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ABSTRACT

Endogeneity is a primary concern when evaluating causal effects using observational panel data.
While unit-specific intercepts control for unobserved time-invariant confounders, dependence
between (i) regressors (e.g., marketing mix strategy of interests) and the current error term
(regressor endogeneity) and/or between (ii) regressors and heterogeneous slope coefficients (slope
endogeneity) can introduce significant estimation bias, resulting in misleading inference. This
paper proposes a two-stage copula endogeneity correction mean group (2sCOPE-MG) estimator for
panel data models, simultaneously addressing both endogeneity concerns. We generalize the 1V-
free copula control function, employing a general location Gaussian copula that effectively
captures the panel structure. The heterogeneous coefficients are treated as unit-specific fixed
parameters without distributional assumptions. Consequently, the 2sCOPE-MG estimator allows
for arbitrary dependence structure between heterogeneous coefficients and regressors. Unlike
Haschka (2022), 2sCOPE-MG requires neither a normal error distribution nor a Gaussian copula
regressor-error dependence structure and is more robust, easier to implement, and capable of
addressing slope endogeneity. The 2sCOPE-MG estimator is extended to dynamic panels, where
intertemporal dependence in the outcome process can be suitably captured. We study its asymptotic
properties and provide an analytical variance formula for inference without the need to bootstrap.
For short dynamic panels, a Jackknife bias-corrected 2sCOPE-MG estimator is provided to ensure
unbiased inference. The usage of the 2sCOPE-MG estimator is demonstrated by Monte Carlo
simulations and a marketing mix response application across 21 categories to account for regressor
and slope endogeneities in store-panel sales data.
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1 Introduction

With technology advancement, high-quality panel data are now widely available in mar-
keting and other related fields. For example, population-level administrative data are rou-
tinely captured by firms, stores, web platforms, hospitals, governments, and organizations
as part of their daily operations. Particularly, scanner panel data provide detailed and
high-fidelity real-life purchase data, capturing individual purchase behaviors linked with
concomitant marketing mix variables in real time. These high-quality panel datasets offer
tremendous opportunities to infer causal relationships among relevant variables, facilitating
optimal decision-making (e.g., setting prices or advertisement budgets to maximize prof-
its). However, except in the case of experimentally generated data (e.g., field or conjoint
experiments), these data sets are often observational that complicates causal inference.

Researchers and practitioners often encounter two prominent challenges that plague stan-
dard panel regression analysis based on observational data. The first challenge is the po-
tential regressor-error dependence. Frequently, the regressors of primary interests such as
marketing mix variables, are endogenous and set by managers based on relevant demand
shocks (e.g., certain product characteristics) unobserved to data analysts. Such unmeasured
confounders generate dependence between these key regressors and the error term in the
panel regression model, which can cause severely biased effect estimates of these marketing
mix variables if ignored. In a meta-analysis, Bijmolt et al| (2005) found substantial differ-
ences in price elasticity estimates, depending on whether price endogeneity is accounted for.
By including unit-specific intercepts in the model, the fixed-effects (FE) approach can elimi-
nate confounding effects of time-constant unobservables. However, dependence between the
regressors and the current error term can persist and lead to inconsistent estimation because
of time-varying unmeasured confounders. Examples of such confounders are consumer tastes
or unobserved brand attributes evolving over time when modeling consumer choices (Chinta-
gunta et al. [2005)), and purchase intent when studying effects of Internet advertising (Hoban

and Bucklin, 2015; Blake et al., 2015)). Such endogeneity also arises with correlated measure-



ment errors in variables, simultaneity, or reverse causality. We name it “contemporaneous
regressor endogeneity.”

The second challenge is the potential regressor-coefficient dependence. The values of
marketing mix regressors observed in historical data can be set by managers who possess
private information about marketing response coefficients. For example, store managers may
charge higher prices in markets with lower price elasticity. Broadly speaking, the correlations
between heterogeneous responses coefficients and marketing mix regressors are naturally in-
duced by targeted promotions and advertisements (Manchanda et al.|2004} |Luan and Sudhir
2010, |Goldtarb and Tucker 2011} Blake et al. [2015, [Hoban and Bucklin| 2015, |Esteves and
Resende |2016]) and behavior-based pricing (Li, 2018).|H Neglecting such regressor-coefficient
correlations can yield biased estimates for the average effects (i.e., the mean of response
coefficients), as shown in [Wooldridge| (2005)) and Pesaran and Yang| (2024). Hence, we term
it as “slope endogeneity” (Luan and Sudhir, 2010).

This paper introduces a copula control function approach to estimating the average ef-
fects of potentially endogenous regressors in heterogeneous panel data models with correlated
random coefficients. A two-stage copula endogeneity corrected mean group (2sCOPE-MG)
estimator is proposed, simultaneously addressing both concerns of contemporaneous regres-
sor endogeneity and slope endogeneity without using instrumental variables (IVs). Extending
the two-stage copula endogeneity correction approach in|Yang et al.| (2024) to the panel data
setting, we capture the dependence between the current error term and endogenous regres-

sors using a general location Gaussian copula that employs nonparametric marginals and

!Game-theoretical models are employed to examine the impacts of targeted advertisements (Iyer et al.,
2005) and behavior-based pricing (Li, |2018) on equilibrium sales, profits, etc. In these models, consumers
are targeted based on their purchase history or attributes, where the impact of consumer heterogeneity on
equilibrium outcomes is highlighted. Similarly, it is crucial to incorporate correlated heterogeneous responses
in empirical studies of causal effects of marketing mix variables. For example, |Goldfarb and Tucker| (2011)),
Blake et al.| (2015)), and Hoban and Bucklin| (2015]) estimate the causal effect of Internet advertising using data
from field experiments. With the concern of regressor endogeneity being relieved, they capture heterogeneous
treatment effects by interacting the treatment dummy with observed characteristics of ads and consumers.
For observational studies, this strategy may not fully account for heterogeneity in consumer responses, which

can be correlated with regressors in unknown functional forms.



accounts for the panel data structure. Assuming either the error term or the endogenous
part of the error term is locally Guassian distributed within each panel unit, we can decom-
pose the error term as a linear combination of first-stage residuals computed using copula
transformed regressors, known as the “copula control function (CCF)”, plus a new indepen-
dent error term. Then we augment the panel data model with CCF in the second stage. As
CCF captures the regressor-error dependence, the new error term in the augmented panel
data model is orthogonal to all the regressors, addressing the regressor endogeneity problem.
Given this augmented panel data model with heterogeneous coefficients, we adopt the mean
group (MQG) estimator (Pesaran and Smith, |1995; [Pesaran and Yang, 2024)) for the average
effects.

Compared with the likelihood-based copula FE estimator for panel data by Haschka
(2022), 2sCOPE-MG requires neither a normal error distribution nor a Gaussian copula
regressor-error dependence structure and is more robust, easier to implement, and more
general by allowing for slope endogeneity. Treating heterogeneous coefficients as fixed pa-
rameters, the estimator we propose is agnostic to (i) the underlying distributions of het-
erogeneous coefficients and (ii) the dependence structure between heterogeneous coefficients
and regressors (such as marketing mix variables, customer characteristics, and product at-
tributes). Moreover, the 2sCOPE-MG estimator is extended to dynamic panels with lagged
outcome variables as regressors. Dynamic panel models allow researchers to separately an-
alyze short-term and long-term effects, making them especially valuable for studying the
impact of marketing mix activities on the growth and market potential of a new brand. As
the incidental parameter problem is inherent in estimating dynamic panels with fixed effects,
we correct the small time-period (7) bias by the Jackknife (JK) method.

By Monte Carlo (MC) simulations, we examine finite sample properties of the 2sCOPE-
MG estimator, compared with the FE and two-stage copula augmented fixed effects (2sCOPE-
FE) estimators. In static panel models, it is shown that the 2sCOPE-MG estimator remains

unbiased in the presence of regressor endogeneity, slope endogeneity, or both and is robust



under various data generating processes of the error term and regressors. We also caution
practitioners about the substantial bias exhibited in the FE estimates in these scenarios, as
well as bias in the 2sCOPE-FE estimator that addresses regressor endogeneity but neglects
slope correlated heterogeneity. In dynamic panels, while FE and 2sCOPE-FE estimators
exhibit more pronounced bias, the 2sCOPE-MGJK estimator continues to provide unbiased
inference. Moreover, the MC results also demonstrate the effectiveness of including addi-
tional lagged variables as regressors to resolve the regressor endogeneity induced by serially
correlated errors. Accompanied by a detailed guideline in subsection [3.7] these simulations
aim to assist researchers in applying the 2sCOPE-MG estimator in practice.

We apply the 2sCOPE-MG method to estimate price elasticity and promotion effects
(bonus and price reduction) in a dynamic sales response model, analyzing store-week panel
data from Dominick’s scanner data (1991-1994) for each of the 21 categories separately. We
find that failing to account for price endogeneity leads to significant attenuation bias in the
price elasticity for 19 categories. The price elasticity estimates after endogeneity correction
can be twice the size of the uncorrected ones in certain categories. Comparisons with alter-
native methods show that ignoring slope endogeneity alone can lead to either overestimation
or underestimation in the price elasticity estimates, depending on the correlation between
store-specific price elasticities and within-store price variations. Consistent with reference
price theory, the result shows that consumer response parameters vary not only with the
levels but also with the variability of prices and promotions over time. Overall, averaging
over 21 categories, the estimated price elasticity, which does not account for either endogene-
ity issue, is 0.258 smaller in size than the 2sCOPE-MG estimate. The difference amounts
to 18.4% of the category-average price elasticity estimate of -1.407 based on the 2sCOPE-
MG method. Moreover, the FE estimated price reduction effect for all categories has a
large upward bias, that is, on average, 40.6% of the corresponding 2sCOPE-MG estimate of

0.23BH These results indicate that ignoring endogeneity in observational data can distort

2For the average bonus effect and persistence of sales (measured by the mean autoregressive coefficients),
the bias direction varies across categories.



our understanding of marketing mix responses and misguide the design of future marketing
strategies.

The rest of the paper is organized as follows. Section[2Jreviews the literature on estimation
methods handling regressor endogeneity and/or slope endogeneity. Section 3| sets out the
model and derives the 2sCOPE-MG estimator. Section [4] presents MC evidence. Section
shows the application of estimating the dynamic sales response model using Dominick’s

scanner data. Section [6] concludes.

2 Literature review

Existing estimation methods in the literature are often designed to solve a single type
of endogeneity. While considerable progress has been made, these methods often require
the availability of auxiliary data (e.g., IVs) to identify causal effects or accurate knowledge
of the dependence between consumer response parameters and marketing mix variables to
address slope endogeneity. As an alternative, the 2sCOPE-MG method requires neither
condition, enabling straightforward and potentially broader applications using observational
panel data.

There is a rich set of estimation methods explicitly modeling heterogeneity in consumer
responses by the random coefficient approach, with a focus on optimizing the marketing mix
strategy. The Hierarchical Bayesian (HB) method reviewed in Rossi and Allenby; (2003) is
widely used in the marketing literature, particularly with a Gaussian prior of random co-
efficients. The HB models have been used in modeling discrete choices (Rossi et al., 1996}
Allenby and Rossi, [1999; |Andrews et al., [2002), discrete choices jointly with consideration
sets (Van Nierop et al., 2010) or with selectively missing values in marketing mix variables
(Qian and Xie, 2011), demand with marketing mix variables (Manchanda et al., [2004; |Fok
et al., 2006), customer channel migration (Ansari et al., 2008), and optimal price targeting
(Smith et al., 2023)). Alternatives to parametric HB include semiparametric finite mixture

models assuming discrete random coefficients (Allenby and Rossi, [1999; Andrews et al., 2002)



and more flexible prior distributions for heterogeneous coefficients (Fiebig et al., 2010; Ebbes
et al., [2015)). Besides the Bayesian approach, in conjoint analysis, [Evgeniou et al.| (2007)
introduce a new approach to model heterogeneity using convex optimization and ridge regres-
sions with unit-specific coefficients, and |Chen et al.| (2017) further develop a sparse learning
approach for a multimodal continuous heterogeneity distribution. The above approaches
have improved model fits and predictions by explicitly modeling consumer heterogeneity.

However, these methods are designed for experimental data or otherwise assume no endo-
geneity issues (i.e., independence between marketing mix regressors and response coefficients
as well as between these regressors and the error term conditional on observables) and may
yield significant estimation bias in the presence of slope or regressor endogeneity, with only
a few exceptions described below. To address slope endogeneity, [Manchanda et al. (2004]),
Fok et al| (2006]), and |[Luan and Sudhir| (2010) model the relationships between the latent
heterogeneous coefficients and marketing mix variables, which may additionally require the
availability of IVs (Luan and Sudhir, 2010). In contrast, the proposed 2sCOPE-MG es-
timator can handle arbitrary types of slope endogeneity, while requiring neither IVs nor
knowledge about the nature of slope endogeneity. Given this advantage, Dubois et al.| (2020))
also use the MG approach to estimate individual preferences in a logit demand model with
consumer-level purchase panel data. The flexibility in heterogeneity distributions enables
the evaluation of soda taxes’ effectiveness in reducing sugar consumption among targeted
groups. Moreover, only |[Luan and Sudhir| (2010) and our 2sCOPE-MG method simultane-
ously consider the problem of regressor endogeneity (regressor-error dependence), which we
discuss next.

To tackle regressor endogeneity, the conventional approach is to use IVs, where available
data on exogenous variations play a key role. However, good IVs that affect the outcome
only through the focal regressor (i.e., the exclusion restriction) can be hard to find and
validate in practice (Rossi, |2014). Even with theoretical guidance, ruling out alternative

causal pathways requires significant efforts, especially when an IV has been used across dif-



ferent studies (Mellon, 2024). Given these challenges, the recent copula-modeling approaches
(Park and Gupta, 2024; Qian et al., 2024) have the comparative advantage when facing a
data problem. The IV-free copula approach to correcting regressor endogeneity was first
introduced in [Park and Guptal (2012)), who proposed the maximum likelihood (MLE) and
least squares estimators with copula-generated regressors. Later, Haschkal (2022)) generalizes
the approach to linear panel models with fixed effects but homogeneous slopes and derives
an alternative MLE that permits correlations between endogenous and exogenous regressors.
The generalized least squares transformation employed by [Haschka| (2022) can only eliminate
impacts of unit-specific intercepts but not those of correlated heterogeneous slopes. Hence,
the MLE estimator will be susceptible to bias due to slope endogeneity. |Yang et al.| (2024))
propose a two-stage copula control function estimator that can handle endogenous regres-
sors with insufficient nonnormality and/or correlated with exogenous regressors. Its greater
usage over various regressor distributions and robustness lay a good foundation for our fur-
ther development in heterogeneous panel data models’| Nevertheless, none of the existing
copula approaches or standard IV procedures handles the salient slope endogeneity problem
in heterogeneous panel data models ]

We also adapt the copula procedure for dynamic panel models with heterogeneous slopes.
The advantages of leveraging historical purchase data to enhance prediction accuracy are em-
phasized in Rossi et al.|(1996), where they showed that the optimal customization procedure
predicted using individual observations over all periods yields the largest net revenue. An
alternative approach involves constructing aggregate/average measures and using them as
regressors (Bucklin and Sismeiro, [2003; |[Smith et all 2023). However, state dependence is a

key feature in many outcome variables, like consumption and income. It is less clear how

3For reviews of other IV-free endogeneity correction methods, see Ebbes et al. (2009)), Park and Gupta
(2012) (p. 568) and [Yang et al.| (2024) (p. 10). [Lewbel et al.| (2024) propose a higher moments approach,
where they assume the endogenous regressor can be decomposed linearly into an endogenous component and
an exogenous component that does not affect the outcome.

4While Park and Guptal (2012) and [Yang et al.| (2024) use copula models to address slope endogeneity in
cross-sectional data, we employ the model-free MG approach to handle slope endogeneity in heterogeneous
panel models.



serial correlations in the outcome and regressor processes can be dealt with in the above
papers. We capture dynamics using lagged variables as regressors (Montgomery et al., [2004;
Fok et al., [2006) and discuss conditions and appropriate copula procedures to handle serial

correlations in the error term, ensuring they do not pose difficulties in applying our method.

3 Models and estimation procedures

3.1 Static panels with regressor and slope endogeneity

Consider the following static panel data model for an outcome variable:
Yit = i + By + Vi Wity + YoWiro + &, for i = 1,2, . on,and t = 1,2, .., T, (1)

where p;, is a K, x 1 vector of continuous endogenous regressors (e.g., price), and w;; =
(w1, wi5) is a Ky X 1 vector of strictly exogenous control variables, with possibly hetero-

geneous coefficients. Let x;; = (1, pj;, w},;)'. Stacking (1)) over time, we have
Y; = Xi0i + Wipy, + &, (2)

where y, = (yilayi27--'7yiT),7 X; = (wﬂ,ww, ---,wiT)/, Wi,2 = <w11,2>wi2,2:---awiT,2)/a & =
(&1, &2, -, &), and 6; = (oy,B5,v;,). One is often interested in estimating the mean
coefficients (i.e., the average partial effects): 6y = E[E(0;|X,;,W,5)]. For example, in
category demand models, these mean coefficients may represent average category price or
advertising elasticity across a population of stores or markets. Such population-averaged
category elasticity estimates are often a key piece of information for policymakers to design
policy interventions (e.g., soda tax) or for marketers to set optimal product pricing strategy
and advertising budget.

When using the historical data to estimate the above panel data model, the popular FE
panel data estimator assumes that the fixed effects «; and the time-varying control variables
in (w1, w; ) capture all time-constant and time-varying confounders, respectively. When
this assumption is violated and regressors and errors (or unit-specific coefficients) are actually

correlated (e.g., because of potential omission of relevant time-varying confounders (Germann



et al.,2015)), the FE panel data estimator can be severely biased. Furthermore, when slope
coefficients are heterogeneous and correlated with regressors, the FE estimator that neglects
such correlation between regressors and slopes, also resulting in severe bias and misleading
inference.

Remedies require availability of additional data (measuring and controlling for all time-
varying confounders or obtaining valid IVs) that is often impossible or difficult to obtain
in practice. In these cases, we address endogenous regressors in panel data using a general
and feasible IV-free copula endogeneity correction approach as described next. Then we

demonstrate how to use the MG estimator to address slope endogeneity.

3.2 A generalized framework for I'V-free copula correction

The rationale for the proposed approach is to correct the endogeneity bias via directly
accounting for the dependence between the regressors and the structural error using copulas.
A primary reason for such regressor-error dependence in a regression model is due to omitted
variables. For example, in the sales response model, the structural error term may contain
unmeasured managerial knowledge in decision-making (e.g., demand shocks, unmeasured
product characteristics, or the cost of production) affecting both consumer purchases and
retailer price decisions, leading to the regressor-error dependence.

In these cases, it appears reasonable to decompose the structural error term as &; =
o0&l + vy, where £ is the error’s (rescaled) endogenous part that captures the combined
effects of all omitted variables mentioned above, and v;; is a disturbance term independent
of the regressors and omitted variables such that E(vi|p;s, wis, &) = 0 for all 4, ¢, and s.
As &, represents the combined effects of many omitted variables, it is reasonable to assume
it approximately follows a normal distribution with &} “ (0,1). The distribution of the
disturbance term is left unspecified, so the error term does not need to follow a normal
distribution.

To account for contemporaneous regressor endogeneity, we propose to capture the de-

*

pendence between the regressors and the endogenous part of the error term (&};) using the

9



following general location Gaussian copula (GC) model that takes into consideration the

panel data structure:

Pt = Oip + ¢fzit + €itp, Wit = Qi + ¢in¢¢ + €t w, (3)
and
e:t,w Vi,w Vfi,pw 0
e;‘np ~ IIDN (0, Vi,p) with Vi,p = Vi,pw Vi,p p; , (4)
i o p 1

where e}, , = 7' (Fy(ew,)) and e}, , = 7' (Fy(eiw)); Vip Viw, and Vi, are (K, +
K, +1)x (K, + K, +1), K, x K, and K, X K, positive definite and bounded matrices
with diagonal elements being one and possibly non-zero elements off the diagonal, V'; ,,, is

a K, x K,, matrix, and p; is a K, x 1 vector.

Notations. For a random variable x with a continuous distribution function (CDF) F(-),

denote x* = ®1(F(x)), where ®(-) is the standard normal CDF.

We propose using the above general location GC model for a number of reasons. Broadly
speaking, a GC model has a number of merits that makes it widely applicable and flexible
to adequately capture multivariate dependence (Danaher and Smith, 2011} |[Park and Guptal,
2012; |Christopoulos et al., [2021; [Eckert and Hohberger, 2023; Qian and Xie, [2024)). The
GC model links marginal distributions of the variables in Equation 4| to form their joint
distribution, even when these variables follow arbitrarily disparate marginal distributions,
such as bounded supports, multi-modals, or skewed distributions. By using the nonpara-
metric empirical CDF estimates of F(-), the GC model does not require these variables to
take particular distributional forms, is capable to faithfully maintain the important marginal
distributional features of regressors for model identification while simultaneously capturing
the dependence of focal variables in Equation 4] separately from their marginal distributions.

The above general location GC model also explicitly accounts for panel data structure

and possible heterogeneous endogeneity across panel units. In Equation [3| the regressors

10



/
ip?

{p;;} and {w;;} are allowed to depend on unit-specific mean levels (a}, , ) and observed
ezogenous covariates in zy (such as time trends) with the respective coefficients ¢! and
qbZW , and e;, L z4, and e, L z4. We do not require z;; to contain IVs that meet the
exclusion restriction condition. In fact, z;; can be null. The error terms in and then
follow a Gaussian copula model described in Equation[d], capturing the regressor endogeneity
of p,, and the dependence among endogenous and exogenous regressors. Thus, the general
location GC model captures both linear and nonlinear effects of exogenous regressors on
the endogenous ones while taking into consideration panel data structure and strengthening
identification for endogenous regressors with Gaussian errors as will be shown later. Fur-
thermore, in Equation 4} the correlations between e ., €;,, and &, is characterized by a
possibly heterogeneous Gaussian copula model that permits the GC dependence structure to
vary by panel units. Thus, the above general location model includes prior copula correction
models (Park and Guptal, 2012; [Haschka, 2022; Yang et all 2024} Breitung et al., 2024)) as
special cases[]

Finally, the above general location GC model has the desirable property of double robust-
ness. It is important to note that Equation [ does not involve the error’s exogenous part, v;;.
Therefore, the dependence between the structural error &; and regressors’ errors needs not
to follow a GC model and is left unspecified. Alternatively, one can assume &; = 0;§}, where

% is simply the standardized error term. Then Equation [4] does impose the assumption of
GC regressor-error dependence while not assuming the error term can be decomposed to
exogenous and exogenous parts. The proposed copula correction approach can work under
either set of assumption and thus possesses the property of double robustness. Furthermore,

even when both assumptions are wrong, the copula correction demonstrates robustness to a

range of departures to the violation of both assumptions.

9Breitung et al.|(2024) consider a degenerated GC model between the structural error’s endogenous part
and the error of endogenous regressor in which the correlation coefficient in the GC model is fixed at +1.
Such a one-to-one deterministic linear relationship appears to be a too strong assumption to hold in practice.

11



3.3 An overview of how it works

The copula model given by can be rewritten as

) 1/2 )

€itw Vi,w Ok, xK, Ok, x1 Wit w
* _ -1/2 —1y// 1/2 *

e, Vieo Vi (Vig=VipVieVio) " Ok, wh, |» ()
* / / *

& Kupx1 Pi1 Pi2 Wit

1
with Pi1 = (Vi,p - Vi,pwvz‘i,i;vl‘ )_% Pis Pi2 = [1 - P; (Vz}p - Vi,pwviizluv{ )_1 Pi] 27

1,pw 1,pw

and (w;-‘t”p,w*’ w;‘t)/ ~ IIDN (0,1;). Given , the transformed error terms of the en-

itaw)

dogenous regressors can be decomposed into two orthogonal components:

* _ —1
eitvp - Vi7pwvi,weit,’w + eit,]N (6)
where €;;,, is independent of €1 but possibly correlated with £, given by
€ir ., = (V —V. V—lv/ )1/2 wt —e* —TII .. e (7)
wp AT P Lpw ¥ diw i pw itp — Citp ipw it s

with Iy, = Vip V5, 5) Finally, we obtain a decomposition of the structural error term:
i = PiaWisy T PiaWiy = Pr€ivp + PiaWi, (8)
IR / —1x/7 —-1/2
with p; = p;, (Vz)p - ViJDUJVi,wVi,pw) .

Stacking over time, we have & = €;,p;, + piow], with €;, = (€1, €25, .., €irp) and
w; = (W), wh, ...,wj), and then plugging it into (), we obtain the following panel model
augmented by the copula generated regressors, €;,, given by

Yy, = Xi0; + Wiav, + €,0; + ui, (9)
with §; = 0;p, and uw; = o0;p;ow; + v;. Given and recognizing v;; as the exogenous
component of the structural error, the new error u; is exogenous to all regressors in @:

El(uzt|X“ Wi,g,eip) = O, for t = 1, 2, ,T (10)

Thus, the augmented panel regression model in @ is free from the regressor endogeneity
problem. Based on the Gaussian copula model, we only need to estimate II;,,, in to

obtain the generated regressors and control for regressor endogeneity.

12



3.4 Identification and estimation

The identification of the augmented panel regression model in @ requires the full rank
condition of the predictor matrix. Specifically, the copula generated regressor €;, cannot
be perfectly collinear with the existing regressors in ([2)). Thus, we need to further impose

certain distributional assumptions and rank condition on e; , and e; ,,, summarized below.

Theorem 1 (Identification). Given Equations (9), (4) and and Assumptions[A.]] (ran-
dom sampling), (either the structural error or its endogenous part is normally distributed),
(The regressors’ errors have bounded marginal density functions) and (Either the
structure error or its endogenous part follows a GC model jointly with regressors’ errors.)
in the online appendiz hold. Then (0',~%,8") are identified if and only if for each endoge-
nous regressor, either (a) its error term has a marginal non-Gaussian distribution, or (b) its
error term has a marginal Gaussian distribution but is correlated with non-Gaussian error
terms of at least one distinct exogenous regressors errors. (See Assumption in the online

appendiz.)

As noted previously, Assumptions and means that the proposed approach does
not require structural error be normally distributed or have a joint GC dependence with
regressors’ errors. Also, when the GC dependence structure are allowed to vary by panel
units, &, is normally distributed conditional on unit-specific effects and over ¢t = 1,2, ..., T".
Effectively, we do not impose normality assumption on the unconditional distribution of
&}, across units. Furthermore, Assumptions and are working assumptions used in
the derivation of the control functions. 2sCOPE-MG demonstrates robustness to a range of
violations of both assumptions. With the identification conditions in place, we are ready to
formulate a new estimator based on regressions that addresses slope endogeneity. As shown
above, we adopt a general framework that allows for multiple heterogeneous effects in the

outcome model , the regressor decomposition , and the Gaussian copula , consistent

estimation of which requires a moderately large number of periods, T, of a panel dataset.
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Otherwise, small-sample bias may lead to poor estimates.

Table (1] presents our estimation algorithm. The copula correction assuming homogenous
GC dependence has shown robustness to heterogeneous endogeneity (Haschkal [2022). For
sufficiently long panel data, one can explicitly permit heterogeneous GC dependence across
panel units and obtain unit-specific endogeneity estimates. Specifically, we consider a
group-specific Gaussian copula model. When T is sufficiently large, each unit can be viewed
as a group. When 7' is moderately short, we cluster cross-sectional units into a much smaller
number of groups, where the group structure can be identified based on some categorical
variables (e.g., store-specific price tiers or consumer demographic characteristics) or informed
by prior beliefs. In the first stage, the copula generated regressors are computed as residuals
given group-specific estimates of the first-stage panel regression model. In the second stage,
we augment the original panel model with these generated regressors and estimate the mean

coefficients by averaging over the unit-specific OLS estimates.

3.5 Standard errors and inference

The asymptotic properties of the 2sCOPE-MG estimator for the mean coefficients are
summarized in Theorem [2 A proof is provided in the online appendix. Unlike [Yang et al.
(2024)), the proof needs to take into account the fact that copula transformations are per-
formed on the unobserved errors in the general location GC model for the regressors instead
of on the observed regressors themselves. As n,T" — oo and 75 — 0, 0 in converges
to the same asymptotic distribution, regardless of whether a pooling or a known grouping
strategy is used in the estimation process.

Unlike all the previous copula endogeneity approaches, our inference does not require
bootstrapped standard errors for inference. The variance estimator given by already
incorporates the estimation errors associated with 6; as well as the generated regressors.
Also, it is a consistent estimator for the asymptotic variance of . As confirmed by our MC
simulations, the estimated standard errors based on are unbiased for the true variation

of the estimator (e.g., see Table [3)).
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Table 1: Algorithm of the 2sCOPE-MG estimator

Data: {yi, Dy, wis} fori=1,2,... n,and t =1,2,...,T
Stage 1: Estimation of copula generated regressors.

1. Unit-specific demeaning: é;, = p;; — %Zthl P;; and € = Wy — %Zthl Wis.
2. Apply group -specific Gaussian copula transformation based on empirical CDFs:
Eitp = = (FH(Z)p( it p)) and &, = =0 <Fg(i)7w(éit7w)>'
3. Obtain residuals from group-specific regressions:

*_a/

elP - P W Hg(z),pw? (]‘1)

Ak

. al A% A% ’ _ Ak Ak Ak 12
with P = (& Zl’p,eﬂp, emp) W, = (eﬂw,eizw, eiT’w) , and

Ak Ak

g (1 3 1
Hgﬁpw - (779 Zze [ng] W W ) (@ Ez@zg W, P; )
Stage 2: Estimation and statistical inference of the average partial effects in Model @),

including €;, as the control function. The estimation procedure involves four steps.
1. Estimate the homogeneous effects:

~1
1< 1 Z"
= <n E WQ,QMimWZ_,?) (n W;2M1z2y1> ; (12)
i=1 =1

with Mmﬁg = IT — Xi,2(X;_’2Xi,2) 1X/ 2 and Xz 2 = (Xz, Ezp)
2. Estimate group-specific coefficients of the copula generated regressors:

-1
g

. 1 . . 1 . R
0= | — Z G;‘pMizeip . Z egpMil’(yi Wiy, |, (13)

"9 icTmg) 9 il

Ng

3. Estimate the mean coefficients:

Z (14)

BM—‘

where 6; = (X X)) ' X! ('!/z —Wi2%, — éipsg(i))'

4. The inference for @ is based on a consistent estimator of its asymptotic variance:

q}b)

_1 > (6, 6)(6. - 6. (15)

Notes: (i) g(i) and ¢ € [ng] denote that unit ¢ belongs to Group g with n, number of units. (ii) For
group-specific coefficients, when T is sufficiently large, each cross-section unit can be a group. If there is
no heterogeneity in the Gaussian copula dependence structure, €;, can be obtained given a homogeneous
estimator using all observations. (iii) In the second stage, the homogeneous effects v, are estimated using
pooled OLS after projecting out the influence of regressors with heterogeneous coefficients.
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Theorem 2 (Asymptotic distributions and consistent variance estimator). Suppose Equa-
tions (@, (@ and and Assumptions i the online appendix hold. For the esti-
mator of mean coefficients, @ given by , asn, T — oo and n/T? — 0, \/ﬁ(é —0y) =y
N(0,8y), where Qy = Var(0;) = 0, which can be consistently estimated by Qp in .

3.6 Extensions to dynamic panel data models

3.6.1 Dynamic heterogeneous panels with serially uncorrelated errors

It is natural to extend the above analysis to heterogeneous dynamic panels with weakly
exogenous regressors. Unlike strictly exogenous regressors, there is feedback from past out-
comes to these regressors in the current period, resulting in a non-zero correlation between
them and past errors. Some examples are lagged outcome and independent variables, which
capture state dependence, expectation, and dynamic effects. To illustrate, consider a first-

order autoregressive panel data model with covariates (namely, an ARX(1) panel model):
Yir = @ + diYir—1 + Bipy + ’Y;,fwz‘t,l + Yowirs + &, (16)

where y; ;1 is the first lagged outcome variable. Consistent with the earlier discussion, p;,
and w;; are contemporaneously endogenous and strictly exogenous, respectively. Our focus
is on stationary dynamic models with possible time effects and trends, where |¢;| < 1 for all
1. See Assumption in the online appendix[]

For dynamic panels, the errors are usually assumed to be serially uncorrelated, partic-
ularly given a sufficient number of lagged variables used to model the outcome process.
Moreover, as the lagged variables are realized in the past, it is unlikely they are affected by
the current shock. Thus, we assume E(y;;—1&;:) = 0 with &; independently distributed over
time for all ¢ and ¢, under which there is no need to modify the Gaussian copula in (4)).

However, we need to highlight the differences between imposing homogeneity on the au-

6As extensively studied in the time series and panel model literature, the unit root process (¢; = 1)
has distinctive properties, requiring different estimation approaches. Researchers often apply the stationary
dynamic panel model given by after first or higher order differencing the outcome variable, which then
becomes stationary.
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toregressive coefficients, ¢;, and not. As well documented in the literature (Pesaran and
Smith, |1995)), the FE estimator can be severely biased with presence of heterogeneity, even
for randomly distributed ¢;. In this case, the MG estimator is to be applied to estimate
¢o = E(¢;). Moreover, there exists a small-T" bias in estimating dynamic panels whether
¢; is heterogeneous or not. As inference based on the asymptotic distribution will be dis-
torted when the time dimension is relatively smaller than the cross-sectional dimension, bias
correction should be implemented in this case.

In summary, the copula-generated regressors are computed as previously mentioned.
The mean coefficients of weakly exogenous regressors are estimated in Stage 2, along with
other regressors with heterogeneous coefficients, namely, x; = (1,¥i1, P}, wi,) Wwith
0; = (i, ¢i, B;,7;,). For panel datasets with T relatively small to n, it is recommended to

apply the Jackknife bias-correction given by

A 1 < A
Oric_JKx = - Z 0,7k, (17)

i=1
where éi,JK =20, — %(émm + éiHQ,Q), and 6;, éiHQ’l, and HAZ-HQ,Q are the unit-specific OLS
estimates based on individual i’s all (t = 1,2,...,T), the first half (¢ = 1,2,...,h), and the

second half (¢t =h+1,h+2,...,T) of time-series observations.
3.6.2 Heterogeneous autoregressive panels with serially correlated errors

Though we abstract from serially correlated errors in the previous subsection, the Gaus-
sian copula model can also be used to address endogeneity due to dynamic misspecification
under stationarity. We first provide a new estimation strategy for a heterogeneous AR(1)
panel with no other time-varying covariates, then extend the estimation method to the

ARX(1) panel model. Consider a heterogeneous panel AR(1) model given by

Yir = o + OiYie—1 + it (18)
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with & = pelii—1 + &, and &, ~ IIDN(0, 1) for all t. Then (|18 can be written as
Yit = @ + Oilfig—1 + pe (Yit—1 — Qi — ilfip—2) + & = a4 + &iyi,tfl + 6iAyi1 + &, (19)

with Ayi,t—l = Yit—1 — Yig—2, O = ai(l - Pe)’ ng = @i + pe — pe®i, and 0; = p.¢;, where
yi+—1 and Ay, are exogenous to &, and the process {y;;} is stationary for all . Note that
the autoregressive structure of the error term, &;, allows the serially uncorrelated shocks
% to be the new error term by including a finite number of lagged outcome variables as
regressors. Since &, is uncorrelated with lagged outcome variables, the mean coefficient
E (él) can be estimated consistently by adding Ay, into the regression. For AR(1) panels
with a general AR(p) error term, the contemporaneous endogeneity can be eliminated by
including (Ayit—1, AYit—2, ..., Ayir—p)" as additional regressors.

Alternatively, note that £, is Gaussian distributed for all ¢. It can be shown that under
Assumption of stationarity, Ay, is also Gaussian distributed for all £. Then the con-
temporaneous endogeneity between &;; and y;,_1 can be represented by a Gaussian copula
model, which only involves a finite number of further lags, v;;—» in the case of the AR(1)
error process. Hence, the transformed first difference, (Ay;,—1)", can be used as a gener-
ated regressor, and we can estimate the mean coefficients in the following augmented model

consistently by the MG or MG-JK estimators,
Yit = Q; + ng‘yi,tfl +0; (Ayi—1)" + & (20)
with &; = 6,5 and 6% = E [(Ayy)?].

3.6.3 Heterogeneous dynamic panels with covariates and serially correlated er-

rors

The above analysis shows why further lags of the outcome variable need to be added
to AR(1) panels with serially correlated errors. Now consider the ARX(1) panel model in
(16) with contemporaneous regressor endogeneity given by and serially correlated errors

it = peli—1+&;. With the presence of other covariates in the model, we directly substitute
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Ciro1 bY (Yir—1 — 0@ 1 — Yhw; 1) into , then we have
Yit = (1_pe)ai—i_((bi"i_pe)yi,tfl+/8§pit+7§,lwit,1+7/2wit,2_p6<0;wi,t71+7/2wi7t*1,2)+£;;‘x (21)
As y; ;1 is weakly exogenous in , to address contemporaneous endogeneity between
p;; and &, we can directly apply the 2sCOPE-MG or 2sCOPE-MGJK estimators for the
(mean) coefficients. In the first stage, the copula-generated regressors are constructed in
the same way by regressing &}, , on &}, ,. Then the mean coefficients of all regressors with
coefficient heterogeneity in including «; ;—; and w;;_;, are estimated in the second stage
by the MG (or MG-JK) estimator. Whether the Jackknife bias correction is applied or not,

the analytical variance estimator in provides asymptotically unbiased inference.

3.7 Guidelines for using the 2sCOPE-MG estimation approach

For both dynamic and static panels, incorporating heterogeneous effects eliminates the
concern of slope endogeneity bias[| The choice between dynamic and static model specifica-
tions hinges on whether individual decisions are influenced by past outcomes or if information
sets of decision-makers include historical outcomes. It is context-specific and relies on insti-
tutional knowledge. For dynamic panels, the presence of serially correlated errors leads to
the regressor endogeneity problem, to which a common solution is by including higher-order
lags of regressors. We have illustrated the rationality of this procedure in sections|3.6.2 and
[3.6.3] Its effectiveness in restoring consistency is shown by MC simulations in section (4.3

To preprocess the data, we remove unit-specific means from the regressors based on
the general location Gaussian copula before applying the Gaussian copula transformation.
Then people can employ the procedures suggested by Yang et al.| (2024) to empirically
validate the non-Gaussionality (and relevance) conditions on the residuals. That is, we first
check the non-Gaussianality of é;, by the Kolmogorov-Smirnov (KS) test. If the p-value
is smaller than 0.05, we are on the safe side to proceed with the 2sCOPE-MG estimation.

Otherwise, we further examine the non-Gaussianality of €;;,, by the KS test and the strength

"Formal tests for slope heterogeneity can be found in Pesaran and Yamagata (2008) for dynamic panels
and Pesaran and Yang| (2024) for static panels, where the exogeneity condition is assumed to hold.
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of correlation between é; , and é; ,, by the F test. The sufficient identification condition for
the 2sCOPE-MG estimation requires that there is at least one variable in é;, ,, with sufficient
non-Gaussianality, p-value < 0.001, and explanatory power of €; ,, F-statistic > 10. When
such conditions also fail, we suggest people collect more data on other control variables
satisfying the non-Gaussianality and relevance conditions. Different from IVs, these control
variables can be some of the omitted variables researchers are concerned about — with non-
zero impacts on the outcome. Validating the rank condition using the aforementioned rules
of thumb can enhance our confidence in proceeding with the 2sCOPE-MG estimation.

Last but not least, for unbiased inference in dynamic panel data models, we suggest
applying the 2sCOPE-MGJK estimator given by to the copula augmented model, par-
ticularly with short 7" (relative to n) panel datasets. A sufficient condition is provided for
the existence of its finite second-order moments in heterogeneous dynamic panel models in

Yang| (2023). Researchers are recommended to check this condition before estimation.

4 Monte Carlo simulations

We design MC simulations to inspect the effects of (i) regressor endogeneity, (ii) slope en-
dogeneity induced by correlated heterogeneous coefficients, and (iii) both regressor and slope
endogeneity on the estimation of the mean coefficients, separately. For the data generating
process (DGP) of the outcome variable, y;;, we consider both static and dynamic panel data
models, without and with serial correlations in the error process. In the following, we first
focus on static panel data models. A number of DGPs are considered to examine whether
our proposed estimator is robust to heteroskedastic errors, serially correlated errors, and
different distributions of individual fixed effects in the regressors processes, which are likely
to present in various practical data sets. Then we investigate the finite-sample properties of
our estimation approach in dynamic panels with lagged dependent variables as explanatory
variables. Finally, for the case of dynamic panels with autoregressive errors, subsections

and introduce a different estimation strategy, whose finite-sample properties are
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shown by MC simulations below. Table [2| summarizes the MC designs.

Table 2: Summary of MC designs

1. Static panel data models

1.1.  One endogenous regressor and one exogenous regressor

1.2.  Two exogenous regressors with correlated heterogeneous coefficients

1.3. One endogenous regressor and one exogenous regressor with correlated heterogeneous coefficients
1.4. Robustness to heteroskedastic errors

1.5. Robustness to serially correlated errors

1.6. Robustness to uniform-distributed fixed effects in regressor processes

2. Dynamic panel data models with serially uncorrelated errors

2.1. A lagged dependent variable, one endogenous covariate, and one exogenous covariate as regressors

2.2. A lagged dependent variable and two exogenous covariates as regressors with correlated
heterogeneous coefficients

2.3. A lagged dependent variable, one endogenous covariate, and one exogenous covariate as regressors
with correlated heterogeneous coefficients

3. Dynamic panel data models with serially correlated errors

3.1. A lagged dependent variable as a regressor with homogeneous autoregressive coefficients
3.2. A lagged dependent variable as a regressor with heterogeneous autoregressive coefficients
3.3. A lagged dependent variable, one endogenous covariate, and one exogenous covariate as regressors

with correlated heterogeneous coefficients

Two alternative estimation approaches are considered, including the FE estimator and the
two-stage Copula augmented fixed effects (2sCOPE-FE) estimator computed by applying the
FE estimator to the copula augmented panel model. As the FE estimator for heterogeneous
intercepts is one of the most popular estimators for panel data, its performance in the
MC simulations provides relevant measures of the estimation bias and size distortions when
ignoring regressors and/or slope endogeneity. For the 2sCOPE-FE estimator, while the
second-stage regression does not suffer from regressor endogeneity, it does not account for
correlated heterogeneity in slope coefficients. For dynamic panel data models, following
our recommendation to apply the Jackknife method for correcting small-T" bias, we present
simulation results of the 2sCOPE-MGJK estimator given by instead of the 2sCOPE-

MG estimator. We report the mean bias, standard deviation of the estimates (SD), mean
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estimated standard error (se), root mean squared errors (RMSE), mean size of testing the
null hypothesis 6 = 0,, and the ratio of the absolute mean bias to the mean estimated
standard error (t,s) over 1,000 replications for each simulation.ﬁ We consider a combination

of sample sizes: n = 100 and T € {10, 50, 100}.

4.1 Static panel data models

We generate {y;;} by a static panel data model as
Vit = ; + Bipie + Yiwir + &ty for i = 1,2, ....n, and t = 1,2,...., T, (22)

where p;; and w;; are endogenous and exogenous regressors, respectively, with possibly serially
correlated errors, &; = ¢e&i—1 + 0:€);, and individual fixed effects. The slope coefficients for
regressors, (f;,7;)’, are individual-specific, which is an important feature of panel data but
hasn’t been considered in Haschka (2022). The regressors are generated from the following
general location Gaussian copula model: p; = ;) + €itp, and wy = Q4 + €, With
a;, ~ IIDN(1,1) and «;,, ~ IIDN(1,1). Following Assumption , we generate e,
from a mixture normal distribution, e;, = vi1 + vi2 With vi1 ~ ITDN(pp,0,1) and
Vito ~ TIDN (pp, 0p2), and e;r,, from an exponential distribution, e;;., ~ ITDExp(j,),

with |ppw| > 0. We set 8y = (Oéo,ﬁo,’)/())/ = (1, 1, —1)/
4.1.1 Regressor endogeneity

To induce regressor endogeneity, the shocks in the processes of dependent variables and

regressors are jointly generated based on a Gaussian copula model for Case 1.1,

e;t,p 0 L ppw Ppe
¢ | ~IIDN 0+ ppw 1 0 : (23)
& 0 ppe 0 1

8The standard errors of FE and 2sCOPE-FE estimators are computed based on the “clustered” covariance
estimator on p. 654 of |[Pesaran| (2015]), shown to be consistent under the respective modeling assumptions.
When these underlying assumptions for derivation do not hold in our DGP, the estimated standard errors
may not be consistent. The standard errors of the 2sCOPE-MG estimator are computed by .
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with ppy = ppe = 0.5. Then we generate ey, = H ™' (®(e},,)) and ey, = G (®(e))-
{yi} is generated by with individual fixed effects that are correlated with {p;} as
o; = 0.25 <% Zthl pit) + Mia, and 7o ~ ITDN(0,0.5), homogeneous slopes ; = 5 = 1 and
vi = v = —1 for all 7, and homoskedastic serially uncorrelated errors &; = &}, for all ¢ and
t. For all MC simulations, «; are always generated to be correlated with regressors. With
homogeneous coefficients in 1) we pool all panel observations to compute 6= 59 in 1)

Table 3| shows simulation results of FE, 2sCOPE-FE, and 2sCOPE-MG estimators under
regressor endogeneity. The FE estimator is severely biased. Particularly for slope coefficients,
the inferences using the default estimator of standard errors incorrectly reject the true value
with a 100% chance over 1,000 replications. As the generated correlation between error term
and endogenous regressor is constant for each period, the bias of the FE estimator does not
vary by T. For 2sCOPE-FE and 2sCOPE-MG estimators, the contemporaneous regressor
endogeneity is eliminated in the augmented panel regression. Hence, for the slope coefficients
under homogeneity, they are both unbiased, with size around the 5% nominal level. It is

worth noting that the 2sCOPE-MG estimator exhibits better small-sample (T') performance

compared with 2sCOPE-FE, displaying a smaller finite-sample bias when T = 10.
4.1.2 Slope endogeneity

To investigate the impacts of slope endogeneity without regressor endogeneity, we set

Ppw = Ppe = 0 in and generate 6; to be correlated with regressors for Case 1.2:
0; = (v, Bi,vi) = 00 + i + PN + 1, (24)
/ o 1 n ’ X
Where éz‘p = T_l Zle eit,pa /\z = CipCip T ZJ:l Cip€in Wlth ei,p = (61‘14,, eig’p, ...,eiT,p)’,

\/(e;,pei’l’fn_l 2 =1 €jp€ip)?
n;, = (77@772',8,7%7)' ~ [[DN(OaO5Ik>a 1% = (¢ua7wuﬁawu'y)/7 and ¢A = (w/\a>¢)\,87w)\'y)/-|?|

The three unit-specific terms in the right-hand side of correspond to (i) a component

correlated with the levels of regressors (i.e., €;,), (ii) a component correlated with the within-

unit variations of regressors (i.e., \;), and (iii) an idiosyncratic component, respectively. For

9); is constructed to have zero mean and unit variance s.t. E(68;) = 69 and Var(0;) is constant over T'.

23



[E] 1B, 01 S910U 889G :S910N

000 €00 0L0°0 0800 0L00 0000 00 F0'0 FL00 0800 ¥LO0 TO00- SO0 €0°0 T600 6600 T600 G000- L

700 €00 O0ST0 6ET°0 0ST'0 9000 000 <00 0ST'0 98T°0 O08T'0 T000- 200 GO0 SES0 €90 890 0100- ¢

700 00 GET'0 LET0 GET'0 9000- 000 ¥0O'0 ALT'0 €810 LLT'0 T00O- GO0 €00 €10 9150 €IS0 6000 © HIN-HIODST
000 ¥0°0 .00 €800 ¥.0°0 0000 100 %00 @800 1800 @800 T000- @00 SO0 FHITO0 SIT0 FIT0 G000~ 4

920 G000 SET'0 6ET°0 OET'0 9200 €¢0 S00 G8T'0 L8T'0 0ST0 ¢€F00 LT0 900 6FS°0 ¥ES0 VS0 0600 ¢

G6'0 TT'0 0.0 6120 FLT0 L0T0 080 600 ¥650 ¥S&0 TIZ0 ¥0T0 Ge'0 900 8SS0 9950 TES0 96T0 ®  HA-HAJIODST
000 ¥0°0 FL00 €80°0 ¥.00 0000 1000 €0°0 @800 1800 @800 T000-  TOO SO0 TITT0 ¥ITO0 TIT0O T000- 4

8¢'0 ¥0'0 GL00 0800 690°0 0£0°0 ¥6°0 900 ¥80°0 T80°0 @L00 €F00 ITT 810 €ET°0 1600 9800 1010 ¢

'l 2I'0 €520 0610 SEI0 €120 0T 0T'0 670 L6100 E€FI0 ¥0T0 7.0 200 9.0 0S¢0 G020 T8T0 © A

00T = © ‘00T = L 00T =06 = [ 00T =u'0T = [
My emg HSINY @S as seg My ezg HSINY 28 as seg Py e71g SN @S as seig

Aouodopus odofs Tepun spoued o19RIs (7T Sse)) UL SI0JRWIISO HIN-HJODSE PUR HA-HJdODSE ‘HA JO SInseI DN :F o[qRL

‘00071 st suorjeoridax

Jo Toqunu oty ], *(¥7%97) 10110 PIRPUR)S POJRUIIISO URSW o} AQ POPIAIP SBIQ URSUWL 9INJOSqR SY) JO OIjel 9} pUR ‘1s9) 9} JO oZIs ueowl ‘(HSINY) 10110

porenbs weawt 001 ¢(95) 10110 PIRPUR)S POJRUIIISO URIUI ‘SIUSIDJO0D dA1300dSoI o] JO ((IS) UOIPRIADD PIRpUR]S ‘SRIC UROUI O1[} SMOUS d[([R] O], :SOION

820 G0°0 Tg00 ¢gh'0 TE00 9000-  SZ0 900 €200 200 TE0'0 800°0- L0 900 6TT0 9TT'0 SIT0 8000- 4

170 800 @E00 0800 0800 &I00 820 L00 SPO0  €F00 FFOO TI00 800 L00 TISTO  FRTO 0STO TI100- ¢

700 700 GL00 6400 GLO'0 €00°0- 900 €00 800 ¥80°0 800 S000- €00 SO0 SFT0 SFT'0 SFPIT0 F000- 0 OIN-HJIODST
€00 S0°0 0200 2g00 0200 T000 €10 SO0 TEO0 2E00 TEO0  F000 €e0 900 TIT0 O0TT0 90T0 9800 4

8¢'0 400 ¢E00 0£00 0200 TIOO ¥¢0 900 SPO'0  €F0°0 FFO'0  0TO0 10 L00 IS0 €PT°0 0ST0 S100- ¢

190 190 GL00 0200 %200 gI00- L0 9%0 6.00 6200 L.00 Tg00- 890 8T0 TET0 71600 SIT0 2900- ©» HAHAJIODST
TL'8¢ 00T @820 0I00 0T00 ©8¢'0-  €20¢ 00T €820 ¥I00 FI00 €8¢0- €48 00T G820 200 €600 €8¢0- 4

0029 00T €FF0 2000 L000 EFF0 0F'LF 00T €FF0 6000 6000 E£7F0 vE0Z 00T  FPPO  T200 TZ00 E€FF0 ¢

¢S, T60 6FT'0  LTO0 €000 OET0 9z°¢ 180 6VT'0 G000 ¥L00 OET0 €CCc 950 9ST'0 LS00 0600 8zI0 © CE|

00T = ¢ ‘00T = I 00T =u‘05 = I 00T =u0T =L
Yy emg HSINY 98 as seig Yy emg SN S as seig Yy emg SN 98 as seig

Aj1ousBopus 108801301 opun sppued d19e)S (T°T 9se)) Ul S10§ese HIN-AJODST PR A A-Ad0DST ‘. JO SHNseI DN € 9[qel,

24



example, consumers’ responses to ads may vary with income levels, price variability, and
personal emotions at the moment.

To examine the impacts of slope correlated heterogeneity with respect to the unit-specific
means and variations of regressors, we set 9, = 1, = (0.25,0.25,0.25)". Table {4 reports the
simulation results with &; = &}, for all © and ¢. The magnitudes of bias and bias ratio for
both FE and 2sCOPE-FE estimators of 3 are large, showing that both approaches cannot
address the issue of slope endogeneity. In contrast, the 2sCOPE-MG estimator is shown to
be consistent, exhibiting negligible small-sample bias and a near-zero bias ratio, and its size

is at the 5% nominal level uniformly across all sample sizes.
4.1.3 Regressor and slope endogeneity

In Case 1.3, to induce both regressor and slope endogeneity, we generate the errors by
(23) with pp, = ppe = 0.5 where &, = &, for all i and ¢, and heterogeneous coeflicients by
(24) with 1, = 1, = (0.25,0.25,0.25)". Under both regressor and slope endogeneity, Table
shows that the bias of the FE estimator closely matches the sum of its biases from Tables
and [ Since both regressor and slope endogeneity induce positive bias, the overall bias
increases when both are present. The 2sCOPE-FE estimator also displays substantial bias,
which is greater than its bias in Case 1.2. However, the 2sCOPE-MG estimator continues
to be unbiased and has comparable performances in Cases 1.1 and 1.3. As discussed earlier,
the standard errors and RMSE of the 2sCOPE-MG estimator increase in copula-augmented
panel regressions when there is no regressor endogeneity, as in Case 1.2. As it is designed for
heterogeneous panels, its estimation errors do not rise much. The increase in RMSEs for the
slope estimates can be attributed to the positive variances of the heterogeneous coefficients.
In summary, the 2sCOPE-MG estimator demonstrates unbiasedness, exhibits the smallest
RMSE and bias ratios, and consistently offers valid inference across various sample sizes,

under either regressor endogeneity, slope endogeneity, or both.
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4.1.4 Robustness to different processes of errors and regressors

The Gaussian copula we impose is on the primitive shocks, and it does not forbid either
serial correlation or heteroskedasticity in the error term of the outcome process, nor individ-
ual fixed effects or time effects in the regressors processes. For practitioners, we experiment
beyond the cases where the error term in and regressors are independently and identi-
cally distributed, to illustrate the robustness of the 2sCOPE-MG estimator. The DGPs for

Cases 1.4-1.6 are the same as that in Case 1.3 except for the following variations:

e Case 1.4. Heteroskedastic errors: &; = 0,5 and 07 = 0.5+0.502 with v; ~ IIDN(0,1)
e Case 1.5. Serial correlated errors: & = pe&it—1 + &, with p = 0.4
e Case 1.6. Uniformly distributed individual fixed effects in regressors:

a;p ~ IIDUniform (1 — \/3,1 + \/3) and «a;, ~ II1DUniform (1 — \/5,1 + \/g)

The simulation results of Cases 1.4-1.6 are reported in Table of the online appendix.
The performances of the estimators are similar to those in Case 1.3, where the 2sCOPE-
MG estimator continues to be the only unbiased estimator of the mean coefficients under
both regressor and slope endogeneity. Particularly, the simulation results of Case 1.4 show
that the 2sCOPE-MG estimator can accommodate cross-sectional random heteroskedasticity
in the error term. Results of Case 1.5 show that the 2sCOPE-MG estimator can handle
contemporaneous endogeneity and provides a valid inference even with serially correlated
errors. Case 1.6 shows that as we de-mean the covariates separately for each unit, the
2sCOPE-MG estimator can allow for arbitrary distributions of individual-specific means in

the regressor processes with bounded moments.

4.2 Dynamic panel data models with serially uncorrelated errors

It has been shown that the 2sCOPE-MG estimator effectively restores exogeneity for un-
biased estimation in static panels. For dynamic panel data models containing lagged depen-
dent variables as regressors, the autoregressive structure automatically introduces non-zero

correlations between the lagged dependent variables and past error terms. Thus, consistent
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(asymptotically unbiased) estimation of the mean autoregressive coefficients relies on the
weak exogeneity assumption, where the current error term is not correlated with the cur-
rent and lagged dependent variables. It also implies that the current error term would be
uncorrelated with past errors, a scenario for which we conduct MC simulations to examine
performances of the 2sCOPE-MGJK estimator introduced in subsection as follows.
We consider a first-order autoregressive panel model with covariates (namely, an ARX(1)
panel model) as a leading example, where the first lag of the outcome variable, y;; 1, is
one of the regressors in , with weak exogeneity, E(&i|yit—1,Yit—2,...) = 0. The weakly
exogenous condition essentially implies that y;,_, is sufficient to represent the information
set of a decision maker ¢ at time t. As the past errors, &, for h = 1,2,..., naturally
correlate with y; ,—1, weak exogeneity further dictates the absence of serial correlation in the

CITOI processes.

Yit = G + OiYir—1 + BiPie + Viwir + it (25)

For the DGP of Cases 2.1-2.3, the contemporaneously endogenous regressor p; and
strictly exogenous regressor wy; as well as (o, f;,7;)" are generated according to Cases 1.1-1.3
in subsection , respectively. For Case 2.1, we consider homogeneous AR(1) coefficients,
¢; = ¢o = 0.5 for all i. For Cases 2.2 and 2.3, we also generate random AR(1) coefficients as
¢; ~ 1IDUniform(0.1,0.9). Tables and in the online appendix report the results
for Cases 2.1 and 2.2, respectively, and the results of Case 2.3 under both regressor and slope
endogeneity are summarized in Table [6]

Since in the DGP, y;,_1 is not correlated with either the current error term, p;;, or wy,
having y;;—1 as a regressor or not does not affect performances of FE and 2sCOPE-FE
estimators for # and 7, comparing the results in Tables [A.2] [A.3] and [6] of Cases 2.1-2.3
with those in Tables of Cases 1.1-1.3, respectively. y;;—; can be viewed as an exogenous
regressor which is not correlated with the endogenous regressor. Thus, the estimated AR(1)

coefficient of y;,—; is not affected by whether the regression is augmented by the copula
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generated regressor[l’] As can be seen in Tables[A.2] and [6], the simulation results of FE
and 2sCOPE-FE estimators for ¢ are almost identical. With homogeneous AR(1) coefficients
in Case 2.1, there is a negative small-T" bias for 7" = 10, which shrinks over 7. But with
heterogeneous AR(1) coefficients in Cases 2.2 and 2.3, there is an upward bias for relatively
large 7' = 50, 100 (resembling the large T asymptotics).m

Now focusing on the 2sCOPE-MGJK estimator which addresses both contemporaneous
endogeneity and slope endogeneity, when the Jackknife method is exploited to correct for the
small-7T" bias particularly of gE, it introduces greater sampling errors such that the estimated
standard errors and RMSEs of B and 4 increases slightly. We aim to obtain asymptoti-
cally unbiased inference, despite a cost in estimation precision measured by RMSE. As the
2sCOPE-MGJK estimator always delivers a size around the 5% nominal level with a much
smaller bias than the 2sCOPE-FE estimator even with homogeneous slopes, it is recom-

mended to apply the 2sCOPE-MGJK estimator to dynamic panels.

4.3 Dynamic panel data models with serially correlated errors

For the DGP of regressor endogeneity, the MC simulations above focus on the scenario
where the endogenous regressor is correlated with the current error term but not with past
errors. For dynamic panels, it rules out non-zero correlations between lagged dependent
variables as regressors and the current error term. Subsection has introduced an es-
timation approach to dealing with autoregressive error processes in dynamic panels, where
the 2sCOPE-MGJK estimator given by is used after including further lags of regressors
in the model. We assess the effectiveness of this approach by MC simulations as follows.

We first consider the AR(1) panel model given by , Yit = 0 + QYir—1 + &, with
Eit = pelir—1 + &, and we set p. = 0.4. For the AR(1) coefficients, we consider both
homogeneous and heterogeneous DGPs: ¢; = 0.5 for all i and ¢; ~ I1DUniform(0.1,0.9)

for all 4, respectively. Table [7] summarizes the MC results of both cases.

0This finding is consistent with that in |[Yang et al.| (2024).
HThis result is in line with the theoretical results on p. 725 of [Pesaran| (2015).
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With homogeneous AR(1) coefficients, there are substantial bias and size distortions in
the FE estimator. With different values of T, its bias direction varies, due to its vulnerability
to regressor endogeneity caused by serially correlated errors and the Nickell bias in estimating
dynamic panels. As we augment the homogeneous AR(1) model with the copula generated
regressor, we may expect both 2sCOPE-FE and 2sCOPE-MG estimator to be consistent.
Unfortunately, the 2sCOPE-FE estimator still exhibits substantial bias, particularly when T’
is short (7" = 10) and severe size distortions. In contrast, the 2sCOPE-MGJK estimator has
negligible bias and delivers size around the 5% nominal level across different sample sizes.
Note that the Jackknfe bias correction approach faces a bias-variance trade-off such that the
RMSE of the 2sCOPE-MGJK estimator can be quite large with small 7" = 10. Thus, we
recommend applying the Jackknife bias correction when 7' is relatively short compared with
n. In the case of heterogeneous AR(1) coefficients, the performances of FE and 2sCOPE-FE
estimators remain undesirable, with even greater bias and RMSEs for T = 50, 100. However,
the performance of the 2sCOPE-MGJK estimator is shown to be robust, irrespective of
whether the AR(1) coefficients are homogeneous or heterogeneous.

We further extend our investigation to an ARX(1) panel model given by

Yit = 0 + OiYir—1 + Bipir + Yiwir + it (26)

with & = pe&ir—1 + ;. The estimation approach in subsection requires us to estimate

the following model given by
Vit = O + Vi1 + BiDit + VWit + GioYir—2 + BirPi—1 + VirWir—1 + (Op€irp + wir),  (27)

where ¢ = ¢; + pe, Giz = —pedi, B = —peBis Vi1 = —peYi, and €, is the copula-
generated regressor. Accordingly, we set p. = 0.4 and generate the heterogeneous coefficients
(v, @i, Bi,v:i) and the Gaussian copula among (py, wi, ;)" as in Case 2.3. Note that the
number of regressors in is much more than the ones in the other cases. Hence, we
perform MC simulations with sample sizes of T' = 20, 50, and 100, taking into account the

implementation of the Jackknife bias correction on our estimator. The simulation results
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are summarized in Table |8} Remarkably, even with the presence of slope, contemporaneous,
and dynamic endogeneity, the 2sCOPE-MGJK estimator continues to deliver valid inference
around the 5% level for n = 100, while the FE and 2sCOPE-FE estimators continue to be
severely biased. With larger n, the 2sCOPE-MGJK is expected to perform better as the

estimation precision is enhanced.

5 An application of price elasticity on Dominick’s scanner data

Price elasticity is a key factor for managers to optimize the marketing mix strategy and
for policymakers to evaluate taxation policies and regulations. While correlation analysis
provides some information, its insights are limited. Moreover, these estimates fail to yield
credible causal estimates, when prices are confounded by unobservables in the errors, or
when correlated heterogeneity in consumer response parameters is disregarded.

Using Dominick’s scanner data from 1990-1994, we apply the 2sCOPE-MG method to
estimate average price elasticities and promotion effects. In subsection we first illustrate
the use of the 2sCOPE-MG estimator in the cereal category following the guidelines in
subsection [3.7] and by comparison, we show the bias magnitudes in the FE estimates. Also,
we discuss factors influencing store-specific price elasticities and promotion effects. Then
in subsection , we examine the presence of regressor and/or slope endogeneity across 21

categories systematically.

5.1 2sCOPE-MG v.s. alternative estimators: the cereal category

For the cereal category, we construct a balanced panel data set of 80 stores observed over
170 weeks. Given the size information of different products with the universal product code
(UPC) as an identifier, we first standardize prices and sales quantities based on each UPC’s
size information, then compute the aggregate sales and market-share weighted prices and
promotions (including bonus promotion and direct price reduction) at the store level. The
variables related to promotions are represented as dummy variables at the store-UPC level.

When weighted by market shares, they indicate the proportions of sales associated with
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each promotion at the store level. The summary statistics of the outcome and independent

variables are reported in Table [, computed before demeaning and detrending the variables.

Table 9: Summary statistics of outcome and independent variables of 80 stores over 170
weeks in the cereal category

Mean  SD Min  25% Quantile Median 75% Quantile Max No. obs.

log(Sales) 8.219 0.363 5.374 7.967 8.229 8.468 9.536 13,600
log(Price) 0.789 0.087 -0.067 0.753 0.794 0.843 1.004 13,600
Bonus 0.119 0.117 0.000 0.046 0.087 0.154 1.000 13,600
Price reduction 0.061 0.095 0.000 0.000 0.017 0.087 0.700 13,600

We consider a dynamic sales response model, which accommodates potential effects of
past outcomes on the current outcome. Such a dynamic structure is suitable when the
persistence of outcome processes, like sales, is a parameter of interest itself. It also enables
researchers to disentangle short-run and long-run effects. But for consistent estimation of
dynamic panels, relatively large T" panels are required such as the one used in our empirical

application. The logarithm of sales of store i in week ¢, log(Sales;;), varies according to

log(Sales;) = a;+71+¢; log(Sales; t—1)+ Bir log( Price;) + Bin Bonust + Bis Price Reduy + &,
(28)

where log(Price;), Bonusy, and PriceRedu; are the logarithm of market-share weighted
price, and market-share weighted bonus and price reduction of store 7 in week ¢, respectively,
and «; and 7; denote store- and time-fixed effects, respectively. The structural error term,
&, 1s possibly correlated with the price due to unobserved demand shocks among other
confounders, as shown in Park and Guptal (2012), Haschka; (2022)), and [Yang et al.| (2024)).
On the other hand, following [Sriram et al. (2007)), we consider bonus and price reduction
promotions as exogenous due to the typical quarterly decision-making process and the lead
time required for implementation. We allow for heterogeneous coefficients for all regressors.
The 2sCOPE-MG approach does not rely on any IVs. However, as a commonly used
alternative to handle endogeneity, we also explore estimation using an IV for price. The IV
is constructed based on the average prices of UPCs (with positive sales throughout the sample

periods) over different stores for each week. Then for each store, we aggregate the prices of
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UPCs using market shares averaged over the first 26 weeks (excluded from estimation) as
weights. The weights are predetermined, not reacting to demand shocks in the later period "]
Given possible time trends in sales and prices, we use detrended log sales and log price (and
its instrument) in estimation. The correlation coefficient between the detrended IV and price
is 0.362, thereby meeting the relevance condition.

We first validate the non-normality assumption using the data on demeaned price (after
detrending), bonus, and price reduction. For all three regressors, the resulting p-values are
close to zero up to seven decimal points, indicating significant non-normality. The empirical
distribution of log price residuals exhibits left-skewness with a heavy tail on the left-hand

side (Figure[1)). Now we can proceed with 2sCOPE-MG estimation.

Figure 1: Histogram of the distribution of log price residuals
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Notes: The histogram shows the empirical distribution of Log(Price;;) residuals after removing store-specific

means and trends.

Table |10| presents estimated average price elasticity and promotion effects in Model .
Columns (1) and (2) display results of applying FE and MG estimators directly. Columns

(3)—(4) and (5)—(6) show FE and MG estimation results using copula-generated regressors

12This IV is constructed as the Bartik instrument in |Goldsmith-Pinkham et al.| (2020)) (on p. 2592). For
estimation consistency, a sufficient assumption requires that the predetermined weights (or initial shares)
are strictly exogenous to changes in the outcome variable over time. In our case, these weights are linked to
UPCs, with a large number of UPCs used in the calculation. It is unlikely that these weights directly affect
sales changes in later periods, particularly when the regressors, market-share weighted prices and promotions,
already account for the effects of current-period market shares. An example of the Bartik IV can also be
found in |Li et al.| (2014)) (p. 318). Moreover, |Chevalier et al.| (2003) found that prices, on average, tend
to be countercyclical and largely varied with retail margins, indicating that variations in average prices are
largely driven by wholesale costs. The UPCs are typically more established, and according to [Nevo| (2001)),
they are less susceptible to systematic demand shocks. These, combined with the predetermined weights,
lend greater credence to the satisfaction of the exclusion restriction.
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Table 10: Estimated average price elasticity and promotion effects on cereal sales in a dy-
namic sales response model

Copula generated regressors v
(1) (2) 3) (4) (5) (6)

Estimator FE MG 2sCOPE-FE 2sCOPE-MG FE-IV MG-IV
log(Price;) -1.200  -1.089 -1.700 -1.550 -1.674  -1.478

(0.056) (0.022) (0.089) (0.100) (0.131) (0.049)
Bonusy 0.205 0.199 0.160 0.160 0.193 0.215

(0.024) (0.020) (0.028) (0.032) (0.023) (0.022)
PriceReduy 0.153  0.150 0.091 0.103 0.114 0.125

(0.030) (0.014) (0.033) (0.033) (0.027) (0.023)
log(Sales; ;1) 0.089 0.117 0.089 0.116 0.067 0.112

(0.021) (0.015) (0.021) (0.016) (0.017) (0.016)
Store fixed effects Y Y Y Y Y Y
Week fixed effects Y Y Y Y Y Y
Test of price endogeneity
Pearson cor. - - 0.269 0.222 - -
p-value - - 0.000 0.000 - -
Slope endogeneity - Y - Y - Y
Regressor endogeneity - - Y Y Y Y
No. observations 13,520 13,520 13,520 13,520 11,440 11,440

Notes: The estimates are computed based on a balanced panel of 80 stores over 169 weeks of the cereals
category from Dominick’s database. The dynamic sales response model is given by . The coefficients
of the Gaussian copula model are assumed to be homogeneous across stores. (i) Price, bonus, and price
reduction are computed as market share weighted averages over UPCs sold in each store. (ii) log(Sales;t)
and log(Price;;) are detrended prior to estimation with linear and quadratic trends, respectively. (iii) To
construct an IV for the price, we consider the weekly prices of UPCs average over different stores (for those
UPCs whose prices are observed over all periods) and further aggregate the prices over UPCs for each store
with “predetermined” weights. The weights are computed as market shares of these UPCs in each store
average over the first 26 weeks, which are excluded from the sample used in IV estimation (7" = 143). The
first stage regression includes time fixed effects and exogenous regressors and assumes homogeneous and
heterogeneous slopes of the IV for FE-IV and MG-IV estimators, respectively.

and the IV for price, respectively. Standard errors are calculated using consistent estimators
of asymptotic variance, given the respective underlying assumptions.

We first examine the effects of price endogeneity on estimation outcomes. Given the
potential bias from slope endogeneity in the FE approach, we focus on comparing MG,
2sCOPE-MG, and MG-IV estimates. Similar patterns are likewise observed in the FE es-

timation outcomes. The MG estimated price elasticity, assuming price exogeneity, is lower

compared to the 2sCOPE-MG and MG-IV estimates, which account for price endogeneity.
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Specifically, the average price elasticity shifts from -1.089 (0.022) to -1.478 (0.049) based on
the MG-IV estimator. We denote standard errors in brackets throughout the paper. Re-
markably, even without external exogenous variations provided by an IV, the 2sCOPE-MG
estimator recovers the causal average price effect at -1.550 (0.1), which closely aligns with
the MG-IV estimate. The average bonus effect and sales persistence estimates remain com-
parable whether adjusting for price endogeneity or not. Conversely, the average effect of
price production decreases slightly after accounting for price endogeneity at 0.103 (0.033) of
the 2sCOPE-MG estimator, showing contamination bias.

Moreover, the 2sCOPE-MG method can be utilized to measure correlations between en-
dogenous variables and the structural error. The Pearson correlation coefficient between
price and estimated structural error terms is 0.222, with a near-zero p-value, strongly reject-
ing the hypothesis of no price endogeneity. The positive correlation suggests that as prices
rise, store managers often intensify efforts to enhance consumers’ willingness to purchase,
for example, by offering higher-quality products, to counteract potential negative price ef-
fects. As researchers may not always have access to observations of the kind of variables, the
2sCOPE-MG approach is equipped to handle their absence when estimating causal effects.

We now address the issue of slope endogeneity, the presence of which leads to disparities
between FE and MG estimates. As demonstrated in Section of the online appendix,
under the assumption of regressor exogeneity, the FE estimator can be written as a weighted
average of unit-specific OLS estimators. These weights are proportional to the wvariance-
covariance matrix of each unit’s regressor processes, capturing within-unit variations like
price and promotion activities over time. For the current application, stores with larger
temporal variations in their regressor processes receive higher weights on their store-specific
estimates. However, non-zero correlations between these weights and the heterogeneous slope
coefficients introduce bias in the FE estimation, while the different weights may not make a
difference with homogeneous coefficients.

Under the assumption of heterogeneous slope coefficients, the 2sCOPE-MG estimator
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shows a smaller-sized price elasticity compared with the 2sCOPE-FE estimator. This ob-
servation remains consistent when comparing MG vs FE and MG-IV vs FE-IV, regardless
of whether price endogeneity is considered. The presence of an upward neglected hetero-
geneity bias implies a negative correlation between within-store regressor variations and
store-specific estimates. In other words, stores with more frequent or intense price variations
or promotional activities exhibit higher store-specific price elasticities. Given that consumers
frequently visit retail stores, they are more likely to make purchases at lower prices or during
promotions when they expect such activities to occur more frequently or encounter greater
price variations. Conversely, when consumers visit stores with fewer price variations or pro-
motions, their purchase decisions may exhibit less variability across different prices. On
the other hand, the 2sCOPE-MG and 2sCOPE-FE estimates of bonus and price reduction
promotion effects are comparable, with a mild difference in sales persistence, indicating ho-
mogeneous effects across different stores. The bonus effect is at 0.16, slightly higher than the
price reduction effect, (remembering that bonus and price reduction variables are measured
in terms of the proportions of brands under promotion in a store). Tables and in
the online appendix present estimation results of other models. The biases due to regressor
and slope endogeneity remain consistent across three model specifications.

In light of the direction of slope endogeneity bias, Figure [2|illustrates the relationship be-
tween the 2sCOPE-MG estimated store-specific coefficients and scaled within-store variance
of regressors. The correlation coefficient and the associated p-value between each pair of co-
efficients and regressor variations are presented in the upper right corner of each subplot. In
the first row, the estimated price elasticities exhibit substantial heterogeneity across stores,
ranging between -1.882 and -1.07. The correlation coefficients between price elasticities and
within-store variations in price and price reduction promotion are significant, at -0.32 and
-0.241, respectively. The results provide further evidence that the intensity of price variation
and promotion frequency can affect consumers’ response parameters as shown in Kalwani

et al.| (1990) and [Fok et al.| (2006). The fact that consumers’ price consciousness rises with
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the degree of variations in price and discount can be rationalized by a learning model of

price formation or a reference price adaptation model as in the literature.

Figure 2: Scatter plots of 2sCOPE-MG store-specific estimates on within-store regressor
variations
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For store-specific bonus and price reduction effects in the second and third rows, the
variation across different stores is relatively modest, leading to close estimates between the
2sCOPE-MG and 2sCOPE-FE estimators. Since promotion activities are typically planned
and implemented uniformly across different stores, it is expected that they have rather homo-
geneous impacts. However, we still observe significant correlations between price variations
and responses to promotions. Specifically, as price variations increase, the influences of pro-
motions on consumer purchasing decisions are strengthened. It is also worth noting that
the effect of each promotion does not vary much with its own degree of variation, but with

the degree of variations in the other types of promotion activity. In the last row, the esti-
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mated autoregressive coefficients of sales are negative for certain stores. This suggests two
counteracting effects: one leads to persistence in sales, and another one drives sales back to
the long-term level. When prices and promotional activities exhibit greater variability, it is
more likely to observe mean reversions in sales. It is important to note that these two kinds
of sales dynamics have significantly distinct implications for forecasting future sales. It can
be seen in the last column that not only the mean but the variance of sales varies with price
and promotions. As expected, greater price elasticity, greater responses to price reduction,
and less persistence are tied to increased sales volatility.

As sales response parameters are often modelled as linear in store-specific regressor mean
levels in the HB approach, we also examine the correlations between store-specific coefficients
and regressor levels, shown in Figure[A.T]in the online appendix. The results reveal that price
sensitivity and bonus effects increase with the proportion of brands sold under price reduction
promotions, but remain relatively constant with price and bonus levels. The impact of price
reduction diminishes with lower price levels, which may explain why price reduction is not
as effective as marketing managers desire. Furthermore, sales persistence tends to decrease
with a larger fraction of brands under bonus or price reduction promotions. Based on the
2sCOPE-MG store-specific estimates, store managers can evaluate whether the current sales
response function and marketing mix strategy are desirable to maximize revenues/profits.

In cases where an adjustment is needed, the above analysis suggests directions to proceed.

5.2 Regressor and slope endogeneity across different categories

Table summarizes the 23COPE-MG estimation results across 21 categories in Do-
minick’s scanner data. The corresponding results based on the FE method (not accounting
for either endogeneity issues) are shown in Table in the online appendix. First, we find
prevalent price-error dependence, specifically a significant positive correlation between price
and the structural error term across 19 categories. Failing to account for this regressor en-
dogeneity properly results in attenuation bias in the estimates of price elasticity. Second,

18 categories show non-negligible correlated heterogeneity in store-specific price elasticities.
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The slope endogeneity bias, calculated as the difference between 2sCOPE-FE and 2sCOPE-
MG estimates, is negative in 14 categories. As discussed earlier, this indicates that consumer
price elasticity increases with price variability in these categories. The 2sCOPE-MG esti-
mates of average price elasticity range from -2.388 (the cheese category) to -0.845 (the cracker
category) across categories. Hence, not only do we find substantial cross-store heterogene-
ity, there presents cross-category heterogeneity. Overall, the bias due to both endogeneity
(calculated as the difference between FE and 2sCOPE-MG estimates) ranges from 0.007 to
0.904 across categories with a median of 0.187, highlighting potentially large deviations from
the intended targets when setting marketing mix variables based on the biased estimatesH
Additionally, our estimation results show that consumers, in general, preferred price reduc-
tions over bonuses, given the higher estimated effects of price reduction compared to bonus
effects. The last two columns provide evidence of sales persistence. The estimates range
from 0.076-0.264, which is reasonable given the relatively high-frequency weekly data versus
monthly or annual data.

The results above assume homogeneous coefficients in the Gaussian copula across stores.
Table in the online appendix presents 2sCOPE-MG estimates with store-specific Gaus-
sian copula coefficients. The estimates for each category are very similar to those in Table[TT],
supporting the homogeneity assumption. It also shows the robustness of the 2sCOPE-MG
estimator. Averaged across the 21 categories, the total, regressor, and slope endogeneity

bias are approximately 0.25, 0.34, and -0.14, respectively.

6 Conclusions

The undesirable bias caused by regressor endogeneity and slope endogeneity has been
widely recognized in the two strands of the literature as reviewed. To our knowledge, the
proposed estimator in this study is the first remedy for both types of endogeneity biases in the

estimation of the average effects for panel regressions without IVs. Given the general location

13The overall bias is somewhat reduced as positive bias from regressor endogeneity is offset by negative
bias from slope endogeneity in most categories. Note that the biases can have potentially opposite signs.
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Gaussian copula model with possibly heterogeneous dependence structure, the 2sCOPE-MG
estimator can cope with contemporaneous regressor endogeneity, which challenges the va-
lidity of hypothesis testing using observational data. The homogeneity assumption on slope
coefficients is also relaxed, which is less realistic as individual responses may be governed by
different parameters. Treated as unit-specific fixed parameters, the heterogeneous slope coef-
ficients can be functions of individual characteristics and depend on the relative magnitudes
of changes and even the entire path of dependent and independent variables.

By a comprehensive set of MC simulations, we illustrate the use of the 2sCOPE-MG and
2sCOPE-MGJK estimators in static and dynamic panels with contemporaneous regressor
endogeneity, correlated slope heterogeneity, and even dynamic misspecification, separately
and jointly. While the FE and 2sCOPE-FE estimators exhibit severe biases and size dis-
tortions, the 2sCOPE-MG and 2sCOPE-MGJK estimators are shown to provide unbiased
inferences.

Using Dominick’s scanner data, we apply the 2sCOPE-MG approach to consistently es-
timate the average causal effects of price and promotions in dynamic sales response panel
models, addressing both regressor and slope endogeneity without IVs. We highlight the ubiq-
uitous presence of regressor and slope endogeneities in the conventional estimation method
across different categories, and the resulting bias can be substantial. Our findings com-
plement the existing studies on consumer heterogeneity in the literature, suggesting that
micro-marketing pricing strategies at the store level need to account for both the level and
variability of past prices and promotional activities. Specifically, sales and marketing man-
agers could integrate the indirect effects of past pricing and advertising strategies on sales

response parameters into their future pricing and marketing strategies.
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A.1 Introduction

The online appendix is organized as follows. Section details the assumptions for the
panel data models we consider and the two-stage copula augmented mean group (2sCOPE-
MG) estimator, provides proof for the theorems in the main paper, and illustrates biases
in the pooled OLS and standard fixed effect estimators with correlated heterogeneous co-
efficients. Sections and present supplementary Monte Carlo (MC) evidence and

empirical results.

A.2 Mathematical appendix

Notations. Generic positive finite constants are denoted by C when large and ¢ when small.
They can take different values at different instances. [K] denotes a set of K indices. For a
symmetric matriz A, A = 0 denotes that A is positive definite. © denotes the element-wise
matriz product. Suppose {f,} | is any real sequence and {g,},—, is a sequences of positive
real numbers, then f, = O(g,) if there exists a constant C' such that |f,| /g, < C for all n;
and fn, = o(gn) if fu/gn — 0 as n — oo. Similarly, f, = Op(gn) if fu/gn is stochastically
bounded, and f, = 0y(9n) if fn/gn —p 0. —, denotes convergence in probability, and —4

denotes convergence in distribution.

A.2.1 Assumptions

Assumption A.1 (Sampling). {y;, P;, W;, 0}, is an i.i.d random sample from the pop-
ulation distributions of interest.

Assumption A.2 (Errors). (i) Fori=1,2,...n andt=1,2,...,T, there exists a decompo-
sition of the structural error term: & = 0;&% + vy, where &, ~ IIDN(0,1), E(,|W;) =0,
and E(vy|P;, W) =0, with 0 < E(vi|p;s, wis) < C and E(v}) < C. (ii) E(&éis) = 0 for
t #s. (iii) o? is distributed independently of &, with 0 < inf; o7 < sup,o? < C.
Assumption A.3 (Correlated random coefficients). Fori = 1,2,...,n, there exists a decom-

position of the correlated random coefficients: 6; = E(0;|P;, W ;, «;) +m,;, where E(n,) =0,
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E(6,) = 6, with |6, < C, Var(8;) = Qg = 0 is bounded, and E ||6;|* < C.

Assumption A.4 (Regressors). (i) For each k € [K, + K.,|, the k-th regressor error term,
eitk, 15 identically and independently drawn from an absolutely continuous marginal distri-
bution function (CDF) Fy for all i and t, with a Lipschitz continuous and bounded marginal
density function fi, E(ewr) = 0, Var(exr) = op >0, and E(ej, ) < C. (ii) e is uncor-
related with z; in (). (ii) For i = 1,2, ...,n, there exists a Ty such that for all T > Ty,
(P, W) (P;,W;) = 0. AsT — oo, +(P;, W,)(P;, W;) =, ; = 0 with sup, |3;]| < C.

Assumption A.5 (Semiparametric Gaussian copula). (i) (ej/,, €} ,,, &) follows a Gaussian
copula given by with a positive definite covariance matriz, V,;, = 0 for all i. (i1)
E(V,,)=V,=0with |V,|<C, Var(V,,) = 0, and E||V,,||* < C.

Assumption A.6 (Identification). The following holds for i = 1,2,...,n. The K, endoge-
nous regressors are divided into two sets: [K, na| and [K, ). (i) For each k € [K, ng], the
marginal distribution of the k-th endogenous regressor error term, ey pk) in (@), 1s not Gaus-
sian. (i1) For each k € [K,q], the marginal distribution of the k-th endogenous regressor
error term is Gaussian. A similar partition applies to the K, exogenous regressors. Define
IL (k, ol iKu.ne) @S the submatriz of 11, p, = VLWVZJJ (see Equation (@)} containing entries

=K

with row indices in [K,¢] and column indices in [K, n¢]. Rank (IL; [k, 4k G-

w,NG])

Assumption A.7. There exists a constant 7 satisfying 1/2 < v < min{27,1} (7 > 1/4)
such that for each k € [K, + K|, the following holds for the density function of the k-th
regressor error term: as a — 0,

(B (@) _ o(a ).

sup a 3

we(al—qymin{u, 1 —u}
Assumption A.8 (Stationarity for dynamic panel models). Fori=1,2,...,n, (i) sup; |¢;| <

1; (ii) and the initial observation, i, is drawn from the stationary distribution of {y ;.

Remark A.1. Assumption (i1) assumes serially uncorrelated &. For dynamic panel

models, it implies that there is no misspecification in the order of lagged variables. When
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estimating dynamic panels, a standard procedure to address endogeneity due to serially cor-
related errors is to include higher order lags of the regressors. The Akaike and Bayesian

information criteria can be used to select the appropriate lag orders.

Remark A.2. Assumption@ requires that any Gaussian distributed e;, r, of an endogneous
regressor (k € [K,|) must be correlated with at least one distinct non-Gaussian distributed
ety of an exogenous regressor (k' € [K,]). This is analogous to the IV identification condi-

tion that the number of IVs must be at least equal to the number of endogenous regressors.

Remark A.3. Assumption [A.7 imposes a restriction on the marginal density of regressor
error terms to facilitate the derivation of asymptotic properties of the 2sCOPE-MG esti-
mator. It is used to bound the difference between the residual ranks Fg(i),k(éﬁ,k), based on

unit-specific demeaned residuals, and the oracle ranks Fg(i)k(eit,k), based on unobserved true

Cit k-

A.2.2 Proof

A.2.2.1 Proof of Theorem

Proof. To begin with, note that under Assumption for each k € [K, + K], if F}, is
Gaussian, then e, = O~ (Fy(eirr)) = €irx/or, where oy is the standard deviation of e; .

with 0 < 05, < C. Suppose (8',v5,4") in @ are not identified under Assumptions , ,

A4 and |A.5] then there exists a non-zero (2K, + K,,) x 1 vector k = (K., K, ngv)/ such that

/ / / 0 * * / / o
Kl€irp + Kn€ity + K €inw = K. (€l — ILwel ) + Ky + Ky€irw = 0. (A1)

Under Assumptions|A.5(V, > 0) and|A.4} if k. = 0, then (A.1)) holds only when (n;, njw)/ =

0, and vice versa. Thus, for to hold with a non-zero k, there must be at least two
non-zero entries in the two vectors, k. and (n;, niu)/, separately.

First, suppose for all k € [K, + K|, F} is Gaussian, then (A.1)) is solved with o, ® k. =
—kp and o, O I k. = —Ky, Where 0, = (0p1,...,0pk,)s Ow = (Cw1, - Owk,), and ©

denotes the element-wise product.
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Next, we focus on the case where not all e;;, for k € [K, + K,,] have marginal Gaussian
distributions. The K, endogenous regressors are divided into two sets: [K, ny¢| and [K, ],
where for each k£ € [K, n¢g|, the marginal density of e; ) is not Gaussian, and for each
k' € [K,¢], the marginal distribution of e; is Gaussian; similarly for the K, exogenous
regressors. For any non-Gaussian distributed regressor k € [K, ng| (or k € [Ky, ne]), since

o > 0, it requires that s, = 0 (or Ky = 0) for (A.1) to hold, ie., Ky x, yvo = 0 and

KK, ne) = 0. Furthermore, as k), (x, vo = 0 and V, > 0, it also requires K [k, yo] = 0.
Then for k € [K,¢], given a fixed non-zero Kk [k, ), We can choose K [k, ;] = —Op [k, o] O

Ke K, such that K€y, + H;,eitvp = 0. Let Ik, k, s denotes the submatrix of IT,, =
V,uV,' (see Equation @) containing entries with row indices in [K},] and column indices
in [Kyg|. For k € [Kyg], we can choose oy K, o] © H/[Kp][KmG]nE = Ku,K,¢] Such that
—K L[k, (Ko a1 €1l o) T B Ky o) EitwlKu,g) = 0- Now the only remainding term is given by
=K (10, o) MK o (K va) €l xop i [Fw,ne] 18 not an empty set. Since ke[, o] Is a non-zero

vector, Ku'ﬁ’[Kp G]H[prc} ;] = 0 holds if and only if Rank(Ilix, . x, ve]) < Kpa, Where

JKw, NG
K, is the number of ¢, (k € [K,]) with a marginal Gaussian distribution. Therefore,

Assumption provides the identification condition for (8',~%,4")". O]

A.2.2.2 Lemmas for the proof of Theorem

Lemma A.1. Suppose Equation (3) in the main paper and Assumptions[A.1], [A.9, [A.4} [A.5,

and@ hold. Let ng denote the number of units in Group g, for g = 1,2,...,G. For the
estimator of group-specific coefficients in the first stage regression, fIgypw n of the main
paper, as n, T — oo and T'/n — o, \/ngT(fIg,pw —1II,,,) =4 N(0,Xy1,) where Xy, > 0.

Proof. The asymptotic property of fIgypw can be established using Theorem 3.4 of [Zhao
et al| (2020). To begin, we derive the order of the estimation errors for é;, and é; ,.
Given Equation , €itp = Dy — Oy With &, = %Zlepit. As T — oo, &y — ay, =
O, (T7/?). Similarly, i, — iy = O, (T7/2). Next, we investigate the conditions under

which Assumption 3.4 in Zhao et al. (2020) holds under two practical grouping schemes.
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When T is sufficiently large such that each unit can be viewed as a group, i.e., ny, = 1. Then
it follows that O(n,T") = O(T), and Assumption 3.4 in|Zhao et al. (2020) holds trivially. For
moderately short 7" and a finite number of groups, O(n,) = O(n). In this case, Assumption
3.4 in |Zhao et al. (2020) is satisfied if T'/n — oo.

By Theorem 3.4 of Zhao et al.|(2020)), the asymptotic distribution of \/ng_T(fIg,pw —1I1, )
coincides with the asymptotic distribution of \/ng_T (1:Ig7pw —I1,,.,), where each element in
ﬁgﬁpw is the normal scores rank correlation coefficient estimator based on the empirical CDFs
of the unobserved e;, and e;,,. As established in Theorem 3.1 of Klaassen and Wellner

(1997), it is asymptotically normally distributed with mean zero and a positive variance. [

Lemma A.2. Suppose Equations (@ and (@ in the main paper and Assumptions
hold. For the estimator of the homogeneous coefficients in the augmented panel data model,

Yy in , as n, T — oo, VnI'(¥y —vy) —a N(0,X, ) where 3., 5 >~ 0.

Proof. Given 4, in (12)), we have

-1
1 & R
VT (5o, — = — W/ Mm W@ —— W, Mw; ul-—i-ei(i i
(%2 —72) n ; i,2 2V 2 JnT ; 0,2 ,2( pPg( ))
Given in the main paper, E(W/,M,ou;) = E [W} ,M;,2E(u;| X;, W3, €;,)] = 0.
Under Assumption , €t p is distributed independently of e;s,, with a zero mean such that
conditional on M, 5 and d4(;), E ('wit,Qe’i&p) = 0 for all ¢, s, and thus, Ei(Wg,QMm’geip)(sg(i) =

0. Combined these two terms, as n,T — oo, we have E(%,) = 7, + o(1). Hence, under

Assumptions A.7, by the Central Limit Theorem, vnT (45 — 75) —a N(0, X, 5), where
1 n
2%2 = \Il;,l2 lim — W;72Mix,2 ('U;Z' + eipdg(i)) (’U/i + eipég(i)), Mix72Wl'72 \Il_l

n,I—o0 N - w2
=1

with ‘I’w,Q = hmn,T—mo nLT Z?:l W;,QMZ':CQWZ',Q = 0. [

Lemma A.3. Suppose Equations (@ and @ in the main paper and Assumptions
hold. For the estimator of group-specific coefficients of the copula generated regressors in the
augmented panel data model, 59 in , as n,T — oo and T /n — oo, \/ngT(sg —0,) —a

N(0,X5,) where X5, > 0, and n, denotes the number of units in Group g, forg=1,2,...,G.
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Proof. Without loss of the generality, we consider the case with a scalar endogenous regressor,
pit, and a scalar exogenous regressor, wy, to simplify the mathematical exposition. 39 in

- §o— gl (L g - _ 2 M. &,
can be rewritten as J;, = Vo N, (N > € M,xyi> with W, n, = N Zze[n €, M,.é;,

i€[ng] ip ] "p

and Ny = ngT". Then we have
Ve, N,/ Ny <(§g — 5g> Z g’ Mw w; + (€ip — €ip) 59] = ANg + By,
ze[ng
where Ay, = \/_ Zze[n €,M,u;, and By, = \/_ Zle i) €, M, (€ip — €p) O
We first analyze Ay, = An,1 + An,2 + An, 3, Where Ay, = \/LN_Z?GQM] €, M, u;,

AN, \/— Zle[n (€ip — €ip) M izu;, and Ay, 3 = \/— Zze[ng (€;p — €ip) M ;u;, with

gil’ - éjp - Hg(i)vaéjw7 (AZ)

A

* ~% ~% /! ~% _ ~% ~k /! =k _ [ et —
€ip = (eil,p7 Sy e'iT,p) » €y = (eil,uﬂ ) eiT,w) » Citp = Fg(i)»P(eit»P% and Citw — Fg(i),w(eit,w)'
. . . 1 ’
Given 1) An,1 —a N(0,341) with X4 = limp, o0 N Z ] €, M izuu; M, €.
, .
To analyze An, 2, let An, 21 \/— Z%E[Nq](ew €)' Tr, where 77 is a T x 1 vector of

ones. There exist two orderings of the indices {1, 2, ..., N, } such that for Group g,

1 & . -
= O HE ) (s/Ny)) — (s N,)) — @ '(j/N,
ngw[ (Fyp (3/N,)) — @7 (s/N, ¢_ Z rali/Ng)) = @71 (/)]

9 j€e[Ng]

Fo( S/N ) —s/N, Fib(5/Ng) — §/Ng )
ZN] AT JEZN] sy o

with Ng = N, + 1 By the weak convergence of the uniform quantile process,

1 Fup(s/No) = s/Ny
7% 2 ety [ ww
and
M <~ Fpil/No) — /N, o [t Bw
TN 2 @1 Grm) Sty = [

where B(-) is a standard Brownian bridge. Thus, Ay, o1y —¢ H = Hy — Hj, where E(H) =

AlHere we use s and j to replace the double indices it, since we assume €it,p and e;; , are i.i.d draws.
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E(Hy — Hy) =0as E(H;) =0 and E(H2) = 0. For the variance,
V(H) =V (H1) + V(Hs) — 2E(H: H>),
where V(Hy) = 1, V(H,) = 1I2,,

E(H\H,) = pw/ / (27 (u), @ (v)) dudv,
and f(z,y) is the density function of a standard bivariate normal distribution with a correla-
tion coefficient I1,,,. By some algebra, it can be shown that E(H; Hy) = E [min(®(x), ®(y))]—
E[®(x)®(y)], where ®(z) and ®(y) are the standard normal CDFs of x and y. Since

E [min(®(z), ®(y))] = 5 — 5= sin~ ' (I,,) and E [®(2)P(y)] = § + 5= sin~'(IL,,,), E(H1Hs) =

1
2

— Lsin™'(II,,,) where |E(HH)| < 1/4 for all II,,, € (0,1). Thus, V(H) = 14+ 112, —

[\

(3 + 5= sin '(IL,,)) > 1+112,—1/2 > 0, and Ay, 5.1y converges to a non-degenerate random
variable with mean zero. Furthermore, since u;; is mean zero and distributed independently

of e;, and e;,,, conditional on the weight matrix M, = {m;,};=1__ 12,

,,,,,

— Y Y Ny - o
e S v (F (s/N) =~ S/Ng> LU . <Fg,;<J/Ng? - j/Ng>
VN e, S(2~1(s/N)) Ve ER H(-1(j/N,))
= Op(N, 1/2) = op(1).
For the term AN9v37 let ANg 3(1) = \/;_ Zij\ég[Ng](éip_gip)lTT- As ﬂg,pw gpw = Op(N, _1/2)

by Lemma [A.1, we have Ay, 3.1 \/— ZZQ[NQ] (e, —€;) — (€], — éfw)] Tr + 0p(1).

Using a first-order Taylor expansion and the arguments from the proof of Theorem 3.4 in|Zhao
et al.| (2020), it follows that Ay, 31) = O, [logI/Z(N )N;/2T*1] =0, [loglﬂ(nT)(n/T)l/?}.
As T'/n — oo, this implies A, 3(1) = 0p(1). Analogously to the derivation of the Ay, o term,
conditional on the weight matrix M., Ay, 3 = 0,(1). Thus, combining the three terms, we
have Ay, = An, 1+ 0p(1).

We now analyze By, = By, 1 + BNg 2 + Bn, 3 + Bn, 4, where

Ng,l \/— E 6 Mz:v ezp - Eip) 597
1€[ng]

g

BN912 = \/;N_g Zie[ng}(égp_ggp)Miz (Eip - eip) 59’ BNg \/_ Zze[ng ( ip ;p)le (ézp - glp) 59 =
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0,(1), and By, 4 \/_ ZZE i) €, M, (€) — &) d,. Using the Cauchy-Schwarz’s inequal-

ity repeatedly and \/_Z ( €, — €)My (€ip — €) 0y = 0p(1), By, 2 = 0,(1). Given

An, 21) = Op(Ng'?), Bn, 3 = 0,(1). Similarly, By, 4 = 0,(1). Thus, By, = By, 1 + 0,(1).
For the By, ; term, there exist two orderings of the indices {1,2,..., N;} such that

Z o1 g))Fg_,;}(S/NQ) iS/Ng

G(®~"(s/Ny))

SE[N

By,1 =

FiaGIN,) ~ i/ 5,

FZ(D 0= G,

JE[Ng]

+0p(1),

with Ng = N, + 1. By the weak convergence of the uniform quantile process,

F, 1(s/Ny) — S/N

1 ISRy ,
I 2 O E NS Ry e e J; o

and

I, . - F7L(j/N,) —j/N 1
S @it/ O g, [ B,
]E[Ng] QS((I)_ (]/Ng)) 0
where h(z) = ¢>ED<I>*—1(32))’ and B(-) is a standard Brownian bridge. Thus, as N, — 00, By, 1 —*4
(Hg — H4), where E(Hg — H4) =0 and VCL’I”(H3 — H4) = 23?1 > 0.
The above results also imply that ¥, n, —, VY, = th N%, Zze[n ] eZpM iz€ip- Thus, as

n, T — oo and £ — oo, \/ngT(gg—ég) —a N(0,%5), with X5, = W 2(X41+¥p,) > 0. O

A.2.2.3 Proof of Theorem

Proof. From Lemmas it follow that 8, — 8; = (X, X;) "' X u; + O, [(n,T)" /] =
(X' X)) ' X u; + 0,(1). Also, E(6;) = 6; + O (T™"), where the incidental parameter bias
arises from the estimation of o, and vy, Then under Assumptions[A.THA.7] the asymptotic

distribution of @ in 1} and a consistent estimator of its variance are derived using Theorems

3.1 and 3.2 from (Chudik and Pesaran| (2019), respectively. O
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A.2.3 Comparisons of Pooled OLS, FE, and MG estimators in

heterogeneous panel data models

Consider a heterogeneous panel data model given by

Yir = i + 23,8 + i,
forv = 1,2,...,n and t = 1,2,...,7T. Assuming the regressors are exogenous, the pooled
ordinary least squares (OLS) and fixed effects (FE) estimators can be rewritten as weighted

averages over individual-specific OLS estimators, with non-uniform weights shown below.

For the slope coefficients, the pooled OLS estimator is given by

Z Z T — wzt ZIZ)’] ZZ Tt — ?/zt y)]

i=1 t=1 i=1 t=1

- LS (i — &) (@i — &) IS (@i — ) (e — ) |
_ Z 1 [ T Zat=1 ] T £at=1 ]
U Zz 1 Zt (@i —

/81'7
i=1 )(wlt - m) % 25:1 (mit - jl)(ylt - gz) |

the weight on the individual—speciﬁc OLS estimate

where T = %Z?:l T, with &, = %ZL iy, = (nT)" '3 " | §; with g; = %Zle Vi, and
1 & T
7 Z(wzt — &) (xy — ;) T Z(wzt — ;) (yi — 3?@)] .

t=1 t=1

The FE estimator for panel data models is given by

- Z Z(mzt — &) (i — fz)/]

BPOLS =

i =

3

BFE =

=1 t=1

— - l T Zt @i — &) (T — Z4)' 5
- zzzlj\n [ﬁ D i Zt:1($it —&;) (T — m)’]}ﬁz'

~
the weight on the individual-specific OLS estimate

i=1 t=1

(nT)™* Z Z(%t — ;) (yir — yz)]

Also, the mean group (MG) estimator is given by
A "1
Bue = Z ﬁﬁia
i=1
with a uniform weight of 1/n on all individual-specific estimates.

When the weights in pooled OLS and FE estimators are correlated with individual-specific

slope coefficients, they may not serve as unbiased or consistent estimators for the population
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mean of heterogeneous coefficients, given by 3, = plz’mn_m% > iy B;. In contrast, the MG

estimator is consistent and can be viewed as a sample analog of 3.

A.3 Supplementary MC evidence

Table shows simulation results of FE, 2sCOPE-FE, and 2sCOPE-MG estimators in
Cases 1.4-1.6: static panel data models under both regressor and slope endogeneity with
different error and regressor processes. For detailed data generating processes and discus-
sions, see subsection 4.1.4]in the main paper. Tables and present simulation results
in Cases 2.1 and 2.2 of dynamic panel data models under regressor endogeneity and slope

endogeneity, respectively. See subsection 4.2 in the main paper for details.

All
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A.4 Supplementary empirical results using Dominick’s scanner
data

For the cereal category, Figure shows scatter plots of 2sCOPE-MG store-specific
estimates of the dynamic sales response model in of the main paper against store-
specific regressor means. The estimation results using a static sales response model are
reported in Table[A.4] Table presents results using a dynamic sales response model with
lagged sales and lagged price, and the corresponding scatter plots are shown in Figures
and [A3] See subsection [5.1] in the main paper for details.

Tables and [A.7] provide FE, MG, and 2sCOPE-FE estimation results across 21 cat-
egories in Dominick’s scanner database, respectively, for the dynamic sales response model
in of the main paper. Table shows the 2sCOPE-MG estimation results assuming
store-specific coefficients in the Gaussian copula model, where the estimates are comparable
to those in Table [11]in the main paper with homogeneous Gaussian copula coefficients. See

subsection in the main paper for our discussions.
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Figure A.1: Scatter plots of 2sCOPE-MG store-specific estimates on store-specific mean of

regressors in a dynamic panel data model with lagged sales as regressors

Notes: The x-axis is computed as
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regressor j, denoted as log(Price;), Bonus;, PriceRedu;, and log(Sales; _1), respectively. In each sub-

plot, “cor.

2

and “p-value” denote the Pearson correlation coefficient between the 2sCOPE-MG store-specific

estimates and store-specific mean of regressors, and the associated p-value. See notes under Table [10|in the

main paper for the model and estimation procedure.
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Table A.4: Estimates of average price elasticity and promotion effects on cereal sales in a
static panel data model using a homogeneous Gaussian copula

Copula generated regressors v
n @ 3) (4) G ©

Estimator FE MG 2sCOPE-FE 2sCOPE-MG FE-IV MG-IV
log(Price;) -1.199  -1.106 -1.702 -1.587 -1.679  -1.554

(0.055) (0.028) (0.090) (0.103) (0.130)  (0.050)
Bonusy 0.203  0.199 0.158 0.159 0.190 0.212

(0.025) (0.017) (0.029) (0.032) (0.023) (0.020)
Price Redu, 0.152 0.143 0.089 0.094 0.113 0.113

(0.030) (0.017) (0.033) (0.034) (0.027) (0.023)
Store fixed effects Y Y Y Y Y Y
Week fixed effects Y Y Y Y Y Y
Test of price endogeneity
Pearson cor. - - 0.269 0.232 - -
p-value - - 0.000 0.000 - -
Slope endogeneity - Y - Y - Y
Regressor endogeneity - - Y Y Y Y
No. observations 13,600 13,600 13,600 13,600 11,520 11,520

Notes: The estimates are based on a balanced panel of 80 stores over 170 weeks (1990-1994) of the cereals
category from Dominick’s database. The static sales response model is given by log(Sales;;) = a; + 7+ +
Bi1log(Price;) + BioBonusy + BisPriceRedugy + &, where a; and 74 denotes store and week fixed effects,
respectively. The coefficients of the Gaussian copula model are assumed to be homogeneous across stores. (i)
Price, bonus, and price reduction are computed as market share weighted averages over UPCs sold in each
store. (ii) log(Sales;;) and log(Price;;) are detrended prior to estimation, using linear and quadratic trends,
respectively. (iii) To construct an instrument for price, we consider the weekly prices of UPCs average over
different stores (for those UPCs whose prices are observed over all periods), and we further aggregate the
prices over UPCs for each store with “predetermined” weights. The weights are computed as market shares
of these UPCs in each store average over the first 26 weeks, which are excluded from the sample used in IV
estimation (7" = 144). The first stage regression includes time fixed effects and the exogenous variables, and

assumes homogeneous and heterogeneous slopes of the IV for FE and MG estimators, respectively.
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Table A.5: Estimates of average price elasticity and promotion effects on cereal sales on
cereal sales in a dynamic panel data model with lagged sales and lagged price as regressors
using a homogeneous Gaussian copula

Copula generated regressors v
@ 3) (4) G ©
Estimator FE MG 2sCOPE-FE 2sCOPE-MG FE-IV MG-IV
log(Sales; ;1) 0.115  0.148 0.112 0.145 0.108 0.114
(0.024) (0.015) (0.024) (0.017) (0.020) (0.020)
log(Price;) -1.289 -1.214 -1.675 -1.566 -1.868  -1.670
(0.058) (0.021) (0.087) (0.097) (0.144) (0.047)
log(Price;;—1) 0.360  0.375 0.321 0.346 0.095 0.465
(0.049) (0.023) (0.051) (0.055) (0.027) (0.027)
Bonusy 0.195  0.189 0.161 0.159 0.608 0.203
(0.024) (0.019) (0.028) (0.031) (0.062) (0.027)
Price Redug 0.143  0.136 0.094 0.100 0.180 0.103
(0.029) (0.016) (0.032) (0.032) (0.023) (0.022)
Store fixed effects Y Y Y Y Y Y
Week fixed effects Y Y Y Y Y Y
Test of price endogeneity
Pearson cor. - - 0.218 0.179 - -
p-value - - 0.000 0.000 - -
Slope endogeneity - Y - Y - Y
Regressor endogeneity - - Y Y Y Y
No. observations 13,520 13,520 13,520 13,520 11,440 11,440

Notes: The estimates are based on a balanced panel of 80 stores over 169 weeks (1990-1994) of the cereals
category from Dominick’s database. The dynamic sales repsonse model is given by log(Sales;:) = a; +
T: + ¢; log(Sales; 1—1) + Bi1 log(Price;t) + ¢i0 log(Price; 1—1) + Bio Bonusi; + BisPriceRedu;, + &, where «;
and 7y denotes store and week fixed effects, respectively. The coefficients of the Gaussian copula model are
assumed to be homogeneous across stores. (i) Price, bonus, and price reduction are computed as market
share weighted averages over UPCs sold in each store. (ii) log(Sales;;) and log(Price;;) are detrended prior
to estimation, using linear and quadratic trends, respectively. (iii) To construct an instrument for price, we
consider the weekly prices of UPCs average over different stores (for those UPCs whose prices are observed
over all periods), and we further aggregate the prices over UPCs for each store with “predetermined” weights.
The weights are computed as market shares of these UPCs in each store average over the first 26 weeks,
which are excluded from the sample used in IV estimation (7" = 143). The first stage regression includes
time fixed effects and the exogenous variables, and assumes homogeneous and heterogeneous slopes of the
IV for FE and MG estimators, respectively.
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Figure A.2: Scatter plots of 2sCOPE-MG store-specific estimates on within-store regressor
variations in a dynamic panel data model with lagged sales and lagged price as regressors
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with Z; ;) = 7! Zthl Ty, () for each re-

gressor j, denoted as V (log(Price;)), V(Bonus;), V(PriceRedu;), V (log(Sales; —1)), and V (log(Price; —1)),

respectively. In each sub-plot, “cor.

2

and “p-value” denote the Pearson correlation coefficient between the

2sCOPE-MG store-specific estimates and within-store regressor variations, and the associated p-value, re-

spectively. See notes under Table for the model and estimation procedure.
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Figure A.3: Scatter plots of 2sCOPE-MG store-specific estimates on store-specific mean of
regressors in a dynamic panel data model with lagged sales and lagged price as regressors

cor. = 0.088 00 cor. =-0.042 oo cor. =-0.142 00- cor. =-0.134 00~ cor. =-0.058
p-value = 0.439 os) prvalue = 0.711 N p-value = 0.209 o5 p-value = 0.235 o5 p-value = 0.609
- . 10- w +
| ettt ok . o] . o Pagates, .. e
DL !. St et | g5 P T 775
204
. au
s o o5 o s 2o s g o5 45 40 5 f0 5 o0 o5 10 15 0 25 sb & in s fs 4o g5 o s to < o o ds Fo is (o 45_o0 a5 tb 15 2o 25 ab g
log(Price;) Bonus, PriceRedy; log(Sales; ;)
cor. =-0.157 15 cor. = 0.091 15 cor.=0223 5 cor. =0.105 o cor. =-0.084
cor.=0.164 ¥ p-value = 0.42 o p-value =0.047 p-value = 0.352 ol p-value = 0.46
o . . 5 PN . . 05+ B oo 081 .,
10 . o o
r S 1 15 5 B R T T S 1
S5 A0 s o R v 4o -is -fo 65 o0 o5 to 15 2o 2k ab o 45 4o -{s -lo 55 va o5 vo 15 2o 25 &b a5 5 00 05 10 45 20 5 A0 85 do ds s 15 50 A5 5o o
Bonus, PriceRedy, log(Sales, 1) log(Price, )
a cor. =-0.34 15= cor. = 0.217 15 cor.=0.174 15+ cor. =-0.028 5= cor. =-0.296
B b p-value = 0.002 N p-value = 0.053 1ol p-value = 0.122 vo p-value = 0.804 ol p-value = 0.008
k] . . .
H o o5 L 5
s . oo 2 . o te ot RS
5o g ey o - s L RE=N v TR AN ¥ 3 =
H . . . .
2
8- 10- i 0 o
o~ D S, S 15+ 15 . )
35 40 s o 45 o0 o5 1o 15 s u Ao 4s 0 s oo o tlo ts 2o 2s 30 a5 du do s t0 s v us tlo 1 20 25 3 gb 4o 5 -lo s oo ds 1o 15 2o 75 gb ds s 20 gls ab ds
log(Price;) Bonus, PriceRedu; log(Sales, ;)
cor. =0.109 15 cor. = -0.23 15- cor. = -0.267 16 cor. = -0.247 5 cor. = 0.061
" p-value = 0.335 B p-value = 0.04 B p-value =0.017 p-value = 0.027 p-value = 0.59
2 o o
2
g . o5 . os . . s
2
9 os as
5
& 10- ' 1w
LR T S B S Sy S R S A R B} e ! T G "5 .
Zs 4o As o 4 oo b 1o 1 Zo 2b g gl S5 2o s o 08 00 oS 10 15 20 25 db 4 S5 B0 15 -fo 05 oo 05 1o 20 25 o0 25 d o g oo ob 1'u 5 2o 2 b
log(Price;) Bonus; PriceReduy; log(Price; ;)
8 204 cor. = 0.075 20- cor. =-0.142 20- cor. =-0.211 20- cor. =-0.205 20~ cor.=0.115
2 p-value = 0,506 15 p-value = 0.209 1ol p-value = 0.061 N p-value = 0.068 o p-value = 0.312
& 10- L 10 B 1w 4
S T
3 oo os H ~y o o5 P ] a5
s, HED P . 1
& wo- . a
8 .
Suas- s 05
g
o 10 ! 10
o o i 25 aly 5 4o s R,

T —n 3 Tig)
VT @) T T T )
regressor j, denoted as log(Price;), Bonus;, PriceRedu;, log(Sales; _1), and log(Price; _1), respectively.

” and “p-value” denote the Pearson correlation coefficient between the 2sCOPE-MG

Notes: The x-axis is computed as

with ; ;) = 71! Zthl Ty, ;) for each

In each sub-plot, “cor.

store-specific estimates and store-specific mean of regressors, and the associated p-value. See notes under
Table for the model and estimation procedure.
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