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As technology advances, economic transactions and interactions have become increasingly digi-

tal, with the value of digital payments globally being in the hundreds of trillions of U.S. dollars ac-

cording to BIS data (BIS Statistics, 2023; Glowka, Kosse, and Szemere, 2023).1 While bank-centric

and government-led payment systems (e.g., ACH, SWIFT, or credit cards) have traditionally domi-

nated digital payments, non-bank providers like PayPal and M-Pesa, along with BigTech firms such

as Apple and Alibaba, have gained prominence in recent decades. These non-bank payment services

challenge traditional payment systems, for instance, by offering faster, more efficient payments with

broader functionalities. Digitization has also enabled Hayek’s vision of private currency issuance

and competition with fiat money (Hayek, 1976). Indeed, cryptocurrencies, stablecoins, and decen-

tralized finance have shown the potential to challenge traditional monetary systems (Brunnermeier,

James, and Landau, 2019; Adrian and Mancini-Griffoli, 2019). Such developments have prompted

many countries to explore currency and payment system digitization, including upgrading existing

or introducing new payment systems (e.g., Brazil’s Pix or India’s UPI), or launching Central Bank

Digital Currencies (CBDCs, see, e.g., Auer, Cornelli, and Frost, 2023).

Against this backdrop, we examine the evolving competition among currencies and forms of

money amid the rise of private digital money (PDM), the ongoing digitization of payments, and

countries’ efforts to digitize their fiat payment systems. Among many new insights and predictions,

we find that countries with less dominant, yet well-adopted currencies (e.g., China) digitize their fiat

money earlier, showing a first-mover advantage. In contrast, countries with dominant currencies

(e.g., the U.S.) exhibit a second-mover advantage and delay digitization until their dominance

is challenged through the rise of PDM or the digitization of other fiat currencies. Our analysis

highlights how strategic considerations, the nature of currency competition — both among fiat

currencies and between fiat and private digital money — as well as trends like the rise of U.S.

dollar-backed stablecoins shape the evolution and digitization of money and payment.

In our model, national fiat monies (also referred to as “fiat currencies”) and PDM compete for

adoption in digital payments. Instead of modeling different forms of fiat money and PDM sepa-

rately, we consider representative forms (i.e., monetary aggregates). Fiat money refers to digital

means of payment and payment services directly tied to a country’s banking system, central bank,

or government. Fiat money includes bank deposits with their associated payment rails, as well

as government-led payment systems and CBDCs once introduced. The digitization of fiat money

may involve upgrading existing bank-centric or government-led payment systems, introducing new

ones, or launching CBDCs, thereby enhancing the convenience of fiat money in digital payments.

1The digital economy, even without counting point-of-sale systems in offline stores or bank transfers for businesses
not directly tied to digital platforms, is projected to contribute 25% of global GDP in 2025 (PwC Report, 2025).
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Private digital money (PDM) describes digital means of payment and payment services that largely

bypass traditional bank-centric and government-led payment systems. PDM includes (C1) cryp-

tocurrencies and tokens (e.g., Ether), (C2) currencies introduced by digital platforms (studied in

Brunnermeier and Payne, 2024) (e.g., Libra, had it succeeded), (C3) stablecoins (e.g., Tether), and

(C4) certain non-bank payment systems and services (e.g., Alipay).

Two fiat currencies, A and B, issued by countries A and B, respectively, and a representative

PDM C provide convenience utility. We micro-found convenience utility by modeling payments

subject to random search/matching between users and sellers of services and a cash-in-advance

constraint. In this micro-foundation, the payment convenience of a currency depends on (i) the

probability of users encountering sellers who accept it (reflecting the currency’s level of acceptance),

(ii) the efficiency, speed, and cost of transactions involving the currency, and (iii) the bargaining

power of users relative to sellers who accept it, which, as we argue, is influenced by the currency’s

privacy features. While our micro-foundation highlights the medium-of-exchange function of money,

we acknowledge that convenience may also reflect its store-of-value and unit-of-account functions,

complementing its role as a medium of exchange. Thus, although our analysis focuses on payment

competition, it may also apply more broadly to monetary competition in other dimensions.

Our micro-foundation suggests that transaction fees charged by payment intermediaries (e.g.,

credit card fees), inefficiencies in bank-railed payments (e.g., slow settlement speeds), and the

limited payment functionalities and usability (e.g., the inability to support blockchain, and some

cross-border and digital platform payments) are key factors limiting the convenience of fiat money

in digital payments. Some forms of PDM or the digitization of fiat money can address these

frictions, for instance, by facilitating faster payments or expanding usability. Additionally, factors

such as payment privacy (e.g., in cryptocurrencies), unique functionalities (e.g., smart contracting),

reduced reliance on costly payment intermediaries, and integration with digital platforms (e.g.,

Alipay’s integration with Alibaba) contribute to the convenience of PDM.

In general, PDM competes with fiat money by (i) facilitating transactions traditionally settled

with bank deposits, thereby reducing reliance on bank-centric and government-led payment systems,

and (ii) enabling new types of transactions that fiat money cannot support without digitization

(e.g., blockchain transactions). We assume increasing competition from PDM and stipulate that

its convenience grows over time at an endogenous rate that rises with PDM adoption. This reflects

PDM’s ability to compete more effectively on margin (i) or an increasing share of transactions that

can only be settled using PDM, raising the importance of margin (ii). This dynamic may be driven

by the growing importance of digital platforms, technological advancements, or the introduction of

2



new forms of PDM with unique functionalities.

Countries undertake costly efforts to enhance the convenience of their fiat money through dig-

itization. This increased convenience may stem from enhanced payment technologies, broader

usability, stronger privacy features, or reduced transaction costs. We model fiat digitization as a

one-time stochastic event that occurs with an intensity proportional to a country’s efforts. For-

mally, we study a dynamic game in which two countries, acting as large strategic players, choose

their digitization efforts to maximize a time average of their currencies’ adoption for payment, net

of digitization costs. Price-taking users act as non-strategic players, and allocate their endowment

(representing demand for digital payments) among three currencies, considering their payment con-

venience. As PDM convenience grows over time, users gradually adopt it, reducing their adoption

of fiat currencies and influencing countries’ incentives to digitize their fiat currencies.

In our model, countries digitize fiat money to increase its adoption and relevance in digital

payments. In line with this assumption, empirical evidence from Berg, Keil, Martini, and Puri

(2024) suggests that a key motive behind launching CBDCs is to enhance payment autonomy,

which may involve ensuring the adoption of fiat money in digital payments and reducing reliance on

non-bank payment providers. Similarly, Brunnermeier et al. (2019) argue that countries may need

to digitize their currencies to preserve the relevance and adoption of fiat money in digital payment,

a plausible concern for many countries. More generally, the objective function for countries also

reflects that the wide adoption of a country’s currency as means of payment is a source of valuable

geoeconomic power and autonomy (Clayton, Maggiori, and Schreger, 2023).

We focus on the relevant case of asymmetric currency competition and solve for a Markov

equilibrium with two state variables: one capturing the competition from PDM and the other

capturing the state of countries’ digitization processes. Country A is considered “strong” relative

to a “weaker” country B due to the higher initial convenience and adoption of its currency. For

example, the dominant currency A could represent the U.S. dollar — which derives high convenience

from its broad usability as means of payment — while B represents a less dominant currency, such

as the Euro or Renminbi. Although not included in the baseline model, we discuss, in an extension,

very weak currencies, including the ones from small open economies, whose adoption remains low

despite digitization, leading to negligible or no digitization efforts.

While countries’ total digitization efforts are initially strong, these efforts gradually diminish

and may even cease altogether as PDM gains adoption over time. At the outset, the weaker country

accounts for most of the digitization efforts, reflecting an endogenous first-mover advantage. The

stronger country exhibits a second-mover advantage and undertakes significant efforts only after
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its currency’s dominance is challenged by PDM or the weaker currency. These findings align with

the observation that less dominant currencies, like the Euro and Renminbi, are among the first to

be digitized via CBDCs, while the United States is not actively pursuing CBDCs.

In our model, countries have strong incentives to digitize fiat currency before PDM achieves

widespread adoption. However, failing to act sufficiently early creates a vacuum in the digital

payment space, which PDM fills. As PDM gains dominance due to the absence of digitized fiat

money, countries’ incentives to digitize fiat money diminish or may disappear entirely, delaying or

preventing digitization. This may lead to an equilibrium where fiat currencies play a diminished role

and PDM dominates digital payments. Thus, our findings suggest that the relevance of fiat money

in digital payments over the long run depends on whether countries act early in fiat digitization.

Intuitively, a country’s incentives to digitize its currency reflect both the potential increase in

adoption and the persistence of this effect. For the less dominant currency, B, digitization generates

larger and more persistent adoption gains, especially when competition from PDM is weak or when

country A has not yet launched its CBDC — both of which are true at the beginning of the

game. Thus, B has strong incentives to move early in digitizing its currency, creating a first-mover

advantage. However, when B fails to digitize its currency early on, the increasing competition

from PDM or the digitization of currency A diminishes this first-mover advantage and so reduces

B’s efforts over time. Specifically, the digitization of the dominant currency A serves as a strategic

substitute for B’s digitization efforts. Overall, B’s incentives to digitize are high initially, exceeding

those of A, but, absent early success, they gradually decline and eventually fall below A’s.

In contrast, A’s incentives to digitize are low when competition from PDM is either weak

or strong. That is, A’s digitization efforts initially rise and then fall as competition from PDM

increases, resulting in an inverted U-shaped pattern. At first, A’s adoption level is high due to its

dominance, limiting the gains it can achieve through digitization. However, as competition from

PDM intensifies or B digitizes its currency, A’s adoption level decreases, which raises the gains

from digitization. In particular, the digitization of currency B acts as a strategic complement

and increases A’s digitization efforts. Finally, when A’s adoption level is low and digitization

offers limited benefits due to PDM’s dominance, A’s incentives to digitize diminish again. Overall,

country A has strong incentives to digitize its currency only when its dominance is challenged,

and digitization enables it to restore dominance. Country A’s incentives respond earlier to rising

competition from PDM when its growth is expected to accelerate. This reflects a dynamic strategic

motive: early digitization curtails PDM adoption and its growth, limiting future competition.

We find that while increased competition from PDM hampers fiat currency digitization, in-
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creased competition among fiat currencies accelerates it. These differential effects arise because the

nature of increased competition influences the endogenous growth of PDM, which rises with PDM

adoption. Increased competition from PDM — driven by higher adoption or expected growth —

may initially boost countries’ efforts to digitize, specifically by challenging the dominance of A and

raising A’s efforts. However, it gradually undermines these efforts as it accelerates PDM growth,

ultimately allowing PDM to dominate and limiting the gains from digitization for both countries.

In contrast, stronger fiat currencies curb PDM adoption and growth, incentivizing countries to sus-

tain their digitization efforts. Although not explicitly modeled, we consider regulation as a factor

that reduces the convenience and competitiveness of PDM. Our model predicts that if regulation

(by one or multiple countries) does indeed reduce PDM convenience, it accelerates fiat currency

digitization, in that regulation complements countries’ digitization efforts.

We contrast the dynamics of currency digitization with the planner’s solution, where digitization

efforts are chosen to maximize overall welfare or countries independently maximize the welfare

(convenience utility) generated by their currencies. Since, in the baseline, countries maximize a

time average of their currency’s adoption in the digital economy, net of digitization costs, they

care about their currency’s convenience only insofar as it leads to higher adoption (i.e., shifts

users’ investment toward their currency). However, they do not internalize that users’ utility

increases with the convenience of currencies, holding investment fixed. As a result, countries’

baseline digitization efforts are inefficiently low compared to welfare-maximizing efforts, causing

inefficiently late digitization of fiat currency. Additionally, welfare would be maximized if the

stronger country exerted higher efforts and moved first, since its currency is more widely held.

This analysis suggests that, because the competitive outcome is inefficient, collaboration among

countries and coordination of their digitization efforts — such as the BIS mBridge project — helps

to achieve efficient outcomes in currency and payment digitization.

In an extension, we consider (i) interoperability between fiat money and PDM and (ii) public-

private collaborations in payment digitization. For instance, payment systems like Alipay process

their own transactions but can also link to bank accounts, making them partially interoperable with

bank payment rails. Regarding (ii), government-led digitization efforts often involve collaboration

with the private sector, as exemplified by the Digital Euro Project, and also enhance interoperabil-

ity. We demonstrate that such public-private collaborations lead to more persistent digitization

efforts by countries, thereby advancing the digitization of fiat money. However, countries begin

collaborating only after PDM achieves widespread adoption and collaboration becomes inevitable,

whereas low PDM adoption prompts them to digitize their fiat currencies to compete. That is, as
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PDM gains widespread adoption, public-private collaborations and enhanced interoperability are

necessary to ensure fiat money’s relevance in digital payments.

Our framework also applies to stablecoins (e.g., USDC), which are typically pegged to the

U.S. dollar and partially backed by dollar-denominated assets. Extending our model, we capture

the interdependence between fiat money and PDM by assuming that PDM is partially backed

by currency A. In this setup, PDM adoption drives further adoption of currency A, reducing

digitization efforts—both overall and for currency A—and ultimately delaying digitization. This

variant highlights how dollar-backed stablecoins can increase the U.S. dollar’s relevance in digital

payments. It also suggests that the United States might benefit from pursuing crypto-friendly

policies to encourage stablecoin growth while slowing its own digitization efforts, as a digitized

U.S. dollar could displace stablecoins. Broadly, the private sector, through stablecoins, effectively

creates a digital dollar, substituting for government-led dollar digitization initiatives.

We extend our model to incorporate exchange rates determined in a frictionless bond market and

nominal interest rates that accrue to currency holders subject to imperfect passthrough, reflecting

that bank deposits typically earn interest below the policy rate. In this variant, we show that

uncovered interest parity (UIP) holds, and our key findings remain robust. Since the passthrough of

nominal interest to users is imperfect and UIP holds, a higher interest rate raises the cost of holding

a specific currency, which reduces its “effective” convenience and adoption. We find that a higher

nominal interest rate, potentially reflecting higher inflation, or worse passthrough for the weaker

currency, B, reduces competition among fiat currencies and countries’ total digitization efforts.

Conversely, a higher interest rate or worse passthrough for the dominant currency, A, increases

total digitization efforts. We also show that our key findings hold when modeling the benefits of

digitization solely as improved interest rate passthrough (Chiu, Davoodalhosseini, Jiang, and Zhu,

2023). In this scenario, countries exert greater digitization efforts when interest rates are high.

The extension incorporating interest rates enables us to account for “very weak” currencies,

specifically those characterized by very high nominal interest rates and high inflation. In our

model, the store-of-value and medium-of-exchange functions complement each other: very weak

currencies perform poorly as stores of value, making their adoption for payment costly and leading

to low adoption rates, even with digitization. The model predicts minimal or no digitization for

such weak currencies, leading to a novel pecking order of currency digitization. In particular, less

dominant but well-adopted currencies are digitized first, followed by more dominant currencies,

while very weak currencies are digitized last or not at all.

We also show that countries, especially those with less dominant currencies, tend to intensify
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digitization efforts when they prioritize short-term objectives, exhibiting more myopic behavior.

This is because they place less emphasis on how increasing competition from PDM erodes long-term

digitization gains. Finally, while our baseline model reveals an endogenous first-mover advantage

for weaker countries and a second-mover advantage for stronger ones, we introduce a variant where

digitization costs decline after a competitor digitizes. This cost reduction, driven by learning or

technological spillovers, incentivizes strategic delays in digitization.

Literature. Our paper analyzes the competition between private digital money (PDM) and fiat

currency, contributing to the literature on digital currencies (Schilling and Uhlig, 2019; Cong, Li,

and Wang, 2021; Sockin and Xiong, 2021, 2022; Biais, Bisiere, Bouvard, Casamatta, and Menkveld,

2023; Guennewig, 2024) and associated risks (Uhlig, 2022; Li and Mayer, 2021). It also connects

to policy debates and the academic literature on central bank digital currencies (CBDCs, see Bech

and Garratt, 2017; Duffie and Gleeson, 2021; Fernández-Villaverde, Schilling, and Uhlig, 2020;

Fernández-Villaverde, Sanches, Schilling, and Uhlig, 2021), with Bai, Cong, Luo, and Xie (2025)

analyzing the initial adoption of e-CNY in China. Studies have examined CBDC interactions with

the banking sector, including deposits and lending (Brunnermeier and Niepelt, 2019; Andolfatto,

2021; Keister and Sanches, 2023; Garratt and Zhu, 2021; Chiu et al., 2023; Niepelt, 2024). Whited,

Wu, and Xiao (2022) structurally estimate CBDCs’ impact on the banking system.

We also add to the broader field of digital payment studies (e.g., Cong, Easley, and Prasad,

2024). Sarkisyan (2023) analyzes the effects of Brazil’s Pix on banking competition. Duarte,

Frost, Gambacorta, Koo Wilkens, and Shin (2022); Kahn (2024) also examine the effects of the

government-led launch of fast payment systems. Parlour, Rajan, and Zhu (2022) and Bian, Cong,

and Ji (2023) examine payment competition and how payments interact with credit provision. We

contribute to these studies on digital payments and CBDCs by analyzing the competition among

fiat currencies (captured by monetary aggregates including both bank deposits and CBDCs) and

PDMs. We focus on the endogenous digitization of money and dynamics of monetary competition,

while abstracting from interactions between CBDCs and banks.

Benigno, Schilling, and Uhlig (2022) analyze currency competition between fiat currencies and a

global cryptocurrency, demonstrating that the latter’s adoption synchronizes monetary policy across

countries. Our analysis differs by (i) modeling countries’ incentives to digitize their currencies and

(ii) capturing the dynamics of competition between fiat currencies and PDM. This article also

contributes to the literature on the international monetary system, focusing on reserve and safe

assets, their determinants, and competition among them (e.g., Farhi and Maggiori, 2018; Gopinath

and Stein, 2021; He, Krishnamurthy, and Milbradt, 2019; Coppola, Krishnamurthy, and Xu, 2023).
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Clayton, Dos Santos, Maggiori, and Schreger (2024a) examine the competition among currencies

as stores of value. Although it could apply more broadly, our model emphasizes the medium-

of-exchange function of money and the competition between various means of payment. More

importantly, our theory adds to the literature on currency competition by capturing countries’

strategic digitization efforts and rich dynamics arising from the competition.

Our study is related to the growing literature on geoeconomics and how global hegemons extract

benefits (Clayton et al., 2023; Pflueger and Yared, 2024). In our model, a country’s objective reflects

the value of widespread adoption of its currency or payment system, particularly internationally—a

source of geoeconomic power. Our findings suggest that while the United States initially has little

incentive to pursue fiat digitization due to its status as a hegemon with a dominant currency, it

responds by raising its digitization efforts once it faces competition and its dominance is challenged.

In contrast, countries with widely adopted yet not dominant currencies, such as China, have the

strongest incentives to digitize fiat money to expand (international) currency adoption and geoe-

conomic influence. This prediction aligns with China’s efforts to digitize its currency, as seen in

the launch of the e-CNY, and its broader initiatives to internationalize the renminbi (Clayton,

Dos Santos, Maggiori, and Schreger, 2024b; Bahaj and Reis, 2024).

Finally, we set up and solve a dynamic game where fiat monies of varying strength (convenience)

compete both among themselves and with PDM, with digitization as an innovation with endogenous

effort and completed at a stochastic time (Aghion and Howitt, 1992).2 From a modeling perspective,

this paper is also linked to studies on real options (McDonald and Siegel, 1986; Dixit and Pindyck,

1994). While the literature has explored firms’ real option exercises under (symmetric) competition

(e.g., Fudenberg and Tirole, 1985; Grenadier, 1996, 2002; Kogan, 2001; Novy-Marx, 2007; Dai,

Jiang, and Wang, 2022), the application to currency competition is new and important given

how monetary economics traditionally abstracts from (i) endogenous investments that enhance

currencies’ monetary functions and (ii) aggregate time dynamics shaping currency competition.

1 A Dynamic Model of Currency Digitization and Competition

We present a dynamic model in which national fiat monies (also referred to as “fiat currencies”) and

private digital (non-bank) money — abbreviated as PDM — compete for adoption for mediating

digital payments. Our analysis studies the competition between different forms of money, with

an emphasis on the medium-of-exchange function of money. While the model primarily focuses

2The Markov equilibrium we study involves two state variables — one capturing dynamic PDM competition and
the other capturing currency digitization status—and is characterized by a system of coupled differential equations.
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on retail payment activities and their digitization (e.g., retail CBDC or fast payment system),

it can also be applied to wholesale digital payments. Interpreted more broadly, despite its focus

on payment, our theoretical model also applies to currency competition along other monetary

functions, i.e., competition between stores of value and units of account. Before introducing the

model, we provide a brief contextual description.

Digital Money. In our framework, a country’s fiat money refers to digital means of payment

and payment services directly tied to this country’s banking system, central bank, or government.

Fiat money includes (F1) bank deposits and the associated bank-centric payment rails and (F2)

government-led payment systems (e.g., Brazil’s Pix or India’s UPI) and CBDCs, once introduced.3

Note that government-led payment systems are often also bank-centric or linked to banks, as they

facilitate payments using bank deposits (e.g., Pix, which is linked to bank accounts); also, CBDCs

are considered government-led payment systems.4 Rather than modeling these types of fiat money

separately, we consider representative fiat money (i.e., a monetary aggregate) that encompasses

(F1) and (F2). Thus, bank deposits and payment rails, CBDCs, and government-led payment

systems collectively contribute to the digital payment convenience of representative fiat money. The

digitization of fiat money may involve upgrading existing bank-centric or government-led payment

systems, introducing new ones, or launching CBDCs. Either way, digitization enhances the overall

payment convenience of representative fiat money. With some abuse, we refer to “fiat money” also

as “fiat currency,” and use these terms interchangeably.

Private digital money (in short, PDM) refers to digital means of payment and payment services

that operate largely outside the traditional bank-centric and government-led payment systems.

PDM includes (C1) cryptocurrencies and tokens (e.g., Ether and Bitcoin), (C2) digital currencies

provided by digital platforms (as studied in Brunnermeier and Payne, 2024)) once launched (e.g.,

Libra, had it succeeded), (C3) stablecoins (e.g., USDC and Tether), and (C4) non-bank payment

services and systems that largely bypass traditional fiat payment rails. Rather than modeling these

forms of PDM separately, we consider a representative PDM— a monetary aggregate encompassing

all categories (C1)–(C4) and representing technological disruptions to traditional payment systems

3Our notion of fiat money includes bank deposits, even though they are not direct liabilities of the central bank,
as they are considered equivalent to public money for retail transactions (e.g., due to deposit insurance). While our
analysis focuses on retail payments, fiat money could also encompass central bank reserves in the context of wholesale
payments.

4Thus, the notions of bank-centric and government-led payment systems may overlap; we do not strictly differen-
tiate between bank-centric and government-led payment systems. Further, note that CBDCs share many similarities
with government-led payment systems layered on top of bank-centric payment systems, especially when implemented
through banks. In many cases, such as the Digital Euro Project, CBDCs are effectively a form of government-led
payment system and are designed to serve as a means of payment, rather than acting as a new store of value.
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that come from the private sector. Some non-bank payment services are partially integrated with

or interoperable with the bank-centric payment system, enabling them to process both transactions

that use bank deposits and those that bypass banks. For instance, users can transact with Alipay

by linking their bank account (to use bank deposits) or credit cards, or by using separate funds held

in their Alipay e-wallet (Bian et al., 2023). Section 3.1 introduces a model variant that accounts

for the interoperability between fiat money and PDM.

As detailed in our micro-foundation of the payment convenience in Appendix E, frictions limiting

the convenience of digital fiat money and bank-centric payment rails include high transaction costs

(e.g., fees charged by payment intermediaries like credit card companies), slow settlement speeds,

outdated payment technology, and limited payment functionalities and usability (e.g., the inability

to support blockchain or certain cross-border or digital platform transactions). PDM may address

some of these limitations, offering payment convenience through unique functionalities, improved

payment technology, an expanded scope of usability, or by reducing reliance on costly payment

intermediaries. In general, PDM competes with fiat money in digital payments in two ways: (i)

by facilitating transactions traditionally settled using bank deposits, thereby reducing reliance on

bank-centric and government-led payment systems, and (ii) by enabling new types of transactions

that fiat money cannot support without digitization (e.g., blockchain or certain digital platform

transactions).

We assume that competition from PDM will intensify over time, reflecting its increasing ability

to compete more effectively on margin (i) or by an increasing share of transactions that can only be

settled using PDM, raising the importance of margin (ii). Digitizing fiat money can address these

challenges by enhancing its competitiveness on margin (i) — such as through improved settlement

efficiency/speed or lower transaction costs — or by broadening its usability to better compete on

margin (ii) — for instance, digitized fiat money could better facilitate digital platform or cross-

border payments, or transactions based on blockchains and smart contracts.

Users and Money. Time (indexed by t) is infinite. To introduce users and money, we set up

the model “as if” time runs discretely with time increments dt > 0, i.e., t = 0, dt, 2dt, 3dt, .... We

take the continuous time limit dt → 0 once we complete the model description. The economy is

populated by one representative OLG user who takes prices as given and does not discount.5 Cohort

t is born at t with lifespan dt and exits at t+dt when a new cohort is born. At birth, each cohort is

5We model overlapping generations (“OLG”) users in a continuous time economy following the modeling approach
of He and Krishnamurthy (2013). Biais et al. (2023) use OLG in discrete-time economy when modeling equilibrium
Bitcoin pricing. In our OLG setting where users live for one instant, the assumption of no discounting is without loss
of generality and one could easily introduce a discount rate without changing the model’s outcomes.
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endowed with one unit of the perishable generic consumption good, which serves as the numeraire

that all prices are quoted in. Cohort t derives utility from consumption only at time t+dt and thus

would like to store its users’ endowment (consumption good) from t to t+ dt, yet the consumption

good cannot be stored. Thus, money (explained below) facilitates transactions across different

cohorts and time, thereby functioning as an inter-temporal medium of exchange and store of value.

In addition, money delivers convenience utility, reflecting its function as intra-temporal medium of

exchange. The total demand for money from users is fixed to one unit of the consumption good;

it is supposed to capture the specific demand for digital money (as opposed to money demand in

general). The assumption of fixed currency demand and thus demand for digital payment is for

simplicity; one could relax this assumption without altering the key economic insights of the model.

Different Forms of Money. Two countries, A and B, have their representative fiat currencies A

and B, respectively. Meanwhile, there is one representative PDM, C. Each currency x ∈ {A,B,C}
is in fixed unit supply and has an equilibrium value (equal to its adoption) P x

t in consumption

goods.6 To consume at time t+ dt, users in cohort t spend their consumption good endowment to

buy money from the previous cohort (i.e., cohort t − dt) at time t. At time t + dt, cohort t users

exchange money for the consumption good with cohort t+ dt users and so on.7

We denote by mx
t cohort t’s holdings of currency x in terms of the consumption good over its

users’ lifetime [t, t + dt]. As cohort t does not derive any utility from consuming early at time

t and there are no other investment opportunities than money, cohort t users invest their entire

endowment of one consumption good into money, which implies:

mA
t +mB

t +mC
t = 1. (1)

In our model, cohort t users are the only holders of currencies. Thus, market clearing implies

mA
t = PA

t ,mB
t = PB

t and mC
t = PC

t , and P x
t = mx

t is the endogenous level of adoption of currency

x. In our baseline setup, the market clearing conditions (1) and mx
t = P x

t uniquely pin down the

exchange rate dynamics of different currencies. Section 3.3 presents a model variant where the

exchange rates are determined according to arbitrageurs trading government bonds (which implies

the uncovered interest parity); our key findings remain robust in this modified setting.

6One could extend the model by allowing money supply to vary over time. Because we aim to model currency
competition in the digital economy, we abstract from the money demand that is not directly related to the digital
economy. In Section 3.3, we provide a model variant with interest rates and exchange rates determined in international
bond markets. In this model variant, the exact money supply does not play any role, since the market for currency
clears due to reasons outside of the model.

7We assume that the first cohort born at t = 0 is simply endowed with the currency supply.
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Money as a Medium of Exchange: Micro-Founded Convenience Utility. Our analysis

focuses on the payment function of money. In addition to facilitating exchange across cohorts, the

three currencies A, B, and C generate convenience utility, which is micro-founded in Appendix

(E) (as discussed below) and captures the medium-of-exchange function of money related to digital

payment. Specifically, the user’s expected utility over [t, t+ dt] reads

Ut = Et[ct+dt] + ZA
t v(m

A
t )dt+ ZB

t v(mB
t )dt+ Ytv(m

C
t )dt. (2)

Here, ct+dt denotes cohort t’s consumption at time t + dt and the remainder terms capture the

convenience utility of money over [t, t+ dt] (which, unlike consumption, is of order dt). As in Cong

et al. (2021) and Gryglewicz, Mayer, and Morellec (2021), convenience utility increases in mx
t , i.e.,

the “real” money holdings in consumption goods, and increases with a convenience scale parameter

Zx
t for x = A,B and Yt for x = C, respectively. Further, it is characterized by a concave, smooth

function v(mx
t ) satisfying v(mx

t ) ≥ 0, v′(mx
t ) > 0, v′′(mx

t ) < 0, and limm→0 v
′(m) = +∞ — which

implies imperfect currency substitutability and ensures that equilibrium money holdings satisfy

mx
t ∈ (0, 1).8 In what follows, we will take the CRRA functional form v(m) = m1−η

1−η for η ∈ (0, 1)

which satisfies these properties — our results go through under other functional forms too. In the

baseline model, currencies do not pay interest and differ only in their convenience. Section 3.3

introduces interest rates.

Appendix E models payments subject to random search and matching with bargaining and

a cash-in-advance constraint, thereby micro-founding the convenience utility in (2), specifically

the quantities Zx
t and Yt. In this micro-foundation, over an instant [t, t + dt], the user randomly

encounters a seller of a service and holds money in advance to transact. At the beginning of the

period [t, t + dt] — before knowing whether a meeting will occur — the user chooses its currency

holdings, considering the likelihood of meeting a seller who accepts the currency for payment, as

well as the transaction costs and service prices involved. When such a meeting takes place, the

user and the seller engage in bargaining over the service price. The seller then delivers the service

in exchange for payment, and the user derives utility from the service.

In this micro-foundation, the medium-of-exchange and store-of-value functions of money com-

plement each other. If a currency offers higher expected returns and serves as a better store of

8The the representative user’s demand for digital money of sums over the demand from many individual users
(across different locations) with potentially different demands for currencies A, B, and C. In particular, that the
representative user buys currency x should be interpreted as some but not necessarily all users buying currency x.
Hence, our modeling is consistent with some users (e.g., users within a certain country) having high needs for one
currency in digital usage while others have low or no needs for that currency.
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value, it becomes less costly for users to hold this currency “in advance” for payments, thereby

reinforcing its role as a medium of exchange.9 Likewise, as shown in Doepke and Schneider (2017)

and Gopinath and Stein (2021), the unit-of-account function of money can be viewed as com-

plementary to the medium-of-exchange and store-of-value functions.10 Thus, while we link the

convenience of money to its medium-of-exchange function, this convenience may also reflect other

monetary functions. Thus, although our analysis focuses on payment competition, it could also

apply more broadly to monetary competition across other dimensions.

Determinants of Convenience. As we show in Appendix E, particularly in equation (E.60),

the convenience parameters Zx
t and Yt are determined by several factors: (i) the probability that

a buyer encounters a seller who accepts the respective currency (reflecting the currency’s level of

acceptance), (ii) transaction costs — both monetary (e.g., fees charged by payment intermediaries)

and utility costs (e.g., settlement delays) — and (iii) the user’s bargaining power relative to sellers.

We discuss each of these factors below and argue how they drive the convenience of fiat monies and

PDM. Appendix E.5 presents a more detailed discussion.

First, (i) reflects a currency’s payment technology (e.g., settlement speed), payment functionali-

ties, and the scope of its payment applications and usability (i.e., the ability to handle specific types

of payments, including digital platform or cross-border payments). Slow settlement speeds, as well

as limited payment functionalities and usability (e.g, the inability to handle blockchain or digital

platform transactions) reduce the “digital” convenience of fiat money, frictions that digitization

can address. Note that (i) also captures the currency’s overall level of acceptance and usage, which

is subject to network effects. This implies that widely accepted currencies, such as the U.S. dollar,

inherently provide high convenience; due to network effects, even minor improvements in payment

technology or costs can amplify and significantly boost payment convenience.

Regarding (i), the digital payment convenience of representative PDM stems from technological

factors such as settlement speed (e.g., fast payments using Alipay) and unique functionalities (e.g.,

smart contracting features in cryptocurrencies). Additionally, it arises from PDM’s integration

with digital platforms and ecosystems, where transactions often require PDM for settlement —

for example, Alipay on the Alibaba platform or Ether on the Ethereum platform. Due to this

9Our micro-foundation of payment convenience relies on random search/matching subject to a “cash-in-advance
constraint” (money-in-advance constraint) — under these assumptions, the store-of-value and medium-of-exchange
functions of money arise as complements. In contrast, abstracting away from search but instead focusing on coor-
dination, Goldstein, Yang, and Zeng (2023) establish a conflict between the store-of-value and medium-of-exchange
functions of money.

10An example of the complementarity between medium-of-exchange and unit-of-account functions of money can be
found in the U.S. dollar. The U.S. dollar is widely accepted as a means of payment because it is also widely adopted
as a unit of account internationally, and vice versa.
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integration, PDM offers unique payment convenience by enabling a wide range of digital platform

transactions, including some that fiat money may not support. Moreover, adopting PDM for

payments on a digital platform may provide benefits related to product bundling.11

Second, transaction costs (ii) charged by payment intermediaries, such as credit card fees or

cross-border payment fees, and settlement delays, causing a utility cost of transacting, are likely

key frictions that limit the convenience of fiat money. Fiat digitization can mitigate these frictions

and transaction costs by reducing reliance on costly payment intermediaries, exerting competitive

pressure on them (Duarte et al., 2022), and enabling faster payments. Certain features of cryptocur-

rencies and tokens (e.g., smart contracting or decentralization) and non-bank payment systems can

also reduce dependence on costly payment intermediaries by bypassing traditional bank payment

rails. These factors enhance the convenience of PDM relative to fiat money.

Third, regarding (iii), we argue that, following the findings in Garratt and Van Oordt (2021),

enhanced payment privacy features can strengthen users’ bargaining power relative to sellers.12 As

such, privacy features contribute to the convenience of cryptocurrencies and tokens. The digitization

of fiat currency can also enhance privacy features, as, e.g., highlighted in Ahnert, Hoffmann, and

Monet (2022) and Garratt, Yu, and Zhu (2022).

Currency Digitization and CBDC. We model currency digitization in a technology-neutral

manner, recognizing that it can take various forms: It may involve an upgrade of bank-centric

payment rails or the government-led introduction of new payment systems (e.g., Brazil’s Pix), the

launch of CBDCs, or other measures.13 We interpret currency digitization as technological innova-

tions that enhance the digital payment convenience of representative fiat currency. As discussed,

fiat digitization can enable faster, more efficient transactions; broaden the scope of transactions

(e.g., by enabling digital platform or cross-border payments) and payment functionalities; reduce

reliance on costly intermediaries; and enhance privacy features. Digitization of currency x = A,B

is a one-time stochastic event at endogenous time T x. When country x = A,B digitizes its currency

11For example, using Alipay generates valuable data that enhances a user’s access to loans offered on the Alibaba
platform (Ouyang, 2021).

12In Garratt and Van Oordt (2021), firms use data collected through payments to price discriminate future con-
sumers. Such price discrimination is akin to assuming a lower bargaining power that users have vis-a-vis sellers in
our micro-foundation — this lower bargaining power translates into a lower currency convenience scale Zx

t , Yt. In
contrast, enhanced privacy features strengthen bargaining power and increase a currency’s convenience scale. See
Appendix E for additional discussion.

13We model currency digitization and, specifically, CBDCs, as technology-neutral and are agnostic of the (technical)
details on the design and implementation. See, e.g., Auer and Böhme (2020) and Duffie, Mathieson, and Pilav (2021)
regarding the technical implementation of CBDCs, which is beyond the scope of the paper.
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at time T x, convenience scale Zx
t increases:

Zx
t =

Zx
L for t < T x

Zx
H for t ≥ T x,

(3)

where Zx
H ≥ Zx

L > 0. Zx
t is public knowledge.

The digitization of fiat currency requires time, effort, investment, and incurs significant costs.

To capture these features, we assume that the (stochastic) time T x of currency digitization arrives

according to an observable jump process dJx
t ∈ {0, 1}, with intensity

Et[dJx
t ]

dt = ext . That is, the

probability of successful digitization by country x (if it has not occurred yet) over [t, t+ dt] is ext dt.

Here, ext ≥ 0 is the endogenous, unobservable digitization effort/investment of country x, which

entails a flow cost gx(ext ) for country x in consumption goods. Hence, we model the digitization

process similar to an innovation project in Aghion and Howitt (1992) and related papers, which

implies that currency digitization requires time: For instance, a constant effort level ex > 0 would

imply an expected time to successful digitization of 1/ex for x. In what follows, we take the following

linear-quadratic cost function: gx(ext ) = ϕext +
λ(ext )

2

2 for parameters ϕ, λ ≥ 0; our results would go

through under different (convex) cost functions too. We assume symmetry in costs across the two

countries, while the benefits of digitization — captured by convenience scale parameters — differ

across the two countries. The cost broadly captures the direct monetary expenses of digitization

(e.g., implementation and development) as well as the indirect costs arising from disruptions to

existing structures, such as the banking system (Whited et al., 2022).

Dominant versus Less Dominant Currencies. We refer to the country with the initially more

convenient and more adopted currency as the “strong” country, and to the other country as the

“weak” one. Without loss of generality, we set country A to be strong, in that ZA
L ≥ ZB

L . One can

think of the “dominant” currency A as the U.S. dollar, whose convenience also reflects its wide use

internationally, while B is a relatively weaker, less dominant currency (e.g., Euro or RMB). We

study the asymmetric competition between a dominant and a less dominant (but still widely used)

fiat currency. Our baseline abstracts from “very weak“ currencies, often of small, open economies,

whose adoption remains low regardless of digitization, leading to negligible or no digitization efforts.

See Section 3.3 for a study of very weak currencies.

Private Digital Money (PDM). As will become clear, Yt is linked to PDM adoption and

captures the competition from PDM that fiat money faces. Therefore, we may refer to high (low)

Yt as strong (weak) PDM competition. We model the growing competition from PDM by assuming
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that Yt grows endogenously according to:

dYt
Yt

= µmC
t dt, (4)

for µ > 0.14 As detailed in our micro-foundation of convenience utility in Appendix E, the gradual

increase in PDM convenience may reflect technological advancements, the expansion of digital

platforms and ecosystems (broadening PDM use cases), or the launch of new forms of PDM offering

unique payment functionalities and convenience.

Importantly, according to (4), the growth rate of Yt increases with PDM’s adoption level mC
t ,

so that higher PDM adoption in the present boosts PDM adoption in the future. In particular,

convenience of and competition from PDM increase more rapidly when PDM adoption mC
t is high

and so fiat adoption 1−mC
t is low. This implies that PDM emerges primarily when fiat currencies

provide limited digital payment convenience, thereby leaving a gap in the digital payment space

that PDM fills by offering superior convenience, driving its adoption for payments.

Unlike the convenience of fiat money (Zx
t ), which follows a jump process, the convenience of

PDM changes according to (4). This is because the digitization of fiat money—such as through the

launch or upgrade of payment systems or the introduction of a CBDC—occurs infrequently and

represents significant disruptions to existing structures and payment systems. In contrast, PDM

encompasses various payment systems and digital currencies, each evolving over time, with some

achieving breakthroughs. When aggregated, the convenience of PDM evolves more gradually than

that of fiat money. See Appendix E.7 for further discussion.

We assume that the potential convenience of PDM is bounded, in that Yt ≤ Y for some exoge-

nous constant Y > 0. This assumption ensures that PDM convenience cannot fully outgrow the

convenience of fiat currencies and so cannot gain full dominance; it is also helpful for solving the

model, as it yields a well-defined boundary condition for the ODE system characterizing the Markov

equilibrium; one can take Y arbitrarily large. Formally, the drift of dYt vanishes as it reaches Y

(i.e., dYt = 0 if Yt = Y ) while (4) holds for Yt < Y . We set Y0 > 0. Both the assumptions of

a time-increasing yet bounded Yt and that Zx
t jumps up only once are made for simplicity and

tractability, but they could be relaxed.

In practice, the usability, convenience, and growth rate of PDM may depend on whether it

is banned or regulated by governments; however, such regulation might not be feasible because

14Eq. (4) should capture the average, long-run growth of PDM, which may be interrupted by crashes or setbacks.
Our results are robust to the specific growth path of Yt, as long as Yt grows over time on average. We could allow for
occasional setbacks/crashes that arrive according to a Poisson process, or add a Brownian component or a negative
drift component to the law of motion in (4) (which can also generate crashes and setbacks).
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PDM operates outside the banking system. Although not modeled, regulation (by one or multiple

countries) could be interpreted as a factor that reduces Y or µ, so Y and µ should be understood

as net of the effects of regulation or a ban.15 Section 2.4.1 studies comparative statics in µ, Y .

Objective Function and Optimization. At any time t, country x = A,B chooses its effort

(taking the effort of the other country as given) to maximize:

V x
t = max

(exs )s≥t

Ex
t

[∫ ∞

t
e−δ(s−t)

[
δfx

s − g(exs )
]
ds

]
, (5)

where Ex
t [·] denotes the time-t expectation from the perspective of country x (which is conditional

on time-t public information and effort (exs )s≥t). In (5), fx
s is a flow payoff that may depend on

state variables or currency adoption levels. In what follows, we take fx
t = P x

t ; we also scale this

flow payoff by δ in the objective, which has no bearing on our key findings. See Section 3.4 for an

analysis of the effects of δ.

Thus, country x maximizes a time average of its currency’s adoption and usage in digital

payment, net of the costs of digitization.16 We abstract from monetary policy, other governmental

or central bank considerations, and broader macroeconomic factors. Instead, we stipulate that

countries digitize their currencies to obtain a stake, influence, and control in the digital payment

space by promoting the adoption and relevance of their currency. Our modeling of countries’

objective functions aligns with recent empirical evidence from Berg et al. (2024), which suggests

that a key benefit — and potential motive — for launching CBDCs is to enhance payment autonomy.

This includes maintaining the relevance of fiat currency in digital payments and reducing reliance on

foreign or non-bank payment providers. Similarly, Brunnermeier et al. (2019) argues that digitizing

currencies may be necessary to preserve the adoption of fiat money (e.g., bank deposits) in the

digital economy, a concern for many nations. Public fiat money anchors the monetary system, but

this role depends on its widespread adoption. Ensuring the use of fiat money in digital payments

(see, e.g., Ahnert, Assenmacher, Hoffmann, Leonello, Monnet, and Porcellacchia, 2022) is a key

concern driving CBDC initiatives. Thus, countries’ efforts to maximize currency adoption reflect

their goal to preserve the relevance and anchoring role of fiat money.

Our modeling aligns with the growing literature on geoeconomics (Clayton et al., 2023; Clayton,

15PDM may also offer unique convenience, therefore, compete with fiat money in digital payment even when
regulated or banned. As such, countries might need to react to PDM competition through digitization rather than
bans and regulation.

16While it is natural to take the linear specification fx
t = P x

t , the results would remain similar under a monotonic
transformation of P x

t as flow payoff. Likewise, not scaling the flow payoff by δ, for instance, by setting fx
t = 1/δP x

t

would lead to similar results.
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Maggiori, and Schreger, 2024; Pflueger and Yared, 2024), which examine the sources, value, and

privileges of geoeconomic power and hegemony. Consistent with this literature, our framework

captures countries’ strategic pursuit of influence through the widespread adoption of their currencies

in digital and international payments. A widely adopted currency and its digital payment system

confer geoeconomic power, enabling a country to influence others and extract economic benefits.

For instance, the United States derives significant power from the dollar-based payment system.

Taken together, our baseline objective function is consistent with the aforementioned intuitive

arguments, studies, empirical observations, as well as policy debates. Section 2.5 contrasts the

baseline to the planner solution as an alternative objective, where a planner maximizes overall

welfare as we define next.

Welfare. Overall welfare derives from consumption utility and currency convenience net of the

costs of digitization. We note that any cohort’s consumption is fixed and determined by the exoge-

nous endowment. Instead, the currency convenience and the costs of digitization are endogenous.

When analyzing welfare, we solely focus on the endogenous part, i.e., on total convenience utility

net of digitization costs (discounted over time), which reads

Wt = Et

[∫ ∞

t
e−γ(s−t)

[
γ
(
ZA
s v(m

A
s ) + ZB

s v(mB
s ) + Ysv(m

C
s )

)
− gA(eAs )− gB(eBs )

]
ds

]
, (6)

where γ > 0 is the exogenous discount rate in the welfare function. In line with the stipulation of

(5), we scale the convenience utility flow by γ, but this has no bearing on the model implications.

Note that γ captures how much welfare weight is put on current versus future convenience utilities.

Observe that because we assume fx
t = P x

t in the objective (5), countries maximize a time average

of their currencies’ digital adoption instead of the convenience utility generated by their currencies.

As such, equilibrium digitization efforts are generally not welfare-maximizing, as we also show in

Section 2.5, where we characterize welfare-maximizing efforts.

Equilibrium Concept. We study a dynamic game with two large, strategic players, that is,

countries A and B, and a non-strategic player, that is, the price-taking OLG user, which can

equivalently be interpreted as a mass of atomistic players. The key difference between fiat money

and PDM is that the countries, issuing fiat money, strategically act to increase their currency’s

convenience through digitization, whereas the convenience of PDM evolves endogenously according

to the pre-determined law of motion (4). Importantly, due to the convex cost of effort, countries

cannot launch CBDC immediately by setting ext = +∞, for instance, to react to a competitor’s

launch, as this would lead to infinite costs.
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We solve for a Markov equilibrium of this dynamic game in the continuous time limit dt → 0.

Let z ∈ {0, A,B,AB} denote which countries have digitized their currencies up to date. Specif-

ically, z = 0 means that no country has digitized its currency, z = x ∈ {A,B} means that only

country x has digitized, and z = AB means that both countries have digitized. We characterize a

Markov equilibrium with state variables (Y, z), so that all equilibrium quantities can be expressed

as functions of (Y, z). In a Markov equilibrium, at any time t ≥ 0, cohort t users choose the hold-

ings of currencies A,B,C to maximize the expected utility Ut from (2), given prices (PA
t , PB

t , PC
t ).

The markets for all currencies clear, i.e., mx
t = P x

t for x = A,B,C. And, both countries A and

B choose their efforts according to (5), taking the effort of the other country as given, while Yt

evolves according to (4).

2 Model Solution and Analysis

2.1 Solving for the Markov Equilibrium

We define expected returns of currency x in terms of the consumption good as:

rxt =
Et[dP

x
t ]

P x
t dt

, (7)

where Et[·] denotes the time-t expectation, which is conditional on all public information that is

available at time t. Notice that rxt is the expected rate of appreciation of currency x in terms of

consumption good. That is, if rxt > 0, currency x is expected to appreciate and, if rxt < 0, currency

x is expected to depreciate relative to the consumption good. In the Markov equilibrium, rxt is

endogenous and a function of (Y, z), i.e., rxt = rx(Y, z).

Next, we can write cohort t’s consumption ct+dt at t+ dt as:

ct+dt =
∑

x∈{A,B,C}

mx
t P

x
t+dt

P x
t

. (8)

Basically, cohort t’s consumption consists of the proceeds from selling their nominal holdings of

currency x, mx
t /P

x
t , at price P x

t+dt to cohort t+ dt. We can write P x
t+dt = P x

t + dP x
t and, inserting

this relation into (8), we obtain:

ct+dt =
∑

x∈{A,B,C}

mx
t +

∑
x∈{A,B,C}

mx
t dP

x
t

P x
t

. (9)
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Because cohort t only derives utility from consuming at time t+ dt, it is optimal to use the entire

endowment of one unit of consumption good to purchase money at time t, so that
∑

x∈{A,B,C}m
x
t =

1 must hold for given prices (PA
t , PB

t , PC
t ) (see (1)). As a result, cohort t maximizes:

max
mA

t ,mB
t ,mC

t ≥0
Ut s.t.

∑
x∈{A,B,C}

mx
t = 1, (10)

taking (PA
t , PB

t , PC
t ) as given. With (2), (9), and

∑
x∈{A,B,C}m

x
t = 1, the objective in (10) becomes:

Ut = 1 +
∑

x∈{A,B,C}

mx
t r

x
t dt+ ZA

t v(m
A
t )dt+ ZB

t v(mB
t )dt+ Ytv(m

C
t )dt. (11)

The first two terms represent cohort t’s expected consumption at time t + dt. Observe that

in equilibrium, consumption equals the fixed endowment of cohort t + dt, in that, as we show,∑
x∈{A,B,C}m

x
t r

x
t dt = 0. The last three terms represent the convenience utility to holding curren-

cies. Recall that a micro-foundation of (11) is provided in Appendix E where we model payments

and link convenience to the medium-of-exchange function of money. In light of
∑

x∈{A,B,C}m
x
t = 1,

it must hold at any optimum that:

∂Ut

∂mA
t

=
∂Ut

∂mB
t

=
∂Ut

∂mC
t

, (12)

provided mx
t ∈ (0, 1). That is, in equilibrium, the user (which takes prices as given) is on the

margin indifferent between substituting a unit of currency x towards another currency −x. This

relationship implies the following equilibrium pricing equations:

Ytv
′(mC

t ) + rCt = ZA
t v

′(mA
t ) + rAt = ZB

t v′(mB
t ) + rBt . (13)

Condition (13) states that in equilibrium, the sum of the marginal convenience utility and expected

appreciation must be equal across currencies. Due to limmx
t →0 v

′(mx
t ) = ∞, optimal currency

holdings mx
t = P x

t satisfy mx
t , P

x
t ∈ (0, 1) for x = A,B,C. In a Markov equilibrium with state

variables (Y, z), we can write mx
t = P x

t = mx(Y, z) = P x(Y, z) for x = A,B,C as well as rxt =

rx(Y, z), so that (13) will depend on (Y, z) only.

Next, we characterize countries’ time-t value function from (5) as well as the optimal levels

of efforts. By the dynamic programming principle, the governments’ value function V x
t from (5)
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satisfies the HJB equation (for x = A,B):

δV x
t = max

ext ≥0

(
δfx

t − λ(ext )
2

2
− ϕext +

Ex
t [dV

x
t ]

dt

)
, (14)

where fx
t is the flow payoff that countries derive — set to fx

t = P x
t in our baseline. Again, in a

Markov equilibrium with state variables (Y, z), we can express V x
t as a function of (Y, z) only, i.e.,

V x
t = V x(Y, z) for x = A,B. As optimal effort ext is determined according to the HJB equation

(14), it depends on the government’s value function V x
t = V x(Y, z) and adoption P x

t = P x(Y, z).

Since V x
t and P x

t are functions of (Y, z) only, the optimal effort is a function of (Y, z) too, in

that ext = ex(Y, z). Indeed, as shown in Appendix A, one solves for the Markov equilibrium by

conjecturing and then verifying that equilibrium quantities are functions of (Y, z) only.

As shown in Appendix A, effort satisfies for x = A,B (correspondingly −x = B,A):

ex(Y, 0) =

[
V x(Y, x)− V x(Y, 0)− ϕ

]+
λ

and ex(Y,−x) =

[
V x(Y,AB)− V x(Y,−x)− ϕ

]+
λ

. (15)

where [·]+ = max{·, 0}. In addition, ex(Y,AB) = ex(Y, x) = 0, i.e., efforts become zero after

successful digitization. Because countries maximize a time average of their currency’s adoption net

of digitization costs, optimal digitization efforts reflect the potential gain in adoption, as well as

the persistence of this effect — all of which are captured by V x(Y, x) − V x(Y, 0) in state z = 0

and by V x(Y,AB)− V x(Y,−x) in state z = x. In particular, when current adoption is low (high)

in z = 0, then V x(Y, 0) tends to be low (high), boosting the incentives and, therefore, efforts to

digitize. Also note that optimal digitization efforts can be zero (even in state z = 0), in which case

countries abandon their initiatives to digitize currency.

Finally, welfare Wt can be written as Wt = W (Y, z) satisfying the HJB equation

γWt =
∑

x=A,B

(γZx
t v(m

x
t )− gx(ext )) + γYtv(m

C
t ) +

Et[dWt]

dt
, (16)

given mx
t and efforts eAt and eBt chosen by countries. Section 2.5 later characterizes the solution

when efforts are chosen to maximize welfare. We summarize our findings:

Proposition 1. In the Markov equilibrium with state variables (Y, z), the following holds:

1. Users invest their entire endowment in currencies, i.e., (1) holds. The markets for all cur-

rencies clear, so that mA
t = PA

t , mB
t = PB

t , mC
t = PC

t .

2. Optimal currency adoption levels mx
t , P

x
t for x = A,B,C satisfy mx

t , P
x
t ∈ (0, 1). The equi-
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librium pricing condition (13) holds, and government value functions V A
t and V B

t solve the

HJB equation (14). Welfare Wt solves the HJB equation (16).

3. For x = A,B,C and (Yt, zt) = (Y, z), currency adoption satisfies P x
t = mx

t = P x(Y, z) =

mx(Y, z), expected returns satisfy rxt = rx(Y, z), value functions satisfy V x
t = V x(Y, z) for

x = A,B, welfare satisfies Wt = W (Y, z), and efforts satisfy eAt = eA(Y, z) and eBt = eB(Y, z)

according to (15).

4. The Markov equilibrium is characterized by a system of coupled first order ODEs and non-

linear equations, all of which are presented in Appendix A.5.

Appendix A provides a detailed characterization of the model solution and the Markov equi-

librium in terms of a system of coupled ODEs that describe the dynamics of the currency adop-

tion P x(Y, x) = mx(Y, x), governments’ value functions V A(Y, z) and V B(Y, z), digitization efforts

eA(Y, z) and eB(Y, z), and welfare W (Y, z). Note that because our dynamic game features two

state variables and asymmetric competition among currencies, there is no analytical solution and

we do not provide formal existence and uniqueness arguments. The Markov equilibrium needs to

be solved numerically.

2.2 Numerical Solution and Parameter Choice

Similar to Krishnamurthy and Vissing-Jorgensen (2012), Cong et al. (2021), or Gryglewicz et al.

(2021), we pick for the convenience utility the functional form v(m) = m1−η

1−η , where η ∈ (0, 1) ensures

v(m) > 0 form > 0; we pick η = 0.9. We set δ = γ = 0.1, and normalize ZA
L = 1. Further, we choose

ZB
L = 0.2, i.e., currency B is initially less convenient than the dominant currency A. The dynamics

of PDM competition are characterized through Y0 = 0.025, Y = 5, and µ = 0.2.17 Digitization

improves the convenience of currency x = A,B according to Zx
H = ∆Fixed + (1 + ∆Prop)Zx

L where

we stipulate ∆Fixed = ∆Prop = 1. That is, currency digitization increases the convenience Zx
t both

by a fixed amount and proportionally relative to the base level Zx
L. The flow cost of digitization

satisfies gx(ex) = ϕex + λ(ex)2

2 for ϕ = 0.15 and λ = 1. Importantly, the model’s implications,

which are qualitative in nature, are robust to the choice of these parameters, as we verify and the

following analysis also highlights.18

17Since the drift of Y in (4) is always positive, the lower bound of the state space, Y0, does not imply relevant
boundary conditions for the ODE system, characterizing the equilibrium. Consequently, the value of Y0 has no impact
on the equilibrium values of model quantities in states Y > Y0. We just picked “relatively low” Y0 for illustrating the
equilibrium over a large state space.

18Due to the lack of closely related quantitative studies and extensive historical data on CBDC issuance and currency
digitization and, more generally, due to the forward-looking nature of our analysis, there is no straightforward way
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Figure 1: The Dynamics of Adoption. This figure plots the adoption levels of currencies A, B, and C in Panels
A, B, and C, respectively against ln(Y ) in states z = 0, A,B. The solid black line depicts z = 0, the dotted red line
depicts state z = A, and the dashed yellow line depicts z = B. We use our baseline parameters from Section 2.2.

Figure 1 illustrates the dynamics of currency adoption (values) by plotting P x(Y, z) = mx(Y, z)

as a function of ln(Y ) — which is a monotonic transformation of Y (we use it for the sake of

illustration, simply because Y grows exponentially) — over the entire range [ln(Y0), ln(Y )] in states

z = 0, A,B. Recall that Y and, therefore, ln(Y ) increase over time. Naturally, the adoption of

currencies A and B declines with PDM convenience Y , while PDM adoption increases in Y . As

such, Y or, equivalently, ln(Y ) quantifies PDM adoption and dominance, as well as the competition

that fiat currencies face from PDM.

Panel C shows that digitization by country x, representing a shift from z = 0 to z = x, spurs

the adoption of currency x but reduces the adoption of currency −x and PDM. Since C’s adoption

is always higher in state z = B than in state z = A, the digitization of the dominant currency A

harms C relatively more. Interestingly, as can be seen on Panel A, digitization of the less dominant

currency B has a relatively large, negative effect on the adoption of currency A when Y is small,

but this effect diminishes for larger values of Y . Indeed, when Y is low, currency A’s primary

competitor is B, especially so after B is digitized. When Y is large, PDM competes away market

share from A and B, limiting the effects of B’s digitization and making C the main competitor of

A. Panel B shows that currency B’s adoption increases the most from digitization when Y is small,

whereas, for A, digitization yields larger adoption gains for larger values of Y . As discussed next,

these patterns shape countries’ incentives to digitize their currencies or upgrade payment systems.

to rigorously calibrate the model and to make quantitative predictions. However, the model’s outcomes, which are
qualitative in nature, are robust across various parameter configurations.
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Figure 2: The Dynamics of Digitization Efforts. Panel A depicts A’s effort as a function of ln(Y ) in states
z = 0 (solid black line) and z = B (dotted red line). Panel B depicts B’s effort as a function of ln(Y ) in states z = 0
(solid black line) and z = A (dotted red line). Panel C plots the sum of efforts in states z = 0 (solid black line),
z = B (dotted red line), and z = A (dashed yellow line), while Panel D plots their difference in state z = 0. We use
our baseline parameters from Section 2.2.

2.3 The Dynamics of Currency Digitization

We investigate the dynamics of currency digitization initiatives against the backdrop of growing

competition from PDM. To this end, Figure 2 plots outcomes as a function of ln(Y ), both in state

z = 0 (solid black line) and in states z = B,A, respectively (dotted red line). According to (4),

Y increases over time and PDM gradually gains adoption. Therefore, Figure 2 also depicts the

time dynamics of currency digitization, highlighting how efforts change as fiat currencies face more

competition from PDM over time.

2.3.1 Effort Dynamics and Strategic Interactions

To begin with, observe from Panels A and B of Figure 2 that in state z = 0, the efforts (i.e.,

digitization incentives) of the strong country A follow an inverted U shape in ln(Y ), while the

efforts of country B decrease in ln(Y ). Panel A shows that digitization by B, i.e., a move from

z = 0 to z = B, increases A’s efforts for low Y , while decreasing them for high Y . In contrast, the

digitization of A always reduces B’s efforts, as shown in Panel B. Panel C shows that countries’

total efforts in state z = 0, that is, the sum of individual efforts, tend to decrease in ln(Y ). In

24



addition, Panel D reveals that country B’s incentives to digitize its currency are highest and exceed

those of A at the beginning of the game, i.e., for low levels of Y when competition from PDM is

weak. In contrast, later in the game, i.e., for higher levels of Y , A has stronger incentives than B.

To gain intuition, recall from (5) that countries maximize the time average of their currencies’

adoption, net of the cost of digitization. As such, the incentives to digitize currency reflect the

potential increase in adoption upon digitization, as well as the persistence of this effect. Digitization

increases currency B’s convenience and adoption in the future. This effect is relatively larger and

more persistent when competition from PDM is weak (i.e., Y is small) and currency A has not been

digitized yet (i.e., in state z = 0). At the same time, in state z = 0 and for low levels of Y , the

current level of adoption of B is low compared to that of A, implying higher adoption gains upon

digitization relative to the status quo. Therefore, B’s digitization efforts are highest for low levels of

Y in state z = 0 and exceed those of A. However, B’s efforts taper off as Y increases and the gains

of digitization diminish due to PDM’s strength and wider adoption. Notably, under our baseline

parameters, B sets eB(Y, 0) = 0 and even stops the digitization process for large Y . Likewise,

the digitization of currency A limits the adoption gains from digitizing currency B, reducing B’s

incentives in state z = A relative to z = 0 for any Y (see Panel B).

In state z = 0, country A’s digitization efforts are highest for intermediate levels of PDM com-

petition and Y . For low levels of Y , currency A’s adoption is high reflecting its dominance, which

limits the additional adoption that A can gain upon digitization. However, as competition from

PDM intensifies, A’s adoption decreases and, therefore, the gains from digitization rise, increasing

A’s effort incentives. Finally, when Y becomes sufficiently large, A’s current level of adoption is

low, but digitization yields low benefits due to PDM’s dominance, which again limits A’s incentives

to digitize. As a result, A’s incentives to digitize first increase and then decrease in Y , resulting in

the inverted U-shaped pattern. In sum, country A’s incentives peak when PDM threatens domi-

nance but is not yet entrenched. As discussed in the next Section, A’s incentives to digitize also

reflect the dynamic component that digitization hampers the further growth in PDM convenience

Y . This effect generates a motive to respond early to competition from PDM, especially when this

competition is expected to grow fast. More generally, country A has high incentives to digitize its

currency, when its dominance is challenged by PDM or a competing fiat currency and digitization

allows to reassert its dominance.

Taken together, country B, with the less dominant currency, enjoys an endogenous first-mover

advantage in currency digitization, while country A with the dominant currency has a second-mover

advantage. In particular, B possesses strong incentives to move first or early in digitizing its cur-

25



0 5 10 15 20

0.1

0.15

0.2

0 5 10 15 20

5

10

15

0 5 10 15 20

1

2

3

4

10
-5

Figure 3: The Dynamics and Timing of Digitization. This Figure depicts time dynamics, conditional on
remaining in state z = 0. Panel A plots countries total efforts, eAt + eBt = eA(Yt, 0) + eB(Yt, 0) against calendar time
t, conditional on remaining in state z = 0, for µ = 0.2 (solid black line) and µ = 0.65 (dotted red line). Panel B plots
the probability density function of T ∗ = min{TA, TB}, i.e., the first time of digitization, against t, for µ = 0.2 (solid
black line) and µ = 0.65 (dotted red line). Panel C depicts the expected time to digitization, being in z = 0 and at
time t. We use our baseline parameters from Section 2.2, but set Y0 = 1.

rency. Indeed, Panel D shows that initially, i.e., for low levels of Y and z = 0, the digitization efforts

of B exceed those of A. However, both the increasing competition from PDM and the digitization

of currency A effectively remove this first-mover advantage, thereby reducing B’s digitization in-

centives and effort. In contrast, A’s incentives to digitize are initially low, but increase over time

with the growing competition from PDM or with the digitization of currency B. When B is being

digitized and Y is low, A’s incentives to digitize increase, meaning that A has incentives to move

second in currency digitization. Indeed, as B challenges A through digitization, A’s adoption and

dominance decline, boosting A’s incentives to digitize its currency as well. This effect vanishes,

however, when competition from PDM is strong, limiting gains from digitization.

Importantly, fiat currency digitization efforts can endogenously emerge as either strategic com-

plements or substitutes. For country B, digitization by the dominant country A acts as a strategic

substitute, consistently reducing B’s incentives to digitize. This occurs because B’s incentives are

driven by a first-mover advantage, which vanishes once A digitizes. In contrast, for country A, dig-

itization by B initially serves as a strategic complement, increasing A’s incentives to digitize when

Y is small, reflecting a second-mover advantage. However, when Y is large and PDM competition

intensifies, the digitization of B becomes a strategic substitute, reducing A’s efforts because the

growing dominance of PDM erodes the second-mover advantage.
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2.3.2 When Do Countries Digitize Fiat Currencies?

Although countries’ digitization efforts are initially high (see Panel C of Figure 2), they tend to

decrease over time and may even cease altogether if early success is not achieved and PDM gains

widespread adoption. In the beginning, the weaker country accounts for most of the digitization

efforts, reflecting an endogenous first-mover advantage, whereas the stronger country generally

reacts later by increasing its effort, reflecting a second-mover advantage. This finding aligns with

the observation that relatively less dominant currencies (such as the Renminbi) are being digitized

first through CBDC, while the United States is delaying or halting CBDC development.

Figure 3 illustrates the dynamics of currency digitization over time t, starting from Y0 = 1 for

two different levels of µ.19 Panel A shows that countries’ total efforts eAt +eBt in state z = 0 decline

over time. This finding is consistent with the dynamics of CBDC initiatives around globe, many of

which have been slowed down, stalled, or stopped despite initial enthusiasm.

Next, Panel B of Figure 3 plots the probability density function of T ∗ = min{TA, TB}, rep-
resenting the first time of currency digitization, over time in state z = 0. Panel C plots in state

z = 0 the expected time to first digitization against time t, measuring the average time it takes for

currency digitization to occur (being in state z = 0 at time t). Appendix D shows how to calculate

the expected time to digitization and the probability density function of T ∗. Observe that the

density of T ∗ is unimodal and decreases in t, while the expected time to digitization increases in

t.20 Intuitively, Panel A illustrates the time-t conditional probability of digitization over [t, t+ dt),

i.e., Probt{T ∗ ∈ [t, t + dt)} = (eAt + eBt )dt, while Panel B shows the unconditional probability

Prob0{T ∗ ∈ [t, t+ dt)}. The solid black (dotted red) line depicts µ = 0.2 (µ = 0.65).21

Because overall efforts tend to decrease over time (Panel A), the model predicts relatively early

digitization. If it indeed occurs early, digitization, especially by the dominant currency, hampers

PDM adoption and its future growth. However, if digitization is not achieved early on, it is delayed

significantly or may never occur, as digitization efforts decline over time. Consequently, the density

features a large probability mass close to t = 0 (including a maximum at t = 0), and decreases

with t. In addition, the time-t expected time to digitization in Panel C increases in t. Thus, initial

failures or setbacks in the digitization process increase, rather than decrease, the expected time to

19For the sake of illustration, we pick higher Y0 than in other figures to obtain more meaningful time dynamics,
since the growth of Y is very slow for low levels of Y0 (according to (4)) and the illustration of the results would
require many periods of time.

20There is still a probability mass of about 10% that T ∗ > 20, which is not depicted here. For larger values of ϕ,
countries’ effort(s) may become zero and the digitization is stalled altogether. In this case, the distribution (density)
features an atom of probability at +∞, i.e., Prob{T ∗ = +∞} > 0. Under these circumstances, digitization occurs
either relatively early or never.

21We note the patterns are robust to changes in µ; we discuss the effects of µ in greater detail in the next Section.
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successful digitization.

In particular, failure to digitize fiat money early creates a vacuum in the digital payment space,

which PDM fills. As PDM adoption grows due to a lack of digitization, countries’ digitization

efforts diminish or may cease altogether, delaying or preventing digitization. This can lead to

a long-run equilibrium where fiat currencies play a diminished role and PDM dominates digital

payments. Therefore, our model suggests that the long-term relevance of fiat money in digital

payments depends on whether countries act early to digitize it.

2.4 Does Currency Competition Spur Digitization?

We now analyze how the competition from PDM and among fiat currencies shape the dynamics of

currency and payment digitization, the timing of CBDC issuance, and overall welfare. Our findings

suggest that while competition from PDM slows digitization, competition among fiat currencies

accelerates it. Notably, both forms of competition contribute to overall welfare by enhancing con-

venience utility over time. These differential effects reflect that the nature of increased competition

has distinct effects on the endogenous growth of PDM, which accelerates as PDM adoption rises.

Stronger fiat currencies curb PDM adoption and growth, encouraging countries to sustain their

digitization efforts and ultimately boosting digitization. In contrast, increased competition from

PDM — both in the short term (due to higher current adoption) and over time (due to faster

growth in PDM convenience) — may initially boost digitization efforts but gradually undermines

them, as it accelerates PDM growth and its path to dominance, ultimately limiting the benefits of

digitization for both countries.

2.4.1 The Effects of Competition from Private Digital Money and Regulation

The level of Y quantifies the competition that fiat currencies face from PDM in the present, thereby

affecting countries’ incentives to digitize their currency. The law of motion (4) implies that higher

PDM adoption today increases Y and PDM adoption in the future, adding a dynamic component

to currency digitization considerations. When countries digitize their currencies, they reduce PDM

adoption in the present, reducing growth of PDM convenience, competition, and adoption in the

future. The incentives arising from this dynamic channel depend on the parameter µ, governing

growth of PDM convenience and thus fiat currencies’ (dynamic) competition from PDM.

As can be seen from Figure 2, an increase in competition from PDM through higher Y reduces

B’s digitization efforts, while having an ambiguous effect on A’s incentives, which follow an inverted

U-shaped pattern in ln(Y ). Recall that overall, an increase in PDM competition through higher Y
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Figure 4: Effort Dynamics and PDM Competition. This Figure presents comparative statics in µ. Panels
A and B plot country A’s and B’s efforts in state z = 0 against ln(Y ) for three different levels of µ. Panel C plots
total efforts, i.e., the sum of individual efforts, against ln(Y ). Panel D plots total efforts against time, t, being state
z = 0. We use our baseline parameters from Section 2.2 (incluing ZA

L = 1), but set Y0 = 0.5 for Panel D.

reduces total digitization efforts. To analyze how the growing competition from PDM affects the

dynamics of digitization, we perform comparative statics in µ. Figure 4 plots country A’s efforts

(Panel A), country B’s efforts (Panel B), and their sum against ln(Y ) in Panel C and over time in

Panel D, for µ = 0.05, µ = 0.35, and µ = 0.65. Panel A shows that as µ increases, A’s digitization

efforts increase for low Y , peaking at a lower level of Y .

When PDM competition grows faster and µ is larger, A responds more strongly and earlier to

the rising competition from PDM, i.e., its incentives become more forward-looking. Indeed, when

µ is larger, country A is incentivized to digitize its currency early to slow PDM growth and prepare

for increased future competition. This effect reflects the endogenous nature of PDM competition,

which grows at a rate that accelerates with PDM adoption. By digitizing its currency, country A

curbs PDM growth, thereby mitigating future competition.

In contrast, the concern of slowing future growth of PDM adoption has a much smaller effect

on B’s incentives to digitize (see Panel B). Loosely speaking, B mostly cares about the additional

adoption it can gain through digitization, as its effect on the dynamics of Y is relatively small.

Panel C shows that when µ is larger, total digitization efforts respond more strongly and earlier to

the rising competition from PDM, in that they are higher for low Y and peak earlier.
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Panel D plots countries’ total digitization efforts over time, starting from Y0 = 0.5. When

µ is larger, countries’ total efforts are higher initially but decline more quickly, resulting in less

persistence. That is, countries abandon the digitization of their currency more rapidly, when

PDM competition grows faster. As discussed before, the model predicts that digitization occurs

relatively early on in the game. However, if countries do not succeed early on, digitization is delayed

significantly or never occurs. Notably, this pattern is more pronounced for larger values of µ, as

shown in Figure 3. Panel B of Figure 3 shows that an increase in µ reduces the probability that

digitization occurs early, while increasing the probability that it occurs later. Panel C of Figure

3 shows that an increase in µ delays digitization, i.e., raises the expected time to digitization for

all t. Likewise, Panel C of Figure 3 shows that the expected time to digitization increases with Y .

Both findings indicate that competition from PDM delays fiat currency digitization.

Finally, the convenience of PDM and its growth rate may reflect whether they are banned or

regulated by governments. Although not explicitly modeled, we consider regulation as a factor

that reduces the convenience and competitiveness of PDM. Our model predicts that if regulation

(by one or multiple countries) does indeed reduce PDM convenience and adoption, it accelerates

the digitization of fiat currencies, but hampers overall welfare by reducing payment convenience.

Interpreted differently, the regulation of PDM and the digitization of fiat money complement each

other in maintaining the relevance and adoption of their currency in digital payments.

2.4.2 Competition Among Fiat Currencies

To examine the effects of competition among fiat currencies, we perform comparative statics in

their relative convenience. For this sake, we hold fixed ZA
L at one (a normalization), and vary ZB

L ,

whereby an increase in ZB
L corresponds to increased competition among fiat currencies. To this end,

Figure 5 plots country A’s efforts (Panel A), country B’s efforts (Panel B), and total efforts (Panel

C) against ln(Y ) and, in Panel D, total efforts against time t starting at Y0 = 0.5, for ZB
L = 0.1

(solid black line), ZB
L = 0.5 (dotted red line), and ZB

L = 0.9 (dashed yellow line).

Note that increased competition from currency B, i.e., an increase in ZB
L , boosts A’s digitization

incentives for low levels of Y , while curbing them for higher levels of Y . Indeed, higher ZB
L implies

lower adoption of currency A, raising A’s adoption gain upon digitization. At the same time,

higher ZB
L raises adoption for currency B, thereby reducing B’s incentives for low levels of Y .

When B’s adoption is relatively low (because ZB
L is low), country B has strong incentives to move

first in currency competition, resulting in high efforts by B for low Y . In contrast, A’s incentives

to move early are diminished. In other words, more asymmetric competition among fiat currencies

30



-3 -2 -1 0 1

0.06

0.08

0.1

0.12

0.14

-3 -2 -1 0 1

0

0.05

0.1

-3 -2 -1 0 1

0.1

0.15

0.2

0 5 10 15 20 25 30

0.1

0.15

0.2

Figure 5: Effort Dynamics and Fiat Currency Competition. This Figure presents comparative statics in
ZB

L . Panels A and B plot country A’s and B’s efforts in state z = 0 against ln(Y ) for three different levels of ZB
L .

Panel C plots total efforts, i.e., the sum of individual efforts, against ln(Y ). Panel D plots total efforts against time,
t, being state z = 0. We use our baseline parameters from Section 2.2 (including ZA

L = 1), but set Y0 = 0.5 for Panel
C.
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implies a relatively larger first-mover advantage for B, and greater incentives to move second for

A. Interestingly, as shown in Panel C, the level of competition among fiat currencies hardly affects

the total digitization efforts for a given level of Y , i.e., the effects more or less cancel out.

Because currency B also competes with C for adoption, a higher level of ZB
L reduces PDM adop-

tion and, by (4), slows the growth of PDM competition. Recall that countries’ digitization efforts

tend to decrease over time and in particular reach low levels when PDM has gained widespread

adoption (i.e., Y is large). Consequently, as shown in Panel D, higher ZB
L implies that countries’

digitization efforts are more persistent, which raises the likelihood that digitization occurs relatively

early, rather than very late or never. In other words, increased competition among fiat currencies

accelerates currency digitization and digital upgrades of traditional payment systems.

2.4.3 The Welfare Effects of Competition

We examine how currency competition affects the timing of digitization and welfare. Panel A of

Figure 6 shows that the expected time to digitization increases in Y and in µ for given ln(Y ),

which, in line with previous findings, indicates that PDM competition delays the digitization of

fiat currencies. Next, Panel C shows that the expected time to digitization in state Y decreases in

ZB
L , so fiat currency competition accelerates digitization. Regarding welfare, Panel B displays that

welfare increases in Y and µ for given ln(Y ), in that PDM competition benefits welfare. Likewise,

Panel D shows that welfare increases in ZB
L , i.e., increased fiat currency competition boosts welfare.

The intuition behind these findings is that because users benefit from increased convenience,

any type of competition increases their welfare. However, while increased competition among fiat

currencies accelerates digitization, increased competition from PDM delays or slows digitization.

The reason is that increased competition from PDM (i.e., larger µ or Y ) limits fiat currencies’

adoption gain upon digitization, which dynamically reduces countries’ efforts and delays digitiza-

tion. Differently, increased competition among national currencies, i.e., higher ZB
L , raises countries’

digitization efforts and their persistence, which accelerates digitization.

2.5 Welfare Maximization and Planner Solution

In our baseline specification, countries maximize the time average of their currency’s adoption

in the digital economy, net of the costs of digitization. As a consequence, countries care about

the convenience of their currencies only insofar as it leads to higher adoption (i.e., shifts users’

investment toward their currency). However, countries do not internalize that user utility and,

therefore, welfare increase in currencies’ convenience, holding the investment decision fixed. That
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Figure 6: Time to Digitization and Welfare. This Figure plots the expected time to digitization (in Panels
A and C) and welfare against ln(Y ) (Panels B and D) in state z = 0. The upper Panels A and B depict comparative
statics in µ, while the lower Panels C and D present comparative statics in ZB

L . We use our baseline parameters from
Section 2.2.

is, countries only focus on the users’ investment on the margin, while they do not internalize that

digitization improves convenience on infra-marginal investments. These effects harm total welfare

and lead to “inefficiently low” digitization efforts, especially by the dominant currencies, as we

illustrate below.

We compare the dynamics of countries’ digitization efforts to two those that would obtain in

two benchmarks. First, we consider that a planner chooses efforts to maximize the welfare from (6),

subject to mx
t = P x

t satisfying the pricing relationship (13). That is, the planner only decides on

digitization efforts, but cannot control users’ choice among currencies. Appendix B characterizes the

planner solution in greater detail, specifically optimal efforts and the ODE system characterizing the

Markov equilibrium. Second, we consider that countries x = A,B separately maximize the welfare

(convenience utility) generated by their own currencies x, net of digitization costs. Specifically, we

set fx
t = Zx

t v(m
x
t ) for the flow utility in the objective (5). Further, set δ = γ (i.e., planner and

countries discount at the same rate), so countries internalize the full welfare generated by their

currencies. The solution is formally analogous to the baseline.

Figure 7 plots welfare-maximizing effort levels against ln(Y ), both when countries maximize

their currencies’ welfare independently (solid black line) and the planner maximizes welfare (dotted
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Figure 7: Welfare-Optimizing Efforts. This figure plots welfare-maximizing efforts in Panels A and B (for
countries A and B, respectively) against ln(Y ) in state z = 0, both under the planner solution (dotted red line) and
currency-specific welfare maximization (solid black line). Panel C plots the sum of these efforts and Panel D their
difference against ln(Y ). We use our baseline parameters from Section 2.2.

red line). Panels A and B depict A’s and B’s welfare-maximizing effort levels in state z = 0, while

Panel C plots their sum and Panel D their difference. Comparing effort levels from Figures 2 and

7, it is evident that the baseline effort levels lie below the welfare-maximizing levels of all Y in both

benchmarks. We highlight countries’ failure to fully internalize the convenience utility generated by

digitization as an economic mechanism leading to this under-investment. However, we acknowledge

that the magnitude of baseline effort levels (and whether they fall below welfare-maximizing levels)

also depends on the specific functional forms we assumed (e.g., in the baseline).

Panels A, B, and C show that welfare-maximizing levels exhibit a U-shaped pattern in ln(Y )

under the planner solution, i.e., they first increase and then decrease in Y . In contrast, efforts

tend to decrease in Y , when countries maximize their currencies’ welfare independently. This U-

shaped pattern reflects that for intermediate levels of Y , users benefit from the growth of PDM

convenience. The digitization of fiat currency in this region would slow down the growth of Y ,

which would harm welfare, curbing the planner’s digitization efforts.

Interestingly, when countries maximize their currencies’ welfare separately, their individual and

joint efforts exceed those that would prevail under the planner solution. The intuition is that when

maximizing their currencies’ welfare only, countries do not internalize the reduction in the adoption
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of other currencies caused by their digitization. This effect leads them to over-invest in digitization,

and causes efforts to decline in Y , rather than to follow a U-shaped pattern. In the baseline, with

countries only focusing on the adoption of their own currency, country A’s efforts follow an inverted

U shape in Y , and country B’s efforts decrease in Y .

Finally, as shown in Panel D, it is welfare maximizing to have country A exert higher efforts than

country B and thus to move first in currency digitization, because currency A is held more widely

and thus benefits more from digitization. In contrast, in the baseline, country A’s incentives lie

below those of B for low Y , showing a first-mover advantage for the weaker country B and a second-

mover advantage for the strong country A. In other words, country B’s first-mover advantage and

country A’s second-mover advantage are not welfare-maximizing.

3 Discussion and Model Extensions

Our baseline setting omits many realistic and relevant features of currency competition and digi-

tization. We now present several model variants and extensions to demonstrate the flexibility and

robustness of our theory.

3.1 Interoperability and Public-Private Collaborations

In practice, fiat money and PDM may be interconnected through (i) interoperability or (ii) public-

private collaborations in payment digitization. Some private payment systems, for instance, can

facilitate transactions that bypass traditional banks while also linking to bank accounts or credit

cards, enabling bank deposit-based transactions. A notable example is Alipay, which allows users to

transact using Alipay credit or wallet balances without having each transaction go through banks.

At the same time, Alipay can connect to credit cards and bank accounts, making it interoperable

with bank payment rails. Governments and central banks may also collaborate with private pay-

ment firms to digitize their currencies and bank-based payment systems. The benefits of currency

digitization depend on the state of the payment technology underlying PDM. For example, Brazil’s

Pix system was developed by the Brazilian central bank in partnership with industry experts. Sim-

ilarly, the Digital Euro Project is a collaboration between the ECB and European payment firms

(Berg et al., 2024). Alipay and WeChat Pay also promote the usage of e-CNY (Xia, Gao, and

Zhang, 2023; Bai et al., 2025). Such public-private collaborations can further enhance the inter-

operability between government-led or bank-centric payment rails and PDM (e.g., Duarte et al.,

2022).
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Figure 8: Public-Private Collaborations and Digitization Efforts.This Figure presents comparative statics
in ωx

H . Panels A and B plot country A’s and B’s efforts in state z = 0 against ln(Y ) for three different levels of
ωA
H = ωB

H , where ωA
L = ωB

L = 0. Panel C plots total efforts, i.e., the sum of individual efforts, against ln(Y ). We use
our baseline parameters from Section 2.2.

To capture the interdependence of fiat money and PMD as well as to allow for public-private

collaborations in currency digitization, we stipulate that payment convenience satisfies:

Zx
t =

ζxL + ωx
LYt for t < T x

ζxH + ωx
HYt for t ≥ T x,

(17)

where ωx
L ≤ ωx

H . We define Zx
L = ζxL + ωx

LYt and Zx
H = ζxH + ωx

HY . Note that the convenience of

fiat money, Zx
t , increases with the convenience of PDM, Yt, reflecting the partial interoperability

and linkage of PDM payment technologies with bank-centric or government-led payment systems.

We next model public-private collaborations in fiat currency digitization by assuming ωx
H > ωx

L.

Under this assumption: (i) the relative convenience gain from digitization, Zx
H −Zx

L, increases with

Y ; and (ii) digitization strengthens the link between the convenience of fiat money and that of

PDM. These two features, (i) and (ii), are intrinsic to public-private digitization initiatives, where

payment firms collaborate with central banks or the government to leverage private-sector payment

technologies in digitizing fiat money or bank-centric payment systems. First, the gains from such

collaborations are greater when private-sector payment technology is more advanced, as reflected by

a higher Y . Second, digitizing fiat currency with private-sector technology typically involves linking

these solutions to bank-centric or government-led payment systems, enhancing interoperability (as

captured by ωx
H > ωx

L) and the convenience of fiat money.

36



3.1.1 Public-Private Collaborations and Fiat Digitization

We now investigate how currency digitization efforts change, when digitization is structured as a

public-private collaboration. For this sake, we perform comparative statics in the parameter ωx
H ,

assuming, for symmetry, ωA
H = ωB

H as well as ωA
L = ωB

L = 0. Further, we adopt our baseline

parameters and, specifically and analogously to the baseline, set ζAL = 1, ζBL = 0.2, as well as

ζxH = ∆Fixed + (1 +∆Prop)ζxL; we stipulate ∆Fixed = ∆Prop = 1.

Figure 8 presents the results, with Panel A showing A’s effort, Panel B showing B’s effort,

and Panel C showing total digitization effort. The figure illustrates that an increase in ωx
H not

only raises the overall level of digitization efforts but also alters their timing. Naturally, a higher

ωx
H — indicating more intense public-private collaboration — increases the gains from digitization,

thereby boosting digitization efforts. More intriguingly, the model predicts that public-private col-

laborations in currency digitization are associated with backloaded and more persistent digitization

efforts. Specifically, countries exert relatively low efforts when PDM adoption is limited, gradually

increasing their efforts as PDM adoption and convenience grow.

As such, when currency digitization involves relatively little public-private collaboration, as

in our baseline scenario, digitization efforts are initially high at low levels of PDM adoption but

gradually taper off. In this case, countries might even discontinue digitization as PDM becomes

widely adopted, with the model predicting relatively early digitization. In contrast, when currency

digitization involves a high degree of collaboration, digitization efforts are higher at elevated levels

of Y and, crucially, increase over time. This makes digitization efforts more persistent and increases

the likelihood of eventual digitization. Nevertheless, several findings hold regardless of the level

of collaboration, and the key patterns remain robust to this modification. For instance, in both

scenarios, the relatively weaker currency has a first-mover advantage and stronger incentives to

digitize early compared to the stronger currency.

3.1.2 When to compete and when to collaborate?

To analyze the choice between collaboration and competition in currency digitization, we now

allow countries to choose the level of ωx
H at starting state Y0 = Y — after that, the choice ωx

H

remains fixed at future dates for simplicity. Specifically, country x chooses in state (Y, 0) the level

37



of ωx
H ∈ {0, ωH} against a linear cost:22

max
ωx
H∈{0,ωH}

V x(Y, 0)− Cωx
H , (18)

where ωH ≥ 0 and C ≥ 0 are constants. The cost C may reflect payments required by private-

sector participants, the coordination costs of involving multiple parties, or (in reduced form) the

loss of payment autonomy when engaging the private sector. Countries x = A,B choose ωx
H

simultaneously, taking the other country’s choice as given. This choice induces a static game,

for which we characterize the pure-strategy Nash equilibria at a given level of Y . Let E(Y ) ⊆
{(0, 0), (0, ωH), (ωH , 0), (ωH , ωH)} denote the set of pure-strategy Nash equilibria, represented as

tuples of the form (ωA
H , ωB

H).

It is clear that for sufficiently low values of Y , the unique Nash equilibrium is to compete, i.e.,

ωx
H = 0 for x = A,B and (0, 0) = E(Y ). Likewise, sufficiently high cost C preclude digitization and

yield our baseline. Such high cost may capture that the private sector is unwilling to collaborate

with government entities or collaboration is not feasible.23 In contrast, when Y is sufficiently large

(relative to C), a Nash equilibrium features at least one country collaborating, e.g., ωx
H = ωH for

x = A or x = B; that is, (0, 0) ̸∈ E(Y ).

To illustrate this outcome, we consider a numerical example where C = 0.05 and ωH = 1, and

solve for the pure-strategy Nash equilibria. In this example, the pure-strategy Nash equilibrium

exists and is unique. For low levels of Y (i.e., Y ≤ 0.703), the unique equilibrium is where

both countries set ωx
H = 0, meaning they do not collaborate in currency digitization and instead

compete. For intermediate values of Y (i.e., 0.704 ≤ Y ≤ 1.042), the unique equilibrium entails

country A choosing ωA
H = 0 and country B choosing ωB

H = ωH , indicating that the weaker country

collaborates while the stronger one does not. Finally, for high values of Y (i.e., Y ≥ 1.042), the

unique equilibrium features ωx
H = ωH , meaning both countries collaborate with the private sector

to digitize fiat currency.

In summary, when PDM adoption is low, countries digitize their fiat currencies to compete with

PDM and with each other, with country B exerting higher efforts due to a first-mover advantage.

As PDM adoption increases, countries transition to collaborating with the private sector to digitize

22One could also allow countries to choose dynamically the value of ωx
H at any point in time. However, this modeling

would complicate the model analysis, while likely generating similar insights.
23For instance, many cryptocurrencies and blockchain-based payment systems were designed to establish a decen-

tralized financial system free from government oversight, which allows for privacy in payments. This feature is crucial
to the convenience and adoption of cryptocurrency as PDM, as discussed in Appendix E, where we link payment
privacy to PDM convenience. Collaboration with government entities would undermine the core purpose and appeal
of cryptocurrency, leading to reluctance among crypto practitioners to collaborate.
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Figure 9: When to Collaborate or to Compete? This Figure presents comparative statics in YCol defined in
(19). Panel A presents comparative statics with respect to µ and Panel B presents comparative statics with respect
to λ. We use our baseline parameters from Section 2.2, and set ωx

H = ωH = 1, ωx
L = 0, and C = 0.05.

their currencies. Thus, the paradigm in currency digitization shifts over time from competition

to collaboration. Initially, countries focus on competing with PDM, but as PDM becomes widely

adopted, collaboration becomes both inevitable and optimal.

Finally, we investigate in Figure 9 how countries’ propensity to collaborate with the private

sector in currency digitization depends on the growth of PDM convenience µ (see Panel A) and the

cost of digitization λ (see Panel B). For this sake, we plot

YCol = inf{Y ∈ (0, Y ) : (0, 0) ̸∈ E(Y ) ∧ E(Y ) ̸= ∅}. (19)

against µ in Panel A and against λ in Panel B. Observe that for Y ≥ YCol, any pure-strategy Nash

equilibrium involves at least one country engaging in public-private collaboration. Therefore, a

lower value of YCol indicates a higher propensity for countries to engage in such collaborations.

Panel A shows that YCol decreases with µ. This implies that when the convenience or adoption

of PDM is expected to grow faster, and PDM poses greater competition to fiat money over time,

the gains and necessity for collaboration increase, leading to more public-private collaboration.

Panel B shows that YCol increases with countries’ digitization cost, as captured by λ. This

suggests that countries are more likely to engage in public-private collaborations when the cost

of achieving digitization is low. The intuition is that when λ is high and digitization is more

challenging, digitization efforts and the likelihood of digitization are low to begin with, making it

suboptimal to incur the additional costs associated with public-private collaborations.
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Figure 10: The Role of Dollar-Backed Stablecoins. This Figure presents comparative statics in θ. Panels A
and B plot country A’s and B’s efforts in state z = 0 against ln(Y ) for three different levels of θ. Panel C plots total
efforts, i.e., the sum of individual efforts, against ln(Y ). We use our baseline parameters from Section 2.2.

3.2 Stablecoins and Dollar-Backed Cryptocurrencies

In our model, the representative PDM encompasses the broader cryptocurrency market, including

stablecoins —cryptocurrencies pegged to a reference unit. Many of the largest stablecoins (e.g.,

USDC or Tether) are pegged to the U.S. dollar and are (partially) backed by U.S. dollar reserve

assets, such as deposits or cash equivalents.24 To model the interdependence between the dominant

fiat currency A and PDM C related to stablecoins, we extend our baseline by assuming that a

fraction θ ∈ [0, 1) of the PDM adoption value (i.e., market capitalization) PC
t is backed by currency

A. An increase in θ could reflect regulatory reserve requirements on stablecoins, mandating that a

greater portion be backed by U.S. dollar assets. Similarly, a higher θ could represent the growing

significance of stablecoins — both within the cryptocurrency ecosystem and globally.

The introduction of the parameter θ changes the model as follows. At time t, the total reserves

backing PDM are worth θPC
t units of the consumption good, i.e., they consist of θPC

t /PA
t units of

currency A. The total value of currency A in goods becomes PA
t = mA

t + θPC
t while mB

t = PB
t and

mC
t = PC

t . The market clearing condition
∑

x′=A,B,C mx′
t = 1 implies

PA
t + PB

t + PC
t (1− θ) = 1. (20)

All other elements remain unchanged.25 The arguments in Appendix A already allow for θ > 0,

24While stablecoins can also be backed by fiat currencies other than the U.S. dollar, this is rare in practice. The
fraction of cryptocurrency market capitalization backed by non-dollar fiat currencies is negligible. Therefore, we
focus on the case where currency C is backed exclusively by currency A, although our framework is flexible enough
to accommodate backing with B as well.

25Because fraction θ of total PDM holdings mC
t = PC

t (in terms of consumption good) are backed by currency A,
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which nests the baseline upon setting θ = 0.

Figure 10 illustrates how θ affects digitization incentives. As shown in Panel A, an increase in

θ reduces A’s digitization efforts. This occurs because, when θ > 0, currency A gains additional

adoption from its role as a reserve asset for PDM. More intuitively, the adoption of stablecoins

pegged to currency A in digital payments effectively increases the adoption of currency A, thereby

strengthening its role and importance in digital payments. As a result, country A partially benefits

from the rise of PDM, which provides additional adoption for its currency. This effect reinforces

the dominance of currency A and reduces its incentive to compete with PDM through digitization,

thereby delaying the digitization of currency A. Panel B shows that changes in θ have little to no

effect on B’s incentives, leading to a decline in total digitization efforts as θ increases (see Panel C).

In other words, higher θ reduces countries’ efforts to digitize their currencies and delays digitization.

Our analysis highlights that the increasing adoption of dollar-backed stablecoins in digital pay-

ments enhances the relevance and influence of the U.S. dollar, thereby strengthening the geoeco-

nomic power of the United States. This dynamic incentivizes the United States to adopt crypto-

friendly policies and regulations to support the growth of stablecoins. Additionally, it reduces the

incentive to digitize the U.S. dollar, as doing so could undermine stablecoin usage. Broadly inter-

preted, the private sector effectively creates a form of digital dollar through stablecoins, substituting

for the U.S. government’s efforts to digitize the dollar. In a way, U.S. crypto-friendly policies have

offered a strategic substitute for CBDCs.

3.3 Interest Rates, Uncovered Interest Parity, and a Pecking Order of Adoption

In our baseline, the exchange rate dynamics (in terms of the consumption good and across cur-

rencies) are pinned down through market clearing (i.e., mx
t = P x

t ) and the user’s allocation of

endowment across currencies. This modeling implicitly assumes that the adoption and usage of a

currency in the digital economy is relevant enough to influence exchange rates.26 We now consider

that exchange rates are determined outside of the model in a frictionless bond market, and show

an additional capital gain of θrAt dt, which arises because part of the PDM value is invested in currency, accrues to
PDM as a whole over [t, t+ dt). For simplicity and to enhance the comparability with the baseline, we assume that
the capital gain from investing in reserves consisting of currency A is fully captured by the PDM developers (who
are outside of the model), so that (13) still applies. If fraction ω̂ of this capital gain accrued to the PDM investors,
equilibrium pricing conditions (13) would change to

Ytv
′(mC

t ) + rCt + ω̂θrAt = ZA
t v′(mA

t ) + rAt = ZB
t v′(mB

t ) + rBt ,

which would lead to qualitatively similar outcomes. Moreover, if the dollar reserves are interest-bearing, there would
be another capital gains term accruing to PDM.

26In fact, in the baseline, the extreme case obtains that exchange rates are solely pinned down through the currency
adoption in the digital space, which is extreme.
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that our key findings remain robust in this model variant (see Section 3.3.3). Consider θ = 0, as in

the baseline. We assume that the expected return (in consumption goods) rxt + ix from investing in

currency x = A,B through risk-free short-term bonds, which pay a nominal interest rate ix, must

equal an exogenous required rate of return ρ:27

ρ = rxt + ixt . (21)

Using (21) for x = A,B, we obtain the uncovered interest parity, i.e., rAt − rBt = iB − iA. We

assume that the (constant) interest rates ix are exogenous, i.e., determined outside of the model.

the user cannot invest in the newly introduced bonds and allocates its entire endowment across the

three monies A, B, and C, as in the baseline.

We now make the following assumptions as to how users, holding currencies for their needs in

the digital economy, can benefit from the currencies’ interest rate. Specifically, we assume that only

fraction 1 − αx of the interest rate is passed-through to the user, potentially reflecting imperfect

deposit rate passthrough. Crucially, αx = αx
t = αx(z) is a parameter that may change with

digitization, for instance, because the launch of CBDCmay improve the interest rate passthrough on

deposits Chiu et al. (2023). Likewise, Sarkisyan (2023), who studies the introduction of Brazil’s Pix

payment system, shows how currency digitization can influence banking competition and deposit

rates. As shown in Appendix C, the pricing equation (13) then changes to

Ytv
′(mC

t ) + rCt = ZA
t v

′(mA
t ) + ρ− αA

t i
A = ZB

t v′(mB
t ) + rBt + ρ− αB

t i
B. (22)

Equation (22) illustrates that when interest rate passthrough is not perfect and αx > 0, users

effectively incur a cost of holding currency x, hampering this currency’s effective convenience and

adoption in the digital economy. That is, a higher interest rate ix or a worse passthrough αx renders

27For a micro-foundation, consider that each country x = A,B has short-term government bonds with maturity
dt outstanding. For simplicity, these bonds are risk-free and pay a nominal interest at rate ix — which is fixed and
exogenous. Let P x

t the value of one unit of currency x in terms of the consumption good, and let rxt = E[dP x
t ]/(P

x
t dt)

the expected rate of appreciation of currency x in terms of the consumption good, as in the baseline. One bond has
a face value of one unit of currency x. Investing one unit of the consumption good in x’s bond at time t, i.e., buying
1/P x

t units of the bond, and holding this bond up to maturity at time t+ dt yields (undiscounted) payoff

−1 +
1

P x
t

(ixt P
x
t+dtdt+ P x

t+dt) = rxt dt+ ixt dt,

where we used that P x
t+dt = P x

t + dP x
t and ignored terms of order (dt)2 or higher (which are negligible in the

continuous time limit). Government bonds are bought by international bond investors with deep pockets, who can
short-sell and buy bonds, are risk-neutral, and require a return at rate ρ in terms of the consumption good. Thus,
for the bond market to clear, the payoff to buying bonds, rxt dt + ixt dt, must equal bond investors’ required rate of
return, ρdt, so that (21) must hold after canceling out dt.
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Figure 11: Interest Rates and Digitization. This Figure presents comparative statics in αBiB . Panels A and
B plot country A’s and B’s efforts in state z = 0 against ln(Y ) for three different levels of αBiB . Panel C plots total
efforts, i.e., the sum of individual efforts, against ln(Y ). We divide all baseline parameters from Section 2.2, which
are related to currency convenience, by 15, leading to ZA

L = 1/15, ZB
L = 0.2/15, ∆Fixed = 1/15, Y = 5/15, and

Y0 = 0.1/15 while all other parameters remain unchanged. We set αAiA = 0.01, and ρ = θ = 0.

currency x effectively less convenient, i.e., has similar effects as a decrease in Zx
t .

All other model elements remain unchanged. Appendix C presents further solution details and

characterizes the ODE system of the Markov equilibrium.

3.3.1 The Effects of Interest Rates and Passthrough

We apply this model variant to examine how changes in the interest earnings αxix — which may

stem from changes in interest passthrough 1− αx or monetary policy (i.e., changes in the nominal

rate ix) — affect currency digitization. To this end, Figure 11 performs comparative statics in αBiB

by plotting A’s efforts (Panel A), B’s efforts (Panel B), and total efforts (Panel C) against ln(Y ), for

three different levels of αBiB, holding fixed αAiA. To be able to better highlight the effects of interest

rates and to ensure they have reasonable quantitative effects on currency digitization (without

stipulating unrealistic interest rates), we divide all baseline parameters from Section 2.2, which are

related to currency convenience, by 15. This leads to ZA
L = 1/15, ZB

L = 0.2/15, ∆Fixed = 1/15,

Y = 5/15, and Y0 = 0.1/15 while all other parameters remain unchanged relative to the baseline.

Higher αBiB could capture increased inflation in country B, precipitating a rise in the nominal

rate, or worsened interest passthrough, for instance, because B’s banking or financial system is

less digitized or competitive. Both features make currency B less convenient, which, all else equal,

reduces the competition among fiat currencies. In line with the findings of Section 2.4.2, Figure 11

illustrates that such reduced fiat currency competition due to higher αBiB reduces both countries’

digitization efforts and, hence, slows the digitization of fiat currencies. Notably, higher αBiB reduces
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Figure 12: Interest Rate Passthrough and Digitization. This Figure presents comparative statics in ∆I .
Panels A and B plot country A’s and B’s efforts in state z = 0 against ln(Y ) for three different levels of ∆I . Panel
C plots total efforts, i.e., the sum of individual efforts, against ln(Y ). We divide all baseline parameters from Section
2.2, which are related to currency convenience, by 15, leading to ZA

L = 1/15, ZB
L = 0.2/15, ∆Fixed = 1/15, Y = 5/15,

and Y0 = 0.1/15 while all other parameters remain unchanged. We set iA = 0.01 and iB = 0.1, and ρ = θ = 0.

both countries’ digitization efforts, and thus total efforts. For country B, higher αBiB raises the

cost of holding currency B hampers adoption, both before and after digitization, thereby limiting

the gains from digitization. For country A, higher αBiB implies weaker competition from B and

thus weaker incentives to invest in currency digitization.

Appendix Figure F.3 presents comparative statics in αAiA. Interestingly, we find that higher

αAiA, resulting in more competition among fiat currencies, has the opposite effect and increases

total digitization efforts, thereby accelerating digitization.

Our model can also capture that CBDCs improve interest passthrough, for instance, via αx(0) =

αx(−x) > αx(x) = αx(AB), as micro-founded in Chiu et al. (2023). Naturally, when currency

digitization improves the interest passthrough (while all else remains equal), countries have stronger

incentives to digitize their currency, especially when interest rates are high. Figure 12 illustrates

this outcome by plotting country A’s efforts in Panel A, country B’s efforts in Panel B, and total

efforts in Panel C against ln(Y ). It uses αx(0) = 1, while αx(x) = αx(AB) = 1 − ∆I . When

∆I is larger, digitization improves the interest passthrough more significantly, thereby stimulating

efforts by both countries. Since country B starts with a higher interest rate iB = 0.1 (while

iA = 0.01), its incentives react more strongly to an increase in ∆I . This outcome highlights that

insofar currency digitization enhances the interest rate passthrough, countries with higher interest

rates have stronger incentives to digitize their currencies.
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3.3.2 Very Weak Currencies and Pecking Order

The model variant incorporating interest rates allows us to capture “very weak” currencies, char-

acterized by excessively high nominal interest rates (e.g., due to hyperinflation). Examples include

the Turkish Lira, with a nominal interest rate of about 50% and inflation around 70%, and the

Argentine Peso, with an interest rate near 40% and inflation around 240%, as of October 2024.

One can show that as iB → ∞ while αB > 0, both PB(Y, z) → 0 and V B(Y, z) → 0 for any z and

Y . This implies limiB→∞ eB(Y, z) = 0. Loosely speaking, as iB → ∞, it becomes infinitely costly

to adopt currency B (due to imperfect interest passthrough), causing the adoption level of B to

approach zero in all states. The reason is that in our model and unlike in Goldstein et al. (2023),

the store-of-value and medium-of-exchange functions complement each other: when a currency is a

better store-of-value and thus offers higher returns, it becomes less costly to adopt it for payment,

reinforcing the medium-of-exchange function. Very weak currencies perform poorly as stores of

value, making their adoption for payment costly and, therefore, low, even with digitization.

In other words, countries with very weak currencies exhibit low adoption, regardless of digi-

tization efforts, thereby limiting the incentives for digitization. In unreported results, we verify

numerically that as iB becomes sufficiently large, country B’s efforts, eB(Y, z), indeed approach

zero. Consequently, the model predicts minimal or no digitization for very weak currencies with

high nominal interest rates, leading to a pecking order in fiat currency digitization. Specifically, less

dominant but not overly weak currencies are digitized first, followed by more dominant currencies,

while very weak currencies are digitized last, if at all.

3.3.3 Robustness Checks

Notably, our key findings from the baseline remain unchanged in this model variant and, con-

sequently, are robust to incorporating interest rates and international finance elements. First,

Appendix Figure F.1 replicates the key Figure 2 in this model variant (assuming αAiA = 0.01 and

αBiB = 0.03 and otherwise using baseline parameters). Comparing Figures 2 and F.1, we note that

our findings remain unchanged relative to the baseline, both qualitatively and quantitatively. In

particular, note that the effort dynamics remain similar, with A’s effort being inverted U-shaped

and B’s effort declining in ln(Y ). In addition, B exerts higher efforts than A for low Y , showing a

first-mover advantage, while A’s efforts exceed those of B for high Y .

Second, Appendix Figure F.2 shows that one obtains similar effort patterns as in the baseline,

when modeling the benefits of digitization solely as improved interest passthrough, that is, without

stipulating any changes and differences in the convenience parameters Zx
L, Z

x
H . In particular, Figure
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F.2 sets ZA
L = ZB

L = ZA
H = ZB

H = 1/15, while αA(0)iA = 0.01 and αA(A)iA = αA(AB)iA = 0.001

as well as αB(0)iB = 0.1 and αB(B)iB = αB(AB)iB = 0.01.28 Indeed, observe that A’s effort is

inverted U-shaped in ln(Y ), while effort of B decreases in ln(Y ). Total efforts decrease in ln(Y )

too. Qualitatively, the effort dynamics resemble those of Figure 2.

3.4 Discounting and Myopia

Our baseline specification allows us to examine how government myopia affects the dynamics of

currency digitization. We now show that myopia accelerates currency digitization. In particular,

in the government objective (5), the parameter δ captures how present-focused a government is.

Indeed, an increase in δ increases i the weight that the country puts on current adoption while

reducing the weight of future adoption in its objective function.

Appendix Figure F.4 presents comparative statics in δ for different levels of ln(Y ). Panel A

shows that as δ increases, country A’s efforts tend to decline for low values of ln(Y ), while they

increase for larger values of ln(Y ). Notably, Panel B shows that country B’s efforts increase

strongly in δ for any level of ln(Y ). Panel C illustrates that countries’ total digitization efforts

unambiguously increase in δ for any ln(Y ). In particular, larger δ implies both higher and more

persistent digitization efforts, which accelerates digitization and reduces T ∗ (not shown explicitly).

Thus, when countries are more myopic, placing greater emphasis on the current adoption of their

currency rather than future adoption, they exert overall higher digitization efforts, which accelerates

digitization. This occurs because they give less consideration to the fact that growing competition

from PDM erodes the long-term adoption gains from digitization. Especially the weaker country B,

which has strong incentives to move early in currency digitization, exerts higher digitization efforts,

when δ is larger. The reason is that an increase in δ shifts the countries’ focus toward the presence,

thereby making the first-mover advantage from digitization in state z = 0 more appealing. This

effect strengthens the first-mover advantage in currency digitization for relatively less dominant

currencies.

3.5 Learning From Others and Second-Mover Advantage

We now allow the cost function g(ext ) = gz(e
x
t ) to depend on the state z to capture that currency

digitization by one country may generate technological spillovers, effectively reducing the cost of

CBDC issuance for the other country. Specifically, we assume that in state z = 0, the cost of

28Following earlier practices, we again divide convenience-related parameters by 15 (relative to the baseline) to get
meaningful effects from interest rates only. This is important because the benefits of digitization are solely modeled
through interest rates and improvements in the passthrough.
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launching CBDC (i.e., effort) follows g0(e
x
t ) = ϕext +

λ(ext )
2

2 , while, in states z = A,B, the cost is

reduced by fraction α, i.e., the cost becomes gz(e
x
t ) = (1− α)g0(e

x
t ). Formally, this model variant

is a straightforward extension of the baseline and can be solved numerically.

Appendix Figure F.5 presents comparative statics in α. Panels A and B show that when the

spillover effect, captured by α, is larger, both countries exert lower digitization efforts in state

z = 0. Moreover, higher α lowers the cost of digitization when moving second, which increases

digitization efforts in states z = A and z = B, as shown in Panels C and D. In other words,

countries strategically delay digitization to benefit from positive spillovers from another currency’s

digitization — they wait for the other country to act first, thereby postponing the initial time of

digitization, T ∗. However, as spillovers reduce the cost of digitization in states z = A and z = B,

the interval between individual currencies’ digitization shortens. For sufficiently large α ≈ 1, the

digitization of one currency would be followed almost immediately by that of other currencies.

Alternatively, spillovers could also affect the convenience of digitized fiat money and thus the

benefits of digitization. To account for such effects, we now stipulate that

Zx
H = Zx

L(1 + ∆Proportional) + ∆Fixed + αCI{z = AB}.

Thus, the convenience of currency x upon digitization increases by αC ≥ 0 when the other currency

has been digitized too, i.e., in state z = AB. Similar to Appendix Figure F.5, Appendix Figure

F.6 presents comparative statics in αC .

One would expect that higher αC should boost countries’ digitization efforts. This is indeed

true for the less dominant currency, B. As shown in Panels B and D of Figure F.6, a higher αC

increases B’s efforts across all levels of Y in states z = 0 and z = A. Interestingly, the effect of αC

on A’s incentives can be either positive or negative. Specifically, when Y is low, A’s main concern

is competition from B. If A digitizes its currency in state z = 0, this action either accelerates B’s

digitization (in state z = 0) or enhances B’s convenience (in state z = B). Both effects reduce

A’s incentives to digitize when Y is low. This pattern reverses when Y is high, and A’s primary

concern shifts to competition from PDM. In this case, spillovers from B’s digitization strengthen

A’s incentives, as they make digitization a more effective tool for competing with C.

4 Conclusions

We develop a novel framework to study the competition among fiat currencies and private digital

money (PDM) in digital payments, set against the backdrop of rising PDM adoption and countries’
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initiatives to digitize fiat money. We micro-found different currencies’ digital payment convenience

by modeling payments subject to random search and matching. To enhance the adoption of their

currencies in digital payments or to counter growing competition from PDM, countries invest in

increasing payment convenience through digitization. Fiat digitization includes launching central

bank digital currencies (CBDCs), upgrading existing payment systems, or introducing government-

led payment innovations. Our analysis reveals an endogenous pecking order: less dominant fiat

currencies tend to digitize earlier, exhibiting a first-mover advantage, while more dominant curren-

cies digitize later with greater effort, showing a second-mover advantage. The weakest currencies

forgo digitization altogether.

Interestingly, total digitization efforts by countries are highest when PDM competition is weak

but decline as PDM gains traction in digital transactions. A failure to digitize fiat currencies

early creates a vacuum that PDM fills, potentially leading to a tipping point where PDM becomes

dominant. As PDM gains market share, countries’ incentives to digitize fiat money diminish,

potentially delaying or halting digitization efforts. This dynamic can result in an equilibrium where

fiat currencies play a diminished role, leaving PDM to dominate digital payments. Our findings

suggest that the long-term relevance of fiat money in digital payments hinges on early action by

countries to digitize their currencies. Finally, we explore model variants and extensions, shedding

light on the roles of interoperability, public-private collaboration in payment digitization, and the

influence of stablecoins in shaping digital currency competition and adoption.

To maintain tractability amidst complex economic trade-offs, we have abstracted from other

realistic elements such as monetary policy implications, the impact of digitization on the banking

system, and broader macroeconomic dynamics. Incorporating these features and extending the

analysis would be an interesting direction for future research. Moreover, while our micro-foundation

links convenience to the medium-of-exchange function of money, in practice, convenience may also

reflect the store-of-value and unit-of-account functions of money, often complementing its role as

a medium of exchange. Thus, although our analysis focuses on payment competition, our theory

could also apply more broadly to currencies competing in multiple functionalities.
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Appendix

A Solving the Markov Equilibrium and Proof of Proposition 1

To avoid repetition, we provide the model solution for the generalized version presented in Section
3.2. In particular, relative to the baseline, we assume that fraction θ of the representative private
digital money (in short, PDM) is backed by currency A, changing the market clearing condition
for currency A from mA

t = PA
t in the baseline to mA

t = PA
t − θPC

t , i.e., PA
t = mA

t + θPC
t . Clearly,

the baseline is nested and obtains for θ = 0. This is the only place where θ enters (i.e., all other
parts remain as in the baseline from the main text), and the introduction of θ does not change
the flow of argument. Part I of the argument (presented below) shows in greater detail how the
introduction θ affects the market clearing conditions and related relationships. Again, Proposition
1 and the baseline solution can be obtained by simply setting θ = 0 in what follows.

To begin with, we introduce the “CBDC state variable” or “digitization state variable:” zt =
z = 0 denotes that no country has digitized its currency by time t (i.e., prior to and including time
t); zt = z = A (zt = z = B) denotes that only country A (B) has digitized its currency by time t;
and, zt = z = AB means that both countries have digitized their currencies by time t. We solve for
a Markov equilibrium with state variables (Y, z) so that all equilibrium quantities can be expressed
as functions of (Y, z), as we show.

In this Markov equilibrium, at any time t ≥ 0, the following must hold. First, cohort t chooses
the holdings of currencies A,B,C to maximize the expected utility Ut (with Ut from (2)), given
prices (PA

t , PB
t , PC

t ) subject to mA
t +mB

t +mC
t = 1 (i.e., it is optimal to invest the entire endowment

since there is no consumption utility at birth at time t). Second, the markets for all currencies
clear, that is,

mA
t = PA

t − θPC
t , mB

t = PB
t , and mC

t = PC
t .

Third, both countries A and B choose their efforts according to (5), taking the choice of the other
country as given. Finally, Yt evolves according to (4), while the dynamics of zt are governed by
countries’ endogenous digitization efforts.

We solve for the equilibrium in several steps, i.e., the proof has several parts. Part I further char-
acterizes and rewrites the market clearing conditions. Part II characterizes the user optimization.
Part III characterizes currency values and adoption as functions of (Y, z). Part IV characterizes
the government value function as a function (Y, z). Part V summarizes the systems of coupled
ODEs and associated boundary conditions that describe the Markov equilibrium. Overall, to solve
for the equilibrium, we conjecture and verify that all quantities can be expressed as functions of
(Y, z). Finally, we solve this system of coupled ODEs and boundary conditions numerically for the
Markov equilibrium.

We do not provide a formal uniqueness and existence proof for our equilibrium. The numerical
solution suggests that the Markov equilibrium we derive exists and is unique among the class of
Markov equilibria with states (Y, z).

In what follows, we denote by x the respective currency; unless otherwise mentioned, x ∈
{A,B,C}.
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A.1 Part I — Market Clearing Conditions with θ > 0

To begin with, recall the market clearing conditions, mB
t = PB

t and mC
t = PC

t , for currencies B
and C, respectively, while PA

t = mA
t + θmC

t Recall that fraction θ of PDM value PC
t is backed by

currency A reserves, where θ ∈ [0, 1) is an exogenous constant.

As a result, total reserves backing PDM are worth θPC
t units of the consumption good. Thus,

the reserves backing PDM consist of θPC
t /PA

t units of currency A, leaving the circulating supply
of currency A at (1− θPC

t /PA
t ) units. For the market for currency A to clear, the user holds this

circulating supply, i.e.,
mA

t /P
A
t = 1− θPC

t /PA
t

units of currency A. Therefore, the user’s holdings of currency A in units of the consumption good
is:

mA
t = PA

t − θPC
t . (A.1)

The condition (1), i.e., mA
t +mB

t +mC
t = 1, then becomes:

PA
t + PB

t + PC
t (1− θ) = 1 =⇒ PC

t =
1− PA

t − PB
t

1− θ
(A.2)

and, inserting PC
t from (A.2) into (A.1), we obtain

mA
t = PA

t − θPC
t = PA

t − θ(1− PA
t − PB

t )

1− θ
=

PA
t − θ(1− PB

t )

1− θ
, (A.3)

which is the rewritten market clearing condition for currency A.

A.2 Part II — User Optimization

For digitization state zt = z, we denote the set of possible next-period state transitions by S(z).
That is, when zt = z, then zt+dt = z′ is possible for all z′ = S(z) with z′ ̸= z; we explicitly exclude
z itself from the set S(z). In particular, S(0) = {A,B}, S(A) = S(B) = {AB}, and S(AB) = ∅.
Thus, when z = 0, the digitization state may transition toward A or B. When z = A or z = B,
the transition state may only transition toward AB — in state z = AB, no more state transitions
are possible.

We postulate that equilibrium currency values (i.e., prices) P x
t = P x(Y, z) for (Y, z) = (Yt, zt)

follow the law of motion:

dP x
t

P x
t

= µx(Y, z)dt+
∑

z′∈S(z)

∆x(Y, z; z′)dJz,z′

t , (A.4)

where µx(Y, z) is the endogenous price drift in state (Yt, zt) = (Y, z). In (A.4), ∆x(Y, z; z′) is the
endogenous (percentage) value change of currency x if the digitization state changes from z to z′.

The jump process dJz,z′

t ∈ {0, 1} equals one if and only if the digitization state changes from z to z′

at time t; otherwise, dJz,z′

t = 0. Note that the arrival rate Et[dJ
z,z′

t ]/dt is endogenous and depends
on efforts and state (Y, z).
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Recall the definition of expected currency returns in terms of the consumption good, that is,

rxt :=
Et[dP

x
t ]

P x
t dt

,

which will be a function of the state variables in the Markov equilibrium. We can then write cohort
t’s consumption ct+dt at t+ dt as

ct+dt =
∑

x∈{A,B,C}

mx
t P

x
t+dt

P x
t

. (A.5)

Observe that P x
t+dt = P x

t + dP x
t . Because the representative user invests its entire endowment one

to buy currencies at time t, it follows that
∑

x∈{A,B,C}m
x
t = 1. We can therefore rewrite (A.5) as

follows:

ct+dt = 1 +
∑

x∈{A,B,C}

mx
t dP

x
t

P x
t

. (A.6)

Now, note that the representative user maximizes her expected lifetime utility/payoff, i.e.,

max
mx

t ≥0
Ut s.t.

∑
x∈{A,B,C}

mx
t = 1, (A.7)

taking prices P x
t as given. Here, the expected lifetime utility/payoff Ut reads:

Ut = Et[ct+dt] + ZA
t v(m

A
t )dt+ ZB

t v(mB
t )dt+ Ytv(m

C
t )dt,

so that

Ut =1 +
∑

x∈{A,B,C}

mx
t r

x
t dt+ ZA

t v(m
A
t )dt+ ZB

t v(mB
t )dt+ Ytv(m

C
t )dt. (A.8)

Thus, in light of
∑

x∈{A,B,C}m
x
t = 1 and (A.8), the solution (mA

t ,m
B
t ,m

C
t ) to (A.7) satisfies

(mA
t ,m

B
t ,m

C
t ) = arg max

mx
t ≥0

Ω(mA
t ,m

B
t ,m

C
t ) s.t.

∑
x∈{A,B,C}

mx
t = 1,

with
Ω(mA

t ,m
B
t ,m

C
t ) :=

∑
x∈{A,B,C}

mx
t r

x
t + ZA

t v(m
A
t ) + ZB

t v(mB
t ) + Ytv(m

C
t ).

Due to
∑

x∈{A,B,C}m
x
t = 1, it must hold in optimum that the user is indifferent between substituting

a marginal unit of any currency for another one, i.e.,

∂Ω(mA
t ,m

B
t ,m

C
t )

∂mA
t

=
∂Ω(mA

t ,m
B
t ,m

C
t )

∂mB
t

=
∂Ω(mA

t ,m
B
t ,m

C
t )

∂mC
t

, (A.9)

provided mx
t ∈ (0, 1). Note that condition (A.9) becomes equivalent to (12) from the main text, as

desired.
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Taking the derivative in (A.9) and using the definition of Ω(mA
t ,m

B
t ,m

C
t ), we get:

Ytv
′(mC

t ) + rCt = ZA
t v

′ (mA
t

)
+ rAt and Ytv

′(mC
t ) + rCt = ZB

t v′(mB
t ) + rBt . (A.10)

Inserting the market clearing condition mA
t =

PA
t −θ(1−PB

t )
1−θ from (A.3), mB

t = PB
t , and mC

t = PC
t

into (A.10), we obtain

Ytv
′(PC

t ) + rCt = ZA
t v

′
(
PA
t − θ(1− PB

t )

1− θ

)
+ rAt

Ytv
′(PC

t ) + rCt = ZB
t v′(PB

t ) + rBt . (A.11)

Notice that (A.10) is equivalent to (13) upon setting θ = 0. Because limmx
t →0 v

′(mx
t ) = ∞, any

solution to (13) or (A.11) must satisfy mx
t , P

x
t ∈ (0, 1).

A.3 Part III — Solving for Currency Values and Adoption, and Equilibrium
Conditions

We now express the currency values P x
t , adoption levels mx

t , and currency returns rxt , as well as
the countries’digitiation efforts ext as functions of Y and state z ∈ {0, A,B,AB}, and we omit time
subscripts unless necessary. In doing so, we also derive useful equilibrium relations and conditions
that we invoke later on. Unless otherwise mentioned, we denote by x the respective currency, where
x ∈ {A,B,C}.

We conjecture and verify that P x
t = P (Yt, zt), m

x
t = mx(Yt, zt), and ex

′
t = ex

′
(Yt, zt) for x =

A,B,C and x′ = A,B, for functions P x(·), mx(·), and ex
′
(·). It then follows that rxt is a function

of (Y, z) too, in that rxt = rx(Y, z). Also write dY = µY (Y, z)dt whereby the drift of dY reads
according to (4):

µY (Y, z) =

{
µY mC(Y, z) if Y < Y

0 if Y = Y .
(A.12)

Next, market clearing in equilibrium implies P x
t = P x(Y, z) = mx

t = mx(Y, z) for x ∈ {A,B,C},
and, according to (A.3):

mA
t = mA(Y, z) =

PA(Y, z)− θ(1− PB(Y, z))

1− θ
.

Also, we get from (A.2):

PA(Y, z) + PB(Y, z) + PC(Y, z)(1− θ) = 1 ⇐⇒ PC(Y, z) =
1− PA(Y, z)− PB(Y, z)

1− θ
. (A.13)

Recall (A.4), and observe that:

∆x(Y, z; z′) =
P x(Y, z′)

P x(Y, z)
− 1. (A.14)

Thus, we obtain ∆x(Y, z; z′)P x(Y, z) = P x(Y, z′)− P x(Y, z).

Denote (P x)′(Y, z) = ∂
∂Y P x(Y, z). By Ito’s Lemma, the drift of currency value x, that is,
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µx(Y, z), becomes

µx(Y, z) =

(
(P x)′(Y, z)

P x(Y, z)

)
µY (Y, z), (A.15)

where µY (Y, z) is the drift of dY from (A.12) (which vanishes for Y = Y ). Thus, for Y = Y , the
price drifts µx

t = µx(Y, z) from (A.4) equals zero.

Also note that because PA
t +PB

t +PC
t (1−θ) = 1 — that is, PA(Y, z)+PB(Y, z)+PC(Y, z)(1−

θ) = 1 from (A.13) — we have dPA
t + dPB

t + dPC
t (1− θ) = 0. This implies by means of (A.4)

µA(Y, z)PA(Y, z) + µB(Y, z)PB(Y, z) + µC(Y, z)PC(Y, z)(1− θ) = 0 (A.16)

as well as

∆A(Y, z, z′)PA(Y, z) + ∆B(Y, z, z′)PB(Y, z) + ∆C(Y, z, z′)PC(Y, z)(1− θ) = 0 (A.17)

for all z′ ∈ S(z), i.e., for all states z′ that can be reached from state z.
In light of (A.16), (A.17), and PA

t +PB
t +PC

t (1−θ) = 1, it suffices to characterize the currency
values and dynamics for currencies A and B, and the value and the dynamics for currency C follow
as the residual, and can be backed out knowing PA(Y, z) and PB(Y, z) (and their dynamics).

Next, we can characterize expected returns rxt , and write rxt = rx(Y, z). We start by analyzing
the arrival rates of the process dJz,z′ for z, z′ ∈ {0, A,B,AB}. Note that the only possible transi-
tions from state z = 0 are z′ = A,B. The only possible transition from states z = A,B is z′ = AB.
We can calculate the transition probabilities in these cases over a short period of time [t, t+ dt):

E[dJ0,A] = eA(Y, 0)dt and E[dJ0,B] = eB(Y, 0)dt (A.18)

E[dJA,AB] = eB(Y,A)dt and E[dJB,AB] = eA(Y,B)dt.

In all other cases, dJz,z′ equals zero with certainty, so that dJAB,z′ = 0, dJ0,AB = 0, dJA,B =
dJB,A = dJA,0 = dJB,0 = 0. Likewise, we also obtain that ex

′
(Y, x) = ex

′
(Y,AB) = 0 for

x′ = A,B, i.e., there is no more effort after successful digitization.

Taking the expectation in (A.4) and using (A.14) and (A.18), we can calculate for x = A,B,C:

rx(Y, 0) = µx(Y, 0) + eA(Y, 0)

(
P x(Y,A)

P x(Y, 0)
− 1

)
+ eB(Y, 0)

(
P x(Y,B)

P x(Y, 0)
− 1

)
,

rx(Y,A) = µx(Y,A) + eB(Y,A)

(
P x(Y,AB)

P x(Y,A)
− 1

)
, (A.19)

rx(Y,B) = µx(Y,B) + eA(Y,B)

(
P x(Y,AB)

P x(Y,B)
− 1

)
,

rx(Y,AB) = µx(Y,AB).

Combining (A.16), (A.17), and (A.19) as well as (A.14), we also obtain

rA(Y, z)PA(Y, z) + rB(Y, z)PB(Y, z) + rC(Y, z)PC(Y, z)(1− θ) = 0. (A.20)
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The equilibrium condition (A.11) yields for x′ = A,B:

Y v′
(
PC(Y, z)

)
+ rC(Y, z) = Zx′

(Y, z)v′
(
mx′

(Y, z)
)
+ rx

′
(Y, z), (A.21)

where ZA(Y, z) = ZA
L for z = 0, B and ZA(Y, z) = ZA

H for z = A,AB. Likewise, ZB(Y, z) = ZB
L for

z = 0, A and ZB(Y, z) = ZB
H for z = B,AB. Note that by (A.3), mA(Y, z) = PA(Y,z)−θ(1−PB(Y,z))

1−θ ,

and mB(Y, z) = PB(Y, z). It was also used that mC(Y, z) = PC(Y, z).

As a result, under the assumption that optimal effort ext is a function of (Y, z) (i.e., ext =
ex(Y, z)), we have verified that the equilibrium pricing condition (A.11) depends only on state
variables (Y, z). As such, currency values can be expressed in terms of (Y, z). The next Part IV
shows that indeed, optimal effort ext is a function of (Y, z).

A.4 Part IV: Solving Government Objective

We characterize the government/country value function as a function of (Y, z) for both countries
x = A,B. In this part, x refers to a country and, unless otherwise mentioned, takes the values
x = A,B.

At a given time t, the government x = A,B chooses effort (exs )s≥t to maximize the objective
function V x

t as follows:

V x
t = max

(exs )s≥t

Ex
t

[∫ ∞

t
e−δ(s−t)

(
δfx

s − λ(exs )
2

2
− ϕexs

)
ds

]
, (A.22)

where we set fx
s = P x

s in the baseline.

By the dynamic programming principle, the government’s value function solves the following
HJB equation:

δV x
t = max

ext ≥0

(
δfx

t − λ(ext )
2

2
− ϕext +

Ex
t [dV

x
t ]

dt

)
, (A.23)

which is (14). Notice that the expectation Ex
t [dV

x
t ] depends on the levels of (eA, eB) and is condi-

tional on country x’s time−t information (which includes time-t public information and ex); country
x takes the effort of the other country −x as given. Effort ext is not observable for the user or the
competing country, and countries cannot commit to effort levels. As such, the choice of effort ext
at any time t is privately optimal for x. Clearly, effort ext is redundant after time T x, i.e., after
country x has digitized. As such, we set ex(Y, x) = ex(Y,AB) = 0 for x = A,B.

Likewise, by the dynamic programming principle and the integral expression (6), welfare satisfies

γWt =
∑

x=A,B

[
γZx

t v(m
x
t )− gx(ext )

]
+ γYtv(m

x
t ) +

Et[dWt]

dt
,

which coincides with (16) from the main text.

Next, we can express V x
t and time-t welfare Wt as functions of (Y, z) only, i.e., V

x
t = V x(Yt, zt)

and Wt = W (Y, z). Further, we solve for efforts ext = ex(Y, z) and derive eight first order ODEs
that characterize the functions V x(Y, z) for x = A,B. To do so, we now consider all states z =
0, A,B,AB separately. In what follows, x is either A or B. When x = A, then −x = B and vice
versa (i.e., when x = B, then −x = A). In what follows, we suppress the dependence of Ex

t on (x, t)
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and simply write E for the expectation. Likewise, we suppress time subscripts, unless confusion
arises. Last, to simplify notation, we define (V x)′(Y, z) := ∂V x(Y,z)

∂Y , where x = A,B, as well as

W ′(Y, z) = ∂W (Y,z)
∂Y .

In what follows, we consider Markovian flow payoff functions fx
t , satisfying fx

t = fx(Y, z).
Again, this is the case in our baseline, where we assume that fx

t = P x
t , which implies in the Markov

equilibrium that fx
t = P x(Y, z) ≡ fx(Y, z).

Finally, we note that below ordinary differential equations hold for Y ∈ (0, Y ), where, given
Y0 > 0, Y = 0 is never attained. At Y = Y , the drift of dY vanishes, in which case the derived
ODEs collapse to non-linear equations. That is to say, the equilibrium relations we derive next also
apply for Y = Y (upon setting the drift of dY to zero).

A.4.1 State z = AB

In state z = AB, efforts are redundant, so clearly ex(Y,AB) = 0. Using Ito’s Lemma, we can
calculate for x = A,B:

E[dV x(Y,AB)]

dt
= (V x)′(Y,AB)µY (Y,AB),

where µY (Y, z) is the drift of dY from (A.12). Inserting these relations into (A.23), we obtain

δV x(Y,AB) =δfx(Y,AB) + (V x)′(Y,AB)µY (Y,AB), (A.24)

which are two first-order ODEs in Y for x = A,B, given z = AB.

Next, in state z = AB, we have Wt = W (Y,AB). Since efforts are zero, welfare W (Y,AB)
solves

γW (Y,AB) =
∑

x=A,B

γZx
Hv

(
mx(Y,AB)

)
+ γY v

(
mC(Y,AB)

)
+W ′(Y,AB)µY (Y,AB), (A.25)

which is a first-order ODE in Y .

A.4.2 State z = x

Consider state z = x for x = A or x = B. Recall that when x = A, then −x = B and vice versa.
Then, ex(Y, x) = 0. Using Ito’s Lemma for jump processes, we can calculate

E[dV x(Y, z)]

dt
= (V x)′(Y, x)µY (Y, x) + e−x(Y, x)(V x(Y,AB)− V x(Y, x)), (A.26)

and

E[dV −x(Y, z)]

dt
= (V −x)′(Y, x)µY (Y, x) + e−x(Y, x)(V −x(Y,AB)− V −x(Y, x)), (A.27)
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Inserting (A.27) into (A.23) for country −x, we obtain

δV −x(Y, x) = max
e−x(Y,x)≥0

{
δf−x(Y, x) + (V −x)′(Y, x)µY (Y, x) (A.28)

+ e−x(Y, x)
[
V −x(Y,AB)− V −x(Y, x)

]
− λ(e−x(Y, x))2

2
− ϕe−x(Y, x)

}
.

The optimization with respect to effort e−x(Y, x) yields (with some abuse of notation)

e−x(Y, x) =
max{0, V −x(Y,AB)− V −x(Y, x)− ϕ}

λ
=

[
V −x(Y,AB)− V −x(Y, x)− ϕ]+

λ
, (A.29)

where [·]+ = max{0, ·} is the positive part of a real number.

Performing similar steps for country x (i.e., inserting (A.26) and ex(Y, x) = 0 into (A.23) and
rearranging), we have

δV x(Y, x) =δfx(Y, x) + (V x)′(Y, x)µY (Y, x) + e−x(Y, x)
[
V x(Y,AB)− V x(Y, x)

]
. (A.30)

subject to optimal effort e−x(Y, x) from (A.29). Note that in state z = x ∈ {A,B}, the two
ODEs (A.28) and (A.30), which characterize the value functions and optimal digitization efforts,
are interconnected, i.e., coupled.

Finally, in state x, welfare W (Y, x) solves the ODE

γW (Y, x) = γ
[
Zx
Hv

(
mx(Y, x)

)
+ Z−x

L v
(
m−x(Y, x)

)
+ Y v(mC(Y, x))

]
+W ′(Y, x)µY (Y, x) (A.31)

+ e−x(Y, x)
[
W (Y,AB)−W (Y, x)

]
− λ(e−x(Y, x))2

2
− ϕe−x(Y, x),

subject to optimal effort e−x(Y, x) from (A.29).

A.4.3 State z = −x

The analysis of state z = −x is analogous when we replace x by −x.

A.4.4 State z = 0

In state z = 0, we can calculate for x = A,B:

E[dV x(Y, z)] = (V x)′(Y, 0)µY (Y, 0) (A.32)

+ ex(Y, 0)(V x(Y, x)− V x(Y, 0)) + e−x(Y, 0)(V x(Y,−x)− V x(Y, 0)).

We can now insert (A.32) into (A.23) and obtain (after omitting time subscripts) in state (Y, 0) for
x = A,B:

δV x(Y, 0) = max
ex(Y,0)≥0

{
δfx(Y, 0)− λ(ex(Y, 0))2

2
− ϕex(Y, 0) + (V x)′(Y, 0)µY (Y, 0) (A.33)

+ ex(Y, 0)
[
V x(Y, x)− V x(Y, 0)

]
+ e−x(Y, 0)

[
V x(Y,−x)− V x(Y, 0)

]}
.
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Country x takes the other country’s effort e−x(Y, 0) as given. The optimization with respect to
effort ex(Y, 0) in state z = 0 yields

ex(Y, 0) =

[
V x(Y, x)− V x(Y, 0)− ϕ

]+
λ

(A.34)

for x = A,B. Analogously, one can solve for country −x’s effort. Welfare solves in state z = 0

γW (Y, 0) =
∑

x=A,B

γZx
Lv

(
mx(Y, 0)

)
+ γY v

(
mC(Y, 0)

)
+W ′(Y, 0)µY (Y, 0) (A.35)

+
∑

x=A,B

[
ex(Y, 0)

[
W (Y, x)−W (Y, 0)

]
− λ(ex(Y, 0))2

2
− ϕex(Y, 0)

]
,

with efforts ex(Y, 0) satisfying (A.34).

A.5 Part V: System of ODEs and Non-Linear Equations

To get a better overview, we now explicitly gather the ODEs that characterize the Markov equilib-
rium by collecting and summarizing our findings from Parts I through IV. We separately consider
the states z = 0, z = x ∈ {A,B}, and z = AB, starting with state z = AB.

Next, recall that

mA(Y, z) =
PA(Y, z)− θ(1− PB(Y, z))

1− θ

mB(Y, z) = PB(Y, z) (A.36)

mC(Y, z) = PC(Y, z) =
1− PA(Y, z)− PB(Y, z)

1− θ
.

These relations will be used throughout for any z ∈ {0, A,B,AB}.
Also recall that in the baseline, the flow payoff function fx

t = fx(Y, z) satisfies fx(Y, z) =
P x(Y, z).

A.5.1 State z = AB

In state z = AB, we combine (A.19), (A.15), and (A.20) (as well as (A.36)) to calculate

rA(Y,AB) =

(
(PA)′(Y,AB)

PA(Y,AB)

)
µY (Y,AB) (A.37)

rB(Y,AB) =

(
(PB)′(Y,AB)

PB(Y,AB)

)
µY (Y,AB) (A.38)

rC(Y,AB) = −
(
rA(Y,AB)PA(Y,AB) + rB(Y,AB)PB(Y,AB)

1− PA(Y,AB)− PB(Y,AB)

)
(A.39)
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Then, (A.21) implies

Y v′
(
mC(Y,AB)

)
+ rC(Y,AB) = ZA

Hv′
(
mA(Y,AB)

)
+ rA(Y,AB) (A.40)

Y v′
(
mC(Y,AB)

)
+ rC(Y,AB) = ZB

Hv′
(
mB(Y,AB)

)
+ rB(Y,AB).

And, from (A.24), we know

δV A(Y,AB) =δfA(Y,AB) + (V A)′(Y,AB)µY (Y,AB),

δV B(Y,AB) =δfB(Y,AB) + (V B)′(Y,AB)µY (Y,AB). (A.41)

Further, (A.25) holds, yielding a system of five first-order ODEs.

At the boundary Y = Y , the drift of dY vanishes (i.e., µY (Y , z) = 0), and the solution, that is,
(P x(Y ,AB), V x(Y ,AB),W (Y ,AB)) for x = A,B, is characterized by the following system of five
equations (for x = A,B):

Y v′
(
mC(Y ,AB)

)
= Zx

Hv′
(
mx(Y ,AB)

)
δV x(Y ,AB) = δfx(Y ,AB), (A.42)

γW (Y ,AB) =
∑

x=A,B

γZx
Hv

(
mx(Y ,AB)

)
+ γY v

(
mC(Y ,AB)

)
,

where mA(Y , 0),mB(Y , 0),mC(Y , 0) satisfy (A.36). To solve for the Markov equilibrium in state
z = AB, we first solve the system of non-linear equations (A.42) for the five unknowns PA(Y ,AB),
PB(Y ,AB), V A(Y ,AB), V B(Y ,AB), and W (Y ,AB) — there is no closed-form solution. The
calculation of mC(Y ,AB) = PC(Y ,AB) follows from (A.36).

Then, we solve the system of five coupled first order ODEs in (A.40), (A.41), as well as (A.25)
subject to the boundary conditions/boundary values

(
P x(Y ,AB), V x(Y ,AB),W (Y ,AB)

)
x=A,B

— which then yields values P x(Y,AB) for x = A,B as well as PC(Y,AB) via PC(Y,AB) =

mC(Y,AB) = 1−PA(Y,z)−PB(Y,z)
1−θ . We follow this approach in the other states z = A,B, 0 too in

order to solve the system of differential equations, starting at the upper boundary Y .

A.5.2 State z = x ∈ {A,B}

In state z = x, we have ex(Y, x) = 0 and e−x(Y, x) =

[
V −x(Y,AB)−V −x(Y,x)−ϕ

]+
λ . Then, we can

combine (A.19), (A.15), and (A.20) to obtain

rA(Y, x) =

(
(PA)′(Y, x)

PA(Y, x)

)
µY (Y, x) + e−x(Y, x)

(
PA(Y,AB)

PA(Y, x)
− 1

)
.

rB(Y, x) =

(
(PB)′(Y, x)

PB(Y, x)

)
µY (Y, x) + e−x(Y, x)

(
PB(Y,AB)

PB(Y, x)
− 1

)
rC(Y, x) = −

(
rA(Y, x)PA(Y, x) + rB(Y, x)PB(Y, x)

1− PA(Y, x)− PB(Y, x)

)
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Then, (A.21) implies

Y v′
(
mC(Y, x)

)
+ rC(Y, x) = ZA(Y, z)v′

(
mA(Y, x)

)
+ rA(Y, x) (A.43)

Y v′
(
mC(Y, x)

)
+ rC(Y, x) = ZB(Y, x)v′

(
mB(Y, x)

)
+ rB(Y, x),

where ZA(Y, z) = ZA
L for z = 0, B and ZA(Y, z) = ZA

H for z = A,AB. Likewise, ZB(Y, z) = ZB
L for

z = 0, A and ZB(Y, z) = ZB
H for z = B,AB.

Further, we recall that V A(Y, x) and V B(Y, x) solve the ODEs (A.28) and (A.30), while W (Y, x)
solves the ODE (A.31). This yields a system of five interconnected first-order ODEs in state
x = AB, which are linked to state z = AB via the jump processes, facilitating stochastic state
transitions from state z = x to state z = AB.

To solve the model for the Markov equilibrium in state z = x, we need to solve the system
of five coupled first order ODEs, which is characterized in (A.43), (A.28), (A.30), and (A.31), for
PA(Y, x), PB(Y, x), V A(Y, x), V B(Y, x), and W (Y, x). Given the solution, we then also obtain

PC(Y, x) = mC(Y, x) = 1−PA(Y,x)−PB(Y,x)
1−θ .

At the boundary Y = Y , the drift of dY vanishes so that the system characterized in (A.43),
(A.28), (A.30), and (A.31) becomes a system of five non-linear equations, which can be solved for
the four unknowns PA(Y , x), PB(Y , x), V A(Y , x), V B(Y , x), and W (Y , x), given the values of
PA(Y ,AB), PB(Y ,AB), V A(Y ,AB), V B(Y ,AB), and W (Y , x). Given these boundary conditions
at Y , we can then solve the system of ODEs — characterized via (A.43), (A.28), (A.30), and (A.31)
— on (0, Y ] in state z = x.

A.5.3 State z = 0

In state z = 0, we have

eA(Y, 0) =

[
V A(Y,A)− V A(Y, 0)− ϕ

]+
λ

and eB(Y, 0) =

[
V B(Y,B)− V B(Y, 0)− ϕ

]+
λ

.

Then, we can combine (A.19), (A.15), and (A.20) to obtain

rA(Y, 0) =

(
(PA)′(Y, 0)

PA(Y, 0)

)
µY (Y, 0) +

∑
x=A,B

ex(Y, 0)

(
PA(Y, x)

PA(Y, 0)
− 1

)
.

rB(Y, 0) =

(
(PB)′(Y, 0)

PB(Y, 0)

)
µY (Y, 0) +

∑
x=A,B

ex(Y, 0)

(
PB(Y, x)

PB(Y, 0)
− 1

)

rC(Y, 0) = −
(
rA(Y, 0)PA(Y, 0) + rB(Y, 0)PB(Y, 0)

1− PA(Y, 0)− PB(Y, 0)

)
Then, (A.21) implies

Y v′
(
mC(Y, 0)

)
+ rC(Y, 0) = ZA

L v
′ (mA(Y, 0)

)
+ rA(Y, 0) (A.44)

Y v′
(
mC(Y, 0)

)
+ rC(Y, 0) = ZB

L v′
(
mB(Y, 0)

)
+ rB(Y, 0)
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Moreover, V A(Y, 0) and V B(Y, 0) solve the ODE system (A.33) and W (Y, 0) solves the ODE (A.35).
To solve the model for the Markov equilibrium in state z = 0, we need to solve this system of
five interconnected first order ODEs, which is characterized in (A.44), (A.33), and (A.35), for
PA(Y, 0), PB(Y, 0), V A(Y, 0), V B(Y, 0), and W (Y, 0). We then also obtain PC(Y, 0) = mC(Y, 0) =
1−PA(Y,0)−PB(Y,0)

1−θ .

At the boundary Y = Y , the drift of dY vanishes so that the system characterized in (A.44),
(A.33), and (A.35) becomes a system of five non-linear equations, which can be solved for the five
unknowns PA(Y , 0), PB(Y , 0), V A(Y , 0), V B(Y , 0) and W (Y , 0), given the values of PA(Y , x),
PB(Y , x), V A(Y , x), V B(Y , x), and W (Y , x) for x = A,B.

A.6 Discussion: Numerical Solution Method

The numerical solution requires to solve the system of ODEs from Section A.5.

Because the currency values in states z = A and z = B depend on the currency values in state
z = AB, one has to solve the model backward in terms of the state variable z, starting with state
z = AB.

Having obtained P x(Y,AB), V x(Y,AB), and W (Y,AB) for Y ∈ (0, Y ], one can solve for
P x(Y,A) and P x(Y,B), value functions V x(Y,A) and V x(Y,B) and efforts (determining the tran-
sition probabilities for z), and welfare W (Y,A) and W (Y,B). Here, x = A,B.

Having obtained P x(Y,A) and P x(Y,B) as well as V x(Y,A) and V x(Y,B), one can solve for
currency values P x(Y, 0) and value functions V x(Y, 0), efforts, and welfare W (Y, 0).

In other words, the solution admits the hierarchy in terms of the state variable: (i) z = AB
(no more transitions possible), (ii) z = A,B (only possible transition: z′ = AB), and (iii) z = 0
(possible transitions: z′ = A and z′ = B). We solve the equilibrium system obeying to the order of
hierarchy, (i), (ii), and (iii). The solution can be numerically obtained via a standard ODE solver,
such ode15s in Matlab.

B Planner Solution

We assume θ = 0. In the planner solution, efforts are chosen according to the HJB equation:

γWt = max
eAt ,eBt ≥0

 ∑
x=A,B

(γZx
t v(m

x
t )− gx(ext )) + γYtv(m

x
t ) +

Et[dWt]

dt

 . (B.45)

We solve for a Markov equilibrium, where we can express all equilibrium quantities as functions of
(Y, z). In this Markov equilibrium, at any point in time t, cohort t chooses the holdings of currencies
A,B,C to maximize the expected utility Ut (with Ut from (2)), given prices (PA

t , PB
t , PC

t ), yielding
mA

t +mB
t +mC

t = 1. The markets for all currencies clear, i.e., mA
t = PA

t , mB
t = PB

t , and mC
t = PC

t .
And, (eAt , e

B
t ) is chosen according to (B.45).

Analogous to the baseline, we characterize the relevant ODEs for z = 0, x, AB where x = A,B.
The optimal choice of the planner’s effort in state (Y, z) is denoted e∗(Y, z). We will show that (for
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x = A,B and −x = B,A):

ex∗(Y, 0) =
[W (Y, x)−W (Y, 0)− ϕ]+

λ
and ex∗(Y,−x) =

[W (Y,AB)−W (Y,−x)− ϕ]+

λ
. (B.46)

In addition, ex∗(Y, x) = ex∗(Y,AB) = 0. Throughout, we have for all x = A,B,C that mx(Y, z) =
P x(Y, z) by means of market clearing.

State z = AB. Since there is no effort anymore in state z = AB, the solution and equilibrium
coincide with the ones from the baseline.

State z = x. In state z = x, we have ex∗(Y, x) = 0 and e−x
∗ (Y, x) =

[
W (Y,AB)−W (Y,x)−ϕ

]+
λ . The

currency returns are characterized via

rA(Y, x) =

(
(PA)′(Y, x)

PA(Y, x)

)
µY (Y, x) + e−x

∗ (Y, x)

(
PA(Y,AB)

PA(Y, x)
− 1

)
.

rB(Y, x) =

(
(PB)′(Y, x)

PB(Y, x)

)
µY (Y, x) + e−x

∗ (Y, x)

(
PB(Y,AB)

PB(Y, x)
− 1

)
rC(Y, x) = −

(
rA(Y, x)PA(Y, x) + rB(Y, x)PB(Y, x)

1− PA(Y, x)− PB(Y, x)

)
In addition, we have the pricing relationship (A.43), that is,

Y v′
(
mC(Y, x)

)
+ rC(Y, x) = ZA(Y, z)v′

(
mA(Y, x)

)
+ rA(Y, x) = ZB(Y, x)v′

(
mB(Y, x)

)
+ rB(Y, x),

where ZA(Y, z) = ZA
L for z = 0, B and ZA(Y, z) = ZA

H for z = A,AB. Likewise, ZB(Y, z) = ZB
L for

z = 0, A and ZB(Y, z) = ZB
H for z = B,AB.

Further, in state x, welfare W (Y, x) in the planner solution solves the ODE

γW (Y, x) = max
e−x
∗

{
γ
[
Zx
Hv

(
mx(Y, x)

)
+ Z−x

L v
(
m−x(Y, x)

)
+ Y v(mC(Y, x))

]
+W ′(Y, x)µY (Y, x)

+ e−x
∗ (Y, x)

(
W (Y,AB)−W (Y, x)

)
− λ(e−x

∗ (Y, x))2

2
− ϕe−x

∗ (Y, x)

}
. (B.47)

Taking the first-order condition with respect to e−x
∗ yields

e−x
∗ (Y, x) =

[W (Y,AB)−W (Y,−x)− ϕ]+

λ
,

as desired.

To solve the model for the Markov equilibrium in state z = x, we need to solve the system of
three coupled first order ODEs, which is characterized in (A.43) and (B.47), for PA(Y, x), PB(Y, x),
and W (Y, x). At the boundary Y = Y , the drift of dY vanishes so that the system characterized
in (A.43) and (B.47) becomes a system of three non-linear equations, which can be solved for the
four unknowns PA(Y , x), PB(Y , x), and W (Y , x), given the values of PA(Y ,AB), PB(Y ,AB),
V A(Y ,AB), V B(Y ,AB), and W (Y , x). Given these boundary conditions at Y , we can then solve
the system of ODEs.
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State z = 0. In state z = 0, we can combine (A.19), (A.15), and (A.20) to obtain

rA(Y, 0) =

(
(PA)′(Y, 0)

PA(Y, 0)

)
µY (Y, 0) +

∑
x=A,B

ex∗(Y, 0)

(
PA(Y, x)

PA(Y, 0)
− 1

)
.

rB(Y, 0) =

(
(PB)′(Y, 0)

PB(Y, 0)

)
µY (Y, 0) +

∑
x=A,B

ex∗(Y, 0)

(
PB(Y, x)

PB(Y, 0)
− 1

)

rC(Y, 0) = −
(
rA(Y, 0)PA(Y, 0) + rB(Y, 0)PB(Y, 0)

1− PA(Y, 0)− PB(Y, 0)

)
,

where optima (equilibrium) efforts eA∗ (Y, 0) and eB∗ (Y, 0) are characterized below.

Then, pricing equation (A.44) applies in that

Y v′
(
mC(Y, 0)

)
+ rC(Y, 0) = ZA

L v
′ (mA(Y, 0)

)
+ rA(Y, 0) = ZB

L v′
(
mB(Y, 0)

)
+ rB(Y, 0)

Welfare solves in state z = 0

γW (Y, 0) = max
eA∗ ,eB∗

{ ∑
x=A,B

γZx
Lv

(
mx(Y, 0)

)
+ γY v

(
mC(Y, 0)

)
+W ′(Y, 0)µY (Y, 0) (B.48)

+
∑

x=A,B

[
ex∗(Y, 0)(V

x(Y, x)− V x(Y, 0))− λ(ex∗(Y, 0))
2

2
− ϕex∗(Y, 0)

]}
.

Optimizing over ex∗ , we obtain

eA∗ (Y, 0) =

[
W (Y,A)−W (Y, 0)− ϕ

]+
λ

and eB∗ (Y, 0) =

[
W (Y,B)−W (Y, 0)− ϕ

]+
λ

.

To solve the model for the Markov equilibrium in state z = 0, we need to solve this system of
three interconnected first order ODEs, which is characterized in (A.44) and (B.48), for PA(Y, 0),
PB(Y, 0) and W (Y, 0).

At the boundary Y = Y , the drift of dY vanishes so that the system characterized in (A.44) and
(B.48) becomes a system of five non-linear equations, which can be solved for the five unknowns
PA(Y , 0), PB(Y , 0), and W (Y , 0), given the values of PA(Y , x), PB(Y , x) and W (Y , x) for x =
A,B.

C Model Variant with Interest Rates and UIP

In the model variant of Section 3.3, we have θ = 0 and cohort t’s lifetime utility (i.e., the user’s
lifetime utility) becomes:

Ut = Et[ct+dt]+ZA
t v(m

A
t )dt+ZB

t v(mB
t )dt+Ytv(m

C
t )dt+mA

t (1−αA
t )i

Adt+mB
t (1−αB

t )i
Bdt. (C.49)

where Et[ct+dt] = 1 +
∑

x=A,B,C mx
t r

x
t dt. The novel terms relative to (2) capture that the holding

currency x = A,B allows users to earn interest subject to imperfect passthrough, namely at rate
(1−αx

t )i
x. When αx

t = 0, interest passthrough is perfect and currency holders earn interest at rate
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ix, while no interest is earned and passed on to currency-x holders when αx
t = 1.

It is assume that the uncovered interest parity (UIP) holds, in that:

ρ = rxt + ixt

for x = A,B. Using UIP, we obtain for x = A,B:

mx
t (r

x
t + (1− αx

t )i
x) = mx

t (ρ− αx
t i

x).

As such, we can rewrite the user’s expected utility as follows:

Ut = 1 + ZA
t v(m

A
t )dt+ ZB

t v(mB
t )dt+ Ytv(m

C
t )dt+mA

t (ρ− αA
t i

A)dt+mB
t (ρ− αB

t i
B)dt+mC

t r
C
t dt

Note that θ = 0 is assumed, so without loss we denote by P x′
t = mx′

t the level of adoption of
currency x′ = A,B,C. Clearly,

PA
t + PB

t + PC
t = mA

t +mB
t +mC

t = 1

holds in equilibrium. The user cohort t chooses currency holdings to maximize its expected utility,
taking prices (i.e., rxt ) and interest rates as given.

The user takes prices and interest as given, and solves

max
mx

t ≥0
Ut s.t. mA

t +mB
t +mC

t = 1.

After taking first-order conditions, the pricing equation becomes

Ytv
′(mC

t ) + rCt = ZA
t v

′(mA
t ) + ρ− αA

t i
A = ZB

t v′(mB
t ) + ρ− αB

t i
B,

which is (22). The analogous pricing condition for the baseline model is presented in (13).

We now present the relevant equations and ODEs for states z = 0, x, AB where x ∈ {A,B} to
solve for the Markov equilibrium. The arguments are analogous to those in the baseline, and we
provide additional details only where needed. The only difference to the baseline lies in the pricing
equation, which changes from (13) to (22).

C.1 State z = AB

In state z = AB, we have

rC(Y,AB) =
(PC)′(Y,AB)

PC(Y,AB)
µY (Y,AB) = (PC)′(Y,AB)µY,

for Y < Y while µY (Y ,AB) = 0, where we used µY (Y,AB) = Y µPC(Y,AB), as well as θ = 0
implying mC(Y,AB) = PC(Y,AB). The pricing equation (22) yields (for αx

t = αx(z) with x =
A,B):

ZA
Hv′(mA(Y,AB)) + ρ− αA(AB)iA = ZB

Hv′(mB(Y,AB)) + ρ− αB(AB)iB.
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We can eliminate mB(Y,AB) = 1−mA(Y,AB)−mC(Y,AB). We can then solve above non-linear
equation for mA(Y,AB) as a function of mC(Y,AB) = PC(Y,AB). Next, we use (22) to obtain

Y v′(mC(Y,AB)) + rC(Y,AB) = ZA
Hv′(mA(Y,AB)) + ρ− αA(AB)iA. (C.50)

Note that (C.50) represents a first-order ODE, which we can solve on [0, Y ] subject to an appropriate
boundary condition. This boundary condition is obtained by setting the drift of dY to zero at
Y = Y .

At Y = Y , the drift of dY vanishes, so rC(Y ,AB) = 0 and

Y v′(mC(Y ,AB)) = ZA
Hv′(mA(Y ,AB)) + ρ− αA(AB)iA,

which can be solved together with

ZA
Hv′(mA(Y ,AB)) + ρ− αA(AB)iA = ZB

Hv′(mB(Y ,AB)) + ρ− αB(AB)iB

for mC(Y ,AB),mA(Y ,AB) and ultimately for mB(Y ,AB) = 1−mC(Y ,AB)−mA(Y ,AB).

Finally, the value functions (V A(Y,AB), V B(Y,AB)) solve (A.24) and welfare solves (A.25),
subject to appropriate boundary conditions obtained by setting the drift of dY to zero at Y = Y .

C.2 State z = x

In state z = x ∈ {A,B}, we have

rC(Y, x) =
(PC)′(Y, x)

PC(Y, x)
µY (Y, x) + e−x(Y, x)

(
PC(Y,AB)

PC(Y, x)
− 1

)
,

whereby e−x(Y, x) =

[
V −x(Y,AB)−V −x(Y,x)−ϕ

]+
λ .

The pricing equation (22) yields (for αx
t = αx(z)):

ZA(Y, x)v′(mA(Y, x)) + ρ− αA(x)iA = ZB(Y, x)v′(mB(Y, x)) + ρ− αB(x)iB,

where ZA(Y, z) = ZA
L for z = 0, B and ZA(Y, z) = ZA

H for z = A,AB. Likewise, ZB(Y, z) = ZB
L for

z = 0, A and ZB(Y, z) = ZB
H for z = B,AB.

We can eliminate mB(Y, x) = 1 − mA(Y, x) − mC(Y, x). We can then solve above non-linear
equation for mA(Y, x) as a function of mC(Y, x) = PC(Y, x).

Next, we use (22) to obtain

Y v′(mC(Y, x)) + rC(Y, x) = ZA(Y, x)v′(mA(Y, x)) + ρ− αA(x)iA. (C.51)

This is a first-order ODE, which we can solve on [0, Y ] subject to an appropriate boundary condition
obtained by setting the drift of dY to zero at Y = Y .

Finally, the value functions (V A(Y,AB), V B(Y,AB)) solve (A.28) and (A.30), and welfare solves
(A.31), subject to appropriate boundary conditions obtained by setting the drift of dY to zero at
Y = Y .
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C.3 State z = 0

In state z = 0, we have for x = A,B that

rC(Y, 0) =
(PC)′(Y, 0)

PC(Y, 0)
µY (Y, 0) +

∑
x=A,B

ex(Y, 0)

(
PC(Y, x)

PC(Y, 0)
− 1

)
,

whereby

ex(Y, 0) =

[
V x(Y, x)− V x(Y, 0)− ϕ

]+
λ

.

The pricing equation (22) yields (for αx
t = αx(z)):

ZA
L v

′(mA(Y, 0)) + ρ− αA(0)iA = ZB
L v′(mB(Y, 0)) + ρ− αB(0)iB.

We can eliminate mB(Y, 0) = 1−mA(Y, 0)−mC(Y, 0). We can then solve above non-linear equation
for mA(Y, 0) as a function of mC(Y, 0) = PC(Y, 0).

Next, we use (22) to obtain

Y v′(mC(Y, 0)) + rC(Y, 0) = ZA
L v

′(mA(Y, 0)) + ρ− αA(0)iA, (C.52)

which is a first-order ODE. This ODE can be solved on [0, Y ] subject to an appropriate boundary
condition. As before, this boundary condition is obtained by setting the drift of dY at Y to zero.

Finally, the value functions (V A(Y,AB), V B(Y,AB)) solve (A.33) and welfare solves (A.31),
subject to appropriate boundary conditions obtained by setting the drift of dY to zero at Y = Y .

D Calculation of Model Quantities

The first time of digitization reads T ∗ = min{TA, TB}. Assume that eA(Y , 0) + eB(Y , 0) > 0 to
guarantee that T ∗ is finite in expectation.

We calculate the expected time to first digitization Tt at time t for Yt = Y in state z = 0, which
is defined as

Tt = Et[T
∗ − t|z = 0] =

∫ ∞

t
e−

∫ s
t (e

A
u+eBu )duds.

Let T (Y ) = Tt for Yt = Y . Then, T (Y ) solves the ODE on (Y0, Y ):

(eA(Y, 0) + eB(Y, 0))T (Y ) = 1 + T ′(Y )µY (Y, 0)

subject to the boundary condition

T (Y ) =
1

eA(Y , 0) + eB(Y , 0)
< +∞.

Conditional on remaining in state z = 0, there is a one-to-one mapping from Yt < Y to t, so, having
obtained T (Y ), we can also calculate Tt = T (Yt) for Yt < Y . Conditional on remaining in state
z = 0, defining t′ = inf{t ≥ 0 : Yt ≥ Y }. For times t ≥ t′, Tt = T (Y ) = Tt′ , i.e., Tt remains constant
after Yt reaches Y .
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Next, the probability density function of T ∗ as a function of t equals

kt = e−
∫ t
0 (e

A
u+eBu )du(eAt + eBt ),

where e−
∫ t
0 (e

A
u+eBu )du = Prob({T ∗ ≥ t}|z = 0) and (eAt + eBt )dt = Prob({T ∗ ∈ [t, t+ dt)}|T ∗ ≥ t}.

E Micro-Foundation of Convenience Utility

We now provide a micro-foundation of the money-in-the-utility approach, specifically, the formula-
tion of expected utility in (2) entailing convenience utility. This micro-foundation of the convenience
utility is based on a cash-in-advance constraint as well as random search/matching and bargaining
between users (buyers) and sellers, highlighting the medium-of-exchange function of money. The
micro-foundation shares some similarities with the new monetarist approach, as developed in Lagos
and Wright (2005), but we make certain simplifying assumptions (as the micro-foundation is not
the paper’s key focus). We set up the micro-foundation in a rather general form: It nests the base-
line specification in (2), but it could also accommodate more general forms of convenience utility.
Importantly, the micro-foundation also sheds light on the factors that affect currency convenience
and, specifically, determine the values of the convenience scale Zx

t and Yt in (2).

For the micro-foundation, consider cohort t of the representative user that is born with one
unit of consumption good at time t. At the beginning of its lifetime, i.e., an instant [t, t + dt],
cohort t chooses its holdings of currency x (in terms of the consumption good), mx

t at price P x
t for

x = A,B,C — that is, cohort t holds mx
t /P

x
t units of currency x. Over its lifetime, cohort t either

utilizes its money holdings to pay a seller for services, yielding some utility from transacting with
the seller (characterized below), or sells its money to cohort t+ dt of the user at price P x

t+dt.

We characterize the transaction activity between sellers and users (buyers) over a short time
period [t, t + dt]. Crucially, transactions between sellers and users occur before uncertainty about
the digitization outcome over [t, t+ dt] is realized and thus before the next-period prices P x

t+dt are
realized. Users and sellers can also not write contracts contingent on next-period prices. Thus, when
transacting, users and sellers form expectations about P x

t+dt. All expectations (denoted shorthand
E = Et) are understood as conditional on time-t public information. Further, we will assume the

CRRA function form for v(mx
t ) = m1−η

1−η , although most of our results carry through under more
general forms. Also, note that

E[P x
t+dt] = P x

t + E[dP x
t ] = P x

t (1 + rxt dt),

which will be used repeatedly below to simplify the expressions. When laying out the micro-
foundation, we can focus on a specific currency x = A,B,C — the micro-foundation is analogous
for all three currencies (for notational convenience, we write ZC

t := Yt and similar).

E.1 Random Search/Matching and Transactions

For any x = A,B,C, there exists a mass of type-x sellers. For simplicity, any type-x seller only
accepts currency x as payment for its services. There are no other types of sellers, i.e., any seller
accepts precisely one type of currency x. Any type-x seller can produce an arbitrary number of
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service goods at a marginal (utility) cost normalized to one unit of the consumption good. Meetings
and thus transactions between the user and sellers occur randomly over [t, t+ dt].

With probability Ẑx
t dt, the user meets a (single) type-x seller and transacts using its holdings

of currency x. While the user and seller could theoretically pass on the opportunity, we show that
in our formulation, a transaction always occurs when the opportunity arises. With probability
1− Ẑx

t dt, the user does not transact with a type-x seller. This scenario could capture that the user
does not have transaction needs, is unable to locate a seller, or, in reduced form, that it meets a
seller but the transaction does not go through on time (e.g., due to settlement failures or delays).
Thus, one can think of Ẑx

t capturing the currency’s general level of acceptance by sellers, as well
as the technology and transaction speed associated with currency x (more on this later).

Note that the probability of meeting two sellers of different types is of order (dt)2 and, therefore,
negligible in continuous time. We do not account for these events, when calculating payoffs.

E.2 Transaction Utility and Payoffs

Suppose now that the representative user meets a type-x seller and that a transaction occurs. In
this transaction, the type-x seller is paid M units of currency x and delivers S units of service to
the user. Here, M must adhere to the cash-in-advance constraint M ≤ mx

t /P
x
t — that is, at time

t, the user acquires mx
t /P

x
t units of currency x and cannot pay more than this amount to the seller.

The seller incurs a (utility) production cost S (i.e., the seller produces services at a marginal
cost normalized to one) and a transaction cost proportional to the real (expected) time-t + dt
value of money κ̂xtME[P x

t+dt] for some κ̂xt ∈ [0, 1). After being paid, the seller of the service sells
its currency holdings to cohort t + dt at price P x

t+dt, yielding expected payoff ME[P x
t+dt] at the

time the seller is paid by the user. Recall that transactions between users and sellers occur before
next-period prices are realized.29

Thus, the seller’s expected utility from the transaction — given (M,S) — reads

Ux
t (M,S) = −S +M(1− κ̂xt )E[P x

t+dt]. (E.53)

The proportional transaction cost could reflect monetary costs associated with the payment network
that the seller must pay to intermediaries (e.g., credit card companies or payment processors) or a
utility cost (for instance, due to settlement and payment delays).

The transaction cost implies that for each unit of currency transferred between buyer and seller,
the seller incurs κ̂xt in transaction fees; total transaction costs are then κ̂xtME[P x

t+dt]. While the
transaction cost enters the seller’s utility, we note that the terms of trade (M,S) are endogenous
and eventually determine whether the seller or buyer covers these transaction costs. Our model is
flexible and allows for a split of these transaction costs.

The user derives utility from the transaction of

Ûx
t (M,S) = v(S) + S + νxt κ̂

x
tME[P x

t+dt] (E.54)

29We could equally assume that the transaction cost is based on the time-t value of money and price P x
t . This

would not affect the payoffs and outcomes in the end, since the difference induced by this alternative modeling is of
order (dt)2 and, therefore, negligible. This arises, because (i) the probability of a transaction occurring is of order dt
and (ii) the difference between P x

t and E[P x
t+dt] is of order dt.
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Here, the user’s utility from service consumption reads v(S) + S — that is, the production of S
units of service (at marginal cost of one) generates a surplus of v(S).

Next, the transaction costs κ̂xtME[P x
t+dt] could represent interchange fees in credit card trans-

actions (when x = A,B represents a fiat currency). In practice, such interchange fees are pre-
dominantly borne by sellers, while buyers even receive rebates (e.g., in form of credit card points
or cash back). To capture such rewards, we assume that the user is rebated fraction νxt of the
transaction fees, where νxt ≤ 1 is a parameter. The rebate is modeled as a positive utility payoff
entering Ûx

t (M,S) above. By assuming νxt < 0, we could capture that, like the seller, the user
incurs a transaction cost (in utility) too. We assume for simplicity, that νxt κ̂

x
tME[P x

t+dt] is in utility
units and does not have to be paid from the cash balance (i.e., does not affect the cash-in-advance
constraint) — this would be consistent with credit card rewards and points.

Note that νxt = 1 implies that transaction fees are a pure transfer from the seller to the buyer,
occurring at time t + dt after the transaction. In this case, transaction fees do not constitute a
deadweight loss. However, our analysis will show that these fees can still distort transactions and
limit the convenience of a currency, even when νxt = 1.

We observe that the user’s transaction utility net of payment equals Ûx
t (M,S) − ME[P x

t+dt],
where the payment to the seller can be regarded as an opportunity cost. That is, when the user
transacts with a seller, it pays the seller and, therefore, “foregoes” the opportunity to sell its
currency holdings to cohort t + dt, which would give payoff ME[P x

t+dt]. The transaction surplus
equals then

v(S)−M(1− νxt )κ̂
x
t E[P x

t+dt].

Without transaction costs, i.e., κ̂xt = 0, surplus increases in the amount of service produced.

Finally, we make a parameter assumption to render tractability to our analysis and avoid tedious
case distinctions. Specifically, we assume that

v′(1) ≥ κ̂xt
1− κ̂xt

. (E.55)

By strict concavity, note that v′(S) > v′(1) for S ∈ [0, 1). This condition ensures that in optimum,
the user spends all its cash holdings to buy services, when given the opportunity. In other words, the
cash-in-advance constraintM ≤ mx

t /P
x
t binds in optimum under this condition, thereby simplifying

the analysis. Whenever M = mx
t /P

x
t , we have

ME[P x
t+dt] =

mx
t

P x
t

E[P x
t + dP x

t ] = mx
t (1 + rxt dt),

where we used P x
t+dt = P x

t + dP x
t and E[dP x

t ] = P x
t r

x
t dt.

E.3 Transaction Terms and Bargaining

When the user and a type-x seller meet, they bargain over (M,S), i.e., the terms of trade. We
model the bargaining process (in reduced form) as follows. When a meeting occurs between the
user and the type-x seller, then, with probability χx

t , the user has full bargaining power and makes a
take-it-or-leave-it (TIOLI) offer to the seller. With probability 1−χx

t , the seller has full bargaining
power and makes a TIOLI offer to the user. In bargaining, the seller has an outside option of
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zero. The user, entering the bargaining with mx
t /P

x
t units of currency x, has the outside option

of not transacting and selling its currency holdings to cohort t + dt, delivering expected utility
ME[P x

t+dt] = mx
t (1 + rxt dt).

The parameter χx
t can be interpreted as the user’s bargaining power vis-a-vis sellers accepting

currency x. We offer some interpretation of this parameter later on. We note that this modeling
of bargaining is more tractable in our setting than the more commonly adopted Nash-bargaining,
while allowing us to capture the relevant economic forces related to bargaining power. We adopt
it for simplicity and tractability, but note that we could equally employ Nash bargaining, as, e.g.,
in money search models such as Lagos and Wright (2005).

We now distinguish two cases: (1) user has full bargaining power (which happens with proba-
bility χx

t ), and (2) Seller has full bargaining power (which happens with probability 1− χx
t ).

E.3.1 User has Full Bargaining Power

If the user has full bargaining power, the user makes a take-it-or-leave-it offer (M,S) to the seller
which, stipulates proposed (nominal) payment M and service delivery S. When choosing the offer,
the user maximizes its utility net of payment subject to the seller’s participation constraint and
the cash-in-advance constraint, in that:

max
(M,S)

Ûx
t (M,S)−ME[P x

t+dt] s.t. Ux
t (M,S) ≥ 0 and M ≤ mx

t

P x
t

,

where Ûx
t (M,S) is from (E.54). It is optimal for the user extract full transaction surplus. Thus,

in optimum, the seller just breaks even and earns its outside option of zero, so that Ux
t (M,S) = 0.

Therefore, by (E.53), we obtain S = M(1− κ̂xt )E[P x
t+dt]. Under this relation, the user’s net utility

becomes (according to (E.54)):

K(M) := v(M(1− κ̂xt )E[P x
t+dt])− κ̂xt (1− νxt )ME[P x

t+dt],

where we used that E[P x
t+dt]/P

x
t = 1 + rxt dt. Calculate K′(M) = v′(S)(1 − κ̂xt )E[P x

t+dt] − κ̂xt (1 −
νxt )E[P x

t+dt]. By condition (E.55), K′(M) > 0. Consequently, the user’s payoff K(M) increases in
M and thus is maximized (subject to cash-in-advance constraint) by setting M = mx

t /P
x
t . That

is, the cash-in-advance constraint optimally binds.

As a result, the seller is paid M = mx
t /P

x
t units of currency x. Solving Ux

t (m
x
t /P

x
t ,S) = 0 for

S = Sx
t , we get

Sx
t = mx

t (1− κ̂xt )(1 + rxt dt). (E.56)

The user’s net utility then becomes v(Sx
t ) − κ̂xt (1 − νxt )m

x
t (1 + rxt dt). The user’s gross utility

(excluding payment) is v(Sx
t ) + Sx

t +mx
t ν

x
t κ̂

x
t (1 + rxt dt).

E.3.2 Seller has Full Bargaining Power

If the seller has full bargaining power, the seller makes a take-it-or-leave-it offer (M,S) to the user
which, stipulates proposed payment M and service delivery S. Formally, the seller maximizes its
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payoff subject to the user’s participation constraint and the cash-in-advance constraint:

max
(M,S)

Ux
t (M,S) s.t. Ûx

t (M,S) ≥ ME[P x
t+dt] and M ≤ mx

t

P x
t

.

In optimum, the user just breaks even, so Ûx
t (M,S) = ME[P x

t+dt] — which implies by (E.54) that
S + v(S) = ME[P x

t+dt](1− νxt κ̂
x
t ). We can solve for

ME[P x
t+dt] =

v(S) + S
1− νxt κ̂

x
t

. (E.57)

Utilizing the cash-in-advance constraint, i.e., M ≤ mx
t /P

x
t , the condition (E.57) implies that

v(S) + S ≤ mx
t (1− νxt κ̂

x
t )(1 + rxt dt).

In particular, due to mx
t < 1, S ≤ 1.

Using (E.57), we get S = −v(S)+ (1− νxt κ̂
x
t )ME[P x

t+dt]. Using this relationship (in line 2), the
seller’s payoff becomes

Ux
t (M,S) = −S +M(1− κ̂xt )E[P x

t+dt]

= v(S)−Mκ̂xt (1− νxt )E[P x
t+dt]

= v(S)− κ̂xt (1− νxt )(v(S) + S)
1− νxt κ̂

x
t

=
v(S)(1− κ̂xt )− κ̂xt (1− νxt )S

1− νxt κ̂
x
t

,

where we used (E.57) to transition from line 2 to 3. Provided v′(S) ≥ κ̂x
t (1−νxt )
1−κ̂x

t
for all S ∈ [0, 1]

— which holds by (E.55) — it follows that Ux
t (M,S) increases in S. Since S increases in M by

(E.57), we have M =
mx

t
Px
t
, i.e., the cash-in-advance constraint optimally binds.

The seller is paid mx
t /P

x
t units of currency and, by (E.57), the seller produces S = Sx

t service
units, satisfying

v(Sx
t ) + Sx

t = mx
t (1− νxt κ̂

x
t )(1 + rxt dt). (E.58)

Clearly, Sx
t > Sx

t . The seller’s payoff becomes mx
t (1− κ̂xt )(1 + rxt dt)− Sx

t > 0.

E.4 Expected Utility

Next, the model can allow for currency x to pay a nominal interest at rate îxt ; this assumption allows
us to encompass the formulation of Section 3.3. We assume that the user earns the interest payment
on currency x of îxtm

x
t dt regardless of whether it spends its currency-x holdings in a transaction to

pay the seller. Since the interest payment is of order dt and transactions with sellers occur with
probabilities of order dt, this assumption is inconsequential (i.e., the probability of transacting
times the interest payment is of order (dt)2 and, thus, negligible).
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Then, at time t, the user’s expected utility becomes (ignoring terms of order (dt)2 and higher):

Ut :=
∑

x=A,B,C

Ẑx
t dt

{
χx
t

[
v(Sx

t ) + Sx
t +mx

t ν
x
t κ̂

x
t (1 + rxt dt)

]
+ (1− χx

t )m
x
t (1 + rxt dt)

}
+

∑
x=A,B,C

(1− Ẑx
t dt)m

x
t (1 + rxt dt) +

∑
x=A,B,C

mx
t î

x
t dt.

Using (E.56), we can write v(S
x
t ) = v

(
mx

t (1 − κ̂xt )
)
+ o(dt). We can insert this relationship into

above expression for Ut, ignore terms of order (dt)2 or higher, and simplify to obtain:

Ut =
∑

x=A,B,C

χx
t Ẑ

x
t

[
v
(
mx

t (1− κ̂xt )
)
− κ̂xt (1− νxt )m

x
t

]
dt+

∑
x=A,B,C

mx
t (r

x
t + îxt )dt+ 1.

Employing CRRA utility, i.e., v(m) = m1−η

1−η , we get

Ut = 1 +
∑

x=A,B,C

Zx
t v(m

x
t )dt+

∑
x=A,B,C

mx
t (r

x
t + îxt − κxt )dt. (E.59)

Here,
κxt := Ẑx

t χ
x
t κ̂

x
t (1− νxt )

and, most importantly,
Zx
t := Ẑx

t χ
x
t (1− κ̂xt )

1−η, (E.60)

where we write for notational convenience ZC
t = Yt. We note that the convenience parameters

Zx
t reflect the (1) the probability that a buyer encounters a seller who accepts the respective

currency (i.e., Ẑx
t ), (2) transaction costs κ̂xt and (3) the user’s bargaining power relative to sellers

χx
t . Interestingly, even if transaction fees are fully rebated to the user, i.e., νxt = 1, the transaction

fees κ̂xt still distort transactions away from the optimum and thus limit convenience.30

Note that the baseline obtains upon setting îxt = 0 (currency does not earn interest) and either
of (i) κ̂xt = 0 or (ii) νxt = 1, bearing in mind that Yt = ZC

t . In particular, under these assumptions,
U from (E.59) coincides with (2) and (11).

The stipulation of expected utility in the model variant with UIP and interest rates in Appendix
C — specifically, (C.49) — is obtained upon setting îxt = (1 − αx

t )i
x for x = A,B and iC = 0. In

addition, either of (i) κ̂xt = 0 or (ii) νxt = 1 must hold too.

Finally, we note that in our micro-foundation, the medium-of-exchange and store-of-value func-
tions of money complement each other. When a currency offers higher expected returns and serves
as a better store of value, it becomes less costly for users to hold this currency ”in advance” for
payments, thereby reinforcing its role as a medium of exchange. In contrast to our micro-foundation
based on random search and matching, Goldstein et al. (2023) abstract away from search, instead
focusing on coordination. They establish a conflict between the store-of-value and medium-of-

30When the transaction cost is fully rebated and νx
t = 1, the transaction cost is not a deadweight loss, but represents

a (suboptimal) transfer between the user and the sellers. Without cash-in-advance constraint, one could offset this
transfer through higher payments from the user to the sellers. However, because the cash-in-advance constraint binds,
this is not possible. As a result, the transaction costs represent a distortion limiting payment convenience, even if
νx
t = 1.
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exchange functions of money, which can lead to fragility.

Likewise, as shown in Doepke and Schneider (2017); Gopinath and Stein (2021), the unit-of-
account function of money can be viewed as complementary to the medium-of-exchange and store-
of-value functions. For instance, the U.S. dollar acts as store of value and widely accepted medium
of exchange, as it is often used as a unit of account (e.g., for invoicing in international trade); at
the same time, medium-of-exchange and store-of-value functions reinforce the U.S. dollar’s role as
international unit of account. In short, while we base the convenience of money on its medium-of-
exchange function, the complementarity of the three functions suggests that this convenience may
also reflect other monetary functions.

E.5 Determinants of Payment Convenience

The micro-foundation sheds light on the determinants of the convenience utility from (2) and,
specifically, the parameters Zx

t and Yt = ZC
t . Equation (E.60) shows that the convenience scale

parameters Zx
t and Yt depend on (1) the probability that a buyer encounters a seller who accepts

the respective currency (i.e., Ẑx
t ), (2) transaction costs κ̂xt and (3) the user’s bargaining power

relative to sellers χx
t . We discuss each of these factors of in greater detail and what they represent

in reality. We also argue how they drive the convenience of fiat monies and PDM.

1. Probability of Meeting a Seller and Transacting. The variable Ẑx
t represents the

probability of a successful transaction using currency x. This probability is influenced by the
payment technology underlying currency x as well as the overall level of its acceptance or
adoption.

To better see why Ẑx
t captures payment technology (e.g., in terms of settlement speed),

suppose that the user meets a type-x seller with a probability normalized to πx
t dt. Provided

a meeting occurs, the seller and the user try to transact but the payment is successfully
processed within [t, t+ dt] only with probability ẑxt dt — if the payment is not successful (for
instance, because it fails or is not processed on time), the transaction is not successful, i.e.,
does not occur. Then, the probability that a transaction occurs can be written Ẑx

t dt, with
Ẑx
t = πx

t ẑ
x
t being the product of a meeting rate and the probability that the payment is

successful and settled fast enough.

Naturally, a currency becomes more convenient when it is widely accepted and easy to transact
with. The likelihood that a buyer meets a seller accepting x, that is, Ẑx

t should reflect the
number of sellers accepting or offering services in exchange for currency x. This mechanism
is subject to network effects. As we sketch in Section E.6 — where we endogenize the number
of services that can be bought with currency x — a higher number of services that can be
bought with x makes currency x more convenient for users, drawing users to currency x,
which, in turn, makes it more appealing for sellers to accept currency x for a wider range of
services.

Consequently, currencies like the U.S. dollar are convenient relative to other fiat currencies
(i.e., have a high Zx

t ) because they are widely accepted and benefit from the large size of the
U.S. economy, which facilitates numerous dollar-based transactions (including digital ones).
Similarly, the convenience of PDM could arise from its integration with digital platforms and
ecosystems, where transactions often require specific types of PDM for settlement. For exam-
ple, Ether is convenient because it is widely used within the expansive Ethereum ecosystem,
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and Alipay is convenient due to its applicability across a broad range of services within Al-
ibaba’s ecosystem. This source of payment convenience becomes increasingly significant as
the size of the digital platform on which the PDM is integrated or accepted grows. Specifi-
cally, the growing importance of digital platforms contributes to the rise in PDM convenience,
modeled in (4).

Finally, we argue that slow settlement speeds, outdated payment technologies, and limited
payment functionalities or usability (e.g., the inability to support blockchain transactions,
certain digital platforms, or cross-border payments) constrain the digital payment conve-
nience of fiat money. Certain forms of PDM may have an advantage over fiat money in
these areas by offering faster transactions, unique payment functionalities, or a broader scope
of payment services and usability. Fiat digitization, however, can address these issues by
enabling faster payments and enhancing payment technologies and functionalities. Addition-
ally, digitization may increase the convenience of fiat money by expanding its usability—both
geographically (e.g., by supporting cross-border transactions) and across services (e.g., by
supporting blockchain-based transactions).

2. Transaction Costs. The transaction cost parameter κ̂xt inversely affects convenience, i.e.,
Zx
t decreases with κ̂xt . The transaction cost can be of monetary nature (e.g., credit card

interchange fees) or a utility cost (e.g., settlement delays, cost of processing transactions via
PoS, or similar). Specifically, the transaction cost may capture that due to delays in payment
settlement, either the seller receives payment late or the user receives the service late — both
of which are costly.31

We think that such transactions costs, both monetary (e.g., fees charged by costly payment
intermediaries such as credit card companies) and utility costs (reflecting settlement delays),
are important frictions limiting the convenience of fiat money in digital payment. Certain
features of cryptocurrencies and tokens (e.g., smart contracting or decentralization in cryp-
tocurrencies) and non-bank payment systems can reduce dependence on costly payment in-
termediaries by bypassing traditional bank payment rails, thereby reducing transaction costs.
Together, these factors enhance the convenience of PDM relative to fiat money.32

The digitization of fiat money can also mitigate these frictions by reducing reliance on costly
payment intermediaries (such as credit card companies) and enabling faster, even instant,
payments. For instance, the introduction of a fast, government-led payment system—such as

31To model this more formally, one could assume that upon a successful transaction between the user and a type-x
seller, the payment is initiated at time t+ dt, but only succeeds at time TS arriving at a Poisson rate λx

t . Thus, the
seller must wait on average E[TS − t+ dt] = 1/λx

t units of time before receiving the payment. Further, consider that
the seller discounts at rate ρ > 0. Then, a payment worth one unit of consumption good at initiation at t + dt is

worth to the seller only
λx
t

ρ+λx
t
< 1. Abstracting from price movements between payment initiation and settlement,

one could then κ̂x
t ≃ λx

t
ρ+λx

t
. For instance, we could assume that an intermediary stands ready to hedge exchange

rate movements at zero cost so that a payment has the same consumption good value at initiation and settlement.

Otherwise, the seller values a payment of one (nominal) unit of currency at time t+ dt as
λx
t E[Px

TS ]

ρ+λx
t

< 1, which would

lead to qualitatively similar outcomes.
32Cryptocurrencies and tokens promise decentralization and the ability to bypass costly payment intermediaries.

In particular, their smart contracting features (see, e.g., Cong and He (2019)) enable intermediary-free transac-
tions. These features, combined with their decentralized nature, can reduce transaction fees for certain transactions,
contributing to the digital payment convenience of PDM.
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Brazil’s Pix or India’s UPI—could increase payment speed and reduce reliance on credit card
companies. In addition, a government-led payment system may exert competitive pressure
on payment intermediaries, thus lowering their fees.

3. Bargaining Power. We argue that a larger user bargaining power vis-a-vis sellers (i.e.,
higher χx

t ) could be linked to better privacy features inherent in currency x. For this sake,
we draw on a large literature in industrial organization, which shows that sellers can leverage
user data to price discriminate (see, e.g., Bergemann, Brooks, and Morris (2015); Brun-
nermeier, Lamba, and Segura-Rodriguez (2023)), effectively allowing them to charge higher
prices for their services. More relevant in our context, Garratt and Van Oordt (2021) show
how sellers could use data collected through payments with currency x to price discriminate
future consumers that pay using currency x. Thus, according to their argument, enhanced
privacy features imply less such price-discrimination and better prices for users, which we
could capture by higher χx

t .
33

Therefore, strong privacy features (as seen in, e.g., some cryptocurrencies and tokens) con-
tribute to the digital payment convenience of PDM. In contrast, digital fiat money (especially
in the form of bank deposits) offers weaker privacy features absent digitization. However,
privacy-enhancing currency digitization — for instance, through launching CBDC (as dis-
cussed in Garratt and Van Oordt (2021); Ahnert et al. (2022); Garratt et al. (2022)) — could
improve privacy features in digital fiat money, thus increasing its convenience.

E.6 Endogenous Network Effects and Payment Adoption

Taking our micro-foundation one step further, we could endogenize the number of (homogeneous)
services that the user can pay for with currency x. For instance, assume that there is one repre-
sentative user and one representative seller only accepting currency x. There is a large mass of

potential services that the seller may offer. Offering nx
t services entails a quadratic cost

kxt (n
x
t )

2

2 dt
with cost parameter kxt . This cost parameter could capture the cost of using the payment system
and accepting currency x as payment for certain services (e.g., the cost of setting up international
payment or setting up PoS).34

The user buys at most one service from the seller. The probability of successfully transacting
and buying an individual service is assumed to be Ẑx

t dt with Ẑx
t = ẑxt n

x
t where ẑxt > 0 is taken as

given and nx
t is the endogenous number of services. Hence, the number of successfully transacting

increases in the number of services offered by the representative seller. While we set up this variant
with one representative user and one representative seller, one can interpret it also as describing a
mass of users and a mass of sellers (offering different services).

The heuristic timing over [t, t+ dt] is as follows. The type-x seller first chooses nx
t against cost

kxt (n
x
t )

2

2 dt. Then, our aforementioned micro-foundation applies. Specifically, the seller is matched

33Likewise, Ahnert et al. (2022) show how enhanced payment privacy can benefit users through better “service
prices” when banks bundle lending and payment services.

34The increasing cost reflects that, for some services, it is easy or natural for merchants to accept currency x as
payment (e.g., a U.S.-based service catering to U.S. customers and paid in dollars). However, for other services, it
is more difficult and costly to accept the currency—for instance, a Chinese seller incurs additional costs when selling
goods in the U.S. for dollar payments. As the representative seller expands the range of services offered in currency
x, they first exhaust the easier, low-cost options and then take on services that involve higher payment costs.
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with the user with probability Ẑx
t dt = ẑxt n

x
t dt — in which case the transaction occurs. The seller

cannot extract any surplus with probability χx
t . With probability 1 − χx

t , however, the seller has
full bargaining power and makes a TIOLI offer to the user. The seller then is paid mx

t /P
x
t units of

currency x and delivers Sx
t units of service, with Sx

t characterized in (E.58); recall the seller incurs
a proportional transaction cost, so its payoff then reads

[
(1− κ̂xt )m

x
t (1 + rxt dt)− Sx

t

]
.

The seller’s total expected payoff can be written as (ignoring terms of order (dt)2 or higher):

ẑxt n
x
t (1− χx

t )
[
mx

t (1− κ̂xt )− Sx
t

]
dt︸ ︷︷ ︸

Expected Transaction Utility

− kxt (n
x
t )

2

2
dt︸ ︷︷ ︸

Initial Cost

,

where Sx
t solves (E.58). Observe that Sx

t is strictly smaller than mx
t and increases in mx

t .

Now, consider that the seller chooses nx
t to maximize its payoff, taking mx

t as given (which
depends on nx

t in equilibrium). Then, nx
t satisfies

nx
t =

ẑxt
kxt

(1− χx
t )
[
mx

t (1− κ̂xt )− Sx
t

]
.

This relation leads to network effects: Higher mx
t implies higher nx

t , while higher n
x
t leads to higher

Ẑx
t and Zx

t , and thus higher mx
t . One can then solve for equilibrium mx

t and nx
t by solving a fixed

point problem (that possibly admits multiple solutions).

The analysis highlights the importance of network effects in determining currency convenience.
It also shows that potentially small changes in ẑxt — e.g., due to technological improvements of
the payment technology — can lead to rather large increases in currency convenience due to these
network effects. Moreover, note that a decrease in kxt implies higher Ẑx

t and Zx
t . Thus, digitization

that decreases the cost of adopting a currency for payment (e.g., reducing the seller’s cost of
accepting payments in a currency for a specific service) improves that currency’s convenience. For
instance, CBDC or instant payment systems reduce the cost for sellers of accepting digital payment
for a specific service, thus enhancing the currency’s convenience.

E.7 The Evolution of PDM Convenience

We discuss the assumption that the convenience of PDM evolves continuously according to (4), while
the convenience of fiat money changes discontinuously, experiencing a jump following successful
digitization at time T x. This assumption reflects that the digitization of fiat money—whether
through the launch of a new payment system, an upgrade to an existing system, or the introduction
of a CBDC—occurs infrequently and represents significant changes or disruptions to the bank-
railed and government-led payment systems. For this reason, we model the effects of fiat currency
digitization as a jump rather than a gradual process. For simplicity, we consider only a one-time
digitization, though the model could be extended to allow for multiple stages in the digitization
process.

In contrast, PDM encompasses various forms of payment systems and digital currencies, each
evolving over time, with some achieving significant breakthroughs. When aggregated, their conve-
nience evolves more gradually over time compared to that of fiat money. To illustrate this argument
more formally, consider that PDM encompasses a continuum of different payment services, indexed
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by i ∈ [0, 1] and with individual payment convenience Y i
t . For any i ∈ [0, 1], the payment conve-

nience evolves according to
dY i

t

Y i
t

= µ̂dJ i
t ,

where dJ i
t ∈ {0, 1} is a jump process with E[dJ i

t ] = Λi
tdt and µ̂ ≥ 0. Then, by the law of large

numbers and under standard regularity conditions, we have that aggregate PDM convenience Yt
defined as

Yt =

∫ 1

0
Y i
t di,

evolves according to
dYt
Yt

= µ̂

[∫ 1

0
Λi
tdi

]
dt.

Assuming that
∫ 1
0 (Λ

i
t)di ∝ mC

t , the law of motion (4) follows. This assumption could potentially
be micro-founded by considering that individual payment services evolve proportionally to their
adoption level. For instance, let mCi

t the adoption of PDM service i and define mC
t ≡

∫ 1
0 mCi

t , and

assume that Λi
t ∝ mCi

t , which implies
∫ 1
0 (Λ

i
t)di ∝ mC

t .

F Robustness and Additional Figures

This Appendix presents additional (non-essential) figures, yielding additional results and under-
scoring the robustness of our findings. These figures are discussed and referenced in the main
text.
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Figure F.1: Replication of Figure 2: The Dynamics of Digitization Efforts. Panel A depicts A’s effort
as a function of ln(Y ) in states z = 0 (solid black line) and z = B (dotted red line). Panel B depicts B’s effort as a
function of ln(Y ) in states z = 0 (solid black line) and z = A (dotted red line). Panel C plots the sum of countries’
efforts against ln(Y ) in states z = 0 (solid black line), z = B (dotted red line), and z = A (dashed yellow line).
Panel D plots the effort difference against ln(Y ) in state z = 0. We use our baseline parameters from Section 2.2, in
addition to αAiA = 0.01 and αBiB = 0.03 (across all states z).
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Figure F.2: Modeling the Benefits of Digitization through Improved Passhtrough. Panel A plots
country A’s against ln(Y ) in state z = 0 (solid black line) and state z = B (dotted red line). Panel B plots country
B’s against ln(Y ) in state z = 0 (solid black line) and state z = A (dotted red line). Panel C plots total efforts, i.e.,
the sum of individual efforts, against ln(Y ), for z = 0 (solid black line), z = B (dotted red line), and z = A (dashed
yellow line). We set iA = 0.01, iB − 0.1, αx(−x) = αx(0) = 1, and αx(x) = αx(AB) = 0.1. And, ρ = θ = 0.
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Figure F.3: Interest Rates and Digitization. This figure presents comparative statics in αAiA. Panels A and
B plot country A’s and B’s efforts in state z = 0 against ln(Y ) for three different levels of αAiA. Panel C plots total
efforts, i.e., the sum of individual efforts, against ln(Y ). We divide all baseline parameters from Section 2.2, which
are related to currency convenience, by 15, leading to ZA

L = 1/15, ZB
L = 0.2/15, ∆Fixed = 1/15, Y = 5/15, and

Y0 = 0.1/15 while all other parameters remain unchanged. We set αBiB = 0.03, and ρ = θ = 0.
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Figure F.4: Myopia and Effort.This figure presents comparative statics in δ. Panels A and B plot country A’s
and B’s efforts in state z = 0 against ln(Y ) for three different levels of δ. Panel C plots total efforts, i.e., the sum of
individual efforts, against ln(Y ). We use our baseline parameters from Section 2.2, but set Y0 = 0.5 for Panel C.
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Figure F.5: Positive Spillovers in Digitization Costs. This figure presents comparative statics in α, starting
from α = 0. Panels A and B plot country A’s and B’s efforts in state z = 0 against ln(Y ) for three different levels of
α. Panel C plots A’s effort in state z = B, while Panel D plots B’s effort in state z = A.
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Figure F.6: Positive Spillovers in Digitization Benefits. This figure presents comparative statics in αC ,
starting from αC = 0. Panels A and B plot country A’s and B’s efforts in state z = 0 against ln(Y ) for three different
levels of αC . Panel C plots A’s effort in state z = B, while Panel D plots B’s effort in state z = A. We use our
baseline parameters from Section 2.2.
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