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ABSTRACT

Technological advances and genomic sequencing opened the road to personalized medicine: 
specialized therapies targeted to patients displaying specific molecular alterations. For instance, 
targeted therapies are now available for 50% of lung cancer patients—with some alterations 
affecting less than 1% of patients—greatly increasing life expectancy. In an investment model of 
drug development, we show that current institutions mandating experimentation and approval of 
individual therapies eventually disincentivize investments in personalized medicine as researchers 
identify increasingly rare alterations. Recent AI-based technologies, such as AlphaFold3, make 
personalized medicine viable when regulatory approval regards the process for drug discovery 
rather than individual therapies.
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1. Introduction

The publication of the initial sequencing of the human genome (International Human Genome

Sequencing Consortium, 2001) opened up the road to modern personalized medicine: that

is, delivering the right drug to the right patient based on their genomic profile. Technologi-

cal advances over the last twenty-five years have indeed enabled the development of effective

treatments for diseases that affect increasingly smaller subgroups of patients. As an example,

highly specialized targeted therapies are now available for about 50% of all lung-cancer pa-

tients, including patients who never smoked. Such therapies are significantly more effective

than non-targeted alternatives: for instance, for certain types of lung cancer due to specific

and rare genetic alterations such as ALK and ROS1, targeted therapies have extended life

expectancy from a few months to several years. Promising advances in personalized medicine

are also occurring in other areas of medicine, such as other types of cancer, hematological,

cardio-vascular, immunological and neurodegenerative disorders, and rare genetic diseases.

Such results warrant a degree of optimism that a new era of personalized medicine will bring

about significant improvements for patients affected by devastating illnesses. However, the

highly targeted nature of personalized medicine introduces new challenges. The very notion

of personalized medicine implies that, theoretically, each patient can become a unique case.

By way of contrast, the current regulatory infrastructure is founded on statistical testing for

safety and effectiveness, and thus assumes the availability of sufficiently large subject pools.

This paper uses a simple model of pharma companies’ investment decisions to study

the economic sustainability and the incentives to personalized drug discovery as scientific

advances identify ever more specific molecular alterations that, on one hand, can be treated

with greater effectiveness, but, on the other hand, have a necessarily lower incidence in the

population. Specifically, we focus on the impact of the current regulatory infrastructure on

firms’ decisions. Regulatory agencies such as the Federal Drug Administration (FDA), the

European Medicine Agency (EMA), and so on, require that new drugs be validated as more

effective than previously available treatments through randomized control trials (RCT).1

This process involves different phases (see Section 3.), but the basic structure is as follows.

Patients are randomly assigned to a “treatment” group, which receives the new proposed

(targeted) therapy, or a “control” group, which receives the best currently available therapy.

Patients are then followed for years, and survival statistics are used to compare “success

rates” in the two groups. The new treatment is approved if the difference in success rates is

medically as well as statistically significant.

1Over the years, the regulatory agencies have relaxed some of the strict requirements and
allowed for accelerated approvals for some specific cases. See https://www.fda.gov/drugs/

development-approval-process-drugs for details about the FDA approval process and designations.

1

https://www.fda.gov/drugs/development-approval-process-drugs
https://www.fda.gov/drugs/development-approval-process-drugs


We show that, under reasonable regularity conditions, for a given disease (e.g. lung

cancer), as the number of treatable molecular alterations increases, with each alteration

affecting an increasingly smaller fraction of patients, the probability of a successful RCT

decreases. The reason is that, even for targeted treatments that are meaningfully superior to

the current standard of care, it becomes increasingly difficult to secure large enough samples

to meet the required significance threshold. Moreover, holding the prices of targeted therapies

fixed, the expected profits for the pharma industry as a whole decrease to zero when the

number of treatable molecular alterations increases, due to lower expected profits and higher

overall costs of running RCTs. Since currently pharma companies are primarily responsible

for the discovery of new targeted therapies, these results imply that eventually there will

be no incentive to develop targeted therapies for newly discovered biomarkers. In principle,

this can be avoided by increasing the prices of targeted therapies as the number of treatable

molecular alterations increases. We show however that break-even prices increase as the

number of alterations increases, and are unbounded in the limit. This eventually makes

the overall costs of drug discovery unsustainable for society. In other words, the current

regulatory regime makes personalized medicine infeasible in practice.

To assess magnitudes, we calibrate the model to data from lung cancer research and

patient care. Lung cancer is a good example of the progress made in personalized medicine,

as it has gone through several breakthroughs in the last 20 years (see the following section).

In particular, researchers have discovered that many types of lung cancer are due to genetic

alterations that affect as low as 0.1% or even 0.05% of lung cancer patients. In our calibration,

we find that the pharma industry stands to make high profits when the number of alternations

is limited; this explains the explosion in research and R&D investments in targeted therapies

over the last two decades. However, the present value of such profits rapidly declines to zero

as the number of alterations increases. Indeed, even for R&D costs that are conservatively far

lower than those reported by pharma companies, the present value of future profits reaches

zero when the number of alterations is just over 150—equivalently, when alterations affect

about 0.6% of the patient population. We also calculate the societal costs of lung cancer

treatment at the break-even prices, and find that, even for conservatively low costs of R&D,

they will still run in the trillions of dollars per year as the number of alterations increase

and affect a progressively smaller – yet realistic – number of patients.

The conclusion of our analysis is that pharma companies will have little to no incentive

to innovate and find new drugs for alterations that affect an ever decreasing size of the pop-

ulation, despite the fact that, in the aggregate, such alterations cover the entire population

of lung-cancer patients. Indeed, we find empirical evidence that the cumulative number of

clinical trials that are run by pharma companies over a ten-year span since discovery of an
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alteration significantly decreases with the percentage of the population that is affected by

that alteration.

However, our model also indicates that a regulatory framework in which regulatory agen-

cies approve the process for drug discovery instead of individual drugs leads to a sustainable

system that encourages drug development. Recent technological advances make such a pro-

cess realistic. In brief, a “personalized drug discovery process’ (PDDP) would comprise four

steps (see section 6.1. for details): (A) the identification of driver alterations, which can

now be done through many existing filters; (B) Rebuilding of the altered protein, which can

now be accomplished by using machine learning methods and AI, such as Google DeepMind

AlphaFold3; (C) compound matching, which involves using supercomputers to find, out of

billions of possible compounds, one that can “block” the altered protein and hence inhibit the

growth of the tumor; (D) Drug discovery, which uses the knowledge of molecular structure

of existing safe drugs and machine learning methods to ensure that the compound identified

in previous steps can be absorbed and tolerated by humans; (E) Drug production.

Very recent research in biochemistry and bioinformatics shows that steps (A) – (D) can

in fact be achieved effectively in silico (i.e., through simulation) very rapidly, even within

one month (see e.g.Ren et al., 2023). A personalized treatment would start with a patient

being tested to detect the presence of alterations (step A), and continue with steps (B) –

(D). If a new personalized drug is found, then it is produced — step (E). Otherwise, the

patient is treated using current available therapies. Overall, PDDP involves spending about

a month or less to find the proper personalized, safe drug.

Building on our calibration results, we show that PDDP is economically sustainable.

Once approved, the costs of the process of drug discovery does not depend on the number of

alterations, and there is no need to run expensive RCTs for every alteration. However, the

incentive of pharma companies to switch to PDDP depends on the probability of finding a

personalized drug through steps (A) – (D) above, and the survival probability delivered by

the newly discovered drug. We show that pharma companies have incentives to adopt the

PDDP over the previous existing therapies if the annual profit margins of PDDP therapies

range between 70% (when annual survival rate is 60%) and 12% (when annual survival rate

reaches 90%) of typical current annual profit margins of targeted therapies, which will bring

substantial savings to lung cancer patients.

Our paper is related to several strands of literature, both in the medical field and in the

economics field. In the medical field, our work is related to both the literature documenting

the progress in targeted therapies (see e.g Hendriks et al., 2024 for a recent review), the costs

of targeted therapies (see e.g. Leighl et al., 2021), and the recent work on the use of computers

for protein projection and compound discovery (see e.g. Ren et al., 2023). However, none of
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this previous work appears to have tackled the profitability of drug discovery as the number

of alterations increase. To the best of our knowledge, the personalized drug discovery process

we analyze is also novel.

In economics, a relatively recent literature examines the problem of regulating the ap-

proval of new products such as drugs: e.g. Carpenter and Ting (2007), Henry and Ottaviani

(2019), and Henry, Loseto, et al. (2022). This literature emphasizes that the regulator

faces a trade-off between inducing an appropriate level of experimentation, which is socially

beneficial, and preventing harmful products from reaching consumers. More broadly, this

approach is related to the analysis of strategic experimentation (e.g. Guo, 2016; McClellan,

2022) and (dynamic) persuasion (Kamenica et al., 2011; Honryo, 2018). Our paper is also re-

lated to the recent literature on investments of pharma companies in drug development, such

as Budish, Roin, and Williams (2015) and Frankel, Krieger, Li, and Papanikolaou (2024),

although none of them investigates the issue of personalized medicine.

Our approach is complementary. We take a stylized form of the current regulatory regime

as given, and study the investment problem faced by a pharma company, and by the pharma

industry as a whole. One can interpret our main negative result as showing that the current

regime cannot be part of an incentive-compatible mechanism that implements the first best.

We show that even when the initial R&D effort has been undertaken and has produced an

effective treatment, the firm is not willing to carry out the expensive testing process once

the number of genetic alterations is large enough. This is true even when the firm knows

(but cannot otherwise credibly communicate) that the success probability is strictly higher

than the previous standard of care —- a case in which the first-best outcome is approving

the new treatment. Thus, the current regime does not implement the first best. However,

the alternative approval mechanism, the “personalized drug discovery process,” sustains the

approval of new treatments for a (much) wider range of success probabilities.

2. Targeted Therapies in Lung Cancer

According to GLOBOCAN 2022, lung cancer is the most commonly diagnosed cancer, ac-

counting for 12.1% of all cancers, and the leading cause of cancer-related deaths, responsible

for 18.8% of all cancer-related fatalities, with an estimated 1.8 million deaths worldwide.2

Lung cancer is also one of the most aggressive tumors, with a very high mortality rate.

Until the early 2000s, the only available medical treatment was chemotherapy. Over the

past fifteen years, however, major advances in understanding the biology of tumors have led

2See https://gco.iarc.fr/today/en/dataviz/pie?mode=cancer&group_populations=1&

populations=900&age_end=17&types=1 accessed on 1/20/2024.
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to the advent of target therapies and immunotherapy. These discoveries brought about a

major increase in patient survival expectancy. For instance, in metastatic patients, median

survival went from months to years.

Chronologically, in 2004, for the first time lung cancer researchers identified specific

genomic mutations in a portion of a gene called EGFR in the tumor of the patients. Patients

harboring these alterations in the tumor were very sensitive to a particular class of agents,

called EGFR tyrosine inhibitors. This discovery opened up the era of personalized medicine

in lung cancer, as well as in many other tumors. Through randomized clinical trials, in

the following few years, medical research demonstrated that these drugs were superior to

the “one-size-fits-all approach” of chemotherapy. Many other targets were found in lung

cancer and in other tumors. Conversely, those patients without these alterations were totally

resistant to the new drugs. This finding created a paradigm shift: for each altered gene there

was a corresponding tyrosine inhibitor. Such alterations are typically more prevalent in the

population of patients who never smoked, which is about 15% of the overall lung cancer

population in U.S..

Following the discovery of EGFR mutations in 2004, several other targets were iden-

tified. ALK and ROS1 fusions were identified in 2007, followed by BRAF, RET, HER2,

MET, NTRK, KRAS G12, EGFR Exon 20, and NRG1. Figure 1 indicates the frequency of

alterations in lung cancer patients.3 About 53.5% of patients with lung cancer do not have

any specific alteration for which target treatment is available. Approximately 14.5% have

the EGFR alteration, about 9.5% have the KRAS G12 mutation, and so on. A few of these

alterations, such as ROS1 or RET, affect only 1% to 2% of the population; and others still,

such as NTKR and FGFR, only affect less than 1% of the population.

Moreover, even within pre-defined groups of alterations, there is still some heterogeneity

that can be responsible for a different prognosis and a different sensitivity to drugs. For

instance, the red panel in Figure 1 shows the percentages of specific atypical EGFR alter-

ations, which have different degrees of sensitivity to EGFR tyrosine kinase inhibitors, even

within the same EGFR family. The frequencies of some of these atypical alterations are

as low as 0.05%. Figure 2, taken from Figure 2 of Robichaux et al. (2021), shows the vast

number of possible alterations even within the EGFR group, and the relative efficacy (or

lack thereof) of known therapies across alterations. Indeed, Roskoski Jr (2024) reports that,

as of 2024, there are only 80 FDA-approved drugs that target about two dozens of different

protein kinases, which still represent “a small fraction of the 518-member protein kinase

3These estimates are from Taha et al. (2021), who report ranges of frequencies. In particular, they report
that between 39% and 68% of patients with lung cancer do not have any specific alteration; between 12%
and 17% have a genetic alteration called EGFR, between 7% and 12% they have the alteration KRAS G12,
and so on. The figure reports the midpoints of the respective ranges for simplicity.
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Figure 1: Percentage of Alterations in Lung Cancer Patients

Source: Taha et al. (2021), Robichaux et al. (2021)

enzime superfamily.” While there are currently 180 clinical trials worldwide studying orally

effective protein kinase inhibitors, there are still a vast number of potential alterations and

alterations that are not researched on, or grouped in a pre-defined category.

Each of these alterations acts differently on the cellular system, and thus requires a

specific targeted therapy that act on each of the specific alterations. The number of new

targeted therapies has exploded in recent years, as each different treatment targets the same

alteration with different specific compounds (see Figure 3). The development of targeted

drugs has not been confined to the treatment of lung cancer: it has extended to many other

tumors, such as melanoma, thyroid cancer, gastric cancer, etc. In addition, over time, these

tumors have become resistant to the first generation of drugs. Consequently, new generations

of drugs have been developed to overcome the resistance to the previous inhibitors. Table

1 shows the list of FDA–approved treatments for various alterations. This table indicates

an acceleration in the number of available treatments over the last decade.4 Numerous

randomized control trials for new treatments are ongoing.

4The table reports the initial approval time, as some drugs first receive accelerated approval before final
approval. Others gain approval for certain indications first, later expanding to additional uses, sometimes
with other treatments.
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Figure 2: EGFR alterations

(Source: Figure 2 in Robichaux et al. 2021)

Figure 3: Drug Discovery Progression

EGFR is a useful representative example of the drug discovery process in the new world

of targeted therapies, and its development over the years is similar to that for other targets.
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Table 1: FDA Approved Drugs for Targeted Therapies

Agent Control Manufacturer FDA Price mPFS R&D Cost
Approval per week (months) (millions)

Panel A: First Line
EGFR (12% - 17%)

Gefitinib vs. chemo AstraZeneca 2003∗ $1,715 10.0 vs 5.0
Erlotinib vs. chemo Roche 2004∗ $1,785 9.7 vs. 5.2 $124
Afatinib vs. chemo Boehringer 2013 $2,733 11.1 vs. 6.9
Dacomitinib vs. Gefitinib Pfizer 2018 $3,815 14.7 vs. 9.2
Osimertinib vs. Gefitinib AstraZeneca 2018 $3,966 18.9 vs. 10.2 $594

ALK (3% - 7%)
Crizotinib vs. chemo Pfizer 2011 $5,200 7.7 vs. 3.0
Ceritinib vs. chemo Novartis 2017 $5,346 6.7 vs. 1.6 $1,095
Alectinib vs. Crizotinib Roche 2015 $4,299 34.6 vs. 7.7 $409
Brigatinib vs. Crizotinib Ariad 2020 $4,699 24.0 vs. 9.0 $491
Lorlatinib vs. Crizotinib Pfizer 2021 $4,953 NR vs. 9.1

ROS1 (1% - 2%)
Crizotinib vs. chemo Pfizer 2016 $5,200 18.4 vs. 8.6
Entrectinib SA Roche 2019 $4,683 14.9 $451
Repotrectinib SA Brystol Myers Squibb 2023 34.1

RET (1% - 2%)
Selpercatinib vs. chemo Eli Lilly 2022 $4,557 24.8 vs. 11.2 $511
Pralsetinib SA Roche/Blueprint 2023 $5,208 NR $260

BRAF (1% - 5%)
Dabrafenib
tramentinib SA Novartis 2017 $3,325 14.4 $1,2391

MET ex 14 (2% - 4%)
Capmatinib SA Novartis 2020 $5,684 12.4 $561
Tepotinib SA Merck 2021 $6,315 11.0

NTRK (<1%)
Larotrectinib SA Bayer 2018 $9,114 14.6 $809
Entrectinib SA Roche 2019 $4,683 19.0 $451

EGFR Exon 20 (4.7%)
Amivantamab -
chemo vs. chemo J&J 2021∗ $6,654 11.4 vs. 6.7

Panel B: Second Line
EGFR (12% - 17%)

Osimertinib vs. chemo AstraZeneca 2018 $3,966 10.1 vs. 4.4 $594
Amivantamab/chem vs. chemo J&J 2021 $6,654 8.2 vs. 4.2

KRAS G12C (7% - 12%)
Sotorasib SA Amgen 2021 $4,935 6.8
Adagrasib SA Mirati 2022 $5,124 6.5

HER2 (1% - 4%)
Trastuzumab
Deruxtecan SA Roche 2022 $4,104 8.2

Source: National Cancer Institute, FDA, Drugs.com, Taha et al. (2021). Prices are from drug.com, accessed

in Spring 2023. Dosage per week are from the respective clinical trials. R&D costs are from Henderson et al.

(2023), supplemental table S3. Footnotes: ∗ denotes first FDA approval. 1 R&D cost for Trametinib itself,

approved in 2013.

The majority of the activating EGFR mutations are concentrated in four exons5, 18, 19, 20

5An exon is a segment of a DNA or RNA molecule containing information coding for a protein or peptide
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and 21. Those in exon 19 and exon 21 are called “typical or classical mutations.” These

mutations appear in nearly 70% of cases sensitive to the first, second, and third generation

of tyrosine kinase inhibitors (TKIs). However, the mutations can also happen in other areas,

such as exon 18 and 20: these are called “atypical mutations,” and display heterogeneous

response to EGFR TKIs. A typical example are the mutations (insertions) in exon 20, for

which new drugs are currently under development. In 2004, after the discovery of EGFR

mutations, it was found that these tumors were very sensitive to the drugs Gefitinib and

Erlotinib, known as first generation EGFR TKIs. A few years later, the second-generation

inhibitors were commercialized; these include Afatinib and Dacomitinib. A further advance

was the discovery of mechanisms of resistance to the first- and the second-generation TKIs.

This led to the development of Osimertinib, which was shown to be superior to Gefitinib

and Erlotinib in randomized clinical trials. As a result, the earlier-generation TKIs ceased to

be used in the majority of countries.6 Most recently, research has focused on approaches to

targeting resistance to Osimertinib, and many compounds are now under investigation. For

atypical mutations, representing ultra-rare populations resistant to Osimertinib, research is

still ongoing, and recent results have shown that the drug Amivantanab, combined with

chemotherapy, can be superior to chemotherapy alone in Phase III trial. Similar drug de-

velopment happened also for patients harboring a tumor with ALK fusion treated with the

corresponding ALK inhibitors.

The developments discussed in the previous paragraph highlight the increasingly speci-

ficity of targeted therapies, even within a specific group of mutations, such as EGFR. Figure

1 shows the percentage of specific mutations within the EGFR mutation group. Recall that

EGFR mutations affect about 14.5% of the lung cancer population. Of these, about 32.7%

(4.7% of lung cancer population) have the EX19del mutation, another 23% (3.3% of lung

cancer population) have the L858 mutation, and so on. Each targeted therapy is developed

to attack different subgroups of EGFR mutations, making the percentage of the lung cancer

population receptive to a given targeted therapy increasingly small.

2.1. Patent Protection for Personalized Treatment

An additional issue with personalized medicine is the extent of patent protection of treat-

ments. Because targeted therapies are based on very specialized molecules, and relatively

small variations thereof may constitute new treatments without infringing on earlier patents,

the effective protection for targeted treatments is far shorter than the usual 20 years. In

sequence.
6In some developing countries, Gefitinib and Erlotinib are still employed, as the third–generation in-

hibitors are not available.
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fact, new treatments for the same alteration may occur within a span of just a few years.

To illustrate, consider again Table 1. The first treatment for EGFR was discovered in

2004, and almost 10 years passed before an alternative was developed. However, targeted

treatments for e.g. ALK alterations have been approved at much faster rate. Ceritinib

(Novartis) was approved in 2014; just one year later, Alectinib (Roche) was approved. Sub-

sequently, three additional treatments were approved in a span of four years: Crizotinib

(Pfizer) in 2016, Lorlatinib (Pfizer) in 2018, and Brigatinib (Ariad) in 2020. Given the large

investments in R&D that pharma companies have to bear (cf. the last column of Table 1),

the short life span of these new treatments, and the increasingly smaller number of patients

that they target, cast doubts on whether pharma companies will continue to have incentives

to innovate. This is not just a hypothetical scenario: in February 2023, Roche announced

that it was going to end the collaboration with Blueprint to further develop Pralsetinib, a

drug for RET alteration (1%-2% of the lung cancer population) which is competing with

Selpercatinib, a contemporaneous drug developed by Eli Lilly to treat the same alteration.

3. Model

Assume N new patients are diagnosed with a given illness per year. At time t = 0, a potential

new alteration is discovered. The pharma company decides whether to develop a new drug

targeting the alteration. Developing a treatment, testing it for safety and effectiveness in

small-scale studies, and eventually obtaining approval from the regulatory authority after

large-scale studies is a multi-stage, multi-year process: a description of the steps required

by the US Food and Drug Administration (FDA) can be found at https://www.fda.gov/

drugs/development-approval-process-drugs. For simplicity, we split the entire process

into two phases, which, in a rough parallel with the FDA’s terminology, we call “Phase

I” and “Phase III.” The first comprises identifying a new compound, testing it for safety

in animals first and human volunteers later, and finally gathering preliminary data on its

effectiveness;7 we assume this stage entails a cost cR&D, takes ρ years to complete, and has

success probability p0.

The second phase comprises the large-scale randomized clinical trial (RCT) required to

secure approval; we call this “Phase III,” again in line with FDA’s terminology. This is

also a fairly complex process, which normally involves patient recruiting and coordination

across multiple hospitals, complex protocols to adhere to, and so on. To capture the essence

7This corresponds to the phases the FDA calls “animal testing,” “IND Application,” “Phase
I,” and “Phase II:” see https://www.fda.gov/drugs/information-consumers-and-patients-drugs/

fdas-drug-review-process-ensuring-drugs-are-safe-and-effective. This motivates our choice of
moniker, Phase I.
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Figure 4: Timeline of Drug Development

of the decision, however, we simplify the process as follows. Assume the pharma company

has identified M patients with the given alteration (we return to this point below), and

that conducting the trial costs cRCT per patient. The patients are split into two groups

of equal size, one treated with the new drug and the other with a control, which has a

known success probability of pC . (Success here can be measured in various ways, such as

extending the survival probability by a given number of years; we provide further details

in Section 4..) As for the new treatment, in reality, the pharma company is uncertain

about its success probability pT ; we take this into account in our calibrations of Section 4..

For simplicity, in this section only, we assume that pT is known to the pharma company.

Overall, the RCT lasts τ years. Following approval, the pharma company commercializes

the drug and earns a (monopoly) profit per patient for every year the patient is alive, until

a competitor enters the market with a superior product. For simplicity, we assume that the

new competitor completely displaces the pharma company’s treatment; in reality, two or

more drugs targeting the same alteration may coexist for a period of time (cf. Table 1). The

overall timeline is depicted in Figure 4.

We begin by analyzing the decision to carry out RCTs, conditional on having developed

the drug (at which point R&D costs are already sunk), and having identified M patients

with the alteration of interest. Then, we tackle the key issue introduced by personalized

medicine—the fact that, out of the total pool of subjects recruited by a pharma company,

only a fraction will in fact exhibit the alteration being studied. Finally, we work backward

and consider whether pharma companies actually have incentives to invest in discovering a

new treatment.

Let xT and xC be the number of individuals who are successfully treated in the treatment
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and control groups respectively. Conditional on M , the respective success rates are then

p̃T =
xT

M/2
; p̃C =

xC

M/2
.

To bring about intuition, in this section we utilize a normal distribution approximation, as

it is in fact regularly done in practice: e.g. Lo et al. (2022). Specifically, conditional on

identifying M patients with the given alteration,

p̃T ≈ N

(
pT ,

pT (1− pT )

M/2

)
; p̃C ≈ N

(
pC ,

pC(1− pC)

M/2

)
We assume that the FDA will consider the trial a success if it clears the usual statistical

hurdle for type 1 errors:8

z̃ =
p̃T − p̃C√

p̃T (1−p̃T )
M/2

+ p̃C(1−p̃C)
M/2

> z (α) (1)

where, denoting by Φ(.) the standard normal cumulative density, z (α) = Φ−1 (1− α) is

the threshold for a one-sided α−confidence test under the null hypothesis H0 : pT ≤ pC .

Conditional on success probabilities pT and pC , the probability of rejecting H0 and thus

accepting the new drug is

Pr(ApprovalT |pT , pC ,M) = 1− Φ

(
z(α)− κ

√
M

2

)
(2)

where Φ(.) is the standard normal distribution, and

κ =
pT − pC√

pT (1− pT ) + pC(1− pC)
(3)

is the standardized improvement of the treatment T against its control C.9

Clearly, on an ex ante basis, as M declines, the probability of accepting the new drug

(when pT > pC) declines. On the other hand, for given M , the probability of accepting the

drug increases with the effectiveness of the new therapy compared to the earlier one, that

is, as κ increases.

3.1. Pharma Profits and Discounting

Let PT denote the expected price of the new treatment and cp the marginal cost of producing

it, once it has been approved. The profit to the pharma company per year and per individual

8Clinical trials target not only the size of the test (α) but also its power (β). Sample sizes are normally
chosen to match some values of both. For simplicity, we only consider the size of the test in this paper.

9The Bernoulli distribution of random variable Y has mean E[Y ] = p and variance σ(Y )2 = p(1 − p).
Hence, κ = E[YT − YC ]/σ(YT − YC).
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is (PT − cp) for as long as the pharma company remains a monopolist in the specific therapy,

and zero when a better competitor appears and steals the market. Recall that we assume

that drug development takes ρ years, and conducting an RCT takes τ years. Subject to

approval, j periods after time ρ + τ (i.e., at calendar time t = ρ + τ + j), there are N ×
(1 + s+ s2 + ..+ sj) = N × 1−sj

1−s
patients to treat, where N is the number of new cases per

year, and s is the (expected) progression free survival rate—that is, the probability that

a patient is still alive and has not progressed to a more severe stage of the disease.10 To

account for competition, we assume that, in every period after ρ + τ there is probability π

that a superior treatment is discovered. Thus, at each time t = ρ + τ + j, the firm realizes

a profit with “survival” probability (1− π)j.

Given these assumptions, the present value of future profits, conditional on the drug

being approved, is given by A(PT − cp)N , where

A =
∞∑
j=1

(1− π)j

(1 +R)τ+j ×
1− sj

1− s
=

1− π

(1 +R)τ (R + π)
× 1 +R

1 +R− (1− π)s
(4)

and R is the pharma company’s discount rate. We discount profits realized at dates ρ +

τ + 1, ρ + τ + 2, . . . back to time t = ρ because that is the point in time when the pharma

company must decide whether or not to undertake the RCT.

3.2. Personalized Medicine

Personalized medicine allows physicians to start from the population of N patients with

a given illness (e.g. cancer), perform additional tests (e.g. gene sequencing to detect al-

terations), and categorize patients into n mutually exclusive subgroups to receive targeted

therapies. These tests are normally not expensive and one recently discovered test, the NGS

(Next Generation Sequencing) test, can determine the specific genomic alteration (Mirza

et al., 2024). We set this cost to be zero, for simplicity.

The key implication for our analysis is that, when conducting an RCT to test the effec-

tiveness of a new drug against a specific alteration, the number M of patients with the given

alteration is not a choice variable for the pharma company. To elaborate, let i = 1, ..., n

be an index denoting each subgroup. For simplicity, we assume here that each subgroup i

has size N/n, although in reality some alterations are more common than others and groups

of unequal sizes are the norm (see Figure 1). Given this simplifying assumption, a given

patient belongs to a group i = 1, .., n with probability 1
n
. If the pharma company recruits a

total of K patients with the given illness to run a clinical trial for group i, the probability

10In the calibration of the next section, the survival rate is s = sT × sother where sT is the survival rate
due to the treatment, while sother is the survival rate for other causes of death.
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that M out of those K patients belong to group i is then

Pr(M |K,n) =

(
K
M

)(
1

n

)M (
1−

(
1

n

))K−M

(5)

Hence, as the number of alterations n increases, the probability of securing a large enough

sample M of patients to conduct an RCT for a specific subgroup declines. Indeed, since M

follows a binomial distribution,

E[M |K,n] =
K

n
(6)

As n increases, for a fixed total number K of subjects recruited, the expected number of

patients in each subgroup declines. Thus, K must increase in order to allow for a sufficient

number of patients in each RCT for each targeted therapy i. Clearly, K is bounded by N ,

the total number of patients with the given illness.

The choice variable for the pharma company is thus K. In addition, each new targeted

therapy will only be beneficial to N/n patients, those in group i, rather than the full group

of N patients. To sum up, as the number n of subgroups increases, it becomes harder to

recruit a sufficient number of patients for each subgroup i, and the addressable market for

each targeted therapy also shrinks.

Denoting Pi the market price of the drug in group i after successful approval, the present

value formula for each treatment i when there are n groups is then

PVIII,i(n) = pi(K,n)A (Pi − cp)

(
N

n

)
− cRCT E[M |K,n] (7)

where A is as in Eq. (4) and pi(K,n) it the probability of approval, given by

pi(K,n) =

K/2∑
m=1

Pr[2m ≤ M ≤ 2m+ 1|K,n]
[
1− Φ

(
z(α)− κi

√
m
)]

. (8)

where κi =
pi−pC√

pi(1−pi)+pC(1−pC)
. To interpret, suppose zero or one out of K recruited patients

exhibits alteration i: then, the RCT cannot be run, and so the new treatment cannot be

approved. If 2m ≥ 2 patients exhibit the alteration, then m are assigned to the treatment

group, and m to the control group. The same occurs if 2m+ 1 patients exhibit alteration i;

the (2m+ 1)-st patient is not assigned to either group.

In Eq. (7), as n increases, the present value of treatment i decreases mechanically,

because the number of patients in group i decreases. However, it may still be the case that,

if we take the perspective of the entire pharma industry and aggregate over all n groups,

the total present value of the industry increases, or is at least sufficient to induce investment

in personalized treatments. We now turn to this question and show that, in fact, even the

present value of the pharma industry as a whole eventually decreases as n grows large. We
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assume that the prices of all targeted therapies are the same: Pi = PTT . Furthermore, we

assume that the likelihood of success is the same for all targeted therapies: pi = pTT , so

κi = κ. Then, aggregating across all n groups, we have

PVIII(K,n) = p(K,n)A (PTT − cp) N − cRCT K (9)

where p(K,n) is as in Equation (8) with κi = κ.

We can view non-personalized medicine as the special case in which n = 1. In that case,

(9) shows the present value of conducting a Phase-III RCT when the number of subjects

with the given illness is itself a choice variable—i.e., M = K.

To study the comparative statics of the choice of optimal sample size K, we make the

simplifying assumption that, in calculating present values, the pharma company approxi-

mates both the distribution of M and the approval probability for a given M by suitable

normal distributions. As noted above, at least the latter approximation is common practice

in the pharma industry.11 We then have the following assumption:

Assumption (Normal Approximation). The pharma company calculates PVIII(K,n)

assuming that

M ∼ ϕ(M,K/n,K/n(1−1/n)) and Pr(z̃ > z(α)|M) = 1−Φ
(
z(α)− κ

√
M/2

)
for M ≥ 0

where ϕ(., a, b) is the normal density function with mean a and variance b, and Φ(·) is the

standard normal cumulative distribution function.

Proposition 1 Under the Normal Approximation Assumption, the probability of approval

p(K,n) is increasing in K:
∂p(K,n)

∂K
> 0 (10)

That is, as K increases, it is increasingly more likely that the clinical trial will secure a

large number M of patients, and therefore that the FDA will approve the new treatment.

However, a higher K increases the costs of clinical trials. As K increases, the second

term in Eq. (9) may become so large as to overcome the benefit from increasing the total

patient pool K, and PVIII(n) may decrease in K. Unfortunately, PVIII(n) is not a concave

function of K in general. However, if we explicitly assume that it is (as is the case in the

relevant region in our simulations), we obtain

Proposition 2 Under the normal approximation assumption, let PVIII(K,n) be concave in

K. Everything else equal, the optimal number of patients K∗ is (1) increasing in profits per

11In our calibrations in Sec. 4., we also verified that the normal approximation is acceptable for the
parameter values we consider.
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period (PTT−cp)N ; (2) decreasing in the discount rate R; (3) decreasing in the probability of

a competing treatment emerging, π; (4) increasing in the survival rate of the new treatment

s; (5) decreasing in time to production τ ; (6) decreasing in the cost per person of Randomized

Clinical Trials cRCT .

In addition, if the density ϕ(M,K/n,K/n(1−1/n)) is such that z(α) < κ
√

M/2− 1√
M/2

is satisfied with sufficiently high probability,12 then the optimal number of patients K∗ is

decreasing in κ.

This proposition shows that our model generates natural comparative statics results;

it will help interpret our calibrated results below. However, in the area of personalized

medicine, the critical parameter is n, the number of possible alterations that targeted ther-

apies aim to affect. We discuss next the impact of n on optimal number of patients required

in randomized clinical trials, and thus the incentives to even develop new drugs.

3.3. R&D Disincentives as the Number of Targets n Increase

For our next results, we maintain the Normal Approximation assumption, with the fur-

ther assumption that n is sufficiently large so that the approximate variance of M , namely

K/n(1− 1/n), is approximately K/n:

Assumption (Normal Approximation) 2. In calculating p(K,n), the pharma com-

pany adopts the approximation

M ∼ ϕ(M,K/n,K/n). (11)

Under this assumption, K and 1/n enter symmetrically in the probability of approval.

The following result then follows from a minor modification of the proof of Proposition 1;

we emphasize it because it is critical for the argument that follows:

Proposition 3 Let the Normal Approximation Assumption 2 hold. Then, probability of

approval p(K,n) is decreasing in n:

∂p(K,n)

∂n
< 0 (12)

That is, as the medical profession identifies more and more targets for targeted therapies,

for given number of patients K in randomized clinical trials, it becomes increasingly less

12The exact condition is that cov
(
M2, ϕ

(
z(α)− k

√
M/2

)√
M/2

)
< 0, which is satisfied when

ϕ
(
z(α)− k

√
M/2

)√
M/2 decreases in M , i.e. when the condition in the text is satisfied.
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likely that these new therapies will be approved. This implies that the present value of

future profits decline, everything equal:

Proposition 4 Let the Normal Approximation Assumption 2 hold. Then, everything else

equal, the present value PVIII(K,n) decreases as n increases.

The previous results show that as the number of alterations n increases, the present value

of future profits declines as the probability of approval p(K,n) declines. These results hold

locally under the normal approximation assumption. We can also show a general limiting

result for n large which does not depend on the normal approximation assumption:

Proposition 5 For every value of A,PT , cp and N , there is n̄ such that PVIII(K,n) < 0 for

all n ≥ n̄.

Proposition 5 captures a straightforward, yet important insight: if every patient is truly

unique (which is essentially the case if n is large relative to N), then it will be virtually

impossible for pharma companies to conduct an RCT, simply because, for any alteration,

there will be a single patient in the treatment group, and no patient that can serve as

control. Under the current approval process in which regulatory agencies approve individual

therapies, a truly personalized medicine is economically infeasible.

Our results assume that κ is constant as n increases. Of course, the promise of person-

alized medicine is that, over time, new targetable alterations will be discovered, leading to

more effective treatments. In other words, over time, both n and κ should increase. However,

this assumes that therapeutic improvements are measured against the same baseline—say,

chemotherapy. In reality, at any point in time, new treatments are tested against the current

standard of care—which, precisely due to the development of personalized medicine, may

itself be a previous targeted treatment. For instance, from Table 1, the first EGFR TKI

Gefitinib was tested against chemotherapy, but later TKIs such as Dacomitinib and Osimer-

tinib were tested against Gefitinib as control. This implies that the effective n and κ need

not be correlated over time. Appendix A1. presents a concrete illustration of this issue.

3.4. Solving Backward: The Ex-ante Incentive for Personalized
Drug Development

The results in the previous section show that even after having developed a new treatment,

as the number of alterations n increase, the probability of approval declines and so does the

present value of future profits. We now analyze the impact of the approval process on the

ex-ante decision to develop the drug in the first place—that is, in Phase I.
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As per Fig. 4, the first step in the drug development process is to identify a treatment for

a specific alteration i, and then to carry out the initial testing. Let cR&D,i denote the R&D

cost incurred in this phase. Let p0,i be the probability of advancing to Phase III (i.e. to the

randomized clinical trial), and denote by A0 = (1 + R)−ρ the discount factor corresponding

to Phase I, which takes into account the time ρ between Phase I and Phase III.13 Then, the

present value of carrying out the R&D for the new drug for alteration i, and subsequently

conducting an RCT to secure approval for it, is

PVI,i = p0,i A0 PVIII,i − cR&D,i (13)

As before, we assume symmetry and add up across groups to obtain the (industry-wide)

present value of developing drugs for all alterations:

PVI = p0A0 {p(K,n)A (PTT − cp)N − cRCT K} − cR&D n (14)

At time 0, i.e., at the beginning of Phase I, there are two reasons why expected profits

decline as the number of alternations n increase. The first is that, as before, conditional

on developing a drug for a given alteration, expected profits decline due to the decreased

probability of approval p(K,n). In addition, from the ex-ante perspective, the cost of R&D

increases proportionally with n: for each new drug, the pharma industry as a whole has to

support an expensive development process. Even if cR&D were to decline significantly due to

e.g. technological change or learning, the structure of randomized control trials still implies

that PVI is still likely to decline due to the effect discussed in previous sections. Indeed, this

true even if cR&D = 0: in this case, the present value in Eq. (14) only differs from the one

in Eq. (9) by a factor p0A0.

The same forces also adversely affect the break-even price PTT that makes PVI = 0:

PBE
I,TT = cp +

p0A0 cRCT K + cR&D n

p0A0 p(K,n)AN
. (15)

Proposition 6 The break-even price PBE
I,TT is increasing in the number of alterations n.

Moreover, for every value of A, cp, cR&D and N , and for every P , there is n such that PBE
I,TT >

P for n > n.

Proposition 6 shows that the break-even price will become increasingly large as n in-

creases, making the societal costs for targeted therapies unbounded. This is true even if the

R&D cost of Phase I, cR&D, is zero: the driving factor is the decline in the probability of

13For simplicity, we do not take into account the probability that a competitor will develop a treatment
for the same alteration. This makes our analysis more conservative, as the present value at time 0 would be
lower if we did.
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approval p(K,n). This implies that even if technological advances such as machine learning

and AI substantially decrease the costs of early-phase R&D, personalized medicine is still

economically infeasible for society under the current approval regime.

One caveat is that there may be spillover effects across groups, so that the cost cR&D

may be a function of n itself. Indeed, we expect that cR&D for targeted therapies will decline

substantially in the future as n increases. Still, unless cR&D decreases faster than 1
n
, the

overall effect of an increase in n will still be to increase the break-even price.

4. Calibration to Lung Cancer Research

In this section we provide a calibration which illustrates the issues surrounding personalized

medicine. We use parameters from lung cancer research. We present two sets of results, one

for the U.S. only, and one for the entire world.

4.1. Parameters

Table 2 collects the parameters we use in the two calibrations. First, from Figure 1, about

50% of total lung cancer patients do not have targetable alterations and so they are not

candidates for any targeted therapy. In addition, about 50% of lung cancer patients are

currently not tested at all (see e.g. Vidal et al., 2023) due to lack of awareness or technology

in many hospitals. There are about 220,000 new lung cancer cases per year in the US.14

Thus, we set the number of new targetable cases per year at N = 220, 000/4 = 55, 000.

We set the arrival probability of a superior competitor at π = 1/3. That is, in expectation,

it takes three years before a superior competitor arrives on the market. This probability is

roughly in line with the data in Table 1, which shows an acceleration in the discovery of new

drugs for each alteration.15 The length of a clinical trial is set at τ = 3 years.

As for the success rate of the new treatment, Table 1 shows that the median progression-

free survival (mPFS) varies greatly depending on the alteration and therapy. Also recall from

Table 1 that the control arm is not necessarily chemotherapy, but rather the best previously

approved drug. For instance, for EGFR, Osimertinib appears to be the best treatment

(mPFS = 18.9 months) but it is only 8.7 months better than Gefitinib. For ALK, on the

other hand, Alectinib is far better than Crizotinib, and Lorlatinib far better yet (NR means

“Not Reached” in that more than 50% of patients are still progression free even after so

14See e.g. https://www.cancer.org/cancer/types/lung-cancer/about/key-statistics.html.
15The data in Table 1 also indicates that many therapies for the same alteration may be available at the

same time, in which case firms must split the market.
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many years). However, there is significant variation across treatments. For illustration, we

use Osimentirib for the treatment group and Gefitinib for the control group.

To translate the mPFS into an annual frequency, recall that mPFS is the number of

months during which 50% of patients are still progression-free. Assuming a constant annual

survival rate sT for the treatment group, this implies that smPFS
T = 0.5 and thus sT =

0.51/(mPFS/12). Since we assume that the targeted length of the RCT is τ = 3 years, we obtain

pT = sτT = 0.5
τ

mPFS/12 . These calculations give a survival rate and success probabilities of

sT = 0.644 and pT = 0.2671, and sC = 0.4424 and pC = 0.0866 for Osimertinib (treatment)

and Gefitinib (control) respectively. In addition, we multiply these survival rates by the

survival rate reflecting “other” causes of death unrelated to cancer, which we set to sother =

0.95, for an average life expectancy of 20 years after diagnosis.

We also introduce ex-ante uncertainty from the perspective of pharma companies, as

there is no guarantee that the new treatment will certainly be better than the control. We

thus assume that pT is a truncated normal distribution with p̃T ∼ TrN(µPT
, σ2

pT
, 0, 1). We

set σPT
= (pT − pC)/0.5244: that is, there is approximately a 30% chance that the new

treatment is not better than the old treatment. This is optimistic, since about 36% of

clinical trials with biomarkers in oncology fail in Phase III (see Wong et al., 2019, Table 3).

The mean of the normal distribution µpT is chosen so that E[p̃T ] = pT . Similarly, Wong

et al. (2019), Table 3, shows that the probability of reaching Phase III with biomarkers in

oncology is just p0 = 0.168; we adopt this number in our calibration.16 Finally, we set the

R&D cost pre-Phase III to between $50 and $500 million. These are conservative numbers

compared to the costs calculated from Henderson et al. (2023, Supplemental Table S1) and

reported in Table 1. We chose a range of lower values in part to take into account potential

technological improvements that may lower the costs of R&D in the future.

Turning to the discount rate R, based on DiMasi, Grabowski, and Hansen (2016), we set

R = 10.5%. Plugging the above values in Eq. (4), we find that the factor multiplier A in

the present-value formula (9) is A = 1.7868.

Finally, as shown in Table 1, the price of a new drug varies greatly among targeted

therapies. Using EGFR drugs as an example, we set the annual price of the new treatment

at PTT = $4000 × 52 = $208, 000. This is roughly in line with Skinner et al. (2018) for the

annual cost of targeted therapies. We assume the marginal cost of producing the drug cp

is zero (equivalently that PTT = $208, 000 is the net price per year): Leighl et al. (2021)

report that the manufacturing costs for targeted therapies are between 0.2% and 3% of the

drug’s price tag. Finally, the cost of a clinical trial is set at cRCT = $100, 000 per patient

(see Moore et al., 2020, Table 3 and Sertkaya et al. (2024), supplementary table 1).

16We also ran the calibration with the far higher value p0 = 0.45, obtaining qualitatively similar results.
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Table 2: Parameters in Calibration

U.S.A.
Description Parameter value

New cases per year N 220,000
Testable New Cases adj1 0.5
Average Percent of Tested Patients adj2 0.5
Actual new cases per year N 55,000
Pharma’s discount rate R 10.5%
Arrival probability of better competitors π 0.3
Length of clinical trial τ 3 years
median Progression Free Survival for T mPFST 18.9 months
median Progression Free Survival for C mPFSC 10.2 months
Annual survival rate for T sT 0.644
Annual survival rate for C sC 0.4424
Annual survival rate for other causes sother 0.95
Success probability at τ for T E[pT ] 0.2671
Dispersion of pT σ[pT ] 0.2148
Success probability at τ for C pC 0.0866
Resulting discount factor A 1.7868
Annual net price of new treatment per patient PT − cp $208, 000
Annual cost of RTC per patient cRTC $100, 000
Success probability of Phase I p0 16.8%

World
New cases per year N 2,500,000
Annual net price of new treatment per patient PT − cp $83, 000

The above parameter values are for the US market only. The bottom panel of Table 2

shows the modified parameters for the worldwide market. We increase the number of patients

from 220,000 in the US to 2.5 million worldwide. The annual net price of new treatments is

lower, as targeted therapies are sold at lower prices outside the US. For instance, Goldstein

et al. (2017) report that cancer drugs are priced at less than one third of US prices in the UK,

Australia, China, India, Israel, and South Africa.17. Given that new lung cancer patients in

the US are about one tenth of the total, we adjust the price in the top panel by the factor

(1/10 + 9/10 × 1/3) = 0.4. The numbers used in the world calibration will likely provide

an upper bound to the present value: numerous emerging economies cannot afford targeted

therapies in the first place, which would affect potential profits.

The appendix describes the Monte Carlo simulations that take advantage of small sample

statistics to calculate the various quantities in formulas (9), (14) and (15).

17The paper does not report figures for EU countries.
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Figure 5: Phase III: Present Value and Probability Density

4.2. Results: Phase III, U.S. Calibration

The two panels Figure 5 illustrate the main issue with the increase in the number of potential

alterations n, and the corresponding decrease in the probability (1/n) of each individual

belonging to a given group. The left panel plots the Phase-III present value of future profits

from Eq. (9) against the number of tested individuals, for n = 10, 100, 1000 and 3000.

Recall that the present value is for a Phase III trial for the pharma industry as a whole—

that is, including all alterations. This allows us to compare the present value across different

numbers of alterations n while keeping constant the total new number N of patients per year.

Consider first the solid black line, which corresponds to n = 10, and hence a frequency of

10%. This line increases as K increases, due to the increase in probability of acceptance from

increasing the number of patients in the clinical trial; then it peaks at around K = 9, 000

patients tested, and subsequently declines steadily. The black line on the right panel shows

the probability density of patients in clinical trials M when we test K = 9, 000 subjects, and

there are n = 10 alterations. The distribution is concentrated around M = 900 patients in

each clinical trial, i.e. one out of 10. With that large number of patients, the total probability

that the therapy is accepted is 72%, as reported in the legend.

Consider now the blue dashed line in the left panel, which corresponds to n = 100. In

this case, the corresponding frequency of each alteration is 1%, which is still higher than

many alterations shown in Figure 1. The optimal number of patients is now K = 22, 000,

and the present value in Phase III is uniformly lower than the case of n = 10 alterations.

The dashed blue line in the right panel shows that the corresponding distribution of patients

in clinical trials now concentrates around M = 220, i.e. one out 100. The probability of

accepting each new drug is now 62%.
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Figure 6: Present Value of Phase III and Acceptance Probability across n and K

When the number of groups for target therapies increase further to n = 1000 (dashed

red line), the optimal number of patients increases to K = 50, 000. The dashed red line

shows a much smaller present value than previous case, as the probability of acceptance also

declines substantially. The right panel shows that the density of patients in clinical trials

now concentrates around 50 per trial, i.e. one in 1, 000. At this low number of patients, the

probability of acceptance drops to just 38%.

Further increasing the number of alterations to n = 3, 000 makes the present value

PVIII negative, and so targeted therapies are no longer viable. With 3, 000 alterations and

62, 500 total patients available for clinical trials, even enrolling all patients in RCTs, each

treatment would get only an average of 20 patients, which is too small to guarantee statistical

significance. Moreover, the large costs of running clinical trials on all new cases make the

present value negative.

The left panel of Figure 6 shows the optimal number of patients tested K and the

corresponding optimal present value as n increases from 1 to 10, 000. For each n, the graph

shows the present value PVIII in Eq. (9) against K, and the solid black line represents

the combination (Kmax, PV max
TT ) for each n. As it can be seen, the maximal present value

declines as n increases and the optimal number of patients tested Kmax mostly increases.

Beyond a certain number n of alterations, however, Kmax declines, eventually dropping to

Kmax = 0, meaning that it is best not to pursue clinical trials when n is this large.

The right panel of Figure 6 shows the corresponding pairs of optimal subject pool sizes

Kmax and acceptance probabilities, when n ranges from 1 to 10, 000. As it can be seen,

the probability of acceptance of new therapies initially declines mildly as the optimal Kmax

increases. The decline in the present value is due to the increasing cost of a large population

in the randomized control trials. However, at some point, the probability of acceptance of

the new therapy decreases substantially, making it optimal to actually decrease the number

of patients tested K, moving rapidly towards zero.
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Figure 7: Maximized Present Value of Targeted Therapies in Phase III

Finally, Figure 7 plots the maximized present value in Phase III against the number of

alternations n. This figure illustrates that the present value of conducting clinical trials in

the pharma industry as a whole drops quickly as n increases, reaching zero for just over

n = 2, 000, i.e., for a relative group size of just below 0.05%. That is, personalized medicine

is not viable in the current system of clinical trials, even when potential targeted therapies

are available (i.e. we reached Phase III).

4.3. Results: Phase I, U.S. Calibration

Moving backwards, pharma companies who anticipate the higher costs of randomized control

trials and the decreasing likelihood of acceptance of the new therapies under the current

approval regime will eventually not invest in new therapies to start with. Table 1 shows the

ex-post R&D costs for those drugs that made it to the market.

Figure 8 shows the maximized present value as of Phase I for three levels of costs cR&D =

$50, $100, and $500 millions. As can be seen, even for a relatively small R&D costs of R&D

of $50 million, the present value from investing in drug development drops to zero for n less

than 40—that is, for an incidence of alterations of over 2.5%.

Panel A of Table 3 shows the annual break-even price per patients from time t = 0 (see

Eq. (15)) for five different levels of R&D costs, spanning from $5 million to $500 million.

The latter figure is in line with the current ex-post costs of R&D as per Table 1. The break-

even prices for targeted therapies are staggering when n increases. Even for a relatively low

number of alterations n = 200, which implies that each alteration affects 0.5% of the lung

cancer population, the minimum break-even price for R&D costs per drug of just rR&D = $50
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Figure 8: Max Present Value of Future Profits in Phase I, US Calibration

million is PBE
I,TT = $1.1 million per year, per patient, and a staggering PBE

I,TT = $10.1 million

per year, per patient, for the more realistic R&D costs of $500 million per drug. When

n = 2, 000, for an incidence of 0.05% in the lung cancer population, the break-even prices

would be PBE
I,TT = $23.3 and $230 million per year, per patient, for rR&D = $50 and = $500

million, respectively.

At these break-even prices, societal costs are enormous. We collect them in Panel B.

Consider the case with a number of alterations n = 2, 000 (0.05% of the lung cancer popu-

lation per alteration). Recall that this is realistic, in view of the data in Figure 1. In this

case, societal costs would be $4.1 trillion per year when rR&D = $50 million, and $40 trillion

per year when rR&D = $500 million.

4.4. Results: Phase I, World Calibration

We now discuss the results when we include the rest of the world. This case is more com-

plicated, as multiple regulatory agencies must approve the therapies, which could happen in

a staggered fashion, and at higher costs. Here, we assume that if one regulatory agency ap-

proves a treatment, so do the others—an optimistic assumption. In this case, the number of

patients to be treated would increase substantially, as world-wide, around 2.5 million people

are diagnosed with lung cancer every year. However, as noted above, drug prices around the

world are far lower than in the US.

As discussed in previous section, we adjust the price PTT down for the rest of the world by

a factor of 0.4. Even so, we are likely to overstate expected profits, as numerous developing

countries do not have the resources to buy expensive targeted therapies.
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Table 3: Phase I Break-even Prices and Societal Costs of Targeted Therapies

Panel A: Breakeven Annual Cost per Patient – U.S. Calibration
Number n Percent in Cost of R&D

of alterations Population 5 million 10 million 50 million 100 million 500 million
10 10 7,981 13,669 53,958 101,174 458,576
100 1 79,815 136,697 539,417 1,011,451 4,737,895
200 0.5 159,617 273,394 1,089,023 2,092,082 10,116,557
500 0.2 399,070 696,261 3,073,790 6,045,700 29,820,986
1000 0.1 906,475 1,680,311 7,871,005 15,609,373 77,516,312
2000 0.05 2,503,705 4,809,777 23,258,348 46,319,062 230,804,770
5000 0.02 17,406,055 34,235,198 168,868,340 337,159,760 1,683,491,200
10000 0.01 114,575,430 227,220,100 1,128,377,500 2,254,824,100 11,266,398,000

Panel B: Breakeven Societal Cost (million of USD)– U.S. Calibration
Number n Percent in Cost of R&D

of alterations Population 5 million 10 million 50 million 100 million 500 million
10 10 1,233 2,112 8,336 15,631 70,847
100 1 12,331 21,119 83,337 156,264 731,978
200 0.5 24,660 42,238 168,248 323,215 1,562,951
500 0.2 61,654 107,568 474,883 934,027 4,607,175
1000 0.1 140,045 259,599 1,216,026 2,411,560 11,975,835
2000 0.05 386,808 743,083 3,593,284 7,156,035 35,658,040
5000 0.02 2,689,138 5,289,146 26,089,210 52,089,289 260,089,933
10000 0.01 17,701,260 35,104,229 174,327,985 348,357,656 1,740,595,197

Panel C: Breakeven Annual Cost per Patient – World Calibration
Number n Percent in Cost of R&D

of alterations Population 5 million 10 million 50 million 100 million 500 million
10 10 793 1,359 5,352 10,053 45,658
100 1 7,930 13,590 53,468 100,527 456,594
200 0.5 15,861 27,180 106,950 201,031 913,189
500 0.2 39,652 67,967 267,340 502,536 2,289,806
1000 0.1 79,305 135,904 534,681 1,005,108 4,708,183
2000 0.05 158,610 271,799 1,081,001 2,076,672 10,042,039
5000 0.02 396,508 691,857 3,054,347 6,007,459 29,632,359
10000 0.01 890,926 1,651,489 7,735,992 15,341,621 76,186,652

Panel D: Breakeven Societal Cost (million of USD)– World Calibration
Number n Percent in Cost of R&D

of alterations Population 5 million 10 million 50 million 100 million 500 million
10 10 1,392 2,386 9,397 17,649 80,159
100 1 13,923 23,859 93,869 176,487 801,604
200 0.5 27,846 47,717 187,764 352,934 1,603,211
500 0.2 69,614 119,324 469,348 882,261 4,020,024
1000 0.1 139,229 238,596 938,696 1,764,586 8,265,771
2000 0.05 278,458 477,176 1,897,825 3,645,843 17,629,984
5000 0.02 696,117 1,214,636 5,362,266 10,546,804 52,023,102
10000 0.01 1,564,125 2,899,383 13,581,446 26,934,026 133,754,656
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Figure 9 shows the maximum present value of future profits as of Phase I for three levels

of R&D costs, at the predicted prices for targeted therapies considered above. For current

expected costs of development of $500 million, this present value would hit zero at less than

n = 25 alterations. If the cost of R&D were to drop to $50 million, the present value hits

zero at just over n = 150 alterations. Again, as n increases, the incentive of the pharma

industry as a whole to undertake research in targeted therapies declines substantially.

Pharma companies can increase prices of targeted therapies to cover their R&D costs.

Panels C and D of Table 3 show the break-even price per year per patient, and the societal

costs, respectively. Thanks to a larger population to treat, the average prices per patient

are lower than in the US calibration (Panel A), but they are still substantial.18 For n = 200,

for instance, the break-even price is PBE
I,TT = $106, 000 per year per patient when the cost

of R&D is rR&D = $50 million per drug, and PBE
I,TT = $913,189 per year per patient when

the cost of R&D is $500 million per drug. As n increases to e.g. n = 2000, however, the

breakeven prices increase to PBE
I,TT = $1.1 million and $10 million per year per patient for

R&D costs rR&D of $50 and $500 million, respectively.

The societal costs in Panel D are again substantial. For n = 2, 000, for instance, they

are $1.9 trillion per year for R&D costs rR&D = $50 million per drug, and $17.6 trillion per

year for R&D costs rR&D = $500 million per drug. As n increases, the global societal costs

keep increasing, all the way to $134 trillion when n = 10, 000 if R& D costs are $500 million

per drug.

4.5. Personalized Medicine: All Diseases as Rare Diseases

The key conclusion we draw from these calibrations is that the discovery of alterations

that open the door to personalized targeted therapies are effectively transforming a common

disease like lung cancer, which affects over 220,000 people in the US per year, into a collection

of rare diseases. Our results show that, due to economic incentives, such alterations may

become under-studied by both researchers and the pharma industry—as indeed is the case

for other rare diseases. Indeed, such a pattern can already be gleaned from the data. Figure

10 shows the relation between the cumulative number of clinical trials over a 10-year period

since discovery of each alteration (EGFR, ALK, etc.) and the percentage of lung cancer

population affected by each alteration. Even with such few observations, there is a nearly

linear relation between the frequency of each alteration in the population and the number of

clinical trials: Over the 10-year period after EGFR discovery, which affect about 14.5% of

18These are break-even price across the world. To compare with Panel A, they should be multiplied by 4
to take into account the fact that cancer drug prices outside the US are about one-third of those in the US,
and that about one tenth of all lung cancer patients are in the US.
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Figure 9: Max Present Value of Future Profits as of Phase I, World Calibration

the lung cancer population, 103 clinical trials have been carried out. In contrast, during the

10-year period since the discovery of e.g. ALK, which affects about 5% of the population,

only 29 clinical trials have been carried out. In an even sharper contrast, during the 10-year

period since the discovery of the NTKR alteration, which affects 0.5% of the population, only

3 clinical trials have been carried out. Of course, there are many reasons why there have not

been additional clinical trials for these rarer alterations. Our model though suggests that

the current regulatory infrastructure is not well-suited to promote research to identify new

drugs for ever smaller fractions of the population affected by individual genetic alterations.

5. Existing Solutions

Bayesian Adaptive Clinical Trials The costs related to clinical trials, especially for

rare cancers or rare diseases, has spurred the medical community to experiment with dif-

ferent strategies. Bayesian adaptive clinical trials have been promoted as a methodology to

overcome some of the issues discussed in previous sections. In a Bayesian adaptive clinical

trial, the researcher starts with a prior distribution about the benefit of a new treatment

(pT in our model) versus the old treatment (pC). Patients are recruited sequentially, and

as new patients join the pool, the probability of the event that pT > pC is updated. If the

updated probabilities place sufficient weight on the event that either pT ≪ pC or pT ≫ pC ,

then the trial is terminated and declared a failure or a success. Thus, the number of enrolled

patients M may end up being smaller than in a regular RCT if the new treatments is in fact

significantly superior or inferior than the old treatment. Conversely, if pT > pC or pT < pC
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Figure 10: Cumulative Number of Clinical Trials vs. Percentage of Population

Notes: Data from ClinicalTrials.gov. We only consider the subset of lung cancer clinical trials that are inter-

ventional and not retrospective, observational, or real-world data (RWD). For consistency across alterations,

we define “discovery” of an alteration the year of its first clinical trial. The percentage of lung cancer patients

affected by each alterations on the horizontal axis is taken from Figure 1.

only slightly, it may take longer to conclude the trial.

Bayesian adaptive clinical trials will only help in our model insofar as they decrease the

total fixed R&D costs (e.g. through parallel testing), and the total number of patients M

needed per alteration. Still, Table 3 suggests that even for very low costs of R&D, as the

number of alterations n increases, the break-even price becomes so high that it is unlikely

that Bayesian adaptive clinical trials will make the economics sustainable for n large.

“Real-World” Data The medical profession has also been experimenting with a method-

ology that goes under the name Real World Data (RWD). This essentially entails using results

from past clinical trials, as well as observational data on patient treatments, to compare new

drugs to existing ones. In essence, given the small number of patients that can be enrolled in

studies, one can run “single-arm” trials without control group and compare the results with

those from previous trials (see Table 1 for examples of treatments that were approved with

Single-Arm (SA) trials). While this strategy clearly reduces the number of patients needed,

it does not solve the problem as n increases to a large number.
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6. A New Paradigm: Approving the Drug Discovery

Process

The existing solutions discussed above are driven by the same principle, namely that reg-

ulatory agencies approve each individual new drug. Our results show that this approach

breaks down when scientific achievements make it increasingly more likely that medicine

will approximate personalized treatment.

Recent advances in biomedicine (specifically, genome sequencing), the availability of rel-

atively inexpensive computational power, and developments in artificial intelligence, make

it possible to consider a novel alternative—a personalized drug discovery process. We first

describe this process, and then discuss an approval regime for the drug development process

as a whole, rather than for the individual drugs it identifies.

6.1. The Personalized Drug Discovery Process

The new drug discovery process would comprise the following steps:

A. Identification of driver alterations. For every tumor, there are thousands of alter-

ations, some of which are critical to tumor growth. Other alterations (called “passengers”)

have no or modest impact on carcinogenesis. Each altered gene can generate an altered pro-

tein that can have a different function than in normal tissues, thus driving the carcinogenic

process. Through the sequencing of tumor DNA and RNA, it is now possible to identify the

majority of these critical drivers.

B. Rebuilding the altered protein. Methodologies have recently been developed that

are able to rebuild the altered protein, a critical step in the personalized drug discovery

process. Examples are Google DeepMind machine learning methods such as AlphaFold 3

or image-based single-cell functional tests. Evidence shows that such methods are able to

rebuild the altered proteins with high level of precision. This process, which can now be

done quickly in silico, used to take years in the past through experiments at the bench in

wet laboratories.

C. Drug matching This step exploits super-computers to screen billions of molecules and

identify those (new or existing) that can “block” the altered protein from signalling tumor

growth, cancer cell survival and metastatization. In essence, the previous step determines

the structure of the altered protein responsible for aberrant signalling. The drug-matching
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step instead involves the search of compounds that are in fact able to stop the signalling of

the altered protein.

This step would likely produce a large number of potential compounds that are able to

“neutralize” the altered protein, but not all may be active enough or viable safe solutions

for actual use.

D. Drug discovery Out of the many compounds created or selected in the previous step,

the next task is to identify the ones that can be absorbed and tolerated by humans. The

methodology here is to use the existing (and ever increasing) knowledge of the molecular

structure of existing safe drugs, together with machine-learning methodologies, to find the

compounds that are indeed safe for the organism. It is also possible that the an effective

compound with the proper molecular structure may be found within the universe of existing

drugs, and thus ensure its safe use.

E. Drug production Once the new compound has been identified, the new personalized

drug must be physically produced. New automated machines, aided by 3D printing tech-

nologies, are considered to be viable technologies to produce ad-hoc drugs for individuals.

While the above steps may seem just a theoretical exercise, teams around the world have

already been working on some of these steps.

For instance, Ren et al. (2023) demonstrated for the first time that, by using Google

Deepmind AlphaFold and Artificial Intelligence, steps (A) to (D) can be carried out to iden-

tify a new inhibitor within one month. Specifically, they identified a novel hit molecule

against a novel target without an experimental structure for the treatment of hepatocellular

carcinoma. PandaOmics, a cloud-based software platform that applies AI and bioinformatics

techniques, was employed to identify the protein of interest responsible for carcinogenesis

(CDK20). Then, the authors leveraged Chemistry42, a comprehensive small-molecule drug

discovery platform, to generate compounds that inhibit the activity of the protein, based on

the structure predicted by AlphaFold. The selected molecules were synthesized and tested

in biological assays. Through this approach, the authors identified a small molecule hit com-

pound for the CDK20 alteration within 30 days from target selection, and after synthesizing

7 compounds only. A second round of AI-powered compound generation generated a more

potent hit molecule, ISM042-2-048. This new compound showed good CDK20 inhibitory

activity and a selective anti-proliferation property.

In another recent study, Abramson et al. (2024) show that AlphaFold 3 is able to provide

accurate structure prediction of biomolecular interactions, which provide further support on

31



the ability of ever-growing computational power to predict the necessary molecular structure

for drug development.

As a final example, Kornauth et al. (2022) conducted a feasibility study and prospectively

tested an image-based, single-cell functional approach to guide treatments in 143 patients

with advanced aggressive hematologic cancers. 56 patients (39%) were treated according

to functional results. In 54% of patients, there was a demonstrated clinical benefit over

traditional therapies.

Beyond cancer treatment, Zhang et al. (2025) provides a general overview of advances

in the drug development process that have been driven by AI. In particular, the authors

highlight how AI is accelerating all stages of drug development, from target identification (our

step A) to drug discovery (steps B through D). To sum up, from a science perspective, the

personalized drug development process we analyze aligns with broad trends in biomedicine;

our objective in this section is to highlight its economic implications.

In terms of production of personalized drugs (step E), Gao et al. (2021) and Wang et al.

(2023) discuss the new 3D printing technologies for personalized drug production. In 2016,

for instance, the FDA approved the first drug produced by 3D printing (SPRITAM). While

no targeted therapy cancer drug has been successfully produced by 3D printing as of yet, it is

conceivable that progress in these technologies will make it possible to produce personalized

cancer drugs in the future.

6.2. Economic Viability

Would such personalized drug-discovery process be viable from an economic standpoint?

Consider a new patient arriving at a hospital with a newly diagnosed tumor. This is when

the personalized drug discovery process would start. We now analyze its economics.

Let CPDDP (N) be the cost per patient of going through steps A through E of the PDDP

process. The cost per patient depends on the total number N of patients, as it may in-

clude e.g. fixed costs. With probability Q, the discovery process is successful—that is, a

personalized treatment is found. Let PNewDrug be the price charged to the patient for this

personalized treatment, and cNewDrug be the production cost (step E). Denote the survival

probability by snew. Unless snew = 1, there is still the possibility that another, better per-

sonalized treatment may be found over time for the same patient; we denote its annual

probability πnew. Now consider the case in which the pharma company fails to identify a

personalized treatment; this occurs with probability 1−Q. In this case, the patient is treated

using the best existing alternative, at a price for the patient of POldDrug, and a cost to the

company of cOldDrug.
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The present value for a (monopolistic) pharma company of carrying out the discovery

process as just described for the entire population of N patients who are affected by lung

cancer per year is thus:

PVPDDP = Q× ANew × (PNewDrug − cNewDrug)×N − CPDDP (N)×N (16)

+(1−Q)× AOld × (POld − cOld)×N. (17)

Here,

ANew =
1− πnew

R + πnew

(
1 +R

1 +R− (1− πnew)snewsother

)
(18)

is the discount factor from the revenues generated by the sale of the personalized drug to

the patient.19 This is determined by the survival probability snew, the probability πnew of a

new, better treatment being discovered, and the survival probability sother related to death

from causes other than cancer.

The last line in the expression for PVPDDP , i.e., Eq. (17), accounts for the fall-back plan

in case the drug discovery process does not deliver a new drug. In this case, the patient

is treated using one of the existing (but still targeted) drugs. In the expression, AOld is

the same as ANew except that the survival rate s and probability of competitor π depend

on which “Old drug” is used. Note that this present value takes into account the present

value of profits across all patients, but it does not involve the approval from the FDA, as

the process itself is assumed to have been approved already (see Section 6.5.).

6.3. The Costs of Personalized Drug Discovery Process

An important element in this calculation is whether the cost component CPDDP (N) is suffi-

ciently small to generate a positive present value for the Pharma industry as a whole. These

costs should also include the “rental cost” of supercomputers20 to perform these calculations.

Indeed, the main cost of personalized drug development may likely be the software/hardware

component, given that most of the steps involve a computer-based discovery process, except

for the initial steps in genome sequencing. It is plausible to expect increasing return to scale

initially: the same supercomputer can be used to find compounds for all patients, so costs

are amortized over large numbers of patients. This will eventually lower the cost per patient.

Regardless, the critical point is that costs are independent of the number n of alterations.

19This discount factor is equal to the one in Eq. (4) except that τ = 0 as there is no RCT in this case.
20A supercomputer is a high-performance computing machine designed to perform complex calculations

at extremely high speeds. It typically consists of thousands of interconnected processors working in parallel
to solve large-scale computational problems that are beyond the capabilities of standard computers.
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6.3.1. Argonne Aurora Supercomputer

We can obtain rough estimates of CPDD(N) by calculating the costs of purchasing a super-

computer and running year by year. Of course, this is a speculative exercise, but it is useful

to understand the order of magnitude of the costs involved. In addition, our estimates are

based on the current state of technology, and it is likely that costs will decrease over time.

As a case in point, consider the the Aurora supercomputer at the Argonne National

Laboratory. The cost of this computer is estimated at $500 million and it is predicted to

consumes 60 Megawatts once at peak performance.21 According to Vasan et al. (2023), with

only 256 nodes (out of 9000) of Aurora researchers were able to screen 2 billion molecules

per hour. Assuming that number of molecules screened increases linearly with number of

nodes deployed, researchers expect to be able to “screen up to a trillion of compounds per

hour if using all of Aurora’s computer resources” (Heinonen, 2024).

Assuming that the screening of 22 billion compounds is sufficient (on average) to find

the compound for one patient, then we can expect to be able to screen 306,600 patients

per year.22 Conservatively, we can thus assume that an Aurora computer can screen the

entire population of new patients per year with targetable cancer (110,000 patients per year

in the US). Assuming conservatively a depreciation rate of 100% over 4 years, this implies

that Aurora could screen 440,000 patients over its lifetime, and hence, the cost per patient

would be $1136/patient. In addition, Aurora consumes 60 MW at peak. Assuming the cost

of $60MWh, we obtain that the electricity cost of running Aurora is $31.5 million/year.23.

Dividing by 110,000 patients we obtain an electricity cost of $286 per patient.

All in all, we can estimate a cost of $1422/patient by dedicating an Aurora supercomputer

to personalized drug discovery process.

6.3.2. AlphaFold

Google DeepMind AlphaFold has been successful in predicting molecular structures that are

fundamental for the implementation of the Personalized Drug Discovery process. A difficulty

in assessing the true costs of using this technology is that, at present (February 2025),

researchers can access AlphaFold technology at essentially no cost for research purposes.

We would expect this to change with the implementation of a for-profit Personalized Drug

Discovery Process at scale.

However, a recent commentary paper by Callaway (2024) mentions that an open-source

21https://en.wikipedia.org/wiki/Aurora_(supercomputer) accessed on 10/12/2024.
22Aurora has 9000 nodes. Therefore, assuming linear scalability, 9000/256 = 35 patients/hour. Thus,

35/hour ×24 hours × 365 = 306,600 patients/year.
23This is computed as $60/MWh × 24 × 365 × 60MW = $31,5 million.
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replacement for AlphaFold3 is under development, and that training such an open-source

model is expected to cost about $1 million. Raouraoua et al. (2024) introduced “Massive-

Fold,” which improved the computing speed of AlphaFold by “reducing the computing time

from months to hours.” Pairing such models with a supercomputers like Aurora should

provide cost-effective strategies to support the Personalized Drug Discovery Process.

6.4. Pharma Companies’ Incentives

Consider the pharma industry as a whole. The present value of offering the personalized drug

discovery process to patients is given by Eq. (16). Alternatively, the pharma industry may

continue to offer the existing drugs, which yield a present value of PVexisting = AOld×(POld−
cOld)×N ; as above, we assume that no new clinical trials and/or discovery costs are necessary

for existing treatments. We can calculate the break-even price to ensure that the Pharma

industry is indifferent between moving to the Personalized Drug Discovery Process and the

current therapies. That is, we seek the price PNewDrug such that PVPDDP = PVexisting.

Two additional parameters are hard to gauge at this time: the probability Q that steps

(A) through (E) will deliver a drug, and the associated survival probability snew under the

new process. The survival probability affects the discount factor ANew, as the longer the

patient lives, the longer the pharma company can deliver the drug to the patient. Moreover,

it affects the probability that a better drug is discovered: If the survival probability from

the personalized drug is snew = 100%, then clearly the probability πnew of finding a better

drug drops to zero. The incentives are thus aligned for the pharma company to find the best

possible drug for that particular patient.

To circumvent this difficulty, we calculate the break-even margins for various combi-

nations of Q and snew, with the additional assumption that a higher snew also implies a

lower probability πnew of finding a better drug in the future. Specifically, we assume that

πnew = 30% if snew = 50% and πnew = 0 if snew = 100%, and we interpolate for intermediate

values. The break-even margin is

(PNewDrug − cNewDrug) =
CPDDP (N) +Q× AOld × (POld − cOld)

Q× ANew
(19)

As in the simulations in Section 4., we assume a margin per patient for treatment using

existing drugs of $4000/week, for a total of (POld − cOld) = $208, 000 per year, per patient.

We also set the annual survival probability for the existing treatment to sold=50%, halfway

between sC and sT in Table 2. Intuitively, the new PDDP will “compete” with existing

targeted therapies. In order for the new PDDP to compete with this profitable business, the

new drug must cover revenues lost from replacing the old treatment (whose margin we hold

fixed) with the new, as well as the additional costs to run the PDDP process. The values
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Table 4: Break-even Margin PNewDrug − cNewDrug

Probability of new survival probability snew

personalized treatment Q 60% 70% 80% 90% 100%
10% $145,848 $93,034 $53,338 $25,294 $7,784
20% $143,885 $91,782 $52,621 $24,953 $7,679
30% $143,231 $91,365 $52,382 $24,840 $7,644
40% $142,904 $91,156 $52,262 $24,783 $7,626
50% $142,708 $91,031 $52,190 $24,749 $7,616
60% $142,577 $90,948 $52,142 $24,726 $7,609
70% $142,484 $90,888 $52,108 $24,710 $7,604
80% $142,414 $90,843 $52,083 $24,698 $7,600
90% $142,359 $90,808 $52,063 $24,689 $7,597
10% $142,316 $90,781 $52,047 $24,681 $7,595

of the break-even margin are in Table 4. A higher probability of success Q, and especially

a higher survival probability snew, lead to a lower annual break-even margin per patient.

Intuitively, the higher the survival probability for the new personalized drug, the longer the

pharma company can receive revenues from it, and the less likely it is that a better drug can

be found. Both of these effects increase the discount factor ANew, and hence substantially

reduce the break-even margin. Similarly, a higher probability Q of finding a personalized

drug also decreases the break-even margin, as it makes it more likely the pharma company

will be able to sell the new drug for a longer period.

The values in Table 4 should be compared with the current cost of targeted therapies,

which we assume to be $208, 000 per year. As the survival probability increases, the potential

savings per patient are considerable. Even for snew = 60%, a realistic number given that we

set sold = 50% and that sT = 64% for the new treatment in Table 4, the breakeven margin

is just over $145,000 even for a probability of success of only Q = 10%. When snew is 70%,

the break-even margin to induce pharma companies to switch to PDDP is just over $90, 000,

less than half the assumed base cost of targeted therapies of $208, 000.

6.5. Approval of the Personalized Drug Discovery Process

The personalized drug discovery process described above is intended to provide new drugs

that are effective and safe for humans. This needs to be established in a randomized control

trial itself. The randomized clinical trial in this case would be set up in the same format

as in Section 3.. In particular, consider a number of new patients M , which we divide in

two groups: The test T group and the control C group. The C group will receive the best

existing drug from the start. The T group undergoes the steps A through E in Section 6.1.
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for the personalized drug discovery process (including, if necessary, the existing treatment

as a fall-back option). The patients in the two groups are then followed for τ periods. Note

that in this case we do not differentiate across alterations. All patients with lung cancer

are considered as just one group. All other steps are otherwise the same, and after the

observation period of τ periods the usual calculations are performed.

7. Discussion and Conclusions

In this paper, we focused on lung cancer as an example of the economic infeasibility of

personalized medicine under the current approval regime for drugs. We chose lung cancer

both because it is a relatively common diseases, and because considerable progress has been

made on discovering new biomarkers and developing targeted therapies. Our main finding

is that, despite these recent scientific and therapeutical breakthroughs, as the number of

alterations increase, it will become either uneconomical or prohibitively costly for society to

continue developing new drugs under the current approval regime.

Our theoretical results apply well beyond lung cancer treatments. Indeed, considerable

progress in targeted therapies has been made for other types of cancer as well, including

breast, colon, ovarian cancers, as well as hematological malignancies. Similar progress in

personalized medicine has also been made in the last decade in other areas of medicine,

including hematology, cardiology, neurology, and more. Recent research has pushed person-

alized medicine into the fight against antibiotic resistance, for instance.

The general point, however, is that personalized medicine is akin to turning all diseases

into rare diseases, which discourages discovery. Yet, new technologies based on machine

learning and artificial intelligence now allow for personalized drugs to be developed in silico.

We show that regulatory agencies’ approval of the process for drug discovery, as opposed to

individual therapies, can avoid the difficulties and the large costs undergoing the different

phases of the traditional drug discovery process (Phase I, II, and III) thereby providing

the proper incentives for researchers and pharma companies to develop new personalized

treatments. Indeed, we show that current technologies would make it economical for pharma

companies to switch to a Personalized Drug Development Process (PDDP), with substantial

gains for society. Moreover, assuming that technological advancements will continue, it is

also likely that the costs of PDDP per person will further decline in the future.

Finally, we have assumed that for a given disease (e.g. lung cancer) all genomic alter-

ations have identical incidence in the population, which decreases as research finds additional

alterations. In reality, some alterations are rarer than others. Our results thus suggest that

the current approval process will eventually hamper the discovery of targeted therapies for
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rare alterations, generating an asymmetry between patients with the same disease: Eventu-

ally, those with the rarest mutations will not have targeted therapies available, while others

with more common alterations will.
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A Appendix: Monte Carlo Simulations

In this appendix we describe the procedure to obtain the results in the calibration section.

We perform all calculations using the statistics for small-sample distributions through Monte

Carlo simulations. In particular, for a given sampleM of patients, withM/2 in the treatment

and control group, and with xT and xC as the number of successes for the treatment and

control group, respectively, the distribution under the null hypothesis pT = pC can be written

as the hypergeometric function:

Prob (XT = xT |XT +XC = t,H0) =

(
M/2
xT

)(
M/2
t− xT

)
(

M
t

) . (20)

The Exact Fisher Test rejects the null hypothesis pT = pC whenever the number of successes

in the treatment group xT is larger than a cutoff point c(t), i.e. xT > c(t), which can be

obtained by inverting the hypergeometric function in equation (20) at the desired level of

confidence 1− α.

For given n, we then proceed as follows:

• For each M running from M = 2 to M = N (only even numbers) we simulate

Sim = 100, 000 samples of M uniformly distributed random variables. We also simu-

late Sim = 100, 000 samples of random variable p̃T from the truncated normal distri-

bution described above. Denote the realization of p̃T in sample sim as psimT .

• We divide each sample in two groups of size M/2, and simulate the number of successes

(1’s) and fails (0’s) for each subgroup according to the probabilities psimT and pC , where

the former is itself simulated from the truncated normal distribution. Denote by xsim
T

and xsim
C the number of successes for each group, respectively, in simulation sim.

• Determine tsim = xsim
T + xsim

C and compute the 95% cutoff c(tsim) by inverting the

hypergeometric cumulative distribution in equation (20).24

• If xsim
T > c(tsim) we reject the null hypothesis that pT = pC , and thus assume that

FDA will accept the new treatment.

• The ex-ante probability of rejection can be computed as

Pr(Approval|M,n) = E
[
1xT>c(t)

]
=

1

Sim

Sim∑
sim=1

1xsim
T >c(tsim)

24The inverse of the hypergeometric cumulative distribution is available in standard statistical packages.
We use Matlab with c(t) = hygeinv(.95,M,M/2, t).
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Figure 11: Probability of Acceptance of New Treatment

where 1xT>c denotes the indicator function for xT > c.

• Given the Pr(Approval|M,n) for eachM , we can now move to compute the Pr(Approval|K,n)

by using expression

Pr (Approval|K,n) = 1−
K∑

M=2

Pr(M |K)Pr(Approval|M,n) (21)

where recall that Pr(M |K,n) is given by expression (5).

• We then repeat the whole procedure above for n = 2 to n = 10000.

To verify the simulation procedure and that the number of simulations Sim = 100, 000

are sufficient, we perform the same calculations as above using the normal distribution

approximation; the only difference is that the rejection of the null hypothesis H0 is computed

using the cutoff rule (1) for each simulated sample.

Figure 11 shows that indeed, the exact Fisher test is more likely to reject the new treat-

ment for small number of patients compared to the normal distribution. However, the two

distributions converge as the number M of patients in clinical trial increases. The figure also

shows that the number of simulations are sufficient to provide accurate statistics, as the case

with simulated normal random variables overlays the one from the theoretical formula.

A1. Standardized Marginal Improvement and Success Uncertainty

As noted at the end of Section 3.3., the fact that new targeted treatments are compared to

the best available treatment at the time of the trial implies that the standardized marginal
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Table 5: ALK Alteration and Approval Probabilities

Standardized marginal Probability of approval with
3-year improvement κ for sample M = 400 and
PFS two ∆p = pT − pC no uncertainty uncertainty on pT

Date (pC) ∆p = 10% ∆p = 15% 10% 15% 10% 15%
Chemo – 5.0 % 0.24 0.33 92% 100% 72% 81%
Crizotinib 2013 20.2% 0.16 0.24 64% 93% 55% 65%
Brigatinib 2018 43.0% 0.14 0.21 52% 86% 51% 61%
Alectinib 2015 50.6% 0.14 0.22 53% 87% 51% 60%
Lorlatinib 2021 65.0% 0.16 0.24 59% 93% 53% 57%
Hypothetical 75.0% 0.18 0.28 71% 98% 52% 51%

improvement κ may either decrease or increase as the number of alterations n increases. We

now illustrate this point using recent developments in treatments for ALK alterations as a

concrete example.

Column 3 in Table 5 shows the progression of treatment of patients with this alteration

(see T. Mok et al., 2020, D Ross Camidge et al., 2021 and Solomon et al., 2024). As it can

be seen, since 2013, the 3-year progression free survival (PFS) has increased from 5% with

chemotherapy, to 20% with the first targeted therapy in 2013 (Crizotinib), and all the way to

65% with Lorlatinib in 2021 (we inverted Brigatinib with Alectinib in the chronological order

to rank the treatment by progression-free survival rate in column 3.) When the benchmark

was chemotherapy with PFS = 5%, the standardized marginal improvement κ could be rather

large even for treatments with small improvements in PFS. Taking pC = PFS as our measure

of success, Columns 4 and 5 of Table 5 show the standardized marginal improvement κ for

two assumptions about the marginal improvements of each new therapy: ∆p = pT − pC =

10% and 15%. When the benchmark is chemotherapy, κ is 0.24 and 0.33, respectively,

for the two scenarios. Consider now the benchmark as being Crizotinib, which yields a

PFS = pC = 20.2%. Now, new treatments that improve over the new benchmark by the

same margins (i.e. 10% and 15%) would have κ equal 0.16, and 0.24, respectively, which are

far lower than they would be if chemotherapy was the benchmark. Indeed, Alectinib became

the benchmark in 2018; under this benchmark, the κ’s would decrease further for the same

marginal improvement. A lower κ implies a lower probability of acceptance, as shown in

equation (2), and thus a higher required number of patients for the randomized clinical trial.

As the benchmark pC increases, a second issue comes to play: any uncertainty around

the success of the new treatment pT further decreases the probability of acceptance for given

43



sample size, and thus the incentives to develop new drugs. To see this in a simple example,

consider first the probability of acceptance using a sample size of M = 400 patients. With

no uncertainty about pT and using formula (2), the probabilities of acceptance are as in

columns 6 and 7 in Table 5. Notice that the probability of acceptance is monotonic in κ. In

particular, for given M , the probability of acceptance follows a U-shape, with the minimum

probability of acceptance being for intermediate values of pC .

Assume now that pT is a truncated normal distribution with p̃T ∼ TrN(pT , σ
2
pT
, 0, 1).

We set σPT
= (pT − pC)/0.55: that is, Pr(pT < pC) = 30% under the normal distribution.

Columns 8 and 9 of Table 5 now show a nearly monotonically declining pattern of the

probability of acceptance as the benchmark pC increases. As pC increases and pT = pC +∆p

increases, we are shifting some mass to the left of distribution. In essence, it becomes

increasingly less likely to beat the benchmark. While this is just an example that depends

on our parametric assumptions, the general point is that there need not be a tight relation

between κ and the probability of acceptance when there is uncertainty about pT . In the limit,

if the baseline PFS is pC = 90%, it becomes very unlikely to find a successful competing

drug with pT > 90%.

B Proofs

Throughout this section, let

g(M) ≡

Φ
(
z(α)− κ

√
M
2

)
M ≥ 0

Φ(z(α)) M < 0.
(22)

B1. Proof of Proposition 1

For the remainder of this appendix, denote by E[·], Var[·], and Cov[·, ·] the expectations,

variances and covariances relative to the approximating density ϕKq,Kq(1−q) with mean Kq

and variance Kq(1− q). Thus, in particular,

PV (K,n) = (1− E[g(M)]) · C −K · cRCT (23)

where

C = A(PTT − c)N. (24)

To prove Proposition 1, we show that ∂/∂KE[g(M)] < 0, which implies the claim. By

the Normal Approximation assumption, we can write

E [g(M)] =

∫
1√

2πKq(1− q)
e−

1
2Kq(1−q)

(M−Kq)2g(M) dM.
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Differentiating wrto K yields∫ −1
2
K− 3

2√
2πq(1− q)

e−
1

2Kq(1−q)
(M−Kq)2g(M) dM

+

∫
1√

2πKq(1− q)
e−

1
2Kq(1−q)

(M−Kq)2
{
− −K−2

2q(1− q)
(M −Kq)2 − 1

2Kq(1− q)
2(M −Kq)(−q)

}
· g(M) dM

=

∫ (
− 1

2K

)
ϕKq,Kq(1−q)(M)g(M) dM (25)

+

∫ (
1

2K2q(1− q)
(M −Kq)2

)
ϕKq,Kq(1−q)(M)g(M) dM (26)

+

∫ (
1

K(1− q)
(M −Kq)

)
ϕKq,Kq(1−q)(M)g(M) dM. (27)

Adding up the terms in parentheses in Eqs. (25)–(27) yields[
−Kq(1− q) + (M −Kq)2 + 2Kq(M −Kq)

]
· 1

2K2q(1− q)
.

Moreover,

−Kq(1− q) + (M −Kq)2 + 2Kq(M −Kq) (28)

=−Kq(1− q) +M2 − 2MKq +K2q2 + 2MKq − 2K2q2

=−Kq(1− q) +M2 −K2q2

=− Var[M ] +M2 − E[M ]2 = M2 − E[M2].

Therefore,
∂E[g(M)]

∂K
=

E [(M2 − E[M2]) · g(M)]

2K2q(1− q)
=

Cov [M2, g(M)]

2K2q(1− q)
< 0 (29)

because g(M) is decreasing in M . Q.E.D.

B2. Proof of Proposition 2

The FOC for the optimal choice of K given q in Eq. (23) is

∂PVTT (n)

∂K
= −∂E[g(M)|K, q]

∂K
C − cRCT = 0. (30)

By the implicit function theorem,

∂K

∂C
= −

−∂E[g(M)|K,q]
∂K

−∂2E[g(M)|K,q]
∂K2 · C

.
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By assumption, PV is concave in K, and the denominator of the above fraction equals

∂2PVTT (n)/∂K
2, so it is negative. By Proposition 2, the numerator is positive, so overall

∂K/∂C > 0: that is, the optimal choice of K is increasing in C for fixed cRCT . Since

C = A(PTT −c)N , it follows that K∗ increases if PTT −c)N , i.e., profits per period, increase,

or if A is higher. The latter occurs if R τ , or π are lower, or if s is larger.

Furthermore,
∂K

∂cRCT

= − −1

−∂2E[g(M)|K,q]
∂K2 · C

which is negative overall because, as argued above, the denominator is negative. Thus, K∗

increases if cRCT decreases.

Finally,

∂K

∂κ
= −

−∂2E[g(M)|K,q]
∂K∂κ

−∂2E[g(M)|K,q]
∂K2

=
∂2E[g(M)|K,q]

∂K∂κ

−∂2E[g(M)|K,q]
∂K2

;

as argued above, since C > 0, the denominator is negative. In the numerator, from Eq. (29),

∂E[g(M)|K, q]

∂K
=

∂E [(M2 − E[M2]) · g(M)]

2K2q(1− q)

and so, differentiating wrto κ and noting that g(M) = Φ(z(α)) for M < 0 yields

∂2E[g(M)|K, q]

∂K∂κ
=

1

2K2q(1− q)
· ∂E [(M2 − E[M2]) · g(M)]

∂κ
=

=
1

2K2q(1− q)
·
∫ ∞

0

(M2 − E[M2]) · ϕ

(
z(α)− κ

√
M

2

)(
−
√

M

2

)
ϕKq,Kq(1−q)(M) dM =

=− 1

2K2q(1− q)
·
∫ ∞

−∞
(M2 − E[M2]) · ϕ

(
z(α)− κ

√
M+

2

)(√
M+

2

)
ϕKq,Kq(1−q)(M) dM

where M+ = max(M, 0). The integral in the above expression is equal to Cov[M2, ϕ(z(α)−
κ
√
M+/2)

√
M+/2]. If this covariance is negative, the numerator is positive, and so, since

the denominator is negative, ∂K/∂κ < 0 as claimed. Q.E.D.

B3. Proof of Proposition 3

Under Eq. (11), we replace the term (1 − q) in the approximating density of M with 1.

Throughout the proof of Proposition 1, the term (1− q) is treated as a constant; specifically,

in the derivation beginning with Eq. (28), the term Kq(1 − q) is never multiplied out.

Replacing (1− q) with 1 thus does not affect the argument, and furthermore, Kq is indeed

the variance of M under the Normal Approximation assumption 2. Hence, the argument in

the proof of Proposition 1 also implies that

∂

∂K

∫
1√

2πKq
e−

1
2Kq

(M−Kq)2g(M) dM < 0.
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In the above integral, K and q are symmetric, so a symmetric argument shows that the

integral is also decreasing in q, i.e., increasing in n. Under the Normal Approximation 2, the

probability of approval p(K,n) is 1 minus the above integral, and thus it is decreasing in n,

as claimed. Q.E.D.

B4. Proof of Proposition 4

Let n > n′ and denote by K and K ′ the optimal choices of sample sizes for n and n′,

respectively. By Proposition 3,

PVIII(K,n) = p(K,n) · C −K · cRCT < p(K,n′) · C −K · cRCT = PVIII(K,n′);

furthermore, since K ′ is optimal when there are n alterations, PVIII(K
′, n′) ≥ PVIII(K,n′).

Thus, as claimed, PVIII(K,n) < PVIII(K
′, n′). Q.E.D.

B5. Proof of Proposition 5

It is enough to show that p(K,n) → 0 as n → ∞ (since there are finitely many possible

values of K for every fixed N , the convergence is uniform). From Eq. (8), since 1 −
Φ (z(α)− κi

√
m) ∈ [0, 1]

pi(K,n) ≤
K/2∑
m=1

Pr[2m ≤ M ≤ 2m+ 1|K,n] = Pr[M ≥ 2|K,n] ≤ E[M |K,n]

2
=

K

2n
→ 0,

where the second inequality follows from Eq. (6) and Markov’s inequality. Q.E.D.
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