NBER WORKING PAPER SERIES

A GEOSPATIAL APPROACH TO MEASURING ECONOMIC ACTIVITY

Anton Yang Jianwei Ai Costas Arkolakis

Working Paper 33619 http://www.nber.org/papers/w33619

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 March 2025

We thank Adel Daoud, Amit Khandelwal, Jennifer Marlon, Joseph Shapiro, Kei Irizawa, Lance Pangilinan, Sam Kortum, Tillmann von Carnap, Tianyu Fan, Yuansen Li, Mushfiq Mobarak, Hyunjoo Yang, and the seminar participants at Yale University and Yale Center for Geospatial Solutions for their helpful feedback and suggestions. Part of this work was carried out while Ai was visiting the Department of Economics at Yale University. He gratefully acknowledges their hospitality and the financial support provided by the China Scholarship Council (CSC). Ziyang Long and Meng Xia provided excellent research assistance. This is a short version of our work that excludes various sections. All errors are our own. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peerreviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2025 by Anton Yang, Jianwei Ai, and Costas Arkolakis. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

A Geospatial Approach to Measuring Economic Activity Anton Yang, Jianwei Ai, and Costas Arkolakis NBER Working Paper No. 33619 March 2025 JEL No. Q50, Q53, R12

ABSTRACT

We introduce a new methodology to detect and measure economic activity using geospatial data and apply it to steel production, a major industrial pollution source worldwide. Combining plant output data with geospatial data, such as ambient air pollutants, nighttime lights, and temperature, we train machine learning models to predict plant locations and output. We identify about 40% (70%) of plants missing from the training sample within a 1 km (5 km) radius and achieve R² above 0.8 for output prediction at a 1 km grid and at the plant level, as well as for both regional and time series validations. Our approach can be adapted to other industries and regions, and used by policymakers and researchers to track and measure industrial activity in near real time.

Anton Yang Yale University 28 Hillhouse Ave New Haven, CT 06511 anton.yang@yale.edu

Jianwei Ai Renmin University of China aijianwei@ruc.edu.cn Costas Arkolakis Department of Economics Yale University, 87 Trumbull Street P.O. Box 208268 New Haven, CT 06520-8268 and NBER costas.arkolakis@yale.edu

A Geospatial Approach to Measuring Economic Activity^{*}

Anton Yang¹, Jianwei Ai^{2,3}, and Costas Arkolakis¹

¹Yale University ²Renmin University of China ³Cornell University

April 3, 2025

Abstract

We introduce a new methodology to detect and measure economic activity using geospatial data and apply it to steel production, a major industrial pollution source worldwide. Combining plant output data with geospatial data, such as ambient air pollutants, nighttime lights, and temperature, we train machine learning models to predict plant locations and output. We identify about 40% (70%) of plants missing from the training sample within a 1 km (5 km) radius and achieve R² above 0.8 for output prediction at a 1 km grid and at the plant level, as well as for both regional and time series validations. Our approach can be adapted to other industries and regions, and used by policymakers and researchers to track and measure industrial activity in near real time.

1 Introduction

Economic measurement is the cornerstone of the economic discipline, yet traditional methods, particularly for industrial output, often fall short of providing up-to-date and granular information. Census-based surveys or government reports, the mainstay of industrial output measurement, are typically infrequent, incomplete, or prohibitively expensive to collect. For instance, according to the United Nations, only a small portion of developing countries collect industrial statistics on an annual basis, while many conduct surveys in 5 or 10-year intervals, and others have not done so for over 15 years (Upadhyaya and Todorov, 2009), and in Sub-Saharan Africa,

^{*}Yang: Yale University (e-mail: anton.yang@yale.edu); Ai: Renmin University of China and Cornell University (email: aijianwei@ruc.edu.cn); Arkolakis: Yale University and NBER (e-mail: costas.arkolakis@yale.edu). We thank Adel Daoud, Amit Khandelwal, Jennifer Marlon, Joseph Shapiro, Kei Irizawa, Lance Pangilinan, Sam Kortum, Tillmann von Carnap, Tianyu Fan, Yuansen Li, Mushfiq Mobarak, Hyunjoo Yang, and the seminar participants at Yale University and Yale Center for Geospatial Solutions for their helpful feedback and suggestions. Part of this work was carried out while Ai was visiting the Department of Economics at Yale University. He gratefully acknowledges their hospitality and the financial support provided by the China Scholarship Council (CSC). Ziyang Long and Meng Xia provided excellent research assistance. An online appendix is available on the authors' websites. All errors are our own.

fewer than half of countries have published reliable industrial production metrics for many years (United Nations Industrial Development Organization, 2016).

Geospatial data—e.g., satellite data—have emerged as a new tool for addressing these limitations, offering a cost-effective and comprehensive alternative (Burke et al., 2021). For example, researchers developed methods to estimate GDP using nighttime light (NTL) data from satellites (Henderson, Storeygard and Weil, 2012; Nordhaus and Chen, 2015; Martinez, 2022), but these studies focus on aggregate-level predictions and often remain inaccurate at times (Chen and Nordhaus, 2019). Recent advancements have focused on integrating satellite data with machine learning (Khachiyan et al., 2022; Sherman et al., 2023; Vogel et al., 2024), but these procedures more accurately reflect variation in population than in GDP per capita (Khachiyan et al., 2022; Ahn et al., 2023). Rossi-Hansberg and Zhang (2025) adapts such methodologies to measure regional GDP with high-resolution data across the globe and shows the importance of introducing geospatial indicators such as CO₂.

We develop a methodology to detect economic activity and measure its intensity with high spatial and temporal precision. Unlike alternative GDP estimates derived from satellite data, our approach directly links industrial output and location to real-time environmental signals, providing a more accurate and scalable economic monitoring tool. The premise of the methodology is that industrial activity has a distinct environmental imprint, so that both its location and intensity can be remotely measured by a variety of geospatial indicators. We thus choose to use it to detect and predict economic activity in the steel industry, known for its major economic role yet also stands as a global major polluter. The methodology involves two steps: (1) predicting plant locations within grid cells by matching known coordinates of steel plants with data of various geospatial datasets and applying a standard neural network model; (2) using data to predict crude steel output based on these identified plant locations.

The first main contribution of our paper is to illustrate how to accurately predict plant locations not reported in training and testing datasets (Figure 1a). In this step, we employ a neural network model to predict the presence of steel production in a dataset containing approximately 1.4 million grids. We identify approximately 40% of plants missing from the training sample within a 1 km radius and 70% within a 5 km radius. Using a local interpretation method based on the Shapley value concept from cooperative game theory, we find that particulate matter (PM), including PM₁₀ and PM_{2.5}, is a key predictor of plant locations.

Our second main contribution is to show it is possible to achieve high accuracy in predicting steel output (Figure 1b) by associating various environmental indicators with ground-truth data and training our model using standard machine learning techniques. In this step, we apply treebased machine learning models to predict steel output at both the 1 km grid and at the plant levels. Our findings show that ozone (O_3), NTL, and heat are key predictors of steel output at the grid level, while O_3 and NTL data are the key indicators at the plant level. We perform *K*-fold cross-validation on the full sample (Stone, 1974); and complement it with additional validations leaving a selected region and time period from the training sample. We find that our predictions

Figure 1: Predicted Locations and Output of Steel Plants

(a) Plant Locations

(b) Plant Output

Note: The left panel (a) shows our predicted plant locations across China using Esri Satellite Imagery. The blue circle points represent plants with complete monthly output data from 2019 to 2022 used in the training, while the red triangle points correspond to the plants observed from the holdout sample. In the northwest region, the predicted locations (purple 'foggy') are derived from areas not included in the training sample. The right panel (b) shows a 3D map of crude steel output predictions. Figure A.5 shows the distribution of steel output across China.

of steel output using geospatial statistics fit very well with an R² above 0.8 at the plant level.

To provide further validation of our methodology we show that it can capture output fluctuations from two major events. The first is the Spring Festival, which typically occurs from late January to February, during which steel production drops significantly due to temporary shutdowns for the holiday, with operations quickly resuming afterward. Our model accurately predicts this decrease and the quick recovery afterward. The second event is the unparalleled COVID-19 pandemic, which lasted from early 2020 to the end of 2022. In Wuhan, the pandemic's epicenter, strict lockdowns led to an unprecedented and steep drop in steel production. While steel plants outside Wuhan also experienced declines, these were notably less severe and exhibited less volatility compared to the extraordinary disruption observed in Wuhan. Our predictions fit well with these broad patterns and show consistent trends with the reported output.

2 Steel Production and Geospatial Environmental Factors

As one of the most intensive industrial processes, steel production releases large amounts of air pollutants and heat, which can be observed remotely. The production process involves three main stages: mining iron ore, turning the ore into iron, and smelting the iron into steel. In traditional blast furnaces, iron ore is heated with metallurgical coke at high temperatures to produce molten iron or pig iron. This process uses a hot air blast containing oxygen and releases substantial carbon dioxide (CO₂) and carbon monoxide (CO), the latter of which can further oxidize into CO₂.

Electric arc furnaces may still produce pollution if powered by electricity from nonrenewable sources. Other air pollutants from steel production include PM, sulfur dioxide (SO₂), and nitrogen oxides (NO_x). Steel industries are major emitters of volatile organic compounds (VOCs) and NO_x, which under certain atmospheric conditions may form ozone (O₃) as a by-product. Meanwhile, steel plants have high costs associated with shutting down and restarting operations, and thus typically operate continuously, both day and night. This operational characteristic results in consistent heat emissions and potentially NTL, making temperature and NTL data instrumental in detecting industrial activity (Liu et al., 2018; Zhang et al., 2019; Xie et al., 2024). We detail the data sources and dataset construction below.

2.1 Geospatial Environmental Indicators Used as Predictors

We use the constructed dataset of geospatial indicators to predict steel locations and output. We harmonize each of the geospatial indicators at 1 km \times 1 km grid cell, which provides approximately 1.4 million data points for the entire China. This allows us to associate emissions with industrial activity using high-quality, high-frequency pollution data obtained at fine-grained resolutions (Wei et al., 2021*a*,*b*, 2022*a*,*b*; Cooper et al., 2022; Halder et al., 2023; Wei et al., 2023).

Remote sensing data collected by satellites includes ambient air pollutants, NTL, and land surface temperature (LST). Ambient air pollution data are sourced from two main datasets. The first is ChinaHighAirPollutants (CHAP), a high-resolution dataset specific to China that provides high-quality geospatial data, including satellite remote sensing observations and ground-based measurements (Wei et al., 2023). The second is Sentinel-5P, a fully open-access dataset with a lower spatial resolution that does not include particulate matter measurements. We use CHAP to obtain our primary results and Sentinel-5P for robustness checks.

The CHAP dataset provides key indicators, including concentrations of NO₂, SO₂, O₃, CO, PM_{2.5}, PM₁₀, at 1 km resolution. LST and NTL intensity come from NASA and NOAA satellite observations, as well as ground-based monitoring stations. Missing LST data are filled using ground measurements (Tang et al., 2024).

2.2 Steel Plants Output and Location

For ground-truth data on steel production, we use information from 146 steel plants, but only 70 are included in our machine learning model because of missing values in production or environmental indicators. These data are provided by the Chinese Iron and Steel Association (CISA), which collects monthly production volumes for crude steel and pig iron and provides plant coordinates (see also Brandt et al., 2022). The 146 plants represent over 70% of China's steel production capacity. The dataset includes details on production technology (blast furnace, electric arc furnace, or integrated processes). To verify the accuracy of these output data, we compare CISA's data with aggregate-level data from the National Bureau of Statistics of China and find the two data sources to be highly consistent, except that CISA's data are available at a much finer

Figure 2: Steel Plants from Satellite Images

(c) Squared Grid Construction

Note: These figures show the locations and shapes of steel plants identified from satellite imagery. Panels (a) and (b) show two examples of steel plants in China. We know each plant's POI, but the coordinates can sometimes be inaccurate, as shown in Panel (b) (i.e., the pink dot outside the red-lined polygon). We verify each POI and its location individually. Panel (c) shows how we construct the shape of plants in our machine learning model. To facilitate replicability, we use a 2 km square to represent each plant instead of creating detailed polygons, as shown in Panel (c). Appendix A.3 shows the typical size distribution of steel plant areas in China. We replicate the main exercise introduced in this paper using detailed polygons and find that the results are similar.

level of granularity (Figure A.2).

We then verify the location of each steel plant by cross-checking its point of interest (POI) with satellite images. Since POI coordinates can occasionally be imprecise, we manually adjust them to ensure alignment with the actual plant locations. To make the data easier to replicate, we represent each plant using a 2 km \times 2 km square instead of detailed shapes, based on the typical size of steel plants in China. Figure 2 provides three illustrative examples.

We match the ground-truth output data with the input data using spatial information from ambient air pollutant datasets. The 1 km grid cells are defined by their latitude and longitude coordinates based on geolocation information provided in the CISA dataset for each of the 70 observed plants and the associated grid cells. Steel output is calculated at the grid level using an area-weighted approach that aggregates grid-level data to the plant level based on the proportion of each grid covered by the plant. The calculation is as follows:

$$Y_g = \sum_{p \in \mathcal{P}_g} \frac{S_{gp}}{S_p} P_p, \tag{1}$$

where P_g is the set of plants overlapping grid g, S_{gp} is the area of grid g that overlaps with plant p, S_p is the total area of plant p, P_p is the total production of plant p, and Y_g is the total production output assigned to grid *g*.

Equation (1) calculates grid-level production by summing contributions from all plants that intersect with a grid. Note that a single grid cell can partially contain multiple plants, and a single plant may span several grid cells.

3 Method

We predict two primary outcomes: the locations of steel plants and their production output. Because these predictions rely on labeled data, our approach falls under supervised learning (Athey and Imbens, 2019). Specifically, we use (i) a neural network model to identify plant locations and (ii) a regression model to estimate plant output at both the grid and plant levels.

3.1 Model framework

First, we predict the locations of steel plants at the grid-cell level using a deep learning model to estimate the probability of a plant being located in a specific grid cell. As expected, our dataset contains far fewer grid cells with steel plants (minority class) than those without (majority class), potentially leading to class imbalance (Leevy et al., 2018). This imbalance can bias the model, causing it to perform well on the majority class but poorly on the minority class since the model effectively assigns more weight to the majority class during training. To address this issue, we apply the Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al., 2002), which generates synthetic examples of grid cells with steel plants to balance the dataset, allowing the model to learn effectively from both classes (Chawla et al., 2002).

Next, we apply a neural network classifier to the SMOTE-balanced dataset to classify grid cells associated with steel plants. Neural networks are well-suited for this task as they handle large, sparse datasets and capture complex non-linear relationships in the data (LeCun, Bengio and Hinton, 2015). We use the ReLU activation function (Nair and Hinton, 2010), Dropout layers to prevent overfitting (Srivastava et al., 2014), and binary cross-entropy as the loss function (Murphy, 2012). The model is trained for 100 epochs, with accuracy as the performance metric. The dataset is split into 80% for training and 20% for testing (Hastie, Tibshirani and Friedman, 2009).

We use tree-based models to predict crude steel production.¹ While deep learning excels with large text and image data, tree-based methods remain the state-of-the-art for medium-sized datasets (Grinsztajn, Oyallon and Varoquaux, 2022). Specifically, we apply XGBoost and other gradient-boosted regression tree models, supervised learning models that build an ensemble of shallow trees sequentially, where each tree corrects errors made by the previous ones, to map input features to the production outputs.

To fix ideas, we model the conditional expectation of Y based on a set of p predictors, X, using the following specification:

$$Y = f(X_1, X_2, \dots, X_p) + \epsilon,$$
⁽²⁾

where Y represents the log of crude steel measured at both the grid and plant levels, X_1, X_2, \ldots, X_p

¹We note that pig iron is a crucial intermediate in crude steel production, but including both pig iron data and environmental indicators in our predictive model is likely not a robust approach due to strong multicollinearity. To validate this point, we replicate the same procedure to predict pig iron location and output. Our R² for predicting pig iron exceeds 0.8, and the fact that the resulting feature importance largely overlaps with those in predicting steel confirms a high correlation between pig iron and the environmental imprints used to predict steel.

represent the predictor variables defining the feature vector **X**, and ϵ is the prediction error, with $\mathbb{E}[Y | X_1, X_2, ..., X_p] = f(X_1, X_2, ..., X_p)$ and zero conditional expectation. To evaluate and compare model performance, we apply several models, including linear regression, Lasso, kernel ridge regression, ElasticNet, random forest, gradient boosting, LightGBM, and XGBoost. We also use an ensemble model, which combines multiple machine learning algorithms to improve predictive accuracy and robustness. It also reduces overfitting and bias while enhancing generalization (Wolpert, 1992). We show model details in Appendix B.

3.2 Input Features

We link the data from Section 2 to the model's input features used as predictors. To optimize the model's ability to extract information from pollution data, we create three distinct feature groups. The first group consists of ambient air pollutants. The second group consists of the centroid latitude and longitude of each grid and each plant, as well as the steel plant's production mode: electric, blast furnace, and mixed (which combines blast furnace and electric). The third group includes additional environmental factors LST, NTL intensity, along with other features: year, month, and cyclical characteristics derived from trigonometric functions, $\sin(2\pi \cdot \text{Month}_t/12)$ and $\cos(2\pi \cdot \text{Month}_t/12)$, to account for seasonal variations.

In the first step, when predicting whether a grid contains a steel plant, we exclude the second group of features. In the second step, when predicting output levels, we use all the input features discussed above. We additionally incorporate lagged geospatial features to capture temporal trends in production.

3.3 Training and Validation

We follow standard practice in machine learning by splitting the data into training and testing sets. In the first step, we focus on grid cells throughout China but restrict the data to November of each year from 2019 to 2022.

In the second step, we train two output simulation models: the grid-level model using grids of cities with steel plants and the plant-level model using steel plants in our sample with nonzero output. Due to the large size of our dataset, we evaluate our model using *K*-fold crossvalidation, where each fold produces a train-test split with 80% training and 20% testing. The labeled data are pooled and randomly partitioned into five equal subsets for each grid or plant. A model is trained on four subsets and evaluated on the remaining subset. This process is repeated for all five-folds, and the final performance metrics are averaged across the iterations. This technique allows us to assess model performance on different subsets of the data, reducing the risk of overfitting and ensuring that the model generalizes well to out-of-sample data. Ideally, the process is repeated multiple times to estimate the distribution of out-of-sample errors.

We employ hyper-parameter tuning to strengthen the model's focus on learning from pollutant features while improving its overall performance and interpretability (Hazan, Klivans and Yuan, 2017). We prioritize environmental features because they are direct indicators of steel production. To mitigate overfitting, we apply standard L1 and L2 regularization, which are commonly referred to as Lasso and Ridge penalties (Tibshirani, 1996; Hoerl and Kennard, 1970).

4 Main Results

We assess our model performance using several common metrics. For the neural network model, we use accuracy, precision, recall, and area under the receiver operating characteristic curve (AUROC). The AUROC measures the probability that the classifier ranks a randomly chosen positive example higher than a randomly chosen negative example, with scores ranging from 0.5 (random classifier) to 1.0 (perfect predictor). For the output prediction we simply report the R^2 .

4.1 Location Prediction

We use our model to predict steel plant locations and enhance interpretability with SHapley Additive exPlanations (SHAP), a model-agnostic post hoc method. Our goal is to train a classification model that uses input features, including geospatial data and spatial attributes, to predict whether a given grid cell contains a steel plant. For training and testing, we include plants that have complete monthly output data from 2019 to 2022. To test out-of-sample performance, we use plants from the CISA list that are excluded from the training sample as the holdout set.

Using the open-source Global Steel Plant Tracker as a holdout sample, we identify nearly 40% of the plants missing from the CISA dataset within a 1 km radius and 70% within a 5 km radius. Increasing the radius to 10 km and applying the lowest probability threshold (>0.5) increases the coverage to nearly 90% (Figure A.6). Our model successfully predicts plant locations in northwestern China that are not reported by the CISA (Figure 1a). We then use the confusion matrix in Figure 3a to evaluate the model's performance in predicting plant locations across over 1.3 million grid cells after applying SMOTE. With a standard threshold of 0.5, the matrix shows a high count of true negatives (1,374,438), where the model correctly identifies grids without steel plants. False negatives and false positives—where the model either misses or incorrectly predicts the presence of steel plants—are relatively low, at 3 and 11,192 instances, respectively. Although there are some false positives, the spatial clustering shown previously (Figure 1a) implies that these misclassifications typically occur in close proximity to actual steel plant locations, which suggests that the model's errors are often geographically near true positives. Meanwhile, true positives are notably high, at 1,385,627 instances. The model achieves near-perfect discrimination between steel and non-steel grids (AUROC close to 1.0) (Figures A.8) and maintains a strong balance between precision and recall, as reflected by a high harmonic mean (99.2%). Precision is exceptionally high (98.5%), suggesting that when the model flags a grid as containing a steel plant, it is almost always correct (Figure 3a).

To evaluate model performance and interpret the results, we examine feature importance to understand the relationship between the outcome (i.e., dependent variable) and input features

Figure 3: Confusion Matrix and Shapley Values in the Classification Model

Note: The left panel (a) shows the confusion matrix. SMOTE effectively addresses class imbalance by synthesizing new data for minority classes (steel-producing grids). A standard threshold of 0.5 is used for the confusion matrix. The left panel (b) shows the Shapley values of each feature in our classification model. The Shapley value shows the contribution of each feature to the model's prediction. Each dot represents a sample in the model, and the density reflects the distribution of feature values.

(i.e., independent variables). To address the common criticism of machine learning models as "black boxes" and to clarify how inputs affect outputs, we use SHAP to quantify the contribution of each feature to the model's predictions. SHAP is a widely used approach for interpreting the impact of individual features on model outcomes (Lundberg, 2017). In contrast to Partial Dependence Plots (PDP), which focus on average effects, SHAP's game-theoretic foundation provides feature contributions at the observation level. The SHAP decomposition can be equivalently written as follows:

$$\widehat{Y}_i = \beta_0 + \operatorname{shap}\left(X_{1,i}\right) + \operatorname{shap}\left(X_{2,i}\right) + \dots + \operatorname{shap}\left(X_{p,i}\right), \tag{3}$$

where \hat{Y}_i is the model prediction for the observation of *i*, β_0 is the mean prediction of the model across all observations (referred to as the base value of the model output), i.e., the prediction without any inputs, and shap $(X_{p,i})$ is the marginal contribution of feature *p* for observation *i*. Thus, the sum of Shapley terms in Equation (3) equals the difference between the actual prediction and the average prediction.²

²We use a specialized SHAP method tailored to geo-referenced data. Specifically, we use the GeoShapley package, a game theory-based approach for measuring spatial effects in machine learning models (Li, 2024).

Our model accurately identifies known steel plants with few false positives. Figure 3b shows the SHAP feature importance plot, which captures the average contribution of each feature to the model's predictions. Each dot represents the impact of a single feature value. SHAP values on the x-axis denote the magnitude and direction of a feature's impact on the model's output. We find that our location prediction heavily relies on NTL, NO₂, and CO. NTL data is particularly useful, as continuously operating steel plants emit significant light at night, making it a strong indicator of industrial activity. NO₂ and CO are also critical, as they are direct byproducts of the steel-making process.

4.2 Output Prediction

Given the predicted locations, we perform an intensive margin analysis to predict steel output. We estimate steel output at a finer grid-level resolution and predict output for each plant.

Grid-level Prediction. To estimate steel output across grid cells, we apply several machine learning models trained on remote sensing data. Our results show that the model is highly accurate in predicting steel production. We provide a detailed analysis of model performance: predicted versus actual values, and feature importance.

We evaluate several models to determine the most effective approach for predicting steel output. Table A.2 compares their performance. Gradient-boosting models perform well, but the ensemble learning model, which combines multiple algorithms, achieves the highest R² value of 0.934. Figure 4 compares actual and predicted steel output at the grid level. The scatter plot shows a strong correlation, with points clustering around the diagonal red line representing perfect predictions. This indicates that the model reliably captures the spatial distribution of outputs across regions. The distribution plots show that the predicted values closely mirror the actual distribution, further validating the accuracy of the model.

To understand the key drivers behind steel output predictions, we analyze feature importance using SHAP values, which quantify the contribution of each feature. The SHAP values are efficiently estimated by the tree-based SHAP algorithm (Lundberg, 2017; Lundberg, Erion and Lee, 2018). Finally, we use a non-parametric bootstrap to estimate the uncertainties in SHAP value estimates. Figure 5a and 5b show the lagged values of pollutants, O₃, and LST, which suggest that past environmental conditions are also crucial in predicting output.

Plant-level Prediction. We estimate steel production using identified plant locations and various machine learning models trained on features such as pollutant levels, temperature data, and NTL intensity. Figure A.10 shows that predicted outputs closely align with actual values, indicating high accuracy; the density plot also demonstrates a tight match between predicted and observed distributions.

To understand what drives these predictions, we examine feature importance scores. Our results show that pollutant concentrations, including O_3 , $PM_{2.5}$, PM_{10} , and SO_2 , are the most

Figure 4: Actual and Predicted Value at the Grid Level

Note: This figure shows the model fit at the grid level in our sample. The left-hand side shows the distribution fit between actual and predicted values, while the right-hand side shows the value of crude steel output fit between actual and predicted values expressed in units of 10,000 tons.

significant contributors, followed by NTL and land surface temperature. The XGBoost model achieves a strong R^2 of 0.88 at the plant level. While prior studies typically produce grid-level estimates (Ahn et al., 2023), our approach allows for granular plant-level predictions.

4.3 Robustness Check Using Open-Source Sentinel Data

We use air pollutant data from Sentinel-5P to predict output at both grid and plant levels, following the same procedure. Sentinel-5P measures air quality at a resolution of $3.5 \text{ km} \times 7 \text{ km}$, while the CHAP dataset provides finer 1 km resolution data for China. To make the two datasets compatible, we resample the Sentinel-5P data down to the 1 km grid of the CHAP dataset using the Google Earth Engine platform. Our results show R² values above 0.8 for both grid- and plantlevel predictions, which suggests that our method remains robust even when using open-source satellite data with lower quality but greater accessibility (Figures A.11 and A.12).

4.4 Event Analysis

We assess the impact of two major events—the Spring Festival and the COVID-19 pandemic and evaluate whether our methodology can capture fluctuations in these periods. We view this as a basic validation of predictions of the model for output aggregated across regions.

During the Spring Festival, which typically occurs from late January to February, steel plants

Figure 5: Shapley Values for Features in Regression Model at the Grid Level

Note: The left panel (a) shows the Shapley values estimated using a non-parametric bootstrap method based on residual resampling. The right panel (b) shows the simulation-based SHAP values recalculated using the same approach. In both panels, model residuals were resampled with replacement and added to the predicted values to generate new dependent variables. The XGBoost model was retrained using the original hyperparameters, and SHAP values were recalculated and stored. We repeat the process 5,000 times and present 95% confidence intervals.

temporarily reduce output due to holiday shutdowns. Figure 6a shows these consistent declines, which are short-lived and followed by rapid rebounds as operations resume. The model accurately predicts these fluctuations and demonstrates its capability to forecast aggregate production trends driven by seasonal factors.

The COVID-19 pandemic, which began in early 2020 and extended toward the end of 2022, caused a sharp and sustained decline in steel production, particularly in Wuhan, the outbreak's epicenter, as shown in Figure 6b. While non-Wuhan plants also experienced declines due to lockdowns and shutdowns, the impact was less severe and there was an immediate rebound, suggesting that the pandemic affected the entire country but had a disproportionately intense impact in Wuhan. Our predictions fit closely with these trends, with only minor underestimation of output during the middle and end of the pandemic period.

5 Generalization Capabilities: Holdout Validation

We now validate the predictions of our model across different regions and time periods using holdout data, excluded from the training and testing sets.

(a) Plant Output During the Spring Festival

Note: Figure 6a shows the crude steel's actual and predicted values during the Spring Festival. The gray bars are the periods of the Spring Festival each year. The yellow vertical line indicates the monthly range of steel output. Figure 6b shows our actual and predicted values during the COVID-19 period. We normalized the values to those of the first month, January 2019. The data source for this figure is the reported plant output from the CISA. We repeat the process 5,000 times and calculate the arithmetic mean.

5.1 Time Series Validation

For the time series validation, we examine steel output trends over a specific period. Specifically, we train the model on historical data from 2019 to 2021 and generate predictions for 2022. That is, we exclude 2022 from the training and testing sets, treating it as an external sample.

The model effectively captures the temporal variability of steel output. As shown in Figure 6a, predicted values closely align with actual production in 2022, particularly during significant shifts. For instance, the model accurately predicts lower output during winter months due to environmental regulations and higher levels during peak industrial activity.³ Figure 7a demonstrates strong performance when we validate the model with 2022 data, with an R² of 0.84. These results suggest the model reliably tracks steel production fluctuations over time and can potentially predict future years.

5.2 Regional Validation

The regional validation examines the model's ability to predict output in regions without groundtruth data. To do so, we train the model on steel production data from one region and use another region as an external validation sample. Specifically, we train the model on data from northern China and validate it using steel output data from southern China. As shown in Figure 7b, the model achieves an R^2 of 0.81 in predicting output in the southern region. Although some outliers fall outside the training sample, the model successfully captures overall trends across many grids. Our result shows that the model does not exclusively depend on localized

³For instance, China's winter coal substitution policies, which aim to reduce air pollution by replacing coal with cleaner energy sources for heating in northern regions during winter.

(a) 2022 as External Sample

(b) Southern China as External Sample

Note: Figure 7a shows the model forecasting capability using 2022 as an external validation. We use the years from 2019 to 2021 to train and test the model, and then use 2022 as the holdout sample to validate the model (70 plants \times 12 months = 840 observations). Figure 7b shows the model generalization capability using Southern China as an external validation. We train and test our model on data from Northern China, and use Southern China as the holdout sample to validate the model (31 plants \times 48 months = 1,488 observations).

patterns in China. These findings suggest that our procedure has the potential to generalize across different spatial and temporal contexts.

6 Conclusions

The use of geospatial data to measure economic statistics has been gradually increasing in economics but has also faced criticism for its various limitations (Chen and Nordhaus, 2019; Ahn et al., 2023). We develop a new methodology to measure economic activity that relies on the premise that certain industries have distinct environmental imprints detectable remotely. This methodology involves two steps, each of its own interest: detecting the location of production and measuring its intensity at each location.

In addition to measurement, we believe our approach provides two additional insights. First, it demonstrates the possibility of using the trained model to predict plant locations not included in our ground-truth sample. Second, it shows that environmental footprints can be applied beyond the time periods used to train our model, suggesting predictive power that extends to future time horizons. Our methodology can be adapted to industries beyond steel, regions beyond China, and used to measure economic activity across a broader spectrum.

References

- Ahn, Donghyun, Minhyuk Song, Seungeon Lee, Yubin Choi, Jihee Kim, Sangyoon Park, Hyunjoo Yang, and Meeyoung Cha. 2023. "Fine-Grained Socioeconomic Prediction from Satellite Images with Distributional Adjustment." 3717–3721.
- Athey, Susan, and Guido W Imbens. 2019. "Machine learning methods that economists should know about." *Annual Review of Economics*, 11(1): 685–725.
- **Brandt, Loren, Feitao Jiang, Yao Luo, and Yingjun Su.** 2022. "Ownership and productivity in vertically integrated firms: evidence from the Chinese steel industry." *Review of Economics and Statistics*, 104(1): 101–115.
- **Burke, Marshall, Anne Driscoll, David B Lobell, and Stefano Ermon.** 2021. "Using satellite imagery to understand and promote sustainable development." *Science*, 371(6535): eabe8628.
- Chawla, Nitesh V, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. 2002. "SMOTE: synthetic minority over-sampling technique." *Journal of Artificial Intelligence Research*, 16: 321–357.
- Chen, Tianqi, and Carlos Guestrin. 2016. "Xgboost: A scalable tree boosting system." 785–794.
- Chen, Xi, and William D Nordhaus. 2019. "VIIRS nighttime lights in the estimation of crosssectional and time-series GDP." *Remote Sensing*, 11(9): 1057.
- Cooper, Matthew J, Randall V Martin, Melanie S Hammer, Pieternel F Levelt, Pepijn Veefkind, Lok N Lamsal, Nickolay A Krotkov, Jeffrey R Brook, and Chris A McLinden. 2022. "Global fine-scale changes in ambient NO2 during COVID-19 lockdowns." *Nature*, 601(7893): 380–387.
- **Datta, Anupam, Shayak Sen, and Yair Zick.** 2016. "Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems." 598–617, IEEE.
- Efron, Bradley. 1992. "Bootstrap methods: another look at the jackknife." In *Breakthroughs in Statistics: Methodology and Distribution*. 569–593. Springer.
- **Grinsztajn, Léo, Edouard Oyallon, and Gaël Varoquaux.** 2022. "Why do tree-based models still outperform deep learning on typical tabular data?" *Advances in Neural Information Processing Systems*, 35: 507–520.
- Halder, Bijay, Iman Ahmadianfar, Salim Heddam, Zainab Haider Mussa, Leonardo Goliatt, Mou Leong Tan, Zulfaqar Sa'adi, Zainab Al-Khafaji, Nadhir Al-Ansari, Ali H Jawad, et al. 2023. "Machine learning-based country-level annual air pollutants exploration using Sentinel-5P and Google Earth Engine." *Scientific Reports*, 13(1): 7968.
- Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. Vol. 2, Springer.

- Hazan, Elad, Adam Klivans, and Yang Yuan. 2017. "Hyperparameter optimization: A spectral approach." *arXiv preprint arXiv:1706.00764*.
- Henderson, J Vernon, Adam Storeygard, and David N Weil. 2012. "Measuring economic growth from outer space." *American Economic Review*, 102(2): 994–1028.
- Hoerl, Arthur E., and Robert W. Kennard. 1970. "Ridge regression: Biased estimation for nonorthogonal problems." *Technometrics*, 12(1): 55–67.
- Khachiyan, Arman, Anthony Thomas, Huye Zhou, Gordon Hanson, Alex Cloninger, Tajana Rosing, and Amit K Khandelwal. 2022. "Using neural networks to predict microspatial economic growth." American Economic Review: Insights, 4(4): 491–506.
- Kossen, Jannik, Neil Band, Clare Lyle, Aidan N Gomez, Thomas Rainforth, and Yarin Gal. 2021. "Self-attention between datapoints: Going beyond individual input-output pairs in deep learning." *Advances in Neural Information Processing Systems*, 34: 28742–28756.
- LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. 2015. "Deep learning." *Nature*, 521(7553): 436–444.
- **Leevy, Joffrey L, Taghi M Khoshgoftaar, Richard A Bauder, and Naeem Seliya.** 2018. "A survey on addressing high-class imbalance in big data." *Journal of Big Data*, 5(1): 1–30.
- **Lipovetsky, Stan, and Michael Conklin.** 2001. "Analysis of regression in game theory approach." *Applied Stochastic Models in Business and Industry*, 17(4): 319–330.
- Liu, Yongxue, Chuanmin Hu, Wenfeng Zhan, Chao Sun, Brock Murch, and Lei Ma. 2018. "Identifying industrial heat sources using time-series of the VIIRS Nightfire product with an object-oriented approach." *Remote Sensing of Environment*, 204: 347–365.
- Li, Ziqi. 2024. "GeoShapley: A Game Theory Approach to Measuring Spatial Effects in Machine Learning Models." *Annals of the American Association of Geographers*, 1–21.
- **Lundberg, Scott.** 2017. "A unified approach to interpreting model predictions." *arXiv preprint arXiv:*1705.07874.
- Lundberg, Scott M, Gabriel G Erion, and Su-In Lee. 2018. "Consistent individualized feature attribution for tree ensembles." *arXiv preprint arXiv:1802.03888*.
- Martinez, Luis R. 2022. "How much should we trust the dictator's GDP growth estimates?" *Journal of Political Economy*, 130(10): 2731–2769.
- Murphy, Kevin P. 2012. Machine Learning: A Probabilistic Perspective. MIT Press.
- Nair, Vinod, and Geoffrey E Hinton. 2010. "Rectified linear units improve restricted Boltzmann machines." 807–814.

- **Nordhaus, William, and Xi Chen.** 2015. "A sharper image? Estimates of the precision of night-time lights as a proxy for economic statistics." *Journal of Economic Geography*, 15(1): 217–246.
- **Rossi-Hansberg, Esteban, and Jialing Zhang.** 2025. "Local GDP Estimates Around the World." National Bureau of Economic Research NBER Working Paper 33458.
- Sherman, Luke, Jonathan Proctor, Hannah Druckenmiller, Heriberto Tapia, and Solomon M Hsiang. 2023. "Global high-resolution estimates of the United Nations Human Development Index using satellite imagery and machine-learning." National Bureau of Economic Research.
- Shetty, Shobitha, Philipp Schneider, Kerstin Stebel, Paul David Hamer, Arve Kylling, and Terje Koren Berntsen. 2024. "Estimating surface NO2 concentrations over Europe using Sentinel-5P TROPOMI observations and Machine Learning." *Remote Sensing of Environment*, 312: 114321.
- Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. "Dropout: A simple way to prevent neural networks from overfitting." *Journal of Machine Learning Research*, 15(1): 1929–1958.
- **Stone, Mervyn.** 1974. "Cross-validatory choice and assessment of statistical predictions." *Journal of the royal statistical society: Series B (Methodological)*, 36(2): 111–133.
- Tang, Wenbin, Ji Zhou, Jin Ma, Ziwei Wang, Lirong Ding, Xiaodong Zhang, and Xu Zhang. 2024. "TRIMS LST: a daily 1 km all-weather land surface temperature dataset for China's landmass and surrounding areas (2000–2022)." *Earth System Science Data*, 16(1): 387–419.
- **Tibshirani, Robert.** 1996. "Regression shrinkage and selection via the lasso." *Journal of the Royal Statistical Society: Series B (Methodological)*, 58(1): 267–288.
- **United Nations Industrial Development Organization.** 2016. "Report on Industrial Statistics to the Forty-seventh Session of the United Nations Statistical Commission." *Working document, United Nations Statistical Commission, 47th Session, Accessed:* 2025-03-15.
- **Upadhyaya, S, and V Todorov.** 2009. "UNIDO Data Quality: A quality assurance framework for UNIDO statistical activities." *Vienna: UNIDO*.
- Vogel, Kathryn Baragwanath, Gordon H Hanson, Amit Khandelwal, Chen Liu, and Hogeun Park. 2024. "Using Satellite Imagery to Detect the Impacts of New Highways: An Application to India." National Bureau of Economic Research.
- Wei, Jing, Song Liu, Zhanqing Li, Cheng Liu, Kai Qin, Xiong Liu, Rachel T Pinker, Russell R Dickerson, Jintai Lin, KF Boersma, et al. 2022a. "Ground-level NO2 surveillance from space across China for high resolution using interpretable spatiotemporally weighted artificial intelligence." *Environmental Science & Technology*, 56(14): 9988–9998.

- Wei, Jing, Zhanqing Li, Alexei Lyapustin, Lin Sun, Yiran Peng, Wenhao Xue, Tianning Su, and Maureen Cribb. 2021a. "Reconstructing 1-km-resolution high-quality PM2. 5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications." *Remote Sensing* of Environment, 252: 112136.
- Wei, Jing, Zhanqing Li, Jun Wang, Can Li, Pawan Gupta, and Maureen Cribb. 2023. "Groundlevel gaseous pollutants (NO 2, SO 2, and CO) in China: Daily seamless mapping and spatiotemporal variations." *Atmospheric Chemistry and Physics*, 23(2): 1511–1532.
- Wei, Jing, Zhanqing Li, Ke Li, Russell R Dickerson, Rachel T Pinker, Jun Wang, Xiong Liu, Lin Sun, Wenhao Xue, and Maureen Cribb. 2022b. "Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China." *Remote Sensing* of Environment, 270: 112775.
- Wei, Jing, Zhanqing Li, Wenhao Xue, Lin Sun, Tianyi Fan, Lei Liu, Tianning Su, and Maureen Cribb. 2021b. "The ChinaHighPM10 dataset: generation, validation, and spatiotemporal variations from 2015 to 2019 across China." *Environment International*, 146: 106290.
- Wolpert, David H. 1992. "Stacked generalization." Neural Networks, 5(2): 241–259.
- Xie, Yanmei, Caihong Ma, Yindi Zhao, Dongmei Yan, Bo Cheng, Xiaolin Hou, Hongyu Chen, Bihong Fu, and Guangtong Wan. 2024. "The Potential of Using SDGSAT-1 TIS Data to Identify Industrial Heat Sources in the Beijing–Tianjin–Hebei Region." *Remote Sensing*, 16(5): 768.
- Zhang, Ping, Chencheng Yuan, Qiangqiang Sun, Aixia Liu, Shucheng You, Xianwen Li, Yaping Zhang, Xin Jiao, Danfeng Sun, Minxuan Sun, et al. 2019. "Satellite-based detection and characterization of industrial heat sources in China." *Environmental Science & Technology*, 53(18): 11031–11042.