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1 Introduction

As artificial intelligence technologies rapidly advance, questions about their poten-

tial to perform traditionally human functions have become increasingly salient. One

particularly important domain is strategic decision-making. Strategy formulation has

traditionally been considered a quintessentially human activity, requiring judgment,

foresight, creativity, and persuasive capabilities. However, with AI systems demon-

strating increasingly sophisticated capabilities in areas from pattern recognition to

natural language understanding, it is reasonable to question whether AI might effec-

tively serve as a strategist.

In exploring this, this paper must engage in some speculation regarding what

an AI strategic leader might look like. This is a matter of endless debate, both

academically and in popular culture, and also currently unknowable. Thus, as a

starting presumption of this paper, a caricature of AI capabilities is presented. It is

motivated by the following story from popular science fiction.

In the Star Trek: The Next Generation episode “Redemption II,” Data, the an-

droid officer on the Enterprise, assumes command of the starship USS Sutherland.

Initially facing skepticism from his human subordinates due to his artificial nature,

Data’s strategic capability is questioned, particularly when he makes critical decisions

involving trade-offs to people’s lives without fully articulating his reasoning. This

leads a subordinate to challenge his judgment, perceiving undue risks being taken

as underappreciated by the android. Only after observing the outcomes of Data’s

actions does the subordinate understand and appreciate Data’s strategy. Data’s lack

of explicit communication about his strategic reasoning illustrates a significant cred-

ibility challenge that AI strategists may face. Had Data recognized the necessity or

relevance of transparently explaining his plans to his subordinates, the conflict and

resulting skepticism might have been mitigated or avoided entirely. This scenario

emphasizes potential limitations inherent in AI-driven strategic leadership, particu-

larly regarding the critical human dimension of establishing and maintaining trust

and credibility.

The presumption of this paper is that an AI strategic leader will be more ana-

lytical and data-driven than a human counterpart who is more intuitive and willing

to undertake subjective guesses. Nonetheless, here an advanced future scenario is

envisioned, far surpassing today’s AI capabilities primarily based on predictive an-
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alytics (Agrawal et al., 2018). In this speculative future, AI is not only capable of

autonomously making strategic decisions but also adept at navigating interactions

and choices involving human subordinates. Could such an AI hold advantages over

human strategists? If so, what implications would this have for strategic management

in organizations? Consequently, this paper is essentially a thought experiment: if an

artificial intelligence (AI) truly assumed responsibility for organizational strategy,

what potential advantages might arise?

This paper is grounded, however, in existing understanding of strategic leader-

ship. It formally analyzes the conditions under which AI can perform the strategist’s

function; grounding our analysis in a rigorous formal theory of strategy developed by

van den Steen (2017). This theory provides precise definitions and characterizations

of what strategy is, what makes decisions strategic, and what the strategist’s essential

functions are. By using this foundation, we can evaluate AI’s potential as a strategist

with conceptual clarity and precision.

van den Steen defines strategy as “the smallest set of choices to optimally guide

other choices” (van den Steen, 2017, p. 2616). This functional definition focuses on

what strategy does rather than what it contains, making it particularly suitable for

analyzing whether AI can fulfill the strategist’s role. In van den Steen’s framework,

a strategist investigates potential choices, selects which ones to announce as strategy,

and thereby guides other decisions within the organization. The effectiveness of strat-

egy depends on its reliability, the centrality of the chosen decisions, and the strength

of interactions among decisions.

To address the question of whether AI can serve as a strategist, we extend van

den Steen’s model to explicitly incorporate an AI decision-maker alongside human

participants. We model AI as having potentially different capabilities in terms of

information processing, credibility, and control over decisions. This approach allows

us to formally characterize the conditions under which AI can effectively perform the

strategist’s functions.

Our analysis yields several intriguing insights. First, we characterize how AI

and human strategists systematically differ in their capabilities and limitations in

line with the starting presumption that AIs have advantages in structured, data-rich

environments, while human strategists maintain advantages in novel or ambiguous

contexts requiring creative interpretation. Second, we formally analyze the value

of strategic interventions, demonstrating that strategic value is created through two
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distinct mechanisms: a direct decision quality effect and a coordination effect. Im-

portantly, the relative core capabilities of AI and human strategists may manifest

themselves differently in these two effects. For example, AIs may actually have coor-

dination advantages if their actions are sufficiently transparent. We further identify

that the incremental value of control is greatest precisely when influence is least effec-

tive—when agreement is low and when there are significant differences in confidence

levels between strategists and participants.

Third, we explore competitive interactions, finding that AI strategists have com-

parative advantages in environments with established competitive patterns and rich

historical data, particularly in quantity-based competitive moves where commitment

credibility is valuable. Finally, we identify a fundamental relationship between a

strategist’s credibility and their need for formal control—as credibility increases, the

value of formal control diminishes. This creates a counterintuitive implication: in

data-rich domains where AI demonstrates superior analytical capabilities, formal con-

trol becomes less necessary as agreement may naturally emerge. Our analysis sug-

gests organizations should develop domain-contingent approaches to AI integration,

with differentiated authority systems across decision types and progressive authority

models that evolve as AI demonstrates effectiveness. These insights extend strategy

theory while providing practical guidance for organizations considering AI integration

into their strategic processes but critically highlights the notion, underexplored in the

current formal literature, that not only must strategists match their organization but

organizations need to match their strategists.

The paper contributes to both the strategy literature and the growing literature on

AI capabilities and limitations. For strategy scholars, we provide a formal characteri-

zation of when and how AI can contribute to strategy formulation, extending existing

theories of strategy to incorporate technological agents. For AI researchers and prac-

titioners, we identify the specific capabilities that AI systems would need to develop

to effectively serve as strategists, highlighting areas where current technologies fall

short.

These results are particularly interesting because they shift the debate from a

simplistic question of whether AI can replace humans to a deeper exploration of

the core components of strategic effectiveness. The paper emphasizes that strategic

success is contingent not merely on accurate analysis, but also fundamentally on the

strategist’s capacity to generate credibility and secure organizational commitment.
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Consequently, the insights presented here not only inform how organizations might

better leverage AI technologies but also significantly enrich our understanding of the

essential qualities required for effective strategic leadership.

1.1 Literature Review

van den Steen (2017) develops a formal theory of strategy that seeks to provide rig-

orous answers to fundamental questions about what strategy is and why it matters.

Unlike many existing approaches in the strategy literature that offer descriptive defini-

tions based on what strategy looks like, van den Steen proposes a functional definition

based on what strategy does: “the smallest set of choices to optimally guide (or force)

other choices” (van den Steen, 2017, p. 2616).

This definition captures the core insight that strategy’s purpose is to ensure that

an organization’s choices fit together coherently, both at a point in time and over

time. A strategy is thus like a plan reduced to its essence—the minimum set of

choices needed to guide other decisions in the organization. The definition implies

that strategy is not about specifying every detail but about providing just enough

guidance to ensure coherence across decisions.

In van den Steen’s model, a project involves multiple decisions that collectively

determine its outcome. Each decision-maker has local information about their own

decision but limited knowledge about other decisions. In this context, a strategist

can investigate and announce some choices, which then guide other decisions within

the organization. The equilibrium announcement in this model coincides with the

definition of strategy as the smallest set of choices to optimally guide other choices.

Based on this framework, van den Steen identifies several characteristics that make

decisions strategic:

1. Ex ante uncertainty with clear implications: For a decision to be strategic,

it should be uncertain (as obvious choices provide no guidance) but have clear

implications for other decisions.

2. Reliability: A decision is strategic only if it is reliable, meaning that the

actual choice will match what was announced in the strategy. Otherwise, other

decisions will not be guided effectively.
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3. Strong interactions: Decisions with strong interactions with other choices are

more strategic because aligning on these decisions generates more value.

The theory also identifies conditions under which strategy is most valuable, includ-

ing when there are many strong interactions among decisions, when decisions are

irreversible, and when there is significant uncertainty or ambiguity.

In a subsequent paper, van den Steen (2018a) extends his formal theory to analyze

how the identity and characteristics of the strategist affect strategy formation and

execution. This work is particularly relevant for our analysis of AI as a potential

strategist. van den Steen (2018a) shows that strategy formulation by the CEO or

key decision-makers leads to both better strategy and better execution compared to

strategy formulation by outsiders or other insiders. The key insight is that when

the strategist controls the strategic decisions, this provides credibility to the strategy

announcement, making it more likely that other decisions will align with it. In con-

trast, outsiders or insiders without control over strategic decisions face a credibility

problem: others doubt that the announced strategy will be followed, reducing its

effectiveness as a guide.

A particularly important element in van den Steen’s analysis is the role of dis-

agreement. The model allows for differing priors, meaning that rational individuals

can openly disagree about the optimal choice even with the same information. In

the presence of disagreement, the strategist’s control over strategic decisions becomes

critical for strategy execution. Without such control, the strategy lacks credibility,

and other decisions are less likely to align with it.

While there is a growing literature on AI as a decision-maker, relatively little

research has directly addressed AI’s potential role in strategy formulation. Most

existing work focuses on AI’s capabilities for prediction (Agrawal et al., 2018), op-

erational decision-making (Brynjolfsson and McAfee, 2017), or specific domains such

as finance or healthcare (Jarrahi, 2018). Agrawal et al. (2018) characterize AI as

primarily a prediction technology, reducing the cost of prediction in various domains.

They argue that as prediction becomes cheaper, the value of complementary human

judgment increases. This framework suggests a potential division of labor between AI

and humans in decision-making contexts, but does not specifically address strategy

formation.1

1Agrawal et al. (2024) actually use van den Steen’s environment as a foundation for analyzing AI
adoption. However, their interest is on the system-wide changes to support adoption rather than a
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Some authors have discussed AI’s limitations for complex decision-making involv-

ing fundamental uncertainty. Chalmers et al. (2021) argues that AI systems excel at

pattern recognition in data-rich domains but struggle with novel situations requiring

conceptual innovation. Similarly, von Krogh (2018) suggests that human judgment

remains essential for decisions involving values, ethics, and tacit knowledge.

A few scholars have begun to explore AI’s potential role in strategic decision-

making. Shrestha et al. (2019) suggest that AI could augment human strategists by

providing data-driven insights, but argue that human judgment remains essential for

synthesizing these insights into coherent strategies. Raisch and Krakowski (2021) pro-

pose a framework for human-AI interaction in decision-making, identifying different

modes of collaboration depending on the nature of the task.

However, none of these works provides a formal analysis of the conditions under

which AI could effectively serve as a strategist. Our paper addresses this gap by

extending van den Steen’s formal theory of strategy to incorporate AI as a potential

strategist, allowing us to precisely characterize when and how AI can perform this

function.

1.2 Research Questions and Approach

Our central research question is: what consequences follow when AI can effectively

perform the strategist’s role? This allows us to address when an AI strategist be

preferred to a human strategist and how the characteristics of decisions (data-richness,

uncertainty, centrality) affect AI’s effectiveness as a strategist? To address these

questions, we extend van den Steen’s model to explicitly incorporate AI as a potential

strategist alongside human participants. We model AI as having potentially different

capabilities in terms of information processing, credibility, and control over decisions.

Our approach involves developing a formal model that captures the essential fea-

tures of van den Steen’s framework while adding parameters specific to AI’s capabil-

ities and limitations. As such, we will be able to characterise, at the decision level,

the relative effectiveness of an AI strategist.

The remainder of the paper is organized as follows. Section 2 presents our formal

model of AI as strategist with some baseline results. Section 3 then compares AI

versus human strategists. Sections 4 and 5 then provides a deeper exploration of

strategic perspective.
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credibility and commitment by AIs, including the role of competitive interactions. A

final section concludes.

2 Model Setup

We develop a formal model of strategic decision-making that explicitly captures the

interplay between a strategist (human or AI) and operational managers in organiza-

tions. Our approach builds on the framework pioneered by van den Steen (2017,

2018a), which conceptualizes strategy as a mechanism for guiding organizational

choices under uncertainty. This framework is particularly valuable for our purpose of

comparing how different types of strategists (human versus AI) shape organizational

outcomes when decisions involve subjective judgment.

As Knight (1921) observed, strategic decisions often involve “situations which are

far too unique [...] for any sort of statistical tabulation to have any value for guid-

ance.” In such contexts, pure data analysis is insufficient, and rational actors may

hold differing beliefs about optimal choices even with access to identical informa-

tion—what economists call “differing priors” (Morris, 1995; van den Steen, 2010b).2

This feature is central to understanding the comparative advantages of human versus

AI strategists, as we will demonstrate.

2.1 Project Structure and Decision Environment

Consider an organization undertaking a project composed of K interdependent deci-

sions, denoted D1, . . . , DK . For each decision Dk, a specific choice dk must be selected

from a set of possibilities Dk. The project’s overall success, measured by revenue R,

depends on both the individual correctness of each choice and their collective co-

herence. Following van den Steen (2017), we assume the choice sets Dk represent a

continuum (or are sufficiently large) to simplify the analysis of belief alignment.

2.1.1 Stand-Alone Correctness: External Fit

For each decision Dk, we posit the existence of an unknown true state Tk ∈ Dk repre-

senting the objectively “correct” choice when that decision is considered in isolation.

2A related literature that explores similar issues is the literature on theory-based decision making
in strategy. See, for example, Ehrig and Schmidt (2022); Felin and Zenger (2017); Chalmers et al.
(2021); Felin et al. (2024); Wuebker et al. (2023).
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This captures the concept of external fit—how well each decision aligns with the de-

mands of the external environment. For example, Tk might represent the optimal

product features given current market conditions, or the best production technology

given cost structures.

The stand-alone contribution of decision Dk to revenue is:

αk1(dk = Tk) (1)

where αk > 0 is the economic importance of getting this particular decision right,

and 1(·) is the indicator function that equals 1 when dk = Tk and 0 otherwise. This

formulation captures the idea that deviating from the optimal choice for the external

environment entails an opportunity cost of αk.

2.1.2 Internal Alignment: Coordination Requirements

While each decision has an externally optimal choice, organizational effectiveness

also requires internal coherence among decisions. For example, the ideal marketing

approach must align with the chosen production technology, and the talent strategy

must support the selected business model.

Following van den Steen (2017), we formalize this through the concept of interac-

tion states Tkl. For each pair of decisions (Dk, Dl), the interaction state Tkl defines

the alignment requirement as a bijection (one-to-one correspondence) between the

choice sets Dk and Dl. Specifically, a pair of choices (dk, dl) is aligned if and only if

(dk, dl) ∈ Tkl.

The bijection property captures an important feature of organizational dependen-

cies: for any choice dl made for decision Dl, there exists exactly one choice dk for

decision Dk that optimally complements it. For instance, if dl represents a luxury

market positioning strategy, dk might need to be a high-quality, small-batch produc-

tion approach to achieve alignment.

The revenue contribution from this alignment is:

γkl1((dk, dl) ∈ Tkl) (2)

where γkl ≥ 0 represents the economic importance of achieving alignment between

these specific decisions.
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2.1.3 Total Revenue Function

Combining these components, the total revenue contribution associated with decision

Dk is:

Rk = αk1(dk = Tk) +
∑

l∈K\{k}

γkl1((dk, dl) ∈ Tkl) (3)

The project’s total revenue is the sum across all decisions:

R =
K∑
k=1

Rk (4)

This payoff structure creates a fundamental strategic tension: the stand-alone opti-

mal choice Tk may differ from the choice required to achieve alignment with other

decisions, forcing trade-offs between external fit and internal coherence. This tension

is what makes strategic guidance valuable.

2.2 Decision-Makers and Their Beliefs

The decisions Dk are made by participants (operational managers) Pk. A strategist

S—either human (H) or AI (A)—oversees the project. The true states Tk and inter-

action requirements Tkl are initially unknown to all players, necessitating judgment

under uncertainty.

2.2.1 Belief Formation About Stand-Alone Optimality

Each decision-maker forms subjective beliefs about the stand-alone optimal choice for

each decision:

• Participant Pk forms a belief characterized by the pair (θPk , ν
P
k ), where θ

P
k ∈ Dk

represents their best estimate of Tk, and νP
k ∈ (0, 1) represents their subjective

confidence that θPk = Tk.

• The strategist S, if they investigate decisionDk, forms a belief (θSk , ν
S
k ) reflecting

their judgment about the optimal choice and their confidence in that judgment.

Critically, we allow for differing priors: θPk may differ from θSk even without any private

information, reflecting different mental models, expertise, or interpretive frameworks.

As van den Steen (2010a) notes, such disagreement is common in strategic contexts
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where the “right” approach cannot be determined purely from data. However, the

paper does not model specifically the data generating process for those beliefs and

hence, we are making the assumption here that the beliefs are correlated with with

underlying true state , Tk, to some degree.

This approach allows us to analyze how potential disagreement between the strate-

gist (human or AI) and operational managers affects organizational outcomes—a cen-

tral concern when implementing AI-driven strategic guidance.

2.2.2 Agreement Parameter

While beliefs may differ, they will generally show some correlation. We capture this

through an agreement parameter ρk ∈ [0, 1], which represents the probability that

participant Pk’s judgment about the optimal stand-alone choice coincides with the

strategist’s judgment (i.e., θPk = θSk , conditional on S forming a belief about Dk).

This parameter likely has distinct interpretations depending on strategist type

and so will play an important role in the analysis that follows.

• For a human strategist, ρk reflects shared mental models, organizational culture,

and interpersonal rapport.

• For an AI strategist, ρk reflects how well the AI’s recommendations align with

human intuition and domain expertise.

A higher ρk implies more frequent agreement on the right course of action, which (as

we will show) facilitates strategy implementation.

2.2.3 Knowledge of Alignment Requirements and Agreement

Following van den Steen (2017), we assume participants Pk have perfect knowledge of

the interaction states Tkl and Tlk that define how their decision must align with others.

This assumption reflects the practical reality that operational managers typically

understand the technical dependencies between decisions (e.g., how marketing must

align with production) even when they may disagree about what choices are optimal

in isolation.

Central to the strategist’s ability to guide decisions without formal control is the

concept of agreement, captured by the parameter ρk ∈ [0, 1]. In the context of the

influence mechanism described later (Section 2.3), ρk represents the probability that
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participant Pk will follow the strategist’s announced recommendation θSk when the

strategist lacks formal control (λk = 0) and makes an announcement. This parameter

reflects factors influencing the reception of strategic guidance, such as shared mental

models, the perceived credibility or transparency of the strategist (human or AI), and

alignment with participant intuition or expertise (Griffith, 1999; Hambrick, 2007). A

higher ρk indicates a greater likelihood that strategic announcements will translate

into aligned action, even without direct authority.3

The strategic challenge, therefore, involves not only navigating uncertainty about

the stand-alone optimal choices Tk and achieving alignment according to the known

rules Tkl, but also managing the effectiveness of strategic guidance through achieving

sufficient agreement ρk.

2.3 Control, Influence and Strategy Implementation

The strategist S can affect decisions through two mechanisms: formal authority (con-

trol) or informal influence:

• Control (λk = 1): When the strategist has formal authority over decision

Dk, they directly implement their preferred choice: dk = θSk . Control represents

decisional authority—the strategist can mandate implementation of their vision.

• Influence (λk = 0): Without formal authority, the strategist can only an-

nounce their belief θSk as a form of strategic guidance (cheap talk). The partic-

ipant Pk retains decision rights. In response to the strategist’s announcement,

the participant’s action is determined as follows:

– With probability ρk (the agreement parameter, reflecting the likelihood

Pk follows the recommendation, as discussed in Section 2.2.3), the par-

ticipant’s decision aligns with the strategist’s announced belief: dk = θSk .

This occurs because the announcement, combined with factors like strate-

gist credibility, shared mental models, or the perceived strength of the

3While ρk represents the likelihood of following a recommendation, it is distinct from, though
likely correlated with, the participants’ and strategist’s confidence levels (νPk , νSk ) in their own beliefs
matching the true state Tk. We assume beliefs (θk) are implicitly correlated with the underlying
state Tk. Pathological cases, such as both agents having high confidence (ν > 1/2) but zero agree-
ment (ρk = 0), are implicitly excluded as they challenge the premise of shared context or effective
communication.
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strategist’s reasoning (especially for AI), effectively persuades or guides

the participant.

– With probability (1− ρk), the participant disregards the strategist’s guid-

ance and implements their own judgment: dk = θPk .

If the strategist makes no announcement regarding Dk, then Pk defaults to

implementing their own belief: dk = θPk .

This formulation explicitly links the effectiveness of influence to the agreement pa-

rameter ρk: when ρk is high (indicating higher credibility or better alignment of

perspectives), announced strategies are more likely to be followed even without for-

mal authority. While simpler than a full game-theoretic equilibrium, this behavioral

rule captures the empirical reality that the effectiveness of influence hinges on factors

affecting the reception and acceptance of strategic guidance, such as perceived judg-

ment alignment, trust, and communication clarity (Griffith, 1999; Hambrick, 2007).

2.4 Game Structure and Strategic Process

The strategic process unfolds in three main phases, building on van den Steen (2018a)’s

framework:

1. Strategy Formulation

(1a) Investigation: The strategist S may investigate one decision state Tk̃ at

cost cS, forming a belief (θS
k̃
, νS

k̃
). This step represents strategic analysis

and the development of a perspective on a key issue.

(1b) Announcement: The strategist may make a public announcement M

(the ”strategy”) regarding their preferred choice. This represents the com-

munication of strategic direction to the organization.

2. Strategy Implementation

(2a) Belief Formation: Each participant Pk forms a belief (θPk , ν
P
k ) about their

decision, observes the strategist’s announcement M (if any), and learns the

relevant interaction rules Tkl. Each Pk implicitly determines whether they

agree with the strategist’s announced view (which occurs with probability

ρk).
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(2b) Decision Making: Decisions dk are made simultaneously (or without

observability between participants) according to the control and influ-

ence mechanisms described earlier. This represents the implementation

of strategic decisions throughout the organization.

3. Outcomes

(3) Payoff Realization: Revenue R is determined based on the choices made

dk, the true states Tk, and the alignment rules Tkl.

The participants aim to maximize their expected decision-specific payoff E[Rk] (sub-

ject to the choice rules described above), while the strategist aims to maximize the

expected total revenue minus investigation costs: E[R]− cS. Please refer to Table 1

for a full list of exogenous and endogenous variables used throughout this paper.

2.5 Simplified Three-Decision Model

For analytical tractability, we focus on a setting with K = 3 decisions. This provides

sufficient complexity to capture the key strategic tensions while remaining manage-

able. We further simplify by assuming uniform interaction importance γkl = γ for all

k ̸= l. The parameter γ thus represents the general importance of achieving alignment

across decisions relative to the stand-alone correctness values αk.

From the perspective of overall project success, which the strategist aims to max-

imize, the total expected revenue E[R] depends on the choices made by participants

aiming to maximize their own expected payoffs E[Rk] (subject to influence or con-

trol). In the simplified specification, this overall expected revenue can be reduced

to:

R =
3∑

k=1

αk1(dk = Tk) + γ
∑

1≤k<l≤3

1((dk, dl) ∈ Tkl) (5)

The first term captures the value of external fit for each decision, while the second

term sums the alignment benefits across all pairs of decisions. By using the range

1 ≤ k < l ≤ 3, we consider each decision pair exactly once, avoiding double-counting

while still capturing all relevant interactions.

Despite these simplifications, the model preserves the essential features needed to

compare human and AI strategists: belief formation about unknown optimal choices
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Tk, known alignment requirements Tkl, varying degrees of agreement ρk, differential

control λk, and the mechanisms linking these parameters to organizational choices dk.

2.6 Evaluating Performance: Correctness and Alignment

To analyze the effectiveness of different strategic approaches, we examine two key

outcome metrics: the probability of making correct stand-alone decisions and the

probability of achieving alignment between decisions.

2.6.1 Stand-alone Correctness Probability

For each decision Dk, the probability of making the correct stand-alone choice (dk =

Tk) depends on whose belief determines the actual choice, and the confidence associ-

ated with that belief:

• When the strategist controls the decision (λk = 1):

Pr(dk = Tk) = νS
k (6)

This reflects that the strategist implements their judgment θSk , which matches

the true optimal choice Tk with probability νS
k .

• When the participant controls the decision (λk = 0) and there is no strategic

announcement:

Pr(dk = Tk) = νP
k (7)

The participant implements their judgment θPk , which is correct with probability

νP
k .

• When the participant controls the decision (λk = 0) but the strategist makes

an announcement:

Pr(dk = Tk) = ρkν
S
k + (1− ρk)ν

P
k (8)

With probability ρk, the participant adopts the strategist’s view (correct with

probability νS
k ); with probability (1−ρk), they maintain their own view (correct

with probability νP
k ).
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2.6.2 Alignment Decision Rules

Following van den Steen’s model, we simplify the alignment mechanism by treating

it as a deterministic choice rather than a probabilistic outcome. Specifically, for each

decision Dk, the participant decides whether to optimize for stand-alone correctness

or for alignment with another decision Dl.

For a participant Pk deciding whether to align with decision Dl:

• Choose stand-alone optimal (dk = θPk ) if αkν
P
k > γkl

• Choose to align with dl (following Tkl) if αkν
P
k < γkl

A key simplification arises from the simultaneous nature of decisions, meaning par-

ticipant Pk cannot observe dl when choosing dk. We follow van den Steen (2017)

in simplifying this coordination aspect. The decision rule implies that if γkl is suf-

ficiently high relative to αkν
P
k , Pk prioritizes alignment according to the known rule

Tkl. This implicitly assumes participants can successfully coordinate (e.g., based on

expectations of each other’s likely actions or via unmodeled communication) when

alignment is mutually perceived as beneficial, allowing us to focus on the strategic

choice between stand-alone optimization and alignment, rather than the mechanics of

coordination itself.

When the strategist announces a strategy for decision Dl, participant Pk faces an

additional complexity: with probability ρk, their decision aligns with the strategist’s

recommendation (as per Section 2.3), but with probability (1− ρk), they make their

own choice following the above stand-alone vs. alignment rule.

2.6.3 Alignment Outcomes

Since alignment is deterministic once choices are made, the probability of achieving

alignment between decisions Dk and Dl depends solely on the decisions made by the

relevant participants and whether those decisions satisfy the alignment requirement

Tkl.

When both decisions are controlled by the strategist (λk = λl = 1), alignment is

achieved with certainty if the strategist chooses to align these decisions. When one

decision is controlled by the strategist and one by a participant, alignment depends

on whether the participant chooses to align with the strategist’s decision or to opti-
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mize for stand-alone correctness. When both decisions are controlled by participants,

alignment occurs when either:

• Both participants naturally agree with the strategist’s announced recommen-

dation, or

• One or both participants explicitly choose to align with the other’s decision

rather than optimizing for stand-alone correctness

This simplified approach to alignment maintains the key strategic tension between

external fit and internal coherence while eliminating the probabilistic alignment pa-

rameters from the original formulation.

2.7 Expected Revenue and Strategic Analysis

The expected total revenue under any strategic approach must account for the fun-

damental trade-off each decision-maker faces: optimizing for stand-alone correctness

or for alignment with other decisions. For each decision Dk, participates aim to

maximise their component of revenue while the strategist considers which objec-

tive to pursue based on the relative expected payoffs as in equation (5): E[R] =∑3
k=1

[
Sk · αkνk +

∑
l ̸=k Akl · γ

]
. Importantly, this formulation explicitly captures

the fundamental trade-off each participant faces: for any decision k, they must ei-

ther pursue stand-alone correctness (Sk = 1) and earn an expected payoff of αkνk, or

deliberately align with another decision (Akl = 1 for some l) and earn a payoff of γ.

The mutual exclusivity constraint (Sk +
∑

l ̸=k Akl ≤ 1) formalizes that a participant

cannot simultaneously optimize for both objectives.

This formulation allows us to compare different strategic approaches by examining:

• How strategists influence which decisions prioritize stand-alone correctness ver-

sus alignment

• How effectively strategists steer participants toward the optimal trade-off pat-

terns across decisions

• The resulting organizational revenue, which directly reflects the strategist’s abil-

ity to guide these interdependent choices toward coherent, value-maximizing

outcomes
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In subsequent sections, we will use this framework to analyze how human and AI

strategists differ in their effectiveness across various organizational contexts, control

structures, and alignment scenarios.

3 Comparing AI and Human Strategists

Having established our formal model, we now explore the key dimensions along

which AI (S = AI) and human (S = H) strategists systematically differ. These

differences—in judgment formation, agreement patterns, and decision rule character-

istics—directly influence their strategic effectiveness across organizational contexts.

Understanding these differences is crucial for determining when AI might enhance or

potentially detract from strategic decision-making.

Our model highlights several key parameters that may differ systematically be-

tween human and AI strategists:

• Investigation cost (cS): The relative efficiency of humans versus AI in con-

ducting strategic analysis

• Belief accuracy (νS): Whether human or AI strategists form more accurate

judgments about stand-alone optimal choices

• Agreement with operational managers (ρ): Whether human or AI strate-

gists achieve higher agreement with those implementing decisions

• Control effectiveness: The relative ability of human versus AI strategists to

exercise effective control over decisions

Of these, the investigation cost is something that an AI may naturally excel at but

also, to the extent that they do, there is no reason why a human could not use AI

in that particular function. The remaining factors are, however, less clear in the

application. Hence, we will focus on those in what follows.

That said as anticipated in the Introduction, we will, in general, presume that

AIs have superior analytical capabilities in dealing with data-rich decision environ-

ments while humans have advantages in terms of judgment in environments where

subjective evaluations and intuition are more important. It is important to emphasise

that there is a sense in which this dichotomy lacks foundation and is extrapolating
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from known stereotypes between machines and people. Thus, this analysis should

be seen as presuming such dichotomies but also highlighting the importance of those

assumptions for conclusions drawn here.

3.1 Differential Agreement Patterns

At the core of a strategist’s job is bring other participants along with their plans with

the minimal amount of effort; that is, their role in coordination. At the heart of this

are whether agreement amongst participants can be achieved or not.4

The agreement parameter ρSk captures the likelihood that participant Pk inde-

pendently shares strategist S’s belief about the optimal stand-alone choice. When

a participant and strategist share similar mental models, they are more likely to

agree on the appropriate course of action even without extensive communication.

This agreement significantly affects strategy implementation, particularly when the

strategist lacks formal authority and must rely on influence.

The starting point for considering humans versus AIs in this regard are whether

it is likely that ρHk > ρAI
k or not. To this end, a reasonable analysis might be as

follows. Human strategists typically benefit from higher baseline agreement with

operational managers due to shared cognitive frameworks, organizational culture,

and contextual understanding (Kahneman, 2011; Tichy and Sherman, 1993). Humans

can leverage rich communication channels—including metaphors, stories, and appeals

to shared experiences—to build consensus around strategic recommendations. This

communication richness facilitates implementation via influence even when formal

authority is limited.

By contrast, AI systems may face lower agreement in judgment-rich domains char-

acterized by ambiguity and tacit knowledge. This stems from AI’s potentially opaque

reasoning processes and lack of shared experiential context with human decision-

makers (Brynjolfsson and Rock, 2022). However, in data-rich, verifiable domains

where recommendations can be backed by clear evidence and analysis, AI might

achieve high agreement based on demonstrable performance advantages. The agree-

ment parameter ρAI
k will likely be higher for decisions where AI can effectively com-

municate its reasoning through data visualization and transparent analysis.

4For a recent discussion of the role of disagreement in strategic buy-ins in organisations see Gans
(2024).
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The agreement differential between human and AI strategists has important im-

plications: where ρHk > ρAI
k , humans may be more effective when relying on influence

rather than authority, while AI might require more formal control to achieve com-

parable strategic impact. As will be seen in what follows (specifically in Section 5

below, this implication does not necessarily follow from a simple comparison of these

parameters.

3.2 Confidence Development Patterns

The confidence parameter νS
k reflects the strategist’s belief in the correctness of their

stand-alone recommendation θSk . This parameter captures both actual accuracy and

the strategist’s assessment of their own judgment quality. Different types of strategists

develop confidence through fundamentally different mechanisms.

Another starting point for considering humans versus AIs in this regard are

whether it is likely that νH
k > νAI

k or not. Again, a reasonable analysis might be as fol-

lows. Human confidence blends experience-based pattern recognition, tacit domain

knowledge, and analytical reasoning. Humans often excel in ambiguous situations

by leveraging intuition developed through years of experience (Klein, 2007). How-

ever, human judgment is susceptible to well-documented cognitive biases, including

overconfidence, confirmation bias, and availability heuristics (Lovallo and Kahneman,

2003; Keating, 2012). Human confidence may be disproportionately influenced by re-

cent experiences or emotionally salient outcomes rather than objective probabilities.

By contrast, AI confidence is typically grounded in statistical patterns identified in

training data or simulations. AI excels in domains with rich, representative historical

data and well-defined success metrics (Amodei et al., 2016). However, AI systems may

struggle with novel situations that differ substantially from their training examples.

Importantly, νS,AI
k likely scales more systematically with data quantity and quality

than does νS,H
k , potentially enabling superior performance in data-rich environments

while underperforming humans in data-scarce or highly novel contexts.

These confidence patterns suggest domain-specific advantages: AI strategists may

develop more reliable confidence in structured, data-rich environments, while human

strategists maintain advantages in novel or ambiguous contexts requiring creative

interpretation of limited evidence.

20



3.3 Decision Rule and Alignment Characteristics

Rather than probabilistic alignment tendencies, it is also possible to consider how

different strategist types influence the critical decision rule that determines when

participants choose alignment over stand-alone optimality:

• Threshold Clarity: For a participant to choose alignment (αkν
P
k < γkl), they

must clearly understand both the value of stand-alone optimality (αkν
P
k ) and the

value of alignment (γkl). Human strategists may excel at communicating and

reinforcing these values through organizational culture and shared narratives.

AI strategists might provide more precise quantification of these parameters but

could struggle to establish shared understanding of their relative importance.

• Alignment Consistency: When making choices to align with other deci-

sions, consistency in following the known alignment rules Tkl is essential. AI

strategists likely demonstrate higher consistency in identifying and implement-

ing precise alignment relationships, while human strategists might rely more on

approximation and intuition, potentially leading to occasional misalignments.

• Adaptation to Alignment Changes: As business conditions evolve, the op-

timal alignment relationships may shift. Human strategists might more readily

identify and adapt to fundamental changes in these relationships, particularly

when they require reconceptualizing the business model. AI strategists excel at

detecting incremental shifts in established alignment patterns but may struggle

to recognize or implement transformative realignments.

These alignment characteristics significantly influence each strategist type’s ability to

improve organizational coordination outcomes. An AI strategist with high consistency

in applying alignment rules but challenges in communicating threshold values would

excel when given broad authority but struggle when required to influence without

control.

4 The Value of Strategic Interventions

Having outlined the broad potential differences between AI and human strategists

in terms of exogenous parameters, we now turn to consider how these translate and
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manifest themselves in consider the value of each in engaging in strategic interven-

tions. By comparing the effectiveness of different strategic approaches (control versus

influence) across various decision contexts, we derive more precise conditions under

which AI versus human strategists generate superior outcomes.

4.1 Baseline: Decision-Making Without Strategic Guidance

We first establish a baseline scenario that serves as our reference point. Without

strategic intervention, each participant Pj makes decisions based solely on their own

judgment about the relative value of stand-alone optimality versus alignment.

Definition 1 (Baseline Decision Rule). In the baseline scenario, participant Pj makes

decision dj according to:

• Choose dj = θPj (stand-alone optimal) if αjν
P
j ≥ γjl for all l ̸= j

• Choose dj = aj(dl) (align with decision l) if αjν
P
j < γjl for some l ̸= j, where

aj(dl) is the choice that aligns with dl according to Tjl

The baseline decision rule captures the fundamental trade-off each participant faces:

whether to prioritize external fit (stand-alone optimality) or internal coherence (align-

ment with other decisions). As noted previously (Section 2.6.2), implementing the

alignment choice (dj = aj(dl)) presents a coordination challenge due to the simul-

taneous nature of decisions. Our baseline analysis, following van den Steen (2017),

assumes that if participants independently determine alignment to be optimal based

on the αjν
P
j < γjl condition, they can successfully coordinate on an aligned outcome.

This simplification allows the focus to remain on the individual trade-off decision.

The expected revenue in this baseline scenario is:

E[R|baseline] =
3∑

j=1

[
SP
j · αjν

P
j

]
+ γ ·Nbase

align (9)

Where:

• SP
j is an indicator that equals 1 if participant Pj chooses stand-alone optimiza-

tion (based on Definition 1) and 0 otherwise.
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• Nbase
align is the number of decision pairs (j, l) for which both Pj and Pl choose

to prioritize alignment (implicitly assuming successful coordination leads to

1((dj, dl) ∈ Tjl) = 1 for these pairs).

As van den Steen (2017) notes, the underlying situation can be viewed as a co-

ordination game with potentially multiple equilibria, especially if participants have

differing views on which decision(s) to align with. Here, however, we abstract from

these equilibrium selection issues and focus on the aggregate outcome based on in-

dividual incentives to align. This baseline represents the organization’s performance

without strategic guidance, where each participant independently resolves the trade-

off between external fit and internal coherence based on their local information and

judgment, assuming coordination occurs when alignment is chosen.

4.2 The Value of Strategic Control

We now analyze how much value a strategist creates when exercising formal authority

over a specific decision. When a strategist has control over decision Dk, they directly

determine whether that decision prioritizes stand-alone optimality or alignment with

another decision. This intervention affects not only the target decision but potentially

the entire pattern of alignments throughout the organization.

Proposition 1 (Value of Strategic Control). When strategist S has control over de-

cision Dk, the strategic value created is:

SVS
control(Dk) =

αkν
S
k − IPk · αkν

P
k + γ · (NSk=1

align −N base
align) if ISk = 1

γ · (NSk=0
align −N base

align)− IPk · αkν
P
k if ISk = 0

(10)

Where:

• ISk = 1 if αkν
S
k ≥ γ (strategist prefers stand-alone optimization for Dk)

• IPk = 1 if αkν
P
k ≥ γ (participant prefers stand-alone optimization for Dk)

• NSk=1
align is the number of aligned pairs when strategist optimizes Dk for stand-

alone correctness

• NSk=0
align is the number of aligned pairs when strategist aligns Dk with another

decision
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Proof. When the strategist controls decision Dk, the expected revenue is:

E[R|control k] =

αkν
S
k +

∑
j ̸=k S

P |Sk=1
j · αjν

P
j + γ ·NSk=1

align if ISk = 1∑
j ̸=k S

P |Sk=0
j · αjν

P
j + γ ·NSk=0

align if ISk = 0
(11)

The strategic value is the difference between this value and the baseline:

SVS
control(Dk) = E[R|control k]− E[R|baseline] (12)

Note that other participants’ stand-alone choices remain the same, as their decision

rule depends only on their local parameters. The only change is in the alignment

patterns. Substituting and simplifying yields the result.

Given this, we can see that the value of strategic control increases with:

1. The strategist’s confidence advantage (νS
k − νP

k ) when the strategist prefers

stand-alone optimization

2. The extent to which control improves alignment patterns (NSk=x
align −Nbase

align)

3. The alignment importance γ when improved alignment is achieved

This proposition reveals that strategic control creates value through two distinct

mechanisms:

1. Direct decision quality effect: When the strategist chooses stand-alone op-

timization, value is created if the strategist has higher confidence than the

participant (νS
k > νP

k ). This represents the classic ”better decisions” value of

expertise.

2. Coordination effect: Control creates value by improving the overall pattern of

alignments throughout the organization, as captured by the term γ · (NSk=x
align −

Nbase
align). Importantly, this value can emerge even if the strategist has lower

confidence about stand-alone correctness than the participant.

Example 1 (Strategic Control in a Retail Chain). Consider a retail chain with three

key decisions: market selection (D1), store format (D2), and product assortment (D3).

Suppose that the alignment benefit γ likely exceeds the expected stand-alone value for

24



store format, α2ν
P
2 . However, suppose that the participant erroneously prioritizes

store format’s stand-alone optimality over alignment with market selection. A strate-

gist with control over store format decision who correctly recognizes that α2ν
S
2 < γ

creates value not through better judgment about store formats per se, but by improv-

ing the coordination between store formats and market selection. This coordination

value can be substantial even if the strategist has lower expertise about store formats

(νS
2 < νP

2 ).

For AI versus human strategists, this result has important implications. First, in

domains where the primary value comes from improved decision quality (high αk,

significant confidence advantage), the strategist with higher νS
k creates more value

through control. This means AI may excel in data-rich domains where it develops

higher confidence, while humans maintain advantages in judgment-rich domains. By

contrast, in domains where the primary value comes from improved coordination

(high γ, significant alignment improvements), what matters is which strategist better

recognizes when alignment should be prioritized over stand-alone optimality. Even a

strategist with lower confidence about stand-alone correctness can create substantial

value if they better understand the fundamental trade-offs between external fit and

internal coherence.

4.3 The Value of Strategic Announcements

When strategists lack formal authority, they must rely on influence through strategic

announcements. We now analyze the value created through such announcements and

compare it to the value of control.5

Proposition 2 (Value of Strategic Announcements). When strategist S makes a

strategic announcement regarding decision Dk without formal control, the strategic

value created is:

SVS
announce(Dk) = ρSk · SVS

control(Dk) ·
νP
k

νS
k

· ISk + ρSk · SVS
control(Dk) · (1− ISk ) (13)

5The examination of handing decision authority to AIs versus humans is not new and has been
explored at the task level by Athey et al. (2020). What is new here is the focus on strategic leadership
and influence in a broader system.
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Or, alternatively:

SVS
announce(Dk) =

ρSk ·
[
αkν

P
k − IPk · αkν

P
k + γ · (NSk=1

align −N base
align)

]
if ISk = 1

ρSk ·
[
γ · (NSk=0

align −N base
align)− IPk · αkν

P
k

]
if ISk = 0

(14)

where ρSk is the probability that participant Pk follows strategist S’s recommendation.

Proof. When the strategist makes an announcement without control, the expected

revenue is a weighted average of two scenarios:

E[R|announce k] = ρSk · E[R|Pk follows strategist] + (1− ρSk ) · E[R|baseline] (15)

When the participant follows the strategist’s recommendation, the resulting pattern

matches what would happen under control, but with νP
k replacing νS

k for the stand-

alone correctness probability (since it’s the participant’s confidence that determines

the expected value of stand-alone correctness, not the strategist’s). The strategic

value calculation follows directly from this weighted average.

From this proposition, it can be seen that the value of strategic announcements in-

creases with the agreement probability ρSk , the potential value under control SV
S
control

and the participant’s confidence νP
k relative to the strategist’s confidence νS

k when the

strategist recommends stand-alone optimization.

This proposition reveals several crucial insights about strategic influence. First,

Agreement is critical. The value of strategic announcements is directly proportional to

the agreement probability ρSk . Without agreement, even potentially valuable strategic

guidance has no effect. Second, the confidence ratio matters. When recommending

stand-alone optimization, the value depends on the ratio
νPk
νSk
. This creates an im-

portant tension: a strategist with very high confidence νS
k might create less value

through announcements than expected if the participant has much lower confidence

νP
k .Finally, announcements create value through the same mechanisms as control (di-

rect decision quality and coordination), but scaled by the agreement probability and

adjusted for the confidence ratio.

Example 2 (Strategic Announcement in a Technology Firm). Consider a technology

firm deciding on platform architecture (D1), feature prioritization (D2), and go-to-

market strategy (D3). An AI strategist develops high confidence (νAI
2 = 0.9) that
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feature prioritization should optimize for stand-alone correctness rather than align-

ment. However, the development team has only moderate confidence in their feature

judgments (νP
2 = 0.6).

Even with a high agreement probability (ρAI
2 = 0.8), the value created through

announcement is:

SVAI
announce(D2) = 0.8 · SVAI

control(D2) ·
0.6

0.9
= 0.53 · SVAI

control(D2)

This is substantially less than what might be expected from the agreement probability

alone, due to the confidence gap between the AI strategist and the development team.

For comparing AI versus human strategists, this proposition highlights the impor-

tance of not just analytical capabilities but also implementation effectiveness. In par-

ticular, human strategists typically achieve higher agreement probabilities (ρHk > ρAI
k )

through shared mental models and communication capabilities. This can give humans

an advantage in strategic influence even when their analytical capabilities are infe-

rior. However, AI strategists may develop much higher confidence than participants

in data-rich domains, creating a potentially problematic confidence ratio that reduces

the value of their announcements. In contrast, human strategists’ confidence levels

are often better calibrated with participants, leading to more favorable confidence

ratios.

4.4 The Incremental Value of Control

Having characterized the value of both control and announcements, we now analyze

when control provides significant incremental value beyond what could be achieved

through influence alone. This helps determine when formal authority should be allo-

cated to different strategist types.

Proposition 3 (Incremental Value of Control). The incremental value of control over

announcement for strategist S regarding decision Dk is:

∆S
k =

(1− ρSk ) ·
[
γ · (NSk=1

align −N base
align)− IPk · αkν

P
k

]
+ αkν

S
k − ρSk · αkν

P
k if ISk = 1

(1− ρSk ) ·
[
γ · (NSk=0

align −N base
align)− IPk · αkν

P
k

]
if ISk = 0

(16)
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Proof. The incremental value of control is simply the difference between the value

created under control and the value created through announcement:

∆S
k = SVS

control(Dk)− SVS
announce(Dk) (17)

Substituting the expressions from Propositions 1 and 2 and simplifying yields the

result.

This implies that the incremental value of control over announcement increases with

the disagreement probability (1− ρSk ), increases with the confidence advantage (νS
k −

ρSk ·νP
k ) when recommending stand-alone optimization, increases with the importance

of the coordination effect γ · (NSk=x
align −Nbase

align) and is zero when ρSk = 1 and νS
k = νP

k

(perfect agreement and equal confidence)

This proposition reveals the fundamental tension in allocating control rights. Con-

trol is most valuable precisely when influence is least effective—when agreement is

low and when there are significant differences in confidence levels. First, disagreement

drives control value, The term (1 − ρSk ) scales most components of incremental con-

trol value, indicating that formal authority becomes more valuable as disagreement

increases. This is something which we explore in depth in Section 5. Second, confi-

dence advantage matters differently by decision type. For stand-alone optimization

decisions, control’s incremental value depends critically on the strategist’s confidence

advantage. For alignment decisions, this factor disappears, making the disagreement

probability even more central. Finally, there is zero incremental value when there is

perfect agreement. In the limiting case where ρSk = 1 and νS
k = νP

k , control offers no

additional value beyond what could be achieved through perfect influence.

Example 3 (Incremental Control Value in a Financial Institution). Consider a fi-

nancial institution deciding on investment allocation (D1), risk management protocols

(D2), and client segmentation (D3). For risk management protocols suppose that an

AI strategist has high confidence (νAI
2 = 0.9) and recommends stand-alone optimiza-

tion while the risk manager has moderate confidence (νP
2 = 0.7) and also prefers

stand-alone optimization, Let the agreement probability be moderate (ρAI
2 = 0.6).

Under these assumptions, the incremental value of control is:

∆AI
2 = 0.4 ·

[
γ · (NS2=1

align −N base
align)− α2 · 0.7

]
+ α2 · 0.9− 0.6 · α2 · 0.7 (18)

28



Simplifying we have:

∆AI
2 = 0.4 · γ · (NS2=1

align −N base
align) + 0.2 · α2 (19)

This shows that the incremental value has two components: one driven by the co-

ordination effect (scaled by the disagreement probability) and another driven by the

confidence advantage.

These results have important potential implications for the relative advantages of

AI versus human strategists. First, AI strategists typically achieve lower agreement

probabilities (ρAI
k < ρHk ), which increases the incremental value of giving them con-

trol. However, this higher incremental control value coincides with less organizational

credibility; a counter-intuitive implication that we explore in detail in the next section.

Second, in data-rich domains where AI develops significantly higher confidence than

humans (νAI
k > νH

k ), control allocation to AI becomes more valuable specifically for

stand-alone optimization decisions. In judgment-rich domains, humans maintain this

advantage. Finally, the incremental value of control for alignment decisions depends

primarily on disagreement probability, not on confidence advantages. This creates a

more nuanced comparison for decisions where alignment is preferred.

4.5 Strategic Advantage: AI versus Human Strategists

Our analysis thus far provides a foundation for directly comparing AI and human

strategists across different decision contexts and intervention approaches. We now

formalize the conditions under which each strategist type holds a comparative advan-

tage.

Proposition 4 (Comparative Strategic Advantage). AI has a comparative advantage

over human strategists under control for decision Dk when:

∆SVcontrol(Dk) = SVAI
control(Dk)− SVH

control(Dk) > 0 (20)

This occurs when (1) for stand-alone optimization decisions (IAI
k = IHk = 1): αk(ν

AI
k −

νH
k ) + γ · (NAI,Sk=1

align − NH,Sk=1
align ) > 0; (2) for alignment decisions (IAI

k = IHk = 0),

γ · (NAI,Sk=0
align − NH,Sk=0

align ) > 0 and (3) for divergent trade-off judgments (e.g., IAI
k =

1, IHk = 0), AI has advantage when its judgment about the fundamental stand-alone

versus alignment trade-off leads to higher expected revenue.
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Similarly, AI has a comparative advantage under announcement when:

∆SVannounce(Dk) = ρAI
k · SVAI

control(Dk) ·
νP
k

νAI
k

− ρHk · SVH
control(Dk) ·

νP
k

νH
k

> 0 (21)

for stand-alone optimization decisions, with a similar expression for alignment deci-

sions.

This proposition highlights several key drivers of comparative advantage:

1. Confidence advantage: For stand-alone optimization decisions, higher con-

fidence directly contributes to comparative advantage. AI typically achieves

higher confidence in data-rich domains, while humans maintain advantages in

judgment-rich domains.

2. Coordination effectiveness: Even with similar confidence levels, strategists

can differ in their ability to improve overall alignment patterns across the or-

ganization. This coordination effectiveness depends on understanding interde-

pendencies between decisions.

3. Trade-off judgment: Perhaps most fundamentally, strategists may differ in

their judgment about the basic trade-off between stand-alone optimization and

alignment for specific decisions. Getting this fundamental trade-off right is often

more important than incremental improvements in confidence.

4. Implementation effectiveness: Under announcement rather than control,

comparative advantage also depends critically on relative agreement probabili-

ties and confidence ratios. A strategist with lower potential value under control

may still have comparative advantage if they achieve much higher agreement.

Example 4 (Comparative Advantage in Product Development). Consider a product

development context with decisions on target market segment (D1), technical archi-

tecture (D2), and pricing (D3). For the technical architecture decision, both an AI

and human strategist prefer stand-alone optimization (IAI
2 = IH2 = 1). The AI has

higher confidence (νAI
2 = 0.85 vs. νH

2 = 0.7) but achieves lower agreement probability

(ρAI
2 = 0.6 vs. ρH2 = 0.9).

Under control, AI has an advantage of:

∆SVcontrol(D2) = α2 ·(0.85−0.7)+γ ·(NAI,S2=1
align −NH,S2=1

align ) = 0.15·α2+γ ·∆Nalign (22)
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Under announcement, the comparison becomes:

∆SVannounce(D2) = 0.6 · SVAI
control(D2) ·

νP
2

νAI
2

− 0.9 · SVH
control(D2) ·

νP
2

νH
2

(23)

Even with AI’s confidence advantage, the human strategist’s superior agreement prob-

ability may give them the comparative advantage under announcement.

This analysis reveals that the comparative advantage of AI versus human strategists

depends critically on the data-richness, fundamental uncertainty, and interdependence

patterns of specific decisions, whether strategy is implemented through control or

influence, how each strategist develops confidence in different decision domains and

how effectively each strategist generates voluntary agreement from participants.

4.6 Competitive Interactions

The data-uncertainty divide between AI and human strategists takes on additional

dimensions when we extend our analysis to competitive settings. van den Steen

(2018b) explored the role of strategy, by his definition, in competitive settings. Thus,

it is natural to explore how competitive interactions impact the results thus far.

Specifically, how does the effectiveness of AI versus human strategists vary across

different competitive environments? Under what conditions might an AI-led firm

gain a competitive advantage over a human-led rival?

In competitive environments, the data richness-uncertainty trade-off affects not

only internal decision alignment but also the strategic interaction with competitors.

Based on our results to date, it is easy to see that in competitive settings, AI and

human strategists exhibit different patterns of effectiveness depending on the nature

of competition. AI strategists have a comparative advantage in competitive environ-

ments where data is rich, fundamental uncertainty is low and while there may be

rapid competitive response cycles, there are also established competitive patterns.

In established competitive patterns with rich historical data, AI can better predict

competitor responses and formulate optimal counter-strategies. By contrast, in novel

competitive situations with limited precedent, human intuition and judgment provide

advantages in forming strategic expectations.

Moving beyond these general insights, van den Steen (2018b) observes that quantity-

based competitive moves (like capacity expansion or product launches) appear more
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strategic than price-based moves. This observation relates directly to our data-

uncertainty framework but reveals surprising implications for AI strategists that chal-

lenge conventional wisdom.

In quantity competition, AI strategists have advantages in commitment credibil-

ity due to their algorithmic, rule-based nature and excel at optimization of complex

capacity and production decisions, while the non-zero-sum nature of quantity compe-

tition allows AI’s commitment advantages to create strategic value. This latter point

arises because, as van den Steen (2018b) shows, the value of strategy in competition is

positive so long as there are non-zero-sum elements to competition between firms. In

price competition, arguably, human strategists have advantages in developing prod-

uct differentiation strategies that soften price competition. Human creativity enables

escape from zero-sum price dynamics through novel positioning, and the creative

aspect of differentiation involves fundamental uncertainty where humans maintain

advantages.

These arguments suggest that, contrary to conventional expectations, AI strate-

gists might excel in quantity competition precisely because their algorithmic nature

serves as a credible commitment device. When AI announces a capacity decision,

this announcement may carry greater credibility because the AI is perceived as less

likely to deviate from established decision rules. In contrast, human strategists main-

tain advantages in the creative aspects of competition—particularly in developing

novel product differentiation strategies that transform price competition into more

favorable competitive terrains.

When firms led by different types of strategists compete against each other, the

strategic dynamics may differ from those of competition between similar strategists.

This has important implications for competitive intensity and market outcomes.

Specifically, markets with mixed AI and human strategists might exhibit not just

more intense competition but qualitatively different competitive dynamics. AI strate-

gists may aggressively commit to quantity decisions (capacity expansion, production

levels, inventory stocking), leveraging their algorithmic consistency to make credible

commitments. Human strategists, meanwhile, might respond with creative differenti-

ation strategies that transform the competitive landscape in ways that AI’s historical

data cannot fully capture.

This strategic asymmetry between AI and human approaches creates a dynamic

where each strategist type focuses on dimensions where it has a comparative ad-
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vantage, leading to competition that unfolds across multiple strategic dimensions

simultaneously. The reduced potential for tacit coordination further intensifies this

competition.

Interestingly, this suggests that industries with mixed AI and human strategists

might actually see higher levels of investment in both capacity (driven by AI cred-

ible commitment) and product innovation (driven by human creativity) compared

to industries dominated by either type alone. This could potentially create markets

with both greater productive efficiency and more diverse product offerings, though

potentially at the cost of reduced industry profitability.

5 The Control-Credibility Relationship

We noted earlier that AI strategists typically achieve lower agreement probabilities

than their human counterparts. The direct effect of this suggests that the incremental

value of giving AI’s control over decisions is relatively high. However, this is strongest

when there is lower credibility on the part of AI implying that those decisions are

unlikely to be the core of a strategy. This reveals an important and perhaps coun-

terintuitive relationship between strategic credibility and the need for formal control.

Contrary to conventional wisdom, AI strategists may require less formal control in

precisely those domains where they possess the greatest analytical advantages. This

control-credibility relationship has significant implications for organizational design

and the effective integration of AI into strategic processes.

5.1 An Inverse Relationship

Building on the formal results of Section 4, we can establish a more precise charac-

terization of when formal control becomes necessary versus when influence through

strategic announcements suffices.

Proposition 5 (Control-Credibility Relationship). The incremental value of control

(∆S
k ) decreases as the strategist’s credibility increases along two dimensions:

1. Agreement probability:
∂∆S

k

∂ρSk
< 0 for all decision contexts

2. Participant confidence calibration: As νP
k approaches νS

k , the αk(ν
S
k −

ρSkν
P
k ) term in ∆S

k approaches zero for stand-alone optimization decisions
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Thus, in environments where a strategist achieves high agreement probability and

where participant confidence aligns with strategist confidence, the value of formal con-

trol diminishes substantially.

Proof. From Proposition 3, recall that the incremental value of control is:

∆S
k =

(1− ρSk ) ·
[
γ · (NSk=1

align −Nbase
align)− IPk · αkν

P
k

]
+ αkν

S
k − ρSk · αkν

P
k if ISk = 1

(1− ρSk ) ·
[
γ · (NSk=0

align −Nbase
align)− IPk · αkν

P
k

]
if ISk = 0

(24)

Taking the partial derivative with respect to ρSk :

∂∆S
k

∂ρSk
=

−
[
γ · (NSk=1

align −Nbase
align)− IPk · αkν

P
k

]
− αkν

P
k if ISk = 1

−
[
γ · (NSk=0

align −Nbase
align)− IPk · αkν

P
k

]
if ISk = 0

(25)

In contexts where strategic intervention creates value, both [γ · (NSk=x
align −Nbase

align)− IPk ·
αkν

P
k ] and αkν

P
k are positive, making

∂∆S
k

∂ρSk
< 0.

For the second part, as νP
k approaches νS

k , the term αkν
S
k − ρSk · αkν

P
k approaches

αkν
S
k (1− ρSk ), which approaches zero as ρSk approaches 1.

This proposition establishes that as a strategist becomes more credible—meaning

participants increasingly agree with their strategic recommendations and develop

confidence levels aligned with the strategist’s—the incremental benefit of granting

that strategist formal control diminishes. In the limiting case where ρSk = 1 and

νP
k = νS

k , formal control offers no additional value beyond what could be achieved

through strategic influence alone.

5.2 AI Credibility Across Decision Domains

How does this control-credibility relationship specifically apply to AI versus human

strategists? The answer lies in understanding how credibility varies systematically

across different decision contexts.

Note first that AI strategists’ credibility relative to human strategists varies sys-

tematically across the spectrum from data-rich to judgment-rich domains:

1. In data-rich domains (abundant historical data, well-defined metrics):
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• ρAI
k > ρHk (higher agreement probability)

• νPk
νAI
k

≈ νPk
νHk

(similar confidence calibration)

2. In judgment-rich domains (limited historical data, tacit knowledge require-

ments):

• ρAI
k < ρHk (lower agreement probability)

• νPk
νAI
k

<
νPk
νHk

(worse confidence calibration)

These domain-specific credibility patterns create distinct implications for control al-

location. Specifically, the incremental value of control for AI versus human strategists

shows an inverse relationship with data richness. That is, as decisions become more

data-rich and less dependent on judgment, the comparative control premium for AI

relative to human strategists decreases and may become negative.

This challenges the conventional wisdom that AI requires more formal control

than human strategists to be effective. In fact, our analysis reveals that:

1. Data-Rich Domains: AI strategists typically achieve higher agreement prob-

abilities (ρAI
k > ρHk ) due to their demonstrable analytical capabilities. This

higher credibility means AI can create substantial value through influence with-

out requiring formal control. Counterintuitively, human strategists may need

more formal control than AI in these domains to overcome their relative credi-

bility deficit.

2. Judgment-Rich Domains: AI strategists face lower agreement probabilities

(ρAI
k < ρHk ) due to the subjective, experiential nature of these decisions. In these

contexts, AI typically requires more formal control than human strategists to

create comparable value, aligning with conventional expectations.

Thus, empirically wemay observe AI strategists having less control than their human

counterparts.

Example 5 (Supply Chain Optimization versus New Market Entry). Consider two

strategic decisions facing a manufacturing firm:

Supply Chain Optimization (Data-Rich): For this decision, the AI achieves

high agreement (ρAI
1 = 0.85) due to its transparent analysis of historical data and clear
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demonstration of efficiency improvements. In contrast, the human strategist achieves

lower agreement (ρH1 = 0.7) due to perceived biases toward familiar suppliers. The

incremental value of control is:

∆AI
1 = 0.15·[coordination value]+α1·(0.9−0.85·0.8) = 0.15·[coordination value]+0.22·α1

(26)

∆H
1 = 0.3·[coordination value]+α1·(0.75−0.7·0.8) = 0.3·[coordination value]+0.19·α1

(27)

New Market Entry (Judgment-Rich): For this decision, the AI achieves lower

agreement (ρAI
2 = 0.4) due to limited historical precedent and challenges in modeling

complex competitive dynamics. The human strategist achieves higher agreement (ρH2 =

0.8) through narrative communication and industry experience. The incremental value

of control is:

∆AI
2 = 0.6·[coordination value]+α2·(0.7−0.4·0.6) = 0.6·[coordination value]+0.46·α2

(28)

∆H
2 = 0.2·[coordination value]+α2 ·(0.8−0.8·0.6) = 0.2·[coordination value]+0.16·α2

(29)

This illustrates that for supply chain optimization (data-rich), the incremental value

of control might actually be higher for the human strategist, while for new market

entry (judgment-rich), control creates substantially more incremental value for the

AI strategist.

5.3 The Data-Control Trade-off

The inverse relationship between data richness and the need for control can be for-

malized more precisely by examining how key parameters influencing the incremental

value of control (∆AI
k , defined in Proposition 3) change with data availability.

To see this, assume that for an AI strategist:

• Agreement probability, ρAI
k (data richness), is non-decreasing with data richness

(or strictly increasing over some range).
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• The AI’s confidence, νAI
k (data richness), is non-decreasing with data richness

(or strictly increasing over some range).

• The participant’s confidence νP
k and preference IPk are relatively stable with

respect to the data richness available to the AI strategist.

Under these assumptions, the incremental value of control for the AI strategist,

∆AI
k (data richness), typically exhibits a non-monotonic relationship with data rich-

ness, potentially showing an inverted U-shape. It tends to be low for very low data

richness (where AI confidence νAI
k is low, limiting the potential value creation from

control) and low for very high data richness (where agreement ρAI
k approaches 1,

reducing the gap between control and influence), peaking at intermediate levels.

Recall from Proposition 3 (Equation 17) that ∆AI
k depends positively on the dis-

agreement probability (1−ρAI
k ) and, when IAI

k = 1, on the confidence advantage term

involving (νAI
k − ρAI

k νP
k ). It also depends on the coordination improvement effect,

scaled by (1−ρAI
k ). Consider how these components change with data richness under

the stated assumptions:

1. As data richness increases, the AI’s confidence νAI
k tends to increase. This gen-

erally increases the potential value generated by control (e.g., through the αkν
AI
k

term if IAI
k = 1), potentially making control more valuable, ceteris paribus.

2. As data richness increases, the agreement probability ρAI
k tends to increase. This

decreases the disagreement factor (1 − ρAI
k ), which scales most components of

∆AI
k , thereby reducing the incremental value of control relative to influence.

The overall shape of ∆AI
k (data richness) depends on the interplay between these op-

posing forces. For very low data richness, νAI
k is likely low, meaning the AI adds

little value even with control, making ∆AI
k small. For very high data richness, ρAI

k

approaches 1, meaning (1−ρAI
k ) approaches 0. Even if νAI

k is high, influence becomes

nearly as effective as control, making ∆AI
k small again. Therefore, the incremental

value of control ∆AI
k typically peaks at intermediate levels of data richness where the

AI has gained sufficient capability (νAI
k is significant) but hasn’t yet achieved near-

perfect agreement (ρAI
k is still significantly below 1). The exact shape depends on the

specific functional forms of νAI
k (·) and ρAI

k (·).
This data-control trade-off has profound implications for AI integration into strate-

gic processes:
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1. Low Data Environments: In domains with minimal structured data, AI

offers limited strategic value (low νAI
k ) regardless of control allocation. These

domains are better suited to human strategists who can leverage tacit knowledge

and pattern recognition.

2. Moderate Data Environments: In domains with moderate data availability,

AI can identify valuable strategic patterns (νAI
k is significant) but may struggle

to communicate them convincingly or achieve high agreement (ρAI
k is moder-

ate). These ”transition domains” typically represent the peak of the control

need curve (∆AI
k is highest), where formal authority enables AI to overcome

credibility limitations while still creating substantial value.

3. Rich Data Environments: In domains with abundant, high-quality data, AI

can both identify optimal strategies (νAI
k is high) and convincingly demonstrate

their value, leading to high agreement (ρAI
k approaches 1). These domains

require minimal formal control for AI to be effective (∆AI
k is low); influence

through transparent analysis often suffices.

5.4 Organizational Design Implications

Our analysis reveals a fundamental factor for organizations integrating AI into strate-

gic processes: in data-rich domains where AI demonstrates superior analytical capa-

bilities, formal control becomes less necessary as agreement naturally emerges. This

relationship suggests that a more sophisticated approach than simply replacing hu-

man strategists with AI systems is required.

In particular, it is arguable that the optimal allocation of formal control to AI

versus human strategists follows a domain-contingent pattern:

1. Judgment-Rich Domains: Human strategists with advisory AI support

2. Transition Domains: AI strategists with formal control but human oversight

3. Data-Rich Domains: AI strategists operating primarily through influence,

with humans maintaining formal control for accountability

Consider a global retailer facing strategic decisions across its enterprise. For data-

dense inventory optimization, AI can operate effectively through influence alone, pro-
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viding transparent analyses that managers readily accept due to demonstrable per-

formance advantages. For market entry decisions involving ambiguous competitive

dynamics, human strategists maintain natural advantages through narrative reason-

ing and contextual understanding. In ”transition domains” like production technol-

ogy selection—where data exists but patterns remain contested—a hybrid approach

emerges as optimal, with AI granted formal decision authority but operating under

human oversight.

To implement this domain-contingent approach, organizations would have to con-

sider developing three key mechanisms:

1. Differentiated Authority Systems: Explicitly distinguish between formal

control rights and influence channels across decision domains, implementing

decision-specific authority allocations rather than blanket AI authority or purely

advisory roles.

2. Progressive Control Models: As AI demonstrates credibility in specific do-

mains, its formal control needs typically diminish. Organizations should imple-

ment models where AI initially receives formal control to overcome credibility

limitations, then transitions to influence-based roles as agreement probabilities

increase.

3. Credibility Enhancement Mechanisms: Invest in systems that enhance

AI credibility without requiring formal control, including transparent reasoning

processes that explain AI strategic recommendations, track record documenta-

tion that builds credibility through demonstrated success, and hybrid commu-

nication approaches where human interpreters contextualize AI analysis.

The organizations that will perform well in this new strategic landscape are those

that design explicit mechanisms to enhance AI credibility where it’s weakest while

leveraging human judgment where it’s strongest. This nuanced integration recognizes

that strategic success depends not simply on analytical excellence but equally on the

credibility necessary to transform insights into coordinated action.

5.5 Synthesizing the Control-Credibility Relationship

The key insight from our analysis is that the relationship between strategic credibil-

ity and control need is not merely correlational but causal: higher credibility directly
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reduces the need for formal control by enabling effective influence-based implementa-

tion.

For AI strategists, this creates an important dynamic:

1. Initial Control Premium: When first deployed in a decision domain, AI

may require a ”control premium”—formal authority that exceeds what might

be justified by its analytical capabilities alone. This premium compensates for

initially low agreement probabilities.

2. Self-Diminishing Control Need: As AI demonstrates effectiveness in a do-

main, the very success that justifies its strategic role also reduces its need for

formal control. Successful AI strategists essentially work themselves out of for-

mal authority positions through progressive credibility building.

3. Domain-Specific Evolution: Different decision domains will evolve along dif-

ferent trajectories. Data-rich domains may quickly transition to influence-based

AI roles, while judgment-rich domains may require sustained formal control or

remain better suited to human strategists.

This nuanced understanding replaces the simplistic narrative that AI requires more

control than humans to be effective strategists. Instead, it reveals that control needs

depend on specific domain characteristics, credibility patterns, and organizational

learning processes. The optimal approach is neither complete AI autonomy nor rigid

human oversight, but rather a dynamic, domain-specific allocation of formal authority

that evolves as credibility relationships mature.

By recognizing and managing this control-credibility relationship explicitly, orga-

nizations can more effectively integrate AI into their strategic processes, capturing

analytical advantages while avoiding unnecessary centralization of authority. Most

importantly, this approach acknowledges that strategic effectiveness depends not only

on identifying the optimal stand-alone versus alignment trade-offs, but also on gen-

erating the organizational credibility needed to implement these insights effectively.

6 Conclusion

This paper has examined the conditions under which artificial intelligence can effec-

tively perform the role of a strategist, extending (van den Steen, 2017, 2018a) formal
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theory of strategy. Our analysis reveals that the fundamental question is not sim-

ply whether AI can formulate strategy, but rather how organizations must transform

when AI assumes strategic functions. The answer to each question yields markedly

different insights about the future of strategic leadership.

The implications of our analysis extend far beyond the simple substitution of

human strategists with AI systems. In a manufacturing firm, for instance, an AI

strategist might prioritize supply chain optimization decisions as core strategic ele-

ments due to its superior pattern recognition in data-rich contexts, while a human

strategist might focus on brand positioning decisions where judgment and narrative

construction are paramount. This difference in strategic emphasis would necessitate

not just different decisions being designated as “strategic,” but fundamentally differ-

ent organizational structures to support implementation.

Perhaps most intriguingly, AI strategists offer the possibility of unprecedented

transparency in strategic thinking. While human CEOs face inherent limitations in

bandwidth—unable to simultaneously meet with the head of marketing, operations,

and R&D to explain strategic rationale—an AI strategist could simultaneously en-

gage with multiple stakeholders, providing consistent explanations of its strategic

reasoning without the cognitive constraints human strategists face. Consider how

this might transform a retail chain implementing a new market strategy: rather than

cascading communication through hierarchical layers with inevitable distortion, all

regional managers could simultaneously engage with the AI strategist to understand

the precise strategic logic, improving both buy-in and implementation fidelity. It is

this type of system-wide change that Agrawal et al. (2022) argue will be at the core

of making AI transformative.

The “control paradox” identified in our analysis—where AI strategists require

less formal control in domains where they possess the greatest analytical advan-

tages—further challenges conventional thinking about authority in organizations. A

pharmaceutical company employing an AI strategist might maintain human control

over early-stage R&D decisions where judgment about scientific novelty is paramount,

while granting the AI considerable autonomy in clinical trial design and analysis where

its pattern recognition excels. This domain-contingent approach to control allocation

represents a significant departure from traditional organizational design principles.

While our analysis has entered the realm of what might currently be considered

science fiction, it offers a deeper appreciation of organizational design imperatives that
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have always existed but rarely been articulated: organizations need to adapt to the

capabilities of their strategists as much as strategists must match their organizations.

This resonates with the finding in van den Steen (2018a) that strategy formulation

by a CEO yields better execution than formulation by an outsider or consultant,

precisely because the CEO’s control over implementation provides credibility. Our

analysis suggests a similar dynamic applies to AI strategists; like consultants, they

may offer superior data analysis but lack the inherent credibility stemming from

implementation control that human strategists (akin to CEOs) possess, thus requiring

different organizational adaptations. The literature has extensively explored how

strategists should align with organizational context, but has given less attention to

how organizations might be deliberately designed to match the specific strengths and

limitations of different types of strategists. Furthermore, the emphasis on data-rich

domains often aligns AI’s strengths with more stable, mature industries, suggesting

a potential niche where AI strategists might initially prove most effective.

As AI capabilities continue to advance, these theoretical insights will take on in-

creasing practical relevance. Organizations that develop sophisticated mechanisms

for AI-human strategic collaboration—differentiating authority systems across deci-

sion domains, implementing progressive control models as AI credibility develops, and

investing in credibility enhancement mechanisms—will likely outperform those that

either resist AI involvement in strategy or attempt wholesale replacement of human

strategic judgment.

The future of strategic leadership lies not in choosing between human intuition

and AI analysis, but in designing organizational structures that effectively integrate

both, recognizing that strategic effectiveness ultimately depends on the alignment

between a strategist’s capabilities and the organization’s design. This bidirectional

relationship between strategist and organization represents fertile ground for future

research that extends beyond the traditional boundaries of strategic management

theory.
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(2016). Concrete problems in ai safety. arXiv preprint arXiv:1606.06565.

Athey, S. C., Bryan, K. A., and Gans, J. S. (2020). The allocation of decision authority

to human and artificial intelligence. In AEA Papers and Proceedings, volume 110,

pages 80–84. American Economic Association 2014 Broadway, Suite 305, Nashville,

TN 37203.

Brynjolfsson, E. and McAfee, A. (2017). The business of artificial intelligence. Harvard

Business Review, 7:3–11.

Brynjolfsson, E. and Rock, D. (2022). The ai productivity paradox. Journal of

Economic Perspectives, 36(3):3–24.

Chalmers, D., MacKenzie, N. G., and Carter, S. (2021). Artificial intelligence and

entrepreneurship: Implications for venture creation in the fourth industrial revolu-

tion. Entrepreneurship Theory and Practice, 45(5):1028–1053.

Ehrig, T. and Schmidt, J. (2022). Theory-based learning and experimentation: How

strategists can systematically generate knowledge at the edge between the known

and the unknown. Strategic Management Journal, 43(7):1287–1318.

Felin, T., Gambardella, A., and Zenger, T. (2024). Theory-based decisions: Founda-

tions and introduction. Strategy Science, 9(4):297–310.

Felin, T. and Zenger, T. R. (2017). The theory-based view: Economic actors as

theorists. Strategy Science, 2(4):258–271.

43



Gans, J. S. (2024). Internal disagreement and disruptive technologies. Strategy Sci-

ence, 9(3):267–276.

Griffith, T. L. (1999). Technology features as triggers for sensemaking. Academy of

Management review, 24(3):472–488.

Hambrick, D. C. (2007). Upper echelons theory: An update. Academy of Management

Review, 32(2):334–343.

Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-ai sym-

biosis in organizational decision making. Business Horizons, 61(4):577–586.

Kahneman, D. (2011). Thinking, Fast and Slow. Farrar, Straus and Giroux, New

York.

Keating, G. (2012). Netflixed: The epic battle for America’s eyeballs. Penguin.

Klein, G. (2007). Naturalistic decision making. Human Factors, 49(5):970–986.

Knight, F. H. (1921). Risk, Uncertainty and Profit. Houghton Mifflin, Boston, MA.

Lovallo, D. and Kahneman, D. (2003). Delusions of success: How optimism under-

mines executives’ decisions. Harvard Business Review, 81(7):56–63.

Morris, S. (1995). The common prior assumption in economic theory. Economics and

Philosophy, 11(2):227–253.

Raisch, S. and Krakowski, S. (2021). Artificial intelligence and management: The

automation-augmentation paradox. Academy of Management Review, 46(1):192–

210.

Shrestha, Y. R., Ben-Menahem, S. M., and von Krogh, G. (2019). Organizational

decision-making structures in the age of artificial intelligence. California Manage-

ment Review, 61(4):66–83.

Tichy, N. M. and Sherman, S. (1993). Control Your Destiny or Someone Else Will:

How Jack Welch Is Making General Electric the World’s Most Competitive Corpo-

ration. Doubleday, New York.

van den Steen, E. (2010a). Interpersonal authority in a theory of the firm. American

Economic Review, 100(1):466–490.

44



van den Steen, E. (2010b). On the origin of shared beliefs (and corporate culture).

The RAND Journal of Economics, 41(4):617–648.

van den Steen, E. (2017). A formal theory of strategy. Management Science,

63(8):2616–2636.

van den Steen, E. (2018a). Strategy and the strategist: How it matters who develops

the strategy. Management Science, 64(10):4533–4551.

van den Steen, E. (2018b). The strategy in competitive interactions. Strategy Science,

3(4):574–591.

von Krogh, G. (2018). Artificial intelligence in organizations: New opportunities for

phenomenon-based theorizing. Academy of Management Discoveries, 4(4):404–409.

Wuebker, R., Zenger, T., and Felin, T. (2023). The theory-based view: En-

trepreneurial microfoundations, resources, and choices. Strategic Management

Journal, 44(12):2922–2949.

45



Table 1: Model Parameters and Variables

Symbol Description

Exogenous Parameters

K Number of interdependent decisions in the project.
Dk Set of possible choices for decision Dk.
Tk Unknown true state representing the objectively correct choice for Dk in

isolation.
S Strategist
P Participant
αk Economic importance of decision Dk being correct on its own (stand-

alone correctness).
Tkl Interaction state defining the alignment requirement (bijection) between

Dk and Dl.
γkl Economic importance of achieving alignment between decisions Dk and

Dl.
γ Simplified uniform interaction importance (γkl = γ) used for analysis.
νP
k Participant Pk’s subjective confidence that their belief θPk matches Tk.
νS
k Strategist S’s confidence that their belief θSk matches Tk.

νS,H
k Confidence of a human strategist.

νS,AI
k Confidence of an AI strategist.
cS Cost for strategist S to investigate a decision state Tk̄.
ρk Agreement parameter: probability θPk = θSk .
ρHk Agreement parameter for a human strategist.
ρAI
k Agreement parameter for an AI strategist.

Endogenous Variables

Dk Decision k within the project.
dk Actual choice made for decision Dk.
R Total project revenue, depends on all dk relative to Tk and Tkl.
Rk Revenue contribution associated with decision Dk.
θPk Participant Pk’s belief (best estimate) about the state Tk.
θSk Strategist S’s belief (best estimate) about the state Tk after investiga-

tion.
M Strategy announcement (message) made by the strategist S.
λk Control indicator: 1 if strategist S controls decision Dk, 0 otherwise.
Sk Indicator function: 1 if decision k prioritizes stand-alone correctness.
Akl Indicator function: 1 if decision k is deliberately aligned with decision l.
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