
NBER WORKING PAPER SERIES

ARTIFICIAL INTELLIGENCE ASSET PRICING MODELS

Bryan T. Kelly
Boris Kuznetsov

Semyon Malamud
Teng Andrea Xu

Working Paper 33351
http://www.nber.org/papers/w33351

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
January 2025

Semyon Malamud gratefully acknowledges the financial support of the Swiss Finance Institute and
the Swiss National Science Foundation, Grant 100018 192692. AQR Capital Management is a
global investment management firm that may or may not apply similar investment techniques or
methods of analysis as described herein. The views expressed here are those of the authors and not
necessarily those of AQR. This work was supported by a Swiss National Supercomputing Centre
(CSCS) grant under project ID sm86. The views expressed herein are those of the authors and do
not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies
official NBER publications.

© 2025 by Bryan T. Kelly, Boris Kuznetsov, Semyon Malamud, and Teng Andrea Xu. All rights
reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit
permission provided that full credit, including © notice, is given to the source.

Artificial Intelligence Asset Pricing Models
Bryan T. Kelly, Boris Kuznetsov, Semyon Malamud, and Teng Andrea Xu
NBER Working Paper No. 33351
January 2025
JEL No. C45, G10, G11, G14, G17

ABSTRACT

The core statistical technology in artificial intelligence is the large-scale transformer network. We
propose a new asset pricing model that implants a transformer in the stochastic discount factor. This
structure leverages conditional pricing information via cross-asset information sharing and
nonlinearity. We also develop a linear transformer that serves as a simplified surrogate from which
we derive an intuitive decomposition of the transformer's asset pricing mechanisms. We find large
reductions in pricing errors from our artificial intelligence pricing model (AIPM) relative to
previous machine learning models and dissect the sources of these gains.

Bryan T. Kelly
Yale School of Management
165 Whitney Ave.
New Haven, CT 06511
and NBER
bryan.kelly@yale.edu

Boris Kuznetsov
Swiss Finance Institute @ EPFL
Quartier UNIL-Dorigny, Extranef 244
CH-1015 Lausanne
Switzerland
boris.kuznetsov@epfl.ch

Semyon Malamud
Swiss Finance Institute @ EPFL
Quartier UNIL-Dorigny, Extranef 213
CH - 1015 Lausanne
Switzerland
semyon.malamud@epfl.ch

Teng Andrea Xu
UNIL Dorigny, Extranef
Switzerland
andrea.xu@epfl.ch

1 Introduction

The large language model (LLM) revolution emerged from two complementary modeling

insights.1 First, words need to be understood in context. Language models that study

words without awareness of the surrounding text context cannot faithfully represent a text’s

meaning and, therefore, suffer in tasks like word prediction and translation. However, cap-

turing contextual relationships among words is an extraordinarily high-dimensional problem,

and early modeling attempts have failed to find a tractable solution. The so-called “trans-

former” model is a watershed discovery that makes it possible to model words in context

while maintaining computational tractability flexibly.

The second insight is that unprecedented out-of-sample performance can be achieved

through exorbitant model parameterizations, or “complexity.” This surprising empirical phe-

nomenon has prompted a search for theoretical foundations of the virtue of complexity.2 The

computational tractability of transformers is the first step toward implementing large pa-

rameterizations. Still, more recent LLMs such as GPT-4 push the limits of model complexity

further by adopting “scaling” components that proliferate parameterization.

These insights that underpin LLM success have also spurred a broader AI revolution,

propelling gains in computer vision, computational biology, and other AI applications by

efficiently leveraging contextual information in large-scale models.

The finance literature has focused primarily on small-scale “own-asset prediction” models—

those in which forecasts for asset i depend on conditioning variables that are specific to asset

i. The recent AI experience suggests that own-asset predictability may be the most limit-

ing maintained restriction in empirical asset pricing. Like a bag-of-words language model,

own-asset prediction models abstract from context by failing to use information about the

broader universe of assets to describe the risk and return of each individual asset. The typi-

cally small parameterization in finance models tends to mask the full extent of predictability

concealed in finance data.3

This paper introduces the concept of an artificial intelligence pricing model (AIPM).

1See, e.g., Minaee et al. (2024) for an extensive LLM review.
2See, Spigler et al. (2019), Belkin et al. (2018), Belkin et al. (2019), Belkin et al. (2020), and Bartlett

et al. (2020), as well as Kelly et al. (2024a) and Didisheim et al. (2024).
3This shortcoming has been analyzed and documented in Kelly et al. (2024a) and Didisheim et al. (2024).

1

We define an AIPM as a model that implants in the stochastic discount factor (SDF) the

same context-aware and large-scale transformer architecture from state-of-the-art LLMs and

other AI. The critical attributes of an AIPM are i) that it flexibly shares conditioning

information across assets to arrive at context-aware forecasts and ii) that out-of-sample model

performance is maximized by pushing the limits of model parameterization. Thus, our first

main contribution is an asset pricing model design that leverages the two aforementioned

attributes of leading AI models.

The transformer can seem analytically impenetrable. The second contribution of our

paper is to derive an intuitive characterization of the transformer’s role in the context of asset

pricing. To do so, we begin with a simple and interpretable variant of our model that we

refer to as the “linear portfolio transformer.” This SDF model is easy to describe and inspect

and admits a closed-form regression-based estimator. It uses the same core information

sharing apparatus—the “attention” mechanism—as a standard transformer, but removes

the other nonlinearities present in the full-blown nonlinear transformer. Most importantly,

the analytical tractability of the linear portfolio transformer makes it a powerful surrogate

for understanding the impact of cross-asset attention on the SDF portfolio. It has a number

of other surprising model properties that we derive theoretically, including an ability to vary

model parameterization without changing the data inputs or deviating from linearity. This

property, which we refer to as “linear multi-headed attention,” is convenient for inspecting

the virtue of complexity in the linear specification.

Our analytical derivations provide interpretations of the attention-based SDF. The first is

related to the representation of a conditional SDF as a linear combination of characteristic-

managed “factor” portfolios (e.g. Kozak et al., 2020a). For example, in the value factor

portfolio, stock i’s weight in the factor is proportional to its book-to-market ratio. This

construction is based on the view that a stock’s book-to-market ratio proxies its expected

return. However, if this stock characteristic is a noisy measure of expected return and if

there is sufficient dependence among the true expected returns of stocks, then the noisy

factor can be improved by replacing the book-to-market characteristic with a more refined

measure that draws upon information in the book-to-market ratios of other stocks. This

cross-sectional information sharing is our asset pricing model’s analog to context awareness

2

for words in an LLM.

The linear portfolio transformer also illustrates that AIPMs can be interpreted as per-

forming a sophisticated version of factor timing. Factor timing models have been proposed

by Gupta and Kelly (2019), Haddad et al. (2020), and Ehsani and Linnainmaa (2022), among

others. Relatedly, the principal portfolios method of Kelly et al. (2023) explicitly links factor

timing to the problem of cross-asset return prediction. These papers consider one factor at

a time and are developed in low-complexity settings. In contrast, our portfolio transformers

are high-dimensional timing models that optimize the timing of all factors jointly.

The linear portfolio transformer is an intermediate modeling step. While it is a valuable

device for understanding the role of context-awareness in an AIPM, it abstracts from a

variety of other model features known to be critical to the success of modern AI models.

And though the linear transformer has high complexity by typical asset pricing standards,

there remains significant scope for expanding model parameterization further. We, therefore,

introduce an AIPM that uses a large nonlinear transformer architecture inspired by Vaswani

et al. (2017). This includes multi-headed attention, softmax transformations, a feed-forward

network, residual connections, and, most importantly, the deep learning benefit of stacking

multiple transformer blocks together. We discuss the intuitive role of each of these AIPM

model components.

Our third main contribution is to document and dissect the empirical performance of

AIPMs. We focus on monthly data for US stock returns and use a standard set of 132 stock-

level conditioning characteristics from Jensen et al. (2023) (JKP henceforth). As appropriate

for machine learning model comparisons, we focus on out-of-sample Sharpe ratios and pricing

errors for anomaly portfolios following the formulation of Didisheim et al. (2024) (DKKM

henceforth).

We begin with an empirical analysis of the linear portfolio transformer. We document

the benefits of cross-asset information sharing by comparing it to a linear SDF in which the

attention mechanism is shut down. The benchmark establishes that a standard linear SDF

with no cross-asset information achieves an out-of-sample Sharpe ratio of 3.6. The linear

portfolio transformer, which introduces the attention mechanism but no other model changes

(i.e., maintaining linearity and the same data inputs), produces a Sharpe ratio improvement

3

to 3.9 and an alpha t-statistic of 6.8 to the attention-free linear model, suggesting that the

benefits of cross-asset information sharing are non-trivial even in a simple, linear setting.

Next, we use the multi-head capability of the linear portfolio transformer to investigate the

benefits of large-scale parameterizations. We find that the out-of-sample Sharpe ratio is

strictly increasing in the number of model parameters, establishing the virtue of complexity

(Kelly et al., 2024b, DKKM) in the new modeling context of the linear portfolio transformer.

Finally, we analyze the empirical properties of the nonlinear portfolio transformer. To

evaluate the role of information sharing in the nonlinear setting, we require a benchmark

model that incorporates nonlinearities but does so solely through its use of own-asset infor-

mation. The recently proposed SDF of DKKM, which is nonlinear but lacks an attention

mechanism, is well-suited for this comparison. In our analysis, DKKM achieves an out-

of-sample Sharpe ratio of 3.9. In contrast, through its information-sharing capacity, the

nonlinear portfolio transformer achieves a large and significant Sharpe ratio improvement

to 4.6. We also design an otherwise “apples-to-apples” feedforward network with the same

architecture as the nonlinear portfolio transformer but excluding the attention mechanism to

shut down cross-asset information sharing. In this case, we find the same qualitative result

that we found when comparing to DKKM. In other words, the excess performance of the

transformer is indeed attributable to the information-sharing mechanism.

Next, we investigate how nonlinear transformer performance responds as we scale up

parameterization by concatenating more transformer blocks to increase network depth. We

find a clear virtue of complexity, with the Sharpe ratio increasing from 3.8 for a single-block

transformer (a model with about 100,000 parameters) to 4.6 for a ten-block transformer

(a roughly one million parameter model). Our analysis suggests that our nonlinear port-

folio transformer can be improved further by increasing parameterization as the slope of

out-of-sample performance to the number of blocks has not yet flattened (though due to

computation costs for model training, we leave further parameter expansion to subsequent

work). A key synthesis of our findings is a pecking order among models. Those with the

simplest specifications are the weakest performers, and performance gradually increases as

we move towards models with richer specifications, and those with an attention mechanism

for cross-asset information sharing dominate those without.

4

This paper contributes to the emerging literature demonstrating that machine learning

asset pricing models achieve higher out-of-sample Sharpe ratios and smaller pricing errors

than their more parsimonious predecessors. Notable examples include Kozak et al. (2020b),

Gu et al. (2020a), Chen et al. (2023), Bryzgalova et al. (2020), Cong et al. (2022), Fan

et al. (2022), and Preite et al. (2022), among others. Our work extends this literature by

introducing transformer architectures into asset pricing models, leveraging cross-asset infor-

mation sharing, and embracing model complexity to capture intricate relationships among

assets.

In relation to machine learning methods for analyzing factor models, our approach aligns

with efforts by Connor et al. (2012), Fan et al. (2016), Kelly et al. (2020a), Lettau and

Pelger (2020), Giglio and Xiu (2021), Giglio et al. (2022), and He et al. (2023), who employ

advanced statistical techniques to improve factor model estimation and prediction (see Kelly

and Xiu, 2023; Rapach and Zhou, 2020, for comprehensive surveys on these topics). By

embedding transformer architectures within the stochastic discount factor (SDF), we push

the boundaries of this literature, demonstrating how attention mechanisms can effectively

capture cross-sectional dependencies and enhance predictive performance.

By utilizing transformers and their attention mechanisms, we provide evidence that the

factor zoo (Harvey et al., 2016; McLean and Pontiff, 2016; Hou et al., 2020; Feng et al., 2020;

Jensen et al., 2023; Chen and Zimmermann, 2021) is important for capturing subtle dimen-

sions of cross-asset information flows. Effectively, transformers embed stocks into the space of

high-dimensional characteristics and then use this embedding to learn characteristics-based

networks for information transmission.4 The demonstrated success of machine learning mod-

els in predicting the cross-section of returns, as shown in Chinco et al. (2019), Han et al.

(2019), Freyberger et al. (2020), Rapach and Zhou (2020), Gu et al. (2020b), Avramov et al.

(2023), and Guijarro-Ordonez et al. (2021), provides additional evidence of the benefits of

embracing model complexity, a central theme in our application of transformers to asset

pricing.

The paper proceeds as follows. In Section 2, we introduce the linear portfolio transformer

4? estimate a transformer model that embeds holdings data in a low-dimensional space that captures
demand-related asset and investor characteristics.

5

that includes cross-asset attention in an otherwise vanilla conditional SDF, derive its theo-

retical properties, and present a closed-form regression-based estimator. Section 3 introduces

a large-scale AIPM that embeds a deep nonlinear transformer in the SDF. Lastly, in Section

4, we evaluate the empirical properties of these models in monthly US stock data.

2 The (Interpretable) Linear Portfolio Transformer

In this section, we introduce the linear portfolio transformer. The linear model is estimable in

closed form, providing a particularly transparent environment for dissecting its functionality

in intuitive terms. Most conceptual insights drawn from our linear transformer carry over

to its nonlinear counterpart in Section 3, which uses similar model components and is based

on popular LLM transformers.

2.1 Model Specification

Our setting consists of a universe of Nt risky assets in the economy at time t whose excess

returns are given by the vector Rt+1. Financial machine learning strives to incorporate large

conditioning sets in richly parameterized models with the aim of accurately characterizing

the expected out-of-sample behavior of asset prices. To this end, each asset is accompanied

by a high-dimensional vector of D characteristics Xi,t. We use Xt to denote the Nt×D matrix

stacking characteristics for all stocks at time t. We assume that the conditioning variables in

Xt span the time t information set. Our framework accommodates a time-varying universe of

Nt assets by conditioning assets’ behavior on a fixed number D of asset-level characteristics,

as in Kelly et al. (2020b).

Kelly and Xiu (2023) discuss the conveniences of representing machine learning asset

pricing models in terms of their SDF or, equivalently, in terms of the maximum Sharpe ratio

portfolio of risky assets. We follow this approach in defining an AIPM whose conditional

SDF representation (Hansen and Richard, 1987) is

Wt+1 = 1− w(Xt)
′Rt+1 (1)

6

where the vector function w(Xt) maps conditioning information into the SDF’s conditional

weights on individual risky assets, where w(Xt)
′Rt+1 is the conditionally mean-variance

optimal portfolio.

The basic linear portfolio transformer model is:

wt = AtXtλ = (XtWX ′t)Xtλ , (2)

where W (D × D) and λ (D × 1) are the model parameters to be estimated. We refer to

the matrix At = XtWX ′t as the “attention” matrix. The following subsections describe and

interpret the model’s functionality.

2.2 Transformers and Cross-asset Information Sharing

At the core of the portfolio transformer architecture is the so-called attention mechanism,

introduced to the machine learning literature in various forms by Vaswani et al. (2017), Cho

(2014), and Bahdanau (2014), and most prominently known for its success in large language

models like ChatGPT. In the AIPMs we develop, the attention mechanism provides a flexible

and tractable framework for introducing cross-asset information sharing.

The literature on financial machine learning has focused primarily on own-asset prediction

in which the optimal portfolio weight of asset i depends solely on conditioning variables that

are specific to asset i.5 In an early formulation of this approach, Brandt et al. (2009) specify

the optimal portfolio weight for asset i as a linear function of its characteristics, wi,t = X ′i,tλ.

This is a special case of (2) in which the matrix At is the identity matrix:

wt = Xtλ. (3)

Likewise, the high complexity analysis of DKKM centers on the formulation wi,t = f(Xi,t)λ,

where f is a heavily parameterized neural network. All assets share the same network

architecture and model parameters, but each asset’s portfolio weight continues to depend,

ultimately, only on its own characteristics.

5An exception is Cong et al. (2021), though they do not distinguish the role of attention from the kitchen
sink of other machine learning architectures included in their model.

7

As argued in the introduction, own-asset predictability is a potentially costly restriction

in empirical asset pricing models. However, loosening this restriction can be a difficult

task. A simple formulation of cross-asset predictability would be a static version of (2) with

At = A:6

wt = AXtλ. (4)

The dth characteristic of stock i is thus modified from Xi,d,t to X̃i,d,t by multiplying the dth

column of Xt with the ith row of A. In other words, a cross-prediction formulation like (4)

uses information sharing to enhance an own-asset predictive characteristic with a weighted

average of that same characteristic’s value across all assets. In other words, the matrix

A summarizes the “attention” one should pay to characteristics of all other assets when

deciding on the ideal portfolio weight for asset i. The optimal attention matrix A can be

learned as part of the training objective (9) along with the weights λ that optimally map

the “cross-sectionally smoothed” characteristics into final portfolio weights.

However, the formulation of (4) is unattractive for a few reasons. For one, a static A

matrix cannot handle time-varying universes of Nt assets, as is necessary, for example, in the

cross-section of individual stocks. More importantly, it ignores potentially valuable infor-

mation about the similarity among stocks in the conditioning set Xt. We can remedy these

shortcomings with a dynamic attention matrix At that exploits conditional information shar-

ing. But the question then is how to operationalize conditional attention. Fortunately, the

attention mechanism within a transformer is well suited for this problem. It parameterizes

At as a function of observables in Xt. In particular, the conditional attention mechanism

in (2) shares information based on the conditional similarity between the characteristics of

asset i and asset j,

At = XtWX ′t. (5)

In this formulation, information is more actively shared among assets with similar attributes.

6This is related to the cross-asset prediction technique of principal portfolios proposed by Kelly et al.
(2023) and their multivariate extension by He et al. (2022).

8

In fact, if the rows of Xt are variance-standardized, and W is the identity matrix, then (i, j)th

element of At reports the correlation across characteristics for asset pair (i, j). If W is not

identity but is instead a D×D matrix of free parameters, then the model has the flexibility

to learn which conditioning characteristics represent the most fruitful pathways of cross-asset

prediction.7

Through algebraic manipulation of (2), we see

wt = (XtWX ′t)Xtλ

= Xt(λ
′ ⊗W)vec(X ′tXt)

=
(
vec(X ′tXt)

′ ⊗Xt

)
vec
(
λ′ ⊗W

)
= X̆tλ̆. (6)

The portfolio weights in (6) are linear in X̆t = vec(X ′tXt)
′⊗Xt, which is an Nt×D3 matrix

of three-way interactions among characteristics of all assets, and with up to D3 distinct

linear parameters λ̆. This brings the linear portfolio transformer full circle back to the

simple SDF model of (3). The linearity of portfolio weights in an extremely large number of

nonlinear functions of Xt is reminiscent of the high complexity SDF formulation of DKKM.

But unlike DKKM, the linear transformer achieves this complexity by exploiting cross-asset

predictability in the form of cross-asset characteristic interactions.

2.3 Transformers and Factor Timing

It is common in the literature to use the set ofD characteristics inXt to construct characteristic-

managed portfolios, or “factors,” whose returns are defined by the D × 1 vector Ft+1 =

X ′tRt+1. A basic linear portfolio specification, wt = Xtλ as in (3) can thus be viewed as a

portfolio of factors:

w′tRt+1 = F ′t+1λ. (7)

7The information entering the attention function At can differ from the core information that maps into
portfolio weights in (4) without loss of generality. For example, we may wish to consider wt = (YtWY ′t)Xtλ
for some Yt with first dimension Nt and Yt 6= Xt. For simplicity of exposition, we work from a single matrix
of conditioning variables Xt throughout.

9

Recent literature on “factor timing” has documented robust evidence of time series pre-

dictability in anomaly factor returns.8 The literature also documents portfolio gains from

strategies that form dynamic combinations of factors to exploit time variation in factor ex-

pected returns. One example of this approach is factor momentum, which builds a portfolio

that combines factors in proportion to their recent average returns.

In light of this, equations (6) and (7) together give another perspective on how the

portfolio transformer approaches cross-asset prediction. It introduces an enormous number

of ways to time each factor in Ft using each element of X ′tXt, as captured by the term

X̌t = vec(X ′tXt) ⊗ Xt. The trained portfolio transformer coefficient vector vec
(
λ′ ⊗ W

)
selects the best combination of these factor timing strategies.

Kelly et al. (2023) develop an asset pricing theory for simple timing models and estab-

lish a rigorous connection with the problem of cross-asset return prediction. Their analysis

deals with only one factor at a time and in low-complexity settings. In contrast, the port-

folio transformer pushes cross-asset information sharing to extreme levels of complexity and

conditionality while jointly optimizing the timing of all factors.

2.4 Multiple Heads

In the machine learning literature, the structure in (5) is referred to as attention “head.”

Transformers typically possess multiple attention heads. In analogy, we define the H-head

linear portfolio transformer as

wt = (XtW1X
′
t)Xtλ1︸ ︷︷ ︸

head #1

+ · · · + (XtWHX
′
t)XtλH︸ ︷︷ ︸

head #H

=

(
vec(X ′tXt)⊗Xt

)
vec

(
H∑
h=1

λ′h ⊗Wh

)
= X̌tλ̌. (8)

Why incorporate a variety of heads in the portfolio transformer? Equation (8) shows that

multi-head attention allows for multiple pathways of cross-asset predictability. Increasing

the number of heads increases the model’s parameterization and thus its flexibility without

8See Gupta and Kelly (2019), Haddad et al. (2020), Kelly et al. (2023), and Ehsani and Linnainmaa
(2022).

10

changing the regressors, X̌t, which are the same regardless of the number of heads. Relat-

edly, we can think of the multi-head formulation as performing model averaging—(8) is an

ensemble of H different single-head models for the optimal portfolio.9

2.5 Estimation and Identification

A natural objective function for training an AIPM with SDF weight w (Xt; ΘT) is:

min
ΘT

Et

[(
1− w (Xt; ΘT)′Rt+1

)2
]

+ g(ΘT ; z), (9)

where w (Xt; ΘT) is the SDF weight function with parameters ΘT , and g(ΘT ; z) is a shrinkage

penalty term with a shrinkage parameter z. This objective is built around the equivalence

between an SDF and the mean-variance efficient portfolio. Kelly and Xiu (2023) refer to

this penalized least squares problem as maximum Sharpe ratio regression (MSRR) since its

solution is the (penalized) conditionally efficient portfolio. DKKM prove that the estimator

in (9) approximates to the conditionally mean-variance efficient portfolio, and they derive

technical conditions under which this solution consistently recovers the true optimal portfo-

lio.10 Similarly, (9) maps to the standard asset pricing Euler condition that the true SDF

Wt+1 conditionally prices all assets with zero error:

Et[Wt+1Rt+1] = 0, where Wt+1 = 1− w (Xt; ΘT)′Rt+1. (10)

When g(ΘT ; z) = 0, the Euler equation (10) is the first-order condition of the optimization

problem in (9). It is also the vector of SDF pricing errors for all risky assets. In other words,

the objective (9) can be viewed as a portfolio optimization problem or, equivalently, as a

pricing error minimization problem.

The estimation problem in (9) is presented in general terms and also accommodates the

nonlinear specification introduced in Section 3. In the case of the linear portfolio transformer

9One technical caveat regarding multi-head attention is that the parameters in this formulation are not
uniquely identified. We discuss our approach to identification in the following section.

10Britten-Jones (1999) establishes the link between an unconditional version (9) and the unconditional
maximum Sharpe ratio portfolio.

11

with a ridge penalty function, the objective is to

min
λ̌
{Et

[(
1− λ̌′X̌ ′tRt+1

)2
]

+ zλ̌′λ̌} , (11)

which delivers a convenient closed-form expression for linear portfolio transformer estimator:

ˆ̌λ =

(∑
t

X̌ ′tRt+1R
′
t+1X̌t + zI

)−1(∑
t

X̌ ′tRt+1

)
. (12)

This formula begins to shed light on the issue of identification in the multi-head trans-

former. The number of unique parameters in an H-head model is P = H(D2 +D) as there

are D2 parameters for each Wh and D parameters for each λh. The dimension of the regres-

sion parameter λ̌ in (8) is D3. If the number of heads is large enough that H(D2 +D) ≥ D3,

MSRR can recover up to D3 unique parameters. We refer to a model with D3 unique param-

eters as “saturated” because it is the richest unique parameterization that can be achieved

with a linear transformer using D conditioning variables.

If the number of heads is small enough that H(D2 + D) < D3, then there are cross-

parameter restrictions on the elements of λ̌ and the estimator in (12) must be modified to

impose these constraints. In Appendix B, we provide an algorithm for recovering a unique

set of H(D2 +D) < D3 restricted parameters, which amounts to a form of constrained least

squares. By varying the number of attention heads, we can investigate the role of model

complexity on the performance of the linear transformer.

3 The Nonlinear Portfolio Transformer

The linear portfolio transformer offers a window into the role of attention for an AIPM.

However, it abstracts from a variety of nonlinearities typically employed in the transformers

that underly LLMs and other leading AI models. In this section, we develop a deep nonlinear

portfolio transformer. Its architecture is an asset pricing adaptation of such well-known

transformer models as Vaswani et al. (2017).

12

First, we will give a complete statement of the nonlinear portfolio transformer. Then, we

discuss the intuition behind its various nonlinearities and how they aid model performance.

3.1 Model Specification

The nonlinear portfolio weight function is a K-block transformer architecture. Each block

is composed of two sublayers. The first sublayer applies a multi-head attention unit defined

as

A(Y) =
H∑
h=1

σ (YWhY
′)Y Vh (13)

to the generic Nt ×D matrix input Y . Wh and Vh are D ×D matrices of parameters. The

function σ : RNt×Nt → RNt×Nt is a row-wise softmax operator applied to the Nt×Nt matrix

YWhY
′.

After the softmax operation, the original Y is added back in a so-called “residual con-

nection:”

AR(Y) = A(Y) + Y. (14)

The second sublayer is a fully connected feed-forward network with one hidden layer of

dF neurons:

F(Y) = max [0, YW1 + ιb′1]W2 + ιb′2 , (15)

where the parameter matrix W1 is D × df , b1 is df × 1, W2 is df × D, b2 is D × 1, and

ι’s are conforming vectors of ones.11 The output of the feed-forward step is, therefore, the

same dimension as the input, Nt × D. Again, we include a residual connection after the

feed-forward network:

FR(Y) = F(Y) + Y . (16)

11The max operator in (15) is applied row-wise. More specifically, the network can be understood as
operating on asset-by-asset observations, so it takes the D × 1 input yi (the ith row of Y) and produces a
D × 1 output. These outputs are then stacked into the Nt ×D matrix F(Y).

13

Single Transformer Block Full K-block Transformer

A
tte

n
tio

n
S
u
b
la

y
e
r

F
e
e
d
-fo

rw
a
rd

S
u
b
la

y
e
r

Output
T (Y) = FR

(
AR(Y)

)
Add Residual

FR
(
AR(Y)

)
= F

(
AR(Y)

)
+ AR(Y)

Feed-forward Network
F
(
AR(Y)

)
= max[0,AR(Y)W1 + ιb′1]W2 + ιb′2

Add Residual
AR(Y) = A(Y) + Y

Multi-head Attention
A(Y) =

∑
h σ(YWhY

′)Y Vh

Input
Y

wt = T (K)(Xt)λ

T (K)(Xt) = T
(
T (K−1)(Xt)

)
· · ·

T (2)(Xt) = T
(
T (1)(Xt)

)
T (1)(Xt) = T (Xt)

Xt

Figure 1: Illustration of Nonlinear Portfolio Transformer

The right figure shows the full architecture of a K-block portfolio transformer. The left figure shows the
structural details within a transformer block.

A complete transformer block T is a composition of these two sublayers:

T (Y) = FR
(
AR(Y)

)
. (17)

Given the transformer block in (17), we can state the full recursive definition of the

portfolio transformer. The recursion is initialized with an identity layer whose input and

output are the raw Nt ×D conditioning matrix Xt:

T (0)(Xt) = Xt. (18)

The input to each additional transformer block k = 1, ..., K is the output from the previous

14

block:

T (k)(Xt) = T
(
T (k−1)(Xt)

)
. (19)

The recursion culminates in an Nt ×D output matrix of reconstituted asset characteristics,

T (K)(Xt). The final linear layer maps these characteristics into the conditional SDF portfolio

weights with parameter a final D × 1 parameter vector λ:

wt = T (K)(Xt)λ. (20)

Figure 1 illustrates the tortuous propagation of input data Y through the network. Trans-

former block k is equipped with block-specific parameters,

θ(k) =
(

(W
(k)
h , V

(k)
h)Hh=1,W

(k)
1 , b

(k)
1 ,W(k)

2 , b
(k)
2

)
, k = 1, · · · , K ,

and the complete set of AIPM parameters is then given by

ΘT =
{

(θ(k))Kk=1, λ
}
, (21)

for a total of K(2D2H + 2Ddf + df + D) + D parameters. In the subsequent analysis, we

use df = 256 and H = 1. 12

3.2 The Role of Nonlinearities

DKKM establish the surprising result that the out-of-sample performance of an SDF im-

proves with the number of parameters. This is a counterpart to the virtue of complexity

Kelly et al. (2024b) (KMZ henceforth) in the context of asset pricing models. Heavy param-

eterizations of AI models enhance their capacity to approximate unknown data-generating

processes. This phenomenon is well known in machine learning domains like image and

language modeling.

12Our experiments suggest the gains from increasing H are small; hence, we focus on H = 1 to reduce
computational costs.

15

The nonlinear portfolio transformer achieves extremely high complexity through the re-

peated composition of heavily parameterized functions. This seemingly gratuitous layering

of nonlinearity on top of nonlinearity is motivated by the virtue of complexity. However,

the nonlinear design choices in the Vaswani et al. (2017) architecture are by no means

arbitrary. They are the result of continual research refinements discovered largely in the

language modeling domain. In this section, we attempt to provide intuition for each of the

portfolio transformer’s nonlinearities and why they are likely to be beneficial in the asset

pricing context. A key facet of our empirical analysis explores the sensitivity of AIPM model

performance as a function of model complexity.

3.2.1 Softmax Attention

The first nonlinearity to appear in the full portfolio transformer is the softmax function,

σ(YWhY
′), in equation (13). This function works row-wise (i.e., asset-by-asset) on the

attention matrix At = YWhY
′, converting each row to a probability distribution (each

element is non-negative and rows sum to one):

σ(At)i,j =
exp(At,i,j)∑
l exp(At,i,l)

.

While the general attention mechanism gathers information about asset i from the charac-

teristics of all other assets, the softmax operation selectively focuses attention on relatively

few related assets while ignoring the rest. This beneficial property of softmax is described

in the following lemma.

Lemma 1 (Selective Softmax Attention) Consider the effect of multiplying Wh by a

constant α in σ(XtWhX
′
t). As α→ +∞, we have

σ(XtWhX
′
t)i,j =

1

|χt(i)|
1j∈χt(i), (22)

where χt(i) is the attention-worthy set of assets for gathering information about asset i:

χt(i) = {j ∈ {1, · · · , Nt} : X ′i,tWhXj,t ∈ arg max
j1

X ′i,tWhXj1,t} . (23)

16

Recent theoretical results (Tarzanagh et al., 2023) suggest that transformers tend to

operate in the asymptotic regime described by Lemma 1, achieving a binary partition of

assets (or, more commonly, language tokens) into those that are relevant and those that are

not for predicting the behavior of each other asset i.

3.2.2 Feed-forward Network

The second nonlinearity of the portfolio transformer is denoted F in equation (15). In

each transformer block k, F receives the output from the preceding attention sublayer,

AR
(
T (k−1)(Xt)

)
, which like the original conditioning data contains D characteristics for

each of the Nt assets. The characteristics in AR
(
T (k−1)(Xt)

)
have been reconfigured to

incorporate attention-based information sharing and other nonlinearities in previous layers.

F further transforms these with a shallow, fully connected feed-forward neural network and

introduces a large number of new additional parameters every time the feed-forward layer is

applied.

Despite the Byzantine structure of the feed-forward layer, this is perhaps the best-

understood and least novel aspect of the transformer. Its role is to refine the information

about each asset by parsing out the most predictive nonlinear representations of the inputs.

Note that because F operates row-wise, it transforms the “characteristics” of each asset i

independently of the other assets. Thus, the nonlinearity applied in this layer applies to an

asset’s own features alone. Therefore, it does not directly contribute to the transformer’s

cross-asset information sharing.

The feed-forward component is the transformer’s closest analogue to the neural network

architecture employed by DKKM. Their model can be represented as

wt = S(Xt)λ , (24)

where S is a neural network mapping applied to own-asset features (precluding cross-asset

prediction) and achieves its complexity by expanding the original D features to a much larger

set of P � D nonlinear transformations of those features. The DKKM model provides an-

other natural benchmark for the AIPM by separating the effects of nonlinearities from the ef-

17

fects of cross-asset prediction. As we show in the empirical analysis, the combination of both

nonlinearity and cross-asset prediction delivers the strongest model, outperforming models

with only own-asset nonlinearity or only cross-asset prediction in a linear transformer.13

3.2.3 Residual Connections

Both the attention and feed-forward sublayers undergo a residual connection step before

passing on their output. Residual (or “skip”) connections are common in deep learning

models (Orhan and Pitkow, 2017) and are critical to the performance of transformers (Dong

et al., 2021). The literature primarily attributes their benefit to stabilizing the optimization

by helping to counteract so-called vanishing and exploding gradients during training.

4 Empirical Findings

4.1 Data

In this section, we dissect the empirical performance of AIPMs. To make the conclusions

from this analysis as easy to digest as possible, we perform our analysis in a conventional

setting with conventional data. We focus on the SDF portfolio problem using monthly data

for US stocks over the period 1963 to 2022 (from Jensen et al., 2023, JKP henceforth). This

open-source data set compiles an extensive collection of stock characteristics from the finance

literature.14 The universe includes NYSE/AMEX/NASDAQ stocks with CRSP share codes

10–12.

To leverage this data in a machine learning environment, it is helpful to have a stock-

month panel with few missing values and consistency in the set of characteristics that are

available over time. To this end, we follow the sample filters of DKKM. First, we restrict

the raw dataset of 153 characteristics to a smaller group of 132 characteristics that have

fewer than 30% missing values over the full sample. Next, we drop “nano” stocks whose

13This is consistent with evidence of nonlinear transformer performance in the language domain (Dong
et al., 2021; Tarzanagh et al., 2023).

14JKP characteristics for individual stocks can be downloaded at https://wrds-www.wharton.upenn.

edu/pages/get-data/contributed-data-forms/global-factor-data/. Detailed documentation and
further factor portfolio data are available at jkpfactors.com.

18

https://wrds-www.wharton.upenn.edu/pages/get-data/ contributed-data-forms/global-factor-data/
https://wrds-www.wharton.upenn.edu/pages/get-data/ contributed-data-forms/global-factor-data/
jkpfactors.com

market capitalization is below the 1st percentile of the NYSE sample. Then, we exclude

stock-month observations with missing values for more than a third of the characteristics.

Finally, we cross-sectionally rank-standardize each characteristic into the [−0.5, 0.5] interval

and replace any missing characteristic values with the cross-sectional median value of zero.

After this filtering procedure, the resulting matrix Nt × D matrix of characteristics each

month constitutes the conditioning set Xt used in our empirical analysis.

4.2 Performance Metrics and Benchmark Models

We use two primary metrics to evaluate the out-of-sample performance of an asset pricing

model. The first is the out-of-sample Sharpe ratio of the SDF portfolio. This is a natural

model comparison statistic because the true SDF coincides with the mean-variance efficient

portfolio.

The second metric is the out-of-sample Hansen and Jagannathan (1997) distance or HJD.

As discussed in DKKM, the out-of-sample HJD statistic has attractive model comparison

properties. It averages an SDF’s squared pricing errors among all test assets with a fixed

weighting matrix defined as the out-of-sample inverse covariance matrix of test assets. With

this weighting matrix, the HJD can be interpreted as the out-of-sample pricing error of the

portfolio of test assets that is most mispriced by the model. And because the weighting

matrix is the same for all models, the HJD can be directly compared across models (unlike

other alpha or GMM-based statistics). The set of test assets we study are the 132 JKP

anomaly factors, though none of our conclusions are sensitive to this choice.

To infer the statistical significance of differences between models, we report pairwise SDF

performance comparisons. In particular, for two models, A and B, we run an alpha regression

RA,t = α + βRB,t + εt , (25)

where the out-of-sample SDF returns on either side of the regression are re-scaled to have

15% annualized volatility (to aid comparability of alphas across models). We report the

annualized alpha estimate as well as its t statistic.

19

We compare AIPMs to a variety of benchmark models. The first four benchmarks are

standard small linear factor models from the literature. We also compare against a moder-

ately large linear model and two large nonlinear models:

FF6: This is a six-factor model that includes the five factors of Fama and French (2015) plus

their UMD momentum.

SY: This is a four-factor model that includes the “mispricing” factors of Stambaugh and

Yuan (2017).

HXZ: This is a five-factor model that includes the q-factor model specification of Hou et al.

(2015) augmented to include the expected growth factor of Hou et al. (2021).

DHS: This is a three-factor model that includes the long-horizon and short-horizon behavioral

factors of Daniel et al. (2020).

BSV: This model uses SDF weights that are linear in stock characteristics, wt = Xtλ, fol-

lowing Brandt et al. (2009). Because the number of characteristics D in the JKP data

is relatively large, we estimate λ using a ridge penalty as in (11).15

DKKM: This is the shallow neural network SDF of DKKM based on random features. It is

nonlinear and high-dimensional, but it precludes cross-asset predictability. The SDF

weight specification is wt = S(Xt)λ where Si,t(k) = ReLU(γ′kXi,t) for all assets i with

k = 1, ..., P . Our empirical analysis sets P = 25,000.16

MLP: This neural network SDF uses a multi-layer perceptron (MLP). Unlike DKKM, the

MLP allows for network depth into the nonlinear specification, but it continues to use

only own-asset predictability.17 The corresponding network function, wMLP (Xt; ΘMLP)

uses over 300,000 parameters and minimizes the MSRR objective (9) (without a penalty

term) with the same training algorithm as the nonlinear transformer (Section 4.3).

15We use the same ridge penalty selection as for the linear transformer (Section 4.3).
16DKKM use sin and cos activation functions in their construction of random features, while we use the

more common ReLU activation. Our results are insensitive to the particular choice of non-linear activation.
17We consider 4 hidden layers, each layer of width 256, and ReLU activations, mimicking the feedforward

layer of our nonlinear transformer model. Our data experiments suggest that the performance is increasing
in the network width and saturates around a width of 256. By contrast, performance is U-shaped in the
network depth and saturates at a depth of 4, making our benchmark choice conservative.

20

4.3 Training

We train all models in 60-month rolling training windows, with the first training window

using signals from January 1963 through December 1967 (and corresponding returns data

from February 1963 to January 1968). At the end of the training window we construct one-

month ahead out-of-sample SDF portfolio returns for each model, then we roll the training

sample forward one month and re-train. The first out-of-sample return observation is in

February 1968, and the last is in December 2022.

Our linear attention model is the fully saturated specification of (11). We consider a

grid of shrinkage parameters z = 10i, i ∈ {−10, · · · , 3}. We select the ridge penalty that

optimizes the MSRR objective with leave-one-out cross-validation. We report statistics of

model performance over the 1968–2022 test sample. With D=132 characteristics, the linear

attention model is equivalent to a regression with D3=2.2 million parameters. As we explain

in Appendix B, this can be interpreted as a multi-head attention model with approximately

129 (≈ D3/(D2 + D)) heads. The model complexity of linear attention—that is, the ratio

of parameters to training observations—is over 35,000.

For the nonlinear transformer, we randomly initialize all elements of the self-attention ma-

trices Q,K, and V as N (0, 1
D

). We initialize feed-forward network weightsW(k)
1 as N

(
0, 1

df

)
andW(k)

2 as N
(
0, 1

D

)
, and we initialize feed-forward biases at 0. We initialize the final layer

output weights λ as N
(
0, 1

D

)
. We train to minimize the MSRR objective (9) using the Adam

gradient descent algorithm (Kingma and Ba, 2014). Because the initial network weights are

randomly generated, model estimates are sensitive to the random seed. To minimize this

dependency, we repeat the training ten times for different random seeds and then average

the outcomes.

For the four simple benchmark models, we estimate the SDF as the sample tangency

portfolio of factors in the training sample (with no ridge shrinkage).18 For the BSV and

DKKM models, ridge shrinkage is employed using the same ridge parameter selection method

that we use for the linear attention model.

18Because the number of parameters in these benchmarks is small, the benefits of ridge shrinkage are
negligible. We verify this is the case in our data. Allowing for ridge shrinkage results in no discernible
improvement in SDF performance for the low-dimension benchmark models.

21

Table 1: Portfolio Transformer Performance

The table reports annualized out-of-sample Sharpe ratios and HJD pricing errors for each model over the
full sample (Panel A) and the post-2002 sample (Panel B).

FF6 HXZ SY DHS BSV DKKM Lin. Attn. MLP Trans.

Panel A: 1968–2022

Sharpe Ratio 1.05 1.80 1.37 1.21 3.60 3.91 3.89 4.31 4.57

Pricing Error 0.55 0.42 0.53 0.61 0.15 0.13 0.14 0.13 0.09

Panel B: Post-2002

Sharpe Ratio 0.80 0.97 0.73 0.46 2.03 2.42 2.25 3.07 3.37

Pricing Error 0.75 0.73 0.88 0.87 0.52 0.44 0.48 0.42 0.34

Some of the simple benchmark models are unavailable for small portions of our Febru-

ary 1968 to December 2022 sample. In particular, out-of-sample SDF returns for FF6 are

available from July 1968 to December 2022, HXZ from January 1972 to December 2022,

SY from February 1968 to December 2016, and DHS from July 1977 to December 2018.

Individual benchmark model statistics use that model’s full available sample, and pairwise

model comparisons use the intersection of the models’ samples.

4.4 Anatomy of Model Performance

4.4.1 The Benchmark

Panel A of Table 1 reports the performance of asset pricing models in the full out-of-sample

period from 1968 to 2022. The four low complexity benchmarks from the literature deliver

similar performance, with out-of-sample SDF Sharpe ratios ranging from 1.05 on the low

end (FF) to 1.8 on the high end (HXZ). In terms of pricing errors among anomaly factors,

the smallest HJD is 0.42 (HXZ), while the largest pricing error is 0.61 (DHS).

Figure 2 shows the cumulative out-of-sample SDF returns of all models. A striking

feature of this plot is the flattening of model returns around 2002. The scale of the plot

is dictated by the performance of machine learning models, but on close inspection, the

post-2002 flattening is evident for simple benchmarks as well. For this reason, Panel B of

Table 1 reports out-of-sample model performance in the post-2002 subsample. In this later

period, the performance of all simple benchmarks is notably worse, and the ranking of simple

22

Full Sample Post-2002

1970
1980

1990
2000

2010
2020

Date

0

5

10

15

20

25

30

35

C
um

ul
at

iv
e

R
et

ur
ns

FF6
HXZ
SY
DHS
BSV
DKKM
Lin. Attn.
MLP
Trans.

2004
2008

2012
2016

2020

Date

0

2

4

6

8

10

C
um

ul
at

iv
e

R
et

ur
ns

FF6
HXZ
SY
DHS
BSV
DKKM
Lin. Attn.
MLP
Trans.

Figure 2: Cumulative SDF Returns

This figure shows the cumulative sum of SDF returns for the linear attention and nonlinear transformer
models and benchmark models. The left panel shows the full out-of-sample period beginning in 1968, and
the right panel begins in 2003.

benchmarks changes. The best model in terms of the Sharpe ratio is still HXZ (0.97), but

the worst is now DHS (0.46). In the later sample, HXZ achieves the smallest pricing errors

(0.73), while SY has the largest (0.88). Figure 3 shows that the FF6, HXZ, and SY models

are roughly 60% correlated with each other, while DHS is less correlated.

Table 2 reports alphas and their t-statistics in pairwise comparisons of out-of-sample SDF

returns for all models (the result in each position of the table corresponds to regressing the

row SDF on the column SDF). The last column reports the alpha from the regression of the

row model on all other models. While simple benchmarks all perform somewhat similarly,

Table 2 indicates that their performance differences are generally statistically significant at

the 1% level, and HXZ appears dominant among simple factor models.

These four simple benchmark models summarize the behavior of asset pricing models

that i) use small conditioning sets, ii) impose pre-specific linear structure, iii) rely on a small

number of estimated parameters, and iv) restrict factors to use only own-asset predictive

characteristics.

4.4.2 Expanding the Conditioning Set

The BSV model maintains the basic linear structure of standard low-dimensional benchmarks

but increases the dimensionality of the SDF to 132 factors, corresponding to a complexity

23

FF6 HXZ SY DHS BSV DKKM Lin. Attn. MLP Trans.

FF
6

HX
Z

SY
DH

S
BS

V
DK

KM
Lin

. A
ttn

.
M

LP
Tr

an
s.

1 0.56 0.64 0.33 0.37 0.24 0.27 0.16 0.2

0.56 1 0.63 0.32 0.41 0.31 0.36 0.28 0.34

0.64 0.63 1 0.39 0.43 0.29 0.32 0.25 0.24

0.33 0.32 0.39 1 0.26 0.19 0.21 0.14 0.2

0.37 0.41 0.43 0.26 1 0.86 0.9 0.63 0.76

0.24 0.31 0.29 0.19 0.86 1 0.9 0.67 0.78

0.27 0.36 0.32 0.21 0.9 0.9 1 0.65 0.78

0.16 0.28 0.25 0.14 0.63 0.67 0.65 1 0.76

0.2 0.34 0.24 0.2 0.76 0.78 0.78 0.76 1

Figure 3: Pairwise Correlations

This figure shows pairwise correlations of SDF returns for all models.

of 2.2, given our 60-month training window. By increasing the set of conditioning variables

to include more anomaly patterns from the literature, this linear and moderate complexity

model shows a marked improvement in performance. Its out-of-sample Sharpe ratio is more

than double that of the best simple model, and its pricing error drops by two-thirds. It

has a large and significant alpha versus all four simple benchmark models. Like all models,

its performance is weaker in the latter sample, but its relative outperformance of simple

benchmarks is preserved.

4.4.3 Introducing Nonlinearities

DKKM uses the same large conditioning set as BSV but more flexibly leverages this con-

ditioning information in a nonlinear specification. The thousands of DKKM factors are

24

Table 2: Pairwise Model Comparison, Full Sample

The table reports alphas and their t-statistics in pairwise comparisons of out-of-sample SDF returns for the
sample from July 1977 to December 2016. For each pair of models, we report the alpha from regressing out-of-
sample SDF returns from the “column” model on the SDF of the “row” model: Rcolumn,t = α+βRrow,t + εt.
The SDF returns on both sides of the regression are re-scaled to have 15% annualized volatility to aid
comparability of alphas across models. We report alphas as annualized percentages along with t-statistics
in parentheses. The last row reports the alpha from regressing the column model SDF on all other models
jointly. Asterisks indicate statistical significance at the 99% confidence level.

FF6 HXZ SY DHS BSV DKKM Lin. Attn. MLP Trans.

FF6 1.5* 0.8* 1.0* 4.4* 5.2* 5.0* 6.1* 6.4*

(8.8) (5.0) (5.3) (23.5) (26.0) (25.3) (29.9) (32.0)

HXZ 0.1 0.2 0.8* 3.9* 4.7* 4.5* 5.7* 5.9*

(0.7) (1.0) (3.7) (19.9) (22.6) (21.9) (26.6) (28.5)

SY 0.3 1.2* 0.9* 4.3* 5.0* 4.9* 5.9* 6.3*

(2.0) (7.4) (4.4) (22.4) (25.0) (24.2) (28.9) (31.0)

DHS 0.9* 1.8* 1.1* 4.6* 5.3* 5.1* 6.2* 6.5*

(4.5) (9.1) (5.7) (22.8) (25.6) (24.9) (29.6) (31.5)

BSV -0.8* -0.1 -0.5 0.2 1.2* 0.9* 3.0* 2.6*

(-2.8) (-0.5) (-1.9) (0.6) (8.0) (6.8) (13.3) (15.6)

DKKM -0.3 0.2 -0.2 0.4 0.1 0.3 2.5* 2.3*

(-1.0) (0.6) (-0.7) (1.4) (0.8) (2.5) (10.8) (12.0)

Lin. Attn. -0.4 0.1 -0.2 0.4 0.1 0.6* 2.7* 2.3*

(-1.4) (0.5) (-0.7) (1.2) (0.6) (4.8) (11.5) (12.9)

MLP -0.1 0.5 -0.1 0.6 0.7* 1.2* 1.1* 1.9*

(-0.4) (1.4) (-0.2) (1.8) (2.8) (4.6) (4.3) (8.4)

Trans. -0.5 -0.3 -0.5 0.2 -0.7* 0.1 -0.2 1.2*

(-1.4) (-1.0) (-1.4) (0.5) (-3.4) (0.6) (-1.1) (4.9)

Others -0.0 0.2 -0.2 0.5 -0.5* 0.3 0.0 1.1* 1.3*

(-0.0) (0.7) (-0.8) (1.5) (-3.8) (2.0) (0.2) (4.6) (7.7)

long-short portfolios based on stock characteristics that have been (jointly) transformed

through a wide, shallow neural network. While the nonlinearities in DKKM allow for in-

teractive effects among predictor variables, DKKM maintains the separation of stock-level

information and rules out cross-stock prediction.

Extracting nonlinear information from characteristics with a shallow network improves

model performance by about 10% over the linear BSV specification (an 8.6% rise in Sharpe

ratio and a 13.3% reduction in pricing error). The benefits of nonlinearity are perhaps best

25

Table 3: Pairwise Model Comparison, Post-2002 Sample

The table repeats the analysis of Table 2 for the sample beginning in 2003. * indicates statistical significance
at the 99% confidence level.

FF6 HXZ SY DHS BSV DKKM Lin. Attn. MLP Trans.

FF6 0.7 0.4 0.3 2.4* 3.4* 3.0* 4.4* 4.4*

(2.3) (1.4) (0.9) (8.4) (10.6) (9.6) (13.2) (14.3)

HXZ 0.3 0.0 0.2 2.3* 3.3* 2.9* 4.4* 4.2*

(1.0) (0.1) (0.6) (7.8) (10.3) (9.2) (12.9) (14.1)

SY 0.4 0.5 0.3 2.4* 3.4* 3.0* 4.4* 4.4*

(1.5) (2.1) (0.8) (8.4) (10.7) (9.6) (13.3) (14.8)

DHS 0.8 1.0* 0.7 2.7* 3.6* 3.2* 4.6* 4.7*

(2.4) (3.1) (2.3) (8.7) (11.1) (10.0) (13.6) (14.4)

BSV -0.7 -0.4 -0.7 -0.6 1.2* 0.8* 3.0* 2.4*

(-2.0) (-1.1) (-1.9) (-1.7) (6.0) (4.3) (8.9) (10.9)

DKKM -0.4 -0.3 -0.6 -0.5 -0.3 -0.0 2.2* 1.8*

(-0.9) (-0.8) (-1.4) (-1.2) (-1.4) (-0.2) (6.5) (6.9)

Lin. Attn. -0.5 -0.2 -0.4 -0.5 -0.1 0.7* 2.7* 2.1*

(-1.2) (-0.4) (-1.1) (-1.2) (-0.5) (3.8) (7.7) (8.4)

MLP 0.0 0.1 -0.4 0.1 0.4 0.8 0.7 1.8*

(0.0) (0.3) (-0.9) (0.3) (0.9) (2.1) (1.8) (4.8)

Trans. -1.2 -1.3* -1.6* -0.8 -1.2* -0.2 -0.5 1.4*

(-2.6) (-2.9) (-3.6) (-1.7) (-4.3) (-0.7) (-1.9) (3.7)

Others 0.2 0.1 -0.6 0.2 -0.5 0.1 0.0 1.1* 1.4*

(0.4) (0.2) (-1.8) (0.4) (-2.5) (0.6) (-0.2) (2.9) (6.0)

illustrated by the fact that DKKM has a large and significant alpha versus BSV, while the

alpha of BSV over DKKM is essentially zero (both economically and statistically).

4.4.4 Information Sharing Via Attention

Linear attention introduces the possibility of cross-asset information sharing in the SDF.

It does so in a particularly tractable way that pre-multiplies the BSV model’s linear SDF

weights with a dynamic attention matrix. The linear attention model achieves an out-of-

26

sample Sharpe ratio of 3.89 and a pricing error of 0.14 in the full sample. This is a significant

improvement over the BSV model.

The linear attention model can also be interpreted as a nonlinear SDF relying on triple

interactions among characteristics for all stocks. As a nonlinear model, the linear attention

only marginally improves over the nonlinear DKKM model, despite DKKM’s more narrow

reliance on own-stock predictive information, while DKKM has a significant alpha over linear

attention. In the later part of the sample, linear attention continues to outperform the BSV

specification, but it underperforms the shallow neural network of DKKM in terms of both

Sharpe ratio and pricing error. Perhaps more surprisingly, the linear attention model is highly

correlated (90%) with BSV and DKKM. Evidently, the simple linear attention specification

largely fails to unlock any benefits of cross-asset information sharing.

4.4.5 Interactive Effects of Information Sharing and Nonlinearity

We now turn to the full nonlinear transformer specification. This uses multiple telescoping

layers of attention blocks and nonlinearity to more flexibly incorporate predictive information

from the conditioning variables. However, the transformer’s depth and nonlinearity can aid

the model’s recovery of own-asset effects as well as cross-asset information sharing. Thus, to

drill more specifically into the cross-asset information mechanism, we must benchmark the

transformer to a multi-layer neural network that has similar nonlinearities and depth but

that shuts down the cross-asset prediction. The MLP provides the necessary benchmark.

With it, we can evaluate the information-sharing role of the transformer while controlling

for deep nonlinearities in own-asset prediction.

MLP model performance shows that pure depth without cross-asset prediction is a pow-

erful modeling device for asset returns. The out-of-sample MLP Sharpe ratio of 4.31 is a

large improvement compared to the shallow DKKM model (Sharpe ratio of 3.91), though

their pricing errors are about the same. In the more recent sample, the gains from depth are

more pronounced with an MLP Sharpe ratio of 3.07 versus 2.42 for DKKM. In both samples

the MLP has large and highly significant alpha versus DKKM. Thus, for the transformer to

excel in cross-asset information sharing, it must exceed the MLP’s high-performance bar.

By leveraging deep cross-asset information sharing, the transformer raises the out-of-

27

Table 4: Tangency Portfolio Weights Across Models

The table reports the estimated ex post optimal portfolio weights for the tangency portfolio of all factors
subject to a non-negativity constraint. The top row reports tangency weights for the full sample, and the
bottom row for the post-2002 sample.

FF6 HXZ SY DHS BSV DKKM Lin. Attn. MLP Trans.

Full sample 0 0 0 0.03 0 0 0 0.37 0.60

Post-2002 0 0 0 0 0 0 0 0.44 0.56

sample Sharpe ratio to 4.57. It reduces anomaly pricing errors by about 30%, from 0.13 for

MLP to 0.09. In the post-2002 sample, the transformer Sharpe ratio is 3.37 versus 3.07 for

MLP, and the pricing error is 0.34 versus 0.42 for MLP. These improvements are economically

large and statistically significant, as indicated in the performance comparison of Table 2.

While BSV, DKKM, and linear attention are roughly 90% correlated with one another,

MLP and the transformer are more differentiated from that group and from each other

(the correlation of MLP and transformer is 76%). Rather than relying solely on pairwise

comparisons and alpha tests, we can understand the relative performance and differentia-

tion/diversification of a given SDF versus the set of all models by estimating the ex-post

mean-variance combination of models. We do this by fixing the sample variance of all SDFs

to 15% to put models on equal risk footing and impose a no-shorting constraint. The result-

ing portfolio weights are reported in Table 4. In the full sample, the transformer commands

60% of the tangency portfolio, followed by 37% for MLP and 3% for DHS (though DHS

is insignificant based on its 95% bootstrap confidence interval). The Sharpe ratio of the

ex-post tangency portfolio is 5.66, while the Sharpe ratio of the transformer model alone

is 5.46.19 Thus, the gains are small from supplementing the transformer with other model

specifications.

The tangency weights are roughly the same in the post-2002 sample. In summary, asset

pricing models evidently benefit from cross-asset information sharing when the attention

mechanism is incorporated in a sufficiently deep network.

19As in the analysis of Table 2, the sample is restricted to the intersection of the available data for
benchmark models, in this case July 1977 through December 2016. In this restricted sample, Sharpe ratio
differ from the full sample results reported earlier. For example, the nonlinear transformer Sharpe ratio is
5.46 compared to 4.57 in the full period. This main discrepancy arises from the exclusion of the period 2017
to 2022 during which all models perform worse.

28

4.4.6 Information Sharing Through the Lens of Principal Portfolios

The principal portfolio formulation of Kelly et al. (2023) provides a rigorous framework for

understanding the extent of cross-asset information sharing and cross-prediction in a trading

strategy. They consider a single signal St ∈ RNt that predicts the cross-section of returns

and analyze a class of strategies wt = ASt that exploit return predictability. Their A is a

“prediction matrix” that can be thought of as a static attention matrix. They note that

typical asset pricing analyses focus on the own-asset predictive effects of signals (take, for

example, a momentum strategy in which each asset is bought or sold in proportion to its

recent average return). They show that any strategy that relies on a symmetric matrix A

can be fully explained by a strategy that uses “own-asset” predictive information.

Kelly et al. (2023) also show that one can identify the distinctive cross-asset predictive

effects of a strategy by analyzing the anti-symmetric component of A. In particular, the

matrix A can be decomposed as

A = As + Aa, where As = 0.5(A+ A′) and Aa = 0.5(A− A′)

with the symmetric component of A denoted As and the anti-symmetric component denoted

Aa. A strategy that relies purely on the anti-symmetric cross-prediction properties of the

signal St will be unexplained by a symmetric (own-prediction) strategy based on St.

We can adapt this Kelly et al. (2023) formalism to the linear attention modeling frame-

work as follows:

wt = A1,t(Xtλ1) + · · · + AH,t(XtλH)

= (As1,t + Aa1,t)(Xtλ1) + · · · + (AsH,t + AaH,t)(XtλH)

= As1,t(Xtλ1) + · · · + AsH,t(XtλH)︸ ︷︷ ︸
symmetric component

+ Aa1,t(Xtλ1) + · · · + AaH,t(XtλH)︸ ︷︷ ︸
anti-symmetric component

= wst + wat .

Table 5 reports the performance of the linear attention model through the lens of this symme-

try decomposition. We find that both symmetric and anti-symmetric sub-strategies exhibit

similar performance, with the symmetric part slightly outperforming. This is consistent

29

Table 5: Symmetry Decomposition of Linear Attention Model

The table reports the performance of symmetric and anti-symmetric components of the linear attention
model SDF over the full sample.

Lin. Attn. Anti-symmetric Symmetric

Total Component Component

Sharpe Ratio 3.89 3.10 3.23

Pricing Error 0.14 0.26 0.21

1970
1980

1990
2000

2010
2020

Date

0

5

10

15

20

25

30

C
um

ul
at

iv
e

R
et

ur
ns

Lin. Attn. Total
Anti-symmetric
Symmetric

with the general belief that symmetric dependencies are more stable and robust (own-asset

prediction, but also shared market conditions, shared industry dynamics, and symmetric

economic ties). The behaviors of the two components, however, are quite distinct. Their

out-of-sample returns share only a 32% correlation. Thus, the high return on the overall lin-

ear attention SDF derives from its ability to complement the usual “own-prediction” effects

of conditioning characteristics with remarkably potent cross-asset predictive effects.

The symmetry decomposition is convenient to apply to the linear attention model. How-

ever, the multi-layer non-linear transformer builds cross-attention recursively, propagating

cross-asset information through all the transformer blocks. This makes extraction of anti-

symmetric cross-prediction effects much more cumbersome, and we leave this for future

research. However, Table 3 shows that the performance of the linear attention model is sub-

sumed by the nonlinear transformer, providing indicative evidence that a substantial com-

ponent of the nonlinear transformer’s performance is due to cross-asset information sharing

as well.

30

0

1

2

3

4

Sh
ar

pe
 R

at
io

Models
BSV DKKM Lin. Attn. MLP Trans.

All Mega Large Small Micro
Size Group

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ic

in
g

E
rr

or

Figure 4: Model Performance By Size Group

This figure reports Sharpe ratios (top panel) and HJD pricing errors (bottom panel) for SDF models trained
in data sets restricted to stocks in a given size group.

4.4.7 Large Caps and Information Sharing

The models that we have studied thus far use a fixed specification that applies uniformly to

all stocks, large and small, liquid and illiquid. And given the very high Sharpe ratios of all

the machine learning specifications that we study, it is likely that much of the performance

of these models is generated from the relatively illiquid subset of stocks in our universe (note,

however, that our sample already filters out “nano” stocks that fall below the first percentile

of the NYSE size distribution).

To investigate the role of cross-asset information sharing in more detail, we re-estimate

31

Table 6: Tangency Portfolio Weights Across Models By Size Group

The table reports the estimated ex post optimal portfolio weights for the tangency portfolio of all factors
subject to a non-negativity constraint for the full sample. Models are re-estimated for data sets restricted to
stocks in a given size group, and then the ex-post tangency portfolio combines the size-group-specific SDF
models.

Mega Large Small Micro

BSV 0.09 0 0 0

DKKM 0 0 0 0

Lin. Attn. 0 0 0 0.23

MLP 0.01 0 0.20 0.23

Trans. 0.91 1.00 0.80 0.54

Tangency SR 1.84 2.70 3.25 4.59

Trans. SR 1.84 2.70 3.23 4.42

each model separately in sub-universes based on market capitalization. “Mega” stocks are

those above the 80th percentile of the NYSE size distribution each month, “large” includes

percentiles 50 to 80, “small” includes 20 to 50, and “micro” includes stocks below the 20th

but above the 1st NYSE size percentile.

Comparative model performance by size universe is reported in Figure 4. The first

major conclusion from this figure is that there is a high degree of similarity in performance

metrics for the full universe and the micro-universe, confirming that models trained in the

full cross-section of stocks are most heavily influenced by the predictability of micro stocks.

The second major conclusion is that the transformer is especially impactful among large

and mega universes. Among mega stocks, the transformer Sharpe ratio is 1.84 versus 1.05 to

1.18 for the remaining machine learning models. This gain in Sharpe ratio from transformer-

based information (i.e., versus MLP) is larger than the gain of MLP versus the BSV model.

The same pattern emerges for the large-cap universe, with the transformer outperforming all

other machine-learning models by a large margin while the other machine-learning models

are largely undifferentiated. The pattern among pricing errors mirrors the Sharpe ratio

results by size group.

The distinctive benefits of the transformer model versus other machine learning speci-

fications are well summarized in the ex-post tangency portfolio weights reported in Table

6. Because there is no natural notion of size sub-groups for the standard simple benchmark

32

0 10 20 30 40 50 60
Heads

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sh
ar

pe
 R

at
io Ridgeless

z=0.01
z=0.1
z=1
z=10
z=100
FF6
HXZ
SY
DHS
BSV

0 10 20 30 40 50 60
Heads

0.2

0.3

0.4

0.5

0.6

Pr
ic

in
g

E
rr

or

Ridgeless
z=0.01
z=0.1
z=1
z=10
z=100
FF6
HXZ
SY
DHS
BSV

Figure 5: Complexity and Linear Attention Model Performance

This figure reports out-of-sample Sharpe ratio (left panel) and pricing error (right panel) as a function of the
number of heads in the linear attention model with D = 132 characteristics. The simplest model we consider
uses a single attention head and the most complex model is fully saturated with D3 unique parameters
(132 heads). Different curves illustrate how the degree of ridge shrinkage affects model performance. For
reference, dotted lines show the performance of select benchmark models.

models, they are excluded from this analysis. For large and mega stocks, the transformer

is the only model that receives substantial weight in the tangency portfolio of all candidate

SDFs. In the full cross-section, the transformer continues to be responsible for the lion’s

share of the tangency portfolio, but other machine learning models, such as MLP, also earn

meaningful weight, driven by their usefulness in the micro-cap universe.

4.4.8 Notions of Complexity

DKKM demonstrate that out-of-sample SDF performance is increasing in model parameter-

ization, or “complexity,” in the context of asset pricing models that rely on shallow neural

networks. They show theoretically that complexity is beneficial for asset pricing models

when there are a large number of common factors underlying the cross-section of returns,

and they argue that US stocks appear to satisfy the conditions that give rise to a “virtue of

complexity.”

In attention-based asset pricing models, complexity arises through the use of multiple

attention heads (particularly in the case of linear attention) and by stacking together multiple

transformer blocks. Figure 5 reports the performance of linear attention as we vary the

model from a single attention head to the maximum possible number of heads. Here we see

a benefit from using more heads, all else equal, with out-of-sample performance eventually

33

2 4 6 8 10
Number of Transformer Blocks

4.0

4.2

4.4

4.6
Sh

ar
pe

 R
at

io

2 4 6 8 10
Number of Transformer Blocks

0.095

0.100

0.105

0.110

0.115

0.120

Pr
ic

in
g

E
rr

or

Figure 6: Complexity and Transformer Model Performance

This figure reports out-of-sample Sharpe ratio (left panel) and pricing error (right panel) as a function of
the number of blocks in the nonlinear transformer model. The simplest model we consider uses a single
transformer block and the most complex model uses 10 blocks.

flattening after about 20 heads (corresponding to over 5,000 times as many parameters as

training observations). Similarly, in Figure 6, we see that the out-of-sample performance

of the portfolio transformer model improves with the model depth up to 10 transformer

blocks. In the case of transformer models, there may be additional benefits to even deeper

specifications, but due to the computational costs of training deep transformers, we leave

further exploration for future research.

In summary, in the context of AIPMs, more heavily parameterized model specifications

tend to dominate simpler model variants. Empirical evidence from the literature on large

language models (e.g. Kaplan et al., 2020) indicates that adding more transformer blocks

enhances models’ abilities to effectively represent language. Deeper architectures enable

the model to capture more abstract features and longer-range dependencies than shallower

models. Each additional layer refines the attention distributions, allowing the model to

consider both short-term and long-term relationships. It is interesting that the same benefits

of transformer complexity emerge in the asset pricing model context.

5 Conclusion

This paper introduces the concept of an Artificial Intelligence Pricing Model (AIPM) by em-

bedding transformer architectures into the stochastic discount factor framework. Leveraging

34

the principles that have propelled advances in natural language processing—context aware-

ness and model complexity—we demonstrate how transformers can significantly enhance

asset pricing models through cross-asset information sharing and nonlinearity.

Our first major contribution is the development of the linear portfolio transformer, an

interpretable model that incorporates the attention mechanism to facilitate information shar-

ing across assets while maintaining analytical tractability. While more simplistic than the

full nonlinear transformer, the linear attention model is a useful surrogate for understand-

ing how attention enhances the SDF by capturing conditional relationships among assets.

Through theoretical derivations, we illustrate that the attention-based SDF can be viewed

as a refined combination of characteristic-managed factor portfolios.

Building on this foundation, our second contribution involves the implementation of a

full nonlinear transformer architecture within the SDF. This model incorporates advanced

features such as multi-headed attention, softmax transformations, and deep stacking of trans-

former blocks, further exploiting the benefits of context awareness and model complexity. We

describe the role played by each component for enhancing the model’s predictive capabilities.

Empirically, we evaluate the performance of AIPMs using monthly U.S. stock return

data and a comprehensive set of 132 stock-level conditioning characteristics. The linear

portfolio transformer demonstrates that even in a linear setting, cross-asset information

sharing yields non-trivial improvements in out-of-sample Sharpe ratios and pricing errors

compared to models without attention mechanisms. The nonlinear portfolio transformer

further amplifies these gains, outperforming existing machine learning models by achieving

higher Sharpe ratios, lower pricing errors, and significant alpha over benchmarks lacking

cross-asset attention. Our findings reveal a clear hierarchy among models: as we incorporate

more complex specifications and attention mechanisms, performance consistently improves.

35

References

Avramov, Doron, Si Cheng, and Lior Metzker, 2023, Machine learning vs. economic restric-

tions: Evidence from stock return predictability, Management Science 69, 2587–2619.

Bachlechner, Thomas, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell, and Ju-

lian McAuley, 2021, Rezero is all you need: Fast convergence at large depth, in Uncertainty

in Artificial Intelligence, 1352–1361, PMLR.

Bahdanau, Dzmitry, 2014, Neural machine translation by jointly learning to align and trans-

late, arXiv preprint arXiv:1409.0473 .

Bai, Yu, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei, 2023, Transformers as statis-

ticians: Provable in-context learning with in-context algorithm selection, arXiv preprint

arXiv:2306.04637 .

Bartlett, Peter L, Philip M Long, Gábor Lugosi, and Alexander Tsigler, 2020, Benign over-

fitting in linear regression, Proceedings of the National Academy of Sciences 117, 30063–

30070.

Belkin, M, D Hsu, S Ma, and S Mandal, 2018, Reconciling modern machine learning and

the bias-variance trade-off. arxiv e-prints.

Belkin, Mikhail, Daniel Hsu, and Ji Xu, 2020, Two models of double descent for weak

features, SIAM Journal on Mathematics of Data Science 2, 1167–1180.

Belkin, Mikhail, Alexander Rakhlin, and Alexandre B Tsybakov, 2019, Does data interpola-

tion contradict statistical optimality?, in The 22nd International Conference on Artificial

Intelligence and Statistics , 1611–1619, PMLR.

Bolya, Daniel, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, and Judy Hoffman, 2022, Hy-

dra attention: Efficient attention with many heads, in European Conference on Computer

Vision, 35–49, Springer.

Brandt, Michael W, Pedro Santa-Clara, and Rossen Valkanov, 2009, Parametric portfolio

policies: Exploiting characteristics in the cross-section of equity returns, The Review of

Financial Studies 22, 3411–3447.

Britten-Jones, Mark, 1999, The sampling error in estimates of mean-variance efficient port-

folio weights, The Journal of Finance 54, 655–671.

36

Bryzgalova, Svetlana, Markus Pelger, and Jason Zhu, 2020, Forest through the trees: Build-

ing cross-sections of stock returns, Available at SSRN 3493458 .

Chen, Andrew Y, and Tom Zimmermann, 2021, Open source cross-sectional asset pricing,

Critical Finance Review, Forthcoming .

Chen, Luyang, Markus Pelger, and Jason Zhu, 2023, Deep learning in asset pricing, Man-

agement Science .

Chinco, Alex, Adam D Clark-Joseph, and Mao Ye, 2019, Sparse signals in the cross-section

of returns, The Journal of Finance 74, 449–492.

Cho, Kyunghyun, 2014, Learning phrase representations using rnn encoder-decoder for sta-

tistical machine translation, arXiv preprint arXiv:1406.1078 .

Cong, Lin William, Guanhao Feng, Jingyu He, and Xin He, 2022, Growing the efficient

frontier on panel trees, NBER Working Paper .

Cong, Lin William, Ke Tang, Jingyuan Wang, and Yang Zhang, 2021, Alphaportfolio: Direct

construction through deep reinforcement learning and interpretable ai, SSRN Electronic

Journal. https://doi. org/10.2139/ssrn 3554486.

Connor, Gregory, Matthias Hagmann, and Oliver Linton, 2012, Efficient semiparametric

estimation of the fama–french model and extensions, Econometrica 80, 713–754.

Daniel, Kent, David Hirshleifer, and Lin Sun, 2020, Short-and long-horizon behavioral fac-

tors, The review of financial studies 33, 1673–1736.

Didisheim, Antoine, Shikun Barry Ke, Bryan T Kelly, and Semyon Malamud, 2024, Apt or

aipt: The surprising dominance of large factor models, Technical report, National Bureau

of Economic Research.

Dong, Yihe, Jean-Baptiste Cordonnier, and Andreas Loukas, 2021, Attention is not all you

need: Pure attention loses rank doubly exponentially with depth, in International Con-

ference on Machine Learning , 2793–2803, PMLR.

Ehsani, Sina, and Juhani T Linnainmaa, 2022, Factor momentum and the momentum factor,

The Journal of Finance 77, 1877–1919.

Fama, Eugene F, and Kenneth R French, 2015, A five-factor asset pricing model, Journal of

financial economics 116, 1–22.

37

Fan, Jianqing, Zheng Tracy Ke, Yuan Liao, and Andreas Neuhierl, 2022, Structural deep

learning in conditional asset pricing, Available at SSRN 4117882 .

Fan, Jianqing, Yuan Liao, and Weichen Wang, 2016, Projected principal component analysis

in factor models, Annals of statistics 44, 219.

Feng, Guanhao, Stefano Giglio, and Dacheng Xiu, 2020, Taming the factor zoo: A test of

new factors, The Journal of Finance 75, 1327–1370.

Freyberger, Joachim, Andreas Neuhierl, and Michael Weber, 2020, Dissecting characteristics

nonparametrically, The Review of Financial Studies 33, 2326–2377.

Giglio, Stefano, Bryan Kelly, and Dacheng Xiu, 2022, Factor models, machine learning, and

asset pricing, Annual Review of Financial Economics 14, 337–368.

Giglio, Stefano, and Dacheng Xiu, 2021, Asset pricing with omitted factors, Journal of

Political Economy 129, 1947–1990.

Gu, Shihao, Bryan Kelly, and Dacheng Xiu, 2020a, Autoencoder asset pricing models, Jour-

nal of Econometrics .

Gu, Shihao, Bryan Kelly, and Dacheng Xiu, 2020b, Empirical asset pricing via machine

learning, The Review of Financial Studies 33, 2223–2273.

Guijarro-Ordonez, Jorge, Markus Pelger, and Greg Zanotti, 2021, Deep learning statistical

arbitrage, arXiv preprint arXiv:2106.04028 .

Gupta, Tarun, and Bryan Kelly, 2019, Factor momentum everywhere, The Journal of Port-

folio Management 45, 13–36.

Haddad, Valentin, Serhiy Kozak, and Shrihari Santosh, 2020, Factor timing, The Review of

Financial Studies 33, 1980–2018.

Han, Yufeng, Ai He, David Rapach, and Guofu Zhou, 2019, Expected stock returns and firm

characteristics: E-lasso, assessment, and implications, SSRN .

Hansen, Lars Peter, and Ravi Jagannathan, 1997, Assessing specification errors in stochastic

discount factor models, The Journal of Finance 52, 557–590.

Hansen, Lars Peter, and Scott F Richard, 1987, The role of conditioning information in

deducing testable restrictions implied by dynamic asset pricing models, Econometrica:

Journal of the Econometric Society 587–613.

38

Harvey, Campbell R, Yan Liu, and Heqing Zhu, 2016, . . . and the cross-section of expected

returns, The Review of Financial Studies 29, 5–68.

He, Ai, Dashan Huang, Jiaen Li, and Guofu Zhou, 2023, Shrinking factor dimension: A

reduced-rank approach, Management science 69, 5501–5522.

He, Songrun, Ming Yuan, and Guofu Zhou, 2022, Principal portfolios: The multi-signal case,

Available at SSRN 4245333 .

Hou, Kewei, Haitao Mo, Chen Xue, and Lu Zhang, 2021, An augmented q-factor model with

expected growth, Review of Finance 25, 1–41.

Hou, Kewei, Chen Xue, and Lu Zhang, 2015, Digesting anomalies: An investment approach,

The Review of Financial Studies 28, 650–705.

Hou, Kewei, Chen Xue, and Lu Zhang, 2020, Replicating anomalies, The Review of Financial

Studies 33, 2019–2133.

Jensen, Theis Ingerslev, Bryan Kelly, and Lasse Heje Pedersen, 2023, Is there a replication

crisis in finance?, The Journal of Finance 78, 2465–2518.

Jensen, Theis Ingerslev, Bryan T Kelly, Semyon Malamud, and Lasse Heje Pedersen, 2022,

Machine learning and the implementable efficient frontier, Available at SSRN 4187217 .

Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon

Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei, 2020, Scaling laws for

neural language models, arXiv preprint arXiv:2001.08361 .

Kelly, Bryan, Semyon Malamud, and Lasse Heje Pedersen, 2023, Principal portfolios, The

Journal of Finance 78, 347–387.

Kelly, Bryan, Semyon Malamud, and Kangying Zhou, 2024a, The virtue of complexity in

return prediction, The Journal of Finance 79, 459–503.

Kelly, Bryan, Semyon Malamud, and Kangying Zhou, 2024b, The virtue of complexity in

return prediction, The Journal of Finance 79, 459–503.

Kelly, Bryan, Seth Pruitt, and Yinan Su, 2020a, Characteristics are covariances: A unified

model of risk and return, Journal of Financial Economics .

Kelly, Bryan, Seth Pruitt, and Yinan Su, 2020b, Instrumented principal component analysis,

Working paper .

39

Kelly, Bryan, and Dacheng Xiu, 2023, Financial machine learning, Foundations and Trends R©
in Finance 13, 205–363.

Kelly, Bryan T, Semyon Malamud, and Kangying Zhou, 2022, The virtue of complexity

everywhere, Available at SSRN .

Kingma, Diederik P, and Jimmy Ba, 2014, Adam: A method for stochastic optimization,

arXiv preprint arXiv:1412.6980 .

Kozak, Serhiy, Stefan Nagel, and Shrihari Santosh, 2020a, Shrinking the cross-section, Jour-

nal of Financial Economics 135, 271–292.

Kozak, Serhiy, Stefan Nagel, and Shrihari Santosh, 2020b, Shrinking the cross-section, Jour-

nal of Financial Economics 135, 271–292.

Lettau, Martin, and Markus Pelger, 2020, Factors that fit the time series and cross-section

of stock returns, The Review of Financial Studies 33, 2274–2325.

McLean, R David, and Jeffrey Pontiff, 2016, Does academic research destroy stock return

predictability?, The Journal of Finance 71, 5–32.

Minaee, Shervin, Tomas Mikolov, Narjes Nikzad, Meysam Chenaghlu, Richard Socher,

Xavier Amatriain, and Jianfeng Gao, 2024, Large language models: A survey, arXiv

preprint arXiv:2402.06196 .

Orhan, Emin A, and Xaq Pitkow, 2017, Skip connections eliminate singularities, arXiv

preprint arXiv:1701.09175 .

Preite, Massimo Dello, Raman Uppal, Paolo Zaffaroni, and Irina Zviadadze, 2022, What is

missing in asset-pricing factor models?

Rahimi, Ali, and Benjamin Recht, 2007, Random features for large-scale kernel machines.,

in NIPS , volume 3, 5, Citeseer.

Rapach, David E, and Guofu Zhou, 2020, Time-series and cross-sectional stock return fore-

casting: New machine learning methods, Machine learning for asset management: New

developments and financial applications 1–33.

Spigler, Stefano, Mario Geiger, Stéphane d’Ascoli, Levent Sagun, Giulio Biroli, and Matthieu

Wyart, 2019, A jamming transition from under-to over-parametrization affects generaliza-

tion in deep learning, Journal of Physics A: Mathematical and Theoretical 52, 474001.

40

Stambaugh, Robert F, and Yu Yuan, 2017, Mispricing factors, The review of financial studies

30, 1270–1315.

Tarzanagh, Davoud Ataee, Yingcong Li, Christos Thrampoulidis, and Samet Oymak, 2023,

Transformers as support vector machines, Preliminary version at NeurIPS M3L Workshop,

2023.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Lukasz Kaiser, and Illia Polosukhin, 2017, Attention is all you need.(nips), 2017, arXiv

preprint arXiv:1706.03762 10, S0140525X16001837.

41

A Transformers and the Markowitz Plug-in Portfolio

In this section, we show that the linear portfolio transformer emerges rather naturally in

artificial intelligence approaches to portfolio choice. Suppose we agree that Xt reflects all

relevant conditioning information for the SDF. However, we are unsure about the mapping

from Xt to the conditional moments of returns and opt for a nonparametric approach to

estimating these moments.

More specifically, suppose that the conditional mean and precision matrix of returns are

Et[Ri,t+1] = µ(xi,t) and (Covt(Rt+1))−1 = Σ−1(Xt) = (κ(xi,t, xj,t))
N
i,j=1 . (26)

By the Mercer theorem20 there exist nonlinear “feature functions” fκ(x) = (fκ,`(x))L`=1 such

that, for large enough L, we can approximate Σ−1 through its feature representation:

κ(xi,t, xj,t) ≈
L∑
`=1

fκ,`(xi,t) fκ,`(xj,t) (27)

Equation (27) is based on a standard argument that the unknown moment functions can

be reconstituted from a large basis expansion of the variables in Xt. For simplicity, let us

assume further that the approximations in (27) are exact.

Finding the nonparametric functions (27) requires the knowledge of the precise structure

of the conditional covariance function κ. In reality, these functions need to be estimated,

which is a non-trivial statistical problem. Instead, one can proceed as follows. Pick a basis

f(x) = (fk(x))Lk=1 of non-linear functions with a universal approximation property21. Then,

this basis possesses all the information needed to reconstitute both µ and Σ−1 so long as

each function is allowed its own set of weights on the basis terms:

µ(xi,t) ≈ f(xi,t)Λµ and fκ(xi,t) ≈ f(xi,t)
′Λκ (28)

for the weight matrices Λµ ∈ RL and Λκ ∈ RL×L. Based on these assumptions, the non-

parametric approximations of µ and Σ−1 give rise to the linear portfolio transformer as the

20See, e.g., Rahimi and Recht (2007).
21That is, such that any function can be approximated with linear combinations of fk.

42

plug-in solution22 to the Markowitz problem.

Theorem 1 The true SDF satisfies

wt = f(Xt)Wf(Xt)
′f(Xt)λ, (29)

where the Nt × L matrix f(Xt) is the basis expansion of Xt applied row-wise, W = ΛκΛκ
′,

and λ = Λµ.

This perspective on the portfolio transformer has a close association to the SDF design of

DKKM. They advocate embedding the conditioning variables in a higher dimensional feature

space in order to access the nonlinear predictive information in Xt. Specifically, they use

random Fourier features (or RFF, see Rahimi and Recht, 2007) to embed the D-dimensional

raw characteristics xi,t in an L-dimensional vector f(xi,t) where L� D:

f(xi,t) = (sin(ω′lxi,t), cos(ω′lxi,t))
L/2

l=1 , ωl ∼ N(0, γI) ∀l.

The corresponding Nt × L matrix of embeddings is f(Xt), and their SDF model is defined

as

wt = f(Xt)λ. (30)

The attractive aspect of (30) is that portfolio weights are determined by conditioning vari-

ables in complex, nonlinear fashioned. Yet, because the embedding parameters ωl are ran-

domized and not estimated, the RFF-MSRR problem maintains its tractability and closed-

form solution. At last, we see that the model in (29) is thus the linear portfolio transformer

analogue of the DKKM.

22The Markowitz plug-in solution substitutes for the true mean and covariance of returns moments with
their corresponding estimators.

43

B Theory of Linear Transformers

Let

Llinear(Xt) = XtM
′X ′t (31)

be a linear attention matrix. Then, we have:

F̃ linear
k,t+1 = Xt(k)′ Llinear(Xt)Rt+1

= Xt(k)′ (XtM
′X ′t)Rt+1

= (Xt(k)′[Xt(1), · · · , Xt(D)])M ′([Xt(1), · · · , Xt(D)]′Rt+1)

= [Xt(k)′Xt(1), · · · , Xt(k)′Xt(D)]M ′


F1,t+1

...

FD,t+1


=

D∑
k1=1

Θt(k1)︸ ︷︷ ︸
timing variables

Fk1,t+1,

(32)

where we have defined

Fk,t+1 = Xt(k)′Rt+1 . (33)

The formula (32) uncovers a striking algebraic identity: Although the attention-based factor

F̃ linear
k,t+1 is formally based on Xt(k), it is actually a factor-timing portfolio, combining all D

factors together, we timing variables that depend on Xt(k).23 That is, it is not attention

that is helping the factor characteristic. It is the factor characteristic that helps attention;

attention is the primary channel of alpha generation.

The attention mechanism in LLMs is commonly believed to be responsible for the phe-

nomenon of “emergence”: The unexpected ability of ML algorithms to solve problems they

were formally not designed to solve. The powerful connection (32) between attention-based

factors and factor timing portfolios could also potentially be viewed as a simple form of

23Namely, Θt(k1) =
∑D

k2=1Xt(k)′Xt(k2)M(k1, k2).

44

emergence, where the attention mechanism “discovers” factor timing, just like it “discovers”

classical statistical algorithms in Bai et al. (2023).

Armed with this insight, we can now understand the low correlation between F̃ nonlinear
k,t+1

and F̃ linear
k,t+1 . When optimal attention is trained with a non-linear f , it once again uses Xi,t(k)

not as a directional signal for stock i but as a timing variable for other (highly complex and

non-linear) factors “hidden” inside the Lf matrix. We provide extensive evidence that such

non-linear cross-predictability dominates the performance of attention-based models and

B.1 Selecting Attention Heads with OLS and MSRR Objectives

We consider an extension of the basic linear transformer from (8). To this end, we assume

that there are two types of features, Xt ∈ RNt×D and Zt ∈ RNt×d. The first type of features

are used to construct attention matrices. The second one is used to construct features. For

example, one could construct Zt or Xt as random features, as in DKKM. Then, we define

LMHA(Xt) = N−1
t (XtW1X

′
t)Ztλ1︸ ︷︷ ︸

head #1

+ · · · + N−1
t (XtWHX

′
t)ZtλH︸ ︷︷ ︸

head #H

= N−1
t

(
vec(X ′tXt)⊗ Zt

)
vec

(
H∑
h=1

λ′h ⊗Wh

)
= Stλ̌ (34)

be the Linear Multi-Head Attention (LMHA) portfolio, where we have defined

St = N−1
t (X ′tXt)⊗ Zt . (35)

We consider ridge-penalized versions of the return prediction and portfolio optimization

versions:

OLS : min
{Wh,λh}Hh=1

{
1

T

T∑
t=1

‖Rt+1 − LMHA(Xt)‖2 + z ‖λ̌‖2

}

MSRR : min
{Wh,λh}Hh=1

{
1

T

T∑
t=1

(1−R′t+1LMHA(Xt))
2 + z ‖λ̌‖2

}
.

(36)

Our next key observation is that the nonlinearity of the optimal LMHA problem arises from

its finite head structure. Indeed, a simple dimension counting implies that the set of λ̌ ∈ RD2d

45

that can be represented as an H-head model (34) has dimension (D2 + d)H. If the number

of heads is sufficiently large (e.g., H ≥ min(D2, d), this set coincides with RD2d and, hence,

we can simply optimize (36) directly over all λ̌ ∈ RD2d; the number of heads H plays no role

for such “infinite heads” models.24 We refer to the corresponding vectors λ̌ solving (36) as

WOLS(H) and WMSRR(H), respectively. We abuse notation and use WOLS(∞),WMSRR(∞)

to denote WOLS(H) and WMSRR(H) for all H ≥ min(D2, d). The following is true.

Lemma 2 Suppose that H ≥ min(D2, d). Let S = (St)
T
t=1 ∈ RT×D2d. Then, the solutions

λ̌OLS(H), λ̌MSRR(H) to the problems (36) are given by

λ̌OLS(∞) = (T−1S ′S + zID2d×D2d)
−1 T−1S ′R

λ̌MSRR(∞) = (T−1S ′RR′S + zID2d×D2d)
−1 T−1S ′R

(37)

Lemma 2 shows that the optimal LMHA λ̌ can be found in closed-form. However, such

“infinite head” models lose the attractive interpretability of the finite-head models and make

it difficult to understand how exactly the model learns the cross-predictability patterns

among the different stocks. Most importantly, the infinite head λ̌ does not admit a unique

decomposition into the single-attention-head components. For example, any decomposition

λh = λ1
h + λ2

h leads to a different decomposition of λ̌. However, it is possible to charac-

terize the optimal multi-head attention policies λ̌OLS(H), λ̌MSRR(H) directly in terms of

λ̌OLS(∞), λ̌MSRR(∞). Furthermore, the decomposition we construct is unique, with the

attention heads being pairwise orthogonal and ordered according to their importance.

To derive such an orthogonal multi-head decomposition, we start by noting that λ̌(∞) ∈

RD2d can be “reshaped” as a (D2)× d matrix. We abuse notation and use λ̌ to denote this

reshaped vector. We can then use the singular value decomposition and write

λ̌type(∞) =
d∑

h=1

Wh ⊗ λh, Wh ∈ RD×D, λh ∈ RD, type ∈ {OLS,MSRR} , (38)

where Wh ∈ RD×D are D2-dimensional eigenvectors of the matrix λ̌(∞)λ̌(∞)′ ∈ R(D2)×(D2) ,

while λh ∈ Rd are the d-dimensional eigenvectors of the matrix λ̌(∞)′λ̌(∞) ∈ Rd×d , with

24They are also known as “hydra attention” models in the literature; see, Bolya et al. (2022).

46

the singular values ordered in the decreasing order. We use

λ̌type(∞;H) =
H∑
h=1

Wh ⊗ λh, type ∈ {OLS,MSRR} (39)

to denote the approximation of λ̌(∞) with the top H attention heads based on the singular

value decomposition. By direct calculation and standard properties of the singular value

decomposition, we have

λ̌OLS(H) = arg min
λ̌(H)
‖(λ̌OLS(∞)− λ̌(H))‖2 (40)

λ̌MSRR(H) = arg min
λ̌(H)
‖(λ̌OLS(∞)− λ̌(H))‖2 . (41)

As we now show, the true optimalH-head models solve closely related optimization problems.

Indeed, by the properties of ordinary least squares regression, R − Sλ̌OLS is orthogonal to

the span of S (and, similarly, for MSRR), and we get

‖R− Sλ̌‖2 = ‖R− Sλ̌OLS‖2 + ‖S(λ̌OLS − λ̌)‖2

‖1−R′Sλ̌‖2 = ‖1−R′Sλ̌OLS‖2 + ‖R′S(λ̌OLS − λ̌)‖2 .
(42)

These identities immediately imply the following result.

Proposition 2 For any H < min(D2, d),

λ̌OLS(H) = arg min
λ̌(H)
‖S(λ̌OLS(∞)− λ̌(H))‖2 (43)

λ̌MSRR(H) = arg min
λ̌(H)
‖R′S(λ̌OLS(∞)− λ̌(H))‖2 (44)

where the minimum is over all H-heads λ̌(H). Thus,

• If S ′S = I, then λ̌OLS(∞;H) is the solution to (43);

• If S ′RR′S = I, then, λ̌OLS(∞;H) is the solution to (44) .

Proposition 2 establishes a striking connection between finite-head LMHA models and

singular value decomposition. For example, Wtype(1) is the “top” attention head, capturing

47

the largest amount of cross-predictability. We refer to Wtype(1) as the principal attention

head. This attention head is closely related to principal portfolios introduced in Kelly et al.

(2023). Namely, Kelly et al. (2023) show how to find the optimal attention matrix L for

signals St, building a portfolio LSt using a singular value decomposition. Here, we show how

to find the optimal L of the form L = XtWX ′t with signals St = Ztλ.

While, for generic S, the problems (43), (44) do not admit closed-form solutions, we

believe the structure of these solutions is similar to that described in Proposition 2. The

rotationally symmetric case of Proposition 2 implies that the problems (43), (44) have a

tremendous number of local extrema: Any collection of H different singular values corre-

sponds to a local extremum, while the global minimum is unique, given by the H largest

singular values.

B.2 Attention and Factor Timing

While Lemma 2 formally provides a simple, closed-form solution for the infinite-head atten-

tion, actually computing it and understanding its structure is highly non-trivial because it

is complex in the sense of Kelly et al. (2022) and DKKM: The number of model parameters

is very large even when compared to the size of the panel dataset. For example, already

in the simpler case where Zt = Xt ∈ RD, the optimal vector of parameters, λ̌, has the di-

mension D3. A sufficiently rich set of characteristics (e.g., Jensen et al. (2023) suggest using

D = 150 characteristics, while DKKM use D = 130) immediately leads to D > 106. As Kelly

et al. (2022) explain, for the OLS prediction problem, the complexity should measured as

cOLS = dim(λ̌OLS)/(TN) = D3/(TN), where N is the average number of stocks in the panel.

Even if we use a rolling window of 30 years, TN < D3. The situation worsens for the MSRR

problem where, as DKKM explain, complexity should be computed as c = D3/T, implying

a tremendous degree of complexity. Abstracting from the purely statistical considerations

and the impossibility of correctly estimating the “true model” (due to the complexity wedge,

DKKM), simply computing the solutions to (37) numerically is often infeasible because it

requires inverting D2d-dimensional matrices. This section shows that the optimal policies

exhibit a remarkable mathematical structure, allowing us to compute these policies efficiently

even for very large dimensions. Furthermore, this mathematical structure reveals important

48

economic insights about the precise nature of predictive patterns that linear attention models

are able to identify.

We start our analysis by defining Ξt = X ′tZt/Nt ∈ RDd and noting that the signals (35)

can be written as Si,t = Xi,t⊗Ξt. As a result, defining the characteristics-based factors (also

known as managed portfolios)

Ft+1 = X ′tRt+1 ∈ RD , (45)

portfolio returns can be rewritten as

π′tRt+1 = (Stλ̌)′Rt+1 = λ̌′(Ξ′t ⊗ (X ′tRt+1)) = λ̌′(Ξ′t ⊗ Ft+1)

=
∑
j1,j2,j3

λ̌(j1, j2, j3) Ξt(j1, j2)︸ ︷︷ ︸
factor timing

Fj1,t+1︸ ︷︷ ︸
factor returns

.
(46)

The formula (46) shows how a generic linear attention model admits an intuitive factor-

timing representation, whereby portfolio returns, π′tRt+1, optimally combine interactions

of each factor Fj1,t+1 with each timing variable Ξt(j1, j2). The timing variables are cross-

sectional averages of characteristics,

Ξt(j1, j2) = N−1
t

Nt∑
i=1

Xi,t(j1)Zi,t(j2) . (47)

Such cross-sectional averages have indeed been shown to have factor timing ability. See,

Haddad et al. (2020) and Kelly et al. (2023). In particular, Kelly et al. (2023) study cross-

predictability. In our notation, they fix j2 and study whether Ξt(j1, j2) predicts not only

Fj1,t+1, but also Fj2,t+1 for j2 6= j1. Kelly et al. (2023) find strong evidence that this is

indeed the case. The linear attention model in this section pushes the cross-predictability

idea of Kelly et al. (2023) to extreme levels of complexity, optimizing factor timing jointly,

as a portfolio (46) of D2d factor timing combinations (D factors timed with Dd timing

variables), and estimating the D2d-dimensional portfolio that optimally combines these D2d

49

timed factors. We now derive a representation for the optimal portfolio λ̌. Define

ΣΞ(t, τ) = Ξ′tΞτ = Ξt · Ξτ︸ ︷︷ ︸
timing attention

(48)

to be the dot product similarity measure between timing variables Ξt and Ξτ at two different

time instants.

Theorem 3 For each type ∈ {OLS, MSRR}, there exists a sequence of vectors qt(type) ∈

RD, t ∈ [1, · · · , T], such that

λ̌type =
T∑
t=1

qt(type)⊗ Ξt ∈ RD2d . (49)

As a result, optimal portfolio returns are given by

πt(type)
′Rt+1 = F ′t+1

T∑
τ=1

qτ (type) ΣΞ(t, τ) . (50)

Theorem 3 shows how optimal portfolio returns have a natural attention-based structure,

whereby the optimal portfolio is a timing strategy, with the vector of factor weights is a linear

combination of vectors qτ (type), and the weights are determined by the similarity ΣΞ(t, τ)

between timing variables today (at time t) and the in-sample time periods τ.

B.3 Computing Optimal Attention Heads

The following is true.

Theorem 4 (Computing the Multi-Head Decomposition) Let

λ̌ =
∑
t

qt ⊗ Ξt . (51)

be an LMHA model. Define Σq ∈ RT×T via Σq(t1, t2) = q′t1qt2 , and recall than Ξt ∈ RD×d.

50

Then,

λ̌′λ̌ =
∑
t1,t2

Σq(t1, t2)Ξ′t1Ξt2 ∈ Rd×d . (52)

Let

λ̌′λ̌ =
d∑

h=1

λhλ
′
h (53)

be its singular value decomposition. Then, the optimal multi-head attention is given by

λ̌(∞;H) =
H∑
h=1

Wh ⊗ λh, (54)

with the optimal attention heads given by

Wh = λ̌λh . (55)

Defining b̂(H) ∈ Rd×H to be the first H singular vectors [λ1, · · · , λh] and

Ξ̃t(H) = Ξt(b̂(H)b̂(H)′), (56)

we get that

πt(H)′Rt+1 =
∑
τ

(F ′t+1qτ) (Ξ′tΞ̃τ (H))︸ ︷︷ ︸
timing attention

(57)

B.4 The Structure of Optimal Attention Vectors

Theorem 3 implies that the vectors qτ depend in a complex fashion on the joint covariance

structure of factors and timing variables. We now characterize this dependence in closed-form

for both OLS and MSRR objectives.

Proposition 5 (Optimal Timing Portfolios) The vectors qt in Theorem 3 can be com-

51

puted as follows:

qt(type) = z−1Ft+1 + vt(type)Q̃(type) , (58)

where vt(type), Q̃(type) can be computed as follows:

• For type = OLS, define

Γ̂ = ((ΣΞ)1/2 ⊗ I) diag(X ′τXτ)
T
τ=1 ((ΣΞ)1/2 ⊗ I) ∈ R(DT)×(DT) . (59)

and let

Γ̂ = Ṽ Λ(MSE)Ṽ ′ (60)

be its eigenvalue decomposition. Define

V̂ = ((ΣΞ)−1/2 ⊗ I)Ṽ ∈ R(DT)×(DT) (61)

and write it as V̂ = (v1, · · · , vT) ∈ R(DT)×(DT), where vt ∈ RD×(DT). Then,

Q̃(MSE) =
(
(zI + Λ(MSE))−1 − z−1

)
◦ (

T∑
τ=1

T∑
t=1

ΣΞ
τ,t(v

′
τFt+1)) ∈ RDT , (62)

• For type = MSRR, define

ΣF = (F ′τ+1Ft+1)Tt,τ=1 ∈ RT×T (63)

and let

V Λ(MSRR)V ′ = ΣF ◦ ΣΞ, V ∈ RT×T . (64)

be the eigenvalue decomposition of ΣF ◦ ΣΞ, and Λ = diag(λ1, · · · , λT). Define Ṽ =

52

(1√
λ1
v1, · · · , 1√

λT
vT), and denote Ṽt the t-th row of Ṽ . Define

vt = (Ft+1 ⊗ Ṽt) ∈ RD×T , (65)

where ⊗ stands for the outer product of Ft+1 ∈ RD and Ṽt ∈ RT . Then, Q̃(MSRR) is

given by

Q̃(MSRR) =
(
(zI + Λ(MSRR))−1 − z−1

)
◦ Λ(MSRR) Ṽ ′1. (66)

C Proofs

Proof of Proposition 5, OLS Case. DenoteN the average number of stocksNT =
∑T

t=1Nt

in the data panel. We start by proving the result for the MSE objective

LOLS(M) = ‖ R︸︷︷︸
NT×1

− π︸︷︷︸
NT×1

‖2 =
1

T

T∑
t=1

‖Rt+1︸︷︷︸
Nt×1

− St︸︷︷︸
Nt×D2d

M‖2. (67)

Optimal λ̌ ∈ RD2d×1 that minimizes the MSE objective is a solution to the OLS regression

task R = SM with a coefficient vector M . It is given by

λ̌ = (
1

T
S ′S︸︷︷︸

D2d×D2d

+zI)−1 1

T
S ′︸︷︷︸

D2d×NT

R︸︷︷︸
NT×1

. (68)

Simplifying the expression above boils down to finding eigenvectors of S ′S. First, notice

that any vector V ∈ RD2d can be decomposed into the sum of Kronecker products of vectors

V =
∑K

k=1(vk ⊗ wk) for some vk ∈ RD and wk ∈ RDd. In general, we should require that

the decomposition has at least one solution, i.e., the total number of unknowns on the right-

hand side should be greater or equal to the number of entries of V with a unit norm, i.e.,

K(D+Dd) ≥ D2d− 1, this sets a lower bound on the parameter K. However, we will show

that every eigenvector of S ′S has a unique decomposition by construction and that the final

result holds for any K.

Recall that Si,t = Xi,t ⊗ Ξt and, hence, St = Xt ⊗ Ξt and S is the matrix of

53

Sτ , τ ∈ [1, · · · , T], stacked together. Then,

S ′S =
T∑
τ=1

SτS
′
τ =

T∑
τ=1

(Xτ ⊗ Ξτ)(Xτ ⊗ Ξτ)
′

=
T∑
τ=1

(XτX
′
τ)︸ ︷︷ ︸

=Στ∈RD×D

⊗ (ΞτΞ
′
τ)︸ ︷︷ ︸

(Dd)×(Dd)

=
(T∑
τ=1

Στ ⊗ (ΞτΞ
′
τ)
)
.

(69)

Any vector V ∈ RD2d can be written as a sum of decomposable vectors

q ⊗ w . (70)

Thus, the linear operator S ′S : RD2d → RD2d acts on a vector V ∈ RD2d as follows:

(S ′S)tQ =
(T∑
τ=1

Στ ⊗ (ΞτΞ
′
τ)
)
q ⊗ w =

T∑
τ=1

Στq ⊗ (Ξτ Ξ′τw︸︷︷︸
∈R

)

=
T∑
τ=1

(Ξ′τw)(Στq)⊗ Ξτ .

(71)

Thus, Im(S ′S), the image of S ′S, satisfies

Im(S ′S) ⊂
{ T∑
τ=1

vτ ⊗ Ξτ |vτ ∈ RDd
}
, (72)

and, thus, all eigenvectors of S ′S are of the form (72), and we can look for these eigenvectors

as follows:

S ′S
T∑
τ=1

vτ ⊗ Ξτ = λ
T∑
τ=1

(T∑
τ ′=1

Ξ′τΞτ ′Στvτ ′
)
⊗ Ξτ . (73)

Without loss of generality, we assume that (Ξτ)
T
τ=1 are linearly independent. Then, we can

use the following lemma.

54

Lemma 3 If (Ξτ)
T
τ=1 are linearly independent, then a representation

x =
T∑
τ=1

vτ ⊗ Ξτ (74)

is unique.

Proof of Lemma 3. Suppose that

∑
vτ ⊗ Ξτ =

∑
wτ ⊗ Ξτ , (75)

so that

∑
aτ ⊗ Ξτ = 0, aτ = vτ − wτ . (76)

Then, taking an inner product with b⊗ Ξτ ′ , we get

∑
(Ξ′τ ′Ξτ)(a

′
τb) = 0 . (77)

Equivalently, ΣΞ((a′τb)
T
τ=1) = 0. Since Ξ are linearly independent, ΣΞ = (Ξ′τΞτ ′)

T
τ,τ ′=1 is non-

degenerate. Thus, (a′τb) = 0 for all τ. Since b is arbitrary, we conclude that aτ = 0 for all τ.

�

Thus, (vτ)
T
τ=1 corresponding to an eigenvector

∑T
τ=1 vτ ⊗ Ξτ is unique. Therefore, (73) is

equivalent to the system

λvτ =
T∑

τ ′=1

Ξ′τΞτ ′Στvτ ′ . (78)

Define ΣΞ ∈ RT×T : (ΣΞ)τ,τ ′ = Ξ′τΞτ ′ , Γ = diag(Στ)
T
τ=1 ∈ RDt×Dt. Also, let V be a vertical

stack of eigenvectors V =
[
v1 v2 · · · vT

]′
∈ RDt. The eigenvalue equation (78) can be

rewritten in tensor form as follows:

λV = Γ(ΣΞ ⊗ ID×D)V. (79)

55

Although this representation is already “compact,” it is not convenient to work with because

the product Γ(ΣΞ ⊗ ID×D) is not symmetric (both Γ and ΣΞ ⊗ ID×D are symmetric by

construction, but the product of symmetric matrices is not necessarily symmetric). Define

Ṽ = ((ΣΞ)1/2 ⊗ I)V . Then,

Γ(ΣΞ ⊗ ID×D)(ΣΞ)−1/2 ⊗ I)Ṽ = Γ((ΣΞ)1/2 ⊗ I)Ṽ = (λ/Dd)((ΣΞ)−1/2 ⊗ I)Ṽ , (80)

which leads to

((ΣΞ)1/2 ⊗ I)Γ((ΣΞ)1/2 ⊗ I)Ṽ = Γ̃Ṽ = λṼ . (81)

Now, Γ̃ is symmetric (because for any symmetric A,B the product ABA is symmetric) and,

thus, recovering Ψ̂t no longer requires taking the inverse of the eigenvector matrix. Finally,

one recovers the matrix of eigenvectors of Ψ̂t by computing

VΨ̂t
=

T∑
τ=1

vτ ⊗ Ξτ , (82)

where each vτ is a component of a vertical stack of τ ’s column of V = ((ΣΞ)−1/2⊗ I)Ṽ . The

actual eigenvectors of Ψ̂t are then

V =
T∑
τ=1

vτ ⊗ Ξτ (83)

and let us verify that these vectors are orthonormal. Indeed,

V ′V =
T∑
τ=1

v′τ ⊗ Ξ′τ

T∑
τ=1

vτ ⊗ Ξτ =
∑
τ1,τ2

v′τ1vτ2Ξ
′
τ1

Ξτ2 =
∑
τ1,τ2

v′τ1vτ2Σ
Ξ
τ1,τ2

= V ′(ΣΞ ⊗ I)V = Ṽ ′((ΣΞ)−1/2 ⊗ I)(ΣΞ ⊗ I)((ΣΞ)−1/2 ⊗ I)Ṽ

= Ṽ ′Ṽ = I.

(84)

The calculation above allows us to compute eigenvectors for all non-zero eigenvalues. We

denote the corresponding eigenvector matrix by V . Note that V is an isometry and satisfies

56

V ′V = Iν , where ν is the number of non-zero eigenvalues. However, V V ′ 6= ID2d and, in the

case of ν < D2d, the zero eigenvalues need to be taken special care of. The next calculation

uses the following lemma.

Lemma 4 Let V be the matrix of eigenvectors for a symmetric matrix with non-zero eigen-

values Λ. Then,

(zI + A)−1 = V (zI + Λ)−1V ′ + z−1(I − V V ′) . (85)

We will also use the identity

S ′R =
T∑
t=1

Ft+1 ⊗ Ξt (86)

Now, the optimal λ̌ can be determined as follows:

λ̌ = (T−1S ′S + zI)−1T−1S ′R = (S ′S + (zT)︸︷︷︸
=:z̃

I)−1S ′R

= (V ΛV ′ + z̃−1I)−1S ′R =
(
V (z̃I + Λ)−1V ′ + z̃−1(I − V V ′)

)
S ′R

=
(
V (z̃I + Λ)−1V ′ + z̃−1(I − V V ′)

) T∑
t=1

Ft+1 ⊗ Ξt

= z̃−1

T∑
t=1

Ft+1 ⊗ Ξt + V
(
(z̃I + Λ)−1 − z̃−1I

)
Q ∈ RD2d,

(87)

where Q = V ′
∑T

t=1 Ft+1 ⊗ Ξt ∈ RT . We have, with vτ ∈ RD×(DT), that

Q = V ′
T∑
t=1

Ft+1 ⊗ Ξt = (
T∑
τ=1

vτ ⊗ Ξτ)
′
T∑
t=1

Ft+1 ⊗ Ξt

=
T∑
τ=1

T∑
t=1

(Ξ′τΞt)︸ ︷︷ ︸
∈R

(v′τFt+1) =
T∑
τ=1

T∑
t=1

ΣΞ
τ,t(v

′
τFt+1) ∈ RDT

(88)

57

For the optimal λ̌, we obtain

λ̌ = z̃−1

T∑
t=1

Ft+1 ⊗ Ξt + V Q̃ = z̃−1

T∑
t=1

Ft+1 ⊗ Ξt +
T∑
t=1

(vtQ̃)⊗ Ξt

=
T∑
t=1

(z̃−1Ft+1 + vtQ̃)⊗ Ξt =
T∑
t=1

qt ⊗ Ξt ∈ RD2×d,

(89)

where we have defined

qt = z̃−1Ft+1 + vtQ̃. (90)

Here, vt ∈ RD×(DT), Q̃ ∈ RDT and vtQ̃ ∈ RD.

The Proof of Proposition 5, OLS Case is complete. �

Lemma 5 (A low-rank approximation) Suppose that ΣΞ = (Ξ′τΞτ ′)
T
τ,τ ′=1 has approxi-

mately low rank, so that

ΣΞ ≈
r∑
l=1

λl(Σ
Ξ) q̂lq̂

′
l (91)

for some r < t. Define

ql = λl(Σ
Ξ)1/4q̂l = λl((Σ

Ξ)1/2)1/2q̂l . (92)

Define

Γ̄(l1, l2) =
τ∑
k=1

ql1(k)Γkql2(k), (93)

and

Γ̂ = (λl(Σ
Ξ)1/4λl1(Σ

Ξ)1/4Γ̄(l, l1))rl,l1=1 ∈ R(rD)×(rD) (94)

and let V̂ ∈ R(rD)×(rD) and Λ̂ ∈ RrD be the eigenvectors and eigenvalues of Γ̂ .

58

Then, define V̂ = [v̂1, · · · , v̂r] as a partition into row blocks, and let

ṽτ =
r∑

l1=1

q̂l1(τ)v̂l1 (95)

stacking ṽτ into row blocks, we get Ṽ ∈ R(tD)×(tr).

Proof of Lemma 5. We have that

((ΣΞ)1/2 ⊗ I)Γ((ΣΞ)1/2 ⊗ I)Ṽ = Γ̃Ṽ = λṼ . (96)

can be rewritten as

ṽτ =
T∑

τ1=1

τ∑
k=1

sτ,kΓksk,τ1 ṽτ1 , (97)

where s = (ΣΞ)1/2 . Substituting the spectral decomposition

s =
r∑
l=1

qlq
′
l, (98)

where r is the rank of s and ql ∈ RT are rescaled eigenvectors, we get

λṽτ =
T∑

τ1=1

τ∑
k=1

∑
l1,l2

ql1(τ)ql1(k)Γkql2(τ1)ql2(k)ṽτ1 . (99)

Defining

Γ̄(l1, l2) =
τ∑
k=1

ql1(k)Γkql2(k), (100)

we can rewrite it as

λṽτ =
∑
l1,l2

ql1(τ)Γ̄(l1, l2)
T∑

τ1=1

ql2(τ1)ṽτ1 . (101)

59

Let

v̄l =
T∑

τ1=1

ql(τ1)ṽτ1 . (102)

Then,

λṽτ =
∑
l1,l2

ql1(τ)Γ̄(l1, l2)v̄l2 . (103)

Multiplying by ql(τ) and summing over τ , we get

λv̄l = λ
∑
τ

ql(τ)ṽτ =
∑
τ

ql(τ)
∑
l1,l2

ql1(τ)Γ̄(l1, l2)v̄l2

=
∑
l1,l2

∑
τ

(ql(τ)ql1(τ))Γ̄(l1, l2)v̄l2

=
∑
l1,l2

λs(l)δl,l1Γ̄(l1, l2)v̄l2

=
∑
l2

λs(l)Γ̄(l, l2)v̄l2 ,

(104)

where we have used that

∑
τ

(ql(τ)ql1(τ)) = λs(l)δl,l1 (105)

by the definition of the eigenvalue decomposition of s = (ΣΞ)1/2. Thus, we can define the

big matrix

Γ̂ = (λs(l)
1/2λs(l1)1/2Γ̄(l, l1))rl,l1=1 ∈ R(rD)×(rD) (106)

and redefine

v̂l = λs(l)
−1/2v̄l . (107)

60

Then, we can rewrite (104) as

λλs(l)
1/2v̂l =

∑
l2

λs(l)Γ̄(l, l2)λs(l2)1/2v̂l2 , (108)

Dividing this by λs(l)
1/2, we get with v̂ = (v̂l)

r
l=1 ∈ RDr that

λv̂ = Γ̂v̂ . (109)

When r < T, we need to work with matrices of significantly lower dimensions. Then, we can

rewrite (103) as

λṽτ =
∑
l1,l2

ql1(τ)Γ̄(l1, l2)v̄l2

=
∑
l1,l2

ql1(τ)λs(l1)−1/2λs(l1)1/2Γ̄(l1, l2)λs(l2)1/2v̂l2

=
∑
l1

ql1(τ)λs(l1)−1/2

(∑
l2

λs(l1)1/2Γ̄(l1, l2)λs(l2)1/2v̂l2

)

=
∑
l1

ql1(τ)λs(l1)−1/2λv̂l1

(110)

Dividing by λ, we get

ṽτ =
∑
l1

ql1(τ)λs(l1)−1/2v̂l1 =
∑
l1

q̂l1(τ)v̂l1 (111)

�

Proof of Proposition 5, MSRR Case. Next, let us derive expressions for vt and Q̃ for

the MSRR case. We are minimizing the objective function

LMSRR(M) = ‖ 1︸︷︷︸
T×1

− R′π︸︷︷︸
T×1

‖2 =
1

T

T∑
t=1

(1−R′t+1 SM︸︷︷︸
Nt×1

)2, (112)

where R ∈ RNt×T is a matrix of next-month returns, St = Xt⊗Ξt ∈ RNt×D⊗RDd ≡ RNt×D2d,

61

λ̌ ∈ RD2d. Let also S̃t = (RT
t+1Xt)⊗ Ξt = Ft+1 ⊗ Ξt ∈ RD ⊗ RDd. Then,

S̃ ′S̃ =
∑
t

(Ft+1F
′
t+1)︸ ︷︷ ︸

D×D

⊗ (ΞtΞ
′
t)︸ ︷︷ ︸

Dd×Dd

∈ RD2d×D2d. (113)

As a sum of T rank-one matrices, S̃ ′S̃ = S ′RR′S has a rank of at most T . Thus, S̃ ′S̃ ∈

RD2d×D2d only contains T < D2d non-zero eigenvalues. We denote the corresponding eigen-

vectors by V (θ), θ = 1, · · · , T. As above, we will use Lemma 4 to deal with zero eigenvalues.

We have

(S̃ ′S̃)(x⊗ y) =
∑
t

(Ft+1F
′
t+1)⊗ (ΞtΞ

′
t)(x⊗ y)

=
∑
t

(ctFt+1)⊗ Ξt, ct = (F ′t+1x)(Ξ′ty) .
(114)

Thus, the image of S̃ ′S̃ is a subset of the span of Ft+1 ⊗ Ξt.

Let V (θ) be the eigenvector of S̃ ′S̃ number θ ≤ T. Since eigenvectors always belong to

the image, it admits a representation

V (θ) =
T∑
t=1

(vt(θ)Ft+1)⊗ Ξt, (115)

where (vt(θ))
T
t=1 is a set of coefficients that are to be determined. We have

S̃ ′S̃V (θ) =
T∑
τ=1

(Fτ+1F
′
τ+1)⊗ (ΞτΞ

′
τ)

T∑
t=1

(vt(θ)Ft+1)⊗ Ξt

=
T∑

τ,t=1

(Fτ+1 F
′
τ+1vt(θ)Ft+1︸ ︷︷ ︸

scalar

)⊗ (Ξτ Ξ′τΞt︸︷︷︸
scalar

)

=
T∑
τ=1

(T∑
t=1

vt(θ)F
′
τ+1Ft+1Ξ′τΞt︸ ︷︷ ︸

scalar

)
Fτ+1 ⊗ Ξτ .

(116)

Without loss of generality, we may assume that Fτ+1 ⊗ Ξτ are linearly independent. Then,

62

the eigenvalue equation

S̃ ′S̃V (θ) = λ(θ)V (θ)

is equivalent to the system of equations

∑
t

vt(θ)F
′
τ+1Ft+1Ξ′τΞt = λ(θ)vτ (θ), τ = 1, · · · , T . (117)

Let us define

ΣF = (F ′τ+1Ft+1)Tt,τ=1 ∈ RT×T , ΣΞ = (Ξ′τ+1Ξt+1)Tt,τ=1 ∈ RT×T (118)

Let also v = (vτ (θ))
T
τ=1. Then, we get the system

(ΣF ◦ ΣΞ)v = λ(θ)v (119)

where (ΣF ◦ ΣΞ) is the Hadamard (element-wise) product of the two matrices. Thus, we

have just shown that eigenvectors V (θ) of S̃ ′S̃ can be computed in two steps: first, compute

eigenvectors of ΣF ◦ ΣΞ, and then compute V (θ) using the formula (115). Note that each

V (θ) is a function of all v(θ)s: to compute θ-th eigenvector V (θ), we need θ-th entries of all

eigenvectors v(θ). Let us also check the norms:

‖V (θ)‖2 = ‖
T∑
t=1

(vt(θ)Ft+1)⊗ Ξt‖2 =
T∑

t,τ=1

(vt(θ)vτ (θ)F
′
t+1Fτ+1)⊗ Ξ′tΞτ

= v′(ΣF ◦ ΣΞ)v = λ(θ)‖v‖2 = λ(θ),

(120)

so the normalized eigenvectors are

Ṽ (θ) = λ(θ)−1/2

T∑
t=1

(vt(θ)Ft+1)⊗ Ξt . (121)

63

Noting that S̃ ′ ∈ RD2d×T , and

S̃ ′1 =
T∑
t=1

Ft+1 ⊗ Ξt , (122)

we get that the optimal λ̌ can be computed as

λ̌ = (T−1S̃ ′S̃ + zI)−1T−1S̃ ′1 = (S̃ ′S̃ + (zT)︸︷︷︸
=:z̃

I)−1S̃ ′1

= (Ṽ ΛṼ ′ + z̃−1I)−1S̃ ′1 =
(
Ṽ (z̃I + Λ)−1Ṽ ′ + z̃−1(I − Ṽ Ṽ ′)

)
S̃ ′1

=
(
Ṽ (z̃I + Λ)−1Ṽ ′ + z̃−1(I − Ṽ Ṽ ′)

) T∑
t=1

Ft+1 ⊗ Ξt

= z̃−1

T∑
t=1

Ft+1 ⊗ Ξt + Ṽ
(
(z̃I + Λ)−1 − z̃−1I

)
Q ∈ RD2d,

(123)

where Q = Ṽ ′
∑T

t=1 Ft+1 ⊗ Ξt ∈ RT . Each element of the vector Q can be computed as

follows:

Q(θ) = Ṽ (θ)′
T∑
t=1

Ft+1 ⊗ Ξt = (λ(θ)−1/2
∑
τ

vτ (θ)Fτ+1 ⊗ Ξτ)
′
T∑
t=1

Ft+1 ⊗ Ξt

= λ(θ)−1/2

T∑
τ=1

T∑
t=1

vτ (θ) (Ξ′τΞt)︸ ︷︷ ︸
∈R

(F ′τ+1Ft+1) = 1′(ΣF ◦ ΣΞ)v(θ) = λ(θ)1/21′v(θ).

(124)

Aggregating, let v ∈ RT×T be the matrix of v(θ) in columns (so, the eigenvector matrix of

ΣF ◦ ΣΞ, and Λ the diagonal matrix with λ(θ) on the diagonal. Then,

Q = Λ1/2 v′1 ∈ RT . (125)

Notice that Λ and
(
(z̃I + Λ)−1 − z̃−1I

)
are diagonal matrices. Hence, we can re-write them

as vectors of length T and define

Q̃(MSRR) =
(
(z̃I + Λ)−1 − z̃−1I

)
◦ Λ1/2 ◦ v′1 ∈ RT . (126)

64

Substituting (121), we get

Ṽ Q̃(MSRR) =
T∑
θ=1

λ(θ)−1/2

T∑
t=1

(vt(θ)Q̃(θ)Ft+1)⊗ Ξt

=
T∑
t=1

atFt+1 ⊗ Ξt,

(127)

where

at =
T∑
θ=1

λ(θ)−1/2vt(θ)Q̃(θ)

=
T∑
θ=1

λ(θ)−1/2vt(θ)λ(θ)1/2
(
(z̃I + λ(θ))−1 − z̃−1I

)
1′v(θ)

(128)

Thus,

λ̌ =
T∑
t=1

(z̃−1Ft+1)⊗ Ξt + Ṽ︸︷︷︸
D2d×T

Q̃(MSRR)︸ ︷︷ ︸
T×1

=
T∑
t=1

(z̃−1 + at)Ft+1 ⊗ Ξt (129)

The Proof of Proposition 5, MSRR Case is complete.

�

Proof of Theorem 3. We have already shown in the Proof of Proposition 5 that (49) holds

for MSE and MSRR cases, and we have derived expressions for qt(type) for any t = 1, ..., T .

It remains to prove (50). Thus, substituting

λ̌type =
T∑
t=1

qt(type)⊗ Ξt ∈ RD2d . (130)

into the optimal portfolio

πt(type) = S ′tλ̌type, (131)

65

we get

πt(type)
′Rt+1 = λ̌′typeStRt+1

= λ̌′typeFt+1 ⊗ Ξt

=
T∑
τ=1

F ′t+1qτ (Ξ
′
tΞτ)

= F ′t+1

T∑
τ=1

qτ (type) ΣΞ(t, τ) .

(132)

The proof is complete. �

66

D Model Optimization

D.1 Linear Attention

67

Algorithm 1 Return on the linear attention portfolio at time t+ 1

Require: Covariances Ξτ ∈ RDd and linear factors Fτ+1 ∈ RD for τ = t−Nrol + 1, ..., t− 1.
1: Compute matrices ΣF = (F ′τ1+1Fτ2+1)Nrolτ1,τ2=1 ∈ RNrol×Nrol and ΣΞ = (Ξ′τ1Ξτ2)

Nrol
τ1,τ2=1 ∈

RNrol×Nrol .
2: Find the vector of eigenvalues D ∈ RNrol and the matrix of eigenvectors v ∈ RNrol×Nrol

of ΣF ◦ ΣΞ ∈ RNrol×Nrol .
3: Divide each eigenvector vk, k = 1, ..., Nrol by the square root of the corresponding eigen-

value
√
λk. This lets us recover the normalised eigenvectors Vk, k = 1, ..., Nrol, of the

parent matrix S̃ ′S̃ = V DV ′ using the formula Vk =
∑Nrol

τ=1 vk,τFτ+1 ⊗ Ξτ . Notice that
vk,τ s are scalars.

4: Compute vector Q = D ◦ (v′1Nrol×1) ∈ RNrol×1.
5: For each zk ∈ z ∈ RNz , compute vectors Q̃k =

(
(zk1Nrol×1 + D)−1 − z−1

k

)
◦ Q. Then,

stack Q̃k ∈ RNrol×1 by columns, getting Q̃ ∈ RNrol×Nz . This way, we set the ground for
fitting variables of interest (M∗, W ∗(M) and b∗(z,M)) simultaneously for a grid of zk.

6: Now, denote vτ ∈ RNrol the τ -th row of the normalised eigenvector matrix v ∈ RNrol×Nrol ,
there are Nrol such vτ s. Define the outer products ṽτ := Fτ+1v

′
τ ∈ RD×Nrol .

7: for τ ∈ t−Ntol, ..., t− 1 do
8: Compute hk,τ = z−1

k Fτ+1 ∈ RD for the grid of zk and stack hk,τ by columns into
hτ ∈ RD×Nz , then compute qτ := hτ + ṽτ Q̃ ∈ RD×Nz .

9: Normalise qτ by Nrol, i.e., do qτ = qτ
Nrol

. This normalises the matrix M∗ (we can not

normalise M∗ directly because we do not compute M∗ explicitly).
10: end for
11: for zk ∈ z ∈ RNz do
12: Now that we have qk,τ ∈ RD for all zk ∈ z and all τ = t−Ntol, ..., t− 1, i.e., we have

a 3-dimensional tensor q ∈ RD×Nz×Nrol , we split it across z dimension into Nz vectors
qk ∈ RD×Nrol . Compute Σq

k = q′kqk ∈ RNrol×Nrol .
13: Compute the inner product of M∗s without explicitly computing M∗: W ∗′

k W
∗
k =∑t−1

τ1,τ2=t−Ntol Σq
k,τ1τ2

ΞD×d′
τ1

ΞD×d
τ2

. Here, ΞD×d′
τ1

ΞD×d
τ2
∈ Rd×d and Σq

k,τ1τ2
is a scalar.

14: Compute eigenvector matrix mk ∈ Rd×d of W ∗′
k W

∗
k ∈ Rd×d. Each column of m corre-

sponds to some attention head.
15: end for
16: for h ∈ [1, 2, 3, 4, 8, 16, 32...] and zk ∈ z ∈ RNz do
17: Denote mk,h ∈ Rd,h the matrix of eigenvectors mk with h columns that correspond to

the largest eigenvalues of W ∗′
k W

∗
k . Compute Ξ̃τ,k,h = ΞD×d

τ mk,hm
′
k,h ∈ RD×d.

18: Compute the t+1 out-of-sample returnRpf
t+1,k,h on the Linear MSRR attention portfolio

Rpf
t+1,k,h = Rt+1S̃t+1M

∗
k,h =

∑t−1
τ=t−Nrol(Ξ

′
tΞ̃τ,k,h)(F

′
t+1qk,τ), where Ξ′tΞ̃τ,k,h and F ′t+1qk,τ

are scalars.
19: end for
20: We end up with Nz ·Nh out-of-sample returns on linear attention portfolio Rpf

t+1,k,h for a
grid of penalty parameters zk and number of attention heads h.

68

D.2 Transformer Optimization

Algorithm 2 Transformer-based trading strategy

Require: Panel data of stocks characteristics Xt ∈ RNt×D, returns Rt+1 ∈ RNt , rolling
window period τ, a learning rate η, number of epochs e, and a non-linear transformer
model T (K), which comprises of K transformer-blocks. Each transformer-block T (k) is
composed of a multi-head attention unit A, a feed-forward network F , and an objective
function ∈ {MSRR,MSE}.

1: Denote by ΘT the set of learnable parameters.
2: for epoch ∈ e do
3: for month ∈ τ do
4: if loss == MSRR then
5: LΘ ← (1− T (K)(Xt)

′Rt+1λ)2.
6: else
7: LΘ ← ‖Rt+1 − T (K)(Xt)

′λ‖2.
8: end if
9: Θs+1 ← Θs − η∇L.

10: end for
11: end for

69

Table 7: Portfolio Transformer Performance by Size Groups

BSV DKKM Lin. Attn. MLP Transformer

All

Sharpe ratio 3.60 3.91 3.89 4.31 4.57

HJD 0.15 0.13 0.14 0.13 0.09

Micro

Sharpe ratio 3.46 3.68 3.77 4.02 4.42

HJD 0.16 0.15 0.16 0.14 0.11

Small

Sharpe ratio 2.23 2.36 2.40 2.79 3.23

HJD 0.31 0.29 0.29 0.23 0.19

Large

Sharpe ratio 1.37 1.51 1.52 1.47 2.70

HJD 0.48 0.45 0.45 0.45 0.26

Mega

Sharpe ratio 1.15 1.14 1.05 1.18 1.84

HJD 0.54 0.54 0.55 0.53 0.41

Table 8: Portfolio Transformer Performance by Size Groups

BSV DKKM Lin. Attn. MLP Transformer

All

Sharpe ratio 3.60 3.91 3.89 4.31 4.57

HJD 0.15 0.13 0.14 0.13 0.09

Micro

Sharpe ratio 3.46 3.68 3.77 4.02 4.42

HJD 0.14 0.13 0.13 0.13 0.10

Small

Sharpe ratio 2.23 2.36 2.40 2.79 3.23

HJD 0.25 0.24 0.24 0.17 0.15

Large

Sharpe ratio 1.37 1.51 1.52 1.47 2.70

HJD 0.28 0.26 0.26 0.25 0.16

Mega

Sharpe ratio 1.15 1.14 1.05 1.18 1.84

HJD 0.25 0.25 0.27 0.23 0.19

70

Figure 7: Sharpes and HJDs for all strategies, for different size groups.

0

1

2

3

4

Sh
ar

pe
 R

at
io

Models
BSV DKKM Lin. Attn. MLP Transformer

all mega large small micro
Size Segment

0.0

0.1

0.2

0.3

0.4

0.5

H
JD

71

Figure 8: Sharpes and HJDs for all strategies, for different size groups.

0

1

2

3

4

Sh
ar

pe
 R

at
io

Models
BSV DKKM Lin. Attn. MLP Trans.

All Mega Large Small Micro
Size Group

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ic

in
g

E
rr

or

72

	Introduction
	The (Interpretable) Linear Portfolio Transformer
	Model Specification
	Transformers and Cross-asset Information Sharing
	Transformers and Factor Timing
	Multiple Heads
	Estimation and Identification

	The Nonlinear Portfolio Transformer
	Model Specification
	The Role of Nonlinearities
	Softmax Attention
	Feed-forward Network
	Residual Connections

	Empirical Findings
	Data
	Performance Metrics and Benchmark Models
	Training
	Anatomy of Model Performance
	The Benchmark
	Expanding the Conditioning Set
	Introducing Nonlinearities
	Information Sharing Via Attention
	Interactive Effects of Information Sharing and Nonlinearity
	Information Sharing Through the Lens of Principal Portfolios
	Large Caps and Information Sharing
	Notions of Complexity

	Conclusion
	Transformers and the Markowitz Plug-in Portfolio
	Theory of Linear Transformers
	Selecting Attention Heads with OLS and MSRR Objectives
	Attention and Factor Timing
	Computing Optimal Attention Heads
	The Structure of Optimal Attention Vectors

	Proofs
	Model Optimization
	Linear Attention
	Transformer Optimization

