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1 Introduction

The past decade witnessed an explosive growth in blockchain-based platforms and cryptocur-
rencies, which totaled 3.5 trillion USD in market capitalization, and a rising interest in Decentral-
ized Finance (DeFi) (Harvey, Ramachandran, and Santoro, 2021), which entails over 210 billion
USD worth of assets locked in DeFi protocols, all as of Jan 2025. Platform tokens derive value
by enabling users to complete economic transactions and hold stakes in the ecosystem, making
them a hybrid of money and investible assets. The recent prevalence of token staking (value
locking and yield farming, see, e.g., Augustin, Chen-Zhang, and Shin, 2022) for higher-layer DeFi
innovations as well as for base layer consensus formation (e.g., through Proof-of-Stake, PoS, as
discussed in John, Rivera, and Saleh, 2022) further calls for a unified framework to understand the
use of tokens as transaction media, investment assets, and deposit/collateral-like instruments. To
this end, we relate various functions tokens provide (e.g., transaction convenience and financial
rewards through holding and staking) to token pricing, both theoretically and empirically, with
endogenous adoption and agent heterogeneity.

Specifically, we build a continuous-time model of an economy with a tokenized digital net-
work, where agents optimally conduct transactions on a platform subject to both platform pro-
ductivity and external shocks, and stake tokens to earn rewards from both newly minted tokens
and fees. We discover the aggregate staking ratio—the number of staked tokens over the total
token supply—to be key in determining equilibrium reward rates and token prices. The conve-
nience wedge between onchain and offchain assets also drives the violation of uncovered interest
rate parity (UIP) and predicts profitable carry trades. We show staking facilitates redistribution
from users to stakers, as in an inflation tax, and further discuss the platform’s ability to manage its
lifecycle by manipulating staking incentives (through fee and emission designs) while balancing
network scale and staking contribution from potentially heterogeneous users.

Empirical evidence from a dataset covering all major stakable tokens also corroborates the
model predictions. In particular, staking ratio positively correlates to both reward rates and price
appreciation in the cross section, compensating the convenience loss of staking. To our knowl-
edge, this study is the earliest and most comprehensive investigation into the effects of staking
on token pricing, and the violations of UIP (and the resulting carry premia) for stakable tokens,
which dominate the cryptocurrency market excluding Bitcoin. Our study also provides insights
for cryptocurrency traders, platform designers, and users who need to discern between viable
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staking programs from scams.
We start by conceptually clarifying two broad categories of staking: those related to pan-

PoS consensus protocols and those in higher-layer (decentralized) applications.1 Fundamentally,
blockchain functions to generate a relatively decentralized consensus record of system states to
enable economic interactions such as value or information exchanges (e.g., Cong and He, 2019).
PoS consensus protocols have gained popularity with major market players such as Ethereum
adopting them. Under PoS, agents stake native tokens to compete for the opportunity to record
transactions, execute smart contracts, append blocks, etc., to earn block rewards and fees (e.g.,
Saleh, 2021; Kogan, Fanti, and Viswanath, 2021; Jermann, 2023). Meanwhile, various staking
programs have become popular means for incentivizing desirable behavior in higher layer ap-
plications, escrowing a balance of tokens under custody in a smart contract or deploying them
to enable network economic functionalities with stakers earning staking rewards (e.g., Augustin,
Chen-Zhang, and Shin, 2022).

Our model applies to both categories and captures several distinguishing features of staking
economies. First, such tokens are used on platforms that support specific economic transactions
or broader use in onchain-based projects. This generates utility flows in, e.g., transaction con-
venience discussed in (Cong, Li, and Wang, 2021b; Biais et al., 2020). Second, the rate of staking
rewards that an agent earns is influenced by other agents’ behavior in aggregate, but individuals
take it as given when making decisions.2 Third, staking participation can influence the platform’s
development, e.g., by improving the efficiency and security of services, which enriches the agents’
roles within the platform, although it is not a necessary feature in all the projects. In addition,
the framework also applies to the recently growing restaking activities once we allow a general
form of the convenience loss of staking.

We solve for the Markov equilibrium of the staking economy, which is characterized by three
state variables: platform productivity, token supply, and external demand shocks. In equilibrium,
the staking reward rate solves a fixed-point problem, while the token price dynamics are en-
dogenously determined by a partial differential equation (PDE). Comparing the pricing formula

1The two are not mutually exclusive. Solana, for example, uses both PoS and DeFi staking. The classification
we use follows mainstream cryptocurrency data aggregators such as CoinMarketCap. Even on non-blockchain-
based or centralized platforms, various programs that involve escrows or crowd funds can be analyzed as a form of
business-layer staking through the lens of our framework.

2Polkadot (DOT) constitutes an example: the reward rate for validators is determined by the current aggregate
staking ratio. The fewer DOTs are staked, the higher the yield is for a planned amount of reward.
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to the Black-Merton-Scholes PDE as well as the benchmark token pricing formula in Cong, Li,
and Wang (2021b), we highlight how staking endogenously influences token price dynamics with
rich implications discussed in detail next.

Using economic intuition to simplify the PDE into an ordinary differential equation with a
unique solution subject to two intuitive boundary conditions with respect to platform productiv-
ity, we show that the staking ratio proves crucial for token pricing and reward rate determination
in equilibrium. Importantly, a higher staking ratio predicts greater token price appreciation due
to two key forces. First, an adoption effect arises from the joint determination of the staking ratio
and expected price appreciation. A higher productivity level attracts greater adoption, which in
turn limits future inflows, thereby reducing expected price appreciation. Simultaneously, higher
productivity increases the convenience of transactions relative to the benefits of staking, leading
to a lower staking ratio. As a result, the staking ratio is positively correlated with price appre-
ciation, which is further amplified by the network externality of the active user base. Moreover,
a feedback effect arises from the contribution of staking to the growth of platform productivity,
which accelerates future adoption and is therefore associated with a higher price drift. These two
forces render the staking ratio as a key predictor for token price dynamics, partially justifying
the wide adoption by practitioners of the heuristic metric of Total Value Locked (TVL). A higher
staking ratio links increased staking reward rates to higher expected price appreciation, driving
a convenience wedge between staked tokens and numéraire that violates the Uncovered Interest
Parity (UIP). In particular, the convenience wedge is highly sensitive to changes in the staking
ratio, suggesting the potential for both staking-ratio-based and crypto carry trading strategies.

We further discuss the platform’s ability to manage its lifecycle by adjusting staking in-
centives. In practice, platforms can set fee policies, and since transaction fees act as a direct
cash flow from users to stakers (validators), different fee structures reflect the platform’s priori-
ties—balancing the stabilization of its active user base and the acceleration of productivity growth,
particularly in its early stages. Token issuance serves a similar role as a redistribution mechanism
while affecting the so-called “inflation.” Supply increase effectively functions as a tax, providing a
powerful policy tool, especially when the platform reaches a mature stage when transactions are
less costly and transaction fees have a diminished impact. In addition, we examine the staking
economy under user heterogeneity. As the platform expands, an endogenous division of labor
among participants is likely to emerge: retail investors increasingly function as pure on-platform
users, while validation operations become concentrated among wealthier agents.

4



We summarize the three main sets of model implications: First, the staking reward is pos-
itively related to the staking ratio. While more staking reduces the reward rate for any given
reward quantity, more rewards incentivizes more staking, simultaneously yielding a higher stak-
ing ratio and a higher staking reward rate in equilibrium. Second, expected price appreciation
increases with the aggregate staking ratio, as detailed above. Third, there are generally predictable
excess returns to staking over holding the numéraire. The model thus implies that UIP fails for
stakable tokens, and further profitable crypto carry trades. Because the reward rate mechanically
decreases with a greater staking ratio, carry predicts lower excess returns in the time series than
in the cross-section.

We test these model predictions empirically and find corroborating evidence in a comprehen-
sive dataset covering all major stakable tokens (66 tokens from StakingRewards spanning July
2018 to November 2022). We first document that a 10-percentage-points increase in the aggre-
gate reward ratio (e.g., from 10% to 20%) is associated with a 7.79-percentage-point higher staking
ratio on average. Moreover, the reward rate has a predictable effect on changes in the staking
ratio, with a one percentage point increase in the previous week rate increasing the staking ra-
tio in the following week by about 0.026 percentage points. This property is robust to adding
both two-way fixed effect and control variables including market cap and token return volatil-
ity. However, its significance decreases with longer time intervals, reflecting to some extent the
mechanical downward adjustment of the reward rate when more tokens are staked (because the
same staking rewards have to be divided among more staked tokens).

We next verify that a larger staking ratio indeed predicts greater future token price appreci-
ation. When the staking ratio increases by one percentage point, the corresponding token price
appreciates by 6.6 basis points in the following week. Considering that the variation of staking
ratio is often large, especially in the cross-section, this effect is relevant for investments. Crypto
market and size factors do not explain the predictive power of staking ratio, which is more related
to market liquidity and depth, and reflects the fact that tokens are commodity-like.3 Staking re-
duces the supply of liquid cryptocurrencies, and hence pushes up token prices and convenience
yields of tokens. This resembles how using commodities as collateral increases the spot price and
the convenience yield of the underlying commodities (Tang and Zhu, 2016).

Finally, following the international finance literature, we test if “interest rate” (i.e., reward
3Commodities Futures Trading Commission (CFTC) regards cryptocurrencies as commodities, see, e.g., https:

//www.cftc.gov/sites/default/files/2019-12/oceo bitcoinbasics0218.pdf.
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rate) predicts “currency excess returns” (i.e., token excess return). We find that UIP is indeed
violated. We construct a carry trade strategy that goes long high-carry crypto assets and short
low-carry assets, yielding an annualized Sharpe ratio of 1.60 with weekly rebalancing. Crypto
carry predicts excess returns almost one-for-one in the cross-section, with a reduced albeit signif-
icant effect in the time series. Intuitively, higher reward rates attract more staking, which persists
over the locked period, reducing the reward rates going forward and thus total expected returns,
just as our model implies.

Literature. Our study adds to the literature on blockchain economics and cryptocurrency mar-
kets.4 In particular, we build on the tokenomics framework of Cong, Li, and Wang (2021b) and
Cong, Li, and Wang (2021a) to add to emerging studies on Proof-of-Stake protocols (e.g., Fanti,
Kogan, and Viswanath, 2021; Saleh, 2021; Benhaim, Falk, and Tsoukalas, 2021) and debates on the
environmental and scalability issues associated with Proof-of-Work (PoW) protocols (e.g., Cong,
He, and Li, 2021; Hinzen, John, and Saleh, 2019). We also complement the emerging literature on
DeFi (e.g., Park, 2021; Cong et al., 2022; Li et al., 2022) by providing a framework for analyzing
one of the most prevalent forms of DeFi activity.

The most closely related paper to ours is John, Rivera, and Saleh (2022) which theoretically
examines native PoS crypto assets that serve primarily as investment vehicles, whereas we focus
on the platform tokens with a combination of transaction usage and investment function. While
both studies demonstrate that the equilibrium staking ratio increases in staking rewards, John,
Rivera, and Saleh (2022) find that staked asset value can exhibit a non-monotonic relationship
with block rewards and cause redistribution across agents with divergent trading horizons. We
complement this by endogenizing adopters’ contribution to the platform, as well as considering
DeFi staking in addition to the PoS consensus and discussing potentially heterogeneous staking
preferences. Also closely related is Jermann (2023) who develops a macrofinance model account-
ing for both the Ethereum EIP-1559 fee mechanism and its new PoS design, while quantitatively

4Existing studies mostly examine issues related to consensus algorithms (Biais et al., 2019; Saleh, 2021), cryptocur-
rency mining (e.g., Cong, He, and Li, 2021; Lehar and Parlour, 2020), scalability (e.g., Abadi and Brunnermeier, 2018;
John, Rivera, and Saleh, 2020), fee designs Easley, O’Hara, and Basu (2019); Basu et al. (2019); Huberman, Leshno, and
Moallemi (2021), DeFi (e.g., Harvey, Ramachandran, and Santoro, 2021; Capponi and Jia, 2021), ICOs (e.g., Lyandres,
Palazzo, and Rabetti, 2019; Howell, Niessner, and Yermack, 2020), pricing of crypto assets (e.g., Liu, Tsyvinski, and
Wu, 2019; Cong et al., 2021a; Prat, Danos, and Marcassa, 2019), manipulation and regulation (e.g., Griffin and Shams,
2020; Li, Shin, and Wang, 2021; Cong et al., 2021b, 2023), or digital currencies (e.g., Gans, Halaburda et al., 2015; Bech
and Garratt, 2017; Chiu et al., 2019; Cong and Mayer, 2021).
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estimating the long-run staking ratio of ETH and the implied money supply. While both stud-
ies pin down equilibrium staking considering platform usage value relative to staking benefits,
we endogenize the platform productivity process whereas Jermann (2023) endogenizes the token
supply. Consequently, our focus is on token pricing instead of monetary policy. Fanti, Kogan,
and Viswanath (2021) is the earliest to develop a cash-flow-based valuation framework of PoS
cryptocurrencies to understand how the liquidity of validators’ holdings, token valuation, and
network security relate to one another. Their focus is on long-run transaction fees, whereas we
focus on endogenous reward rate and transaction dynamics. Empirically, a recent article by Au-
gustin, Chen-Zhang, and Shin (2022) characterizes the risk and return trade-offs of yield farming
using data from PancakeSwap. We offer likely the first theoretical framework to think about
returns to DeFi staking, UIP violations, and crypto carry, with empirical corroborating evidence.

Finally, studies in international finance examine uncovered interest rate parity (e.g., Fama,
1984; Lustig, Stathopoulos, and Verdelhan, 2019). Carry and its predictability have been analyzed
not only for currencies but also for other assets such as equities (e.g., Fama and French, 1998;
Griffin, Ji, and Martin, 2003; Hou, Karolyi, and Kho, 2011), bonds (e.g., Ilmanen, 1995; Barr and
Priestley, 2004), and commodities (e.g., Bailey and Chan, 1993; Casassus and Collin-Dufresne,
2005; Tang and Xiong, 2012). Koijen et al. (2018) apply a general concept of carry and find that
carry predicts returns in both the cross-section and time series. We add by documenting UIP
violations and carry premia among cryptocurrencies (and with fiat currencies). Recent empirical
studies corroborate our findings by documenting deviations from covered interest parity (Franz
and Valentin, 2020) and various forms of carry trades involving crypto derivatives (Christin et al.,
2023; Schmeling, Schrimpf, and Todorov, 2023), and cryptocurrency with loanable programs (Fan
et al., 2024). We do not rely on interest rates indirectly inferred from derivative markets or from a
particular exchange with crypto lending programs. More importantly, we provide a tokenomics
theory rationalizing the observations and significant crypto carry profits.

The remainder of this paper is structured as follows. Section 2 sets up a dynamic model of
staking and token pricing. Section 3 characterizes the equilibrium to illustrate key mechanisms
and convey economic intuition. Section 4 discusses how transaction fees, emission policies, and
user heterogeneity affect the baseline economy. Section 5 introduces the data and describes styl-
ized facts. Section 6 presents empirical findings that corroborate our theory. Section 7 concludes.
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2 A Model of Tokenized Economy with Staking

2.1 Model Setup

In a continuous-time economy with infinite horizon, a continuum of agents optimally allo-
cate individual wealth in a general digital marketplace (e.g., a tokenized blockchain platform,
henceforth referred to as “the platform”) where they can conduct peer-to-peer transactions using
the platform native token, or participating in staking programs by temporarily locking up some
tokens for network services and contribution (e.g., consensus recordkeeping, liquidity provision,
or improving system security in DeFi protocols).

Platform productivity and token price. As in Cong, Li, and Wang (2021b,a), productivity
𝐴𝑡 captures the general usefulness and functionality of the platform, i.e., the convenience users
obtain by transacting on the platform using its tokens. We assume that 𝐴𝑡 evolves endogenously:

d𝐴𝑡 = 𝜇𝐴(Θ𝑡)𝐴𝑡d𝑡 + 𝜎𝐴𝐴𝑡d𝑍𝐴
𝑡 , (1)

where Θ𝑡 is the endogenous staking ratio, i.e., the ratio of the aggregate number of staked tokens
to the total number of tokens. It constitutes a potential state variable that influences token prices
and agent decisions. In base layers (pan-PoS consensus protocols) and/or higher layers (DeFi
applications and Layer 2 projects), staked tokens contribute to the development of the platform
by maintaining node operations, facilitating the achievement of consensus, and increasing the
security level of the network, respectively. Therefore, a higher staking ratio typically improves
platform productivity, i.e., the drift of 𝐴𝑡 is weakly increasing in Θ𝑡 .5

Without loss of generality, we denote the token price (in units of the numéraire) as 𝑃𝑡 , which
is endogenously determined by 𝐴𝑡 , the token issuance (total supply) 𝑄𝑡 , and external demand
shocks (e.g., regulatory changes, market sentiment swings, and noise trading that are indepen-
dent of (𝐴𝑡 , 𝑄𝑡)) captured in a Markov stochastic process 𝑆𝑡 satisfying d𝑆𝑡/𝑆𝑡 = 𝜇𝑆d𝑡 + 𝜎𝑆d𝑍𝑆

𝑡

with one source of Brownian innovations
{
𝑍𝑆
𝑡 , 𝑡 ≥ 0

}
, which is independent of the productivity

5Staking could hurt platform productivity if the staker competition is so fierce that fewer stakers participate.
Instead of allowing 𝜇𝐴 to potentially decrease in Θ𝑡 , we capture this by explicitly modeling the staking competition.
Also, we work under the risk-neutral measure with an exogenous stochastic discount factor 𝑟𝑓 > 0, therefore 𝜇𝐴𝑡
already accounts for the price of risk for systematic shock that correlates to the platform productivity shock 𝑍𝐴

𝑡 . As
in Cong, Li, and Wang (2021b), we can derive a productivity dynamic in physical measure via a change of measure.
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shock 𝑍𝐴
𝑡 . The token price, 𝑃𝑡 = 𝑃(𝐴𝑡 , 𝑄𝑡 , 𝑆𝑡), should then follow a general diffusion process with

endogenous and potentially time-varying 𝜇𝑡 , 𝜎𝑡 and 𝜂𝑡 , which we shall solve for:

d𝑃𝑡 = 𝑃𝑡𝜇𝑡d𝑡 + 𝑃𝑡𝜎𝑡d𝑍𝐴
𝑡 + 𝑃𝑡𝜂𝑡d𝑍𝑆

𝑡 . (2)

Agents, adoption, and transaction convenience. A platform agent is someone who uses
tokens either for staking or transactions. We normalize the continuum of agents to be one unit
measure. Agents gain convenience from holding tokens and conducting economic activities on
the platform.6 Similar as in Cong, Li, and Wang (2021b,a), for an agent holding 𝑥𝑡 (in numéraire,
positive) worth of tokens on the platform, the transaction convenience yields a utility flow of:

d𝑣𝑡 = 𝑥1−𝛼
𝑡 (𝑁𝑡𝐴𝑡)𝛼d𝑡 − 𝑥𝑡𝑟 𝑓 d𝑡. (3)

With 𝛼 ∈ (0, 1), the marginal transaction convenience 𝜕𝑣
𝜕𝑥 > 0 and decreases with 𝑥 . 𝑁𝑡

represents the active network scale, measured as the share of circulating tokens. A larger 𝑁𝑡

implies it is easier to find a transaction counterparty on the platform. In an extreme case, when
all the tokens are staked (locked), holding a tradable token obtains no transaction convenience, as
there is no counterparty. The transaction convenience increases in 𝑁𝑡 as well as the productivity
𝐴𝑡 . Holding tokens on the platform for transactions or staking means that the agent also loses
the risk-free interests 𝑟 𝑓 on their value.7

Staking, staking rewards and convenience loss. Agents can stake part of their token hold-
ings, 𝜃𝑡𝑥𝑡 (𝜃𝑡 ∈ [0, 1]), for staking rewards but suffer a convenience loss from locked value. In
the baseline, we assume homogeneous agents to illustrate the economic mechanisms and impli-
cations. We later consider agents with heterogeneous staking preferences in Section 4.4.

Staking rewards incentivize agents to stake their tokens to either generate consensus records
in a base layer or participate in some DeFi program, such as a liquidity pool or insurance pool.
In practice, staking rewards come from fees others pay and additional token issuance (emission).
To model staking rewards from newly issued blocks, we assume that the total amount of tokens
at time 𝑡, 𝑄𝑡 , follows a general dynamic process: d𝑄𝑡 = 𝐸𝑡𝑄𝑡d𝑡, where 𝐸𝑡 is the “emission rate”

6In an earlier draft, we model risk-averse agents who also consume offline. All main results remain, but the more
complicated setup offers no additional insights.

7Even though we focus on token convenience as a medium of exchange, the reduced-form convenience could
also include other utility flows such as governance and voting rights.
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policy and is public information at the time of staking.8 Any emission will increase token supply
and thus generate an “inflation” expectation.

We denote the rewards from the transaction fees (e.g., ETH gas) as 𝐹(𝐴𝑡)𝑄𝑡 . 𝐹 ′(𝐴𝑡) ≤ 0, as
one of the critical signs of a productive platform is lower transaction costs.9 Transaction fees
can be understood as continuing capital gains received by stakers.10 The total amount of tokens
distributed as rewards 𝑅𝑡 then becomes:

𝑅𝑡 = 𝑅(𝐴𝑡 , 𝑄𝑡) = [𝐸𝑡 + 𝐹(𝐴𝑡)]𝑄𝑡 . (4)

All staked tokens are fungible and consequently all stakers face an instantaneous reward rate
akin to interest rates on bank deposits:11

𝑟𝑡 ≡
𝑅𝑡

𝐿𝑡
, (5)

where 𝐿𝑡 is the total amount of staked tokens. Largely aligned with practice, 𝑅𝑡 here depends on
exogenous emission and fee policies, and is treated as given in agents’ decision-making.12

Agent with 𝜃𝑡𝑥𝑡 worth (in numéraire) of staked tokens incur additional cost flows of (i), risk of
slashing 𝑐𝑡𝜃𝑡𝑥𝑡d𝑡 proportional to their staking amount for simplicity, 𝑐𝑡 < 𝑟𝑡 , and (ii), numéraire

8The emission schedule is typically public information at the time of staking (or at least estimated based on
real-time blockchain data, see Online Appendix OA1). As token supply could be well controlled by the ecosystem
designer (Jermann, 2023), we consider a deterministic 𝑄𝑡 for simplicity; 𝐸 can still vary over time. We discuss in
Section 4 how a platform designer may want to endogenize fee designs as well as the emission policy.

9Lowering transaction costs is one of the key developing directions of these digital platforms, e.g. moving to
PoS from PoW, and layer-2 innovations. The ETH gas fee of a transaction in practice entails a burned base fee and a
priority fee paid to the validator as a tip. Online Appendix OA1 contains more details.

10Homogeneous agents’ transaction convenience can be viewed as net of fees paid. Then their capital gains from
transaction fees are essentially from external demands.

11For simplicity, we do not model the term structure of staking rewards—the focus of John, Rivera, and Saleh
(2022). In our continuous-time setting, we only need staked tokens to be locked for 𝑑𝑡. In our empirical tests, we
only require agents to know the next period’s reward emission.

12𝑅𝑡 may be also affected by total stakes 𝐿𝑡 . Here we only require that the policies guarantee that 𝑟𝑡 weakly
decreases in 𝐿𝑡 , as is observed in practice. Many programs fix the total amount of rewards. Broadly, 𝐿𝑡 may decrease
𝐹 by generating competition on validating transactions, which depreciates the priority fees (see the definition and
operation on the official website of Ethereum and blocknative). As for emissions 𝐸, 𝐿𝑡 may weakly decrease 𝐸, e.g.,
the reward rate of Ethereum’s Gasper takes the form of 𝑘/

√
𝐿. Otherwise, staking would be more like cooperation

and generate quite low liquidity to the ecosystem. Jermann (2023) offers an in-depth analysis on optimal policies
across a generalized form of 𝑘𝐿−1/𝑠 .
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convenience loss from locked value, in light of Bansal and Coleman (1996); Valchev (2020),

dΨ𝑡 ≡ (𝜃𝑡𝑥𝑡)𝛽(𝑥𝑡𝑁𝑡𝑢)1−𝛽d𝑡, (6)

where 𝛽 > 1, so that 𝜕Ψ
𝜕𝜃𝑡

> 0 captures the increasing marginal cost of locked values, which is
also an alternative expression of the decreasing marginal convenience of holding numéraire.13

Greater onchain wealth 𝑥𝑡 and staking preference 𝑢 decrease the convenience loss. Agents may
hold different staking preference 𝑢𝑖. We omit the subscript 𝑖 in the following when not adding
confusion. In addition, a greater fraction of circulating tokens 𝑁𝑡 also decreases the convenience
loss, since a greater active network scale indicates that the tokens, once unlocked, are more liquid
in exchange for numéraire offline. We have defined two convenience terms because we have three
“assets”: staked tokens, tradable tokens, and offline numéraire.14

2.2 Agents’ Stochastic Control Problem

Taking as given the staking reward rate 𝑟𝑡 , each agent decides at time 𝑡 a portfolio consisting of
𝜃𝑡𝑥𝑡 numéraire-equivalent amount of staked tokens and (1 − 𝜃𝑡)𝑥𝑡 numéraire-equivalent amount
of tradable tokens, and maximizes the expected life-time payoff under the risk-neutral measure,

𝔼 [∫
∞

0
𝑒−𝑟

𝑓 𝑡d𝑦𝑡] , (7)

where the utility flow d𝑦𝑡 depends on not only transaction convenience and staking rewards, but
also an investment payoff from endogenous token price change:

d𝑦𝑡 = max
{𝑥𝑡≥0,𝜃𝑡∈[0,1]}

{
0, d𝑣𝑡 + (𝑟𝑡 − 𝑐𝑡)𝜃𝑡𝑥𝑡d𝑡 − dΨ𝑡 + 𝑥𝑡

𝔼[d𝑃𝑡]
𝑃𝑡

}

= max
{𝑥𝑡≥0,𝜃𝑡∈[0,1]}

{
0, 𝑥1−𝛼

𝑡 (𝑁𝑡𝐴𝑡)𝛼 + (𝑟𝑡 − 𝑐𝑡)𝜃𝑡𝑥𝑡
− (𝜃𝑡𝑥𝑡)𝛽(𝑥𝑡𝑁𝑡𝑢)1−𝛽 + 𝑥𝑡(𝜇𝑡 − 𝑟 𝑓 )

}

d𝑡.
(8)

13Imagine that one has a total wealth constraint, then less staked means more liquid holdings (offline numéraire
and tradable tokens), which generates lower marginal numéraire convenience.

14Alternatively, one can separately define convenience terms of tradable and staked tokens each relative to the
numéraire: transaction convenience is only obtained by tradable tokens, [(1−𝜃𝑡)𝑥𝑡]1−𝛼(𝑁𝑡𝐴𝑡)𝛼 , and the convenience
loss only accounts for locked values, dΨ𝑡 = (𝜃𝑡𝑥𝑡)𝛽[(1 − 𝜃𝑡)𝑥𝑡𝑁𝑡𝑢]1−𝛽d𝑡. All implications go through except that the
optimal 𝜃𝑡 lacks an analytical solution. That dΨ𝑡 is linear in 𝑥𝑡 reflects a fixed unit cost for on/offline exchanges.
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Note that if we allow 𝜃𝑡𝑥𝑡 to generate less convenience loss, our framework can be used to
study the recent popular “liquid staking” that surpassed decentralized lending in TVL, where
stakers can get staking rewards without being restricted by the lock-up.15

2.3 Endogenous Staking Ratio and Market Clearing

Staking ratio. The overall staking ratio, Θ𝑡 , the ratio of the aggregate number of staked tokens
𝐿𝑡 to the total number of tokens 𝑄𝑡 , is a resulting control under system states, 𝑟𝑡 , 𝐴𝑡 , and the
aggregation of agents’ states,

Θ𝑡 ≡
𝐿𝑡
𝑄𝑡

=
𝐿𝑡𝑃𝑡
𝑄𝑡𝑃𝑡

=
∫𝑖∈[0,1] 𝜃𝑖,𝑡𝑥𝑖,𝑡d𝑖
∫𝑖∈[0,1] 𝑥𝑖,𝑡d𝑖

. (9)

Θ𝑡 can be viewed as a continuous function of 𝑟𝑡 . Staking ratio is important because it links
individual choices with global states.

Equilibrium reward. According to (5), 𝑟𝑡 is influenced by the aggregate stake, 𝐿𝑡 , and thus by
the aggregation of agents’ controls, Θ𝑡 . Then the equilibrium staking reward rate 𝑟∗𝑡 solves:

𝑟∗𝑡 = 𝑟(Θ∗(𝑟∗𝑡 )). (10)

Note that the reward rate decreases in Θ𝑡 . We later show that all the agents’ staking amount
increases with 𝑟𝑡 , which guarantees (10) to be a fixed-point problem with a unique solution 𝑟∗𝑡 .

Denote 𝜌𝑡 as the staking reward ratio: 𝜌𝑡 ≡ 𝑅𝑡
𝑄𝑡

= 𝐸𝑡 + 𝐹(𝐴𝑡), and 𝑟𝑡 = 𝜌𝑡
Θ𝑡

. Since 𝜌𝑡 has a
one-to-one correspondence with the equilibrium 𝑟∗𝑡 , the equilibrium staking ratio can either be
represented as Θ(𝜌𝑡 , 𝐴𝑡) or Θ∗(𝑟∗𝑡 , 𝐴𝑡). In our subsequent analysis, we use these two notations,
while retaining the notation Θ(𝑟𝑡) to emphasize the agents’ response to the given reward rate.16

15See https://www.coindesk.com/markets/2023/02/27/liquid-staking-replaces-def i-lending-as-second-large
st-crypto-sector/. This is achieved through wrapped tokens that allow unsupported assets to be traded, lent, and
borrowed on DeFi platforms. Our example of Solana in Online Appendix is supported by liquid staking platforms
such as Lido, as of 2022.

16In practice, 𝜌𝑡 and 𝑟𝑡 are both important characteristics in the staking economy. In most staking economies,
especially most PoS chains, the aggregate reward ratio is commonly known or at least can be estimated, while the
staking reward rate features the actual return that agents will earn like deposit rate.
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Market clearing. The market clears at price 𝑃𝑡 such that the total quantity of tokens 𝑄𝑡 equals
the sum of token holdings accounting for the external demand shock 𝑆𝑡 :

𝑄𝑡 = 𝑆𝑡 ∫
𝑖∈[0,1]

𝑥𝑖,𝑡
𝑃𝑡

d𝑖, (11)

which implies a Markov equilibrium with 𝐴𝑡 , 𝑄𝑡 and 𝑆𝑡 . Note from (9) and (11) that the token
price simultaneously clears both the staking and non-staking markets to rule out arbitrage.

3 Model Solution and Implications

For each agent 𝑖, she optimally decides her allocation taking the aggregate staking levels and
reward rate as given. Conditional on participating the platform (𝑥𝑖,𝑡 > 0), the agents choose
(𝑥𝑖,𝑡 , 𝜃𝑖,𝑡) to optimize d𝑦𝑖,𝑡 . The optimal 𝜃𝑖,𝑡 solves

𝜃∗
𝑖,𝑡 = min

{

1,(
𝑟𝑡 − 𝑐𝑡
𝛽 )

1
𝛽−1

𝑁𝑡𝑢

}

. (12)

𝜃∗
𝑖,𝑡 is independent of 𝑥𝑖,𝑡 , implying the agent effectively decides the stake fraction and total on-

chain wealth separately. In the homogeneous baseline, Θ𝑡 = 𝜃∗
𝑖,𝑡 . Substituting (12) into (8) and

denote Γ𝑡 = min
{
𝑟𝑡 − 𝑐𝑡 − (𝑁𝑡𝑢)1−𝛽 , (𝛽 − 1)(

𝑟𝑡−𝑐𝑡
𝛽 )

𝛽
𝛽−1

𝑁𝑡𝑢
}

, the optimal 𝑥𝑖,𝑡 solves

𝑥∗
𝑖,𝑡 = (

1 − 𝛼
𝑟 𝑓 − 𝜇𝑡 − Γ𝑡)

1
𝛼

𝑁𝑡𝐴𝑡 . (13)

Note that 𝑁𝑡 is the share of circulating tokens, 𝑁𝑡 = 1 − Θ𝑡 . Combining with the market
clearing condition (11), the price 𝑃𝑡 satisfies

𝑃𝑡 =
(1 − Θ𝑡)𝑆𝑡𝐴𝑡

𝑄𝑡 (
1 − 𝛼

𝑟 𝑓 − 𝜇𝑡 − Γ𝑡)

1
𝛼

. (14)

Proposition 1. Equilibrium. With states of the productivity𝐴𝑡 , total token supply𝑄𝑡 and external
shock 𝑆𝑡 , the Markov equilibrium solves a unique pair of equilibrium staking ratio and reward rate
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(Θ∗
𝑡 , 𝑟∗𝑡 ) from (10) and

Θ∗
𝑡 =

(
𝑟∗𝑡 −𝑐𝑡
𝛽 )

1
𝛽−1

𝑢

1 + (
𝑟∗𝑡 −𝑐𝑡
𝛽 )

1
𝛽−1

𝑢
, (15)

which ensures (10) to be a fixed-point problem, Θ∗
𝑡 = Θ∗(𝐴𝑡) < 1. (14) uniquely solves 𝜇∗𝑡 as a

function of (𝑃𝑡 , 𝐴𝑡 , 𝑄𝑡 , 𝑆𝑡).

Proposition 1 ensures that the economy has a Markov equilibrium with (𝐴𝑡 , 𝑄𝑡 , 𝑆𝑡) as states.
Whereas 𝑄𝑡 is certain given the emission policies, 𝑆𝑡 reflects outside uncertainty, and 𝐴𝑡 repre-
sents the lifecycle of the platform development.

3.1 Rewards and Staking Activities

As mentioned in Section 2.3, the equilibrium staking status (Θ∗
𝑡 , 𝑟∗𝑡 ) is determined by the stak-

ing reward ratio 𝜌𝑡 , which is to some extent under the platform’s control. By solving (10) and (15),
it is straightforward to see that a higher 𝜌𝑡 incentivizes staking, as formulated by Proposition 2.

Proposition 2. Staking. The staking reward ratio 𝜌𝑡 and equilibrium staking ratio Θ∗
𝑡 satisfy

𝜌𝑡 = Θ∗
𝑡 [
𝛽(

Θ∗
𝑡

(1 − Θ∗
𝑡 )𝑢)

𝛽−1

+ 𝑐𝑡]
. (16)

In particular, a greater staking reward ratio leads to both greater Θ∗ and 𝑟∗, i.e. ∀𝜌′ > 𝜌 > 0,

Θ∗(𝜌′) > Θ∗(𝜌), 𝑟∗(𝜌′) > 𝑟∗(𝜌), (17)

therefore a greater equilibrium staking ratio is associated with a greater equilibrium reward rate.

Proposition 2 gives a general characterization of how aggregate staking reward affects stak-
ing ratio in equilibrium. Recall that there are two sources of staking rewards for incentivizing
staking activities. First, the platform can adopt a higher emission rate. This effect can be in-
terpreted as an inflation tax charging on the non-staked parts: emission causes a depreciation
expectation of the token price. The tradable tokens earn agents transaction convenience but suf-
fer the depreciation, while the staked tokens are compensated by the emission reward. If we
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allow agents to be heterogeneous in staking levels, as discussed later in Section 4.4, the emis-
sion will cause a wealth redistribution from transaction-focused agents (typically retail users) to
investment-focused agents (typically node operators, big whales). This shares a similar spirit of
John, Rivera, and Saleh (2022) who show staking redistributes wealth from short-term users to
long-term users.

Second, a greater transaction fee paid as rewards can incentivize staking. The fee policy nat-
urally relates to platform development, as developed platforms are likely to be able to process
numerous transactions without congestion, thus charge a low fee. On the other hand, startup
platforms with relatively low productivity provide low transaction convenience, forcing agents
to move to stake pools. Therefore, the staking ratio decreases in the lifecycle of platform devel-
opment. Section 4 provides more discussions on issues concerning platform lifecycle.

Proposition 2 also implies that a higher equilibrium staking ratioΘ is associated with a greater
equilibrium reward rate 𝑟 , as they jointly represent a greater 𝜌. This relationship also applies to
cross-sectional comparisons between tokens. In addition, in practice, it takes time to achieve an
equilibrium. The fixed-point problem indicates that a higher 𝑟 (relative to the equilibrium) leads
to an increase in the staking ratio, while the higher staking ratio then decreases 𝑟 in the short
run, and ultimately reaches a new equilibrium. Regarding these implications, we formalize the
following testable hypotheses:

Hypothesis 1. Determinants of the staking ratio.
H1a: a higher staking reward ratio 𝜌 is associated with a higher staking ratio Θ;
H1b: a higher share of wealthy investors is associated with a higher staking ratio Θ;
H1c: a higher reward rate 𝑟 predicts an increase in staking ratio Θ in the short term.

3.2 Staking Ratio & Price Dynamics

Consider the impact of staking activities on the price given by (14). First, staking ratio directly
enters the productivity drift 𝜇𝐴𝑡 , so it could endogenously determine 𝜇𝑡 . Second, 𝑃𝑡 is affected by
the scale of active network 𝑁𝑡 , which is endogenized by the staking ratio.

We formally derive the pricing formula with endogenous staking ratio. By Proposition 1, 𝜇𝑡
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is a function of (𝑃𝑡 , 𝐴𝑡 , 𝑄𝑡 , 𝑆𝑡). Applying Itô’s Lemma to 𝑃𝑡 = 𝑃(𝐴𝑡 , 𝑄𝑡 , 𝑆𝑡), we have

d𝑃𝑡 = [
𝜕𝑃𝑡
𝜕𝐴𝑡

𝐴𝑡𝜇𝐴𝑡 +
𝜕𝑃𝑡
𝜕𝑄𝑡

𝑄𝑡𝐸𝑡 +
𝜕𝑃𝑡
𝜕𝑆𝑡

𝑆𝑡𝜇𝑆 +
1
2
𝜕2𝑃𝑡
𝜕𝐴2

𝑡
(𝐴𝑡𝜎𝐴

𝑡 )
2 +

1
2
𝜕2𝑃𝑡
𝜕𝑆2𝑡

(𝑆𝑡𝜎𝑆)2] d𝑡

+
𝜕𝑃𝑡
𝜕𝐴𝑡

𝐴𝑡𝜎𝐴d𝑍𝐴
𝑡 +

𝜕𝑃𝑡
𝜕𝑆𝑡

𝑆𝑡𝜎𝑆d𝑍𝑆
𝑡 .

(18)

Substituting into (2), we obtain

𝜇𝑡 =
1
𝑃𝑡 [

𝜕𝑃𝑡
𝜕𝐴𝑡

𝐴𝑡𝜇𝐴𝑡 +
𝜕𝑃𝑡
𝜕𝑄𝑡

𝑄𝑡𝐸𝑡 +
𝜕𝑃𝑡
𝜕𝑆𝑡

𝑆𝑡𝜇𝑆 +
1
2
𝜕2𝑃𝑡
𝜕𝐴2

𝑡
(𝐴𝑡𝜎𝐴

𝑡 )
2 +

1
2
𝜕2𝑃𝑡
𝜕𝑆2𝑡

(𝑆𝑡𝜎𝑆)2] . (19)

Combined with the market clearing condition (14), a simple manipulation yields a partial differ-
ential equation (PDE) of 𝑃𝑡 = 𝑃(𝐴𝑡 , 𝑄𝑡 , 𝑆𝑡),

0 =
𝜕𝑃𝑡
𝜕𝐴𝑡

𝐴𝑡𝜇𝐴(Θ(𝐴𝑡)) +
𝜕𝑃𝑡
𝜕𝑄𝑡

𝑄𝑡𝐸𝑡 +
𝜕𝑃𝑡
𝜕𝑆𝑡

𝑆𝑡𝜇𝑆 +
1
2
𝜕2𝑃𝑡
𝜕𝐴2

𝑡
(𝐴𝑡𝜎𝐴

𝑡 )
2 +

1
2
𝜕2𝑃𝑡
𝜕𝑆2𝑡

(𝑆𝑡𝜎𝑆)2

+ [Γ(𝐴𝑡) + (1 − 𝛼)(
(1 − Θ(𝐴𝑡))𝑆𝑡𝐴𝑡

𝑃(𝐴𝑡 , 𝑄𝑡 , 𝑆𝑡)𝑄𝑡 )

𝛼

− 𝑟 𝑓 ] 𝑃(𝐴𝑡 , 𝑄𝑡 , 𝑆𝑡).
(20)

The pricing formula (20) differs from a Black-Scholes-type PDE. First, the “theta” term in
Black-Scholes (BS) equation, which reflects the variation of the derivative value over time, is
absent, as there is no maturity. Instead, 𝜕𝑃𝑡

𝜕𝑄𝑡
𝑄𝑡𝐸𝑡 captures the impact of expected inflation from

token issuance. Second, since the platform productivity 𝐴𝑡 is not a tradable underlying asset,
the coefficient of 𝜕𝑃𝑡

𝜕𝐴𝑡
is 𝐴𝜇𝐴 instead of the stochastic discount factor 𝐴𝑟 𝑓 , and similarly for 𝜕𝑃𝑡

𝜕𝑆𝑡
.

Finally, there is a “flow” term, [Γ(𝐴𝑡) + (1 − 𝛼)(
(1−Θ(𝐴𝑡 ))𝑆𝑡𝐴𝑡
𝑃(𝐴𝑡 ,𝑄𝑡 ,𝑆𝑡 )𝑄𝑡 )

𝛼
− 𝑟 𝑓 ] 𝑃(𝐴𝑡 , 𝑄𝑡 , 𝑆𝑡), that reflects the

excess gain from staking rewards and transaction convenience offsetting the staking cost and loss
of numéraire convenience.

(20) is also comparable to the token pricing formula in Cong, Li, and Wang (2021b) (CLW)
with the following distinctions related to staking. First, staking reshapes the flow term: staking
rewards yield an additional flow, Γ𝑡 , and staking ratio affects the flow from transaction conve-
nience, (1 − 𝛼)(

(1−Θ𝑡 )𝑆𝑡𝐴𝑡
𝑃𝑡𝑄𝑡 )

𝛼
. Given that the flow term is a unique feature of token pricing in

CLW, reflecting how platform adoption is priced, staking activities fundamentally drive token’s
valuation by affecting adoption incentives. Second, staking also directly contributes to platform
development, represented by the endogenized 𝜇𝐴(𝐴𝑡). In addition, there are two differences aris-
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ing from model settings. (i) Staking rewards partially come from token issuance. This motivates
us to consider a dynamic token supply d𝑄𝑡 , which is kept constant in CLW; (ii) Whereas CLW
focuses on the network effect, represented as an endogenous adoption scale in the transaction
convenience, here 𝑆𝑡 can account for an adoption scale exogenously affected by demand shocks.17

The PDE in (20) captures the token price trajectory, while it still needs additional restrictions
based on economic intuition to obtain a unique price dynamic from the solution manifold. Con-
sider the impact of token supply. The drift of 𝑄𝑡 affects the total onchain wealth, as it induces
inflation. However, as agents decide onchain allocations according to the worth in numéraire
(e.g., treat one $2 token as equal to two $1 tokens), their onchain wealth should be independent
of the Markovian state 𝑄𝑡 , the number of tokens. Similarly, note that the Markovian state 𝑆𝑡 en-
ters the agent’s optimized utility solely as a linear multiplier of transaction benefits: the greater
the aggregate external demand shock is realized, the more wealth is allocated onchain accord-
ingly. Then the onchain worth scaled by 𝑆𝑡 should be independent of 𝑆𝑡 .18 Denote 𝑊𝑡 = 𝑃𝑡𝑄𝑡

𝑆𝑡
, then

the above two observations indicate 𝜕𝑊𝑡
𝜕𝑄𝑡

= 𝜕𝑊𝑡
𝜕𝑆𝑡

= 0.
Consider the boundary conditions. A useless platform (𝐴𝑡 → 0) attracts no adopters, and the

token should have no value. Therefore,

lim
𝐴𝑡→0

𝑃(𝐴𝑡 , 𝑄𝑡 , 𝑆𝑡) = 0, ∀𝑄𝑡 > 0, 𝑆𝑡 > 0. (21)

When the platform productivity 𝐴𝑡 is sufficiently large, the token price follows the Gordon
Growth Formula with a constant price drift lim𝐴𝑡→∞ 𝜇𝑡 = �̃�𝑡 . Since 𝜌′(𝐴𝑡) < 0 and 𝜌 > 0, Θ(𝐴𝑡)
converges to a certain Θ̃𝑡 ∈ (0, 1). Then Γ𝑡 = Γ̃𝑡 is also constant. Therefore, we have an asymptotic
boundary condition as 𝐴𝑡 → ∞,

lim
𝐴𝑡→∞ [

𝑃(𝐴𝑡 , 𝑄𝑡 , 𝑆𝑡) −
(1 − Θ̃𝑡)𝑆𝑡𝐴𝑡

𝑄𝑡 (
1 − 𝛼

𝑟 𝑓 − Γ̃𝑡 − �̃�𝑡)

1
𝛼

]
= 0, ∀𝑄𝑡 > 0, 𝑆𝑡 > 0. (22)

Proposition 3. Token pricing formula. The token price is uniquely solved by 𝑃𝑡 = 𝑊𝑡𝑆𝑡/𝑄𝑡

with boundary conditions (21) and (22), ∀𝐴𝑡 , 𝑄𝑡 , 𝑆𝑡 > 0, where 𝑊𝑡 = 𝑊 (𝐴𝑡) satisfies the following
17For example, sentiments. If we allow 𝑆𝑡 to be a function of 𝐴𝑡 , we can endogenize sentiments somewhat, though

it is not our focus.
18Technically, these two intuitions add a Markov property that the equilibrium token price is Markovian in 𝐴𝑡 , 𝑄𝑡

and 𝑆𝑡 separately. In Appendix A, we provide further discussion of this property.
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ordinary differential equation (ODE):

0 = 𝑊 ′(𝐴𝑡)𝐴𝑡𝜇𝐴(𝐴𝑡) +
1
2
𝑊 ′′(𝐴𝑡)(𝐴𝑡𝜎𝐴)2

+ [Γ(𝐴𝑡) + (1 − 𝛼)(
𝐴𝑡(1 − Θ(𝐴𝑡))

𝑊 (𝐴𝑡) )

𝛼

− 𝐸𝑡 + 𝜇𝑆 − 𝑟 𝑓 ]𝑊 (𝐴𝑡).
(23)

The economic implications of (23) are similar to the discussion of (20). In particular, the
agents’ response to the expected inflation, 𝐸𝑡 , is reflected as a negative flow term of the onchain
wealth, whereas the expected external demand drift 𝜇𝑆 generates a positive flow. Proposition 3
also indicates the uniqueness of the whole system, which allows for further numerical explo-
ration. We plot the joint dynamics of the equilibrium staking ratio Θ𝑡 and expected price appre-
ciation 𝜇𝑡 with 𝐴𝑡 as the state variable in Figure 1, which shows Θ𝑡 and 𝜇𝑡 are positively related.
Since the staking ratio can be computed from onchain information, it helps predict price changes.

Figure 1: Staking ratio and price dynamics.
This graph shows the joint relationship between the system staking ratio Θ𝑡 and the price drift 𝜇𝑡 . The blue curve is
the case where the staking ratio feeds back the platform productivity 𝐴𝑡 process (the main model), while the orange
curve shows the case for comparison where the feedback effect does not exist.

The positive relationship between Θ𝑡 and 𝜇𝑡 is driven by two economic forces. First, there is
an adoption effect directly from the productivity 𝐴𝑡 . On the one hand, 𝜇𝑡 decreases in 𝐴𝑡 . As 𝐴𝑡

grows, agents allocate more wealth on the platform, thus the potential future inflow is reduced,
and so does the lower expected price appreciation. Mathematically, this effect is represented as
the greater “flow” term in the ODE (23) lowering the derivatives that make up 𝜇𝑡 . On the other
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hand, Θ𝑡 also declines in𝐴𝑡 in equilibrium, because higher𝐴𝑡 results in greater transaction conve-
nience compared to staking rewards. Therefore, the joint dynamics of 𝜇𝑡 and Θ𝑡 exhibit a positive
relationship. Such force does not rely on the feedback mechanism but in general a phenomenon
from market participation, so we can see from Figure 1 that even without the feedback effect (the
orange curve), 𝜇 and Θ are positively related. In addition, staking reduces the active network
scale (or the onchain liquidity) 𝑁𝑡 , therefore a higher staking ratio slightly reduces the aggregate
onchain wealth allocation, amplifying the above joint relationship. This channel generates the
similar user-base stabilizing effect of tokens as discussed in Cong, Li, and Wang (2021b).

The second is the feedback effect of staking on the 𝐴𝑡 process. As (1) shows, a high staking
ratio increases the productivity drift 𝜇𝐴𝑡 , and then leads to a large price drift 𝜇𝑡 . This force accounts
for the role that staking plays in platform growth. In PoS, the system state with a relatively high
staking ratio implies a strong network of highly engaged validators, so that the consensus and
confirmation are efficiently reached. As for high-layer staking economy such as DeFi applications,
with a certain capital value, a high staking ratio relates to a high TVL (total value locked), which
is recognized as improving the security level of the platform. For both layers of the staking
economy, the staking ratio positively impacts the growth of platform productivity 𝐴𝑡 through
the above-mentioned paths respectively, therefore resulting in a greater drift. As a reflection of
the value of the platform, the price drift increases according to Itô’s Lemma (19).

In practice, the way that staking contributes to the platform varies across blockchains and
platforms, and may lack transparency and stability. However, with the combination of both the
adoption and feedback mechanisms, we conclude the following general predictions.

Hypothesis 2. The predictability of the staking ratio on price appreciation.
H2a: the staking ratio Θ positively predicts token returns.
H2b: a long-short token portfolio sorted by staking ratios is profitable.

Furthermore, external shock 𝑆𝑡 , which captures risk factors and behavioral patterns in prac-
tice, influences price as a sentiment shifter rather than as a direct component of the ODE (23).
This helps explain why sother risk cannot fully account for the predictability of staking ratio.

3.3 UIP Violation and Crypto Carry

From Sections 3.1 and 3.2, we note that the staking ratio connects the staking reward rate
and price appreciation. While staking reward rates function similarly to deposit interest rates,
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token price changes resemble exchange rate fluctuations against the numéraire. This analogy
allows us to draw insights from research on the foreign exchange market to better understand
the implications of staking dynamics.

Denote the financial excess return of unit staked token over the numéraire by 𝜆𝑡 ,

E𝑡 [𝜆𝑡] ≡ E𝑡 [d𝑃𝑡 + 𝑃𝑡(𝑟 staked token − 𝑟 𝑓 )] /𝑃𝑡 = 𝜇𝑡 + 𝑟𝑡 − 𝑐𝑡 − 𝑟 𝑓 . (24)

If UIP holds in the crypto market — meaning that the expected returns on default-free deposits
across currencies are equalized — then E𝑡 [𝜆𝑡] should be zero. In other words, E𝑡 [𝜆𝑡] should
not be predictable by observable variables. However, consider an agent who stakes tokens to
maximize financial excess returns. She faces a trade-off: while staking provides financial returns,
it also comes at the cost of losing the convenience of holding the numéraire or liquid tradable
tokens. Then the staking reward should not only offset the price changes, but also cover the
convenience loss. This implies that E𝑡 [𝜆𝑡] is positive, reflecting the convenience wedge between
holding tokens versus the numéraire, which violates the UIP, a phenomenon in conventional
assets (e.g., Krishnamurthy and Vissing-Jorgensen, 2012; Valchev, 2020; Jiang, Krishnamurthy,
and Lustig, 2021).

Here the fiat numéraire (e.g., US dollar) is the local currency and the platform token is the
foreign currency. By adopting any other cryptocurrency as the numéraire, we can verify that the
UIP violation is not restricted to fiat-crypto relationships but also exist across digital assets.

What makes the UIP violation of stakable tokens special compared to that in other markets?
The convenience wedge here is endogenously affected by the staking ratio and therefore pre-
dictable. Recall Proposition 2, a higher equilibrium staking ratio corresponds to a greater reward
rate 𝑟𝑡 . Meanwhile, Section 3.2 shows that a higher staking ratio predicts higher price apprecia-
tion 𝜇𝑡 . As a result,

E𝑡 [𝜆𝑡 |Θ′
𝑡] > E𝑡 [𝜆𝑡 |Θ𝑡] , provided Θ′

𝑡 > Θ𝑡 , (25)

which is a stronger version of the UIP violation. In particular, staked tokens differ fundamentally
from fixed deposits in several key ways. First, the reward rate is automatically and continuously
adjusted based on aggregate staking activity; Second, the bank does not prioritize pricing the fiat
money, while the platform actively prices the tokens. Importantly, since staking participation is
endogenously influenced by token emission and fee policies, the platform is somewhat able to
manipulate the convenience wedge. This makes the staking mechanism extremely critical in a
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tokenized economy.
The violated UIP leads to a direct corollary of profitable carry trades.19 Following Koijen et al.

(2018), the crypto carry is similarly defined as the currency carry:

carry𝑡 ≡
𝑟𝑡 − 𝑐𝑡 − 𝑟 𝑓

1 + 𝑟 𝑓
. (26)

In summary, the predictability of staking ratios on excess returns implies:

Hypothesis 3. UIP violation and crypto carry premium.
H3a: the uncovered interest rate parity (UIP) is violated among stakable tokens.
H3b: crypto carry trade strategies are profitable.
H3c: carry predicts excess return in tokens.

4 Platform Lifecycle: Fees, Emission, and Heterogeneity

We next examine how transaction fees, emission policies, and user heterogeneity affect the
staking economy and the platform lifecycle.

4.1 Platform Lifecycle and the Convenience Wedge

Staking reward rates and token price changes are jointly influenced by the platform produc-
tivity, and are interconnected through endogenous staking participation. Staking in turn feeds
back to the productivity drift. This suggests that the platform has the ability to shape its devel-
opment lifecycle by adjusting staking incentives.

When platform productivity is low, staking requires significant financial compensation due to
the convenience loss relative to the numéraire. To provide sufficient incentives, the platform may
increase token issuance, which inevitably devalues the token price. As token holders shift their
allocations from transactions to staking, the future reward rate declines, while the convenience
wedge increases. For staking to remain viable, price appreciation from staking participation must

19In the exchange market, a carry trade goes long in baskets of currencies with high interest rates and short in low
ones. In general, the concept of carry applies to a host of asset classes, e.g., equities, bonds, commodities, treasuries,
credits, and options (Koijen et al., 2018). Its predictability of excess returns and investment performance are widely
documented and studied (e.g., Lustig, Roussanov, and Verdelhan, 2014; Bakshi and Panayotov, 2013; Burnside et al.,
2011; Menkhoff et al., 2012; Koijen et al., 2018; Daniel, Hodrick, and Lu, 2017).
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offset the convenience loss. As discussed in Section 3.2, this mechanism relies on two driving
forces: the adoption effect and the feedback effect, without which the staking economy is unsus-
tainable. In other words, a staking project is likely a scam if it lacks both a network-effect-driven
business model and a mechanism through which staking directly contributes to platform growth.

When platform productivity is high, the convenience wedge is minimal, and transaction usage
dominates onchain allocations. At different stages, the platform may adjust staking incentives
over time to manage different phases of its lifecycle. Due to the endogenous contribution of
staking, such adjustments also influence the pace of the platform’s development and its long-
term sustainability.

4.2 Transaction Fees

Transaction fees can be treated as a direct cash flow from platform users to stakers (validators
or operators). Productive (well-developed) platforms typically feature lower transaction fees,
while the platform retains some discretion in setting its fee policy.20

Figure 2: Platform lifecycles under different transaction fee policies.
Panel (a) shows the relationship between log productivity log(𝐴) and productivity drift 𝜇𝐴; Panel (b) shows the
relationship between staking ratio Θ (%) and expected price appreciation 𝜇. The blue curves represent the baseline
(the same case as the blue curve in Figure 1), while the orange curves correspond to the case where the transaction
fee 𝐹(𝐴) changes (decreases) more smoothly with 𝐴, i.e., the fee starts to decrease earlier but at a lower speed as the
platform grows.

20For example, Layer-2 scaling is considered a critical improvement that significantly reduces transaction costs
and alleviates network congestion.
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Figure 2 considers an alternative fee specification from the baseline. To focus on fee changes
within the platform cycle, we set the maximum (minimum) fee when the platform productivity
is extremely low (high) as constant and independent of the platform’s decision. A smoother fee
change (shown in orange curves) refers to that as the platform grows, the fee starts to decrease
earlier but at a lower speed. Panel (a) shows a more gradual platform development lifecycle under
a smoother fee adjustment. This is because the staking ratio becomes less sensitive to productivity
fluctuations, which also implies a more stable active network scale. As Panel (b) shows, changes
in fee policies can alter both the quantitative relationship and convexity between the staking
ratio and price appreciation. For instance, when the equilibrium staking ratio declines to 75% as
the platform evolves, a platform with smoother fee adjustments experiences slower growth and,
consequently, lower productivity. However, due to the adoption effect, the platform still generates
greater expected price appreciation compared to a platform with a more abrupt fee reduction. In
this sense, the choice of fee policies reflects the platform’s strategic priorities during its lifecycle,
particularly in the early stages. A platform may prioritize either a large and relatively stable active
user base or rapid productivity growth, depending on how it structures its fee adjustments.

4.3 Token Issuance

Staking rewards also come from newly issued tokens (emission). In addition to the similar
mechanism as in fee changes, token issuance has a direct impact on the price by generating
expected inflation. That is, token issuance represents an inflation tax paid by users to stakers.

Figure 3 shows the platform lifecycles under different token issuance designs. As Panel (a)
shows, compared to the benchmark blue curve, a higher emission rate (shown by the orange
curve) always leads to a higher productivity drift, as it provides stronger incentives for staking.
In particular, token issuance provides a stronger toolkit than fee policies when the platform pro-
ductivity is large enough, at which stage fee changes have a diminished impact because fees are
generally too low to make a significant difference. As Panel (b) shows, the higher emission rate
always leads to lower price appreciation, as it generates greater inflation. Meanwhile, the equilib-
rium staking ratio increases, as agents stake more in response to the higher inflation tax relative
to that in the benchmark.

In addition, the platform can design a more complex issuance policy, probably dynamic over
the lifecycle, e.g., decreasing with the platform productivity, as shown by the red curves. Higher
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Figure 3: Platform lifecycles under different token issuance designs.
Panel (a) shows the relationship between log productivity log(𝐴) and productivity drift 𝜇𝐴; Panel (b) shows the
relationship between staking ratio Θ (%) and expected price appreciation 𝜇. The blue curves represent the baseline
constant emission rate (the same case as the blue curve in Figure 1). The orange curves show the case with a greater
emission rate. The red curves show an issuance design where the emission rate mechanically decreases in platform
productivity.

emission in the initial stage accelerates user adoption, while decreasing emission as the platform
grows mitigates the impact of inflation.21

4.4 Staking Preference and User Heterogeneity

The agents’ staking preference 𝑢 affects their trade-off between participating in onchain ac-
tivities and staking. A greater 𝑢 reflects a higher tendency to stake or, equivalently, a lower
preference for onchain transaction needs. As Figure 4 (a) shows, given any fixed productivity,
platform with a lower staking tendency obtains lower expected price appreciation 𝜇. Recall the
adoption effect and feedback effect, a lower staking tendency leads to a smaller staking fraction
and a larger active user base, therefore reduces the platform’s contribution and lowers expected
future adoption. From another perspective, the lower price appreciation can also be interpreted as
the result of a lower staking level (locked share) reducing the liquidity premium under the same
transaction demand. As Panel (b) shows, a lower staking tendency results in an overall lower

21Here we do not discuss the optimal distribution strategy for the platform, especially over the full lifecycle, as
platforms may have various objectives. Jermann (2024) solves the optimal issuance for PoS tokens where the objective
is defined as the lifetime welfare produced by the platform.
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staking level that fluctuates within a narrower range, making price appreciation more sensitive
to changes in staking ratios.

Figure 4: Platform parameters under different aggregate user staking tendencies.
Panel (a) ((b)) shows the relationship between log productivity log(𝐴) (staking ratio Θ) and expected price apprecia-
tion 𝜇. The blue curves represent the baseline (the same case as the blue curve in Figure 1). The orange curves show
the case with a lower aggregate staking tendency 𝑢.

Furthermore, agents may have heterogeneous staking preference 𝑢𝑖 ≥ 0. For example, people
have a decreasing marginal consumption needs as their wealth increase. Then wealthier agents
are expected to have a higher staking preference. The heterogeneous optimal staking is:

𝜃∗
𝑖,𝑡 = min

{

1,(
𝑟𝑡 − 𝑐𝑡
𝛽 )

1
𝛽−1

𝑁𝑡𝑢𝑖

}

. (27)

When 𝑢𝑖 is sufficiently high, an agent chooses to specialize in staking without participating in
onchain transactions. Then the active network share 𝑁𝑡 is reduced relative to the homogeneous-
agent benchmark. This in turn incentivizes agents with low 𝑢𝑖 to reduce their staking levels.
As a result, this helps to rationalize why in practice, especially when platforms become large, a
division of labor emerges where large asset owners and exchanges dominate PoS validation and
earn staking revenues, while retail agents primarily function as pure platform users.

The above discussion uncovers interesting potential mechanisms related to wealth hetero-
geneity. Denote the cumulative distribution function of the staking preference 𝑢 over the agents
as 𝐺(𝑢). Since agents with equal 𝑢𝑖 are the same in every respect, an agent with greater initial
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wealth can be treated as a group of investors with the same 𝑢𝑖. Therefore, the shape of 𝐺 in a way
captures wealth and other related user heterogeneity. The derivation and general implications of
the Markov equilibrium in Section 3 still apply when considering 𝐺(𝑢) as an additional state.22

5 Data and Stylized Facts

5.1 Data on Stakable Tokens

To empirically examine Hypothesis 1, 2 and 3, we collect our main data from Stakingre-
wards.com, arguably the largest collector of information related to staking covering historical
and real-time data on most stakable assets. To ensure the representativeness of the sample and to
accommodate potential survivorship bias, we identify the major stakable tokens at two distinct
time points in 2020 and 2021, respectively, and track their data from July 2018 to November 2022.
The resulting dataset covers daily observations of 66 tokens including Ethereum 2.0, represents
the majority of the staking economy’s market cap, and contains early projects that have failed as
of 2022. Specifically, our sample set makes up 37.78% of the total cryptocurrency market capital-
ization by the end of 2021 (64.34% when excluding Bitcoin), and respectively consists 80.35% of
the PoS market and 97.88% of the DeFi market.23 The sample period covers the initial birth and
rapid growth of “staking,” as well as the bear market during 2022. Additional information about
staking is typically aggregated from the official websites of each token, including details of stak-
ing participation methods (see Online Appendix OA1), reward sharing rules, real-time staking
amount (staking ratio), etc.

Table 1 displays the summary statistics. In most analyses, we also aggregate the daily ob-
servations into weekly and monthly data. Panel B shows the large dispersion among tokens in
reward rate, staking participation, and price returns: the mean staking reward rate ranges from
0.02% to 75.39%, while the mean staking ratio ranges from 2.78% to 97.77%.

22A more general way to characterize wealth heterogeneity is to introduce the wealth distribution of the pop-
ulation. One can imagine that people present different wealth dynamics since they make heterogeneous staking
choices. We examine this complex system in a separate study, where the evolution of the wealth distribution and
agents’ dynamic staking decisions constitute a mean-field game.

23According to CoinMarketCap and StakingRewards. The sample set includes 48 base-layer pan-PoS protocols and
29 high-layer DeFi platform tokens. The two are not mutually exclusive as mentioned.
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Table 1: Summary statistics.
Panel A summarizes the main raw variables. Their token-grouped means and standard deviations of the raw daily
observations are calculated and summarized in Panel B.

Panel A: Raw variables.
Daily 7-Day 30-Day

N Mean Std.Dev N Mean Std.Dev N Mean Std.Dev

Reward Rate, 𝑟 (%, Annual) 41,003 13.42 17.78 5,867 13.28 16.05 1387 13.16 15.69
Reward Ratio, 𝜌 (%) 39,546 6.31 8.86 5,660 6.26 8.58 1339 6.20 8.47
Staking Ratio, Θ (%) 41,706 46.37 23.06 5,964 46.39 23.09 1415 46.36 23.13
Price Appreciation, 𝑟𝑝𝑟𝑖𝑐𝑒 (%) 43,114 -0.04 7.25 6,091 -0.34 22.93 1391 -2.13 54.42
Δ𝑟 40,788 -0.03 7.86 5745 -0.13 4.68 1,301 -0.51 8.76
ΔΘ 41,505 0.00 1.33 5851 0.03 3.37 1,333 0.03 6.25

Panel B: Group-summarized values.
N Mean Std.Dev Min 25% Median 75% Max

𝑚𝑒𝑎𝑛(𝑟), (%) 66 14.86 15.44 0.02 6.33 9.84 15.77 75.39
𝑠𝑑(𝑟), (%) 66 7.21 10.39 0.01 1.43 2.47 9.60 43.69
𝑚𝑒𝑎𝑛(Θ), (%) 65 44.05 22.22 2.78 27.26 44.22 59.61 97.77
𝑠𝑑(Θ), (%) 65 8.16 5.98 0.27 3.50 6.81 11.69 25.48
𝑚𝑒𝑎𝑛(𝑟𝑝𝑟𝑖𝑐𝑒), (%) 66 -0.01 0.50 -1.17 -0.23 0.04 0.15 2.72
𝑠𝑑(𝑟𝑝𝑟𝑖𝑐𝑒), (%) 66 6.76 3.05 3.89 5.53 6.25 6.80 23.88

5.2 Stylized Facts about Staking and Token Pricing

Aggregate trends. The shift of focus away from PoW and onto the PoS consensus algorithms
have been evident and timely.24 The PoS share has increased substantially over time from 5% in
Oct. 2019 to over 20% in Oct. 2021. As of Oct. 2021, the PoS market cap reached $326.775 Billion
with annual growth rate 1,550%, while the overall crypto market cap is up by 673%. The entire
staking economy has grown to over 4 million total users by the end of 2021. During our sample
period (2018-2022), the staking economy is known to have gone through a full bull/bear cycle
along with the cryptocurrency market.

Staking rewards and token price returns. The study of stakable tokens is related to inter-
national finance. Token price and staking reward rate can be compared to exchange rates and
interest rates. Figure 5 illustrates the excess return in the next week against the interest rate
spread calculated as the “foreign interest rate” minus the “local interest rate.” Each grey dot rep-
resents a weekly data point for a particular token and the blue line shows a linear fit. The upward

24According to 2021 Staking Ecosystem Report by StakingRewards.
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slope indicates that an increase in the foreign interest rate (relative to the local one) is associated
with an increase in the excess return on the token over the local currency, i.e., the crypto version
of the “UIP puzzle,” which is formally tested and discussed in Section 6.3.

Figure 5: Reward rate spread and token exchange rate.
This figure shows the relationship between the reward (interest) rate spread and the token excess return (exchange
rate and interest spread). We treat US dollar as local currency and the 1Y treasury interest (obtained from Fed) rate as
the local interest rate. Each dot in the a weekly data point for a particular token. The staking reward rate (annualized)
is treated as the foreign interest rate, and the x-axis, the interest rate spread, is calculated as the foreign interest rate
minus the local interest rate. The y-axis is the excess return in the next week, i.e., interest rate spread plus the price
appreciation. Panel A shows the whole sample set, whereas Panel B limits the interest rate spread to a relatively
common range (< 50%). The blue line shows linear fitting of the scatter points in each panel.

6 Empirical Findings

6.1 Linking Reward Rate and Wealth Concentration to Staking

To test (H1a), we first calculate the daily average of aggregate staking reward ratio �̄� and stak-
ing ratio Θ̄ for each token over its entire sample period. Figure 6 plots their pooling relationship,
in which each token generates one dot. The positive-sloped linear fit indicates that the reward is
positively related to the staking ratio. This pattern implicitly illustrates that averaging over the
time series roughly conforms to the equilibrium. The positive correlation still holds even with a
larger slope after removing high-influential points with �̄� > 15%. We also test the relationship
under earlier data coverage (up to Oct. 2020) in Panel B. Although there are fewer stakable to-
kens, the significant positive correlation still exists, suggesting the relationship is robust against
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sample periods.

Figure 6: Staking reward versus staking ratio.
This figure corresponds to (H1a), the relationship between staking reward ratio 𝜌 and staking ratio Θ. In Panel A,
each token generates one point by calculating its mean Θ and 𝜌 over the sample period. The size and color of the
points indicate the standard deviations of 𝜌 and Θ respectively. The gray dashed line is the linear fit. The blue line
is the fit after removing the influential points with �̄� larger than 15%. Panel B plots the same patterns under earlier
data coverage (up to Oct. 2020).

We further test (H1a) in panel regressions (Table 2). We use the staking ratio of token 𝑖 at
time 𝑡, Θ𝑖,𝑡 , as the dependent variable, and the staking reward ratio, 𝜌𝑖,𝑡 , as the main independent.
As Column (1) shows, the estimated coefficient implies a 10-percentage-points higher aggregate
reward ratio is associated with a 7.79-percentage-points (𝑠𝑒 = 1.90) higher staking ratio. After
inducing time-varying platform controls and investment-related controls, the corresponding esti-
mates decrease to about 3.7 points yet still significant. Monthly sample period and two-way fixed
effects are considered. As suggested by Petersen (2008); Abadie et al. (2017), we cluster standard
errors on both token and time dimensions together with the fixed effects, which addresses poten-
tial heterogeneity in the treatment effects. The positive correlation remains robust. Recall that
staking essentially acts as an inflation tax, i.e., facilitates redistribution from more usage-focused
adopters to richer or investment-focused adopters. A larger staking reward ratio corresponds to
a heavier tax and, forces lower usage preference.

The time-varying token-specific controls bring alternative intuitions in line with our model:
(i) the equilibrium staking ratio negatively relates to the platform productivity, captured by the

29



proxy variable 𝑎𝑖,𝑡 , since it increases transaction convenience with certain staking rewards;25 (ii)
the share of large-asset users (big whales), whale𝑖,𝑡 , positively relates to staking ratio. This links
to heterogeneity and (H1b), and will be discussed specifically later. In addition, token age is
a concern as it usually relates to reward designs. Incipient platforms may have not distributed
tokens to many agents, thus should be associated with lower staking. We capture age effects
by two dummies, NotLaunched𝑖,𝑡 and 𝑌 0

𝑖,𝑡 , which equal 1 when the token is in the stage before
and within one year of launching on exchanges, respectively. Table 2 corroborates the common
hypothesis relating to token age.

(H1a) focuses on contemporaneous correlations in equilibrium. As mentioned, it takes time
to achieve equilibrium in practice, then (H1c) expects the reward rate 𝑟 should predict future
staking ratio Θ in short terms (transition process). Also, when agents face multiple tokens, the
predictability could appear in the cross-section. Table 3 reports the tests for (H1c). We use the
change in staking ratio, ΔΘ𝑖,𝑡 = Θ𝑖,𝑡 − Θ𝑖,𝑡−1, as the dependent variable, and the previous reward
rate, 𝑟𝑖,𝑡−1, as the main independent. The estimated coefficients are all positive, implying that a
larger reward rate predicts a positive change in staking ratio, e.g., column (6) shows that if the
annual reward rate increases by one percentage point, the staking ratio will increase by 0.026
(𝑠𝑒 = 0.015) percentage points in the following week. This can be a large effect considering the
magnitude of the changes in the rewards rate in the staking economy. Previous staking ratio
Θ𝑖,𝑡−1 is controlled to capture the potential diminishing marginal effects. Time-varying platform
controls are also considered, which do not exhibit significant influences. This is reasonable since
the platform characteristics enter the equilibrium, but their impact on the transition process could
be complex. In addition, the statistical predictive power decreases as the time window expands.
This is partly due to the accumulation of noise over a longer time period. More importantly, the
longer period makes the predicted impact already reflected in the formation of new equilibrium.

Wealth concentration and aggregate staking. Agents may be heterogeneous in staking
preference. In particular, large-asset agents (whales) tend to stake more, implying that when
the tokens are more concentrated in whales, the equilibrium staking ratio would be higher. We
test this hypothesis (H1b) in columns (5) and (9) of Table 2, where the coefficients of whale𝑖,𝑡
are significantly positive. That is, concentration implies additional general tendencies to staking.

25The proxy variable of platform productivity 𝑎𝑖,𝑡 is measured as the average onchain transaction processing per
second. Appendix B discusses the choice of this proxy.
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Table 2: Staking ratio with respect to the staking reward ratio.
This table tests (H1a), i.e., a higher aggregate staking reward ratio 𝜌𝑖,𝑡 is associated with a higher staking ratio Θ𝑖,𝑡 , as
proved by the positive coefficients of 𝜌𝑖,𝑡 . Controls include token age, captured by two dummies, NotLaunched𝑖,𝑡 and
𝑌 0
𝑖,𝑡 , which equal 1 when the token is before, and within one year of launching on mainstream exchanges, respectively;

the proxy of platform productivity, a𝑖,𝑡 ; the value share of tokens held by big-asset accounts, Whale𝑖,𝑡 , the token
market cap, and price volatility. The positive estimated coefficients of Whale𝑖,𝑡 additionally proves (H1b), i.e., a
higher share of large investors is associated with a higher staking ratio Θ𝑖,𝑡 . Token and time effects are fixed. Sample
sets with different horizons (weekly and monthly) are tested. Standard errors clustered in both token and time
dimensions in parentheses. ∗∗∗,∗∗,∗ indicate statistical significance at the 1%, 5% and 10% respectively.

Dependent: StakingRatio𝑖,𝑡
(1) (2) (3) (4) (5) (6) (7) (8) (9)

7-Day 30-Day

𝜌𝑖,𝑡 0.779∗∗∗ 0.428∗∗ 0.429∗∗ 0.360∗∗ 0.374∗∗ 0.794∗∗∗ 0.439∗∗∗ 0.413∗∗ 0.431∗∗
(0.190) (0.162) (0.161) (0.170) (0.173) (0.188) (0.155) (0.155) (0.173)

NotLaunched𝑖,𝑡 -0.076 -0.162∗∗ -0.183∗∗ -0.113∗∗ -0.130∗∗
(0.064) (0.063) (0.064) (0.053) (0.051)

𝑌 0
𝑖,𝑡 0.004 -0.059 -0.073 -0.028 -0.042

(0.030) (0.047) (0.045) (0.038) (0.037)
a𝑖,𝑡 -0.747∗∗∗ -0.417∗∗ -0.623∗∗∗ -0.415∗∗∗

(0.158) (0.159) (0.143) (0.098)
1
100 log(Cap)𝑖,𝑡 1.686 1.991 1.124 1.582

(1.756) (1.719) (1.843) (1.809)
1
100Volatility𝑖,𝑡 0.236 0.328 1.590 0.965

(0.344) (0.397) (1.806) (1.459)
Whale𝑖,𝑡 0.217∗∗∗ 0.171∗∗

(0.071) (0.075)

Token FE Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes
Observations 5,660 5,660 5,660 1,364 1,364 1,339 1,339 308 308
R2 0.088 0.811 0.812 0.917 0.920 0.089 0.801 0.929 0.931

Importantly, if staking benefits the platform in a fundamental way (such as enhancing network
security), wealth concentration may not be all bad — large stakeholders are more interested in
becoming facilitators of the platform’s services than pure users. Agents, on the other hand, may
have incentives to pursue larger usage benefits at the cost of more concentration, as discussed in
Section 4.4. In practice, staking/voting pools for prominent platforms are often backed by large
exchanges and foundations, which is consistent with the findings here.
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Table 3: Staking ratio with respect to the staking reward rate.
This table tests (H1c), i.e., staking reward rate positively predicts staking ratio. The dependent is the change of
staking ratio, ΔStakingRatio𝑖,𝑡 , and the main independent is the reward rate in the previous period, r𝑖,𝑡−1. Controls
include token age, proxy of previous platform productivity, previous percentage of tokens held by big-asset accounts
that are similar in previous tables, and previous staking ratio, StakingRatio𝑖,𝑡−1 that capturing potential diminishing
marginal effect. Token and time effects are fixed. Sample set with different horizons (weekly and monthly) are tested.
Standard errors clustered in both token and time dimensions in parentheses. ∗∗∗,∗∗,∗ indicate statistical significance
at the 1%, 5% and 10% respectively.

Dependent: ΔStakingRatio𝑖,𝑡
Daily 7-Day 30-Day

(1) (2) (3) (4) (5) (6) (7) (8) (9)

r𝑖,𝑡−1 0.002∗∗∗ 0.003∗∗∗ 0.001∗∗ 0.001∗∗ 0.002∗ 0.026∗ 0.030 0.049∗∗ 0.006
(0.000) (0.001) (0.001) (0.001) (0.001) (0.015) (0.024) (0.020) (0.019)

StakingRatio𝑖,𝑡−1 -0.009∗∗∗ -0.009∗∗∗ -0.016∗∗∗ -0.103∗∗∗ -0.294∗∗∗
(0.002) (0.002) (0.004) (0.028) (0.057)

NotLaunched𝑖,𝑡 -0.001 -0.002∗ -0.009 -0.029
(0.001) (0.001) (0.006) (0.021)

𝑌 0
𝑖,𝑡 0.000 -0.001 -0.006 -0.012

(0.000) (0.001) (0.005) (0.016)
a𝑖,𝑡−1 0.005 0.018 0.046

(0.006) (0.047) (0.107)
Whale𝑖,𝑡−1 0.003 0.019 -0.002

(0.002) (0.011) (0.036)

Token FE Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 39,359 39,359 39,359 39,359 10,636 5,559 1,511 1,266 344
R2 0.0006 0.043 0.049 0.049 0.172 0.063 0.197 0.124 0.322

6.2 Staking Ratio and Token Price Dynamics

Table 4 reports the tests for (H2a), i.e., staking ratio positively predicts token price changes.
We calculate the log token price change, rprice𝑖,𝑡 = log( 𝑃𝑖,𝑡

𝑃𝑖,𝑡−1
), and regress it on the previous staking

ratio. We consider the cryptocurrency-market and token-size factors that have important im-
pacts on price changes as discussed in Liu, Tsyvinski, and Wu (2019). The estimated coefficient of
staking ratio is significantly positive, indicating that a higher staking ratio predicts larger token
price appreciation, e.g., column (4) shows that if the staking ratio of a token increases by one
percentage point, its price will appreciate by 6.6 basis points (0.06%, 𝑠𝑒 = 0.023%) in the next
week. Recall the large variation in the staking ratio, this effect can have a large impact on price.
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Table 4: Staking ratio and token price.
This table tests (H2a), i.e. staking ratio predicts token price appreciation. The dependent 𝑟price𝑖,𝑡 is the log price
change. The main independent is the staking ratio in the previous period, StakingRatio𝑖,𝑡−1. Controls include the
market return 𝑀𝐾𝑇𝑡 , the log market cap log(Cap)𝑖,𝑡−1, the proxy of network adoption ΔNetwork𝑖,𝑡−1, the price return
of the previous period 𝑟price𝑖,𝑡−1, and rolling CAPM beta, 𝛽𝑖,𝑡 . Token characteristic controls include the token age,
platform productivity, capital share held by big-asset accounts. We also do the test in different time spans and
with token-specific and time fixed effects. Standard errors clustered in both token-specific and time dimensions in
parentheses. ∗∗∗,∗∗,∗ indicate statistical significance at the 1%, 5% and 10% respectively.

Dependent: 𝑟price𝑖,𝑡
Daily 7-Day 30-Day

(1) (2) (3) (4) (5) (6) (7) (8) (9)

StakingRatio𝑖,𝑡−1 0.009∗∗ 0.027∗∗∗ 0.022∗∗ 0.066∗∗∗ 0.172∗∗ 0.138∗ 0.208∗ 0.347∗ 0.372∗∗
(0.004) (0.007) (0.008) (0.023) (0.068) (0.071) (0.121) (0.197) (0.139)

𝑀𝐾𝑇 𝑡 0.968∗∗∗ 1.029∗∗∗ 0.844∗∗∗ 0.685∗ 2.445∗ 2.201
(0.031) (0.043) (0.264) (0.352) (1.435) (1.496)

𝛽𝑖,𝑡 -0.002 -0.037 -0.132
(0.002) (0.031) (0.104)

log(Cap)𝑖,𝑡−1 -0.002∗∗∗ -0.002∗∗ -0.005∗∗∗ -0.027∗∗∗ -0.031∗∗∗ -0.038∗∗∗ -0.120∗∗∗ -0.121∗∗∗ -0.113∗∗∗
(0.000) (0.001) (0.001) (0.006) (0.009) (0.009) (0.034) (0.043) (0.021)

𝑟price𝑖,𝑡−1 0.021 0.035 0.008 -0.075∗ 0.127∗ -0.076
(0.050) (0.060) (0.040) (0.042) (0.062) (0.074)

ΔNetwork𝑖,𝑡−1 0.167∗∗∗ 0.224∗∗∗ 0.195 0.366 0.992 0.996
(0.058) (0.068) (0.207) (0.259) (1.393) (1.216)

a𝑖,𝑡−1 0.047 0.069 0.603∗∗ 0.306 1.007 0.614
(0.030) (0.041) (0.258) (0.235) (0.825) (0.946)

Whale𝑖,𝑡−1 -0.010 -0.013 -0.006 -0.103 -0.179 -0.253
(0.009) (0.009) (0.086) (0.073) (0.341) (0.201)

NotLaunched𝑖,𝑡 -0.003 0.011∗∗∗ 0.075∗∗∗ 0.108∗∗ 0.119 0.159
(0.002) (0.004) (0.024) (0.040) (0.154) (0.126)

𝑌 0
𝑖,𝑡 0.002 0.007∗∗ 0.021 0.056∗∗ -0.073 0.114

(0.002) (0.003) (0.021) (0.020) (0.084) (0.107)

Token FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes
Observations 41,544 10,887 9,991 5,872 1,530 1,434 1,347 334 322
R2 0.267 0.346 0.478 0.043 0.054 0.507 0.120 0.207 0.640

This effect is robust against different time windows. Staking ratio has incremental predictive
power with more control variables that have been suggested to affect the token’s pricing in re-
cent studies, including platform controls (token age, productivity, and whale share) for possible
predictable price appreciation from platform characteristics, the previous returns for the poten-
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tial momentum, and onchain network effects, ΔNetwork𝑖,𝑡−1.26 To further consider the time-series
auto-correlation, we adopt two-way fixed effects regression in columns (3), (6), and (9), where
the estimated rolling CAPM 𝛽 captures the forces from market fluctuations. The estimated coef-
ficients remain significant and positive with two-way clustered standard errors.

Further discussion may lie in the heterogeneous predictive power of staking ratio across to-
kens categories and market sentiment. We test the same specification on multiple sub-samples,
including bull/bear sub-periods, pan-PoS/DeFi sub-samples in Appendix B. The estimated co-
efficients of Θ𝑖,𝑡−1 are all positive, among which only the bear-period exhibits lower statistical
significance. This suggests the positive relationship between staking ratio and expected price
appreciation to be a generally existing phenomenon in our sample.

Staking ratio and portfolio performance. As applications of such predictability, we also
examine the performance of Θ-sorting portfolio to test (H2b). The predictability of price appre-
ciation suggests that high staking ratio tokens should bring excess returns over the low ones.
We test it by creating a long-short strategy, that is, sort the tokens by their staking ratio by the
end of previous period, equal-weighted long the top 50% and short the bottom. The allocation is
adjusted every week. Figure 7 and Table 5 document that the portfolio provides relatively stable
positive cumulative returns with a Sharpe ratio of 0.865. To show that this is not another man-
ifestation of the size effect, we test the same sorted strategy within the large-cap and small-cap
token groups, respectively. The implication remains qualitatively robust. Table 5 suggests that
the large-cap group performs weaker. It is partly because the staking ratio of these tokens are
relatively low in general, and thus with smaller differences among each other. Considering the
limitations on shorting in practice, we also test the long-only strategies, i.e., borrow US dollars
and equal-weighted long top (bottom) 50% tokens sorted by staking ratio. The top group outper-
forms the bottom group, and also the full-sample benchmark.27

26It is measured by the lagged log differences in the total amount of addresses with non-zero balance on the
platform. As Cong et al. (2021a) discusses, cryptocurrency returns exhibit network adoption premia. The estimated
coefficient of the network adoption term is positive and consistent with prior research.

27We repeat this test using bitcoin denomination to cancel out the crypto market trend, the main results remain.
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Figure 7: Cumulative returns of staking ratio sorted portfolios.
Panel A shows the cumulative return of the long-short portfolio sorted by staking ratios. Panel B shows the strategy
that longs top 50% tokens with high staking ratios (in red solid line) and the bottom 50% tokens with low staking
ratios (in blue solid line). The portfolio construction is detailed in Section 6.2.

Table 5: Statistics of staking ratio sorted strategies.
This table reports the statistics of portfolio performance. The upper panel reports the results of the long-short carry
strategy, including long top 50% high staking ratio tokens and short bottom 50% across the full sample, i.e., corre-
sponding to Figure 7 Panel A, and same strategies but within top 50% large-cap and small-cap groups, respectively.
The lower panel reports equal-weighted long strategies, including the full-sample benchmark, long top 50% high
staking ratio tokens, and long bottom 50%. The portfolios are rebalanced each week. For each strategy, the annual-
ized mean, standard deviations, skewness, kurtosis, maximum drawdown (MDD) and Sharpe ratio are reported.

Strategy Mean St.dev. Skewness Kurtosis MDD Sharpe Ratio
(Annual, %) (Annual, %) (%) (Annual)

Long-short Strategy:
Full Sample 36.081 41.731 2.273 27.582 41.135 0.865
Within Large-Cap Group 18.575 56.857 5.881 104.942 70.057 0.327
Within Small-Cap Group 40.052 62.720 0.588 5.177 40.065 0.639

Long Strategy:
EW All assets 15.577 78.244 −1.576 7.672 92.934 0.199
EW High-Staking Ratio 22.873 80.737 −1.161 5.042 93.013 0.283
EW Low-Staking Ratio −13.207 79.823 −1.724 9.547 96.115 −0.165

6.3 UIP Violation and Crypto Carry

UIP violation. We test (H3a), i.e., whether UIP is violated, using the specification in Fama
(1984): define the excess return of token 𝑖 at 𝑡 as 𝜆𝑖,𝑡 = log 𝑃𝑖,𝑡+1 − log 𝑃𝑖,𝑡 + (𝑟𝑖,𝑡 − 𝑐𝑖) − 𝑟 𝑓𝑡 , and
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regress 𝜆𝑖,𝑡+1 on 𝑟 𝑓𝑡 − 𝑟𝑖,𝑡 + 𝑐𝑖 with coefficient 𝐵 and token fixed effects,28 where 𝑃𝑡 is the price in
local currency, 𝑟 𝑓 is the local interest. Under UIP, 𝐵 = 0, i.e. the excess return is not forecastable
by current interest rate differences. We examine different time horizons as Valchev (2020) does,
and use different assets as local, including US dollar, Bitcoin, Ethereum and stakable ETH 2.0.
Table 6 reports the findings. All results show significantly negative estimated 𝐵, implying that
a high interest rate predicts a positive appreciation of the exchange rate, leading to arbitrage
opportunities. We also use each single token as local currency, respectively. The regression results
(reported in Appendix B) suggest the violation of UIP also exists within the crypto market.

Table 6: Test of UIP violation.
This table tests (H3a), i.e., regressing excess returns on previous reward rate spread (with coefficient 𝐵) with token-
specific effects. In each row, we use a different asset as local currency and report the estimated coefficients and
standard errors (clustered by tokens) of 𝐵.

Local 7-day 30-day
Currency Coef., 𝐵 Std. Err. 𝑅2 Coef., 𝐵 Std. Err. 𝑅2

US Dollar −1.02 (0.044) 0.33 −1.12 (0.176) 0.11
Bitcoin −1.02 (0.034) 0.37 −1.08 (0.134) 0.11
Ethereum −1.04 (0.033) 0.37 −1.09 (0.126) 0.12
Eth 2.0 −1.04 (0.014) 0.42 −1.25 (0.059) 0.17

Crypto carry trades. UIP violations naturally prompt us to examine the predictability of crypto
carry to token excess return and the performance of the crypto carry trade portfolio (H3b). To-
kens in the asset pool are ordered by their carry in the previous period, and then divided into
the top 50% and the bottom 50%. A carry trade portfolio is constructed by going long high-carry
group with equal weight and going short low with equal weight at the end of each week. Long to-
kens are also staked to earn staking reward rates, while short tokens pays additional compensate
for the staking reward rate. The portfolio is rebalanced every week.29

Figure 8 plots the cumulative returns. Table 7 reports the statistics of these strategies. The
carry strategy has a significantly greater positive return and yields an annual Sharpe ratio of 1.60.

28While in practice, there are various ways to stake (e.g., delegating and running a node), which corresponds to
different reward rates and costs, the staking programs mostly feature delegation/voting (that our data correspond
to), which incurs negligible time-varying operational costs. We therefore assume 𝑐{𝑖,𝑡} for each token is constant (𝑐𝑖)
and eliminated by token-specific fixed effects.

29Most stakable tokens offer the flexibility of weekly staking or have derivatives that enable such an asset allo-
cation. Considering the abnormal fluctuation when a staking project first launches, our weekly asset pool does not
include new staking projects that appear within the past week.
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Since we long high carry and short low carry, the portfolio carry is always positive. If the portfolio
always achieves positive returns, it means that in the cross-section, assets with higher carry have
greater aggregate returns. For higher moments, the strong positive skewness is associated with
the currency carry trade shown by Brunnermeier, Nagel, and Pedersen (2008). Moreover, the
carry strategy exhibits excess kurtosis, indicating fat-tailed positive and negative returns, which
is consistent with Koijen et al. (2018)’s findings for currencies and commodities. The long-short
carry trade strategy exhibits relatively stable returns, especially considering the high volatility of
cryptocurrency markets and the bull/bear circle during 2020-2022.

Figure 8: Cumulative returns of long-short carry trade strategies.
This figure examines (H3b), i.e., crypto carry trade strategies are profitable. The red curve shows the cumulative
return of the main long-short carry strategies, i.e., long top 50% high carry tokens and short the bottom 50%. The
portfolio is rebalanced every week. The construction is detailed in Section 6.3. Compared to the red line, the gray
curve plots the strategy without earning or compensating staking rewards, and the blue curve shows the strategy
rebalanced every month.

We also report related strategies for comparison: (i) hold the same portfolio but without stake
(and not compensate for staking); (ii) apply the same strategy but rebalance every month; (iii)
considering the potential short-selling limits, examine the average return of equal-weighted full-
sample / (top 50%) high-carry / low-carry tokens. The non-staking strategy also yields positive
returns, implying that the excess returns are not only from carry (staking reward) also price ap-
preciation. Moreover, the monthly-rebalanced strategy exhibits fewer returns. There are two
explanations: (i) the reward rate decreases with contemporaneous staking ratio mechanically.
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Table 7: Statistics of carry trade strategies.
This table corresponds to (H3b) and reports the statistics of carry trade strategies. The first three rows report the
results of the long-short carry strategies as detailed in Section 6.3 and displayed in Figure 8. The rows below report
long strategies. Annualized mean, standard deviations, skewness, kurtosis, maximum drawdown (MDD), and Sharpe
ratio are reported.

Strategy Mean St.dev. Skewness Kurtosis MDD Sharpe Ratio
(Annual, %) (Annual, %) (%) (Annual)

Long-short Strategy:
1W-Carry Trade (Staking) 65.820 41.095 1.410 18.772 29.966 1.602
1W-Carry Trade (Non-staking) 52.497 41.104 1.404 18.719 35.920 1.277
1M-Carry Trade (Staking) 45.051 56.929 1.260 20.508 69.497 0.791

Long Strategy:
EW All assets 15.577 78.244 −1.576 7.672 92.934 0.199
EW High Carry 49.416 81.309 −1.103 4.687 90.419 0.608
EW Low Carry −16.404 80.444 −1.804 9.907 95.645 −0.204

Therefore, investors cannot consistently earn high carry over a long period without timely posi-
tion adjustments; (ii) the reversal of reward rate further influences the staking ratio, which then
weakens the effect on price appreciation. Finally, long-only strategies corroborate the carry pre-
mia: longing top 50% tokens with high carry outperforms the simple equal-weighted benchmark,
while the bottom 50% performs the worst. Their cumulative returns plotted in Appendix B ensure
the above observations.

Excess return predicted by carry. In (H3c), the return predictability can come from both the
crypto carry itself and any price appreciation that is related to or predicted by carry. We follow
Koijen et al. (2018) to regress the overall excess return on the previous carry. Table 8 reports the
estimations of the coefficient of carry, 𝐶. The results indicate that carry is a strong predictor of ex-
pected return. Without token-specific fixed effects, the estimated coefficient is approximately 1,
indicating that tokens with high staking reward rates neither relatively depreciate nor appreciate
on average. Hence, investors can earn the reward rate spread using carry trade. With token fixed
effect, the estimated 𝐶 become lower and even insignificant in monthly specifications.30 This sug-
gests time series carry predicts less expected return, which aligns with the staking mechanism

30Without token-specific and time-fixed effects, 𝐶 represents the total predictability of returns from carry from
both its passive and dynamic components. Token fixed effects will remove the predictable return component of carry
that comes from passive exposure to tokens with different unconditional average returns.
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in our model:31 despite higher reward rates leading to higher staking ratios and price appreci-
ations, there is a downward adjustment effect of the reward rate in the time series, where the
reward rate is automatically adjusted to account for the increase in staking ratios. Then excess
return is lowered by this adjustment. The downward adjustment becomes more pronounced as
the time window expands, even allowing the economy to reach a new equilibrium staking level.
Consequently, the estimated 𝐶 in Columns (6) and (8) are smaller than (2) and (4), respectively.
This reflects the consequence of the staking reward rate being determined by the competitive
equilibrium characterized in our model.

Table 8: Carry and excess returns.
This table tests (H3c). The dependent variable is the excess return, and the independent is the carry in the previous
period. Standard errors clustered in both token-specific and time dimensions in parentheses. ∗∗∗,∗∗,∗ indicate statis-
tical significance at the 1%, 5% and 10% respectively.

Dependent: ExcessReturn𝑖,𝑡

7-Day 30-Day
(1) (2) (3) (4) (5) (6) (7) (8)

Carry𝑖,𝑡−1 0.956∗∗∗ 0.901∗∗∗ 0.968∗∗∗ 0.917∗∗∗ 0.968∗∗∗ 0.773 1.009∗∗∗ 0.846∗∗
(0.053) (0.095) (0.042) (0.071) (0.296) (0.534) (0.216) (0.383)

Token FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Observations 5,745 5,745 5,745 5,745 1,301 1,301 1,301 1,301
R2 0.230 0.239 0.441 0.447 0.038 0.094 0.333 0.374

7 Conclusion

Staking has become a hallmark feature in many distributed networks involving trillions of
dollars. In addition to offering a convenience yield for transactions, blockchain-based tokens are
frequently staked for base-layer consensus generation or for incentivizing economic activities
in DeFi protocols and platform development, and consequently earn stakers rewards. We build
a dynamic model of a token-based economy where agents endogenously allocate wealth on a

31This phenomenon is similarly found in commodities (Koijen et al., 2018) with a different mechanism: when a
commodity has a high spot price relative to its futures price, implying a high carry, the spot price tends to depreciate
on average, thus lowering the realized return on average below the carry.
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digital platform and use tokens either to earn rewards or to transact. We solve for the equilibrium
with stochastic controls and both supply (i.e., productivity) and demand (i.e., investor sentiment)
shocks, and identify staking ratio as a fundamental variable linking staking to the endogenous
reward rate and token price. Data on stakable tokens corroborate our model predictions. The
staking ratio is proportional to the reward rates in the cross-section but negatively correlated to
reward rates in the time series; it positively predicts cryptocurrency returns. Furthermore, the
model rationalizes violations of the uncovered interest rate parity, and we document significant
related profitable trading strategies and crypto carry premia.

The framework can be explored further for studying the utilities of platform tokens. For
example, DeFi projects increasingly lock up both native and non-native tokens. Allowing multiple
tokens to be used within a network may cause the payment utility of native tokens to decline. But
stakable tokens entitle the holders to instead collect rewards (fees and subsidies), while providing
functionalities such as security or liquidity for the networks. Given that many platforms use
staking to foster adoption and demand, optimally designing the various utilities of tokens and
understanding their implications on token prices constitute interesting future research. Similarly,
despite our initial discussions on how fees and emissions affect platform lifecycle in the presence
of staking and potential user heterogeneity, it remains an open and important question how to
best design token supply policy, fee mechanisms, and staking protocols jointly.
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Appendix

A Proofs

Proof of Proposition 1. First, we prove that given 𝜇𝑡 and other state variables, (10) is a fixed-

point problem. Start from (12). If in (12), (
𝑟𝑡−𝑐𝑡
𝛽 )

1
𝛽−1

𝑁𝑡𝑢 ≥ 1 so that 𝜃∗
𝑖,𝑡 = 1, then Θ𝑡 = 1,

𝑟𝑡 = 𝜌𝑡 < ∞ and 𝑁𝑡 = 0, which generates a contradiction. Therefore,

Θ𝑡 = (
𝑟𝑡 − 𝑐𝑡
𝛽 )

1
𝛽−1

𝑁𝑡𝑢 ⇒ Θ𝑡 =
(

𝑟𝑡−𝑐𝑡
𝛽 )

1
𝛽−1

𝑢

1 + (
𝑟𝑡−𝑐𝑡
𝛽 )

1
𝛽−1

𝑢
. (A.1)

Combining with (10), a simple manipulation yields

𝜌𝑡 = Θ𝑡 [
𝛽(

Θ𝑡

(1 − Θ𝑡)𝑢)

𝛽−1

+ 𝑐𝑡]
. (A.2)

The LHS is constant given 𝐴𝑡 , while the RHS increases in Θ𝑡 . When Θ𝑡 → 0+, the RHS converges
to zero; when Θ𝑡 → 1, the RHS tends to infinity. Therefore, for any given positive 𝜌𝑡 , the above
equation solves a unique Θ𝑡 ∈ (0, 1). Equivalently, it indicates that (10) is a fixed-point problem.
In equilibrium, Θ∗

𝑡 solves (A.2) and 𝑟∗𝑡 = 𝜌𝑡/Θ∗
𝑡 , which are both functions of 𝐴𝑡 .

Then Γ𝑡 = (𝛽 − 1)(
𝑟∗𝑡 −𝑐𝑡
𝛽 )

𝛽
𝛽−1

(1 − Θ∗
𝑡 )𝑢 is also a function of 𝐴𝑡 . Then in (14), the RHS is

monotonically increasing with 𝜇𝑡 , which means that given (𝑃𝑡 , 𝐴𝑡 , 𝑄𝑡 , 𝑆𝑡), (14) solves a unique 𝜇𝑡 .

Proof of Proposition 2. (16) is directly obtained from (A.2), where the RHS is increasing in
Θ. Therefore, a greater 𝜌𝑡 corresponds to a greater unique Θ that satisfies (A.2). Therefore, ∀𝜌′ >
𝜌 > 0, Θ∗(𝜌′) > Θ∗(𝜌). Similarly,

𝜌𝑡 = 𝑟∗𝑡
(

𝑟∗𝑡 −𝑐𝑡
𝛽 )

1
𝛽−1

𝑢

1 + (
𝑟∗𝑡 −𝑐𝑡
𝛽 )

1
𝛽−1

𝑢
, (A.3)

where the RHS is increasing in 𝑟∗𝑡 , and tends to zero (infinity) as 𝑟∗𝑡 tends to zero (infinity). There-
fore, 𝑟∗ is one-to-one solved by 𝜌, 𝑟∗(𝜌′) > 𝑟∗(𝜌). (Θ∗

𝑡 , 𝑟∗𝑡 ) are jointly determined by 𝜌𝑡 , therefore,
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a greater Θ∗
𝑡 is associated with a greater 𝑟∗𝑡 .

Proof of Proposition 3. First, since 𝑊𝑡 = 𝑃𝑡𝑄𝑡/𝑆𝑡 ,

𝜕𝑃𝑡
𝜕𝐴𝑡

=
𝑆𝑡
𝑄𝑡

𝜕𝑊𝑡

𝜕𝐴𝑡
,

𝜕2𝑃𝑡
𝜕𝐴2

𝑡
=

𝑆𝑡
𝑄𝑡

𝜕2𝑊𝑡

𝜕𝐴2
𝑡
,

𝜕𝑃𝑡
𝜕𝑄𝑡

= −
𝑊𝑡𝑆𝑡
𝑄2

𝑡
,

𝜕𝑃𝑡
𝜕𝑆𝑡

=
𝑊𝑡

𝑄𝑡
,

𝜕2𝑃𝑡
𝜕𝑆2𝑡

= 0. (A.4)

Substituting into (19), we obtain

𝜇𝑡 =
𝜕𝑊𝑡/𝜕𝐴𝑡

𝑊𝑡
𝐴𝑡𝜇𝐴𝑡 − 𝐸𝑡 + 𝜇𝑆 +

1
2
𝜕2𝑊𝑡/𝜕𝐴2

𝑡

𝑊𝑡
(𝐴𝑡𝜎𝐴)

2
. (A.5)

Note that 𝜕𝑊𝑡/𝜕𝑆𝑡 = 𝜕𝑊𝑡/𝜕𝑄𝑡 = 0, then 𝜕𝜇𝑡/𝜕𝑆𝑡 = 𝜕𝜇𝑡/𝜕𝑄𝑡 = 0, i.e., 𝜇𝑡 is a function
of (𝑊𝑡 , 𝐴𝑡 , 𝜕𝑊𝑡/𝜕𝐴𝑡 , 𝜕2𝑊𝑡/𝜕𝐴2

𝑡 ). On the other hand, combining the equilibrium price (14) with
𝑊𝑡 = 𝑃𝑡𝑄𝑡/𝑆𝑡 , we have

𝑊𝑡 = (1 − Θ(𝐴𝑡))𝐴𝑡 (
1 − 𝛼

𝑟 𝑓 − 𝜇𝑡 − Γ(𝐴𝑡))

1
𝛼

. (A.6)

Therefore, the above equation is actually a second order ODE of 𝑊𝑡 = 𝑊 (𝐴𝑡). Substituting (A.5)
into (A.6), we obtain the explicit expression of the ODE, i.e. (23),

0 = 𝑊 ′(𝐴𝑡)𝐴𝑡𝜇𝐴(𝐴𝑡) +
1
2
𝑊 ′′(𝐴𝑡)(𝐴𝑡𝜎𝐴)2

+ [Γ(𝐴𝑡) + (1 − 𝛼)(
𝐴𝑡(1 − Θ(𝐴𝑡))

𝑊 (𝐴𝑡) )

𝛼

− 𝐸𝑡 + 𝜇𝑆 − 𝑟 𝑓 ]𝑊 (𝐴𝑡).
(A.7)

Consider the boundary conditions. (21) indicates that lim𝐴→0 𝑊 (𝐴𝑡) = 0. (22) indicates that

lim
𝐴𝑡→∞ [

𝑊 (𝐴𝑡) − (1 − Θ̃𝑡)𝐴𝑡 (
1 − 𝛼

𝑟 𝑓 − �̃�𝑡 − Γ̃𝑡)

1
𝛼

]
= 0, (A.8)

where �̃�𝑡 is solved as follows. According to the Gordon Growth Formula, lim𝐴𝑡→∞ 𝑃𝑡 = �̃�𝑡𝐴𝑡𝑆𝑡/𝑄𝑡 ,
where �̃�𝑡 is a constant involving (Θ̃𝑡 , Γ̃𝑡 , �̃�𝑡). Therefore,

lim
𝐴𝑡→∞

𝑊 ′(𝐴𝑡)𝐴𝑡

𝑊 (𝐴𝑡)
= 1, lim

𝐴𝑡→∞

𝑊 ′′(𝐴𝑡)
𝑊 (𝐴𝑡)

= 0. (A.9)
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Substituting into (A.5), we obtain lim𝐴𝑡→∞ 𝜇𝑡 = �̃�𝑡 = 𝜇𝐴(Θ̃𝑡) − 𝐸𝑡 + 𝜇𝑆 , which completely solves
the boundary condition. With the two boundary conditions, the second-order ODE has a unique
solution. Then given any (𝐴𝑡 , 𝑄𝑡 , 𝑆𝑡), the Markov equilibrium price 𝑃𝑡 = 𝑊𝑡𝑆𝑡/𝑄𝑡 is unique.

Discussion on the Markov property. As mentioned in the main text, we notice a critical
observation to find the valid solution from the solution manifold of the PDE (20). That is, 𝑊𝑡 is
independent of 𝑄𝑡 and 𝑆𝑡 . The economic logic is intuitive, e.g., for 𝑄𝑡 , people always decide the
onchain allocation according to the worth in numéraire, therefore the total number of tokens, as
a Markov state, only affects the instantaneous unit conversions but not the total onchain wealth.

Here we discuss why this condition is also valid technically. Typically, we need boundary
conditions to uniquely solve 𝑃 from the PDE (20). However, to solve a second order PDE with
three variables, the two natural boundary conditions, (21) and (22), are not enough. The additional
condition here effectively solves the solution is a particular form: 𝑃(𝐴,𝑄, 𝑆) = 𝑃1(𝐴)𝑃2(𝑄)𝑃3(𝑆),
where 𝑃2(𝑄) = 1/𝑄 and 𝑃3(𝑆) = 𝑆 are determined by the economic intuition, and then 𝑃1(𝐴) =
𝑊 (𝐴) can be uniquely solved given the two boundary conditions.

B Additional Figures and Tables

Robustness in sub-samples: bulls and bears. A common concern related to pricing factors
is the different predictability in bulls and bears. Fortunately, our data set includes a complete
bull and bear market cycle. Overall speaking, the cryptocurrency market was roughly in a bull
market in 2020 and 2021, and entered into a bear market in the end of 2021. A more precise and
simple way to classify market bulls and bears refers to Lunde and Timmermann (2004) with the
corresponding amplitude thresholds set to 35% (bulls) and 25% (bears). We use Bitcoin price as the
indicator of the market, which is a common approach in practical investments. Also, as Ethereum
is playing an increasingly important role, especially with its significant place in the staking econ-
omy, we alternatively use Ethereum price as the indicator for robustness. Figure B.1 visualizes the
segmentation of bulls and bears during the whole in-sample periods. We then regress the main
empirical specification in Table 4 on sub-samples of bulls and bears. Columns (1)-(8) of Table
B.1 reports the regression results. In general, the estimated coefficients of StakingRatio𝑖,𝑡−1 are all
positive across bulls and bears that divided by different indicators, as well as different horizons
(daily and weekly). This suggests that the implication that staking ratio positively predicts price
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appreciation generally holds in bulls and bears. It is worth noting that, however, the estimated
value and significance are lower in bears.

Figure B.1: Identification of bull and bear markets.
Grey background denotes detected bear periods. In Subplot (A) and (B), we use the price of Bitcoin and Ethereum as
indices, respectively. The identification algorithm refers to Lunde and Timmermann (2004) with the corresponding
amplitude thresholds set to 35% (bulls) and 25% (bears).

Robustness in subsamples: PoS tokens and DeFi tokens. As mentioned in the introduc-
tion, our model evolve both base layer pan-PoS staking mechanisms and higher layer DeFi stak-
able tokens. We model the common features and introduce several implications. In the empirical
analysis, we use a sample containing the tokens from both the two layers. To empirically illus-
trate that these implications are common for both the pan-PoS and DeFi tokens, we divide our
sample into two subsets based on the category of tokens, and repeat the main tests of Table 4.

Columns (9)-(12) of Table B.1 reports the results of these robustness tests. We regress pan-PoS
and DeFi sub-samples on both daily and the weekly data sets. The dependent is log price change
𝑟price𝑖,𝑡 on the staking ratio in the previous week. The estimated coefficients of the staking ratio
are both positive and consist with our main empirical result, which suggest that the staking ratio
predicts price appreciation. The daily data shows both significant estimations, whereas in the
weekly data, the statistical power is lower. This also consists with the main regression in Table

49



4. Also, it could be partly explained by the small sample size since the raw weekly sample set is
further divided into two subsamples.

Discussion on the proxy of platform productivity. The platform productivity is captured
by the average onchain transaction processing per second, denoted as 𝑎𝑖,𝑡 in empirical tests. In
practice, numerous platforms and blockchains aim to increase the transaction size of the flows
processed on their chains, reflecting the platform productivity. Meanwhile, it is also influenced by
the overall transaction needs, which means it does not necessarily to measure the hardware upper
limits. However, both the two forces are closely related to the concept of transaction convenience
and fit our main use for inducing platform productivity. Therefore, it is not necessary here to
separate the two forces. Note that it may not capture the whole progress of platform development,
such as transaction security and performance on specific financial services. It is beyond our scope
to suggest an aggregated measurement.

Summary statics of crypto carry. Table B.2 summarizes the annualized carry and excess
return of all tokens in our sample. Sample means and standard deviations are reported. We also
include the US Dollar as one of the assets for which the carry and excess return are, by definition,
equal to zero.

Crypto carry trade: long-only strategies. To compare with the benchmark of the equal
weighted long strategy, also consider the potential short-selling restrictions, we test the per-
formance of the long-only strategies as Figure B.2 shows. Since the market fluctuations are not
hedged, all the strategies are volatile and move in co-trends. However, the strategy that goes long
top 50% tokens with high carry still provide a relatively better performance with a larger Sharpe
ratio as Table 7 reports in the main text.
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Table B.1: Robustness test for Table 4: Staking ratio and token prices.
This table presents the robustness test on the analysis of how the staking ratio predicts token price appreciation. The regression model is the
same as the one used in Column (2) of Table 4, in which the main independent is the staking ratio of the previous period, StakingRatio𝑖,𝑡−1,
and the dependent 𝑟price𝑖,𝑡 is the log price change. The difference is that we replicate the test on subsets of bulls, bears, PoS tokens, and DeFi
tokens. The bulls and bears are detected based on Lunde and Timmermann (2004)’s algorithm. Due to the lack of a recognized index for the
cryptocurrency market, we refer to the common approach used in practice, i.e. using the Bitcoin price as a market indicator. We also repeat with
Ethereum as an indicator for robustness. The detected bulls and bears are visualized in Figure B.1. The subsets of pan-PoS and DeFi tokens are
sorted based on tokens’ nature. We also do the test in different horizons and with fixed effects to show the robustness of the results. Standard
errors clustered in both token-specific and time dimensions are reported in parentheses. ∗∗∗,∗∗,∗ indicate statistical significance at the 1%, 5%
and 10% respectively.

Dependent: 𝑟price𝑖,𝑡
Bull-Bear PoS-DeFi

Daily 7-Day Daily 7-Day
Bitcoin as Indicator Ethereum as Indicator Bitcoin as Indicator Ethereum as Indicator

Sub-sample: Bull Bear Bull Bear Bull Bear Bull Bear pan-PoS DeFi pan-PoS DeFi

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

StakingRatio𝑖,𝑡−1 0.040∗∗∗ 0.010 0.025∗∗ 0.018 0.290∗∗∗ 0.017 0.135 0.124 0.028∗∗ 0.019∗ 0.143 0.167
(0.009) (0.012) (0.011) (0.012) (0.098) (0.094) (0.091) (0.109) (0.012) (0.010) (0.107) (0.097)

𝛽𝑖,𝑡 -0.002 0.000 0.004 -0.011∗∗ -0.051 -0.016 0.034 -0.169∗ -0.003 -0.002 -0.016 -0.060
(0.003) (0.004) (0.003) (0.005) (0.043) (0.025) (0.021) (0.082) (0.003) (0.003) (0.031) (0.039)

log(Cap)𝑖,𝑡−1 -0.006∗∗∗ -0.006∗∗∗ -0.004∗∗∗ -0.009∗∗∗ -0.044∗∗∗ -0.050∗∗∗ -0.032∗∗∗ -0.069∗∗∗ -0.004∗∗∗ -0.010∗∗∗ -0.033∗∗∗ -0.044∗
(0.002) (0.002) (0.001) (0.003) (0.012) (0.016) (0.008) (0.020) (0.001) (0.002) (0.009) (0.023)

𝑟price𝑖,𝑡−1 0.085∗ -0.055 0.019 0.044 -0.116∗∗ -0.004 -0.053 -0.195 0.066 0.098∗∗ 0.002 -0.112∗∗

(0.049) (0.098) (0.027) (0.130) (0.045) (0.075) (0.039) (0.125) (0.046) (0.040) (0.044) (0.052)
𝛥Network𝑖,𝑡−1 0.203∗∗∗ 0.353∗ 0.198∗∗∗ 0.412∗∗ 0.524 -0.284 0.421 -0.107 0.158∗∗∗ 0.259∗∗ 0.324 0.649∗∗

(0.062) (0.178) (0.065) (0.190) (0.314) (0.332) (0.262) (0.357) (0.047) (0.111) (0.343) (0.290)
a𝑖,𝑡−1 0.053 0.151 0.052∗ 0.114 0.448∗ 0.224 0.230 0.253 0.049 0.940∗∗∗ 0.276 1.145

(0.035) (0.116) (0.027) (0.121) (0.245) (0.771) (0.198) (0.895) (0.044) (0.227) (0.317) (2.280)
Whale𝑖,𝑡−1 -0.018 0.006 -0.011 -0.011 -0.130 -0.107 -0.094 -0.141 -0.008 0.004 -0.073 -0.022

(0.012) (0.022) (0.013) (0.016) (0.120) (0.139) (0.096) (0.125) (0.006) (0.024) (0.042) (0.193)
NotLaunched𝑖,𝑡 0.031∗∗∗ 0.001 0.021∗∗∗ 0.016 0.286∗∗∗ 0.075∗∗∗ 0.151∗∗∗ 0.270 0.006 0.142∗∗

(0.007) (0.005) (0.005) (0.014) (0.071) (0.025) (0.043) (0.168) (0.007) (0.055)
𝑌 0
𝑖,𝑡 0.007∗ 0.007 0.005 0.012 0.078∗∗ 0.046 0.038 0.115 0.010∗ 0.007∗ 0.099∗∗ 0.079∗∗

(0.004) (0.006) (0.003) (0.008) (0.027) (0.049) (0.025) (0.070) (0.004) (0.004) (0.044) (0.031)

Token FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 5,692 4,299 6,204 3,787 795 639 897 537 5,529 6,173 793 885
R2 0.382 0.577 0.406 0.529 0.477 0.546 0.535 0.496 0.579 0.547 0.576 0.548
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Table B.2: Excess return and carry.

Token Excess Return Carry Token Excess Return Carry
(%, Annual) (%, Annual) (%, Annual) (%, Annual)

Mean Std.dev. Mean Std.dev. Mean Std.dev. Mean Std.dev.

0x 0.42 0.30 6.75 20.62 kusama 12.97 1.93 16.61 25.75
1inch 2.94 6.49 1.46 17.05 kyber 1.32 3.53 1.88 17.67
aave 3.83 0.98 6.21 21.56 livepeer 62.04 29.54 63.61 49.84
aion 6.25 3.01 8.86 18.61 lto 6.70 1.01 12.19 17.18
algorand 7.20 11.72 7.81 19.22 matic 17.78 14.01 25.23 40.64
ark 8.09 0.52 9.52 17.02 mina 10.32 2.81 9.60 20.97
avalanche 8.43 2.74 13.31 35.40 mirror 39.15 37.41 34.85 42.27
band 10.88 3.10 13.62 27.93 near 10.13 2.85 13.30 23.35
bifi 7.95 3.43 11.76 26.02 nem −1.35 0.51 −1.59 14.28
binance-sc 8.02 6.38 9.05 15.10 neo 0.92 0.97 2.71 14.94
bitbay 1.13 0.98 10.62 63.06 nuls 8.31 0.56 10.67 16.96
cardano 4.39 2.77 6.52 17.95 oasis 11.80 4.55 12.95 26.77
celo 6.08 0.13 6.07 4.95 olympus 49.79 41.90 37.95 48.49
cosmos 9.82 2.35 11.97 18.55 osmosis 35.90 17.56 30.03 20.48
cronos 10.15 2.67 6.25 13.11 pancakeswap 74.76 26.66 78.13 51.65
curve 1.12 2.83 1.45 19.34 peakdefi 43.88 16.92 43.26 32.91
dash 5.20 0.73 7.28 26.50 polkadot 11.56 1.68 13.14 17.63
decred 5.58 1.71 6.66 14.32 qtum 4.73 1.31 6.30 14.07
dfinity 7.68 4.78 3.87 15.34 secret 24.47 3.95 27.70 28.47
dodo 56.63 10.73 50.54 22.66 smartcash 1.63 0.36 3.64 15.35
dydx 10.66 2.76 8.53 19.03 snx 21.96 23.54 26.42 37.33
elrond 14.24 7.45 19.18 32.93 solana 5.94 3.82 8.94 24.75
eos 10.69 12.06 11.02 18.81 stafi 18.76 4.02 19.91 27.21
eth2.0 8.61 10.82 11.45 18.44 stake-dao 22.23 8.32 21.49 19.43
fantom 27.83 23.95 37.98 47.03 sushi 10.51 10.12 8.85 20.06
flow 6.95 2.05 3.29 16.56 terra 8.26 3.71 14.26 35.66
harmony 8.58 2.89 12.42 27.40 tezos 4.56 2.11 5.52 16.99
icon 16.42 2.80 19.99 23.99 tron 2.81 1.94 4.36 13.99
idex 8.05 8.85 15.12 78.53 wanchain 7.39 0.26 9.44 16.86
injective 3.87 0.58 2.16 13.91 waves 3.84 1.62 6.21 22.75
iotex 8.86 3.14 11.27 21.23 wax 1.56 2.64 3.34 19.81
irisnet 9.67 0.38 14.77 22.07 yearn 14.51 16.78 16.86 30.14
kava 19.55 16.44 22.29 26.61 zcoin 15.02 3.77 18.35 16.90

US Dollar 0.00 0.00 0.00 0.00
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Figure B.2: Cumulative returns of long strategies.
This figure shows the cumulative returns of the following two strategies. The gray curve corresponds to the equal-
weighted benchmark, i.e., borrow US dollar and long all the tokens with equal weight. The red curve shows the result
of the top 50% EW strategy, that is, borrow US dollar and go long top 50% high carry tokens with equal weight. The
blue curve shows the result of the lowest 50% EW strategy, i.e., borrow US dollar and go long the 50% tokens with
the lowest carry with equal weight. The order of the tokens is evaluated every week.
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Online Appendices for “The Tokenomics of Staking”

OA1 Institutional Background of Staking

OA1.1 Staking Mechanisms

Blockchain-based staking in general involves two broad categories of activities: those re-
lated to pan-PoS consensus protocols and those in higher layer DeFi applications.32 Even on
non-blockchain-based or centralized platforms, various programs that involve escrows or crowd
funds can be analyzed as a form of business layer staking through the lens of our framework.
Fundamentally, a blockchain functions to generate a relatively decentralized consensus record
of system states to facilitate economic interactions such as value or information exchanges (e.g.,
Cong and He, 2019). PoS protocols have gained popularity and momentum with major market
players such as Ethereum adopting them. Under PoS, agents stake native tokens to compete for
the opportunity to record transactions, execute smart contracts, append blocks, etc., to earn block
rewards and fees. Meanwhile, various staking programs have become popular means to encour-
age desirable behavior in higher layer applications, escrowing a balance of tokens under custody
in a smart contract, or deploy them to enable network economic functionalities.

Consensus generation in PoS. Fundamentally, blockchain functions to generate a relatively
decentralized consensus to enable economic interactions such as value or information exchanges
(e.g., Cong and He, 2019). Permissionless blockchains have historically relied on variants of the
PoW protocol. Because of scalability and environmental issues of PoW (Cong, He, and Li, 2021;
John, Rivera, and Saleh, 2020), PoS protocols have gained popularity and momentum for both per-
missioned and permissionless blockchains, with major market players adopting and incumbents
such as Ethereum contemplating a conversion (Irresberger et al., 2021).

Under PoS, agents who stake native tokens have the opportunity to append blocks and earn
block rewards and fees as compensation. The more one stakes, the more likely one is to be selected
and compensated for their participation (Saleh, 2021, contains more details). Note that holding
a token does not necessarily mean participating in staking. In practice, agents incur negligible
physical costs (as opposed to the high entry cost of PoW mining or directly maintaining a node

32The two are not mutually exclusive. Solana, for example, uses both PoS and DeFi staking. The classification we
use follows mainstream cryptocurrency data aggregators such as CoinMarketCap.
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in PoS). Our study includes all protocols using pan-PoS protocols, such as Proof-of-Credit (POC)
used in Nuls, which are variants of the above mechanisms. Online Appendix OA1 provides more
background information and examples in practice.

Staking in DeFi. Staking programs are a popular means for incentivizing desirable behavior
and guarding against misbehavior in DeFi applications. It escrows a balance of tokens under
custody in a smart contract and stakers receive rewards similar to interest payments from their
tokens staked (Harvey, Ramachandran, and Santoro, 2021). Synthetix is an example of an open-
source DeFi protocol with staking where users can create and trade derivative tokens and gain
exposure to assets like gold, bitcoin, and euros without having to actually own them. These
derivative assets are collateralized by the platform tokens (SNX) which, when locked in the con-
tracts, enables their issuance. In return, SNX stakers earn rewards from both newly issued to-
kens and small fees transactions generate.33 Another salient form of staking is yield farming,
which allows investors to earn yield by temporarily locking tokens in a decentralized application
(dApps). Yield farming often entails shorter lock-up (some allows withdrawal at any time), uncer-
tain yields, and higher risks. (see, Augustin, Chen-Zhang, and Shin, 2022, for more institutional
details).

Without getting bogged down with specific eligibility requirements and operational differ-
ences across various DeFi protocols and smart contracts, DeFi staking can be characterized as
simply earning rewards by collateralizing the tokens for some functionalities in the network.

Reward determination and slashing. In most staking programs, the total rewards used to
incentivize staking or its determination mechanism are pre-specified and announced. In PoS, the
blockchain branch is randomly selected from the whole staking pool. Then the staking reward is
randomly distributed to stakeholders based on the number of staked coins they hold as a proba-
bility weight.34 Similarly, on DeFi platforms, stakers share the rewards from transaction fees or
predetermined emissions (minting of new tokens).

Staking reward rate can be naturally compared to interest rate or yield of other financial assets.
However, unlike deposit rates set by the banks, staking reward rate is jointly determined by

33DeFi staking may involve multiple tokens. For example, in MakerDAO, the profits generated from DAI can be
viewed as a yield on ETH staking, and our framework can be used to understand the price impact on ETH.

34For example, if an investor stakes 10 coins while the aggregate staked amount of this branch is 100, then the
investor has a 10% probability of appending to the branch and receiving the staking reward.
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the announced staking reward and the aggregate tokens staked. Online Appendix OA1 details
the staking programs for the tokens in our sample. Stakers face the risk of losing the staked
tokens due to possible security attacks, illegal verification, and storage failures. To discourage
the misbehavior of the validator, most projects also propose a punishment mechanism known
as slashing. A pre-defined percentage of a validator’s tokens are lost when it does not behave
consistently or as expected on the network (e.g., downtime and double signing).

Market and information. In PoS, validators compete in the amount of staking to earn re-
wards. To incentivize more delegates, they develop a reward distribution plan at the node level.
Potential delegates can freely choose among these nodes or delegate through some intermedi-
aries. Therefore, nodes engage in price competition for delegated stakes. For DeFi platforms,
staking reward rates are typically equal for participants, but some white-listed groups may have
priority in staking. Most stakable tokens are launched on mainstream cryptocurrency exchanges.
Investors can easily invest in these staking projects and trade these tokens with cryptocurrency
assets such as Bitcoin and Ethereum.

Information on staking programs, including participation rules, reward distribution plan, total
staked value (or total value locked, TVL, which includes non-native tokens), and even informa-
tion of all the validators, are open and can be easily obtained on official websites of projects.
Third-party websites also specialize in collecting real-time information on staking projects, e.g.,
Stakingrewards.com. In particular, the staking ratio, which captures the total number of tokens
staked as a fraction of the total number of tokens, is typically public knowledge.

OA1.2 Forms of Staking in Our Sample

PoS staking. Under PoS, agents who stake native tokens have opportunities to append blocks
and earn block rewards and fees as compensation. There are mainly two ways to participate. The
first is to run a validator node, staking pool, or masternode by holding native tokens and incurring
the costs including hardware costs and time spent on maintenance. The more one stakes, the
more likely one is to be selected and compensated for their participation(Saleh, 2021, contains
more details). Note that holding a token does not necessarily mean participating in staking. The
second way is through delegation. Agents only need to delegate their tokens to an existing node or
a pool to receive a reward earned by the node/pool. This route is flexible and friendly for players
with fewer tokens and allows them to share risk (Cong, He, and Li, 2021). In practice, agents incur
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negligible physical costs (as opposed to the high entry cost of PoW mining or directly maintaining
a node in PoS).

Solana is a concrete example of pan-PoS staking.35 Solana is an open-source project that
implements a new, high performance, permissionless blockchain. It enables transactions to be
ordered as they enter the network, rather than by block, which makes Solana one of the fastest
blockchains in the world and the rapidly growing ecosystem in crypto, with thousands of projects
spanning DeFi, NFTs, Web 3.0 and more. Solana uses Proof-of-Stake (PoS) as its consensus mech-
anism. The performance is improved by its innovative protocol, Proof-of-History (PoH). Solana’s
Proof-of-Stake is designed to quickly confirm the current sequence of transactions produced by
the PoH generator, vote and select the next PoH generator, and punish misbehaving validators.
A block in the context of Solana is simply the term used to describe the sequence of entries that
validators vote on to achieve confirmation. Validators within Solana’s PoS consensus model are
the entities responsible for confirming if these entries are valid. SOL is the name of Solana’s na-
tive token, which can be passed to nodes in a Solana cluster in exchange for running an on-chain
program or validating its output. Stakers delegate SOL to validators to help increase these val-
idators’ voting weight. Such action indicates a degree of trust in the validators. Stakers delegate
to ensure validators cast honest votes and hence ensure the security of the network. The more
stake delegated to a validator, the more often this validator is chosen to write new transactions
to the ledger, and then the more rewards the validator and its delegators earn.

Staking DeFi native tokens. Incentivizing desirable behavior and guarding against misbe-
havior are crucial in DeFi applications. To this end, staking programs are popular and important
in practice, which applies to a balance of tokens under custody in a smart contract. Users on DeFi
platforms receive staking rewards as a form of interest payment from their token balance staked
(Harvey, Ramachandran, and Santoro, 2021).

In practice, DeFi staking may involve different lock-up periods and multiple tokens.36 The
risks of being slashed and losing the staked tokens are also different. Without getting bogged
down with specific threshold requirements and operational differences across various DeFi pro-
tocols and smart contracts, DeFi staking can be characterized as simply earning rewards by col-

35For references, see https://docs.solana.com, blockdaemon.com, and https://blockdaemon.com/platform/validator
-node/how-solana-staking-works/.

36MakerDAO is a good example. The profits generated from DAI can be viewed as a yield on ETH staking, and
our framework can be used to understand the price impact on ETH.
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lateralizing the tokens for some functionalities in the network. From the stakers’ perspective,
staking shares the spirit of certificates of deposit or risky illiquid investments.

Transaction gas fees and Rewards. We summarize the gas fee foundations of Ethereum (EIP
1559) as an example. The major of contents are extracted from the official webpage of Ethereum
and the third-party page, blocknative.37

Gas refers to the unit that measures the amount of computational effort required to execute
specific operations on the Ethereum network. Since each Ethereum transaction requires compu-
tational resources to execute, each transaction requires a fee. Gas thus refers to the fee required
to execute a transaction on Ethereum.

Every block has a base fee which acts as a reserve price. To be eligible for inclusion in a block
the offered price per gas must at least equal the base fee. The base fee is calculated independently
of the current block and is instead determined by the blocks before it - making transaction fees
more predictable for users. When the block is mined this base fee is “burned”, removing it from
circulation. The base fee is calculated by a formula that compares the size of the previous block
(the amount of gas used for all the transactions) with the target size. The base fee will increase
by a maximum of 12.5% per block if the target block size is exceeded. This exponential growth
makes it economically non-viable for block size to remain high indefinitely.

In origin, miners would receive the total gas fee from any transaction included in a block. With
the new base fee getting burned, the London Upgrade introduced a priority fee (tip) to incentivize
miners to include a transaction in the block. Without tips, miners would find it economically
viable to mine empty blocks, as they would receive the same block reward. Under normal condi-
tions, a small tip provides miners a minimal incentive to include a transaction. For transactions
that need to get preferentially executed ahead of other transactions in the same block, a higher
tip will be necessary to attempt to outbid competing transactions.

Staking rewards are the combination of gas fees and the emission of new tokens. Together
with the gas fee policies summarized above, as well as the mechanism of rewards from emission
described in the main text, the main take-away is that the reward distribution design is widely
under the platform’s control, whereas the crowd decisions and interactions provide influence
under the designed structure. In practice, the staking rewards may also involve the phenomenon

37Please see https://ethereum.org/en/developers/docs/gas/, and https://www.blocknative.com/blog/eip-1559-fees,
respectively.
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of multilevel distribution, as some agents can delegate tokens to larger nodes. The holders of the
larger nodes thus need to have a process for deciding on the distribution of benefits. Therefore,
there may exist multiple staking participation methods for one token. In relevant empirical tests,
we always choose the participation method with the lowest capital threshold and risk, such as
delegating, voting, etc.

Examples in practice. We summarize representative staking programs involving tokens in
our sample. Most information is accessed from Stakingrewards.com. There is also information
from official websites of corresponding tokens. Many tokens have similar mechanisms, thus we
do not repeat the description. These descriptions are excerpted in 2022. There may be changes
over time in the specific mechanisms of some programs, whereas these descriptions apply to the
time intervals covered by the data in our paper.

• The individual AION rewards depends on the Block Reward, Block Time, Daily Network
Rewards and Total Staked. Every block one validator is randomly selected to create a block,
whereas 1 staked or delegated token counts as one “lottery ticket”. The selected validator
has the right to create a new block and broadcast them to the network. The Validator then
receives the 50% of the block reward and the fees of all transactions (network rewards)
successfully included in this block, whereas the PoW Miner receives the other 50%.

• Rewards in the form of algos are granted to Algorand users for a variety of purposes. Ini-
tially, for every block that is minted, every user in Algorand receives an amount of rewards
proportional to their stake in order to establish a large user base and distribute stake among
many parties. As the network evolves, the Algorand Foundation will introduce additional
rewards in order to promote behavior that strengthens the network, such as running nodes
and proposing blocks.

• The individual BitBay rewards depends on the Block Reward, Block Time, Daily Network
Rewards and Total Staked. Every block is randomly selected whereas 1 staked coin counts
as one “lottery ticket”. The selected staker has the right to create a new block and broad-
cast it to the network. He then receives the block reward and the fees of all transactions
successfully included in this block.

• Dash blockchain consensus is achieved via Proof of Work + Masternodes. Investors can
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leverage their crypto via operating masternodes. Miners are rewarded for securing the
blockchain and masternodes are rewarded for validating, storing and serving the blockchain
to users.

• Eos has a fixed 5% annual inflation. 4% goes to a savings fund, which might distribute the
funds to the community later on. 1% goes to Block producers and Standby Block Producers.
Out of the 1% that are given to block producers, only 0.25%will go to the actual 21 producers
of the blocks. The other 0.75% will be shared among all block producers and standby block
producers based on how many votes they receive and with a minimum of 100 EOS/day.

• The individual reward of staking fantom depends on the Total Staked ratio. Transactions
are packaged into event blocks. In order for event blocks to achieve finality, event blocks
are passed between validator nodes that represent at least 2/3rds of the total validating
power of the network. A validator’s total validating power is primarily determined by the
number of tokens staked and delegated to it. A validator earns rewards each epoch for each
event block signed according to it’s validating power. By delegating, investors can increase
the share of their validator proportionally to the balance of their account. They will receive
rewards accordingly and share them with investors after taking the commission.

• The effective yield for staking IDEX depends on the actual Trading Volume on IDEX Market.
The higher the trading volume on IDEX, the higher are the actual rewards. The second
metric to watch is the total amount of AURA currently staking. Fewer tokens on stake
result in higher rewards.

• Every livepeer (LPT) token holder has the right to delegate their tokens to an Orchestrator
node for the right to receive both inflationary rewards in LPT and fees denominated in ETH
from work completed by that node.

• The individual LTO rewards depends on the Network Rewards (Transaction Fees spent on
the Network) and the Total Staked. Every block one staking node operator is randomly
selected to create a new block, whereas 1 staked token counts as one “lottery ticket”. The
staker receives the fees of all transactions successfully included in this block. Staking Node
Operators share the rewards with their delegators after deducting a commission.
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• NEM blockchain consensus is achieved via Proof of Importance. Investors can leverage
their crypto via harvesting. To harvest NEM coins it is recommended to run the official
NEM Core wallet with an entire copy of the blockchain on the stakers’ computer or a Virtual
Private Server (VPS). The individual NEM harvesting rewards depends on the Daily Net-
work Rewards and Total Staked. For every block, the staker is randomly selected whereas 1
staked coin counts as one “lottery ticket”. The selected staker has the right to create a new
block and broadcast it to the network. The staker then receives the fees of all transactions
successfully included in this block.

• Everyone who holds NEO will automatically be rewarded by GAS. GAS is produced with
each new block. In the first year, each new block generates 8 GAS, and then decreases every
year until each block generates 1 GAS. This generation mechanism will be maintained until
the total amount of GAS reaches 100 million and no new GAS will be generated.

• Nuls blockchain consensus is achieved via Proof of Stake + Masternodes. Investors can
leverage their crypto via staking. The amount earned is variable based on the current
blockchain metrics like the amount of stakers (Total Staked ratio). Investors can stake Nuls
into a project’s nodes and earn their token as a reward, while the project earns Nuls as a
reward. Some projects offer to stake with just 5 Nuls as the minimum.

• Delegators in Polkadot are called Nominators. Anyone can nominate up to 16 validators,
who share rewards if they are elected into the active validators set. The process is a single-
click operation inside the wallet. The current reward rate for validators is determined by
the current Total Staked ratio. The less DOT is being staked, the higher are the rewards.

• Qtum blockchain consensus is achieved via Proof of Stake 3.0. The individual reward de-
pends on the Block Reward, Block Time, Daily Network Rewards and Total Staked. Every
block is randomly selected whereas 1 staked coin counts as one “lottery ticket”. The se-
lected staker has the right to create a new block and broadcast it to the network. The staker
then receives the block reward and the fees of all transactions successfully included in this
block.

• Synthetix Network Token blockchain consensus is achieved via the Ethereum Blockchain.
Investors can leverage their crypto via staking. SNX holders can lock their SNX as collateral
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to stake the system. Synths are minted into the market against the value of the locked
SNX, where they can be used for a variety of purposes including trading and remittance.
All Synth trades on Synthetix Exchange generate fees that are distributed to SNX holders,
rewarding them for staking the system.

• Tezos blockchain consensus is achieved via Liquid Proof of Stake. Investors can leverage
their crypto via baking or delegating. There are a number of tokens that use a similar
mechanism, including iotex, irisnet, etc.

• Tron reward depends on the Block Rewards, Endorsement Rewards, Block Time, Daily
Network Rewards and Total Staked. Every block is randomly selected to bake a block and
32 stakers are selected to endorse a block, whereas 1 staked coin counts as one “lottery
ticket”. The selected stakers have the right to create or endorse new block and broadcast
them network. The Baker then receives the block reward and the fees of all transactions
successfully included in this block. The Endorsers receive the endorsement rewards.

• Wanchain blockchain consensus is achieved via Galaxy Proof-of-Stake. The individual
WAN rewards depends on the Foundation Rewards, Daily Network Rewards and Total
Staked. At the beginning of each protocol cycle (epoch), two groups, the RNP (Random
Number Proposer) group and the EL (Epoch Leader) group, are selected from all valida-
tors. 1 staked or delegated token counts as one “lottery ticket” to be selected. The two
groups equally share the Foundation Rewards and Transaction Fees (Network Rewards).
The Foundation Rewards consists of 10% of the outstanding Wanchain Token Supply and
are decreasing by 13.6% each year, whereas the Network Rewards are expected to rise along-
side wider network usage.
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