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Abstract

We introduce a new methodology to detect and measure economic activity using geospa-
tial data and apply it to steel production, a major industrial pollution source worldwide.
Combining plant output data with geospatial data, such as ambient air pollutants, nighttime
lights, and temperature, we train machine learning models to predict plant locations and out-
put. We identify about 40% (70%) of plants missing from the training sample within a 1 km
(5 km) radius and achieve R2 above 0.8 for output prediction at a 1 km grid and at the plant
level, as well as for both regional and time series validations. Our approach can be adapted to
other industries and regions, and used by policymakers and researchers to track and measure
industrial activity in near real time.

1 Introduction

Economic measurement is the cornerstone of the economic discipline, yet traditional methods,
particularly for industrial output, often fall short of providing up-to-date and granular informa-
tion. Census-based surveys or government reports, the mainstay of industrial output measure-
ment, are typically infrequent, incomplete, or prohibitively expensive to collect. For instance,
according to the United Nations, only a small portion of developing countries collect industrial
statistics on an annual basis, while many conduct surveys in 5 or 10-year intervals, and others
have not done so for over 15 years (Upadhyaya and Todorov, 2009), and in Sub-Saharan Africa,
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fewer than half of countries have published reliable industrial production metrics for many years
(United Nations Industrial Development Organization, 2016).

Geospatial data—e.g., satellite data—have emerged as a new tool for addressing these limi-
tations, offering a cost-effective and comprehensive alternative (Burke et al., 2021). For example,
researchers developed methods to estimate GDP using nighttime light (NTL) data from satellites
(Henderson, Storeygard and Weil, 2012; Nordhaus and Chen, 2015; Martinez, 2022), but these
studies focus on aggregate-level predictions and often remain inaccurate at times (Chen and
Nordhaus, 2019). Recent advancements have focused on integrating satellite data with machine
learning (Khachiyan et al., 2022; Sherman et al., 2023; Vogel et al., 2024), but these procedures
more accurately reflect variation in population than in GDP per capita (Khachiyan et al., 2022;
Ahn et al., 2023). Rossi-Hansberg and Zhang (2025) adapts such methodologies to measure re-
gional GDP with high-resolution data across the globe and shows the importance of introducing
geospatial indicators such as CO2.

We develop a methodology to detect economic activity and measure its intensity with high
spatial and temporal precision. Unlike alternative GDP estimates derived from satellite data, our
approach directly links industrial output and location to real-time environmental signals, pro-
viding a more accurate and scalable economic monitoring tool. The premise of the methodology
is that industrial activity has a distinct environmental imprint, so that both its location and in-
tensity can be remotely measured by a variety of geospatial indicators. We thus choose to use it
to detect and predict economic activity in the steel industry, known for its major economic role
yet also stands as a global major polluter. The methodology involves two steps: (1) predicting
plant locations within grid cells by matching known coordinates of steel plants with data of vari-
ous geospatial datasets and applying a standard neural network model; (2) using data to predict
crude steel output based on these identified plant locations.

The first main contribution of our paper is to illustrate how to accurately predict plant loca-
tions not reported in training and testing datasets (Figure 1a). In this step, we employ a neural
network model to predict the presence of steel production in a dataset containing approximately
1.4 million grids. We identify approximately 40% of plants missing from the training sample
within a 1 km radius and 70% within a 5 km radius. Using a local interpretation method based
on the Shapley value concept from cooperative game theory, we find that particulate matter (PM),
including PM10 and PM2.5, is a key predictor of plant locations.

Our second main contribution is to show it is possible to achieve high accuracy in predicting
steel output (Figure 1b) by associating various environmental indicators with ground-truth data
and training our model using standard machine learning techniques. In this step, we apply tree-
based machine learning models to predict steel output at both the 1 km grid and at the plant
levels. Our findings show that ozone (O3), NTL, and heat are key predictors of steel output at the
grid level, while O3 and NTL data are the key indicators at the plant level. We perform K-fold
cross-validation on the full sample (Stone, 1974); and complement it with additional validations
leaving a selected region and time period from the training sample. We find that our predictions
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Figure 1: Predicted Locations and Output of Steel Plants

(a) Plant Locations (b) Plant Output

Note: The left panel (a) shows our predicted plant locations across China using Esri Satellite Imagery. The blue circle
points represent plants with complete monthly output data from 2019 to 2022 used in the training, while the red
triangle points correspond to the plants observed from the holdout sample. In the northwest region, the predicted
locations (purple ‘foggy’) are derived from areas not included in the training sample. The right panel (b) shows a 3D
map of crude steel output predictions. Figure A.5 shows the distribution of steel output across China.

of steel output using geospatial statistics fit very well with an R2 above 0.8 at the plant level.
To provide further validation of our methodology we show that it can capture output fluc-

tuations from two major events. The first is the Spring Festival, which typically occurs from
late January to February, during which steel production drops significantly due to temporary
shutdowns for the holiday, with operations quickly resuming afterward. Our model accurately
predicts this decrease and the quick recovery afterward. The second event is the unparalleled
COVID-19 pandemic, which lasted from early 2020 to the end of 2022. In Wuhan, the pandemic’s
epicenter, strict lockdowns led to an unprecedented and steep drop in steel production. While
steel plants outside Wuhan also experienced declines, these were notably less severe and exhib-
ited less volatility compared to the extraordinary disruption observed in Wuhan. Our predictions
fit well with these broad patterns and show consistent trends with the reported output.

2 Steel Production and Geospatial Environmental Factors

As one of the most intensive industrial processes, steel production releases large amounts of air
pollutants and heat, which can be observed remotely. The production process involves three main
stages: mining iron ore, turning the ore into iron, and smelting the iron into steel. In traditional
blast furnaces, iron ore is heated with metallurgical coke at high temperatures to produce molten
iron or pig iron. This process uses a hot air blast containing oxygen and releases substantial car-
bon dioxide (CO2) and carbon monoxide (CO), the latter of which can further oxidize into CO2.
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Electric arc furnaces may still produce pollution if powered by electricity from nonrenewable
sources. Other air pollutants from steel production include PM, sulfur dioxide (SO2), and nitro-
gen oxides (NOx). Steel industries are major emitters of volatile organic compounds (VOCs) and
NOx, which under certain atmospheric conditions may form ozone (O3) as a by-product. Mean-
while, steel plants have high costs associated with shutting down and restarting operations, and
thus typically operate continuously, both day and night. This operational characteristic results in
consistent heat emissions and potentially NTL, making temperature and NTL data instrumental
in detecting industrial activity (Liu et al., 2018; Zhang et al., 2019; Xie et al., 2024). We detail the
data sources and dataset construction below.

2.1 Geospatial Environmental Indicators Used as Predictors

We use the constructed dataset of geospatial indicators to predict steel locations and output. We
harmonize each of the geospatial indicators at 1 km × 1 km grid cell, which provides approx-
imately 1.4 million data points for the entire China. This allows us to associate emissions with
industrial activity using high-quality, high-frequency pollution data obtained at fine-grained res-
olutions (Wei et al., 2021a,b, 2022a,b; Cooper et al., 2022; Halder et al., 2023; Wei et al., 2023).

Remote sensing data collected by satellites includes ambient air pollutants, NTL, and land
surface temperature (LST). Ambient air pollution data are sourced from two main datasets. The
first is ChinaHighAirPollutants (CHAP), a high-resolution dataset specific to China that provides
high-quality geospatial data, including satellite remote sensing observations and ground-based
measurements (Wei et al., 2023). The second is Sentinel-5P, a fully open-access dataset with a
lower spatial resolution that does not include particulate matter measurements. We use CHAP
to obtain our primary results and Sentinel-5P for robustness checks.

The CHAP dataset provides key indicators, including concentrations of NO2, SO2, O3, CO,
PM2.5, PM10, at 1 km resolution. LST and NTL intensity come from NASA and NOAA satellite
observations, as well as ground-based monitoring stations. Missing LST data are filled using
ground measurements (Tang et al., 2024).

2.2 Steel Plants Output and Location

For ground-truth data on steel production, we use information from 146 steel plants, but only
70 are included in our machine learning model because of missing values in production or envi-
ronmental indicators. These data are provided by the Chinese Iron and Steel Association (CISA),
which collects monthly production volumes for crude steel and pig iron and provides plant
coordinates (see also Brandt et al., 2022). The 146 plants represent over 70% of China’s steel pro-
duction capacity. The dataset includes details on production technology (blast furnace, electric
arc furnace, or integrated processes). To verify the accuracy of these output data, we compare
CISA’s data with aggregate-level data from the National Bureau of Statistics of China and find
the two data sources to be highly consistent, except that CISA’s data are available at a much finer
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Figure 2: Steel Plants from Satellite Images

(a) Example of Steel Plant 1 (b) Example of Steel Plant 2 (c) Squared Grid Construction

Note: These figures show the locations and shapes of steel plants identified from satellite imagery. Panels (a) and
(b) show two examples of steel plants in China. We know each plant’s POI, but the coordinates can sometimes be
inaccurate, as shown in Panel (b) (i.e., the pink dot outside the red-lined polygon). We verify each POI and its location
individually. Panel (c) shows how we construct the shape of plants in our machine learning model. To facilitate
replicability, we use a 2 km square to represent each plant instead of creating detailed polygons, as shown in Panel
(c). Appendix A.3 shows the typical size distribution of steel plant areas in China. We replicate the main exercise
introduced in this paper using detailed polygons and find that the results are similar.

level of granularity (Figure A.2).
We then verify the location of each steel plant by cross-checking its point of interest (POI)

with satellite images. Since POI coordinates can occasionally be imprecise, we manually adjust
them to ensure alignment with the actual plant locations. To make the data easier to replicate,
we represent each plant using a 2 km × 2 km square instead of detailed shapes, based on the
typical size of steel plants in China. Figure 2 provides three illustrative examples.

We match the ground-truth output data with the input data using spatial information from
ambient air pollutant datasets. The 1 km grid cells are defined by their latitude and longitude
coordinates based on geolocation information provided in the CISA dataset for each of the 70
observed plants and the associated grid cells. Steel output is calculated at the grid level using an
area-weighted approach that aggregates grid-level data to the plant level based on the proportion
of each grid covered by the plant. The calculation is as follows:

Yg = ∑
p∈Pg

Sgp

Sp
Pp, (1)

where Pg is the set of plants overlapping grid g, Sgp is the area of grid g that overlaps with
plant p, Sp is the total area of plant p, Pp is the total production of plant p, and Yg is the total
production output assigned to grid g.

Equation (1) calculates grid-level production by summing contributions from all plants that
intersect with a grid. Note that a single grid cell can partially contain multiple plants, and a
single plant may span several grid cells.
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3 Method

We predict two primary outcomes: the locations of steel plants and their production output.
Because these predictions rely on labeled data, our approach falls under supervised learning
(Athey and Imbens, 2019). Specifically, we use (i) a neural network model to identify plant
locations and (ii) a regression model to estimate plant output at both the grid and plant levels.

3.1 Model framework

First, we predict the locations of steel plants at the grid-cell level using a deep learning model to
estimate the probability of a plant being located in a specific grid cell. As expected, our dataset
contains far fewer grid cells with steel plants (minority class) than those without (majority class),
potentially leading to class imbalance (Leevy et al., 2018). This imbalance can bias the model,
causing it to perform well on the majority class but poorly on the minority class since the model
effectively assigns more weight to the majority class during training. To address this issue, we
apply the Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al., 2002), which
generates synthetic examples of grid cells with steel plants to balance the dataset, allowing the
model to learn effectively from both classes (Chawla et al., 2002).

Next, we apply a neural network classifier to the SMOTE-balanced dataset to classify grid
cells associated with steel plants. Neural networks are well-suited for this task as they handle
large, sparse datasets and capture complex non-linear relationships in the data (LeCun, Bengio
and Hinton, 2015). We use the ReLU activation function (Nair and Hinton, 2010), Dropout layers
to prevent overfitting (Srivastava et al., 2014), and binary cross-entropy as the loss function (Mur-
phy, 2012). The model is trained for 100 epochs, with accuracy as the performance metric. The
dataset is split into 80% for training and 20% for testing (Hastie, Tibshirani and Friedman, 2009).

We use tree-based models to predict crude steel production.1 While deep learning excels
with large text and image data, tree-based methods remain the state-of-the-art for medium-sized
datasets (Grinsztajn, Oyallon and Varoquaux, 2022). Specifically, we apply XGBoost and other
gradient-boosted regression tree models, supervised learning models that build an ensemble of
shallow trees sequentially, where each tree corrects errors made by the previous ones, to map
input features to the production outputs.

To fix ideas, we model the conditional expectation of Y based on a set of p predictors, X,
using the following specification:

Y = f
(
X1, X2, . . . , Xp

)
+ ϵ, (2)

where Y represents the log of crude steel measured at both the grid and plant levels, X1, X2, . . . , Xp

1We note that pig iron is a crucial intermediate in crude steel production, but including both pig iron data and
environmental indicators in our predictive model is likely not a robust approach due to strong multicollinearity. To
validate this point, we replicate the same procedure to predict pig iron location and output. Our R2 for predicting
pig iron exceeds 0.8, and the fact that the resulting feature importance largely overlaps with those in predicting steel
confirms a high correlation between pig iron and the environmental imprints used to predict steel.
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represent the predictor variables defining the feature vector X, and ϵ is the prediction error, with
E[Y | X1, X2, . . . , Xp] = f (X1, X2, . . . , Xp) and zero conditional expectation. To evaluate and com-
pare model performance, we apply several models, including linear regression, Lasso, kernel
ridge regression, ElasticNet, random forest, gradient boosting, LightGBM, and XGBoost. We
also use an ensemble model, which combines multiple machine learning algorithms to improve
predictive accuracy and robustness. It also reduces overfitting and bias while enhancing gener-
alization (Wolpert, 1992). We show model details in Appendix B.

3.2 Input Features

We link the data from Section 2 to the model’s input features used as predictors. To optimize the
model’s ability to extract information from pollution data, we create three distinct feature groups.
The first group consists of ambient air pollutants. The second group consists of the centroid
latitude and longitude of each grid and each plant, as well as the steel plant’s production mode:
electric, blast furnace, and mixed (which combines blast furnace and electric). The third group
includes additional environmental factors LST, NTL intensity, along with other features: year,
month, and cyclical characteristics derived from trigonometric functions, sin(2π · Montht/12)
and cos(2π · Montht/12), to account for seasonal variations.

In the first step, when predicting whether a grid contains a steel plant, we exclude the second
group of features. In the second step, when predicting output levels, we use all the input features
discussed above. We additionally incorporate lagged geospatial features to capture temporal
trends in production.

3.3 Training and Validation

We follow standard practice in machine learning by splitting the data into training and testing
sets. In the first step, we focus on grid cells throughout China but restrict the data to November
of each year from 2019 to 2022.

In the second step, we train two output simulation models: the grid-level model using grids
of cities with steel plants and the plant-level model using steel plants in our sample with non-
zero output. Due to the large size of our dataset, we evaluate our model using K-fold cross-
validation, where each fold produces a train-test split with 80% training and 20% testing. The
labeled data are pooled and randomly partitioned into five equal subsets for each grid or plant.
A model is trained on four subsets and evaluated on the remaining subset. This process is
repeated for all five-folds, and the final performance metrics are averaged across the iterations.
This technique allows us to assess model performance on different subsets of the data, reducing
the risk of overfitting and ensuring that the model generalizes well to out-of-sample data. Ideally,
the process is repeated multiple times to estimate the distribution of out-of-sample errors.

We employ hyper-parameter tuning to strengthen the model’s focus on learning from pollu-
tant features while improving its overall performance and interpretability (Hazan, Klivans and
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Yuan, 2017). We prioritize environmental features because they are direct indicators of steel
production. To mitigate overfitting, we apply standard L1 and L2 regularization, which are
commonly referred to as Lasso and Ridge penalties (Tibshirani, 1996; Hoerl and Kennard, 1970).

4 Main Results

We assess our model performance using several common metrics. For the neural network model,
we use accuracy, precision, recall, and area under the receiver operating characteristic curve
(AUROC). The AUROC measures the probability that the classifier ranks a randomly chosen
positive example higher than a randomly chosen negative example, with scores ranging from 0.5
(random classifier) to 1.0 (perfect predictor). For the output prediction we simply report the R2.

4.1 Location Prediction

We use our model to predict steel plant locations and enhance interpretability with SHapley
Additive exPlanations (SHAP), a model-agnostic post hoc method. Our goal is to train a classifi-
cation model that uses input features, including geospatial data and spatial attributes, to predict
whether a given grid cell contains a steel plant. For training and testing, we include plants that
have complete monthly output data from 2019 to 2022. To test out-of-sample performance, we
use plants from the CISA list that are excluded from the training sample as the holdout set.

Using the open-source Global Steel Plant Tracker as a holdout sample, we identify nearly 40%
of the plants missing from the CISA dataset within a 1 km radius and 70% within a 5 km radius.
Increasing the radius to 10 km and applying the lowest probability threshold (>0.5) increases
the coverage to nearly 90% (Figure A.6). Our model successfully predicts plant locations in
northwestern China that are not reported by the CISA (Figure 1a). We then use the confusion
matrix in Figure 3a to evaluate the model’s performance in predicting plant locations across over
1.3 million grid cells after applying SMOTE. With a standard threshold of 0.5, the matrix shows a
high count of true negatives (1,374,438), where the model correctly identifies grids without steel
plants. False negatives and false positives—where the model either misses or incorrectly predicts
the presence of steel plants—are relatively low, at 3 and 11,192 instances, respectively. Although
there are some false positives, the spatial clustering shown previously (Figure 1a) implies that
these misclassifications typically occur in close proximity to actual steel plant locations, which
suggests that the model’s errors are often geographically near true positives. Meanwhile, true
positives are notably high, at 1,385,627 instances. The model achieves near-perfect discrimination
between steel and non-steel grids (AUROC close to 1.0) (Figures A.8) and maintains a strong
balance between precision and recall, as reflected by a high harmonic mean (99.2%). Precision
is exceptionally high (98.5%), suggesting that when the model flags a grid as containing a steel
plant, it is almost always correct (Figure 3a).

To evaluate model performance and interpret the results, we examine feature importance to
understand the relationship between the outcome (i.e., dependent variable) and input features
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Figure 3: Confusion Matrix and Shapley Values in the Classification Model
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Note: The left panel (a) shows the confusion matrix. SMOTE effectively addresses class imbalance by synthesizing
new data for minority classes (steel-producing grids). A standard threshold of 0.5 is used for the confusion matrix.
The left panel (b) shows the Shapley values of each feature in our classification model. The Shapley value shows the
contribution of each feature to the model’s prediction. Each dot represents a sample in the model, and the density
reflects the distribution of feature values.

(i.e., independent variables). To address the common criticism of machine learning models as
“black boxes” and to clarify how inputs affect outputs, we use SHAP to quantify the contribution
of each feature to the model’s predictions. SHAP is a widely used approach for interpreting the
impact of individual features on model outcomes (Lundberg, 2017). In contrast to Partial Depen-
dence Plots (PDP), which focus on average effects, SHAP’s game-theoretic foundation provides
feature contributions at the observation level. The SHAP decomposition can be equivalently
written as follows:

Ŷi = β0 + shap (X1,i) + shap (X2,i) + · · ·+ shap
(
Xp,i

)
, (3)

where Ŷi is the model prediction for the observation of i, β0 is the mean prediction of the model
across all observations (referred to as the base value of the model output), i.e., the prediction
without any inputs, and shap

(
Xp,i

)
is the marginal contribution of feature p for observation

i. Thus, the sum of Shapley terms in Equation (3) equals the difference between the actual
prediction and the average prediction.2

2We use a specialized SHAP method tailored to geo-referenced data. Specifically, we use the GeoShapley package,
a game theory-based approach for measuring spatial effects in machine learning models (Li, 2024).
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Our model accurately identifies known steel plants with few false positives. Figure 3b shows
the SHAP feature importance plot, which captures the average contribution of each feature to the
model’s predictions. Each dot represents the impact of a single feature value. SHAP values on
the x-axis denote the magnitude and direction of a feature’s impact on the model’s output. We
find that our location prediction heavily relies on NTL, NO2, and CO. NTL data is particularly
useful, as continuously operating steel plants emit significant light at night, making it a strong
indicator of industrial activity. NO2 and CO are also critical, as they are direct byproducts of the
steel-making process.

4.2 Output Prediction

Given the predicted locations, we perform an intensive margin analysis to predict steel output.
We estimate steel output at a finer grid-level resolution and predict output for each plant.

Grid-level Prediction. To estimate steel output across grid cells, we apply several machine
learning models trained on remote sensing data. Our results show that the model is highly
accurate in predicting steel production. We provide a detailed analysis of model performance:
predicted versus actual values, and feature importance.

We evaluate several models to determine the most effective approach for predicting steel
output. Table A.2 compares their performance. Gradient-boosting models perform well, but the
ensemble learning model, which combines multiple algorithms, achieves the highest R2 value
of 0.934. Figure 4 compares actual and predicted steel output at the grid level. The scatter
plot shows a strong correlation, with points clustering around the diagonal red line representing
perfect predictions. This indicates that the model reliably captures the spatial distribution of
outputs across regions. The distribution plots show that the predicted values closely mirror the
actual distribution, further validating the accuracy of the model.

To understand the key drivers behind steel output predictions, we analyze feature importance
using SHAP values, which quantify the contribution of each feature. The SHAP values are
efficiently estimated by the tree-based SHAP algorithm (Lundberg, 2017; Lundberg, Erion and
Lee, 2018). Finally, we use a non-parametric bootstrap to estimate the uncertainties in SHAP
value estimates. Figure 5a and 5b show the lagged values of pollutants, O3, and LST, which
suggest that past environmental conditions are also crucial in predicting output.

Plant-level Prediction. We estimate steel production using identified plant locations and vari-
ous machine learning models trained on features such as pollutant levels, temperature data, and
NTL intensity. Figure A.10 shows that predicted outputs closely align with actual values, indi-
cating high accuracy; the density plot also demonstrates a tight match between predicted and
observed distributions.

To understand what drives these predictions, we examine feature importance scores. Our
results show that pollutant concentrations, including O3, PM2.5, PM10, and SO2, are the most
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Figure 4: Actual and Predicted Value at the Grid Level
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Note: This figure shows the model fit at the grid level in our sample. The left-hand side shows the distribution fit
between actual and predicted values, while the right-hand side shows the value of crude steel output fit between
actual and predicted values expressed in units of 10,000 tons.

significant contributors, followed by NTL and land surface temperature. The XGBoost model
achieves a strong R2 of 0.88 at the plant level. While prior studies typically produce grid-level
estimates (Ahn et al., 2023), our approach allows for granular plant-level predictions.

4.3 Robustness Check Using Open-Source Sentinel Data

We use air pollutant data from Sentinel-5P to predict output at both grid and plant levels, fol-
lowing the same procedure. Sentinel-5P measures air quality at a resolution of 3.5 km × 7 km,
while the CHAP dataset provides finer 1 km resolution data for China. To make the two datasets
compatible, we resample the Sentinel-5P data down to the 1 km grid of the CHAP dataset using
the Google Earth Engine platform. Our results show R2 values above 0.8 for both grid- and plant-
level predictions, which suggests that our method remains robust even when using open-source
satellite data with lower quality but greater accessibility (Figures A.11 and A.12).

4.4 Event Analysis

We assess the impact of two major events—the Spring Festival and the COVID-19 pandemic—
and evaluate whether our methodology can capture fluctuations in these periods. We view this
as a basic validation of predictions of the model for output aggregated across regions.

During the Spring Festival, which typically occurs from late January to February, steel plants
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Figure 5: Shapley Values for Features in Regression Model at the Grid Level

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
SHAP value (impact on model output)

CO_MEAN

PM10_MEAN_lag1

PM2_5_MEAN

NO2_MEAN

NO2_MEAN_lag1

CO_MEAN_lag3

LSTT_MEAN_lag1

NO2_MEAN_lag2

LSTA_MEAN_lag1

NO2_MEAN_lag3

Year

Month

SO2_MEAN

NTL_MEAN_lag3

PM10_MEAN

NTL_MEAN_lag2

NTL_MEAN_lag1

LSTA_MEAN

NTL_MEAN

O3_MEAN

Low

High

Fe
at

ur
e 

va
lu

e

(a) Shapley Values

0.0 0.1 0.2 0.3 0.4
Mean SHAP Value (average impact on the outcome)

month_sin
month_cos

Centroid_Lat
PM2_5_MEAN_lag3
PM2_5_MEAN_lag2

SO2_MEAN_lag2
LSTA_MEAN_lag3

PM10_MEAN_lag3
SO2_MEAN_lag3

LSTT_MEAN_lag3
SO2_MEAN_lag1

PM2_5_MEAN_lag1
LSTT_MEAN

LSTA_MEAN_lag2
O3_MEAN_lag1
O3_MEAN_lag3

PM10_MEAN_lag2
LSTT_MEAN_lag2

PM2_5_MEAN
NO2_MEAN

Centroid_Long
PM10_MEAN_lag1

CO_MEAN
O3_MEAN_lag2
CO_MEAN_lag1
CO_MEAN_lag2

NO2_MEAN_lag1
NO2_MEAN_lag3
LSTT_MEAN_lag1

Month
CO_MEAN_lag3

NO2_MEAN_lag2
LSTA_MEAN_lag1

Year
SO2_MEAN

PM10_MEAN
NTL_MEAN_lag3
NTL_MEAN_lag2
NTL_MEAN_lag1

LSTA_MEAN
NTL_MEAN
O3_MEAN

Fe
at

ur
es

Global Feature Importance

(b) Simulation-Based SHAP Values

Note: The left panel (a) shows the Shapley values estimated using a non-parametric bootstrap method based on resid-
ual resampling. The right panel (b) shows the simulation-based SHAP values recalculated using the same approach.
In both panels, model residuals were resampled with replacement and added to the predicted values to generate new
dependent variables. The XGBoost model was retrained using the original hyperparameters, and SHAP values were
recalculated and stored. We repeat the process 5,000 times and present 95% confidence intervals.

temporarily reduce output due to holiday shutdowns. Figure 6a shows these consistent declines,
which are short-lived and followed by rapid rebounds as operations resume. The model accu-
rately predicts these fluctuations and demonstrates its capability to forecast aggregate production
trends driven by seasonal factors.

The COVID-19 pandemic, which began in early 2020 and extended toward the end of 2022,
caused a sharp and sustained decline in steel production, particularly in Wuhan, the outbreak’s
epicenter, as shown in Figure 6b. While non-Wuhan plants also experienced declines due to
lockdowns and shutdowns, the impact was less severe and there was an immediate rebound,
suggesting that the pandemic affected the entire country but had a disproportionately intense
impact in Wuhan. Our predictions fit closely with these trends, with only minor underestimation
of output during the middle and end of the pandemic period.

5 Generalization Capabilities: Holdout Validation

We now validate the predictions of our model across different regions and time periods using
holdout data, excluded from the training and testing sets.
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Figure 6: Event Analysis on Spring Festivals and COVID-19

2019-01
2020-01

2021-01
2022-01

2023-01

Date

0

50

100

150

200

250

P
la

n
t 

O
u
tp

u
t

Monthly Plant Output Statistics (2019-2022) and Spring Festival Impact

Spring Festival
Actual
Predicted

(a) Plant Output During the Spring Festival

2020-01
2021-01

2022-01
2023-01

0.8

0.9

1.0

1.1

1.2

No
rm

al
ize

d 
Av

er
ag

e 
Pl

an
t O

ut
pu

t

Impact of COVID-19 on Predicted and Actual Plant Output in Wuhan vs Other Regions
Predicted Wuhan Plants' Output (Normalized)
Predicted Non-Wuhan Plants' Output (Normalized)
Reported Wuhan Plants' Output (Normalized)
Reported Non-Wuhan Plants' Output (Normalized)
COVID-19 Impact Period

(b) Plant Output During COVID-19

Note: Figure 6a shows the crude steel’s actual and predicted values during the Spring Festival. The gray bars are the
periods of the Spring Festival each year. The yellow vertical line indicates the monthly range of steel output. Figure
6b shows our actual and predicted values during the COVID-19 period. We normalized the values to those of the
first month, January 2019. The data source for this figure is the reported plant output from the CISA. We repeat the
process 5,000 times and calculate the arithmetic mean.

5.1 Time Series Validation

For the time series validation, we examine steel output trends over a specific period. Specifically,
we train the model on historical data from 2019 to 2021 and generate predictions for 2022. That
is, we exclude 2022 from the training and testing sets, treating it as an external sample.

The model effectively captures the temporal variability of steel output. As shown in Figure
6a, predicted values closely align with actual production in 2022, particularly during significant
shifts. For instance, the model accurately predicts lower output during winter months due to
environmental regulations and higher levels during peak industrial activity.3 Figure 7a demon-
strates strong performance when we validate the model with 2022 data, with an R2 of 0.84.
These results suggest the model reliably tracks steel production fluctuations over time and can
potentially predict future years.

5.2 Regional Validation

The regional validation examines the model’s ability to predict output in regions without ground-
truth data. To do so, we train the model on steel production data from one region and use
another region as an external validation sample. Specifically, we train the model on data from
northern China and validate it using steel output data from southern China. As shown in Figure
7b, the model achieves an R2 of 0.81 in predicting output in the southern region. Although
some outliers fall outside the training sample, the model successfully captures overall trends
across many grids. Our result shows that the model does not exclusively depend on localized

3For instance, China’s winter coal substitution policies, which aim to reduce air pollution by replacing coal with
cleaner energy sources for heating in northern regions during winter.
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Figure 7: Using External Sample as a Holdout Validation
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(a) 2022 as External Sample
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(b) Southern China as External Sample

Note: Figure 7a shows the model forecasting capability using 2022 as an external validation. We use the years from
2019 to 2021 to train and test the model, and then use 2022 as the holdout sample to validate the model (70 plants
× 12 months = 840 observations). Figure 7b shows the model generalization capability using Southern China as an
external validation. We train and test our model on data from Northern China, and use Southern China as the holdout
sample to validate the model (31 plants × 48 months = 1,488 observations).

patterns in China. These findings suggest that our procedure has the potential to generalize
across different spatial and temporal contexts.

6 Conclusions

The use of geospatial data to measure economic statistics has been gradually increasing in eco-
nomics but has also faced criticism for its various limitations (Chen and Nordhaus, 2019; Ahn
et al., 2023). We develop a new methodology to measure economic activity that relies on the
premise that certain industries have distinct environmental imprints detectable remotely. This
methodology involves two steps, each of its own interest: detecting the location of production
and measuring its intensity at each location.

In addition to measurement, we believe our approach provides two additional insights. First,
it demonstrates the possibility of using the trained model to predict plant locations not included
in our ground-truth sample. Second, it shows that environmental footprints can be applied
beyond the time periods used to train our model, suggesting predictive power that extends
to future time horizons. Our methodology can be adapted to industries beyond steel, regions
beyond China, and used to measure economic activity across a broader spectrum.
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