjects were given the option to either “report” or “not report” their private en-
dowments, with the understanding that the computer knew their public endowments.
There was no time limit for the subject decision.

After all subjects made their reporting decisions, the computer calculated a total en-
dowment for each subject. If a subject’s private endowment was reported, the total en-
dowment would be the sum of the actual public and private endowments. If a subject’s

5Our experiment was programmed and run using oTree (Chen, Schonger and Wickens, 2016).
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private endowment was not reported, the computer took a guess on it, and assigned the
sum of public endowment and the guess of private endowment as the total endowment.
Then, the computer ranked all subjects in the session by their total endowments, and ad-
mitted the top half of subjects. Subjects were shown their own admission results and the
admission statistics of the current round, which would be reminded in the next round.

At the end of the experiment, two random rounds were selected for payment. Each
subject were paid $6 for each admission in those rounds. The maximum amount of pay-
ment through this channel is $12, when the subject was admitted in both randomly se-
lected rounds. Therefore, it is in each subject’s best interest to be admitted by the program
in every round.

Treatment Variation. Our primary treatment variations occurred on the program’s
guess of a subject’s private endowment if it was not reported. In other words, the treat-
ment variations came from the selection of parameters in the expression of school-belief
function g(Bt, xt−1, yt−1) in Equation 5. 6

T1: gt = Bt with prob. 0.5, gt = 0.5xt−1 with prob. 0.5

T2: gt = Bt with prob. 0.5, gt = 0.5xt−1 + 0.5yt−1 with prob. 0.5

Our main sessions only varied γ2, while setting γ0 = 0, γ1 = 0.5, and α = 0.5 in both the
real correlation of public and private endowments and the weight that the school puts on
public endowment when it takes a guess about non-reported private endowment. In the
first treatment (T1), we set γ2 = 0; in the second treatment (T2), we set γ2 = 0.5. Therefore,
the program places harsher punishment on non-reporting in T1 than in T2. All subjects
in a session were randomly assigned to a treatment for the entire session at the begin-
ning of the experiment. Subjects in different treatments were given the same instructions,
but might receive differential feedback through their own admission outcomes and the
admission statistics in each round.

After all subjects completed 50 rounds, we used the multiple price list method (Holt
and Laury, 2002) to elicit risk attitudes. This allows us to control for subjects’ relative risk
preferences when modeling their reporting choices. We randomly selected one lottery
choice in each session and paid the subjects accordingly. The complete list of of lottery
choices are included in the Appendix.

6In our “independent treatment”, which is not discussed in this draft, we have additional treatment
variations. Specifically, we set α = 0, γ1 = 0, and vary γ2.
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4 Results

In our main sessions, we observed 285 subjects making a total of 14,250 reporting deci-
sions. Over 18 sessions, the mean session size was approximately 16. We used a show-up
fee of $10, and on average subjects earned $18.30. The minimum payment was $11, and
the maximum was $27.

We assigned 144 subjects to the first treatment (T1), and 141 subjects to the second
treatment (T2). Table 1 shows the summary statistics of subjects in the main sessions.
We had a slightly higher number of women than men in both treatments. All subjects
were undergraduate students, with roughly half of them being white, and 40 percent of
them being freshmen. Subjects’ experience from college applications and standardized
tests were balanced across treatments. They had similar number of test attempts, SAT
and ACT test scores, number of schools applied. They also made similar SAT and ACT
submission choices when they applied to college.

To complement our lab results, we also run simulations under the same setting (16
players per session, 9 sessions each for T1 and T2) but where players have perfect in-
formation on the school-belief function gt and report if their true private endowment is
higher than the expected school-belief of their non-reported private endowment, i.e.

Rt = 1

{
At > E[Āt|Bt, xt−1, yt−1, Rt = 0]

}
(10)

Note that the expectation here does not have a subscript s due to its objectivity. Real and
simulated subject behavior may differ in that: (i) real subjects do not know gt but the com-
puter knows, (ii) real subjects may be risk averse or risk loving but the computer is not,
(iii) real subjects may not be full rational but the computer is, and (iv) real subjects may
learn between rounds but the computer does not. In our structural model, we address (i)
by estimating subject belief of gt or eliciting it from survey questions, (ii) by including a
risk measure of each subject, (iii) by introducing a probability of irrationality, and (iv) by
only focusing on later-round results.

4.1 Admission Statistics

Figure 2 shows the trends in admission statistics, i.e. the 25th and 75th percentiles of the
private endowment of those who reported it and were offered admission in the previous
period. Panels (a) and (c) come from lab data under T1 and T2, respectively, and (b) and
(d) come from the corresponding simulation results.

In the first round, we set the initial “previous” 25th and 75th percentiles of the private
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endowment as 2 and 4. The 75th percentiles quickly converge to 5 in both treatments and
in both simulations. For T1, the 25th percentile goes up immediately and starts fluctuat-
ing around 4. A similar trend is observed in our simulation. For T2, we see a small and
gradual increase in the 25th percentile of private endowment after the initial round and
till round 10. It then starts fluctuating around 4.5, being slightly lower than the simu-
lated 25th percentile in most rounds. In general, we see that the admission statistics in
the lab are similar to those from the simulation, indicating only small differences in the
composition of the entering cohort between the field and the world where students are
well-aware of the school’s belief and behave rationally. Given a pre-determined school
interpretation of non-reporting, the convergence of admission statistics is fast, even with
a small sample per application cycle. The difference in admission statistics between T1
and T2 also signifies subjects’ ability to learn from the feedback available to them. Since
subjects in T1 and T2 were provided with identical instructions at the beginning of the
experiments, the difference in learning experience came from the admission statistics and
their own admission outcomes from previous rounds.

4.2 Reporting Decision

Panel A of Table 2 presents the average reporting rate in T1 and T2 by subjects’ private
endowment. As predicted by the “partial unraveling” incentive, subjects with higher
private endowments are more likely to report: in T1, the reporting rate increases from
21.7% when A = 1, to 29.4% if A = 2, 49% if A = 3, 81.8% if A = 4, and 93.5% if
A = 5. This monotonic relationship between reporting and private endowment continues
to hold in T2, but the absolute magnitudes of reporting rate decline from T1 to T2 for
every level of private endowment except for A = 5. Again, this is consistent with the
partial unraveling incentive because the school in T2 is more lenient in its interpretation
of non-reporting.

If we compare the starting rounds (1-20) and ending rounds (21-50) within each treat-
ment, the reporting rate declines over time in T2 for all A < 4, but it only drops in T1
for A = 1 and A = 2. Since subjects started with exactly the same setting in T1 and T2,
this suggests that subjects’ initial belief of school interpretation of non-reporting may be
closer to the true interpretation of T1 than to that of T2. Over time, subjects learn that
the school in T2 is more lenient and therefore become more likely to withhold their low
scores.

Panel B of Table 2 summarizes the average reporting rate in T1 and T2 by subjects’
public endowment. In both T1 and T2, the reporting rate is slightly lower when B = 3
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than when B = 1. This is consistent with the reverse unraveling incentive, because by
definition subjects with B = 3 are more likely to receive higher A than subjects with B = 1

but they are no more likely to report. However, when the public endowment increases
to B = 5, the reporting rate is 66.2% in T1 and 64.7% in T2, which seems much higher
than the reporting rate when B = 1 or B = 3 (38-50%). At the first glance, this pattern
goes against the reverse unraveling prediction. This is because subjects with a higher B
are also more likely to receive a higher A, and the average reporting rate by B mixes the
partial unraveling incentive with the reverse unraveling incentive.

More specifically, Figure 3 presents the observed reporting rates given the public en-
dowment B and private endowment A. Here we compute the reporting rates for rounds
21 to 50 because over 80 percent of subjects report that they have formed a belief of the
school’s interpretation of non-reporting by round 20. 7

If we focus on the same private endowment (say A = 3), most subjects with the lowest
public endowment (B = 1) are eager to report (89.6% in T1 and 81.9% in T2), but most
subjects with the highest public endowment (B = 5) are reluctant to report (only 21.4%
report in T1 and 11.9% report in T2). The same pattern occurs for A = 1 and A = 2. Such
a drastic decline of reporting rate by B, conditional on the same A, reflects the reverse
unraveling incentive.

If reverse unraveling holds, how can we explain the relatively high average reporting
rate in Panel B of Table 2 for all subjects with B = 5? The main reason is that when public
endowment was the highest (B = 5), by construction the private endowment would also
be the highest (A = 5) with 60% chance, and over 90% of the highest private endowments
were reported during the experiment because of the partial unraveling incentive. Thus,
the high average reporting rate by B, which is unconditional on A, reflects a mixture of
the reverse unraveling incentive (conditional on the same A) and the partial unraveling
incentive (across different A).

Another way to read Figure 3 is to compare subjects’ reporting behavior with what
we would expect in theory if subjects are fully rational and know the school’s interpre-
tation function beforehand. Table 3 shows the hypothetical reporting decision indicated
by Equation 10. If subjects were successful in learning from their admission results in the
first 20 rounds and forming an accurate belief of the school-belief function gt, we should
only observe significant gaps in reporting rates between T1 and T2 under the following
three cases: (A = 2, B = 1), (A = 3, B = 3), (A = 4, B = 5). To be specific, in these cases a
perfect-information fully-rational subject would always report under T1 and always not
report under T2 because the school is more lenient for non-reporting in T2.

7Figure A.3 shows the rounds at which subjects formed the final belief of the school’s interpretation.
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Figure 3 shows a few deviations from these hypotheses. When B = 1, we observe no
significant difference in reporting rates between T1 and T2 at A = 2 (mainly due to over-
reporting under T2), but significantly higher reporting rate under T1 at A = 1. When
B = 3, we do observe significantly higher reporting rate under T1 at A = 3, but it is still
far from full reporting (at 49%). When B = 5, we observe higher reporting rates under T1
at A = 4, but the difference is not statistically significant (mainly due to over-reporting
under T2). There is also significantly higher reporting rate under T1 at A = 3. These
deviations signal differences between the hypothetical decision rule given by Equation
10 and the actual decision rule given by Equation 9, suggesting that lab subjects may
have some departure from full rationality or perfect information.

To better understand subjects’ round-by-round learning, Figure 4 reports the trends
in subject reporting rates from round 1 to round 50 in T1 and T2 separately. We do not
see a clear trend or convergence in reporting rates under T1: the lines are fairly flat over
time regardless of the public endowment. Similar (absence of) trends are observed under
T2 when public endowment was either low (B = 1) or high (B = 5). When the public
endowment was of medium value (B = 3), the reporting rate dropped from roughly 55%
to 40% and then remained flat for the rest of the session. Panel (c) of Figure 4 highlights
the difference in reporting rates between T1 and T2 over time. For subjects with medium
public endowment, the reporting trend indicates that those in T2 may have learned from
their own experience from previous rounds and realized a relatively lenient school pol-
icy. Although both treatment groups had similar reporting rates at the beginning of the
experiment, the gap in reporting rates widened as they played more rounds. However,
as we have seen in Figure 3, the reporting rates in both treatments are far from the sim-
ulated rates with perfect-information fully-rational subjects. In general, these evidence
suggests limited subject learning but it has not yet associated a subject’ own experience
from previous rounds with the same subject’s reporting decision in later rounds, which
we will further explore in the next section.

Finally, Figure 5 shows the reporting rates by gender and race in rounds 21 through
50. The reporting rates are significantly higher for male in T1, but not in T2. When we
look at reporting rates by race, Asian subjects have roughly 5 percent higher reporting
rates than Black and White subjects in T1. In T2, all three races have similar reporting
rates. In both illustrations, the reporting rates are higher in T1 than in T2, suggesting that
all subgroups realized that the school has a harsher interpretation of non-reporting in T1.
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5 Structural Estimation of Reporting Decision

To study the relationship between the real school belief and subject perception of it, we
estimate a structural model of subject reporting decision. Recall that we assume a sub-
ject’s belief of the school belief of non-reported private endowment, ĝ(Bt, xt−1, yt−1), is Bt

with probability α̂ and γ̂0 + γ̂1xt−1 + γ̂2yt−1 with probability 1 − α̂. Consider a discrete
choice model. Let the utilities of report and not-report in period t be given by

VRt=1 = At

VRt=0 = Es(Āt)− π(ρ) + ϵ

= α̂ ·Bt + (1− α̂)[γ̂0 + γ̂1 · xt−1 + γ̂2 · yt−1] + Γ ·X + ϵ

(11)

where X is a vector of subject covariates and ϵ is the logit error. Given the utilities, a
rational subject would report in period t if VRt=1 > VRt=0.

Since subjects in different treatments were given the exact same instructions, subject
learning was the major distinction of each treatment specification. We use two distinct
models to capture subject learning at any point in the experiment: a Heuristic model and
a Bayesian updating model.

Heuristic model. We define a total of eight learning variables for each subject at each
round: subject reporting rate under the same private endowment in all previous rounds,
subject reporting rate under the same public endowment in all previous rounds, subject
acceptance rate pooled and by reporting decision under the same private endowment in
all previous rounds, subject acceptance rate pooled and by reporting decision under the
same public endowment in all previous rounds. These variables provide a simple but
comprehensive summary of a subject’s experience during the experiment up to a given
round.

Bayesian updating model. Suppose at the beginning of round 1, each subject starts
with a prior that α can take kα values between 0 and 1 with a density distribution ϕ

(1)
α , and

similarly for γ0 and (γ1, γ2). For simplicity, let α ∈ {0, 0.25, 0.5, 0.75, 1}, γ0 ∈ {0, 1, 2, 3, 4},
and (γ1, γ2) ∈ {(0, 0), (0, 0.5), (0, 1), (0.5, 0), (1, 0), (0.5, 0.5)}. We refer to these priors as
ϕ(1) = {ϕ(1)

α , ϕ
(1)
γ0 , ϕ

(1)
γ1,γ2}. This gives us 150 possible combinations of α, γ0, γ1, γ2, which

represent 150 unique school admission policies.
Assuming the prior densities of {α, γ0, γ1, γ2} are independent of each other, we can

also express the prior as a vector of 150 probabilities corresponding to each of the 150
school policies, namely ϕ(1) = {ϕ(1)

k } where k = 1, .., 150. In each round, the subject
compares the utility of reporting vs. non-reporting in Equation 11 to make her optimal
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decision of reporting (note that in round 1, there is no previous round so we set x0 and
y0 to be 2 and 4, respectively). For any rational subject in round t, given her endowments
(At, Bt), reporting decision (Rt), admission outcome (Ot), and class statistics (xt−1 and
yt−1), she updates her belief from ϕ(t) = {ϕ(t)

k } to ϕ(t+1) = {ϕ(t+1)
k } by the following:

ϕ
(t+1)
k = Pr(k|At, Bt, Rt, xt−1, yt−1, Ot, ϕ

(t))

=
Pr(Ot|At, Bt, Rt, xt−1, yt−1, k) · ϕ(t)

k∑k′=150
k′=1 Pr(Ot|At, Bt, Rt, xt−1, yt−1, k′) · ϕ(t)

k′

(12)

To compute the probability of receiving admission outcome Ot, we assume a focal subject
believes every other subject follows exactly the same belief as the focal subject. Then,
we simulate each conditional probability and derive the posterior belief ϕ(t+1), which will
be a function of the prior ϕ(1), and the focal subject’s reporting history {R1, R2, ...Rt},
admission history {O1, O2, ...Ot}, and class statistics {x1, x2, ..., xt, y1, y2, ...., yt}. This gives
us the likelihood of reporting for each subject at each round. Finally, we estimate the
parameters {ϕ(1),Γ} by maximum likelihood. The detailed simulation and estimation
procedures are provided in the appendix.

Estimation results. The results from the heuristic model are provided in Table 4. We
set the coefficient of At in the logit model to always be 1, so that the coefficients in the table
can be translated to the model parameters with a minus sign. Columns 1 and 2 show that
limiting the sample to the last 30 rounds do not change the estimates of the logit model. In
other words, there is no direct evidence for subjects updating their reporting decision rule
overtime, given their private endowment, public endowment, previous admission statis-
tics, and risk attitudes. However, when we include the learning variables and a full set of
subject covariates in the model, the coefficient for public endowment more than doubled,
while the coefficient for admission statistics from the previous round decreased in magni-
tudes. 8 The estimates in the first two columns are likely biased as subject demographics
and their previous experience both in college application and in the lab influenced their
reporting decision rule. In the last column we add subject fixed effects to the model. The
coefficient for the 25th percentile of private endowment decreased by half and become in-
significant, while the others are similar to those in the third column (hereinafter “Model
3”).

In both treatments in the lab, we assign 50% weight to the public endowment in the
school’s interpretation of non-reported private endowment (i.e., α = 0.5). The coefficients
in the last two columns suggest that the elicited weight on public endowment are 0.72-

8The set of subject covariates include subject demographics and their own experiences in college appli-
cation, e.g., standardized test scores, reporting decisions. They are summarized in Table 1.
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0.75. Thus, subjects tend to overweight their public endowment and underweight school
attributes when they make reporting decisions.

In Table A1 we report the estimated {ϕ(1),Γ} from the Bayesian updating model. We
define the average prior and average posterior as the “average school policy” that sub-
jects had in mind in round 1 and round 50, respectively. In other words, we compute
the average α, γ0, γ1, γ2 from the estimated parameters. There is one average prior for
all subjects and one average posterior for each treatment group. Given the estimates, the
average prior refers to school policy where E[Āt|Bt, xt−1, yt−1, Rt = 0] = 0.428Bt + 0.575 +

0.173xt−1 + 0.076yt−1. The average posterior is 0.478Bt + 0.685 + 0.122xt−1 + 0.076yt−1 for
T1 and 0.514Bt + 0.703 + 0.100xt−1 + 0.103yt−1 for T2. These suggest that: first, previous
admission statistics (xt−1 and yt−1) play a smaller role in subjects’ belief of the school pol-
icy, compared to the true school policy. Second, consistent with what we have observed
earlier, subjects in T1 recognized that the computer had a harsher interpretation on the
non-reported private endowment compared to subjects in T2. If we plug in the actual
average admission statistics (x50, y50) in our T1 and T2 sessions, the average posterior is
0.478Bt + 1.591 for T1 and 0.514Bt + 1.692 for T2. 9 Note that plugging in the same ad-
mission statistics to the true school interpretation in Table 3, we get 0.5Bt + 1.078 for T1
and 0.5Bt + 2.435 for T2. Thus, while the T1 posterior is smaller than the T2 posterior,
indicating that subjects learn the crucial difference between T1 and T2 and choose their
strategic reporting decision accordingly, neither of the average posteriors is exactly equal
to the accurate school belief. Consistent with the observed reporting rates (for example,
shown in Figure 4 Panel c), T1 posterior is higher than the true T1 school belief and T2
posterior is lower than the true T2 school belief.

The predicted subject reporting rates from the Heuristic model are presented in Table
5, Panel A. Models 3 and 4 predict reporting rates much closer to the actual rates than
Model 2, suggesting that an model of subject reporting decision should include subject
attributes and subject learning. Adding subject attributes or subject fixed effects also
substantially increases the model’s likelihood: from -4,018 to -3,029 or -2,835. While the
average distance between pooled actual and predicted reporting rates are low (1.5 for
Model 3), the difference could be quite large when we focus on a particular treatment. In
particular, the actual reporting rate in T2 when the private endowment was 3 was 30.4%,
while the model prediction is 35.1%; the actual reporting rate in T2 when the private
endowment was 4 was 80.5%, while the model predictions are 76.6%. In general, the
model fit is better in T1 than in T2.

Figure 6 presents the actual and model predicted reporting rates for both the Heuristic

9The average x50 is 4.31 for T1 and 4.74 for T2. The average y50 is 5 for both T1 and T2.
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model (Model 3) and the Bayesian updating model. The Heuristic model has a much bet-
ter model fit than the Bayesian updating model. While the average distance between the
actual and predicted reporting rates is 1.5% for the Heuristic model, the average distance
is 4.7% for the Bayesian updating model. Therefore, for the remainder of the paper, we
focus on the Heuristic model due to its accuracy and simplicity.

Subject Naivety. To incorporate the possibility that a subject may naively follow some
rule of thumb and do not engage in any learning from round to round, we introduce two
naivety parameters that capture the likelihood with which the subject chooses report or
not report naively in each round. We assume the naive rule of thumbs are:

Rule of thumb 1: Rt|naive = 1 if At ∈ {4, 5} (13)

Rule of thumb 2: Rt|naive = 0 if At ∈ {1, 2, 3} (14)

Let the probability of being naive be θ1 when the private endowment was less than or
equal to 3, and θ2 when the private endowment was larger than 3, then the likelihood of
reporting is

Pr(Rt = 1) =

(1− θ1) · Pr(Rt = 1|rational) if At ∈ {1, 2, 3}

θ2 + (1− θ2) · Pr(Rt = 1|rational) if At ∈ {4, 5}
(15)

where Pr(Rt = 1|rational) =
exp(VRt=1)

exp(VRt=1)+exp(VRt=0)
. The predictions of our model with

naivety are presented in Table 5, Panel B. The addition of naivety parameters increases
total log likelihoods, and reduces the average distance between pooled actual reporting
rates and predicted reporting rates from a range of 1.4-6.8 to a range of 1.0-3.1. In Model
3, we estimate θ1 to be 3% and θ2 to be 7%, which are small but non-trivial. The average
distances are reduced by roughly 20% from those in Panel A. When we look at predictions
in a particular treatment, the average distance between the actual and predicted rates be-
comes slightly larger in T1 and smaller in T2. In general, the model’s ability to explain
subject reporting decision is better when we include naivety parameters.

6 Trading Off Academic Preparedness with Diversity

In this section, we first discuss the tradeoff between academic preparedness and diver-
sity of a school’s entering cohort in our stylized model. Then, we extend our stylized
college application problem and discuss how the preparedness-versus-diversity trade-
off may change if we allow for applicant-group admission quota, resource constraints in
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test-taking, or an additional dimension of student application profile, respectively.

6.1 Tradeoff in the Stylized Model

Assuming that schools always admit the top candidates (i.e. candidates with the highest
overall endowment) until they reach full capacity, the composition of the admission co-
hort will be different when schools commit to different interpretations of non-reporting.
At one extreme, a school that mandates standardized test reporting aims at admitting
students with the highest academic preparedness, but some may worry that this is at the
expense of a less diverse entering cohort, offering few opportunities for disadvantaged
students with little test-preparation resource. At the other extreme, a school that does
not consider standardized test as part of the college application intends to attract a more
diverse application pool, but may have limited ability to identify students with the best
school readiness. Most schools that adopt a test-optional policy fall between these two ex-
tremes. While these schools have their own objective on the composition of the entering
cohort, it is still unclear how the tradeoff between academic preparedness and diversity
looks like given a school’s interpretation of non-reported standardized test scores.

To demonstrate this tradeoff for school policies other than those appeared in our ex-
periments, we use the structural model in Section 5 to simulate student reporting deci-
sions and admission outcomes for counterfactual school interpretations.

Given any set of {α, γ0, γ1, γ2}, we run the simulation as follows: first, we simulate
a pool of 16 subjects with each subject being a “representative” subject in our experi-
ments. In other words, for categorical subject attributes (e.g., gender, race, school year),
the simulated subject pool will have the same composition as those in our lab sessions; for
non-categorical subject attributes (e.g, SAT/ACT scores, number of SAT/ACT attempts,
number of schools applied), we assign each simulated subject the average value of those
in our lab sessions. Second, we assign private and public endowments under the same
procedure as in the lab. We construct the learning variables defined in Section 5, and up-
date them for every round of simulation. We simulate 50 rounds of reporting decisions
and admission outcomes given the school interpretation, the estimated model parame-
ters from Table 4, Model 3, and the naivety probabilities reported in Table 5. Finally, we
repeat the first two steps for each counterfactual setting for 100 times. Keeping the sub-
ject size and the number of rounds consistent to those in the lab will allow us to compare
the simulated results to our experiment results, and running a large number of simulated
sessions will absorb the variation in the simulated results caused by the small sample size
in each session. We use the average outcomes in rounds 35-50 as bases for computation
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in this section.
Table 6 lists the two school interpretations we have used in the experiments (T1 and

T2), along with 16 alternative school interpretations (C1-C16) we will try in counterfac-
tual simulations. For example, C1 assumes that the school would interpret a non-reported
private endowment as a simple average of the subject’s public endowment and the 25th
percentile of the reported private endowment in the last admitted cohort. This is more
pessimistic than C2, where the school uses the 75th percentile instead of the 25th per-
centile from the last admitted cohort, but more optimistic than C3, where the school uses
the lowest possible private endowment (1) instead of 25th or 75th percentile when com-
puting the simple average. C8 is even more pessimistic than C3, by putting more weight
(75% instead of 50%) on the lowest possible private endowment and less weight (25%)
on the subject’s public endowment. In contrast, C10 is even more optimistic than C2, as
the school’s non-report interpretation put 75% weight on the highest possible private en-
dowment. This is equivalent to assuming a non-report student will receive the highest
test score with 75% of probability and receive the same score as her public endowment
in the remaining 25% probability. Another notable counterfactual interpretation is C16,
where the school simply assumes a subject’s non-reported private endowment equal to
her public endowment. This is different from test blind though, because the counterfac-
tual belief only applies when the subject chooses not to report her private endowment
and if the student is rational, the strategic choice of non-reporting would only occur if her
private endowment is no better than her public endowment. Overall, the 16 counterfac-
tual situations are designed to capture various school interpretations of non-report, which
allow us to simulate how students may react strategically to these school interpretations.
Departing from typical simulations of market equilibrium, we do not require the school’s
interpretation to align with the realized score distribution of non-reporting candidates, as
schools may choose certain interpretation for ideological or other reasons.

To characterize the tradeoff between academic preparedness and diversity, we define
“Academic Preparedness” as the average private endowment of the admitted cohort, and
“Diversity” as the standard deviation of public endowment of the admitted cohort. We
assume that, conditional on the quality of students that they admit, colleges prefer a more
diverse cohort; and conditional on the diversity of the admitted students, collages prefer
students with better academic preparedness. 10 In other words, assuming private en-
dowment captures a student’s standardized SAT/ACT test scores and public endowment

10In a robustness check, we use the proportion of lowest public endowment (B = 1) subjects being
admitted as an alternative measure of diversity. The tradeoff using this measure is shown in Figure A.4.
The two measures of diversity give nearly identical illustrations.
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captures the student’s non-test attribute, we consider college objective functions that are
increasing in admitted student’s SAT/ACT scores and in the dispersion of the non-test
attribute, which presumably has a higher correlation with the applicant’s socioeconomic
status.

Figure 7 illustrates the tradeoff for the full set of school policies, including the two
treatments in our experiment (T1, T2), test-required (TR), test-blind (TB), and the coun-
terfactuals (C1-C16). There are a few main takeaways from this figure.

Most strikingly, there does not appear to be much of a tradeoff: school policies that
admit students with higher academic preparedness also admit students from a more di-
verse background. In particular, test-required leads to an admission cohort with the high-
est average private endowment. It is clearly desirable if a school wants to prioritize the
admission of students with better academic background. It also admits one of the most
diverse cohorts in non-test attributes, because it provides students with a weak non-test
attributes an opportunity to stand out through standardized tests. By contrast, with a test-
blind policy, the school cannot distinguish applicants with high standardized test scores
given the non-test attribute. Assuming a positive correlation between standardized test
performance and the strength of non-test attribute, the school will admit those that have
the highest public endowments. This reduces the diversity of the public endowment.
Also, these students may or may not have high private endowments, thus the average
private endowment is brought down. This explains why test-blind is dominated by all
other policies plotted in Figure 7 in both academic preparedness and diversity. By ignor-
ing an important information (standardized test), it ties the hands of a school, leaving less
room for the school to find the best strategy to optimize its objective function.

Voluntary reporting raises a lesser degree of the same concern. Compared to a test-
required policy, test-optional makes standardized test performance less visible, and forces
the school to rely more on the public endowment for admission. This partially reduces the
diversity of public endowment and the average of the private endowment. Empirically,
11 of the 16 counterfactual test-optional policies fell somewhere in between test-required
and test-blind. They dominated test-blind but are dominated by test-required. Algo-
rithms that give the most generous interpretation to non-reporting (e.g., C7, C10), and
thus are closest to test-blind, are the ones that achieve the lowest academic preparedness
and lowest diversity. For those that penalize non-reporting the most (e.g., C3, C8, C13),
and thus are closest to test-required, opposite results are found as expected.

Interestingly, our simulations suggest that some test-optional policies that enforce se-
vere punishment on non-reporting (e.g. C3, C8) may admit students from a more diverse
non-test attributes than test-required. This would not be the case when applicants have
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perfect information on the school’s interpretation of non-reported test scores.
Figure 8 presents the simulated tradeoff when students have perfect information on

the school’s back-end algorithm. This could happen when school publicly announces
and credibly commits to its interpretation of non-reported standardized tests, and stu-
dents fully understand the announced policy. In contrast, students in the real world may
exhibit some naivety due to the lack of application information or the inability to fully
comprehend a school’s policy. In the imperfect-information simulations (Figure 7), we
assume the same naivety probabilities as those reported in Table 5, Column 3. Compar-
ing Figures 7 and 8, we observe that the simulated outcomes with perfect information
are more aggregated and positioned very similarly as those with imperfect information,
except that test-required would lead to a more diverse cohort under perfect information
than all test-optional policies.

What drives the difference we observe (on C3 and C8 for example) between Figure
7 and 8? Using our lab setting as background, when the school punishes non-reporting
really hard, in the perfect information case almost everybody would report. However,
when subjects are not aware of the extremely harsh punishment, they don’t report when
they have relatively low or really low A compared to B because of the reverse unravel-
ing incentive. For example, as shown in Figure 3, when B = 3, the reporting rates are
low when A <= 3. This will provide some opportunity for low public endowment and
high private endowment subjects (e.g., B = 1, A = 5) to get admitted because now they
have a very good chance to win against some medium public endowment subjects (e.g.,
B = 3, A = 3) since the latter might not report. The admittance of low public endowment
subjects then contributes to the increase in diversity in Figure 7. Similar reasoning can
be applied to the real-world college application process, in which some low-SES-high-
achieving students may benefit from (undisclosed) test-optional policies that severely
punish non-reporting but some students with a relatively high income do not fully un-
derstand this and choose not to report due to reverse unraveling. Nevertheless, for most
other test-optional policies, fully disclosing or hiding the actual school interpretation of
SAT or ACT scores if they are not reported leads to similar admission portfolios.

To summarize, our simulations show that a test-blind policy is dominated by either
test-optional or test-required policy in the academic preparedness and the diversity of the
admission cohort. Test-required admits students with the highest academic preparedness
and from a diverse background. While most test-optional policies are dominated by test-
required, some may be desirable when the school prioritizes the diversity of its entering
cohort and severely punishes SAT/ACT non-reporting. However, this gain of diversity
(at some cost of academic preparedness) is likely transitory as we only find it present
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when students are not fully aware of the school’s admission policy.

6.2 Extension #1: Imposing Admission Quota by Public Endowment

The results shown in Figure 7 are consistent with what we have illustrated in Section 2 for
the simple college application problem (Figure 1). Test-required benefits applicants with
low non-test attribute and high standardized test score, thus allowing a more diverse
admission cohort. Test-optional admits more high non-test attribute applicants who hide
their unfavorable standardized tests. The more generous the school is with regard to non-
reporting, the more low non-test attribute, high standardized test score applicants would
be hurt (by not getting admission). Test-blind allows the least diverse admission cohort
because it only admits applicants with the highest non-test attributes.

In reality, schools may refrain from admitting students with the highest perceived total
endowment as some argue they may not be the ones with the highest marginal returns
from schooling (Dale and Krueger, 2002; Brand and Xie, 2010). Figure 9 shows otherwise
identical compositions as in Figure 1 but with the school imposing an admission quota
by public endowment. In particular, we assume the school categorizes applicants into
three categories: applicants with high, medium, or low public endowments. The school
admits one third of their students from each level. We see the exact same patterns as
those in Figure 1. The previous conclusions hold within each group of applicants. Within
each level of public endowment, test-required admits the most applicants with low public
endowments, test-blind admits the least, and test-optional lies between the two.

6.3 Extension #2: Resource Constraints in Test-Taking

Students from sophisticated families with well-educated parents often are better-prepared
for college applications. One major difference between these students and students from
disadvantaged families is the probability of taking standardized tests prior to application.
In 2023, the number of students from the top two quintiles of the family income distribu-
tion who take SAT tests is roughly twice that of students from the bottom two quintiles. 11

The lack of resource for test-preparation and test-taking puts students from low-income
families at a further disadvantage under a test-required policy. Thus, a test-optional or
test-blind admission policy may attract more low-income students to submit applications
and potentially admit a higher proportion of low-income high-achieving students.

11Source: https://reports.collegeboard.org/media/pdf/2023-total-group-sat-suite-of-assessments-
annual-report\%20ADA.pdf.

30



Under our setting, we simulate the reporting decision and admission outcome with
heterogeneous test-taking. Let the probability of taking SAT/ACT tests be p1, p3, and p5

for students with public endowments 1, 3, and 5, respectively. Suppose each applicant has
a private endowment and the SAT/ACT scores perfectly identify the private endowment
of an applicant if she takes the standardized test. We assume the probability of test taking
is the same for applicants with the same public endowment, regardless of their private
endowment. Under test-blind and test-optional, we assume all applicants apply for the
school, and the school is not able to distinguish those who took the test and those who
did not, conditional on not observing a test-score. Under test-required, only students
who took the test would apply. We simulate a total of 9 sessions with a sample of 300
applicants (100 applicants for each public endowment) in each session.

Panel (a) of Figure 10 shows how the academic preparedness and diversity measures
change as the probability of test-taking changes. The test-taking probabilities are: p1 =

0.5, p3 = 0.75, p5 = 1 for TR_h1; p1 = 0.33, p3 = 0.67, p5 = 1 for TR_h2; and p1 =

0, p3 = 0.5, p5 = 1 for TR_h3. The figure suggests that, unless the probability of test-
taking is extremely low for low public endowment applicants (e.g., none of the B = 1

applicants take tests), a test-required policy still dominates test-blind. In other words, the
“benefit” to disadvantaged applicants from allowing them to apply a larger portfolio of
schools, through not requiring standardized test scores, is hardly large enough to offset
the “harm” from depriving their opportunity to stand out through standardized tests.

Panels (b)-(d) of Figure 10 present the academic preparedness and diversity tradeoff
with different sets of p1, p3, and p5. Test-blind is not affected because standardized tests
are not required regardless of applicants’ test-taking decisions. For counterfactual test-
optional policies, each applicant’s reporting decision and admission results are simulated
based on the model derived in the previous section. In Panel (b) and Panel (c), the pat-
terns are similar to those in Figure 7: test-required dominates test-blind, while some test-
optional policies lead to a more diversified admission cohort than test-required. When
none of the B = 1 applicants and only 50% of B = 3 applicants take tests, i.e. in Panel
(d), test-blind and most test-optional policies result in more diversity than test-required.
When applicants with low public endowments rarely take standardized tests, it mechan-
ically limits test-required’s ability to receive applications from diverse background and
hence it is not surprising to observe some test-optional policies to achieve better diversity.
In all cases, test-required admits the most academically prepared cohort and test-blind is
dominated by either test-blind or test-optional policy. These figures send a clear message:
test-required is the best policy if the school prioritizes academic merit, some test-optional
policies may be favorable if the school puts great emphasis on a diverse entering cohort,
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and test-blind is never the optimal choice. As a robustness check, Figure 11 shows the
tradeoff with heterogeneous test-taking behavior when subjects have perfect information
on the school’s interpretation and act rationally accordingly. The implications are very
similar.

During college applications, minorities and students from low-income families are of-
ten disadvantaged in many ways other than the ability to take standardized tests: they
have less test-preparation resources so the SAT/ACT scores may not reflect their true
merit, they may have a higher cost of taking the tests and submitting test scores, or they
have limited information on college quality and financial aid opportunities (Hoxby and
Avery, 2012). The tradeoff analysis with heterogeneous test-taking can be easily modified
to address these factors as they impact applicants with varying levels of public endow-
ments in a similar manner.

6.4 Extension #3: An Extra Dimension in Application Profile

One simplification we make in the college application problem is that an applicant’s ap-
plication profile only contains two components: a private endowment (standardized test)
and a public endowment (non-test attributes). Then, in our analysis, we use the public
endowment as a proxy of socioeconomic status and the private endowment as a proxy of
academic merit. In practice, other information required in an application (e.g., high school
GPA) may also signal an applicant’s merit. Thus, we extend our analysis to incorporate
an extra dimension of information available to the school.

Theoretical Argument. Suppose each student’s application profile has three compo-
nents: a private endowment A, two public endowments B1 and B2. A represents stan-
dardized test scores, B1 represents public information that signals academic merit (e.g.,
high school GPA), and B2 represents public information that signals socioeconomic status
(e.g., family zip code). Similar to before, we assume that, all else equal, the school prefers
an admission cohort with better academic merit and a more diverse cohort. Let an appli-
cant’s true academic merit be M . We assume that the school can perfectly identify Mi if it
observes Ai, B1,i, B2,i of applicant i, but cannot do so if it only observes B1,i and B2,i. It is
fair to make this assumption as previous literature has established that standardized test
scores help predict students’ academic performance in college as well as career success
after controlling for other observable student attributes (Bettinger, Evans and Pope, 2013;
Chetty, Deming and Friedman, 2023; Cascio et al., 2024; Friedman, Sacerdote and Tine,
2024).

Assuming the school admits the top half applicants with the highest M + B2, Figure
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12 shows the composition of the admission cohort under different test policies. Under
test-required, the school observes the true merit of every prospective student, so it can
admit students in the blue shaded area and achieve the first best (as shown in Panel (a)
of Figure 12. Under test blind, the school does not observe A and has to form a belief
of merit based on B1 and B2. Panel (b) illustrates the difference in admission outcome
between test-required (perfect information) and test-blind or test-optional (imperfect in-
formation). The hollow circles are examples of applicants that would have appeared high
in true student merit but end up low in E[M |B1, B2] because they have high A but low
B1. The solid squares are examples of those that would have appeared low in true stu-
dent merit but end up high in E[M |B1, B2] because they have low A but high B1. If the
school has perfect information about M , it should accept most applicants represented by
solid and hollow circles and reject most represented by solid squares, as shown in the
blue shaded area. However, if the school does not perfectly identify student merit, it
may perceive the solid squares high in merit and hollow circles low in merit. As a result,
it would accept too many applicants with high B1 and low M , and reject too many ap-
plicants with high M . More specifically, for the solid circles that have high enough B2,
they would still be admitted while their M is underestimated, but for those hollow circles
without high enough B2, they may be rejected by the admission office even if they fall
within the shaded area and would have been admitted when school has perfect informa-
tion. Similarly, solid squares with very low B2 would not be admitted while their M is
overestimated, but for solid squares with not-too-low B2, they may be admitted even if
they fall outside the shaded area because their M is overestimated. In short, the test-blind
or test-optional school replaces the hollow circles in the blue shaded area with the solid
squares outside the blue shaded area. It is obvious from the graph that every such hollow
circle has a higher realized U = M +B2 than every such solid square, and thus the school
will have a strict net loss in the realized admission outcomes.

Simulation. To supplement our theoretical argument, we simulate admission out-
comes under different test policies when an application profile has three components. Let
each student have real quality M in academic preparedness, while the application profile
displays private endowment A, public endowments B1 signaling academic merit, and B2

signaling socioeconomic status. For simplicity, we assume B1 and B2 are independent of
each other. M is an integer uniformly distributed between 1 and 5. Suppose with pb prob-
ability B1 = M , with (1− pb) probability B1 is a random integer from the set {1, 2, 3, 4, 5};
also, with pa probability A = M , with (1 − pa) probability A is a random integer from
the set {1, 2, 3, 4, 5}. The school admits top half applicants based on B2 + E(M |B1, A).
Using the Bayes’s rule, we can derive the following conditional belief for test-blind and
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test-required:12:

under TB, E(M |B1) = 3− 3pb + pbB1

under TR, if A = B1,

E(M |B1, A) =
B1 · 1

5
(1 + 4pa)(1 + 4pb) + (15−B1) · 1

5
(1− pa)(1− pb)

1 + 4papb

under TR, if A ̸= B1,

E(M |B1, A) =
3(1− pa)(1− pb) + paA+ pbB1 − papb(A+B1)

1− papb

(16)

Then, we run application and admission simulations under test-blind, test-required, and
test-optional policies using a procedure similar to those in Section 6.1. Applicants make
reporting decision based on results in Table 4, Model 3.13 To be consistent with our ex-
perimental results, under test-optional, we assume the school belief as follows: if A is
reported, the school assigns total endowment as B2 + E(M |B1, A); if A is not reported,
with probability α, the school assigns total endowment as B2+E(M |B1); with probability
(1− α), the school assigns B2 + γ0 + γ1x−1 + γ2y−1.

Figure 13 presents simulation results when we set pb = 0.5 and pa ∈ {0.2, 0.5, 0.8}. In
other words, with 50% probability B1 = M , with 50% probability B1 is a random integer
from the set {1, 2, 3, 4, 5}. Panels (a)-(c) shows the academic preparedness and diversity
tradeoff when the standardized test scores are better (pa = 0.8), the same (pa = 0.5), or
worse (pa = 0.2) proxies than high school GPAs (pb = 0.5) of the true academic merit. Sim-
ilar to what we have found in the simulations with two components in each application
profile (Figure 7), Panels (a) and (b) of Figure 13 show that a test-required policy leads to
an admission cohort with the highest average academic merit, as well as one of the most
diverse cohorts in non-test attributes. Test-blind, however, is strictly dominated by test-
required and some test-optional policies. Also similar to Figure 7, test-optional policies
that impose the most severe punishment on non-reporting (e.g., C3, C8) admit students
with the most diverse non-test attributes. As we have discussed earlier, when subjects
are not aware of the harsh interpretation, they do not report their standardized test scores
as much as what’s best for them. This benefits “low-income high-achieving” applicants
while those with higher non-test attributes get severely punished for not reporting. Thus,
when the standardized test scores are decent or good proxies of true academic merit, as

12Details of the derivation are provided in the appendix.
13We replace B in Table 4, Model 3 by B1. Thus, we assume subjects make reporting decision based on

B1, A, and individual characteristics just as they did based on B, A, and individual characteristics. In other
words, the subject’s reporting decision is independent from B2.
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found in a recent Dartmouth study (Sacerdote, Staiger and Tine, 2024), our main results
are robust to the introduction of a third dimension in the college application profile.

Nevertheless, when standardized tests are less correlated with true academic merit
(pa = 0.2), we observe similar admission cohorts under test-blind and test-required in
Panel (c). The extra information does not help schools to better identify students with bet-
ter academic preparedness because it is a very noisy proxy. While test-required no longer
leads to admission cohort with the highest academic merit, it also produces a less diverse
cohort than many test-optional policies. Therefore, for schools such as the University of
California system who have argued that standardized tests do not provide valuable in-
formation about applicants’ true academic merit, it might be worthwhile to explore other
options, such as switching to test-blind or designing new standardized tests that better
predict student’s academic success.

Figure 14 shows the simulated tradeoff when applicants have perfect information on
the school’s belief and act rationally accordingly. Similar to what we observe above, test-
blind is dominated by test-required and test-optional policies regardless of how good
standardized tests predict true merit. When standardized tests are very informative of
true merit (pa = 0.8), test-required admits both one of the best academically prepared
and one of the most diverse cohorts. 14 When they are as good as high school GPAs
in informing merit (pa = 0.5), we observe tradeoff between test-required and some test-
optional policies. Nevertheless, the admission cohort under test-required remains both
diverse and academically prepared. These suggest that the desirability of test-optional
policies shown in Figure 13 mostly comes from applicants not knowing the true school
belief. However, when standardized tests are a very noisy proxy of merit (pa = 0.2), the
tradeoff in Figure 13 does not change. Many test-optional policies admit a more diverse
cohort than test-required, usually at the expense of academic merit.

7 Conclusion

In the past few years, many universities have dropped their SAT or ACT requirements,
switching to a test-optional or test-blind admission procedure. While schools have dif-
ferent objective functions with respect to the composition of their entering cohorts, it is
unclear how a school should select an admission policy that best represents its interests.

14In our simulations, test-required is similar to some test-optional policies (C3, C8) in the academic
preparedness and diversity of its admission cohort. Due to the small simulation sample (i.e., 16 applicants
per application round), we could observe either C3 and C8 marginally dominate test-required or the other
way around.

35



A major decision for test-optional schools to make is: how to interpret non-reported stan-
dardized tests?

In this paper, we study students’ reporting choices given their application package
and the school’s admission statistics from the past, and how these choices drive the
school’s final admission outcomes. More importantly, we study how student reporting
and admission outcomes may differ when the school commits to different interpretations
of non-reporting. To overcome the endogeneity criticisms that may come from using ob-
servational data, we run a series of controlled lab experiments in a large public university.
We address a single-college application problem, in which a student subject’s application
package has two components: standardized test score (private endowment) and non-test
attribute (public endowment), and the school admits students with the highest perceived
sum of these two endowments.

We find that the voluntary disclosure of standardized test scores is far from complete,
and that this is because the school (our back-end computer) does not give sufficient pun-
ishment to non-reporting. Although our experiments do not disclose to student subjects
how the school would interpret non-reporting, they manage to learn about the hidden
rule. The extent to which they withhold the private endowment is dependent on the hid-
den school interpretation. Subjects are also more likely to hide their (low) private test
scores when they receive a better draw on their observable attribute. Thus, we find evi-
dence of both partial unraveling and reverse unraveling incentives.

Then, we construct a structural model of applicant reporting choice that captures sub-
ject learning during the experiment. The model also allows for the possibility that subjects
naively follow some rule of thumb and do not engage in strategic learning and reporting
from round to round. Using our structural model, we simulate applicants’ reporting be-
havior and admission outcomes under counterfactual school policies. We then discuss
a school’s tradeoff between admitting students with better academic preparedness and
admitting a more diverse cohort. Our simulation suggests that a test-blind policy is dom-
inated by either test-optional or test-required policy in the academic preparedness and
the diversity of the admission cohort. Test-required admits students with the highest aca-
demic preparedness and from a diverse background. While most test-optional policies
are dominated by test-required, some may be desirable when school prioritize the diver-
sity of its entering cohort and severely punishes SAT/ACT non-reporting. However, this
gain of diversity (at some cost of academic preparedness) is likely transitory as we only
find it present when students are not fully aware of the school’s admission policy.

Because the reporting decision is strategic and schools intentionally interpret non-
reporting away from its true meaning (in terms of real scores), it encourages lower scores
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to hide. The more generous the school is in this interpretation, the more it depresses score
reporting. On the surface, this may help low-SES students because they have lower scores
than high-SES students and would have more incentives to hide if both groups face the
same disclosure threshold. But given the positive correlation between family background
and test score, high-SES students would have a higher disclosure threshold and therefore
are more likely to hide given the same score. This means a low-SES student with a test
score may compete against a high-SES student without a score and still lose. In other
words, the naive “help” that the test-blind and test-optional policies intend to provide to
low-SES students may end up hurting them.

Finally, we extend the stylized college application problem to explore the tradeoff be-
tween academic preparedness and diversity under three key modifications: applicant-
group admission quotas, resource constraints in test-taking, and an additional dimension
in the student application profile. In most cases, our previous findings remain robust:
test required is preferable in both dimensions and test blind is the worst, especially if
students have perfect information about the school’s interpretation of non-reporting. The
only exception arises when schools have access to alternative signals of academic ability
and standardized test scores are a very noisy measure of true merit. In such cases, test-
optional policies can introduce a meaningful tradeoff between average preparedness and
diversity as compared to test-required.

In our setting, we assume that all applicants have taken the standardized test and have
received their test scores. While other studies have proposed models that incorporate an
applicant’s endogenous test-taking and school application decisions (Borghesan, 2022),
we do not capture student behavior in those margins. The school objective function may
also include factors such as social pressure (Dessein, Frankel and Kartik, 2023). We leave
the exploration of improved general equilibrium results to future research.
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Figures and Tables

(a) Test-Required (TR) (b) Test-Blind (TB) (c) Test-Optional (TO)

(d) TR vs. TB (e) TR vs. TO (f) Harsh vs. Lenient TO

Figure 1: Composition of the Admission Cohort

Note: This figure provides an illustration of the composition of the admission cohort under test-required,
test-blind, and test-optional admission policies. Assuming the school admits half of all applicants, the blue
shaded areas in Panels (a), (b), and (c) represent admitted applicants. In Panels (c), (d), and (e), we show
the difference in admission composition between test policy pairs.
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(a) T1: lab (b) T1: simulation

(c) T2: lab (d) T2: simulation

Figure 2: Trends in Admission Statistics

Note: This figure shows the trends in admission statistics by round. Panels (a) and (c) present the trends in
the 25th and 75th percentiles of private endowment from those who reported it and were offered admission
in the lab under T1 and T2, respectively. Panels (b) and (c) present the trends when we simulate subject
reporting decision with perfect information under T1 and T2, respectively.
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(a) B=1 (b) B=3

(c) B=5

Figure 3: Reporting Rates in Rounds 21-50

Note: This figure presents the reporting rates by public and private endowments in the last 30 rounds of
the experiment. Each panel represents one possible public endowment (B) and the horizontal axis in each
panel represents the private endowment (A). The light gray bars show the reporting rates under T1, and
the dark gray bars show the reporting rates under T2.
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(a) T1: lab (b) T2: lab

(c) B=3

Figure 4: Trends in Subject Reporting Rates

Note: This figure shows the trends in subject reporting rates in the lab. We present a separate trend for each
possible public endowment (B) under T1 and T2. The reporting rates are averaged across every 5 rounds.
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Figure 5: Reporting Rates by Gender and Race

Note: This figure presents the reporting rates under T1 and T2 by (self-reported) gender and race in the
last 30 rounds of the experiment. The graph on the left shows the reporting rates for female and male. The
graph on the right shows the reporting rates for Asian, Black, and White subjects.

45



(a) T1 (b) T2

Figure 6: Model Predicted Reporting Rates

Note: This figure shows the actual and the predicted reporting rates by the heuristic model and the Bayesian
updating model.

46



Figure 7: Academic Preparedness and Diversity Tradeoff

Note: This figure shows the academic preparedness and diversity of the admission cohorts under various
admission policies, based on simulation results from our structural model. The “academic preparedness”
is defined as the average of the private endowment, and “diversity” is defined as the standard deviation
of the public endowment. Each point on the graph represents one possible admission policy. The admis-
sion policies include two treatments in our experiment (T1, T2), test-required (TR), test-blind (TB), and the
counterfactual test-optional policies (C1-C16).
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Figure 8: The Tradeoff with Perfect Information

Note: This figure shows the academic preparedness and diversity of the admission cohorts under various
admission policies, assuming that applicants have perfect information on the school’s interpretation of non-
reported standardized tests.
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(a) Test-Required (TR) (b) Test-Blind (TB) (c) Test-Optional (TO)

(d) TR vs. TB (e) TR vs. TO (f) Harsh vs. Lenient TO

Figure 9: Composition of the Admission Cohort

Note: This figure provides an illustration of the composition of the admission cohort under test-required,
test-blind, and test-optional admission policies when there is an admission quota on the public endowment.
In particular, the school admits one third of its cohort from each of low, medium, and high public endow-
ment. Assuming the school admits half of all applicants, the blue shaded areas in Panels (a), (b), and (c)
represent admitted applicants. In Panels (c), (d), and (e), we show the difference in admission composition
between test policy pairs.
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(a) TR under Heterogeneous Test-Taking (b) p1 = 0.5, p3 = 0.75, p5 = 1

(c) p1 = 0.33, p3 = 0.67, p5 = 1 (d) p1 = 0, p3 = 0.5, p5 = 1

Figure 10: Tradeoff with Heterogeneous Test-Taking

Note: This figure presents the academic preparedness and diversity tradeoff with heterogeneous test-taking
behavior. In Panel (a) we show how test-required compares to test-optional and test-blind with different
sets of test-taking probabilities. In Panels (b), (c), and (d) we use our model to simulate the reporting
behavior and admission results when a proportion of applicants does not take standardized tests.
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(a) p1 = 0.5, p3 = 0.75, p5 = 1 (b) p1 = 0.33, p3 = 0.67, p5 = 1

(c) p1 = 0, p3 = 0.5, p5 = 1

Figure 11: Tradeoff with Heterogeneous Test-Taking and Perfect Information

Note: This figure presents the academic preparedness and diversity tradeoff with heterogeneous test-taking
behavioral when subjects have perfect information on the school’s interpretation and act rationally accord-
ingly.
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(a) Perfect Info. on Student Merit (b) Imperfect Info. on Student Merit

Figure 12: Composition of the Admission Cohort with an Extra Dimension

Note: This figure illustrates the composition of the admission cohort when there’s three components in an
applicant’s application profile. Panel (a) shows the composition under a test-required (TR) policy. Panel (b)
shows the composition under either test-optional (TO) or test-blind (TB).
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(a) pa = 0.8, pb = 0.5 (b) pa = 0.5, pb = 0.5

(c) pa = 0.2, pb = 0.5

Figure 13: The Tradeoff with An Extra Dimension

Note: This figure shows the academic preparedness and diversity of the admission cohorts under various
admission policies when we incorporate an extra dimension of information available to the school. Panel
(a) shows simulation results when pa = 0.8, pb = 0.5. Panels (b) and (c) show simulation results when
pa = 0.5, pb = 0.5 and pa = 0.2, pb = 0.5, respectively.
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(a) pa = 0.8, pb = 0.5 (b) pa = 0.5, pb = 0.5

(c) pa = 0.2, pb = 0.5

Figure 14: Tradeoff with An Extra Dimension and Perfect Information

Note: This figure shows the academic preparedness and diversity tradeoff when we incorporate an extra
dimension of information and when applicants have perfect information on the school’s belief and act
rationally accordingly.
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Table 1: Summary Statistics of Main Sessions

T1 T2 T1-T2 p-value
(1) (2) (3) (4)

Demographics
Female 0.53 0.56 -0.03 0.58
Asian 0.32 0.32 0.00 1.00
Black 0.14 0.09 0.05 0.22
White 0.49 0.49 -0.00 0.96
Others 0.06 0.10 -0.04 0.17
Freshman 0.38 0.41 -0.04 0.53
Sophomore 0.17 0.19 -0.02 0.70
Junior 0.21 0.23 -0.03 0.60
Senior 0.24 0.16 0.08 0.09

Standardized Test
Number of Attempts 1.90 1.85 0.04 0.77
SAT Math Score 693.10 684.19 8.91 0.47
SAT Reading Score 677.54 689.29 -11.75 0.25
ACT Score 29.53 31.43 -1.90 0.04
Number of Schools Applied 7.52 7.77 -0.25 0.65
Non-Report as Bad Signal 0.53 0.65 -0.12 0.03
Send SAT/ACT to All Schools 0.47 0.43 0.04 0.50
Did Not Take SAT/ACT 0.12 0.17 -0.06 0.32
School Test-Blind 0.08 0.07 0.00 0.93
Had Low Scores 0.57 0.65 -0.08 0.29
UMD as First Choice 0.33 0.33 0.01 0.90

N 144 141 285
* Notes: This table reports the summary statistics of subjects in our experiments. The
first two columns show the summary statistics of demographics and experience with
college applications for subjects in treatments T1 and T2, respectively. Column 3
shows the difference between the first two columns, and Column 4 presents the p-
value for the difference.
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Table 2: Summary of Subject Reporting Rates

Treatment T1 T2

All Rounds Rounds 1-20 Rounds 21-50 All Rounds Rounds 1-20 Rounds 21-50

Panel A: avg. reporting rate by private endow.
A=1 0.217 0.227 0.210 0.156 0.171 0.146
A=2 0.294 0.304 0.288 0.283 0.292 0.277
A=3 0.490 0.465 0.506 0.344 0.405 0.304
A=4 0.818 0.806 0.827 0.793 0.775 0.805
A=5 0.935 0.937 0.933 0.939 0.931 0.944

Panel B: avg. reporting rate by public endow.
B=1 0.498 0.508 0.491 0.455 0.463 0.449
B=3 0.493 0.495 0.491 0.384 0.428 0.355
B=5 0.662 0.659 0.664 0.647 0.638 0.653

Total N 7200 2880 4320 7050 2820 4230
* Notes: This table reports a summary of subject reporting rates during the experiment. For each private or
public endowment, we report the average reporting rates of private endowment in all rounds, in the first
20 rounds, and in the last 30 rounds.
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Table 3: Hypothetical Reporting Rule with Perfect Information

Public Endowment School-Belief Report under T1 Report under T2

Bt = 1

{
T1: 0.5 + 0.25xt−1 ≈ 1.5

T2: 0.5 + 0.25(xt−1 + yt−1) ≈ 2.875
if At ∈ {2, 3, 4, 5} if At ∈ {3, 4, 5}

Bt = 3

{
T1: 1.5 + 0.25xt−1 ≈ 2.5

T2: 1.5 + 0.25(xt−1 + yt−1) ≈ 3.875
if At ∈ {3, 4, 5} if At ∈ {4, 5}

Bt = 5

{
T1: 2.5 + 0.25xt−1 ≈ 3.5

T2: 2.5 + 0.25(xt−1 + yt−1) ≈ 4.875
if At ∈ {4, 5} if At ∈ {5}

* Notes: This table reports the hypothetical reporting rule (indicated by Equation 10) when subjects have
perfect information about the school’s interpretation of non-reported private endowment. Column 2 re-
ports the true school-belief under T1 and T2 given the public endowment in Column 1. Columns 3 and 4
show the values of private endowment with which subjects with perfect information would report under
T1 and T2, respectively.
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Table 4: Logit Model Estimation of Reporting Decisions

(1) (2) (3) (4)
All Rounds Rounds 21-50 Rounds 21-50 Rounds 21-50

Public Endow. B -0.34∗∗∗ -0.34∗∗∗ -0.72∗∗∗ -0.69∗∗∗

(0.01) (0.01) (0.08) (0.10)
Q1 (previous round) -0.20∗∗∗ -0.23∗∗∗ -0.14∗∗∗ -0.09

(0.03) (0.04) (0.05) (0.06)
Q3 (previous round) -0.10 -0.12 -0.12 -0.19

(0.08) (0.11) (0.14) (0.15)

Learning X X
Subject Covariates X
Subject FE X

N 14250 8550 8550 8550
* Notes: This table reports estimates from a logistic regression of subject reporting de-
cision. In Columns 3 and 4 we include eight learning variables. The subject covariates
in Column 3 include those summarized in Table 1. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 5: Heuristic Structural Model Predicted Reporting Rates

Panel A:
Reporting rate (%)

All Treatment: T1 Treatment: T2

Actual Model (2) Model (3) Model (4) Actual Model (3) Actual Model (3)
A=1 17.9 19.1 17.5 18.0 21.0 19.7 14.6 15.2
A=2 28.3 29.8 25.1 25.3 28.8 26.9 27.7 23.1
A=3 40.6 51.8 42.8 42.6 50.6 50.4 30.4 35.1
A=4 81.6 72.7 80.2 80.1 82.7 83.7 80.5 76.6
A=5 93.8 82.8 93.5 93.2 93.3 93.8 94.4 93.2

Avg. distance (unweighted) 6.8 1.5 1.4 1.0 3.0
Total log likelihood -4018 -3029 -2835

Panel B:
(%) with Naivety All Treatment: T1 Treatment: T2

Actual Model (2) Model (3) Model (4) Actual Model (3) Actual Model (3)
A=1 17.9 16.4 17.0 17.5 21.0 19.1 14.6 14.8
A=2 28.3 25.6 24.3 24.6 28.8 26.1 27.7 22.4
A=3 40.6 44.6 41.6 41.3 50.6 48.9 30.4 34.1
A=4 81.6 86.6 81.6 81.7 82.7 84.8 80.5 78.2
A=5 93.8 91.6 93.9 93.8 93.3 94.2 94.4 93.7

Avg. distance (unweighted) 3.1 1.2 1.0 1.9 2.4
Naivety (θ1) 0.51 0.03 0.03
Naivety (θ2) 0.14 0.07 0.08
Total log likelihood -3864 -3021 -2830
* Notes: This table reports the actual subject reporting rates, the predicted reporting rates from our structural model, and their differences. Panel A
reports these statistics from three different model specifications presented in Table 4. Panel B reports the same set of statistics when we allow subjects
to be naive with a positive probability. θ1 represents the probability that subjects never report when their private endowment (A) was less than or
equal to 3, regardless of their public endowment (B). θ2 represents the probability that subjects always report when their private endowment (A)
was higher than 3, regardless of their public endowment (B). The naivety parameters are estimated using maximum likelihood estimation.
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Table 6: List of School Interpretations of Non-Reporting

Setting α γ0 γ1 γ2 E[At|Rt = 0]

Experiment
T1 0.5 0 0.5 0 0.5Bt + 0.25xt−1

T2 0.5 0 0.5 0.5 0.5Bt + 0.25(xt−1 + yt−1)

Counterfactual
C1 0.5 0 1 0 0.5Bt + 0.5xt−1

C2 0.5 0 0 1 0.5Bt + 0.5yt−1

C3 0.5 1 0 0 0.5Bt + 0.5
C4 0.5 3 0 0 0.5Bt + 1.5
C5 0.5 5 0 0 0.5Bt + 2.5
C6 0.25 0 1 0 0.25Bt + 0.75xt−1

C7 0.25 0 0 1 0.25Bt + 0.75yt−1

C8 0.25 1 0 0 0.25Bt + 0.75
C9 0.25 3 0 0 0.25Bt + 2.25
C10 0.25 5 0 0 0.25Bt + 3.75
C11 0.75 0 1 0 0.75Bt + 0.25xt−1

C12 0.75 0 0 1 0.75Bt + 0.25yt−1

C13 0.75 1 0 0 0.75Bt + 0.25
C14 0.75 3 0 0 0.75Bt + 0.75
C15 0.75 5 0 0 0.75Bt + 1.25
C16 1 . . . Bt

* Notes: This table reports the list of counterfactual school interpretations of non-
reported private endowment that we simulated. The variation in these test-optional
school policies come from the selection of parameters α, γ0, γ1, γ2, which we intro-
duced in Equation 5.
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A Appendix: Supplementary Materials

Figure A.1: Trends in Reported SAT Reading and Math Scores

Note: This figure shows the trends in SAT reading and math scores at the top-100 schools ranked by U.S.
News in the past five years. The scores in this figure represent the average test scores of those applicants
who reported their scores and were admitted to these schools. Source: Department of Education and U.S.
News.
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Figure A.2: Trends in Reported ACT Scores

Note: This figure shows the trends in ACT composite score at the top-100 schools ranked by U.S. News
in the past five years. The scores in this figure represent the average test scores of those applicants who
reported their scores and were admitted to these schools. Source: Department of Education and U.S. News.
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Figure A.3: Time of Belief Formation

Note: This figure shows the distribution of rounds at which subjects (self-reported) formed their beliefs
of the school-interpretation of non-reported private endowment. Specifically, the statistics are drawn from
the responses to this survey question at the end of the experiment: “When, during the experiment, did you
realize the program’s interpretation?”.
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Figure A.4: Academic Preparedness and Diversity Tradeoff (Alternative Diveristy Mea-
sure)

Note: This figure shows the academic preparedness and diversity of the admission cohorts under various
admission policies, based on simulation results from our structural model. The “academic preparedness” is
defined as the average of the private endowment, and “diversity” is defined as the proportion of B = 1 sub-
jects admitted. Each point on the graph represents one possible admission policy. The admission policies
include two treatments in our experiment (T1, T2), test-required (TR), test-blind (TB), and the counterfac-
tual test-optional policies (C1-C16).
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Table A1: Bayesian Updating Model Estimates of the Prior

ϕ
(1)
α ϕ

(1)
α=0 ϕ

(1)
α=0.25 ϕ

(1)
α=0.5 ϕ

(1)
α=0.75 ϕ

(1)
α=1

0.001 0.381 0.522 0.010 0.000

ϕ
(1)
γ0 ϕ

(1)
γ0=0 ϕ

(1)
γ0=1 ϕ

(1)
γ0=2 ϕ

(1)
γ0=3 ϕ

(1)
γ0=4

0.000 0.996 0.003 0.001 0.000

ϕ
(1)
γ1,γ2 ϕ

(1)
γ1=0,γ2=0 ϕ

(1)
γ1=0,γ2=0.5 ϕ

(1)
γ1=0,γ2=1 ϕ

(1)
γ1=0.5,γ2=0 ϕ

(1)
γ1=1,γ2=0 ϕ

(1)
γ1=0.5,γ2=0.5

0.130 0.266 0.000 0.604 0.000 0.000

Covariates pc1 pc2 pc3 pc4 pc5 pc6

-0.024 0.037 0.037 -0.030 0.056 0.057

pc7 pc8 pc9

0.053 0.032 -0.114
* Notes: This table reports estimates of the prior from the Bayesian updating model. For the co-
variates, we perform a principal component analysis and keep the first nine components, which
have eigenvalues larger than 1.
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Experimental Instructions

Welcome

You are about to participate in an experiment on decision-making, and you will be paid
for your participation in cash, privately at the end of the experiment. What you earn
depends partly on your decisions, and partly on chance. Please silence and put away your
cellular phones now. The entire session will take place through your computer terminal.
Please do not talk or in any way communicate with other participants during the session.
We will start with a brief instruction period. During the instruction period, you will be
given a description of the main features of the experiment and will be shown how to use
the computers. If you have any questions during this period, raise your hand and your
question will be answered so everyone can hear.

Instructions

1. The experiment you are participating in consists of 50 rounds. At the end of the
final round, the computer will select two random rounds, and you will be paid
based on your outcomes in those two rounds (in addition to the $10 show-up fee).
Everybody will be paid in private. You are under no obligation to tell others how
much you earned.

2. You are an applicant for a competitive program. Every round, the program admits
half of the applicants based on its belief of each applicant’s endowment. In the
case of multiple applicants, with equal perceived endowment, competing for one
or more admission seats, the program will randomly pick the competing applicants
for admission with equal probability. It is in your best interest to be admitted by
the program in every round, since it increases the chance of you being paid if that
round is selected at random. For each admission you get in the two randomly se-
lected rounds, you will be paid $6 (with a maximum of $12 in total if you get two
admissions) in addition to the $10 show-up fee.

3. In each round, the computer will generate two numbers, A and B. A is drawn from
the set {1, 2, 3, 4, 5} and B is drawn from the set {1, 3, 5}. These two numbers, A and
B, are the only two components of your endowment, and they will be displayed on
your screen. The sum of A and B (i.e., A+B) is your overall endowment. A is private
information and is unknown to the program. B is public information and is known
to the program. You will choose whether or not to report A, having in mind that
the program knows your B. If you choose to report A, you can only report the true
number. Otherwise, you do not report and send no message to the program.

4. If you report, the program knows both A and B, and identifies your overall endow-
ment perfectly. If you do not report, the program only knows B. Then, the program
will form a belief about your A, and subsequently a belief about your overall en-
dowment summing A and B. The program’s belief of A is positively correlated with
its knowledge of B. In other words, the higher is your B, the higher is the chance that
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the program thinks your A is high. The program will admit half of the applicants
with the highest overall endowment based on its knowledge or belief of each appli-
cant’s overall endowment. After you choose to report or not report A, the admission
result will be displayed on your screen.

5. Before you make your choice, the screen will display the following admission statis-
tics from the last round: “Of all the applicants that were admitted to the program in
the last round, including those who reported their A and those who did not report
their A, the average value of B is Z. Of all the applicants that reported their A, and
were admitted to the program in the last round, the 25th percentile of A was X and
the 75th percentile of A was Y. The higher the program thinks your endowment is,
the higher is the probability that you will be admitted.”

6. During the experiment, an understanding of the concepts of 25th percentile and
75th percentile is crucial. In short, the 25th percentile is the value at which 25%
of the endowments lie below that value; the 75th percentile is the value at which
75% of the endowments lie below that value. On the first page of your screen, you
will see some examples of lists of numbers and their corresponding 25th and 75th
percentiles. Please read the examples carefully before you move on to the next page.
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Lab Screenshots
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Risk Aversion Elicitation

Instructions: In the following, you will face 10 decisions listed on your screen. Each de-
cision is a paired choice between “Option A” and “Option B”. You must choose between
lottery A and lottery B, with lottery A delivering $2 with certainty, and lottery B delivers
$1 with probability p and $3 with probability (1-p). At the end of the survey, one random
decision question will be picked and you will be paid the $ amount that is provided by
the lottery which you picked in that decision question (if you choose option A, you will
be paid $2 for sure; if you choose option B, you will be paid either $1 or $3 given their
corresponding probabilities).

1. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 1/10 opportunity of $1, 9/10 opportunity of $3

2. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 2/10 opportunity of $1, 8/10 opportunity of $3

3. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 3/10 opportunity of $1, 7/10 opportunity of $3

4. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 4/10 opportunity of $1, 6/10 opportunity of $3

5. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 5/10 opportunity of $1, 5/10 opportunity of $3

6. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 6/10 opportunity of $1, 4/10 opportunity of $3

7. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 7/10 opportunity of $1, 3/10 opportunity of $3

8. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 8/10 opportunity of $1, 2/10 opportunity of $3

9. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 9/10 opportunity of $1, 1/10 opportunity of $3

10. Do you prefer option A or B?
Option A: $2 with certainty
Option B: 10/10 opportunity of $1, 0/10 opportunity of $3
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Bayesian-Update Simulation and Estimation Procedure

Here are the detailed simulation and estimation procedures for the Bayesian-updating
process:

1. Define all possible school policies. We let α ∈ {0, 0.25, 0.5, 0.75, 1}, γ0 ∈ {0, 1, 2, 3, 4},
and (γ1, γ2) ∈ {(0, 0), (0, 0.5), (0, 1), (0.5, 0), (1, 0), (0.5, 0.5)}. This gives us 5·5·6 = 150
possible combinations of α, γ0, γ1, γ2, which represent 150 unique school admission
policies.

2. Simulate admission outcomes for each school policy. For each possible school policy
(k), we run simulations with an applicant pool of 16 and 100 admission simulations
for each possible {x, y} pair appeared in the actual lab sessions. In total, there are
150 · 16 · 100 · 29 = 6, 960, 000 simulated individual admission outcomes. In each
simulation,

• each of the 16 applicants receive draws of A = (1, 2, 3, 4, 5) and B = (1, 3, 5)
with the same rule as in the lab,

• each applicant makes the comparison of VR=1 vs. VR=0, and chooses report with
probability exp(VR=1)

exp(VR=1)+exp(VR=0)
,

• once everyone receives a simulated reporting decision, the school determines
the admission outcome for each applicant.

Thus, for each school policy (k), we can calculate

Pr(Ot|At, Bt, Rt, xt−1, yt−1, k) =
Nk

At,Bt,Rt,Ot,xt−1,yt−1

Nk
At,Bt,Rt,xt−1,yt−1

where Nk
At,Bt,Rt,xt−1,yt−1

denotes the number of simulated observations with the exact
combinations {At, Bt, Rt, xt−1, yt−1}, and Nk

At,Bt,Rt,Ot,xt−1,yt−1
denotes the number of

simulated observations with the exact combinations {At, Bt, Rt, xt−1, yt−1, Ot}. In
words, this is the probability that the admission outcome would be Ot given the
initial admission statistics xt−1, yt−1, an individual’s endowments At, Bt, reporting
decision Rt, and school policy k.

3. Define the prior probability for each school policy. Define ϕ(1) = {ϕ(1)
k } for k =

{1, 2, .., 150}. For example, we assume the prior probability for each value of α is

{ϕ(1)
α=0, ϕ

(1)
α=0.25, ϕ

(1)
α=0.5, ϕ

(1)
α=0.75, ϕ

(1)
α=1}

and similarly for γ0 and (γ1, γ2), and all these priors are independent of each other.
Then, the prior probability of policy k where k = (α = 0.5, γ0 = 0, γ1 = 0.5, γ2 = 0.5)
will be given by

ϕ
(1)
k = Pr(α = 0.5, γ0 = 0, γ1 = 0.5, γ2 = 0.5) = ϕ

(1)
α=0.5 · ϕ

(1)
γ0=0 · ϕ

(1)
γ1=0.5,γ2=0.5
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An individual’s prior probability is given by the vector ϕ(1), where

ϕ(1) = {ϕ(1)
k } = {ϕ(1)

1 , ϕ
(1)
2 , ..., ϕ

(1)
149, ϕ

(1)
150}

4. Perform Bayesian updating. For any subject-round observed in our real data, we
observe

{At, Bt, Rt, xt−1, yt−1, Ot}

for t = 1, ..., 50. Then, we can calculate the posterior belief ϕ(t+1) given the prior ϕ(t)

and the conditional probability Pr(Ot|At, Bt, Rt, xt−1, yt−1, k), which we calculated
previously. The Bayesian updating equation for each policy k is:

ϕ
(t+1)
k = Pr(k|At, Bt, Rt, xt−1, yt−1, Ot, ϕ

(t))

=
Pr(Ot|At, Bt, Rt, xt−1, yt−1, k) · ϕ(t)

k∑k′=150
k′=1 Pr(Ot|At, Bt, Rt, xt−1, yt−1, k′) · ϕ(t)

k′

5. Maximum likelihood. For a given set of parameters (ϕ(1),Γ), where Γ is a vector of
coefficients for subject covariates, we can calculate the total log likelihood and find
the maximum likelihood.

During the estimation process, we first perform a principal component analysis before
adding covariates to the Bayesian update simulation. We keep the first nine components,
which have eigenvalues larger than 1.
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School Belief Derivation with an Extra Dimension

Suppose each student has real quality M in academic preparedness,

• with pb probability B1 = M , with (1 − pb) probability B1 is randomly chosen from
{1, 2, 3, 4, 5} with equal probability

• with pa probability A = M , with (1 − pa) probability A is randomly chosen from
{1, 2, 3, 4, 5} with equal probability

The school admits based on B2 + E(M |B1, A). Now, we need to derive E(M |B1) and
E(M |B1, A).

Test-Blind

Let B1 = x. We know

P (B1 = x|M = x) = pb +
1

5
(1− pb)

P (B1 = x|M = m ̸= x) =
1

5
(1− pb)

then,

P (B1 = x) =
1

5

(
pb +

1

5
(1− pb)

)
+

4

5

(1
5
(1− pb)

)
=

1

5

Then, we can write

P (M = x|B1 = x) =
P (B1 = x|M = x) · P (M = x)

P (B1 = x)
= pb +

1

5
(1− pb)

P (M = m|B1 = x) =
P (B1 = x|M = m) · P (M = m)

P (B1 = x)
=

1

5
(1− pb)

Finally,

E(M |B1 = x) = x · P (M = x|B1 = x) + (15− x) · P (M = m|B1 = x)

= x
[1
5
+

4

5
pb

]
+ (15− x)

[1
5
− 1

5
pb

]
= 3− 3pb + pbx

For example, when pb = 0.5, E(M |B1) =
3
2
+ 1

2
B1.

Test-Required

Case 1: A = B1. Suppose A = B1 = x.

• Step 1. Write P (A = B1 = x|M = x).
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– P (A = B1 = x|M = x) =
(
pa +

1
5
(1− pa)

)(
pb +

1
5
(1− pb)

)
= (1

5
+ 4

5
pa)(

1
5
+ 4

5
pb)

– P (A = B1 = x|M = m ̸= x) = 1
5
1
5
(1− pa)(1− pb)

then,

P (A = B1 = x) =
1

5
(
1

5
+

4

5
pa)(

1

5
+

4

5
pb) +

4

5

1

5

1

5
(1− pa)(1− pb)

• Step 2. Write P (M = q|A = B1 = x).

P (M = x|A = B1 = x) =
P (A = B1 = x|M = x) · P (M = x)

P (A = B1 = x)

P (M = m|A = B1 = x) =
P (A = B1 = x|M = m) · P (M = m)

P (A = B1 = x)

• Step 3. Write E(M |B1, A).

E(M |B1, A) = x · P (M = x|A = B1 = x) +
∑
m ̸=x

m · P (M = m ̸= x|A = B1 = x)

= x ·
1
5
(1
5
+ 4

5
pa)(

1
5
+ 4

5
pb)

1
5
(1
5
+ 4

5
pa)(

1
5
+ 4

5
pb) +

4
5
1
5
1
5
(1− pa)(1− pb)

+ (15− x) ·
1
5
1
5
1
5
(1− pa)(1− pb)

1
5
(1
5
+ 4

5
pa)(

1
5
+ 4

5
pb) +

4
5
1
5
1
5
(1− pa)(1− pb)

=
x · 1

5
(1 + 4pa)(1 + 4pb) + (15− x) · 1

5
(1− pa)(1− pb)

1 + 4papb

Case 2: A ̸= B1. Take A = 2, B1 = 3 as an example.

• Step 1. Write P (A = 2, B1 = 3|M = m) and P (A = 2, B1 = 3).

– if M = 2, then

P (A = 2, B1 = 3|M = 2) =
(
pa +

1

5
(1− pa)

)1
5
(1− pb) =

1

5
(
1

5
+

4

5
pa)(1− pb)

– if M = 3, then

P (A = 2, B1 = 3|M = 3) =
1

5
(1− pa)

(
pb +

1

5
(1− pb)

)
=

1

5
(
1

5
+

4

5
pb)(1− pa)

– if M = m ̸= 2, 3, then

P (A = 2, B1 = 3|M = m) =
1

5

1

5
(1− pa)(1− pb)

then,

P (A = 2, B1 = 3) =
1

25
(
1

5
+

4

5
pa)(1− pb) +

1

25
(
1

5
+

4

5
pb)(1− pa) +

3

125
(1− pa)(1− pb)
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• Step 2. Write P (M = m|A = 2, B1 = 3).

P (M = 2|A = 2, B1 = 3) =
P (A = 2, B1 = 3|M = 2) · P (M = 2)

P (A = 2, B1 = 3)

P (M = 3|A = 2, B1 = 3) =
P (A = 2, B1 = 3|M = 3) · P (M = 3)

P (A = 2, B1 = 3)

P (M = m|A = 2, B1 = 3) =
P (A = 2, B1 = 3|M = m) · P (M = m)

P (A = 2, B1 = 3)

• Step 3. Write E(M |B1, A).

E(M |B1, A)

=
∑

m · P (A = 2, B1 = 3|M = m)

= 2 · P (A = 2, B1 = 3|M = 2) · P (M = 2)

P (A = 2, B1 = 3)

+ 3 · P (A = 2, B1 = 3|M = 3) · P (M = 3)

P (A = 2, B1 = 3)

+ (1 + 4 + 5) · P (A = 2, B1 = 3|M = m) · P (M = m)

P (A = 2, B1 = 3)

=
2 · 1

25
(1
5
+ 4

5
pa)(1− pb) + 3 · 1

25
(1
5
+ 4

5
pb)(1− pa) + (1 + 4 + 5) · 1

125
(1− pa)(1− pb)

1
25
(1
5
+ 4

5
pa)(1− pb) +

1
25
(1
5
+ 4

5
pb)(1− pa) +

3
125

(1− pa)(1− pb)

when A = a, B1 = b

=
a
25
(1
5
+ 4

5
pa)(1− pb) +

b
25
(1
5
+ 4

5
pb)(1− pa) +

15−a−b
125

(1− pa)(1− pb)
1
25
(1
5
+ 4

5
pa)(1− pb) +

1
25
(1
5
+ 4

5
pb)(1− pa) +

3
125

(1− pa)(1− pb)

=
3(1− pa)(1− pb) + paa+ pbb− papb(a+ b)

1− papb
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