
NBER WORKING PAPER SERIES

UNDERSTANDING THE ROLE OF GENETIC HETEROGENEITY 
IN SMOKING INTERVENTIONS: 

EXPERIMENTAL EVIDENCE FROM THE LUNG HEALTH STUDY

Shubhashrita Basu
Jason Fletcher
Qiongshi Lu

Jiacheng Miao
Lauren L. Schmitz

Working Paper 33473
http://www.nber.org/papers/w33473

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
February 2025

We thank participants from the following conferences for their helpful comments: Integrating 
Genetics and the Social Sciences (IGSS) 2022 conference, the October 2022 Virtual Seminar on the 
Economics of Risky Health Behaviors (VERB), and the Bringing Together Genetic Data with 
Economics (BRIDGE) 2023 conference. Funding for this project was generously provided by the 
National Institute on Aging (NIA) (R00 AG056599 and P30 AG017266). The content is solely the 
responsibility of the authors and does not necessarily represent the official views of the NIA. The 
Lung Health Study (LHS) was conducted and supported by the National Heart Lung and Blood 
Institute (NHLBI). This manuscript was prepared using LHS Research Materials obtained from the 
NHLBI Biologic Specimen and Data Repository Information Coordinating Center and does not 
necessarily reflect the opinions or views of the LHS or the NHLBI. This study was approved by the 
University of Wisconsin-Madison Institutional Review Board (IRB) (approval number: 
2014-1350). The authors declare that they have no relevant or material financial interests that relate 
to the research described in this paper. The views expressed herein are those of the authors and do 
not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2025 by Shubhashrita Basu, Jason Fletcher, Qiongshi Lu, Jiacheng Miao, and Lauren L. Schmitz. 
All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without 
explicit permission provided that full credit, including © notice, is given to the source.



Understanding the Role of Genetic Heterogeneity in Smoking Interventions: Experimental
Evidence from the Lung Health Study
Shubhashrita Basu, Jason Fletcher, Qiongshi Lu, Jiacheng Miao, and Lauren L. Schmitz
NBER Working Paper No. 33473
February 2025
JEL No. I1, I10, I18, J10

ABSTRACT

We examine whether genome-wide summary measures of genetic risk known as polygenic indices 
(PGIs) provide new insights into the efficacy of the Lung Health Study (LHS)–a large, randomized 
controlled trial (RCT) that evaluated the effect of a smoking cessation intervention program on 
cessation maintenance and lung function. Results indicate that the intervention was less successful 
for participants with higher PGIs for smoking initiation and intensity. Given the increasing 
availability and affordability of genomic data, we argue that in the context of RCTs, PGIs can 
further our understanding of heterogeneous treatment effects and the mechanisms that may be 
driving them.

Shubhashrita Basu
Southern Utah University
basu.shubhashrita@gmail.com

Jason Fletcher
University of Wisconsin-Madison 
La Follette School of Public Affairs 
1225 Observatory Drive Madison, 
WI 53706
and NBER
jfletcher@lafollette.wisc.edu

Qiongshi Lu
University of Wisconsin at Madison
425 Henry Mall
#2104, Biotechnology Center 
Madison, WI 53706
qlu@biostat.wisc.edu

Jiacheng Miao 
University of Wisconsin-Madison
jmiao24@wisc.edu

Lauren L. Schmitz 
University of Wisconsin-Madison
llschmitz@wisc.edu

A data appendix is available at http://www.nber.org/data-appendix/w33473



 

Understanding the Role of Genetic Heterogeneity in Smoking Interventions: 
Experimental Evidence from the Lung Health Study 

 

Shubhashrita Basu†, Jason Fletcher, Qiongshi Lu, Jiacheng Miao, Lauren L. Schmitz† 

Abstract 
We examine whether genome-wide summary measures of genetic risk known 

as polygenic indices (PGIs) provide new insights into the efficacy of the Lung Health 
Study (LHS)–a large, randomized controlled trial (RCT) that evaluated the effect of a 
smoking cessation intervention program on cessation maintenance and lung function. 
Results indicate that the intervention was less successful for participants with higher 
PGIs for smoking initiation and intensity. Given the increasing availability and 
affordability of genomic data, we argue that in the context of RCTs, PGIs can further 
our understanding of heterogeneous treatment effects and the mechanisms that may 
be driving them. 

 
JEL Classification: I10, J10, J13 
 
Keywords: Randomized controlled trial, heterogeneous treatment effects, polygenic index, 
smoking behavior, smoking cessation   

 
 
 

†Corresponding authors. Basu: Department of Economics, Southern Utah University 
(shubhashritabasu@suu.edu); Fletcher: La Follette School of Public Affairs, University of Wisconsin-Madison 
(jason.fletcher@wisc.edu); Lu: Department of Biostatistics and Medical Informatics, University of Wisconsin-
Madison (qlu@biostat.wisc.edu); Miao: Department of Biostatistics and Medical Informatics, University of 
Wisconsin-Madison (jmiao24@wisc.edu); Schmitz: La Follette School of Public Affairs, University of 
Wisconsin-Madison (llschmitz@wisc.edu).  

We thank participants from the following conferences for their helpful comments: Integrating Genetics 
and the Social Sciences (IGSS) 2022 conference, the October 2022 Virtual Seminar on the Economics of Risky 
Health Behaviors (VERB), and the Bringing Together Genetic Data with Economics (BRIDGE) 2023 
conference. Funding for this project was generously provided by the National Institute on Aging (NIA) (R00 
AG056599 and P30 AG017266). The content is solely the responsibility of the authors and does not necessarily 
represent the official views of the NIA. The Lung Health Study (LHS) was conducted and supported by the 
National Heart Lung and Blood Institute (NHLBI). This manuscript was prepared using LHS Research Materials 
obtained from the NHLBI Biologic Specimen and Data Repository Information Coordinating Center and does 
not necessarily reflect the opinions or views of the LHS or the NHLBI. This study was approved by the 
University of Wisconsin-Madison Institutional Review Board (IRB) (approval number: 2014-1350). The authors 
declare that they have no relevant or material financial interests that relate to the research described in this paper. 



 
 

1 

I. Introduction 

Although 20th-century declines in smoking prevalence have persisted, tobacco use is still 

the leading cause of preventable disease, disability, and death in the U.S., accounting for 

approximately one in five deaths (CDC 2024). The persistence of smoking-related morbidity and 

mortality is due in part to differences in the success of smoking cessation efforts within individuals 

and across population subgroups (Surgeon General 2020). A growing body of research suggests 

cessation outcomes may in part be driven by complex interactions between genetic and 

environmental (including therapeutic) influences (Surgeon General 2020; Fletcher 2012; 

Panagiotou et al. 2019).1 However, the integration of genetic data into the evaluation of smoking 

cessation efforts has been limited, and additional research is needed to better understand whether 

precision medicine approaches that offer different treatments to smokers based on their genetics 

could be effective at helping people quit (Surgeon General 2020; Panagiotou et al. 2019). 

To date, randomized controlled trials (RCTs) of smoking cessation with genetic 

information have been limited to the analysis of candidate genes—an approach that requires a prior 

hypothesis that a specific gene affects responsiveness to smoking cessation therapies or drugs. A 

meta-analysis of candidate gene RCTs identified some evidence that individuals carrying specific 

genotypes may be more likely to quit smoking with the use of nicotine replacement therapies but 

overall found no clear statistical evidence for differences by genotype (Panagiotou et al. 2019). 

However, candidate gene studies of complex phenotypes like smoking may also fail to replicate 

due to low power at the individual gene level and/or inflated false positives resulting from 

 
1 Twin and family studies have established that smoking behavior is moderately to highly heritable, with genetics 
explaining 46-84 percent of the variability in smoking initiation and smoking persistence, 75 percent of the variability 
in nicotine dependence, and 50-58 percent of the variability in smoking cessation (Broms et al. 2006; Vink et al. 2005; 
Xian et al. 2003).   
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publication bias (Duncan & Keller 2011).2  Thus, research that uses other statistical methods for 

genetic risk stratification may be needed to improve understanding and guide pharmacotherapy 

choice for smoking cessation treatments.  

In particular, the candidate gene approach differs from methods that aggregate variants 

across the genome to construct more powerful measures of genetic risk. As will be explained in 

more detail herein, results from a genome-wide association study (GWAS), which performs a 

hypothesis-free search for associations between a phenotype and millions of genetic variants, can 

be used to construct a polygenic index (PGI) or a weighted average of individual genetic 

predisposition for that phenotype.3 Because PGIs are objective, time-invariant, continuous 

measures that are more predictive than individual genetic variants, they may be beneficial for 

assessing heterogeneous treatment effects of programs or policies (Benjamin et al. 2012; Biroli et 

al. 2022). Moreover, in contrast to the traditional approach of identifying genetic risk based on 

subsets of the population with specific candidate genes, PGIs can identify underlying strata of 

disease risk in larger subsets of the population because they consider the cumulative impact of 

many common DNA variants spread across the genome (Fahed et al. 2022; Torkamani et al. 2018).  

Additionally, given the low and continually falling cost of genomic profiling, PGIs may 

provide a cost-effective means to analyze biological pathways or mechanisms that drive treatment 

effects. Currently, for about $40 per person, researchers can profile common genetic variation and 

 
2 Individual genetic loci influencing the etiology of complex phenotypes like smoking have low penetrance, meaning 
no single gene produces a symptom or trait at a detectable level (Gibson 2012). 
 
3 PGIs have also been referred to in the literature as genetic risk scores (GRS), polygenic risk scores (PRS), or 
polygenic scores (PGS). We follow research that advocates for PGI terminology because it 1) can apply to clinical 
and behavioral outcomes in cases where a higher index does not correspond to increasing risk (e.g., educational 
attainment or subjective wellbeing), and 2) ethically, “index” has been viewed as more neutral compared to “score”, 
which may give the false impression that a value judgment is being placed on individuals with higher or lower PGIs 
(Becker et al. 2021). 
 



 
 

3 

construct multiple PGIs for different phenotypes without incurring additional costs. Economists 

are increasingly utilizing PGIs in quasi-experimental studies to assess heterogeneous treatment 

effects from policy interventions (Schmitz and Conley 2017; Barcellos, Carvalho, and Turley 

2018; Biroli et al. 2020; Fletcher and Lu 2021; Slob and Rietveld 2021). However, in the context 

of RCTs, PGIs remain underutilized despite their potential to enhance our understanding of how 

genetic diversity influences the estimation and interpretation of program effects.  

In this study, we examine whether PGIs can further our understanding of treatment effect 

heterogeneity in a smoking cessation RCT using data from the Lung Health Study (LHS). To our 

knowledge, this is among the first studies in economics to use experimental variation to investigate 

genetic heterogeneity in treatment effects.  The LHS was a large, multi-center RCT that evaluated 

the effect of a smoking cessation intervention program on cessation maintenance and lung function 

in 5,887 middle-aged smokers with early signs of chronic obstructive pulmonary disease (COPD).  

It was a relatively successful intervention that has been well-studied by clinicians and economists. 

The RCT had two treatment arms and a control arm. Both treatment groups received a smoking 

cessation intervention that combined behavior modification, the use of nicotine gum, and a five-

year maintenance program to minimize relapse. In addition, the second treatment arm (SIA group) 

received a bronchodilator inhaler with the active drug ipratropium bromide (i.e., Atrovent) to 

assess whether it could further slow the rate of deterioration in lung function. In the five years 

following the initial intervention, 22 percent of treated participants had sustained quit rates 

compared with only five percent of control participants and showed significantly smaller declines 

in lung function (Anthonisen et al. 1994) and respiratory illness (Kanner and Anthonisen 2001). 

Downstream, the intervention reduced mortality in the treatment group by 15 percent (Anthonisen 

et al. 2005).  In economics, research has explored the spillover impacts of the program, including 



 
 

4 

the effects of treatment intervention on spousal quit rates (Fletcher & Marksteiner 2017),  increases 

in body mass index (BMI) (Courtemanche, Tchernis, and Ukert 2018), and improvements in 

mental health (Meckel and Rittenhouse 2022).  

Here, we utilize genotyped data from 4,145 participants to assess whether the success of 

the intervention depended on PGIs for smoking initiation (SI), smoking cessation (SC), and 

intensity, or cigarettes per day (CPD). We found the program was less successful for participants 

with a higher load of genetic variants that predisposed them to smoking addiction. Specifically, 

although both treatment arms were 23 percentage points (ppt) more likely to quit smoking on 

average, the success of the intervention declined by approximately 2.5 ppt for every one standard 

deviation (SD) increase in the SI PGI. However, although sustained quit rates were lower in higher 

SI PGI participants, the treatment did reduce genetic disadvantage in smoking intensity for 

individuals in the SIA group, regardless of quit status. A one SD increase in the CPD PGI, which 

in part captures genetic predisposition to faster nicotine metabolism, reduced CPD by one 

additional cigarette from the average treatment effect (ATE) of nine cigarettes. Our estimates are 

robust to additional controls and their interaction with the treatment and cannot be replicated using 

observed variation in baseline values for CPD. 

Further, we show that PGIs can provide insights into mechanistic pathways at the 

biological or behavioral level that may be driving treatment effects. In particular, our results for 

smoking cessation and intensity appear to be driven by genetic pathways implicated in nicotine 

addiction and metabolism, as opposed to other potential smoking-adjacent PGIs for body mass 

index (BMI), lung function, and depression.4 We argue that the interpretation of treatment 

 
4 For example, Cawley, Dragone, and Scholder (2016) explore smoking as a weight control mechanism and suggest 
that part of cigarette demand may be driven by efforts to manage weight. Thus, the genetics of BMI may also play a 
role in understanding pathways that influence treatment success. 
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differences by these PGIs is narrower compared to other demographic or socioeconomic 

characteristics and by comparing across PGIs, we can better understand the degree to which 

different dimensions of genetic risk contribute to the success of smoking interventions.  

Conversely, when we interact the treatment with characteristics like education, sex, or marital 

status, as is common in economics literature, we observe differences that could have multiple 

interpretations. For example, educational differences could capture not only genetic differences 

but also variations in social norms, responsiveness to health risk information, financial resources, 

and/or time preferences (Lillard 2017; Galama, Lleras-Muney, and Van Kippersluis 2018).  

Additionally, we find suggestive evidence that differential results by PGI were more pronounced 

in the subset of treated individuals who received the bronchodilator in addition to the smoking 

cessation intervention. While further research is needed, this suggests additional 

pharmacogenomic or therapeutic effects of ipratropium that were not identified in the original 

study, which did not find any benefits from inhaler use. 

The rest of the paper is structured as follows. Section 2 describes the LHS intervention, 

data, and PGI construction in more detail. Section 3 describes our empirical strategy. Section 4 

presents our results, and Section 5 concludes. 

 
II. Data 

A. The Lung Health Study Intervention 

The LHS RCT was conducted from 1989 to 1994 in heavy smokers aged 35-60 who were 

diagnosed with early stages of chronic obstructive pulmonary disease (COPD) and who were 

motivated to quit.5  The study aimed to determine if a smoking cessation intervention and the use 

 
5 Heavy smoking was defined as use of 10 cigarettes on at least one day during the prior 30 days. See O’Hara et al. 
(1993) for a detailed description of the LHS study design. 
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of a bronchodilator could slow the rate of decline in lung function. Participants had to be relatively 

healthy smokers at baseline, meaning they were excluded from the study if they had serious 

illnesses.6 A total of 5,887 participants were selected and randomized across ten participating 

clinical centers.   

Eligible participants were randomly distributed into one of three groups: 1) smoking 

intervention plus inhaler with the active drug ipratropium bromide (Atrovent) (SIA); 2) smoking 

intervention plus placebo inhaler (SIP); or 3) no intervention (control group).  Treated participants 

joined a 12-session group program over ten weeks that focused on cognitive and behavioral 

strategies for quitting and proper use of inhalers and nicotine gum (Connett et al. 1993; O’Hara et 

al. 1993). They had regular clinic visits and maintenance programs throughout the five-year 

follow-up. Additionally, treated participants received either an inhaler with ipratropium bromide 

(SIA group) or a placebo (SIP group) to assess if bronchodilator therapy slowed the rate of lung 

function decline. The inhaler, prescribed three times daily (two puffs/time), aimed to reduce airway 

hyperreactivity and improve airflow. Participants were encouraged to use the inhaler throughout 

the five-year trial, receiving a new supply at each four-month visit.  

We utilize data from all five annual visits. Outcomes of interest include smoking cessation, 

which was validated by either salivary cotinine or carbon monoxide levels, and self-reported 

information on average CPD. 

 
B. Polygenic Indices (PGIs) 

We constructed PGIs using genotyped data that were collected from European ancestry 

participants with at least three time points of lung function data (N = 4,287) (Hansel et al. 2013). 

 
6 See Online Appendix B2 for more specifics on the LHS intervention, including additional exclusionary criteria and 
program details. 
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LHS protocols did not exclude subjects based on race or ethnicity; however, only four percent of 

volunteers had non-European genetic ancestry backgrounds. GWAS are typically performed 

within ancestry groups because differences in allele frequency7 and linkage disequilibrium (LD) 

structure across populations distort estimated relationships in pooled samples, and estimates for 

one group are not necessarily accurate or valid for another.8 Although genotyped sample sizes for 

populations of non-European descent are beginning to reach sufficient power to produce separate 

GWAS of smoking behavior (e.g., Shrine et al. 2023), we are limited to the European ancestry 

subsample since genotype data on non-European ancestry participants were not available.  After 

quality control (QC) and imputation of the genotyped data,9 4,145 participants remained.10  

Importantly, at baseline, the genotyped sample had similar demographics, BMI, and lung function 

as those who were not genotyped, and there is no evidence of selection into the sample by treatment 

status (Online Appendix Tables A1-A2). 

  PGIs were constructed using coefficient estimates from GWAS. A GWAS meta-analyzes 

large samples of genetic data to test for associations between millions of single nucleotide 

polymorphisms (SNPs), or areas on the genome that vary between individuals, and a given 

phenotype of interest.11 SNP effect sizes from GWAS were then used to construct a PGI for each 

 
7 Allele frequency represents the incidence of a genetic variant in a population. 
 
8 LD occurs when genetic variants are correlated with each other because of a lack of ancestral recombination events 
at locations in the DNA over time but could also arise from non-random mating in the population. 
 
9 See Online Appendix B3 for details on QC and imputation of the genotyped data.  
 
10 Genotyped data were merged with phenotype data based on several characteristics (a common identifier across the 
two samples was not available). After QC, 4,196 respondents out of 5,887 remained, and 51 could not be matched to 
the phenotypic data. Our final sample consists of 4,145 genotyped participants or 20,725 person-year observations 
across all five waves of the study. 
 
11 In the discovery phase, a GWAS will pool large consortia of genetic data using meta-analysis and run regressions 
testing each SNP at the genome-wide significance level of 5x10-8. In the replication phase, significant associations 
found in the discovery phase are tested in independent samples. 
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participant by multiplying the number of reference alleles a participant has at each SNP by the 

GWAS coefficient estimate for that SNP, and then aggregating these values across the genome to 

create a weighted scalar of genetic predisposition as follows: 

 
                                                      𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 =  ∑ 𝛽𝛽𝑗𝑗𝛼𝛼𝑖𝑖𝑖𝑖𝑛𝑛

𝑗𝑗=1                                                         (1) 

 
Where j indexes the SNP, i indexes the individual, β is the coefficient estimate for SNP j from the 

GWAS, and 𝛼𝛼 is the number of reference alleles (0, 1, or 2) for individual i at SNP j.  PGIs were 

constructed using β estimates from GWAS available for SI, SC, and CPD (Liu et al. 2019). 

Additionally, PGIs for phenotypes with known biological ties to smoking behavior were 

constructed to examine other potential mechanistic pathways that may be driving treatment effects, 

including PGIs for BMI (Yengo et al. 2018), lung function (FEV1/FVC ratio)12 (Shrine et al. 2019), 

and depression (Nagel et al. 2018). Correlations between these PGIs are relatively weak, indicating 

limited genetic overlap (all r<0.20) (Online Appendix Figure A1). To avoid overfitting, we 

confirmed that the LHS sample was not included in the GWAS of interest.  

To maximize prediction, PGIs were constructed using the software PRS-CS-auto, which 

uses a Bayesian framework to readjust SNP β weights from the GWAS to account for local LD 

patterns (Ge et al. 2019).13 All PGIs were standardized to have a mean of zero and a standard 

deviation of one for analysis.  Higher PGIs for SI, SC, and CPD are associated with worse 

outcomes (i.e., a higher probability of becoming a regular smoker, a higher probability of not 

 
12 FEV1/FVC is a ratio used in the diagnosis of lung diseases, particularly obstructive and restrictive lung conditions. 
It stands for forced expiratory volume in one second (FEV1) over forced vital capacity (FVC) and is measured using 
spirometry. FEV1 is the volume of air exhaled during the first second of forced exhalation and FVC is the total volume 
of air exhaled during the entire exhalation. 
 
13 PRS-CS-auto models local LD patterns and uses a Bayesian regression framework with continuous shrinkage priors 
on SNP effect sizes to accommodate diverse underlying genetic architectures. It automatically learns the continuous 
shrinkage prior from the GWAS summary statistics, and no validation dataset is needed. We used the 1000 Genomes 
Project Phase 3 European samples as the LD reference (Auton et al. 2015). 
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quitting, and increases in CPD). Similarly, for BMI, depressive symptoms, and lung function, 

higher PGIs are associated with worse outcomes. In analyses with PGIs, we account for population 

stratification by controlling for the first 20 principal components (PCs) of the genetic data (Price 

et al. 2006).14 

Online Appendix Table A3 reports the predictive power of the PGIs in the LHS sample, 

or the incremental R2 from a regression of the phenotype on the PGI after conditioning on the first 

20 PCs. The SC PGI explains 0.2 percent of the variance in quit status (across all five visits), and 

the CPD PGI explains 3.3 percent of the variance in CPD at baseline. The BMI PGI explains 8.8 

percent of the variance in BMI at baseline, and the FEV1/FVC PGI explains 0.01 percent of the 

variance in FEV1/FVC at baseline. These estimates are on par with the predictive power of these 

PGIs in larger population-based studies (Yengo et al. 2018; Liu et al. 2019). Further, if we stratify 

participants by PGI quintile, we see a gradual increase in the outcome mean across quintiles of the 

CPD, BMI, FEV1/FVC, and depression PGIs (Online Appendix Figures A2-A5).15   

Not surprisingly, because the SI PGI was trained to predict the probability of becoming a 

regular smoker or smoking at least 100 cigarettes, it only explains 0.03 percent of the variation in 

smoking cessation. However, we include it in our analyses because it captures other biological 

pathways that are distinct from those implicated in the SC or CPD PGIs that could interact with 

the treatment, including pathways involved in dopaminergic and neurotransmission systems that 

 
14 Although our analyses are limited to individuals of European ancestry, estimates still need to account for population 
stratification within ancestry that could confound associations between the PGI and the phenotype of interest. 
Population stratification arises when ancestral subpopulations are isolated geographically, with low rates of migration 
and gene flow throughout several generations (Hellwege et al. 2017). Cultural and environmental differences can also 
induce stratification, even if population subgroups inhabit the same geographical region (ibid). Additionally, 
assortative mating can produce population structure-related confounding effects (Young et al., 2019). PCs were 
calculated using PLINK software (Purcell et al. 2007). 
 
15 Results are not presented for smoking cessation because we do not have baseline pre-treatment values for quit status.  
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affect long-term reward processing and addiction (Liu et al. 2019). As a point of comparison, in 

Online Appendix Table A3, we also report incremental R2 estimates between our outcomes of 

interest and demographic characteristics that are often used to analyze heterogenous treatment 

effects of smoking interventions, including sex and marital status. The PGIs either explain a greater 

proportion of the variance in our outcomes of interest, or their explanatory power is not 

significantly different from these characteristics.   

The predictive power of a PGI depends on the trait’s heritability and the power of the 

GWAS from which it was derived (Wray et al. 2019). Although the predictive power of the PGIs 

in the LHS sample is not negligible, it is a fraction of SNP-based measures of heritability for these 

phenotypes, which range from approximately five percent for smoking cessation to eight percent 

for SI and CPD (Liu et al. 2019).16 Thus, the predictive power of these PGIs will likely increase 

as GWAS sample sizes continue to grow.  However, because GWAS estimates exploit pooled 

samples of unrelated individuals, the predictive power of the PGI may also exceed what can be 

explained by direct genetic effects because estimates in unrelated individuals also capture indirect 

genetic effects and confounding from population stratification (Young 2019).17 Conditioning on 

the first 20 PCs of the genetic data accounts for any confounding from population stratification 

(Price et al. 2006). Thus, the remaining variation in the PGIs reflects both direct and indirect 

genetic effects. To isolate direct genetic effects, researchers are beginning to conduct within-

 
16 Heritability is often estimated using phenotype correlations between identical and non-identical twins, however 
GWAS data on unrelated individuals can also be used to estimate the phenotypic variation explained by SNPs on a 
genotyping array (Yang et al. 2017). These so-called SNP-based heritability estimates are typically lower than twin-
based heritability estimates (Manolio et al. 2009). Some of this gap may be explained by rare genetic variants that are 
not captured on genotype arrays, which were designed to capture common genetic variation within ancestral 
populations. 
 
17 Indirect effects may arise because a genetic variant’s effect is working through other (indirect) biological or 
environmental pathways. For example, a variant may influence a trait via its effect on parental behavior. 
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family GWASs that exploit genetic data on parent-offspring trios and sibling pairs (Howe et al. 

2022). However, because larger genotyped family samples are needed to reach sufficient power, 

these efforts are still in their infancy. 

 
C.    Summary Statistics 

Table 1 compares baseline characteristics for the sample by treatment status. Mean values 

at baseline are comparable across groups. On average, participants were approximately 48.5 years 

old at the start of the trial (SD=6.7), 35-39 percent female (SD=0.48), and had 13.6 years of 

education (SD=2.8). Participants were long-term heavy smokers, having smoked an average of 

one pack per day for 40.7 years (SD=18.2) and were currently smoking an average of 31 CPD at 

baseline (SD=12.5). The average FEV1/FVC ratio across all groups was 63 percent (SD=5.5), 

which is seven ppt below the normal value of 70 percent, indicating early signs of lung function 

decline. The average BMI was 25.5 (SD=3.9), which is comparable to the U.S. average in 1990 

for that age group (Freedman et al. 2002).  The PGIs, which were standardized to have a mean of 

zero and an SD of one in the full analysis sample, exhibit similar distributions across treatment 

and control subgroups. 

                Online Appendix Figure A6 shows the per-wave averages for smoking cessation and 

CPD from baseline through wave five by treatment status for the genotyped sample. Overall, the 

treatment was successful: quit rates were approximately 38 percent for both treatment arms across 

all waves, compared to an initial 9 percent for the control group, which increased to 23 percent by 

the fifth visit. Average CPD declines were sharper for the treatment group (20) compared to the 

control group (13). 

 
III. Empirical Strategy 
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To examine whether treatment effects varied by PGI, we estimate the following equation: 

 
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛼𝛼 + 𝛽𝛽𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝛾𝛾𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 + 𝛿𝛿𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 + 𝜃𝜃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 + 𝑃𝑃𝑃𝑃𝑖𝑖′𝜋𝜋 + 𝜌𝜌𝑐𝑐 + 𝜎𝜎𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑖𝑖   (2) 
 

where 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 is the outcome of individual 𝑖𝑖 observed at age 𝑐𝑐 in visit 𝑡𝑡,  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖  is an indicator for 

whether individual 𝑖𝑖 was assigned to one of the treatment arms, 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖 is the polygenic index of 

interest for 𝑖𝑖, and 𝑃𝑃𝑃𝑃𝑖𝑖 is a matrix containing the first 20 PCs of the genetic data to account for 

population stratification. We also control for sex and include fixed effects for age (𝜌𝜌𝑐𝑐) and visit 

(𝜎𝜎𝑡𝑡) to improve the precision of our estimates. Regressions are estimated separately for each 

treatment arm and both treatment groups combined. Standard errors are clustered at the individual 

level. 

Our parameter of interest is 𝛿𝛿, which captures the degree to which the average treatment 

effect (𝛽𝛽) varies by participants’ underlying PGI.  If 𝛿𝛿 is significantly different from zero, it implies 

that the efficacy of the treatment was dependent on participants’ underlying PGI.  Models with 

continuous outcomes are estimated using ordinary least squares (OLS). For dichotomous degree 

outcomes, we report results estimated from linear probability models.  

IV. Results 

A. Heterogeneous treatment effects by PGI 

Table 2 presents the main effects and heterogenous treatment effects for SC and CPD. 

Columns report results separately for both treatment arms combined (Composite) and for the SIA 

and SIP arms. Treated individuals were 23 ppt more likely to quit smoking, regardless of the 

treatment arm, which is comparable to results from the original trial. Since participants in the trial 

were already heavy smokers, we did not find a significant main effect of the SI PGI on quit status, 

which was trained to predict the probability of regular smoking relative to individuals who never 
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smoked. However, we do find that the treatment effect was smaller for participants with higher SI 

PGIs: a one SD increase in the SI PGI reduced the likelihood of quitting by an additional 2.5 ppt 

for both treatment arms combined. Conversely, while there is a statistically significant main effect 

of the SC PGI on quit rates, the effect of the treatment does not vary by the SC PGI (Online 

Appendix Table A4).   This could reflect stronger interactive effects between the intervention and 

genetic variants identified in the SI GWAS, which play a larger role in sustaining neuronal 

pathways that regulate reward processing and addiction, as opposed to pathways implicated in the 

SC and CPD PGIs, which are more involved in regulating nicotine metabolism.18 

The magnitude and significance of the SI PGI interaction appear to be driven by individuals 

in the SIA arm, where we observe a 3.5 ppt statistically significant reduction in quit rates for each 

SD increase in the PGI compared to a statistically insignificant reduction of 1.3 ppt for participants 

in the SIP arm. This may suggest additional pharmacogenomic effects of the ipratropium inhaler 

that were not identified in the original study, which did not detect differences in cessation or 

FEV1/FVC between the SIA and SIP treatment arms. Ipratropium is an antimuscarinic that reduces 

airway reactivity in smokers by blocking the muscarinic cholinergic receptors, which in turn both 

decreases the production of certain proteins that increase mucous production and dilates bronchial 

smooth muscle in the lungs.  Importantly, antimuscarinics can act on muscarinic receptors in the 

brain and have been shown to decrease the intensity of cravings in patients recovering from cocaine 

use (Grasing 2016). Because the SI PGI is enriched for central nervous system functions related 

to reward processing and addiction, this may explain why we see a potential pharmacogenomic 

 
18 For example, well-researched candidate genes that have been replicated in GWAS of CPD and SC include the 
nicotine metabolism gene CYP2A6 and the CHRNA5-A3-B4 gene cluster, which encodes subunits of nicotinic 
acetylcholine receptors (nAChR) (Liu et al. 2019). Conversely, genes implicated in SI are more related to the 
modulation of dopamine reward circuits that promote continued use of nicotine after initial exposure, including BDNF 
and PPP1R1B, which regulate neuronal plasticity that underlies reward-based learning (Furberg et al. 2010; Liu et al. 
2019). 
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interaction with the SI PGI as opposed to the SC PGI. However, because estimates for the treatment 

arms are not significantly different from one another, this interpretation is suggestive and in need 

of further study. 

Concerning smoking intensity, the treatment significantly reduced genetic disadvantage in 

CPD at the extensive margin, regardless of quit status: A one SD increase in the CPD PGI reduced 

CPD by one additional cigarette relative to the ATE of nine cigarettes. These results can also be 

seen in Figure 1, which plots the estimated treatment effects by PGI for quit status and CPD. The 

treatment increased genetic disparities in smoking cessation relative to the control group. In other 

words, the treatment was not as effective in curbing quit rates for participants with higher genetic 

risk; however, although higher PGI participants had more difficulties quitting, the intervention did 

appear to reduce genetic disparities in CPD such that by the end of the trial, treated participants 

with higher CPD PGIs were no longer smoking more CPD on average than participants with lower 

PGIs. Finally, the magnitude and significance of the CPD PGI interaction are stronger for 

participants in the SIA arm. However, like smoking cessation, these estimates are not statistically 

different between treatment arms. 

 
B. Using PGIs to enhance understanding of treatment pathways 

Examining the interplay between the treatment and other PGIs related to smoking 

behavior may provide additional clues on the mechanisms through which genetic factors are 

influencing treatment outcomes (Biroli et al. 2022; Barth, Papageorge, and Thom 2020). To assess 

whether our results are driven by smoking genetics as opposed to other genetic pathways that could 

influence smoking behavior, we added additional PGI interactions with the treatment to our 

empirical model (Table 3). These results also condition on interactions between the genetic PCs 

and the treatment.  Importantly, we focused on  PGIs that contain genetic variants with known 
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pleiotropic effects19 on smoking or PGIs with biological ties to smoking behavior, including PGIs 

for BMI, FEV1/FVC, and depression.20 Of note, we do not include the educational attainment PGI 

in our analyses because past research has shown that its correlation with smoking PGIs for these 

birth cohorts is driven by the emergence of the educational gradient in smoking and is thus a 

byproduct of environmental forces as opposed to genetic differences in cognitive ability or risk 

preferences (Galama, Lleras-Muney, and Van Kippersluis 2018; Wedow et al. 2018; ).21  

Our results are robust to the inclusion of these additional PGIs, and their interactions with 

the treatment are smaller in magnitude and less precise than the SI and CPD PGI interaction effects. 

This suggests that differences in treatment success were operating primarily through the genetics 

of smoking as opposed to genetic pathways implicated in BMI, lung function, or depression PGIs.  

 
C. Additional analyses and robustness checks 

The magnitude of the PGI-by-treatment interaction effect is comparable to other 

heterogeneous treatment effects by gender, education, and marital status (Table 4). Being married 

increased the likelihood of smoking cessation for treated participants by 4.4 ppt, perhaps due to 

spousal spillover effects, which have been documented previously in the LHS (Fletcher and 

 
19 Pleiotropic effects could manifest as biological or mediated pleiotropy. Biological pleiotropy occurs when a genetic 
variant has a direct or independent influence on more than one trait, whereas mediated pleiotropy occurs when a 
variant affects smoking behavior through its effect on another trait (Solovieff et al. 2013). 
 
20 Multiple variants identified in GWAS of BMI appear to play a role in both increased obesity and smoking, including 
variants in the CHRNA5-A3-B4 gene cluster (e.g., Thorgeirsson et al. 2013; Wang et al. 2017). For lung function, 
research has identified positive genetic correlations between CPD, SC, and the risk of lung cancer and COPD such 
that genetic variants that alter smoking are also thought to contribute to genetic risk for lung cancer and COPD, 
including variants in the CHRNA5-A3-B4 gene cluster and chromosomal region 19q13.2, which includes CYP2A6, 
the gene encoding the enzyme that metabolizes nicotine (e.g., Parker et al. 2019; Bray et al. 2020). Finally, studies 
support the existence of genetic correlation between SI and depressive symptoms (Bulik-Sullivan et al. 2015; Zheng 
et al. 2017). Although more research is needed, results suggest that bidirectional associations between depressive 
symptoms and SI may be partially accounted for by shared genetic factors (Schmitz, Gard, and Ware 2019).   
 
21 This is consistent with prior research that suggests latent traits like intelligence play a limited role in explaining 
socioeconomic disparities in rates of smoking (Cutler and Lleras-Muney 2006; Pampel, Krueger, and Denney 2010). 
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Marksteiner 2017). Every one-year increase in education in the treated group increased the 

probability of cessation by 1.1 ppt.  Treated female participants smoked 2.4 CPD more per day 

than treated males. There were no significant differences in CPD for treated participants by marital 

status or education.  

As a counterpoint to the PGI estimates, we assessed whether we could draw similar 

conclusions for smoking cessation using pretreatment or baseline variation in smoking behavior 

(Online Appendix Table A5 and Figure A7). Since quit status cannot be observed pre-treatment, 

we used baseline variation in CPD. While baseline CPD is negatively associated with lower quit 

rates post-treatment, we do not find evidence of differences in smoking cessation by baseline CPD. 

Additionally, our SI PGI interaction findings are robust to controls for baseline CPD and its 

interaction with the treatment. These results suggest the SI PGI is capturing unique pre-treatment 

variation in quit status that is not captured in observed smoking behavior at baseline.   

Finally, we evaluated whether the average effect estimated across all visits varied in the 

short or medium term. Effects remain consistent across visits except for the main effect of the 

treatment on smoking cessation and CPD (Online Appendix Tables A6-A7). Here, the treatment 

effect decreases by approximately one-third to one-half for smoking cessation and CPD, 

respectively, but the effects of the PGIs and their interaction with the treatment remain stable 

across visits.  This implies that the relative advantages (or disadvantages) conferred to participants 

from their genetics remained relatively stable throughout the trial. 

 

 V.    Conclusion 

To improve public health, more effective smoking cessation efforts are needed to reduce 

disparities in smoking-related morbidity and mortality. Understanding factors that contribute to 
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disparities in treatment efficacy is crucial for evaluating existing policies and using data to forecast 

the success of new programs and interventions (Heckman 2001).  This study leveraged advances 

in statistical genetics and data from a large smoking cessation RCT to assess whether the impact 

of the treatment varied by PGIs for smoking behavior. Results indicate that quit rates were lower 

for genetically at-risk participants. However, regardless of quit status, the treatment did reduce 

genetic disparities in smoking intensity such that treated participants with higher genetic risk were 

no longer smoking more CPD on average compared to their lower-risk counterparts. 

This suggests the efficacy of cessation treatments may be improved by assigning 

participants to specific treatments based on the results of genetic testing. Likewise, focusing on 

participants who are more genetically responsive to interventions may increase the statistical 

power of RCTs by increasing the relative proportion of participants that are more responsive to 

the intervention, thereby decreasing sample size and cost while also increasing the benefits of the 

trial (Fahed, Philippakis, and Khera 2022). However, before pharmacogenetic stratification 

becomes routine, further clinical trials are needed, both to assess whether this approach improves 

overall cessation outcomes in a substantial way for participants in high-risk strata as well as to 

determine the cost-effectiveness of this approach (Surgeon General 2020).  

Despite these promises, several limitations warrant discussion. First, the predictive power 

of PGIs is dependent on trait heritability and the power of the GWAS from which they were 

derived, which in turn may limit their utility in certain settings (Daetwyler, Villanueva, and 

Woolliams 2008). For example, certain behavioral outcomes of interest to economists may be 

difficult to apply to a GWAS setting because they are not available in large studies with genetic 

data or because they are empirically difficult to measure or define. Moreover, if the heritability of 

a trait is low, the PGI may not have adequate predictive power to quantify strata of genetic risk. 
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Second, because PGIs capture phenotypic differences that arise from common DNA variants, they 

may misrepresent genetic risk in situations where rare variants play an outsize role in the onset or 

progression of a disease or trait (Lewis and Vassos 2020). Third, because GWAS meta-analyzes 

summary statistics across samples of unrelated individuals to achieve adequate sample size, they 

capture not only direct genetic effects but also indirect effects and confounding from population 

stratification (Young 2019). Although this presents a challenge for identifying causal variants, 

there is limited evidence in the literature regarding the extent to which these issues impact the use 

of PGIs for risk stratification and precision medicine. Fourth, because the majority of GWAS to 

date have been conducted in individuals of European ancestry, their predictive power may be 

limited in other ancestral groups (Martin et al. 2019).  

However, we view these current challenges as temporary and empirically tractable as the 

size of genetic samples continues to increase dramatically due to persistent and rapid declines in 

the cost of whole genome sequencing.  In particular, new statistical methods coupled with large-

scale global efforts aimed at increasing the diversity of genetic samples are already reducing 

disparities in PGI prediction across ancestral populations (Ruan et al., 2022; Miao et al. 2023) and 

fueling the discovery of new disease-related variants (Gudmundsson et al. 2022). Increasing 

genetic samples in family and sib-based studies will improve the power of within-family GWAS 

and aid in decomposing direct and indirect genetic effects (Wu et al., 2021.; Howe et al. 2022). 

Finally, future improvements in algorithms and machine learning approaches that can incorporate 

other molecular and biomarker data alongside genetic data may outperform current PGI 

aggregation methods and improve our understanding of mechanistic pathways (Eldjarn et al. 

2023).  
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Tables and Figures 
 
 

Table 1. Mean baseline characteristics by treatment status for the LHS genetic sample 

  Control SIP SIA 

  Mean SD Mean SD Mean SD 

Baseline characteristics       
Age 48.471 6.727 48.694 6.741 48.450 6.681 
Female  0.351 0.478 0.362 0.481 0.394 0.489 
Pack years 40.731 18.244 40.338 18.173 40.682 19.481 
Years of education 13.647 2.769 13.563 2.849 13.630 2.833 
Cigarettes per day (CPD) 30.950 12.501 31.468 12.524 31.333 13.173 
Married 0.706 0.456 0.714 0.452 0.704 0.457 
Body mass index (BMI) 25.508 3.804 25.769 3.862 25.318 3.854 
FEV1/FVC 63.028 5.450 63.055 5.432 62.750 5.659 

Polygenic indices (PGIs)       

Smoking initiation (SI) -0.067 0.979 0.047 1.000 0.021 1.018 
Smoking cessation (SC) -0.005 0.983 0.013 1.043 -0.008 0.974 
Cigarettes per day (CPD) -0.024 0.970 -0.041 0.998 0.063 1.029 
Body mass index (BMI) -0.020 0.970 0.012 0.985 0.008 1.043 
FEV1/FVC 0.038 0.996 -0.011 1.002 -0.027 1.002 
Depression 0.023 1.001 -0.027 0.994 0.003 1.005 

N 1383 1355 1407 
Note: The table presents the mean and standard deviation (SD) of baseline characteristics by treatment status 
for the LHS genetic sample. FEV1/FVC: forced expiratory volume in one second (FEV1) divided by forced 
vital capacity (FVC). SIA: smoking intervention plus Atrovent inhaler group. SIP: smoking intervention plus 
placebo inhaler group. Pack years are calculated by multiplying the number of cigarettes smoked per day by 
the number of years smoked. PGIs are standardized to have a mean of zero and an SD of one in the full 
sample. 
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Table 2. Heterogeneous treatment effects of the LHS intervention on smoking 
outcomes by PGIs for smoking initiation and cigarettes per day  

  Composite SIA SIP 
Panel I Smoking Cessation 
Treated 0.230 0.232 0.227 

 (0.011) (0.014) (0.014) 

SI PGI (std) 0.004 0.005 0.002 
 (0.008) (0.008) (0.008) 

Treated × SI PGI (std) -0.025 -0.035 -0.013 
 (0.011) (0.013) (0.013) 

N 20,725 13,950 13,690 
Panel II CPD 

Treated -9.072 -9.340 -8.742 
 (0.415) (0.474) (0.489) 

CPD PGI (std) 1.717 1.703 1.776 
 (0.370) (0.371) (0.370) 

Treated × CPD PGI (std) -0.618 -1.017 -0.204 
 (0.441) (0.502) (0.508) 

N 20,279 13,644 13,404 
Note: SI: smoking initiation; CPD: cigarettes per day. Composite indicates both treatment 
arms combined. SIA: smoking intervention plus Atrovent inhaler group. SIP: smoking 
intervention plus placebo inhaler group. PGIs are standardized. All regressions control for 
age fixed effects, wave fixed effects, sex, and genetic PCs 1-20. Standard errors are clustered 
at the individual level.     
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Figure 1. Treatment effects of the LHS intervention on smoking cessation  
and cigarettes per day by PGI 

 

 

 

 

 

 

 

 

Note: The figure shows predicted smoking cessation and cigarettes smoked per day (CPD) by 
standardized values of the smoking initiation (SI) and CPD PGIs, respectively. Composite indicates 
both treatment arms combined. SIA: smoking intervention plus Atrovent inhaler group. SIP: smoking 
intervention plus placebo inhaler group. Estimates are from regressions that control for age fixed 
effects, wave fixed effects, sex, and genetic PCs 1-20. Standard errors are clustered at the individual 
level. 95% confidence intervals are reported. 
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Table 3. Heterogeneous treatment effects of the LHS intervention on smoking 
outcomes by PGIs for smoking, body mass index, lung function, and depression 

  Composite SIA SIP 

  Smoking cessation 
Treated 0.229 0.230 0.227 

 (0.011) (0.014) (0.014) 
SI PGI (std) 0.002 0.002 0.001 

 (0.008) (0.008) (0.008) 
Treated × SI PGI (std) -0.020 -0.029 -0.010 

 (0.011) (0.014) (0.014) 
CPD PGI (std) -0.014 -0.014 -0.015 

 (0.008) (0.008) (0.008) 
Treated × CPD PGI (std) 0.012 0.032 -0.007 

 (0.012) (0.014) (0.014) 
BMI PGI (std) 0.004 0.004 0.004 

 (0.009) (0.009) (0.009) 
Treated × BMI PGI (std) -0.012 -0.018 -0.009 

 (0.012) (0.014) (0.015) 
FEV1/FVC PGI (std) 0.003 0.003 0.004 

 (0.009) (0.009) (0.009) 
Treated × FEV1/FVC PGI (std) 0.000 0.001 -0.001 

 (0.012) (0.014) (0.014) 
Depression PGI (std) 0.003 0.003 0.003 

 (0.008) (0.008) (0.008) 
Treated × Depression PGI (std) -0.012 -0.017 -0.007 

 (0.012) (0.014) (0.014) 

N 20,725 13,950 13,690 
  CPD 
Treated -9.066 -9.260 -8.805 

 (0.424) (0.485) (0.497) 
SI PGI (std) 0.019 0.015 0.045 

 (0.340) (0.340) (0.339) 
Treated × SI PGI (std) 0.404 0.699 0.086 

 (0.419) (0.480) (0.487) 
CPD PGI (std) 1.820 1.815 1.845 

 (0.372) (0.373) (0.371) 
Treated × CPD PGI (std) -0.796 -1.329 -0.307 

 (0.449) (0.515) (0.519) 
BMI PGI (std) -0.245 -0.245 -0.243 

 (0.363) (0.364) (0.363) 
Treated × BMI PGI (std) 0.142 0.318 0.034 

 (0.437) (0.494) (0.506) 
FEV1/FVC PGI (std) 0.254 0.253 0.216 

 (0.349) (0.351) (0.350) 
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Treated × FEV1/FVC PGI (std) 
 

0.192 
 

0.075 
 

0.362 
 (0.430) (0.497) (0.497) 

Depression PGI (std) -0.268 -0.267 -0.258 
 (0.348) (0.349) (0.348) 

Treated × Depression PGI  0.726 0.919 0.534 
 (0.430) (0.490) (0.507) 

N 20,279 13,644 13,404 
Note: Composite indicates both treatment arms combined. SIA: smoking intervention plus 
Atrovent inhaler (ipratropium bromide) group; SIP: smoking intervention plus placebo inhaler 
group.  FEV1/FVC: forced expiratory volume in one second (FEV1) over forced vital capacity 
(FVC). PGIs are standardized. All regressions control for age fixed effects, wave fixed effects, sex, 
genetic PCs 1-20, and genetic PCs 1-20 interacted with the treatment. Standard errors are clustered 
at the individual level.  
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Table 4. Heterogeneous treatment effects of the LHS intervention on smoking outcomes 
by smoking PGIs and demographic characteristics 

 Composite SIA SIP 
  Smoking Cessation 
Treated 0.054 -0.015 0.139 

 (0.064) (0.076) (0.080) 
SI PGI (std) 0.005 0.005 0.003 

 (0.008) (0.008) (0.008) 
Treated × SI PGI (std) -0.023 -0.031 -0.012 

 (0.011) (0.013) (0.013) 
Married 0.013 0.016 0.012 

 (0.018) (0.018) (0.018) 
Treated × Married 0.044 0.074 0.009 

 (0.025) (0.030) (0.031) 
Years of Education 0.005 0.005 0.004 

 (0.003) (0.003) (0.003) 
Treated × Years of Education 0.011 0.015 0.006 

 (0.004) (0.005) (0.005) 
Female -0.010 -0.010 -0.009 

 (0.017) (0.017) (0.017) 
Treated × Female -0.016 -0.017 -0.015 

 (0.024) (0.029) (0.030) 

N 20,720 13,945 13,685 
  CPD 
Treated -7.856 -6.844 -8.996 

 (2.360) (2.648) (2.766) 
CPD PGI (std) 1.699 1.689 1.735 

 (0.364) (0.365) (0.365) 
Treated × CPD PGI (std) -0.695 -1.072 -0.266 

 (0.437) (0.496) (0.509) 
Married -2.838 -2.922 -2.848 

 (0.782) (0.780) (0.784) 
Treated × Married -0.188 -0.515 0.283 

 (0.962) (1.102) (1.121) 
Years of Education -0.266 -0.265 -0.243 

 (0.125) (0.125) (0.125) 
Treated × Years of Education -0.140 -0.244 -0.032 

 (0.149) (0.166) (0.176) 
Female -3.627 -3.616 -3.657 

 (0.698) (0.697) (0.698) 
Treated × Female 2.357 3.336 1.373 

 (0.851) (0.973) (0.988) 

N 20,274 13,639 13,399 
Note: Composite indicates both treatment arms combined. SIA: smoking intervention plus Atrovent inhaler 
group. SIP: smoking intervention plus placebo inhaler group. PGIs are standardized. All regressions control 
for age fixed effects, wave fixed effects, sex, and genetic PCs 1-20. Standard errors are clustered at the 
individual level.
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Appendix A 
 
 

Table A1. Mean Baseline Characteristics of the Lung Health Study (LHS)  
Sample by Genotyped Status 

Variables Not 
Genotyped Genotyped 

p-value of 
difference 
in means 

Body mass index (BMI) 25.650 25.529 0.280 
Cigarettes per day (CPD) 31.328 31.249 0.830 
FEV1/FVC 62.923 62.943 0.899 
Age 48.306 48.537 0.236 
Pack years 40.127 40.586 0.401 
Years of education 13.598 13.614 0.844 
Female 0.375 0.370 0.703 

N 1,742 4,145   
Note: The table reports average respondent background characteristics for LHS 
participants stratified by genotyped status. All variables were measured at 
baseline before the treatment was administered. We additionally report the p-
values of the differences in means for each variable. 
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Table A2. Impact of Treatment Status on the Probability of Being 

Genotyped in the Lung Health Study (LHS) 

  Genotyped 

Treated 0.001 
 (0.013) 

  
N 5,887 

Note: The table reports the effect of treatment on the probability of being 
genotyped in the LHS. The total number of participants is 5,887. The 
regression controls for age fixed effects and sex. Robust standard errors are 
reported in parentheses.  
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Table A3. Incremental R2 Values of Polygenic Indices and Demographic Characteristics 

 
PGIs 

Smoking 
cessation       

(all waves) 

CPD 
(baseline) 

BMI 
(baseline) 

FEV1/FVC 
(baseline) 

SC PGI 0.19%    
Bootstrapped SE (0.056)    
p-value 0.002    

SI PGI 0.03%    
Bootstrapped SE (0.02)    
p-value 0.242    

CPD PGI  3.33%   
Bootstrapped SE  (0.55)   
p-value  0.000   

BMI PGI   8.82%  
Bootstrapped SE   (0.84)  
p-value   0.000  

FEV1/FVC PGI    0.01% 
Bootstrapped SE    (0.35) 
p-value       0.000 

Demographic characteristics     
Sex 0.07% 2.15% 8.39% 0.26% 
Bootstrapped SE (0.037) (0.433) (0.83) (0.16) 
p-value 0.053 0.000 0.000 0.097 

Married 0.17% 0.03% 0.87% 0.01% 
Bootstrapped SE (0.056) (0.062) (0.31) (0.05) 
p-value 0.003 0.639 0.006 0.788 
Note: The table reports the incremental R2 values of PGIs and demographic characteristics for smoking cessation 
(SC), smoking initiation (SI), cigarettes per day (CPD), body mass index (BMI), and lung function, or forced 
expiratory volume in one second over forced vital capacity (FEV1/FVC). For all the variables except smoking 
cessation, we use baseline measures (data on smoking cessation is not available before the treatment). Each estimate 
comes from a regression of the outcome variable on the PGI or demographic characteristic after residualizing out 
the first 20 genetic principal components (PCs) to account for population stratification. Bootstrapped standard errors 
with 1000 replications and corresponding p-values are reported in parentheses. 
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Table A4. Heterogeneous Treatment Effects of the LHS Intervention on  
Smoking Cessation by SC PGI 

  
Composite 

(1) 
SIA 
(2) 

SIP 
(3) 

  Smoking Cessation 
Treated 0.229 0.232 0.227 

 (0.011) (0.014) (0.014) 

SC -0.015 -0.013 -0.017 
 (0.008) (0.009) (0.008) 

Treat × SC PGI (std) -0.009 -0.002 -0.014 
 (0.011) (0.014) (0.013) 

N 20,725 13,950 13,690 
Note: The table reports the heterogeneous effects of the treatment on the probability of 
quitting smoking. Composite indicates both treatment arms combined. SIA: smoking 
intervention plus Atrovent inhaler group. SIP: smoking intervention plus placebo inhaler 
group.  The PGI is standardized. All the regressions control for age fixed effects, wave 
fixed effects, sex, and the first 20 principal components (PCs) of the genetic data to 
account for population stratification. Standard errors clustered at the individual level are 
reported in the parentheses.  
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Table A5. Heterogeneous Treatment Effects of the LHS Intervention on Smoking Cessation  
by Baseline CPD and SI PGI 

 Composite SIA SIP 
Smoking Cessation 

Panel I    

Treated 0.229 0.230 0.227 
 (0.011) (0.014) (0.014) 

Baseline CPD (std) -0.029 -0.030 -0.028 
 (0.009) (0.009) (0.009) 

Treat × Baseline CPD (std) 0.012 0.009 0.017 
 (0.012) (0.014) (0.015) 
    

Panel II    

Treated 0.231 0.233 0.228 
 (0.011) (0.014) (0.014) 

Baseline CPD (std) -0.028 -0.029 -0.028 
 (0.009) (0.009) (0.009) 

Treat × Baseline CPD (std) 0.013 0.010 0.017 
 (0.012) (0.014) (0.015) 

SI PGI (std) 0.004 0.005 0.002 
 (0.008) (0.008) (0.008) 

Treat × SI PGI (std) -0.025 -0.034 -0.013 
 (0.011) (0.013) (0.013) 

N 20,725 13,950 13,690 
Note: Panel I of this table reports heterogeneous treatment effects of cigarettes smoked per day (CPD) at 
baseline on smoking cessation. These regressions control for age fixed effects, wave fixed effects, and sex. 
Panel II adds the smoking initiation (SI) PGI and its interaction. Regressions in Panel II also control for the first  
20 principal components (PCs) of the genetic data to account for population stratification. Standard errors 
clustered at the individual level are reported in parentheses. 
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Table A6. Heterogeneous Treatment Effects of the LHS Intervention on Smoking Cessation by  
Smoking Initiation PGI and Annual Visit 

 Annual Visit 
 1 2 3 4 5 
 Panel 1 Composite 
Treated 0.288 0.240 0.235 0.205 0.183 

 (0.012) (0.013) (0.014) (0.014) (0.015) 

SI PGI (std) 0.002 0.007 0.011 -0.003 0.002 
 (0.007) (0.009) (0.010) (0.011) (0.012) 

Treat × SI PGI (std) -0.021 -0.020 -0.033 -0.014 -0.033 
 (0.012) (0.013) (0.013) (0.014) (0.015) 

N 4,145 4,145 4,145 4,145 4,145 
 Panel II SIA 
Treated 0.296 0.243 0.232 0.204 0.187 

 (0.015) (0.016) (0.016) (0.017) (0.017) 

SI PGI (std) 0.003 0.007 0.011 -0.001 0.002 
 (0.008) (0.009) (0.010) (0.011) (0.012) 

Treat × SI PGI (std) -0.031 -0.032 -0.038 -0.027 -0.043 
 (0.015) (0.016) (0.016) (0.017) (0.017) 

N 2,790 2,790 2,790 2,790 2,790 
 Panel III SIP 
Treated 0.278 0.235 0.236 0.205 0.178 

 (0.015) (0.016) (0.017) (0.017) (0.018) 

SI PGI (std) -0.001 0.004 0.008 -0.007 -0.000 
 (0.008) (0.009) (0.010) (0.011) (0.012) 

Treat × SI PGI (std) -0.010 -0.004 -0.026 0.003 -0.020 
 (0.015) (0.016) (0.016) (0.017) (0.018) 

N 2,738 2,738 2,738 2,738 2,738 
Note: This table reports the heterogeneous treatment effects of the SI PGI on smoking cessation stratified by 
annual visits post treatment. There were five follow-up visits recorded in the LHS. Panel I reports the effects for 
both treatment groups combined (SIA and SIP) relative to the control group.  Panel II reports the effects for those 
participants who were assigned to the SIA group compared to the control group. Panel III reports the effects of 
the SIP participants in comparison with the control group. Each regression controls for age fixed effects, wave 
fixed effects, sex, and the first 20 principal components to account for population stratification.  
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Table A7. Heterogeneous Treatment Effects of the LHS Intervention on Cigarettes per Day by 
CPD PGI and Annual Visit 

 Annual Visit 
 1 2 3 4 5 
 Panel 1 Composite 
Treated -11.995 -9.850 -9.330 -7.727 -6.626 

 (0.491) (0.486) (0.484) (0.488) (0.484) 

CPD PGI (std) 1.814 1.544 1.872 1.673 1.665 
 (0.437) (0.429) (0.427) (0.436) (0.441) 

Treat × CPD PGI (std) -0.961 -0.313 -0.799 -0.485 -0.560 
 (0.514) (0.512) (0.506) (0.513) (0.515) 

N 4,050 4,038 4,027 4,019 4,145 
 Panel II SIA 
Treated -12.319 -9.995 -9.657 -7.906 -6.935 

 (0.565) (0.559) (0.550) (0.557) (0.550) 

CPD PGI (std) 1.842 1.503 1.861 1.601 1.623 
 (0.437) (0.432) (0.430) (0.440) (0.446) 

Treat × CPD PGI (std) -1.724 -0.824 -1.153 -0.805 -0.681 
 (0.580) (0.587) (0.577) (0.582) (0.578) 

N 2,727 2,719 2,708 2,700 2,790 
 Panel III SIP 
Treated -11.531 -9.589 -8.895 -7.522 -6.248 

 (0.575) (0.570) (0.572) (0.571) (0.563) 
CPD PGI (std) 1.886 1.637 1.937 1.761 1.741 

 (0.438) (0.434) (0.431) (0.440) (0.444) 

Treat × CPD PGI (std) -0.174 0.184 -0.487 -0.182 -0.460 
 (0.591) (0.592) (0.587) (0.590) (0.591) 

N 2,675 2,671 2,657 2,663 2,738 
Note: This table reports the heterogeneous treatment effect of the CPD PGI on CPD stratified by annual visits 
post treatment. There were five follow-up visits recorded in the LHS. Panel I reports effects for both treatment 
groups combined (SIA and SIP) relative to the control group. Panel II reports effects for participants who were 
assigned to the SIA group compared to the control group. Panel III reports effects for SIP participants compared 
to the control group. Each regression controls for age fixed effects, wave fixed effects, sex, and the first 20 
principal components (PCs) of the genetic data to account for population stratification.  
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Figures 

 

              Figure A1. PGI Correlation Matrix in the LHS Sample 

 

Note: The heatmap presents the correlation coefficients between the following PGIs: smoking 
initiation (SI), smoking cessation (SC), cigarettes per day (CPD), body mass index (BMI), lung 
function, or forced expiratory volume in one second over forced vital capacity (FEV1/FVC), and 
depression (DP). Lighter cells indicate weaker correlations, while darker cells indicate stronger 
correlations.  
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Figure A2. Mean Cigarettes Per Day at Baseline by CPD PGI Quintile 

 

Note: The figure plots the mean number of cigarettes per day (CPD) at baseline by CPD PGI 
quintiles. 95% confidence intervals are reported. 
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         Figure A3. Mean Body Mass Index at Baseline by BMI PGI Quintile 

 
Note: This figure plots the mean body mass index (BMI) at baseline by BMI PGI quintiles. 
95% confidence intervals are reported. 
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    Figure A4. Mean FEV1/FVC at Baseline by FEV1/FVC PGI Quintile 

 

Note: The figure plots mean lung function, or forced expiratory volume in one second over 
forced vital capacity (FEV1/FVC) at baseline by FEV1/FVC PGI quintiles. 95% confidence 
intervals are reported. 
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Figure A5. Mean Depression Symptoms at Baseline by Depression PGI Quintile 

 

Note: This figure plots the average distress index at baseline by depression PGI quintile. The distress 

index is the sum of five symptoms related to depression: irritability, insomnia, mood changes, 

nervousness, and psychological illness. The LHS asks participants about these mental conditions 

via the following question: “Indicate the extent to which you have been troubled in the last four 

months by any of the following. Please indicate ‘Severe,’ ‘Moderate,’ ‘Mild,’ or ‘Not at all.’” For 

each condition, we construct a dichotomous variable that takes the value of one if the respondent 

reports mild to severe symptoms and zero otherwise. We then form the distress index by summing 

across these mental health conditions at baseline. An increase in the distress index indicates 

worsening mental health. 95% confidence intervals are reported. 
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Figure A6. Per-wave Means of Smoking Cessation and CPD by Treatment Status 

                                       Panel I                                                              Panel II 

  

Note: Panel I shows the averages of smoking cessation and CPD by treatment status at baseline before treatment 
was administered and across all five annual follow-up visits. SIA: smoking intervention plus Atrovent inhaler 
(ipratropium bromide) group; SIP: smoking intervention plus placebo inhaler group. Averages are shown for the 
two treatment arms separately, for the composite treatment group (SIA and SIP), and the control group. Since 
we do not have information on smoking cessation at baseline, the first diagram under Panel I starts at the first 
visit. Panel II presents a zoomed-in version of the Panel I figures for the three treatment groups. Since baseline 
CPD was the same across groups, Panel II only plots means for the five follow-up visits.  
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Figure A7. Heterogeneous Treatment Effects of the LHS Intervention on Smoking              

Cessation by Baseline CPD and SI PGI 
 

                                            Panel I                                       Panel II                                        Panel III 

  

 

 

Note: Panel I corresponds to the composite treatment group (‘1’ if either SIA or SIP and ‘0’ if control), Panel II 
corresponds to the SIA treatment group (‘1’ if SIA and ‘0’ if control), and Panel III corresponds to the SIP treatment 
group (‘1’ if SIP and ‘0’ if control). The top row presents the heterogeneous treatment effects on smoking cessation 
using variations in baseline CPD. These regressions control for age fixed effects, wave fixed effects, and sex. The 
lower row plots predicted treatment effects for smoking cessation by SI PGI that also control for baseline CPD and its 
interaction with the treatment. These regressions also control for the first 20 PCs of the genetic data. The grey 
diamonds represent the treated groups (composite/SIA/SIP) and the black circles represent the control group. Standard 
errors are clustered at the individual level and 95% confidence intervals are plotted with the estimates.
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Appendix B 

B1. List of Abbreviations 

 

1. LHS: Lung Health Study 
 

2. RCT: Randomized controlled trial 
 

3. ATE: Average treatment effect 
 

4. SIA: Smoking intervention plus inhaler with the active drug ipratropium bromide group 
 

5. SIP: Smoking intervention plus placebo inhaler group 
 

6. PGI: Polygenic index 
 

7. PC: Principal component 
 

8. SI: Smoking initiation 
 

9. SC: Smoking cessation 
 

10. CPD: Cigarettes smoked per day 
 

11. FEV1/FVC: Forced expiratory volume in one second over forced vital capacity 
 

12. DP: Depression 
 

13. GWAS: Genome-wide association study 
 

14. SNP: Single nucleotide polymorphism 
 

15. LD: Linkage disequilibrium  
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B2. Additional Information on the Lung Health Study Intervention 

 
1. Exclusionary criteria 

 
             Individuals were excluded from the study if they had serious illnesses such as cancer, heart 

disease, stroke, or other significant medical conditions like high blood pressure, were using 

bronchodilators, beta-blockers, nitrates, or insulin, or if they consumed more than 25 alcoholic 

drinks per week or were binge drinkers.  To reduce attrition, individuals were also excluded if they 

anticipated moving more than 75 miles from the clinical center or were unwilling to participate in 

the behavior intervention if randomized into the treatment group. 

2. Intervention details 
 

Each center recruited approximately 600 participants and assigned 400 individuals to the 

treatment group and 200 to the control group. Women comprised approximately 37 percent of 

enrolled subjects and 96 percent of the sample was white. The smoking cessation intervention 

program was designed to help individuals cope with their addiction and included several key 

features throughout the five-year trial (Connett et al. 1993; O’Hara et al. 1993):  

• An initial message from a physician was delivered soon after randomization to give the 

participant information regarding their lung impairment, the adverse health effects of 

smoking, the importance of smoking cessation to reduce health risks, and a prescription 

for the inhaler and nicotine gum. Participants were encouraged to limit their nicotine gum 

use to the first 6 months of the trial and were provided with a reduction strategy if they 

had difficulty tapering their use.  

• A meeting with an intervention specialist (held immediately after the physician meeting) 

explained the program and helped participants choose a quit date. 
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• An intensive 12-session group intervention program spread over 10 weeks provided 

cognitive and behavioral strategies for quitting and instructions for proper inhaler and 

nicotine gum use.  

• Clinic visits every four months across all five years of follow-up. 

• A maintenance program to minimize relapse and provide long-term support with 

problems such as weight gain and stress management. 

• An extended intervention program for smokers who relapsed included options for 

individual counseling, physician visits, or additional group meetings.  
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B3. Quality Control and Imputation of the Genotyped Data 

 
We performed pre-imputation quality control (QC) on the genotype data using PLINK 

software (Purcell et al. 2007). We only kept autosomal non-biallelic SNPs with a minor allele 

frequency (MAF) > 0.01 and Hardy Weinberg equilibrium test p-value ≥ 1.0e-6. We used the 

UCSC liftOver tool to lift over the genome coordinates from hg18 to hg19. We phased and imputed 

the genotype data using the HRC reference panel version r1.1 2016 from the Michigan Imputation 

server (Das et al. 2016). After imputation, we removed the duplicated and strand ambiguous SNPs, 

SNPs with imputation quality<0.9, and SNPs with MAF<0.01. After QC, 12,030,369 SNPs 

remained. PGIs were then constructed using SNPs that overlapped between the LHS and GWAS 

samples. Number of SNPs used to construct each PGI: SI=1,044,939; SC=1,057,529; 

CPD=1,057,519; BMI=920,776; FEV1/FVC=1,052,022; Depression=1,017,199. 
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