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ABSTRACT

We study cost-price dynamics in normal times and during inflation surges. Using microdata on 
firms’ prices and production costs we construct an empirical measure of price gaps—the deviation 
between a firm’s listed and optimal price. We then examine the mapping between gaps and price 
changes in the cross-section of firms and derive implications for inflation dynamics in the time-
series. In the microdata, pricing policies display state-dependence: firms are more likely to adjust 
prices as their price gap widens, a mechanism that becomes quantitatively significant when large 
aggregate cost shocks occur. In normal times, adjustment probabilities are approximately constant 
and the microdata conform with the predictions of time-dependent models (e.g., Calvo 1983). 
Conditional on a path of aggregate cost shocks extracted from the data, we show that a generalized 
state-dependent pricing model accounts well for the pre-pandemic era’s low and stable inflation 
and the nonlinear surge observed during the pandemic.
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Firms adjust output prices infrequently despite continuously evolving economic
conditions, leading their prices to drift temporarily from those that maximize flow profits.
In all models featuring nominal rigidities, the deviation between listed and optimal
prices—the price gap—determines firms’ pricing behavior as it reflects the evolution
of production costs since the last adjustment. What distinguishes different models is
how they map price gaps to price changes, with potentially important implications for
aggregate inflation. In time-dependent models (e.g., Taylor 1980; Calvo 1983), prices
have a fixed duration or adjust with a fixed probability. Given that firms set their
price equal to the optimal one upon adjustment, in these models expected price changes
are a linear function of price gap. In contrast, in state-dependent pricing models (e.g.,
Golosov and Lucas 2007) expected price changes are a nonlinear function of the price
gaps because both the change in prices conditional on adjustment and the adjustment
frequency are endogenous functions of the gap. While the distinction between time-
and state-dependent pricing is less significant when shocks to desired prices are small,
it becomes important—and the nonlinearities apparent—when large aggregate shocks hit
the economy.

The recent surge in inflation well illustrates these points. Figure 1 plots
the year-over-year percentage change in the producer price index for the Belgian
manufacturing sector alongside the average frequency of price adjustment from 1999:Q1
to 2023:Q4. Before the pandemic, both inflation and the average frequency remained low
and relatively stable, consistently with a linear mapping between expected price changes
and price gaps. However, as observed globally, starting in early 2021, the frequency
fluctuated sharply alongside a surge in inflation—hallmarks of state-dependent pricing
and, as we will show, nonlinear cost-price dynamics.1

In this paper, we construct an empirical measure of price gaps using microdata on
firms’ prices and costs. This measure allows us to study the mapping between gaps and
price changes in the cross-section of firms and derive its implications for the aggregate
cost-price dynamics in the time series. The state-dependent nature of firms’ pricing
policies is the salient feature emerging from the cross-sectional analysis, which implies a
nonlinear cost-price dynamicswhen large aggregate shocks induce correlated fluctuations
in desired prices. In contrast, when aggregate shocks are small, the mapping between

1See Blanco et al. (2024b) and Cavallo et al. (2024) for evidence of similar dynamics in the U.S. and other
developed economies.
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Figure 1: Aggregate inflation and frequency of price adjustment
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Notes. This figure shows the time series of PPI manufacturing inflation along with the annual frequency of
price adjustment. The former is computed as the year-over-year percentage change in the aggregate PPI.
The latter is calculated as a rolling average of the quarterly frequency of price adjustment over the previous
four quarters.

expected price changes and price gaps is observationally equivalent to that predicted
by a time-dependent model, resulting in linear cost-price dynamics.2 At the aggregate
level, we show that a state-dependent model calibrated to match cross-sectional cost-price
dynamics and fed with an aggregate cost sequence derived from microdata accurately
accounts for inflation in both normal times and during inflation surges.

Our dataset collects administrative records on product-level output quantities, sales,
and production costs at the quarterly frequency for Belgian manufacturing firms between
1999 and 2023. Using these data, we construct a notion of price gaps for individual
firms that accounts for the variation in costs, prices, and competitors’ prices. We
analyze the data through the lens of a tractable menu-cost model in the tradition of
the classic generalized state-dependent models proposed by Caballero and Engel (1993,
2007), Midrigan (2011), Nakamura and Steinsson (2010), Alvarez et al. (2016) and, more
recently, Auclert et al. (2024).3 Themodel nests a time-dependent Calvo (1983), as a special
case. The quantitative framework serves three purposes: deriving testable predictions
linking price changes to price gaps in microdata; establishing novel identification results
to recover key primitive parameters from cross-sectionalmoments of the joint distribution
of price changes and price gaps; and explaining aggregate inflation over time as a function

2See Dias et al. (2007), Gertler and Leahy (2008), Alvarez et al. (2017), and Auclert et al. (2024).
3Other seminal contributions include the works by Caplin and Spulber (1987), Caplin and Leahy (1991,

1997) and Dotsey et al. (1999) on state-dependent model and monetary neutrality.
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of aggregate costs.
Our analysis produces two main sets of results. At the micro-level, we document

strong evidence in favor of the state-dependent nature of firms’ pricing decisions. First, we
show that the frequency at which firms change prices—the extensive margin—increases
in the absolute value of their price gaps and hence can be well approximated by a
quadratic function. Second, the mapping between expected price changes and price gaps
is “S-shaped”, approximately linear at small gaps with a slope that matches the average
frequency of price adjustment, and highly nonlinear at large gaps with a steeper slope.
Third, when firms change prices, they do so to close the gap. Fourth, focusing on the
pandemic and post-pandemic period, we show how large aggregate cost shocks shifted the
entire distribution of price gaps, displacingmany firms away from their optimal target and
inducing large and correlated price adjustments along both the intensive and extensive
margins. On the other hand, this mechanism is not at work in “normal times”. In the
pre-pandemic period, characterized by low inflation, the price gap distribution is stable,
the frequency of price adjustment is roughly constant, and therefore the relationship
between price changes and gaps is linear. Altogether, these micro-facts indicate that
the cost-price dynamics can be well approximated by a time-dependent model in normal
times, but state dependence is needed to rationalize the effects of large aggregate shocks.

The second set of results pertains to the accounting of aggregate inflation in the time
series. Leveraging our microdata, we construct an aggregate cost index for the Belgian
manufacturing sector. Descriptive evidence shows how inflation and production costs
align closely throughout the entire sample period. However, there is stickiness in price
adjustment such that inflation moves less than costs. We also show that the sharp rise
and fall in costs (and intermediates cost, in particular), rather than a change in markups,
appears to be the main driver of the surge and subsequent drop in inflation observed
in the post-pandemic period. We then formally assess the capacity of our menu-cost
model to explain aggregate inflation. We compute a model-based inflation series after
feeding into the model our marginal cost index. Comparing this sequence with the data,
we show that the model tracks the high-frequency fluctuations in Belgian manufacturing
inflation remarkably well, both during the moderate pre-pandemic regime and during
the post-pandemic surge. Remarkably, the model captures the stable behavior of the
adjustment frequency pre-pandemic as well as the sharp jump following the onset of the
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pandemic, both in terms of timing andmagnitude. In contrast, a standard Calvomodel, fed
with the same cost sequence, accounts well for inflation in normal times but can explain
only about two-thirds of the inflation surge during the its recent surge.

Related literature. Earlier research provides evidence of the state-dependent nature
of firm pricing decisions (Klenow and Kryvtsov 2008; Gagnon 2009; Gautier and Saout
2015) and shows how this class of models can rationalize the empirical distribution
of price changes in the data (see the aforementioned references and Alvarez et al.
2022). Relatedly, Alvarez et al. (2019) and Karadi and Reiff (2019) present evidence of
state-dependent pricing through case studies of hyperinflation in Argentina andmajor tax
shocks in Hungary, respectively. More recently, Blanco et al. (2024a, 2024b), Bunn et al.
(2024), Cavallo et al. (2024), Gagliardone and Tielens (2024), and Morales-Jiménez and
Stevens (2024) apply state-dependent frameworks to analyze the recent inflation surge.
The key distinction between these studies and ours lies in our ability to construct a
high-frequency measure of price gaps at the firm level. As we have emphasized above,
this is the fundamental building block of both time- and state-dependent pricing models.
By analyzing how the size and frequency of price adjustment relate to price gaps in
the cross-section of firms and across different economic cycles, we can directly assess
the degree to which firms’ pricing strategies conform with the predictions of different
theories.

Our study also relates to the works of Eichenbaum et al. (2011) and Karadi et al.
(2024). The former uses data on prices and costs from a large food and drugs retailer to
develop a “reference price” metric. The latter employs microdata on supermarket prices
to formulate a notion of reset price, derived from the average price at which the same
product is offered by rivals. In our dataset, we can observe high-frequency cost and price
data for the entire Belgian manufacturing sector over almost three decades. This allows
us to construct an empirical measure of firm-level reset prices and price gaps that factors
in both the firms’ costs and the pricing of their competitors.

Finally, the results in this paper connect with our earlier work Gagliardone et al.
(Forthcoming) on the estimation of the slope of the cost-based New Keynesian Phillips
curve. Using microdata for the pre-pandemic period, we used a time-dependent Calvo
model to identify the structure parameters that enter the slope. The findings in this
paper lend additional empirical support to that identification strategy by showing that the
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relationship between price gaps and price changes is approximately linear in the absence
of large shocks, due to the stability of the adjustment frequency.

The paper proceeds as follows. Section 1 presents the theoretical framework and
derives testable implications. Section 3 describes our dataset and the empirical measures
of prices, cost, and price gaps. Section 4 provides empirical evidence showing that the
model predictions linking price adjustments with price gaps align with the microdata.
We outline the calibration process and provide model simulations in Section 6, showing
how the calibrated model explains the inflation time series and the frequency of price
adjustment, including the rise during the pandemic. Section 7 offers concluding remarks.

1 Theoretical framework

Our baseline framework is a variation of a standard discrete-time menu-cost model. To
fit the data, we allow for both random menu costs as in Caballero and Engel (2007) and
random free price adjustment as in the “CalvoPlus” model of Nakamura and Steinsson
(2010).4 As is standard (Alvarez et al. 2023), weworkwith a quadratic approximation of the
firm’s profit function and permanent idiosyncratic shocks. In addition, motivated by our
previous work (Gagliardone et al. Forthcoming), we allow for strategic complementarities
in price setting. This framework nests a standard Calvo (1983) model as a special case.

1.1 A tractable state-dependent pricing model

In each period 𝑡 , the economy is populated by a continuum of heterogeneous firms 𝑓 ∈[0, 1]
selling a single differentiated product under monopolistic competition facing a demand
function à la Kimball (1995). Using lowercase letters to denote the logarithm of the
corresponding uppercase variables, we denote by 𝑝𝑡 (𝑓 ) the firm’s price and by 𝑝𝑡 the
aggregate price index. Up to a first-order approximation around the symmetric steady
state, the latter is given by:

𝑝𝑡 ≈
∫
[0,1]

(
𝑝𝑡 (𝑓 ) − 𝜑𝑡 (𝑓 )

)
𝑑 𝑓 , (1)

where 𝜑𝑡 (𝑓 ) denotes a firm-specific mean-zero log-taste shock, i.i.d. over firms and time.
4See also Dotsey et al. (1999) for a treatment of random menu-cost models with idiosyncratic shocks in

a general equilibrium setting.
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Technology. Each firm operates with a constant return to scale production technology
𝑦𝑡 (𝑓 ) = 𝑧𝑡 (𝑓 ) + 𝑙𝑡 (𝑓 ), which uses a composite input 𝑙𝑡 (𝑓 ) and is characterized by total
factor productivity 𝑧𝑡 (𝑓 ). We assume that the latter evolves as a random walk, 𝑧𝑡 (𝑓 ) =

𝑧𝑡−1(𝑓 ) + 𝜁𝑡 (𝑓 ), where 𝜁𝑡 (𝑓 ) denotes an idiosyncratic shock that is mean zero, and i.i.d.
over time and across firms.
Firms’ nominal marginal cost is given by:

𝑚𝑐𝑡 (𝑓 ) =𝑚𝑐𝑡 + 𝑧𝑡 (𝑓 ). (2)

The term𝑚𝑐𝑡 captures an aggregate nominal cost shifter. Consistent with the empirical
evidence, we assume that𝑚𝑐𝑡 obeys a randomwalk𝑚𝑐𝑡 =𝑚𝑐𝑡−1+𝑔𝑡 , where 𝑔𝑡 captures an
aggregate shock, i.i.d. over time with mean 𝜇𝑔, drawn from a single-peaked, symmetric,
and smooth distribution. For analytical tractability, in what follows, we assume no trend
inflation (𝜇𝑔 = 0).5 We relax this assumption in the quantitative exercises of Section 6.

Profit maximization. Firms choose prices to maximize the present value of profits,
subject to nominal rigidities. Each firm pays a fixed cost 𝜒𝑡 (𝑓 ) when adjusting its price
from the price charged in the previous period. As in Caballero and Engel (2007), the
fixed cost 𝜒𝑡 (𝑓 ) is the realization of a random variable, i.i.d. between firms and time, and
uniformly distributed on [0, 𝜒]. As in the CalvoPlus model, we also assume that with
probability (1 − 𝜃𝑜) the fixed cost is zero, which implies that the firm can adjust its price
for free.

We denote by 𝑝𝑜𝑡 (𝑓 ) the firm’s static target price, that is, the price it would choose
absent nominal rigidities. Under Kimball preferences, a firm’s price elasticity of demand
increases in its relative price (𝑝𝑡 (𝑓 ) − 𝑝𝑡 ), which makes the desired markup decrease in
relative prices. As we show in Appendix A.2, this implies that 𝑝𝑜𝑡 (𝑓 ) is given by the sum
of the steady-state (log) markup, 𝜇 (𝑓 ), and a convex combination of the firm’s nominal
marginal cost and the price index:

𝑝𝑜𝑡 (𝑓 ) = (1 − Ω) (𝜇 (𝑓 ) +𝑚𝑐𝑡 (𝑓 )) + Ω(𝑝𝑡 + 𝜑𝑡 (𝑓 )), (3)

where the price index accounts for strategic complementarities in price setting. The scalar
Ω ∈ [0, 1) captures the strength of such complementarities. The taste shock 𝜑𝑡 (𝑓 ) shows

5As Nakamura et al. (2018), Alvarez et al. (2019), and Alvarez et al. (2022) show, an economy with zero
inflation provides an accurate approximation for economies where inflation is low, as the effect of low trend
inflation on firms’ decision rules is of second order.
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up in the target price as noise.
Following Alvarez et al. (2023), we take a quadratic approximation of the per-period

profit function around the static optimum 𝑝 𝑓 (𝑓 ) = 𝑝𝑜𝑡 (𝑓 ) and normalize it by steady-state
profits. This yields the following loss function measuring the cost of deviations of the
price from the target:

Π𝑡 (𝑓 ) ≈ −𝜎 (𝜎 − 1)
2(1 − Ω)

(
𝑝𝑡 (𝑓 ) − 𝑝𝑜𝑡 (𝑓 )

)2
,

where 𝜎 is the steady-state price elasticity of demand and steady-state profits are equal
to 1/𝜎 . Note how the weight on the loss function is increasing in the complementarity
parameter Ω. This is due to the fact that strategic complementarities increase the
curvature of the profit function, and therefore raise the firm’s desire to keep the price
close to the target relative to the cost of adjustment.

Let I𝑡 (𝑓 ) be an indicator function that equals one if the firm adjusts its price and
zero otherwise. Then, the value of the firm normalized by steady-state profits is given by:

𝑉𝑡 (𝑓 ) = max
{ 𝑝𝑜𝑡 (𝑓 ) , I𝑡 (𝑓 ) }∞𝑡=0

E0
∑︁
𝑡=0

𝛽𝑡
{
Π𝑡 (𝑓 ) − 𝜒𝑡 (𝑓 ) · I𝑡 (𝑓 )

}
.

The optimal pricing policy reduces to determining the optimal probability of price

adjustment, denoted by ℎ𝑡 (𝑓 ), and, conditional on adjustment, an optimal reset gap:

𝑥★𝑡 ≡ 𝑝𝑜𝑡 (𝑓 ) − 𝑝★𝑡 (𝑓 ),

which captures the difference between the static target price and 𝑝★𝑡 , the (dynamic) reset
price set by a firm that decides to adjust its price.6 As is standard in state-dependent
models, the solution of the firm problem has a “Ss flavor”.

We now define the key object in our empirical analysis, the firm’s (ex-ante) price gap
in period 𝑡 , 𝑥𝑡−1(𝑓 ). The gap serves as a state variable of the firm’s problem as it captures
the difference between the target price (after the realization of shocks in period 𝑡 ) and the
price set by the firm in the previous period (𝑡 − 1):

𝑥𝑡−1(𝑓 ) ≡ 𝑝𝑜𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 )

=

(
𝑝𝑜𝑡−1(𝑓 ) + (1 − Ω) (𝑔𝑡 + 𝜀𝑡 (𝑓 )) + Ω(𝑝𝑡 − 𝑝𝑡−1)

)
− 𝑝𝑡−1(𝑓 ).

(4)

6Note that the optimal reset gap 𝑥★𝑡 varies over time due to aggregate shocks but it does not have an 𝑓
subscript. This is because, to a first-order approximation, the idiosyncratic shocks, 𝜁𝑡 (𝑓 ) and 𝜑𝑡 (𝑓 ), enter
both prices in an identical way and therefore cancel out once we take the difference. Important for this
result is the assumption that idiosyncratic shocks evolve as a random walk.
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The second line follows from replacing 𝑝𝑜𝑡 (𝑓 ) using Equation (3), replacing𝑚𝑐𝑡 (𝑓 ) using
Equation (2), and then using the expressions describing the processes for the aggregate
and idiosyncratic components of 𝑚𝑐𝑡 (𝑓 ). The price gap 𝑥𝑡−1(𝑓 ) is measured before
the firm decides whether to adjust its price (ergo, the “ex-ante”), but incorporates the
realization of all time 𝑡 shocks through their impact on 𝑝𝑜𝑡 (𝑓 ). Here, 𝜀𝑡 (𝑓 ) ≡ 𝜁𝑡 (𝑓 ) +
Ω

1−Ω𝜑𝑡 (𝑓 ) denotes a composite idiosyncratic shock with mean zero and variance denoted
by 𝜎2

𝜀 , which combines idiosyncratic technology and taste shocks. We assume that 𝜀𝑡 (𝑓 )
is drawn from a unimodal, symmetric, and smooth distribution. Finally, due to pricing
complementarities, the inflation rate 𝑝𝑡 − 𝑝𝑡−1, enters the price gap because it affects the
evolution of competitors’ prices.

Let ℎ𝑡 (𝑥𝑡−1) be the probability that a firm adjusts the price at 𝑡 conditional on its
price gap. Then the solution to the firm’s problem can be expressed as a function of the
price gap:

𝑝𝑜𝑡 (𝑓 ) − 𝑝𝑡 (𝑓 ) =

𝑥★𝑡 w. p. ℎ𝑡 (𝑥𝑡−1)

𝑥𝑡−1(𝑓 ) w. p. 1 − ℎ𝑡 (𝑥𝑡−1).
(5)

Firms adjust their price with probability ℎ𝑡 (𝑥𝑡−1). Upon adjustment, they set their price
to 𝑝★𝑡 (𝑓 ). If they do not adjust their price, they keep their gap at 𝑥𝑡−1(𝑓 ).

We now characterize the optimal reset probability and the optimal reset gap. The
derivations are provided in Appendix A.

Probability of price adjustment. As in a standard “Ss” framework, the adjustment
probabilities are endogenous variables that depend on the distance between the optimal
reset gap 𝑥★𝑡 and the price gap 𝑥𝑡−1(𝑓 ).

Let𝑉 𝑎𝑡 be the firm’s value if it resets its price to 𝑝★𝑡 (𝑓 ) and𝑉𝑡 (𝑥𝑡−1(𝑓 )) its value if it
does not. As we show below, the former depends on 𝑥★𝑡 (𝑓 ) while the latter is a function
of 𝑥𝑡−1(𝑓 ). The probability that a firm adjusts its price positively depends on the gap
between the two values. Dropping the firm index to ease notation, given the random
menu cost and the random possibility of a free price adjustment, ℎ𝑡 (𝑥𝑡−1)—also known as
the generalized hazard function (GHF)—is given by:

ℎ𝑡 (𝑥𝑡−1) = (1 − 𝜃𝑜) + 𝜃𝑜 · Pr(𝑉 𝑎𝑡 − 𝜒𝑡 (𝑓 ) ≥ 𝑉𝑡 (𝑥𝑡−1))

= (1 − 𝜃𝑜) + 𝜃𝑜 · min
{
𝑉 𝑎𝑡 −𝑉𝑡 (𝑥′𝑡−1)

𝜒
, 1

}
, (6)
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where the second line uses the assumption that the distribution of the menu cost is
uniform. The expression above shows that the probability of price adjustment in a given
period, ℎ𝑡 (𝑥𝑡−1), depends, among other factors, on its price gap 𝑥𝑡−1(𝑓 ). With no trend
inflation (and symmetric profit function), the minimum of the GHF is achieved when
𝑥𝑡−1 = 0 andℎ𝑡 (0) = (1−𝜃𝑜), the probability of a free price adjustment. Also, observe that,
as the upper bound for the menu cost 𝜒 approaches infinity, the adjustment frequency
becomes exogenous and converges to (1− 𝜃𝑜). Thus, as a limiting case, the model nests a
time-dependent Calvo model parameterized by 𝜃𝑜 .

The following lemma shows that the GHF can be accurately approximated in a
neighborhood of the zero gap by a quadratic function of the price gap.

Lemma 1. Assume stationarity of the value function, 𝑉𝑡 (𝑥) = 𝑉 (𝑥). Up to a second-order

approximation around 𝑥★𝑡 = 0, the GHF is given by:

ℎ(𝑥𝑡−1(𝑓 )) = (1 − 𝜃𝑜) + 𝜙 · ((𝑥𝑡−1(𝑓 ))2 + 𝑜
(
(𝑥𝑡−1(𝑓 ))2) . (7)

where 𝑜 ((𝑥 (𝑓 ))2) is an approximation error and 𝜙 ≡ − 𝜃0

2𝜒
𝜕2𝑉 (𝑥)
𝜕𝑥2

��
𝑥=0.

Proof. See Appendix A.3. □

Lemma 1 states that, under a quadratic approximation, the GHF is U-shaped and
symmetric around the point where the price gap is zero. At this point, the adjustment
probability is at its local minimum, corresponding to the probability of a free price
adjustment (1 − 𝜃𝑜). As price gaps widen, the adjustment probability monotonically
increases. The parameter 𝜙 controls the sensitivity of the GHF to changes in gaps (i.e.,
the “steepness” of the parabola).

Optimal reset gap. We now characterize 𝑉𝑡 (𝑥𝑡−1), 𝑉 𝑎𝑡 , and therefore 𝑥★𝑡 . As discussed,
𝑝𝑜𝑡 (𝑓 ) = 𝑥𝑡−1(𝑓 ) + 𝑝𝑡−1(𝑓 ) for a firm that does not adjust its price. In this case, the value
of the firm is given by:

𝑉𝑡 (𝑥𝑡−1) = Π𝑡 (𝑥𝑡−1) + 𝛽 E𝑡
{
ℎ𝑡+1(𝑥𝑡 ) ·𝑉 𝑎𝑡+1 +

(
1 − ℎ𝑡+1(𝑥𝑡 )

)
·𝑉𝑡+1(𝑥𝑡 )

}
.

It is a function of current profits Π𝑡 , evaluated at the price gap 𝑥𝑡−1(𝑓 ), and of the
discounted expected continuation value. The latter depends on the probability of
adjustment at time 𝑡 + 1, ℎ𝑡+1(𝑥𝑡 ). The value of the firm conditional on adjusting is the
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optimized value of 𝑉 with respect to the reset price 𝑝★𝑡 :

𝑉 𝑎𝑡 = max
𝑝★𝑡

𝑉𝑡
(
𝑝𝑜𝑡 (𝑓 ) − 𝑝★𝑡

)
.

Equivalently, the optimal reset gap 𝑥★𝑡 solves the first-order condition 𝑉𝑡 (𝑥★𝑡 ) = 0.
Under our assumptions of no trend inflation and a quadratic profit function, 𝑥★𝑡 ≈ 0

(see, e.g., Alvarez et al. 2016). The absence of trend inflation implies that the static
optimal price provides a good approximation of the dynamic optimal price (𝑝★𝑡 (𝑓 ) ≈
𝑝𝑜𝑡 (𝑓 )). If there are no strategic complementarities, the approximation is exact.7 For our
purposes, this result has important practical implications. Our data allow us to construct
a measurable counterpart of the price gap 𝑥𝑡−1(𝑓 ) in terms of observables, as Equations
(3) and (4) suggest, which allows us to directly test the implications of the model in the
microdata. In the analytical exercises that follow, we assume that 𝑥★𝑡 ≈ 0. In Section 5, we
verify numerically that this is a good approximation.

Aggregate inflation. Next, we describe the implications of firm-level price adjustment
for aggregate inflation. Given the solution of the firm’s problem in Equation (5) and using
the formula for the price index in Equation (1), we can express aggregate inflation 𝜋𝑡 as:

𝜋𝑡 =

∫ (
𝑝𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 )

)
𝑑 𝑓 =

∫
ℎ𝑡 (𝑥𝑡−1(𝑓 )) ·

(
𝑝★𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 )

)
𝑑 𝑓

=

∫
ℎ𝑡 (𝑥𝑡−1(𝑓 )) 𝑑 𝑓 ·

∫ (
𝑝★𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 )

)
𝑑 𝑓 +𝐶𝑜𝑣

(
ℎ𝑡 (𝑥𝑡−1(𝑓 )) , (𝑝★𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 ))

)
(8)

The first line shows that, to a first-order approximation, aggregate inflation is an average
of firm-level price adjustment, which can be expressed as the product of a firm’s
adjustment probability and its price change conditional on adjustment. The second line
decomposes inflation into (i) the product of the average frequency of price adjustment
and the average distance between the ideal reset price and the previous period price and
(ii) the covariance between the variables.

With state-dependent pricing, the adjustment probability is an endogenous object
that, as we will see, increases nonlinearly with the absolute value of the price gap. With

7Intuitively, under our assumptions, the combined shocks that affect firms’ pricing decisions (i.e., the
sum of aggregate and idiosyncratic shocks) is a highly persistent variable that approximately evolves as
a random walk. Therefore, the optimal dynamic price 𝑝★𝑡 (𝑓 ) remains very close to the static optimum
𝑝𝑜𝑡 (𝑓 ). Under strategic complementarities, the optimal dynamic price is a linear combination of the expected
present values of future costs and future inflation rates. Hence, it is more volatile than the static price
because inflation does not follow a random walk. See Alvarez et al. (2023) for a treatment of menu-cost
models with strategic complementarities in continuous time.
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Calvo pricing, the adjustment probability is fixed and constant between firms; the price
adjustment is a linear function of the price gap, and inflation is equal to the product of
the constant adjustment frequency and the average price gap.

As in Caballero and Engel (2007), Golosov and Lucas (2007) and, more recently,
Karadi et al. (2024), a “selection effect” increases the degree of monetary neutrality in the
economy with large shocks. This force is captured by the covariance term in Equation
(8). Firms that are more likely to adjust are also those that change their prices the
most (conditional on adjustment). That is, the gap between 𝑝★𝑡 (𝑓 ) and 𝑝𝑡−1(𝑓 ) positively
co-moves with 𝑥𝑡−1 and therefore with ℎ𝑡 (𝑥𝑡−1). Thus, the selection effect positively
contributes to generating aggregate inflation.

2 Testable implications and identification results

We now discuss testable implications of our model and derive identification results used
for calibration purposes.

2.1 The generalized hazard function

Figure 2 illustrates the relationship between price gaps and the extensive margin of price
adjustments in the stationary equilibrium. The horizontal axis depicts the steady-state
probability density function of price gaps, denoted by 𝑓 (𝑥𝑡−1), which is unimodal and
bell-shaped. The vertical axis shows the GHF,ℎ𝑡 (𝑥𝑡−1), the probability of price adjustment
at different points in the price gap distribution. Under our assumptions, it is U-shaped and
centered around 𝑥𝑡−1 = 0. As discussed above, the GHF reaches its minimum precisely at
this point, ℎ(0) = (1−𝜃 0), matching the free adjustment probability. Given the realization
of the shocks affecting 𝑝𝑜𝑡 (𝑓 ), firms in the right (left) tail of the price gap distribution
operate with a suboptimally low (high) markup and are therefore more likely to increase
(decrease) their price relative to the price they previously changed.

We derive an expression relating the frequency of price adjustment—themeasurable
counterpart of the GHF—to a second-order (even) polynomial in the price gaps. Formally,
we partition the price gap distribution into a countable set of quantiles, with the lowest
quantiles containing firms with the most negative gaps. We refer to these quantiles as
“bins" and denote them by𝑏 ∈ B. Within each bin, we compute the average price gap (𝑥𝑏 ≡
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Figure 2: Generalized hazard function and distribution of price gaps
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Notes. This figure shows the generalized hazard function (GHF, ℎ(𝑥𝑡−1) as a function of the underlying
distribution of price gaps 𝑓 (𝑥𝑡−1).)∫
𝑓 ∈𝑏 𝑥𝑡−1(𝑓 )𝑑 𝑓 ) and the dispersion of gaps within the bin (𝜎2

𝑏
≡

∫
𝑓 ∈𝑏 (𝑥𝑡−1(𝑓 ))2𝑑 𝑓 − 𝑥2

𝑏
).

We work under the assumption bins are sufficiently narrow so that the variance within a
bin is smaller than the squared mean (𝜎2

𝑏
≤ 𝑥2

𝑏
for all 𝑏 ∈ B). We show in Appendix A.6

that this assumption is satisfied by our definition of bins. The next proposition derives
the average frequency of price adjustment for a bin and shows how to use it to identify
the frequency of free price changes using microdata.

Proposition 1. The average frequency of price adjustment in bin 𝑏 is given by:

ℎ𝑏 ≡
∫
𝑓 ∈𝑏

ℎ(𝑥𝑡−1(𝑓 ))𝑑 𝑓 = (1 − 𝜃𝑜) + 𝜙
(
𝑥2
𝑏
+ 𝜎2

𝑏

)
+ 𝑜 (𝑥2

𝑏
), (9)

Restricting the estimation sample to bins in a sufficiently small neighborhood around 𝑥𝑏 = 0,
the estimator 𝑎0 of the following cross-sectional regression model recovers the probability of

free price adjustment (1 − 𝜃𝑜 ):

ℎ𝑏 = 𝑎0 + 𝑎1 · 𝑥2
𝑏
+ 𝑢𝑏, (10)

where 𝑢𝑏 ≡ 𝜙𝜎2
𝑏
+ 𝑜 (𝑥2

𝑏
) denotes the error term.

Proof. See Appendix A.4. □

Conditional on the GHF being well approximated by a U-shaped function of price gaps,
Proposition 1 offers a robust method for estimating 𝜃𝑜 using microdata on the average
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frequency of adjustment and average price gaps. We will rely on this identification result
for model calibration, as detailed in Section 6.1.

2.2 The mapping from price gaps to price changes

Endogenous fluctuations in the probability of price adjustment are the main driver of
nonlinear shock transmission in state-dependent models. To illustrate this and establish
testable implications, we derive the mapping from price gaps to price changes along the
price gap distribution.

We again partition the distribution of price gaps into equal-frequency bins
(quantiles). Denote by 𝛾𝑏 ≡

∫
𝑓 ∈𝑏 ((𝑥 (𝑓 ) − 𝑥𝑏)/𝜎𝑏)

3𝑑 𝑓 the skewness of price gaps within
a bin 𝑏 and define bins sufficiently small so that |𝛾𝑏 | ≤ 1 for all 𝑏 ∈ B.8 The following
proposition characterizes inflation within a bin (i.e., the average within-bin price change)
as a function of the average price gap of the bin:

Proposition 2. The inflation rate within a bin is given by:

𝜋𝑏 ≡
∫
𝑓 ∈𝑏

(
𝑝𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 )

)
𝑑 𝑓 = 𝜙0

𝑏
· 𝑥𝑏 + 𝜙 · 𝑥3

𝑏
+ 𝜔𝑏 . (11)

where 𝜙0
𝑏
≡ 1− 𝜃𝑜 + 3𝜙𝜎2

𝑏
is a bin-specific coefficient and 𝜔𝑏 ≡

(
𝛾𝑏𝜎

3
𝑏
+𝑜 (𝑥3

𝑏
)
)
is small when

the bins are sufficiently narrowly defined.

Proof. See Appendix A.5. □

Proposition 2 states that the inflation rate within a bin can be well approximated by
a third-order (odd) polynomial of the gaps. It is straightforward to derive the analog of
Equation (11) in the case of a time-dependent Calvo model. Given a constant exogenous
hazard rate ℎ𝑐 := (1 − 𝜃𝑐), we have:9

𝜋𝑏 = (1 − 𝜃𝑐) · 𝑥𝑏 . (12)

The binned scatterplot in Figure 3 visually represents the mapping from price
gaps to price change in menu-cost model (gray circles) and in the Calvo model (gray
diamonds). The dashed lines show fitted values from a regression of bin-level inflation

8We show that this condition is met given our definition of bins in Appendix A.6.
9In a Calvo model, E[𝑝𝑡 (𝑓 ) |I𝑡 (𝑓 )] = E[𝑝𝑡 (𝑓 ) |𝑝★𝑡 (𝑓 ), 𝑝𝑡−1 (𝑓 )] = (1 − 𝜃𝑐 )𝑝★𝑡 (𝑓 ) + 𝜃𝑐𝑝𝑡−1 (𝑓 ), where

I𝑡 (𝑓 ) denotes the information set of a firm entering period 𝑡 . Using the approximation 𝑝★𝑡 (𝑓 ) ≈ 𝑝𝑜𝑡 (𝑓 ) and
rearranging, we obtain the equation in the text.
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Figure 3: Nonlinear price dynamics
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Notes. In this figure, we partition the distribution of price gaps into quantiles (𝑏) and plot the average price
gap of each bin, 𝑥𝑏 , against the average logarithmic price change for observations in the same bin, 𝜋𝑏 . The
gray dots represent simulations of ourmenu-cost model, while the gray diamonds correspond to simulations
from a Calvo model calibrated to the same average frequency of price adjustment. The dashed lines depict:
(i) the fitted values of a regression of bin-level inflation on a polynomial in the first and third orders of
the average gap, as specified by Equation (11) for the menu-cost model; and (ii) the fitted values from a
regression of bin-level inflation on a first-order polynomial in the average gap, as specified by Equation (12)
for the Calvo model.

on either a polynomial including the first and third orders of the average gap (Equation
(11)) or a first-order polynomial in the average gap (Equation (12)). When price gaps
are sufficiently close to zero, the third-order term becomes negligible, making inflation
within a bin proportional to the corresponding price gap. As a result, firms operating
near their optimal price exhibit linear pricing dynamics in both state- and time-dependent
models. This result underlies the approximate equivalence of these two classes of models
in response to small shocks, as illustrated in Gertler and Leahy (2008), Alvarez et al. (2017),
and Auclert et al. (2024).

The cubic term arises from the state dependence of firms’ pricing decisions and, as
gaps widen, introduces the potential for nonlinear inflation dynamics. It captures the fact
that firms in the tails of the price gap distribution are more likely to adjust prices. In this
case, the data-generating process for inflation within a bin can be approximated by a cubic
expression in Equation (11).
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Figure 4: Large versus small aggregate cost shocks
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Notes. This figure reports the price gap distribution in steady state (black solid line) and after a small and a
large aggregate cost shock (black dashed lines).

2.3 The impact of aggregate cost shocks

Aggregate cost shocks, that is, shocks that do not average out, impact optimal reset prices
of all firms in the economy. When these shocks are large, the entire distribution of price
gaps shifts, and a substantial number of firms are displaced into regions of the price gap
distribution where the GHF is steep. This displacement increases the degree of monetary
neutrality in the economy.

Figure 4 illustrates this point. In the spirit of the exercise in Cavallo et al. (2024), we
shock the economy in its stationary equilibrium with an unexpected cost shock 𝑔𝑡 > 0,
which increases the marginal cost for all firms. The left panel shows the effect of a small
shock, while the right panel shows the effect of a large shock. The solid lines represent
the GHF before the aggregate shocks. The dashed lines show the post-shock distributions.

A small aggregate shock induces a small shift in the price gap distribution, with
little or no impact on the average probability of price adjustment. In contrast, pushes a
significant number of firms away from their target price, widening the average gap in the
economy. This, in turn, leads to a substantial rise in adjustment frequency: more firms
seek to raise prices, while fewer opt to lower them. Under these conditions, the cubic
term in Equation (1) matters, driving aggregate inflation beyond what is explained by the
increase in the average gap alone.
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3 Data and measurement

We assemble a micro-level dataset that covers the manufacturing sector in Belgium
between 1999 and 2023. The dataset is compiled from administrative sources and contains
information on firms’ pricing and production decisions at the business cycle (quarterly)
frequency, with a detailed snapshot of firm’s variable production costs (labor costs
and intermediates). This dataset extends and enriches the one in Gagliardone et al.
(Forthcoming) in two significantways.10 First, the data inGagliardone et al. (Forthcoming)
cover a period characterized by low and stable inflation (1999:Q1 to 2021:Q1). We extend
the time-series dimension to include the recent inflation surge and subsequent tapering
(2021:Q2 to 2023:Q4). Second, we merge new microdata that allow us to accurately
measure the frequency of price adjustment.

3.1 Measurement of prices, costs, and price gaps

The unit of observation in our data is a firm-industry pair. Our final dataset tracks
5, 348 domestic firm-industry pairs, denoted by a lower-script 𝑓 , distributed across 169
narrowly defined manufacturing industries (4-digit NACE rev.2 product codes), denoted
by lower-script 𝑖 .

Price indices. For each domestic firm, we use PRODCOM data on product-level
domestic unit values (sales over quantity sold) to construct a firm-industry price index
that aggregates domestic price changes across the products sold by firm 𝑓 in industry 𝑖:11

𝑃𝑓 𝑡

𝑃𝑓 𝑡−1
=

∏
𝑝∈P𝑓 𝑡

(
𝑃𝑝𝑡

𝑃𝑝𝑡−1

)𝑠𝑝𝑡
, (13)

where P𝑓 𝑡 represents the set of 8-digit products manufactured by the firm, 𝑃𝑝𝑡 is the unit
value of product 𝑝 in P𝑓 𝑡 , and 𝑠𝑝𝑡 is a Törnqvist weight given by the average within-firm
sales share of the product between 𝑡 and 𝑡 − 1, 𝑠𝑝𝑡 ≡

𝑠𝑝𝑡+𝑠𝑝𝑡−1
2 .

Using data fromPRODCOMand from the customs declarations filed by foreign firms
exporting to Belgium, we construct firm 𝑓 competitors’ price index by aggregating the

10We refer to Gagliardone et al. (Forthcoming) for details about the data sources and variable definitions.
11PRODCOM surveys all Belgian firms involved in manufacturing production with more than 10

employees, covering over 90% of production in each NACE 4-digit industry. We recover domestic values
and quantities sold by combining information from PRODCOM with international trade data on firms’
product-level exports (quantities and sales).
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domestic price changes of products sold by domestic and international competitors selling
in the same industry as 𝑓 (F𝑖 ):

𝑃
−𝑓
𝑖𝑡

𝑃
−𝑓
𝑖𝑡−1

=
∏

𝑘∈F𝑖\𝑓

(
𝑃𝑘𝑡

𝑃𝑘𝑡−1

)𝑠−𝑓
𝑘𝑡

, (14)

where 𝑠−𝑓
𝑘𝑡

≡ 1
2

(
𝑠𝑘𝑡

1−𝑠𝑓 𝑡 +
𝑠𝑘𝑡−1

1−𝑠𝑓 𝑡−1

)
represents the Törnqvist weight assigned to competitor 𝑘

given by the average residual revenue share of competitor 𝑘 in the industry (excluding
firm 𝑓 ’s revenues).

Finally, we recover the times series of firms’ prices (in levels) by concatenating the
price indices in Equation (13), 𝑃𝑓 𝑡 = 𝑃𝑓 0

∏𝑡

𝜏=𝑡0
𝑓
+1

(
𝑃𝑓 𝜏/𝑃𝑓 𝜏−1

)
, where 𝑡0

𝑓
denotes the first

quarter when 𝑓 appears in our data. We set the base period 𝑃𝑓 0 to one for all firms.
As discussed in the following section, this normalization is one rationale for removing
firm-fixed effects from our empirical measures of price gaps. The series of competitors’
prices, 𝑃−𝑓

𝑖𝑡
, is constructed similarly, concatenating the price indices in Equation (14).

Frequency of price adjustment. We use micro-level records from the National
Bank of Belgium Business Survey (NBB-BS) to accurately measure the frequency of
price adjustment. This survey regularly interviews a representative sample of firms
across manufacturing industries about their pricing decisions. Similar to the official
Producer Price Index (PPI) data collection, the NBB-BS asks firms whether they increased,
decreased, or maintained the price of a specific product in their portfolio. Using this
information, we define a Boolean variable that equals one if a firm reports adjusting
prices at least once within a given quarter relative to the previous month. Averaging
this variable across firms and industries in each quarter, we compute the manufacturing
sector’s average frequency of price adjustment (ℎ𝑡 ).

Information on firms’ price adjustments from the NBB-BS also helps filter out
spurious price changes in the microdata. As discussed, our price measure is derived
from product-level unit values, which tend to overstate the frequency of small price
changes due to minor measurement errors, as shown by Eichenbaum et al. (2014) and
Cavallo and Rigobon (2016). To address this issue, we combine firm-level price changes
with information on price adjustment frequency from the NBB-BS to define firm-specific
thresholds, 𝜅+ and 𝜅−, such that small price variations within these bounds are treated as
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no price update:

I+
𝑓 𝑡
= 0 ⇐⇒ Δ𝑝 𝑓 𝑡 < 𝜅

+
ℎ
·𝑉𝑎𝑟 𝑓 (Δ𝑝 𝑓 𝑡 ) if Δ𝑝 𝑓 𝑡 > 0

I−
𝑓 𝑡
= 0 ⇐⇒ Δ𝑝 𝑓 𝑡 > −𝜅−

ℎ
·𝑉𝑎𝑟 𝑓 (Δ𝑝 𝑓 𝑡 ) if Δ𝑝 𝑓 𝑡 < 0

To account for different degrees of upward and downward nominal rigidity in the data, we
set the thresholds 𝜅+ = 0.75 and 𝜅− = 0.87 to separately match the average frequency of
upward and downward price changes measured using the NBB-BS microdata:

∑
𝑡

∑
𝑓 I

+
𝑓 𝑡
=

ℎ+ and
∑
𝑡

∑
𝑓 I

−
𝑓 𝑡
= ℎ−, where ℎ+ + ℎ− = ℎ.12

Marginal cost indices. To derive a firm-level marginal cost index, we assume a cost
structure in which the nominal marginal cost of a firm is proportional to its average
variable costs: 𝑀𝐶𝑛

𝑓 𝑡
= (1 + 𝜈 𝑓 )𝐴𝑉𝐶 𝑓 𝑡 . The coefficient 𝜈 𝑓 captures the curvature of the

short-run cost function, and it is inversely related to the firm’s short-run returns to scale
in production (𝜈 𝑓 ≡ 1/𝑅𝑆 𝑓 −1). Using the definition of average variable costs (total variable
costs over output, 𝑇𝑉𝐶𝑛

𝑓 𝑡
/𝑌𝑓 𝑡 ) and applying a logarithmic transformation, we have that

firm-level log-nominal marginal cost is given by:

𝑚𝑐𝑛
𝑓 𝑡
= (𝑡𝑣𝑐𝑛

𝑓 𝑡
− 𝑦𝑓 𝑡 ) + ln(1 + 𝜈 𝑓 ). (15)

We measure total variable costs as the sum of intermediate costs (materials and services
purchased) and labor costs (wage bill), sourced from firms’ quarterly VAT and social
security declarations. We compute a quantity index by dividing a firm’s domestic
revenues by its domestic price index.13 Firm-specific short-run returns to scale are
not directly observable in the data. Therefore, to the extent that individual firms’
production technologies might deviate from constant returns to scale (𝜈 𝑓 ≠ 0), our
measure of log-marginal costs would be missing an additive constant. This is the second
rationale for removing firm-fixed effects from our measure of price gaps, together with
the normalization of the price index discussed above.

12See Karadi et al. (2024) and Luo and Villar (2021) for evidence of asymmetric upward and downward
rigidity.

13Specifically, we compute 𝑌𝑓 𝑡 = (𝑃𝑌 )𝑓 𝑡/𝑃𝑓 𝑡 , where 𝑃𝑓 𝑡 denotes the firm-quarter domestic price index.
For single-industry firms, 𝑃𝑓 𝑡 coincides with the firm-industry price index 𝑃𝑓 𝑡 . For multi-industry firms, we
construct 𝑃𝑓 𝑡 as an average of the different firm-industry price indices using as weights the firm-specific
revenue shares of each industry. As discussed in Gagliardone et al. (Forthcoming), the lion’s share of the
firms in our sample operate in only one industry, and the main industry accounts for the lion’s share of
sales of multi-industry firms.
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Price gaps. The availability of high-frequency firm-level price and cost data allows us
to construct an empirical counterpart of the (ex-ante) price gaps defined in our model:

𝑥 𝑓 𝑡−1 = 𝑝
𝑜
𝑓 𝑡
− 𝑝 𝑓 𝑡−1.

As discussed in Section 1, when 𝑝𝑜
𝑓 𝑡

and 𝑝★
𝑓 𝑡

are sufficiently close, 𝑥 𝑓 𝑡−1 captures
inefficiencies driven by nominal rigidities and influences firms’ pricing policies. A positive
price gap indicates that a firm operates with a markup below the profit-maximizing level
and, absent nominal rigidities, would adjust its price upward.

Guided by our theoretical framework, we construct a measurable proxy for firms’
target prices as a convex combination of the firm’s ownmarginal cost and its competitors’
price index, 𝑝𝑜

𝑓 𝑡
= (1 − Ω)𝑚𝑐𝑛

𝑓 𝑡
+ Ω𝑝

−𝑓
𝑡 , calibrating Ω to 0.5 to match the micro estimate

in Gagliardone et al. (Forthcoming). This empirical measure of firms’ target prices differs
from the theoretical one (Equation (3)) in three dimensions. First, it does not capture
variation in firms’ steady-state markups. Second, it does not directly account for potential
curvature in firms’ short-run cost functions. The harmonization of the data discussed
below helps address these two limitations. Third, we cannot directly measure the realized
idiosyncratic taste shocks (𝜑 𝑓 𝑡 ). While such shocks are likely transitory and average
out in the cross-section, they are a source measurement error that possibly weakens the
connection between our empirical measures of price gaps and price changes at the firm
level.14

3.2 Harmonization and data cleaning

Previous literature highlighted how issues related tomeasurement error and unobservable
cross-sectional heterogeneity can lead to a substantial bias in statistics that describe the
distribution of price changes and a fortiori, of price gaps.15 To address these issues,
we follow the literature and apply the following data-cleaning steps and harmonization
procedures.

The use of unit values often introduces spurious price changes, either incorrectly
indicating small price changes where none occurred or reporting abnormally large price
changes (Eichenbaum et al. 2011). To mitigate the impact of measurement error, we set

14See the evidence in Gagliardone et al. (Forthcoming).
15See, Klenow and Kryvtsov (2008) and Alvarez et al. (2016) for discussion of these issues and proposed

solutions.
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price changes smaller than 1 percent in absolute value to zero and exclude observations in
the top and bottom 1.5 percent of the price change distribution. Additionally, we address
(unobserved) heterogeneity among firms competing in the same industry but producing
differentiated goods, which can significantly bias the measured standard deviation and
Kurtosis of price changes upward (Klenow and Kryvtsov 2008; Alvarez et al. 2016). To
correct for this, we standardize price changes at a disaggregated level by demeaning the
price change observations within each cell. Here, a cell is defined by a firm-industry
pair, the finest level of aggregation in our data. Furthermore, we remove industry-specific
calendar-quarter averages to account for seasonality in price-setting behavior.

We apply the same trimming and harmonization procedure to the distribution of
price gaps. Demeaning helps reconcile differences between our empirical measure of
price gaps and its theoretical counterpart, which arise from firm-specific intercepts in
the definition of target prices, trend inflation, and industry-specific seasonal patterns in
nominal costs.16

3.3 Distribution of price changes and gaps: Summary statistics

Table 1 presents summary statistics of the distribution of firm-level log price changes,
𝑝 𝑓 𝑡 − 𝑝 𝑓 𝑡−1, and price gaps, 𝑥 𝑓 𝑡−1. The first four columns present moments describing the
distribution of price changes. Panel a focuses on the 1999–2019 period, characterized
by low inflation and, with the exception of the global financial crisis, the absence of
large aggregate shocks. Drawing an analogy with our model, we view this period
as representing the economy in its steady-state distribution. During this period,
the (harmonized) average price change is close to zero, which implies that inflation
is generally aligned with the long-term industry trend (approximately 0.5 percent
quarter-on-quarter, on average).

The standard deviation of price changes is 0.11 and the average frequency of price
adjustment isℎ = 0.29. The latter implies that, in a low inflation environment, firms adjust
their prices every 3 to 4 quarters, on average. Panel b presents the same statistics for the

16As noted above, we can identify firms’ static reset prices, 𝑝𝑜
𝑓 𝑡
, up to a firm-specific additive constant.

This constant reflects a combination of unobserved steady-state markups (the term 𝜇 (𝑓 ) in Equation (3)),
unobserved deviations from constant short-run returns to scale affecting marginal costs (the term ln(1 +
𝜈 𝑓 ) in Equation (15)), and the normalization of price levels discussed in Section 3.1. This demeaning also
removes the average trend inflation rate, which was approximately 0.6 percent quarter-on-quarter before
the 2021 surge.
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Table 1: Summary statistics of price changes and price gaps

Price change (𝑝 𝑓 𝑡 − 𝑝 𝑓 𝑡−1) Price gap (𝑥 𝑓 𝑡−1)

Panel a: Time period 2000-2019

Mean Std. Freq. Adj. Kurt. Mean Std. Kurt.

0.00 0.11 0.29 3.26 -0.00 0.13 2.86

Panel b: Time period 2020-2023

Mean Std. Freq. Adj. Kurt. Mean Std. Kurt.

0.02 0.11 0.44 3.56 0.01 0.14 2.83

Number of observations: 118,308
Number of firm-industry pairs: 4,974
Number of firms: 4,488

Notes. This table reports the summary statistics of the distributions of price changes (𝑝 𝑓 𝑡−1 −𝑝 𝑓 𝑡 ), and price
gaps (𝑥 𝑓 𝑡−1) before (panel a) and after the inflation surge (panel b).

period 2020–2023, characterized by high inflationary pressure and subsequent tapering.
During this period, we observe a quarterly inflation rate that is on average 1 percentage
point higher than the trend. At the same time, we observe a substantial increase in the
frequency of price changes by 10 percentage points, on average.

The fourth column reports the kurtosis of price changes. We calculate this statistic
following the approach in Klenow and Kryvtsov (2008), which scales the demeaned price
changes by firm(-industry)-level standard deviations. The estimated kurtosis is 3.26,
consistent with estimates in the literature (ranging between 3 and 5). This indicates
that the distribution of price changes is more peaked (a higher frequency of small price
changes) and has fatter tails (a greater number of large price changes) compared to a
normal distribution (kurtosis equals 3). These features become even more pronounced
during the inflation surge, as the kurtosis rises to 3.56.

The last three columns of Table 1 present summary statistics of the price gap
distribution. This distribution, which is typically unobserved, is of great interest, as it
contains information on inefficiencies due to the rigidities of nominal prices. Figure 5
presents the probability density function of the price gaps, 𝑓 (𝑥𝑡−1), in the pre-pandemic
period. Consistent with our theory, the microdata reveal a price gap distribution that is
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Figure 5: Empirical distribution of price gaps
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Notes. The figure presents the empirical probability density function of the price gaps, 𝑓 (𝑥 𝑓 𝑡−1), in the
pre-pandemic period (2000-2019).

unimodal, bell-shaped, and symmetric about the mean. During the inflation surge, on
average, the price gap increased by 1 percentage point relative to its long-term trend. In
line with theoretical predictions, this increase maps to the average average price change
observed over the same period.

4 Micro evidence of state dependent pricing

Guided by the theoretical representations and identification results presented in Section
1, we design direct empirical tests of key model predictions that relate the micro-level
pricing dynamics to the underlying price gap distribution. These exercises provide
strong evidence of the state-dependent nature of firm pricing decisions, which becomes
quantitatively significant when large aggregate cost shocks occur.

4.1 The empirical generalized hazard function

We begin by analyzing the relationship between price gaps and the frequency of price
adjustment—the defining distinction between state- and time-dependent pricing models.
In time-dependent models, the two variables are independent, yielding a flat probability
of price adjustment (captured by the GHF). In contrast, state-dependent models predict
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Figure 6: Empirical GHF and distribution of price gaps
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Notes. The figure plots the empirical probability density function of the price gaps 𝑓 (𝑥𝑏) (black line) against
the empirical GHF, ℎ𝑏 (red line). The black dotted line is the fitted value obtained from a cross-sectional
regression of the frequency of price adjustment of a given bin (𝑏) on a constant and the square of the average
price gap of the same bin, as dictated by Equation (7). In the regression, we weight each bin by the number
of observations it counts.

that the probability of adjustment increases monotonically with the absolute value of the
price gap. Specifically, in our framework, the GHF can be approximated by a second-order
polynomial in the price gap, as formalized in Lemma 1. Proposition 1 provides the sample
analog of this relationship, linking the average frequency of price adjustment at different
points in the gap distribution to the average squared gaps.

We use microdata on the frequency of price adjustment and price gaps from the
pre-pandemic period (2009–2019) to test these predictions. In Figure 6, the black line
depicts the probability density function of price gaps described in the previous section.
The red line represents the empirical counterpart of the theoretical GHF, showing the
fraction of firms adjusting prices in each quantile 𝑏 (bin) of the price gap distribution.
The black dotted line in Figure 6 displays the fitted values from a cross-sectional quadratic
regression:

ℎ𝑏 = 𝑎0 + 𝑎1 · 𝑥2
𝑏
+ 𝑢𝑏 .

The data reveal a strong relationship between price gap size and the frequency
of price adjustment. With striking similarity to the theoretical GHF of state-dependent
pricing models, wider gaps (i.e., greater deviations from 𝑥 = 0) correspond to a higher
likelihood of price adjustment. Moreover, consistent with model predictions, a quadratic
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polynomial in price gaps fits the frequency data well. Figure 6 also shows that the
empirical GHF exhibits a steeper slope on the right, indicating asymmetry in upward
and downward rigidity. This suggests that firms are more likely to adjust prices when
they are too low (i.e., when 𝑥 is positive and the realized markup is too low) than when
they are too high.

Given the strong fit of the quadratic approximation, we can apply Proposition 1
to obtain an estimate of the probability of free price adjustment by fitting the quadratic
polynomial model within the interval centered around the bottom of the parabola, 𝑥𝑏 ∈
(−0.04, 0.04). This procedure yields 𝑎0 = 0.188, implying 𝜃𝑜 = 0.812. We rely on this
estimate for model calibration, as detailed in Section 6.1.

4.2 The empirical mapping from price gaps to price changes

The next set of results use cross-sectional variation in the joint distribution of price
changes and price gaps to document the nonlinear cost-price dynamics resulting from
firms’ state-dependent policies. As before, we sort observations into quantiles (bins)
spanning the entire price gap distribution. Figure 7 plots the average price change within
the same bin (𝜋𝑏 , y-axis) as a function of the average price gap for each bin (𝑥𝑏 , x-axis).
Comparing this empirical pattern with its theoretical counterpart in Figure 3 reveals a
strong alignment between the microdata and model predictions linking inflation to the
odd moments of the price gap distribution, as described by Equation (11).

Consider first the central quantiles of the distribution (covering the 25th to 75th
percentiles). Observations in this range are characterized by relatively small price gaps,
meaning moderate deviations of their prices from the target prices. We can think of this
set as representing the mapping between gaps and price changes in “normal times,” with
low inflation and small aggregate shocks. As we can see, over this range, the mapping
between inflation and price gaps is essentially linear, as in the Calvo model (Equation
(12)). This result echoes findings from Gertler and Leahy (2008), Alvarez et al. (2017),
and Auclert et al. (2024), which show that in "normal times," the price dynamics in
state-dependent models resemble those of time-dependent models. Interestingly, we find
that the gradient between price changes and price gaps (0.27) is approximately equal to
the average frequency of price adjustment in the pre-pandemic period. This observation
supports the identification strategy in Gagliardone et al. (Forthcoming), which relies
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Figure 7: Nonlinear price dynamics
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Notes. This figure presents a scatterplot of the average price gap for each bin of the price gap distribution,
𝑥𝑏 , against the corresponding average inflation (the logarithmic price change) with the bin, 𝜋𝑏 . Bins are
constructed by partitioning the price gap distribution into 500 quantiles. The black dashed line represents
a linear fit of price changes on price gaps, 𝜋𝑏 = 𝑎1 · 𝑥𝑏 , estimated on the subsample of bins covering
firms between the 25th and 75th percentiles of the price gap distribution, with the estimated slope (𝑎1)
reported in black. The red dashed line represents the fit of a third-order (odd) polynomial in price gaps,
𝜋𝑏 = 𝑏1 · 𝑥𝑏 + 𝑏2 · 𝑥3

𝑏
, estimated using bins across the entire price gap distribution. The average slope of the

third-order polynomial fit in the tails of the distribution (below the 25th and above the 75th percentiles) is
reported in red.

on the linear mapping between price changes and price gaps to estimate parameters
underlying the slope of the Phillips curve in a low inflation environment.

To appreciate the nonlinearities induced by the state-dependent nature of price
adjustments, consider the relationship between price changes and price gaps across the
entire price gap distribution, including its tails. The red dashed line in Figure 7 represents
the fit of the cross-sectional regression model estimated over the full support of the price
gap distribution:

𝜋𝑏 = 𝑏1 · 𝑥𝑏 + 𝑏2 · 𝑥3
𝑏
+ 𝜂𝑏 .

When price gaps widen—such as after a large aggregate shock—the sensitivity of price
changes to price gaps increases significantly. The gradient between price gaps and price
changes at the tails of the distribution steepens by nearly 60 percent compared to the
gradient at the center (rising from 0.27 to 0.43). As shown in Proposition (2), the cubic
term captures these nonlinearities at the tails, reflecting adjustments along the extensive
margin (increases in the adjustment frequency).
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Figure 8: Price changes and price gaps, conditional on adjusting
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Notes. This figure presents a binned scatterplot of the log price change for adjusters (i.e., firms for which
𝑝 𝑓 𝑡 ≠ 𝑝 𝑓 𝑡−1) against the price gap. Each dot marks the average price gap of a given percentile of the
price gap distribution (x-axis) and the corresponding average percentage change in prices of firms in the
same percentile (y-axis). The black dashed line depicts a linear fit of price changes on price gaps across the
percentiles of the distribution of price gaps. The regression sample excludes the bottom and top 5 percentiles
of the price gap distribution, to minimize the impact of outliers.

4.3 Price gaps and price changes conditional on adjustment

So far, we have examined the mapping between price gaps and price changed averaging
across both firms that adjust and those that do not. We study the mapping focusing
specifically on adjusters. According to theory, conditional on adjustment, firms set
𝑝 𝑓 𝑡 = 𝑝★

𝑓 𝑡
, implying that 𝑝 𝑓 𝑡 − 𝑝 𝑓 𝑡−1 = 𝑥★

𝑓 𝑡
. Although we cannot observe 𝑥★

𝑓 𝑡
in the data,

if 𝑝𝑜
𝑓 𝑡

provides a reasonable approximation for 𝑝★
𝑓 𝑡
, the elasticity of price changes with

respect to price gaps, (𝑝 𝑓 𝑡 −𝑝 𝑓 𝑡−1)/𝑥 𝑓 𝑡−1, should be approximately one. Figure 8 confirms
this prediction.

The figure presents two binned scatterplots, where the x-axis shows the average
price gap for each percentile of the price gap distribution among adjusters (firms with
𝑝 𝑓 𝑡 ≠ 𝑝 𝑓 𝑡−1), and the y-axis reports the corresponding average percentage price change.
The left panel focuses on the pre-pandemic period (1999–2019), while the right panel
covers the pandemic and post-pandemic period (2020–2023). In both panels, the black
dashed line represents the linear fit of price changes on price gaps across quantiles of the
price gap distribution.
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Consistent with the theoretical predictions, the data reveal a gradient that is not
only positive but also close to one. Measurement error and the approximation of 𝑝★

𝑓 𝑡

with 𝑝𝑜
𝑓 𝑡
are likely the two main factors explaining why the gradient is not exactly one.

Interestingly, the gradient is particularly steep in the post-pandemic period, suggesting
that firms may have becomemore attentive and responsive to cost changes when inflation
is high. This is consistent with findings in Gagliardone and Tielens (2024), which use a
model with state-dependent information frictions to show greater firm responsiveness in
high-inflation environments.

4.4 Large cost shocks and shifts in the price gaps distribution

In Section 1, we discussed how small idiosyncratic shocks generate dispersion in the
price gap distribution, while large aggregate shocks shift the entire distribution of price
gaps, significantly increasing the fraction of firms who want to adjust their prices (Figure
4). The drastic surge and subsequent normalization of production costs observed in the
post-pandemic period allows us to directly test this model’s prediction in the microdata.

In Figure 9, the solid black line represents the distribution of price gaps before the
pandemic. In panel (a), the red dashed line represents the distribution in 2022:Q2. In
this quarter, firms’ marginal costs increased by an average of 6.2 percent relative to the
previous quarter. As predicted by the theory, a cost shock of this magnitude shifts the
entire price gap distribution to the right, pushing many firms’ prices away from their
desired price levels. Since the shock compresses profit margins, the cost of inaction is
large, and more firms move into regions where the GHF is high. As a result, within a
single quarter, the average probability of price adjustment nearly doubles compared to
its frequency in normal times. In panel (b), we repeat the exercise, but now the red line
represents the distribution of price gaps in 2023:Q3. During this quarter, firms’ marginal
costs declined by an average of 3.8 percent relative to the previous quarter, as energy prices
and international supply chains began to normalize. This negative cost shock shifted the
price gap distribution to the left, increasing the frequency of price adjustments as more
firms lowered their prices than raised them.
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Figure 9: Impact of aggregate cost shocks on the price gap distribution and average
frequency of price adjustment

Panel a: Positive aggregate cost shock
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Notes. This figure presents the empirical probability density function of the price gaps in the pre-pandemic
period, 1999–2019, (black solid line) and in two snapshots of the post-pandemic period, in 2022:Q2 (red
dashed line, panel a) and 2023:Q4 (red dashed line, panel b). The solid and dashed vertical lines mark the
average price gap of the different distributions. The solid and dashed horizontal lines report the average
frequency of price adjustment in the pre-pandemic period (black solid line) and in 2022:Q2 and 2023:Q4 (red
dashed lines).

5 Aggregate cost-price dynamics

In this section, we shift our focus to macro-level cost-price dynamics. We show that
micro-level dynamics—and their state-dependent nature—give rise to nonlinear inflation
dynamics, where the pass-through of aggregate cost shocks to prices varies with the
shock’s magnitude.
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5.1 Aggregate inflation and aggregate costs

We use our microdata to compute domestic producer price inflation and an index
capturing changes in production costs for the Belgian manufacturing sector. Following
the standard approach adopted by national statistical agencies, we calculate domestic PPI
inflation as a Törnqvist price index, averaging the quarterly changes in domestic firms’
prices and weighting them by the Törnqvist weights 𝑠 𝑓 𝑡 ≡

𝑠𝑓 𝑡+𝑠𝑓 𝑡−1
2 :

𝜋𝑡 =
∑︁
𝑓 ∈F

𝑠 𝑓 𝑡 · Δ𝑝 𝑓 𝑡 .

Similarly, we construct an aggregate nominal cost index, 𝑚𝑐𝑛𝑡 , by concatenating the
average changes in firm-level nominal marginal costs across producers (Δ𝑚𝑐𝑛𝑡 ):

𝑚𝑐𝑛𝑡 =

2023:𝑄4∑︁
𝑡=1999:𝑄2

Δ𝑚𝑐𝑛𝑡

Δ𝑚𝑐𝑛𝑡 =
∑︁
𝑓 ∈F

𝑠 𝑓 𝑡 · Δ𝑚𝑐𝑛𝑓 𝑡 ,

where the value of the index in the first quarter of our data is normalized to zero.
According to our theory, firms price on the basis of current and expected marginal

costs. Therefore, the inflation rate between 𝑡 and 𝑡 − 4 (the year-over-year rate, 𝑝𝑡 − 𝑝𝑡−4)
should depend on the nominal marginal cost at 𝑡 , relative to the price level at 𝑡 − 4. We
refer to the logarithmic difference between these variables, 𝑚𝑐𝑛𝑡 − 𝑝𝑡−4, as the “scaled
nominal marginal cost." Figure 10 (panel a) shows the evolution of manufacturing inflation
(red dashed line, left axis) and of scaled nominal marginal costs (black line, right axis)
throughout our sample period. Note that the scales of the two axes differ for the variables.

Figure 10 highlights two key empirical patters. First, as predicted by the theory,
inflation closely follows the fluctuations of scaled marginal cost throughout the entire
sample period. However, consistent with the theory, the passthrough is imperfect,
meaning that inflation responds less strongly than costs do. Second, the significant surge
in inflation during the post-pandemic period, followed by its subsequent normalization,
was driven by a dramatic rise and fall in scaled marginal costs.

To further stress the contribution of cost passthrough to movements in inflation,
Figure 10, panel b, plots aggregate inflation against the log-change of average realized
markups. We compute the latter by applying the identity Δ ln(Markup𝑡 ) ≡ 𝜋𝑡 − Δ𝑚𝑐𝑛𝑡 .
This exercise illustrates that, at least in our sample, the hypothesis that a rise in markups
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Figure 10: Inflation, cost, and markup dynamics

Panel a: Aggregate inflation and scaled nominal marginal cost
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Panel b: Aggregate inflation and markup
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Notes. This figure shows the time series of year-over-year manufacturing PPI inflation (𝑝𝑡 −𝑝𝑡−4) alongside
the times series of the scaled nominal marginal cost index (𝑚𝑐𝑛𝑡 −𝑝𝑡−4, panel a) and the log change in average
realized markups (Δ ln(Markup𝑡 ), panel b) for the Belgian manufacturing sector.

can explain the recent inflation surge seems to have no bite in the data.17

Finally, to get a sense of what drove the fluctuations in nominal costs, Figure
11 presents a decomposition of our aggregate cost index into its different components
(Equation (15)). The top left panel shows the growth rate in total variable cost and real
output (black lines) relative to the growth rate of the nominal marginal cost index (red
dashed line). The two panels make clear that throughout the sample, and in particular
during the recent inflation surge, fluctuations in total variable costs are the main drives
of the time series evolution of nominal marginal cost.

The two panels at the bottom of Figure 11 further decompose total variable costs
17Analyzing price and cost data for a large global manufacturer, Alvarez et al. (2024) also finds that

markups remained stable during the inflation surge.
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Figure 11: Decomposition of aggregate nominal marginal cost index
Total variable costs Physical output
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into the cost of intermediate inputs (purchases of materials, services, and energy) and the
cost of labor. As we can see, both cost components rose during the post-pandemic period.
However, the increase in the cost of the intermediates was four times greater. This cost
component alone accounts for approximately 70% of the revenues of manufacturing firms,
on average. In addition, more than 80% of intermediate input costs come from importing
from abroad. These figures make clear how the shock to the cost of (foreign-supplied)
intermediates—rather than a surge in labor cost—was the main driver of the inflation
surge between 2021 and 2023, at least in our sample.

5.2 Nonlinear aggregate cost-price passthrough

In panel a of Figure 12 we sort quarters by their measured scaled marginal cost index and
plot this index against PPI inflation. The black dashed line represents the linear fit between
the two variables during periods of low inflation (below 10% year-over-year), while the
red dashed line represents a quadratic fit across both high- and low-inflation periods. The
slope of these curves provide descriptive evidence on the aggregate passthrough of cost
shocks into prices as a function of the size of the shock to marginal cost.

Consistent with the micro-level dynamics presented in Section 4, we find a linear
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Figure 12: Passthrough of costs into inflation
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(𝜋𝑡 ) in the same quarter. In panel b, we sort the data according to realized year-over-year manufacturing PPI
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The average frequency of price adjustment is a rolling average of the quarterly frequency of price adjustment
over the previous four quarters. In both panels, the black dashed line represents the linear fit of the variable
on the y-axis based on the values of the variables on the x-axis during periods of low inflation (below 10%
year-over-year); the red dashed line represents a quadratic fit across both high- and low-inflation periods.

relationship between aggregate inflation and nominal costs during normal times. As
discussed, a linear passthrough is consistent with the predictions of a Calvo model
and with the predictions of a menu-cost model when aggregate shocks are small. The
estimated reduced-form slope is 0.23, which is in close alignment with the aggregate

32



passthrough coefficient estimated by Gagliardone et al. (Forthcoming) in a low inflation
environment.

The linear relationship between the two variables breaks down when the economy
is hit by large aggregate shocks. The passthrough coefficient more than tripled during
the recent inflation surge, revealing highly nonlinear cost-price dynamics. At the core
of this result is the endogenous nature of the frequency of price adjustment. In Panel b,
we sort the quarters by their annual inflation rates and plot aggregate inflation against
the average frequency of price adjustment. As before, the black dashed line shows
the (linear) fit during periods of low inflation, and the red dashed line represents the
(nonlinear) fit once high-inflation periods are included in the sample. As in Calvo, in
low-inflation environments, we observe essentially no relationship between the average
frequency of price adjustment and inflation. Once again, this finding highlights why
time-dependent models provides a good framework to capture nominal rigidities in a
low-inflation environment. However, inflation and the frequency of price adjustment are
highly correlated in high inflation environments, as shown by Alvarez et al. (2019) in the
case of Argentina and by Cavallo et al. (2023) and Blanco et al. (2024a) in for Europe and
the US.

6 Quantitative implications

Having established the close connection between theory and data, we now rely on
moments from microdata to calibrate the quantitative model introduced in Section 1 and
perform to types of quantitative exercises. First, we simulate the model and compare
the dynamics of our state-dependent model to those of a standard time-dependent
Calvo model in response to small and large shocks. Second, we feed the model a
sequence of aggregate marginal costs shocks extracted from the data and evaluate how
the model-generated aggregate inflation series compares to inflation in the data.

6.1 Calibration

We have a total of seven parameters to calibrate. We calibrate four of them to standard
values in the literature. We calibrate the elasticity of substitution between goods 𝜎 , to
6, which implies a markup of 20 percent in the symmetric steady state equilibrium. We
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set 𝛽 , the firm’s risk-neutral discount factor, at 0.99. As in our empirical analysis, we
calibrate Ω = 0.5 to reflect the importance of strategic complementarities estimated in
Gagliardone et al. (Forthcoming). To align the model and the data, we allow for a drift
in the aggregate component of nominal marginal cost (𝜇𝑔 = 0.5%), which corresponds
to a trend inflation rate of 1.6% year over year. The remaining three parameters, 𝜃𝑜 , 𝜎2

𝜖 ,
and 𝜒 , control the degree of nominal rigidity and state dependence of price adjustment,
mediating the relationship between price gaps and price adjustment.

The standard approach to calibrating these parameters leverages the theoretical
mapping between the unobservable price gap distribution and measurable moments of
the price change distribution: standard deviation, kurtosis, and the average frequency of
price changes.18 In theory, microdata on price changes could be used to recover these
moments. In practice, however, previous research has shown that obtaining a reliable
measure of the kurtosis of price adjustments is challenging due to measurement error
and the inability to control for relevant sources of heterogeneity (Alvarez et al. 2016;
Cavallo and Rigobon 2016). These issues may be particularly pronounced in our context,
given our reliance on unit values. For this reason, we develop an alternative calibration
procedure that avoids targeting the kurtosis of price adjustments and instead leverages
the information embedded in the empirical GHF.

The calibration proceeds as follows. First, since the empirical GHF is well
approximated by a quadratic polynomial in price gaps (see Figure 6), we use Proposition
1 to calibrate the probability of free adjustment, (1 − 𝜃𝑜), to match the frequency of price
adjustment in the vicinity of 𝑥 𝑓 𝑡−1≈ 0. By averaging across observations in the zero-gap
neighborhood, this calibration is robust to small measurement errors due to spurious
changes in unit values.19 As discussed in Section 4, this exercise yields (1 − 𝜃𝑜) = 0.188.

Second, when trend inflation is low (as is the case during the pre-pandemic
period) and assuming idiosyncratic shocks are i.i.d. draws from a Gaussian distribution,
Alvarez et al. (2016) show that the following identity links the steady-state variance of
idiosyncratic shocks (𝜎2

𝜖 ) to the average frequency of price adjustment and the variance
of the price changes:

𝜎2
𝜖 = ℎ · Var𝑠𝑠 (𝑝𝑡 (𝑓 ) − 𝑝𝑡−1(𝑓 )) .

18See, e.g., Alvarez et al. (2022) and Blanco et al. (2024a).
19See Appendix A.4, for a formal discussion on the consistency of this estimator.
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Table 2: Calibration: Data vs. model

Price change (𝑝 𝑓 𝑡 − 𝑝 𝑓 𝑡−1) Price gap (𝑥 𝑓 𝑡−1) Share MC
Mean Std Freq. Adj. Kurt Mean Std Kurt. Mean (%)

Data 0.00 0.12 0.29 3.26 -0.00 0.13 2.86 1.22
Menu cost 0.00 0.12 0.29 2.62 0.00 0.09 3.30 1.70
Calvo 0.00 0.12 0.29 5.21 0.00 0.12 5.21

Notes. This table reports moments of the distribution of price changes and price gaps computed during
the period 2000–2019 and the corresponding moments for the menu-cost model and Calvo model, in
steady-state, under our baseline calibration. The last column shows the average share of menu costs as
a fraction of firms’ revenues, with the data estimate sourced from Zbaracki et al. (2004)

Using this identity we calibrate 𝜎2
𝜖 to 0.0036 to match the product of the average frequency

of price adjustment and the variance of price changes reported in panel a of Table 1.
Finally, given 𝜎2

𝜖 and 𝜃𝑜 , we calibrate 𝜒 (the upper limit of the uniform distribution
from which the random menu costs are drawn) to 0.61, to allow the model to match the
frequency of price changes in the pre-pandemic period.

Table 2 compares the empirical moments of the price change distribution (panel a)
and the price gap distribution (panel b) to the corresponding moments of the menu-cost
model, in steady state, under our baseline calibration. The model is able to capture the
data quite well. Two observations lend additional empirical support to our calibration
procedure. First, in a recent paper, Blanco et al. (2024a) show how a standard menu-cost
model with single-product firms calibrated to match the kurtosis of price changes may
need unreasonably high menu costs to rationalize the data. In our model, in steady state,
menu costs amount to 1.7 percent of firm revenues, on average. This is consistent with
empirical evidence of small menu costs documented in Levy et al. (1997) and Zbaracki et al.
(2004). Second, we did not target the kurtosis of price changes in our calibration. However,
despite the potential measurement issues discussed above, the calibrated model exhibits
a kurtosis of price changes that is broadly in line with the one observed in our data. In
Appendix C, we show that the results of the quantitative exercises presented below are
robust to an alternative calibration that targets the kurtosis of price adjustment.

We also consider a standard Calvo model calibrated to match the steady-state
frequency of price adjustment observed in the data. As explained in Section 1, our
menu-costmodel nests the Calvomodel as a special casewhen themaximummenu cost, 𝜒 ,
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approaches infinity and the probability of free price adjustment is re-calibrated to match
the steady-state frequency of price adjustment (1 − 𝜃𝑐 = ℎ). The theoretical moments
derived from the steady state of the Calvo model are presented in the third row of Table 2.
As expected, while the time-dependent model successfully matches the first and second
moments of the price change and price gap distributions, it generates a pronounced degree
of leptokurtosis, which is largely inconsistent with the kurtosis measured in the data.

6.2 Impulse-responses to small and large aggregate shocks

We use our calibrated menu-cost and Calvo models to study price dynamics in response
to large and small shocks, under state- and time-dependent pricing. Starting from
an economy in steady state, we shock the system with permanent and unanticipated
aggregate cost shocks of different magnitudes, 𝑔𝑡={2%, 10%, 20%}.

Figure 13 displays the impulse response function of the frequency of price
adjustment (left panels) and aggregate inflation (right panels) in the menu-cost model and
in the Calvo model. All shocks increase the optimal reset price, shifting the distribution
of price gaps to the right, thereby triggering inflation. However, as discussed in Section 1
and empirically shown in Section 4, in the menu-cost model large shocks displace many
firms in a region where the GHF is higher, generating a spike in the frequency of price
adjustment and, consequently, a more rapid and substantial surge in inflation compared
to the Calvo model.

Comparing the IRFs for shocks of varying magnitude reveals the nonlinearities of
state-dependent pricing, which become more pronounced as shocks intensify. On impact,
the effect of the large shock on both the frequency of price adjustment and inflation is
about three times larger than the effect of the medium shock, although the former is only
twice as large as the latter (10% vs. 20%). By construction, in Calvo, the number of firms
adjusting their prices is not affected by the magnitude of the shock (the GHF is flat across
the price gap distribution), and adjusters are a random sample of the population (aka,
there is no selection effect). As a result, inflation increases with the magnitude of the
shock, but in a proportional way.

A second observation concerns the differing speeds at which permanent cost shocks
of varying magnitudes are fully incorporated into prices in state- and time-dependent
models. Figure 14 overlays the IRFs of inflation in both models in response to shocks of
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Figure 13: Impact of aggregate cost shocks in state- and price-dependent models
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Notes. This figure presents the impulse responses of inflation and frequency to aggregate cost shocks
of different magnitudes. Panel a reports the impulse response for our state-dependent pricing model
(menu-cost model). Panel b reports the impulse responses for a time-dependent model (Calvo model). The
x-axis reports quarters since the shock.

the same size (small or large). Although the passthrough is similar for small shocks, it is
notably faster in the menu-cost model for large shocks. This difference arises from the
endogenous change in the frequency of price adjustment and the selection effect present
in the menu-cost model.

In Appendix B we present two additional quantitative exercises. In the first exercise,
we study how cost shocks of different magnitudes affect both the static target price 𝑝𝑜

𝑓 𝑡
and

the dynamic optimal price 𝑝★
𝑓 𝑡
. We show that the gap between the two prices is negligible

if the cost shock is small, as expected, and remains small even when the shock is larger.
The dynamics of the two prices are closer in the context of the menu-cost model than in
the Calvo model, consistent with our assumptions for the measurement of 𝑝★

𝑓 𝑡
.

The second exercise studies the role of strategic complementarities in both state-
and time-dependent models. We compare inflation dynamics after high- and low-cost

37



Figure 14: Persistence of inflation in state- and time-dependent models
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Notes. This figure presents the impulse responses of aggregate inflation to marginal cost shocks of different
sizes in the menu-cost model and in the Calvo model. The x-axis reports quarters since the shock.

shocks, without strategic complementarities (Ω = 0) andwith strategic complementarities
(Ω = 0.5). As expected, strategic complementarities lead to a reduction in the cost
passthrough in both the menu cost and the Calvo model. The greater curvature of
the value function under state-dependent pricing implies that the difference between
the impulse-response functions with and without complementarities is narrower in the
menu-cost model, especially in response to a large shock.

6.3 Explaining the time series of inflation

We now turn to evaluating the ability of time- and state-dependent models to explain the
time series of aggregate inflation observed in the data. We feed into our model a sequence
of aggregate cost shocks recovered from the data and simulate the model to produce a
time series of aggregate inflation and the frequency of price adjustment. We perform
the following quantitative exercise for the state-dependent menu-cost model and for its
time-dependent Calvo counterpart, calibrated to hit the same steady-state frequency of
price adjustment.

Starting in 1999:Q1, we assume that the economy is in steady state. We then feed
the model a shock to the aggregate component of marginal cost, equal to the logarithmic
change in our aggregate nominal marginal cost index, Δ𝑚𝑐𝑛𝑡 , between 1999:Q1 and
1999:Q2. In doing so, we maintain the model’s assumption that the logarithm of the
aggregate component of firms’ marginal costs follows a random walk with drift.

Given this shock, we solve the model and compute the new distribution of price
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Figure 15: Inflation and frequency of price adjustment: Model versus data
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Notes. This figure contrasts the dynamics of PPImanufacturing inflation in the data to the inflation dynamics
generated by the Calvo and menu-cost models, after feeding the model a sequence of aggregate nominal
marginal cost shocks that matched the one observed in the data.

gaps and the response of inflation to the frequency of price adjustment, assuming that
all future aggregate shocks are unanticipated, as in an impulse response function. Using
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the updated distribution of the price gap as the new model’s equilibrium, we repeat this
feeding exercise for all subsequent quarters until 2023:Q4, the last period in our sample.

Figure 15 compares model simulations and data for three series: quarterly inflation,
year-over-year inflation, and the quarterly frequency of price adjustment. Panels a and
b show that the menu-cost model (black line) can capture fluctuations in manufacturing
inflation well, both during the moderate inflation regime characterizing the pre-pandemic
period and during the post-pandemic inflation surge and bust.

Note also that, during the pre-pandemic period, the menu-cost model is nearly
indistinguishable from the Calvo model, consistent with the price adjustment frequency
being relatively stable over this period. The Calvo model also exhibits an inflation surge
during the pandemic era, but only about two-thirds of that is generated by the menu-cost
model. This exercise also highlights the more sluggish behavior of inflation produced by
the Calvomodel relative to that generated by themenu-cost model. This is consistent with
the faster cost passthrough generated by the state-dependent pricing policies documented
in the impulse response function of Section 6.2.

Finally, panel c plots the quarterly frequency of price adjustment. The model
captures the stable behavior of the adjustment frequency pre-pandemic, though it misses
the smooth trend decline between 2012 and 2019. However, the model captures well the
sharp jump in the adjustment frequency following the onset of the pandemic, both in
terms of timing and magnitude. As inflation drops, the model frequency recedes faster
than in the data. It is possible that firms anticipated the mean reversion in nominal
marginal costs better than our random walk model would suggest.

7 Concluding remarks

In this paper, we study cost-price dynamics in normal times and during the recent inflation
surge. We leverage detailed information on prices and costs to construct a direct measure
of firms’ price gaps and analyze the microdata through the lens of a tractable menu-cost
model. Variation in price gaps determines both the likelihood that a firm adjusts its price
and how much its price changes conditional on adjustment, providing strong empirical
support to the predictions of our state-depending pricing model.

At the macro-level, we document linear cost-price dynamics in “normal" times,
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when aggregate inflation is low. That is, aggregate inflation is well approximated by the
product of a fixed price adjustment probability and the average price gap. In contrast,
during the inflation surge, the cost-price dynamics is highly nonlinear. The sharp increase
in the marginal cost led not only to a jump in price gaps but also to a significant increase
in adjustment probabilities. This extensive margin of price adjustment is the hallmark
of state-dependent pricing models but is absent in time-dependent models, such as the
workhorse Calvo (1983) model.

Overall, we find that conditional on the path of marginal cost, the state-dependent
pricing model does a good job of capturing price dynamics both at the firm and aggregate
levels. A natural next step is to improve the modeling of marginal cost and its connection
to real activity. The conventional New Keynesian model (for example, Galí 2015) typically
includes labor as the only variable input, implying that the marginal cost is measured by
the labor share. However, our analysis suggests that the sharp increase in the cost of
intermediate inputs was the main driver of variation in marginal cost observed during
the inflation surge. Extending a state-dependent version of the New Keynesian model to
allow for wage determination, intermediate inputs, primary commodities and energy, and
supply chains is on the agenda for future research.
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Appendix

A Derivations and proofs

A.1 Derivation of the markup function

Assume that a perfectly competitive retailer assembles a bundle of intermediate inputs
into a final product, 𝑌𝑡 . The bundle is a Kimball aggregator of differentiated goods
produced by a continuum of producers (indexed by 𝑓 ):∫ 1

0
Υ

(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
𝑑 𝑓 = 1,

where Υ(·) is strictly increasing, strictly concave, and satisfies Υ(1) = 1.
Taking as given demand 𝑌𝑡 , each firm minimizes costs subject to the aggregate

constraint:
min
𝑌𝑡 (𝑓 )

∫ 1

0
𝑃𝑡 (𝑓 )𝑌𝑡 (𝑓 )𝑑 𝑓 s.t.

∫ 1

0
Υ

(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
𝑑 𝑓 = 1.

where 𝑃𝑡 (𝑓 ) ≡ 𝑃𝑡 (𝑓 )
𝑒𝜑𝑡 (𝑓 )

is the quality-adjusted price. Denoting by𝜓 the Lagrange multiplier
of the constraint, the first-order condition of the problem is:

𝑃𝑡 (𝑓 ) = 𝜓Υ′
(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
1
𝑌𝑡

(A.1)

Define implicitly the industry price index 𝑃𝑡 as:∫ 1

0
𝜙

(
Υ′(1)𝑃𝑡 (𝑓 )

𝑃𝑡

)
𝑑 𝑓 = 1

where 𝜙 ≡ Υ ◦ (Υ′)−1. Evaluating the first-order condition (A.1) at symmetric prices,
𝑃𝑡 (𝑓 ) = 𝑃𝑡 , we get𝜓 =

𝑃𝑡𝑌𝑡
Υ′ (1) . Replacing for𝜓 , we recover the demand function:

𝑃𝑡 (𝑓 )
𝑃𝑡

=
1

Υ′(1)Υ
′
(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
. (A.2)
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Therefore, the demand function faced by firms when resetting prices is:

D𝑡 (𝑓 ) = (Υ′)−1

(
Υ′(1)

𝑃𝑜𝑡 (𝑓 )
𝑃𝑡

)
𝑌𝑡

Taking logs of Equation (A.1) and differentiating, we obtain the following expression for
the residual elasticity of demand:

𝜖𝑡 (𝑓 ) ≡ −𝜕 lnD𝑡 (𝑓 )
𝜕 ln 𝑃𝑜𝑡 (𝑓 )

= −
Υ′

(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
Υ′′

(
𝑌𝑡 (𝑓 )
𝑌𝑡

)
·
(
𝑌𝑡 (𝑓 )
𝑌𝑡

) . (A.3)

We now use this result to derive the expression for the log-linearized desired markup.
As above, for ease of exposition, we focus on the symmetric steady state. Denote the
steady-state residual demand elasticity by 𝜖 = − Υ′ (1)

Υ′′ (1) . Then the derivative of the residual
demand elasticity 𝜖𝑡 (𝑓 ) in (A.3) with respect to 𝑌𝑡 (𝑓 )

𝑌𝑡
, evaluated at the steady state, is given

by:

𝜖′ =
Υ′(1) (Υ′′′(1) + Υ′′(1)) − (Υ′′(1))2

(Υ′′(1))2 ≤ 0, (A.4)

which holds with equality if the elasticity is constant (e.g., under CES preferences).
The desired markup is given by the Lerner index. Log-linearizing the Lerner index

around the steady state and using Equation (A.4), we have that, up to a first-order
approximation, the log-markup (in deviation from the steady state) is equal to:

𝜇𝑡 (𝑓 ) − 𝜇 (𝑓 ) =
𝜖′

𝜖 (𝜖 − 1) (𝑦𝑡 (𝑓 ) − 𝑦𝑡 )

Finally, log-linearizing the demand function (A.1) and using it to replace the log difference
in output, we obtain:

𝜇𝑡 (𝑓 ) − 𝜇 (𝑓 ) = −Γ
(
𝑝𝑜𝑡 (𝑓 ) − 𝑝𝑡

)
where, in the case of Kimball preferences, the sensitivity of the markup to the relative
price is given by Γ ≡ 𝜖′

𝜖 (𝜖−1)
1

Υ′′ (1) . Finally, replacing the log-linearized markup into the
formula for the static optimal target price (obtained from cost minimization):

𝑝𝑜𝑡 (𝑓 ) = 𝜇𝑡 (𝑓 ) +𝑚𝑐𝑡 (𝑓 )

= (1 − Ω) (𝜇 (𝑓 ) +𝑚𝑐𝑡 (𝑓 )) + Ω(𝑝𝑡 + 𝜑𝑡 (𝑓 ))

where Ω ≡ Γ
1+Γ is the degree of strategic complementarities.
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A.2 Derivation of the optimal reset gap

Under the quadratic profits, the problem of the firm at time 𝑡 is:

max
𝑥

−𝐵(𝑥)2 + 𝛽 E𝑡
{
ℎ𝑡+1(𝑥) ·𝑉 𝑎𝑡+1 +

(
1 − ℎ𝑡+1(𝑥)

)
·𝑉𝑡+1(𝑥)

}
,

where 𝐵 ≡ 𝜎 (𝜎−1)
2(1−Ω) . The first-order condition evaluated at the optimal reset gap 𝑥★𝑡 is:

𝐵𝑥★𝑡 = 𝛽E𝑡

{
(1 − ℎ𝑡+1(𝑥★𝑡 ))

𝜕𝑉𝑡+1(𝑥)
𝜕𝑥

��
𝑥=𝑥★𝑡

+ (𝑉 𝑎𝑡+1 −𝑉𝑡+1(𝑥★𝑡 ))
𝜕ℎ𝑡+1(𝑥)
𝜕𝑥

��
𝑥=𝑥★𝑡

}
Because the adjustment probability is minimized at 𝑥★𝑡 , the condition simplifies to:

𝐵𝑥★𝑡 = 𝛽E𝑡

{
(1 − ℎ𝑡+1(𝑥★𝑡 ))

𝜕𝑉𝑡+1(𝑥)
𝜕𝑥

��
𝑥=𝑥★𝑡

}
Using that 𝜕𝑥𝑡/𝜕𝑥𝑡−1 = 1, the envelope condition is:

𝜕𝑉𝑡+1(𝑥𝑡 )
𝜕𝑥𝑡−1

= −𝐵𝑥𝑡 + 𝛽E𝑡 (1 − ℎ𝑡+1(𝑥𝑡 ))
𝜕𝑉𝑡+1

𝜕𝑥𝑡
.

Repeatedly replacing into the first-order condition, we obtain:

E𝑡

{ ∞∑︁
𝑖=0

𝛽𝑖
𝑖∏
𝜏=0

(1 − ℎ𝑡+𝜏 )𝑥★𝑡+𝜏

}
= 0, ℎ𝑡 ≡ 0.

Rearranging the condition by using the randomwalk dynamics of𝑚𝑐𝑡 (𝑓 ) and the fact that
taste shocks are i.i.d., we obtain the following expression that characterizes the optimal
reset price:

𝑝★𝑡 (𝑓 ) = (1 − Ω) (𝜇 (𝑓 ) +𝑚𝑐𝑡 (𝑓 )) + Ω𝑝𝑡 + Ω
E𝑡 {

∑∞
𝑖=1(𝑝𝑡+𝑖 − 𝑝𝑡 )𝛽𝑖

∏𝑖
𝜏=1(1 − ℎ𝑡+𝜏 )}

E𝑡 {
∑∞
𝑖=0 𝛽

𝑖
∏𝑖
𝜏=0(1 − ℎ𝑡+𝜏 )}

= 𝑝𝑜𝑡 (𝑓 ) + ΩΨ𝑡 . (A.5)

The equation above decomposes the optimal (dynamic) reset price into two terms. The
first is the static reset price, 𝑝0

𝑓 𝑡
≡ (1 − Ω) (𝜇 (𝑓 ) + 𝑚𝑐𝑡 (𝑓 )) + Ω𝑝𝑡 , which captures the

effects of current cost shocks and the price index. The second term, Ψ𝑡 , captures the
expected future dynamics of aggregate prices. These influence the optimal price 𝑝★

𝑓 𝑡
as the

firm anticipates that the price set today may also apply to future periods due to nominal
rigidities.20

Finally, under our assumption that costs follow a random walk and i.i.d. taste
shocks, the second term in Equation (A.5) (i) does not depend on the identity of the

20See Dotsey and King (2005) for a discussion of the properties of the dynamic reset price under general
assumptions about cost and demand dynamics.
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firm, (ii) is exactly zero in the absence of strategic complementarities (Ω = 0), and
(iii) is approximately zero even with strategic complementarities when trend inflation
is sufficiently low (𝑝𝑡+𝑘 − 𝑝𝑡 ≈ 0 ∀𝑘). Properties (i)–(ii) are inherited by the optimal gap.

A.3 Quadratic approximation of generalized hazard function

We now derive the expression for the quadratic approximation of the hazard function in
Equation (7) and describe how we take this equation to the data. We take a second-order
approximation of the hazard function ℎ𝑡 (𝑥𝑡−1) characterized in Equation (6) around 𝑥★𝑡 to
obtain:

ℎ𝑡 (𝑥𝑡−1) = (1 − 𝜃 0) − 𝜃
0

𝜒

𝜕𝑉𝑡 (𝑥)
𝜕𝑥

���
𝑥=𝑥★𝑡

(𝑥𝑡−1 − 𝑥★𝑡 ) −
𝜃 0

2𝜒
𝜕2𝑉𝑡 (𝑥)
𝜕𝑥2

���
𝑥=𝑥★𝑡

(𝑥𝑡−1 − 𝑥★𝑡 )2 + 𝑜 (𝑥𝑡−1 − 𝑥★𝑡 )2

= (1 − 𝜃 0) − 𝜃 0

2𝜒
𝜕2𝑉𝑡 (𝑥)
𝜕𝑥2

���
𝑥=𝑥★𝑡

(𝑥𝑡−1)2 + 𝑜 (𝑥𝑡−1)2,

where the second equation follows from 𝜕𝑉𝑡 (𝑥)
𝜕𝑥

��
𝑥=𝑥★𝑡

= 0 for a firm that is resetting its price
and from our assumption that 𝑥★𝑡 ≈ 0. Assuming stationarity of the value function, and
defining 𝜙 ≡ − 𝜃0

2𝜒
𝜕2𝑉 (𝑥)
𝜕𝑥2

��
𝑥=0, we have that the GHF can be approximated, up to second

order, by a quadratic function of the price gap as in Equation (7):

ℎ(𝑥𝑡−1(𝑓 )) = (1 − 𝜃𝑜) + 𝜙 · ((𝑥𝑡−1(𝑓 ))2 + 𝑜
(
(𝑥𝑡−1(𝑓 ))2), (A.6)

where the parameter 𝜙 controls the sensitivity of the GHS to changes in gaps (i.e., the
"steepness" of the parabola).

A.4 Estimator of the probability of free adjustment

First, we derive the expression for the average frequency of price adjustment in a bin. The
quadratic approximation (7) means that every 𝜖/2 > 0 there exists a 𝛿 𝑓 > 0 such that for
|𝑥 𝑓 | ≤ 𝛿 𝑓 :

|ℎ 𝑓 − (1 − 𝜃𝑜) − 𝜙𝑥2
𝑓
| ≤ 𝜖

2
𝑥2
𝑓
.
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Taking the average of both sides of the equation between observations falling within a
given bin 𝑏:

|ℎ𝑏 − (1 − 𝜃𝑜) − 𝜙 (𝑥2
𝑏
+ 𝜎2

𝑏
) | ≤

∫
𝑓 ∈𝑏

|ℎ 𝑓 − (1 − 𝜃𝑜) − 𝜙𝑥2
𝑓
|𝑑 𝑓

≤ 𝜖

2

∫
𝑓 ∈𝑏

𝑥2
𝑓
𝑑 𝑓

=
𝜖

2
(𝑥2
𝑏
+ 𝜎2

𝑏
) ≤ 𝜖𝑥2

𝑏
,

where the last inequality uses the fact that, when bins are arbitrarily small, 𝜎2
𝑏

≤ 𝑥2
𝑏
.

Figure A.1 shows that this inequality holds in the data given our choice of quantiles. It
follows that, letting 𝛿𝑏 ≡ sup𝑓 ∈𝑏 𝛿 𝑓 , we get that:

ℎ𝑏 = (1 − 𝜃𝑜) + 𝜙 (𝑥2
𝑏
+ 𝜎2

𝑏
) + 𝑜 (𝑥2

𝑏
).

Next, we show how knowledge of the empirical frequency of price adjustment
within a bin allows us to recover the probability of free price adjustment, 𝜃 0. We denote
by 𝑏 the bin such that 𝑥

𝑏
= 0. Label 𝑏 = 0 and let 𝑏′ = −𝑏′′ ⇐⇒ 𝑥𝑏′ = −𝑥𝑏′′ . Let ℎ(𝑏) ≡ ℎ𝑏

for all 𝑏s. As we have shown above, the frequency ℎ(𝑏) is a convex function of the bins.
Therefore, for any open interval of gaps around 𝑏 it holds that:∫

(−𝑏,𝑏)
ℎ(𝑏)𝑑𝑏 ≥ 1 − 𝜃𝑜 .

Wewant to show that the integral on the LHS converges to the RHS as the interval (−𝑏′, 𝑏′)
shrinks.

Let the bins take values on 𝑏 ∈ {− 1
𝑁
,− 1

𝑁+1 , . . . , 0, . . . ,
1

𝑁+1 ,
1
𝑁
} for some finite 𝑁 ∈

N+. Consider a sequence of decreasing bounds 1/𝑛, for𝑛 = 𝐾,𝐾+1, . . . , with 𝑁 < 𝐾 ∈ N+.
Then the sequence:

1 −
∫
{− 1

𝑛
,...,0,..., 1

𝑛
}
ℎ(𝑏)𝑑𝑏

is non-decreasing (as ℎ convex and integral is monotone in the support) and bounded
above by 𝜃𝑜 . Therefore, by the monotone convergence theorem, it converges to its
supremum which is given by:

1 − lim
𝑛→∞

∫
{− 1

𝑛
,...,0,..., 1

𝑛
}
ℎ(𝑏)𝑑𝑏 = 1 − ℎ(𝑏) = 𝜃𝑜 .

For a sufficiently small interval around 𝑏, the mean of the frequencies of price adjustment
over that interval recovers the probability of free adjustment.
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A.5 Cubic approximation of inflation within a bin

Starting from the expression for aggregate inflation in Equation (8), we want to derive
the cubic expression for inflation within a bin in Equation (11), under the assumption that
𝑝★𝑡 (𝑓 ) = 𝑝𝑜𝑡 (𝑓 ) and associated cross-sectional regression model. Again we partition the
distribution of price gaps into equal frequency bins (quantiles) denoted by 𝑏 and adopt the
same labeling convention of bins described in Appendix A.4. Denote by 𝛾𝑏 the skewness
within a bin. Consider a bin 𝑏 in the positive range (𝑥 𝑓 > 0 for all 𝑓 ∈ 𝑏). Then for every
𝜖/5 > 0, there exists a 𝛿 𝑓 > 0 such that for 𝑥 𝑓 ≤ 𝛿 𝑓 :�� ∫

𝑓 ∈𝑏
(ℎ 𝑓 − (1 − 𝜃𝑜) − 𝜙𝑥2

𝑓
) · 𝑥 𝑓𝑑 𝑓

�� ≤ ∫
𝑓 ∈𝑏

��ℎ 𝑓 − (1 − 𝜃𝑜) − 𝜙𝑥2
𝑓

�� · 𝑥 𝑓𝑑 𝑓
≤ 𝜖

5

∫
𝑓 ∈𝑏

𝑥3
𝑓
𝑑 𝑓

=
𝜖

5
(
𝑥3
𝑏
+ 3𝜎2

𝑏
𝑥𝑏 + 𝛾𝑏𝜎3

𝑏

)
≤ 𝜖𝑥3

𝑏

where the last step uses that bins can be chosen arbitrarily small (and the distribution of
gaps is smooth) so that 𝜎2

𝑏
≤ 𝑥2

𝑏
and |𝛾𝑏 | ≤ 1 and that 𝛾𝑏 ≥ 0 ⇐⇒ 𝑥𝑏 ≥ 0 because

the distribution of gaps is single-peaked at zero. We note that the same argument applies
for the negative range by switching signs of 𝑥 𝑓 (𝑥𝑏) and 𝛾𝑏 and reversing the inequalities.
Setting 𝛿𝑏 ≡ sup𝑓 ∈𝑏 𝛿 𝑓 , for every 𝜖/5 > 0 it then holds that for |𝑥 𝑓 | ≤ 𝛿𝑏 for all 𝑓 ∈ 𝑏:�����E𝑏 (ℎ 𝑓 · 𝑥 𝑓 ) − (1 − 𝜃 0)𝑥𝑏 − 𝜙 E𝑏 (𝑥3

𝑓
)

𝑥3
𝑏

����� ≤ 𝜖.
Hence:

E𝑏 (ℎ 𝑓 · 𝑥 𝑓 ) = (1 − 𝜃 0)𝑥𝑏 + 𝜙 E𝑏 (𝑥3
𝑓
) + 𝑜 (𝑥3

𝑏
)

Using this approximation, the covariance within a bin satisfies:

𝐶𝑜𝑣𝑏 (ℎ 𝑓 , 𝑥 𝑓 ) = 𝜙 E𝑏 (𝑥3
𝑓
) + 𝑜 (𝑥3

𝑏
) − 𝜙 E𝑏 (𝑥2

𝑓
)𝑥𝑏 − 𝑜 (𝑥2

𝑏
)𝑥𝑏

= 𝜙 (2𝑥𝑏𝜎2
𝑏
+ 𝛾𝑏𝜎3

𝑏
) + 𝑜 (𝑥3

𝑏
)

It follows that inflation within a bin simplifies to:

𝜋𝑏 =

∫
𝑓 ∈𝑏

ℎ(𝑥 (𝑓 )) 𝑑 𝑓 ·
∫
𝑓 ∈𝑏

𝑥 (𝑓 ) 𝑑 𝑓 +𝐶𝑜𝑣𝑏 (ℎ(𝑓 ), 𝑥 (𝑓 ))

=
(
(1 − 𝜃𝑜) + 3𝜙𝜎2

𝑏

)
𝑥𝑏 + 𝜙𝑥3

𝑏
+ 𝜙𝛾𝑏𝜎3

𝑏
+ 𝑜 (𝑥3

𝑏
)
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A.6 Variance and skewness across the price gap distribution

Figure A.1: Within bin variance, square of the mean, and skewness
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Notes. Panel a figure plots the within-bin variance of price gaps (𝜎2
𝑏
), the square of the within-bin square of

the within-bin average gap (𝑥2
𝑏
), and the within-bin skewness of price gaps (𝛾𝑏 ) for different bins (quantiles)

along the price gap distribution. Panel b plots 𝜎2
𝑏
(circles) and 𝑥2

𝑏
(crosses) on the same scale.
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Figure A.2: Impulse responses: Static vs. dynamic price targets

Panel a: State-dependent pricing (Menu costs)
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Panel b: Time-dependent pricing (Calvo)
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Notes. This figure presents impulse responses of the static target price (𝑝𝑜 ) and the optimal reset price (𝑝★)
to aggregate cost shock of different sizes. The x-axis reports quarters since the shock.

B Additional quantitative exercises

Approximation of 𝑝★
𝑓 𝑡
with 𝑝𝑜

𝑓 𝑡
. As discussed in Section 1, the two prices coincide in a

steady state with zero trend inflation and constant markups. We also argued that the two
prices remain sufficiently close to each other as long as trend inflation is not too large,
even in the presence of strategic complementarities in pricing. We therefore assumed
𝑝𝑜
𝑓 𝑡
≈ 𝑝★

𝑓 𝑡
, which implies that 𝑥★

𝑓 𝑡
≈ 0, and derived expressions for aggregate inflation and

within-bin inflation as a function of price gaps (Equations (8) and (11), respectively). The
question is how well 𝑝𝑜

𝑓 𝑡
approximates 𝑝★

𝑓 𝑡
away from the steady state.

The impulse response functions shown in Figure A.2 indicate that, as expected, the
static reset price responds more than the static one to cost shocks, since the dynamic
optimum 𝑝★

𝑓 𝑡
accounts for the marginal cost being a persistent process, though not a

pure random walk, due to strategic pricing motives. However, this exercise also shows
that the gap between the two prices is negligible if the shock is small, as expected, and
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Figure A.3: Quarter-over-quarter inflation: Static vs. dynamic price targets
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Notes. This figure contrasts the inflation dynamics generated by the menu-cost model using 𝑝★ (the exact,
dynamic reset price) and using 𝑝𝑜 (the static approximation of 𝑝★) when solving the model. As in Figure
15, we solve the model feeding it a sequence of aggregate nominal marginal cost shocks that matched the
one observed in the data.

remains small even when the shock is large. Thus, the assumption that 𝑝𝑜
𝑓 𝑡

≈ 𝑝★
𝑓 𝑡

is
sensible. Additionally, this exercise demonstrates how the dynamics of the two prices are
particularly close in the context of the menu-cost model relative to the Calvo model.

Next, we verify that using 𝑝𝑜
𝑓 𝑡
as an approximation for 𝑝★

𝑓 𝑡
has a small impact on the

aggregate inflation dynamics once we feed the model a sequence of aggregate nominal
marginal cost shocks that matched the one observed in the data. Figure A.3 repeats the
same quantitative exercise presented in Figure 15. The black line displays the time series
of model-based quarterly inflation using 𝑝★

𝑓 𝑡
as a measure of target price; the red dashed

line displays the time series of model-based inflation, solving the model with 𝑝𝑜
𝑓 𝑡

as a
proxy for 𝑝★

𝑓 𝑡
.

The role of strategic complementarities Strategic complementarities in the setting
of prices are a factor that contributes to explaining the differential dynamics of static and
dynamic reset prices in time and state-dependent models. Figure A.4 compares inflation
dynamics after high- and low-cost shocks, without strategic complementarities (Ω = 0)
and with strategic complementarities (Ω = 0.5). As before, Panels a and b report the
impulse response functions for the menu-cost model and the Calvo model, respectively.
As expected, strategic complementarities generate additional discounting, which reduces
cost passthrough in both models. However, we can see how the difference between
the impulse-response with and without complementarities is narrower in the menu-cost
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Figure A.4: The role of strategic complementarities

Panel a: State-dependent pricing (Menu costs)
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Panel b: Time-dependent pricing (Calvo)
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Notes. This figure presents the impulse responses of inflation to aggregate cost shocks of different sizes,
without strategic complementarities (Ω = 0, black line) and with strategic complementarities (Ω = 0.5,
red dotted line). The blue dashed line represents the ratio of the impulse response under Ω = 0 over
the impulse response under Ω = 0.5. Panel a reports the impulse response for our state-dependent pricing
model (menu-cost model). Panel b reports the impulse responses for a time-dependent model (Calvo model),
calibrated to display the same steady-state frequency of price adjustment as the state-dependent model. The
x-axis reports quarters since the shock.

model, especially in response to a large shock. This is due to the greater curvature of the
value function under state-dependent pricing.

C Alternative calibration

In our baseline exercise, we used information from the empirical GHF to directly calibrate
the frequency of price adjustment. As explained in the paper, this procedure tends to
be more robust to small measurement error which can affect the measured kurtosis of
price adjustment. As a robustness check, we perform an alternative calibration, this time
targeting the kurtosis of price adjustment. We then repeat the feeding exercise discussed
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Table A.1: Calibration: Data vs. model under alternative calibration

Price change (𝑝 𝑓 𝑡 − 𝑝 𝑓 𝑡−1) Price gap (𝑥 𝑓 𝑡−1)
Std Freq. Adj. Kurt. Std Kurt.

Data 0.12 0.29 3.26 0.13 2.86
Menu cost 0.12 3.27 2.62 0.01 3.61

Notes. This table reports moments of the distribution of price changes and price gaps computed during
the period 2000–2019 and the corresponding moments for the menu-cost model, in steady-state, under
an alternative calibration that targets the average frequency of price adjustment as well as the standard
deviation and kurtosis of price adjustment.

in Section 6.3 to derive an alternative model-based time series of aggregate inflation and
the average frequency of price adjustment.

We choose the parameters 𝜎, 𝜆, 𝜒 to jointly minimize the distance between (i) the
average frequency of price adjustment, (ii) the standard deviation of price adjustment,
and (iii) the kurtosis of price adjustment observed in the data and their model-based
counterparts. Table A.1 reports the targeted moments in both the data and the
calibrated model. The calibration yields the following parameter values {𝜎, 𝜆, 𝜒} =

{0.063, 0.765, 1.441}. To match the kurtosis of price adjustment in the data, this calibration
requires a higher value for the upper bound of themenu cost parameter (1.441 compared to
0.61 in our baseline calibration). Given the higher incidence of menu costs, the probability
of free price adjustment must increase relative to our baseline (1 − 𝜃 0 = 0.235 compared
to 0.188) to match the average frequency of price adjustment.

Figure A.5 compares aggregate inflation in the data with the model-based sequence
under our baseline (solid black line) and alternative calibration (dashed blue line).
Both sequences capture fluctuations in aggregate inflation and the frequency of price
adjustment well. However, the model fit is better under our baseline calibration, as lower
menu costs allow themodel to better capture high-frequencymovements in the frequency,
particularly in response to large aggregate cost shocks.
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Figure A.5: Inflation and frequency of price adjustment: Model versus data

Panel a: Quarter-over-quarter inflation
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Notes. This figure contrasts the dynamics of PPImanufacturing inflation in the data to the inflation dynamics
generated by our menu-cost models under our baseline (solid black line) and alternative calibration (dashed
blue line).
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