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ABSTRACT

Endogeneity is a primary concern when evaluating causal effects using observational panel data. 
While unit-specific intercepts control for unobserved time-invariant confounders, dependence 
between (i) regressors (e.g., marketing mix strategy of interests) and the current error term 
(regressor endogeneity) and/or between (ii) regressors and heterogeneous slope coefficients (slope 
endogeneity) can introduce significant estimation bias, resulting in misleading inference. This 
paper proposes a two-stage copula endogeneity correction mean group (2sCOPE-MG) estimator for 
panel data models, simultaneously addressing both endogeneity concerns. We generalize the IV-
free copula control function, employing a general location Gaussian copula that effectively 
captures the panel structure. The heterogeneous coefficients are treated as unit-specific fixed 
parameters without distributional assumptions. Consequently, the 2sCOPE-MG estimator allows 
for arbitrary dependence structure between heterogeneous coefficients and regressors. Unlike 
Haschka (2022), 2sCOPE-MG requires neither a normal error distribution nor a Gaussian copula 
regressor-error dependence structure and is more robust, easier to implement, and capable of 
addressing slope endogeneity. The 2sCOPE-MG estimator is extended to dynamic panels, where 
intertemporal dependence in the outcome process can be suitably captured. We study its asymptotic 
properties and provide an analytical variance formula for inference without the need to bootstrap. 
For short dynamic panels, a Jackknife bias-corrected 2sCOPE-MG estimator is provided to ensure 
unbiased inference. The usage of the 2sCOPE-MG estimator is demonstrated by Monte Carlo 
simulations and a marketing mix response application across 21 categories to account for regressor 
and slope endogeneities in store-panel sales data.
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1 Introduction

With technology advancement, high-quality panel data are now widely available in mar-

keting and other related fields. For example, population-level administrative data are rou-

tinely captured by firms, stores, web platforms, hospitals, governments, and organizations

as part of their daily operations. Particularly, scanner panel data provide detailed and

high-fidelity real-life purchase data, capturing individual purchase behaviors linked with

concomitant marketing mix variables in real time. These high-quality panel datasets offer

tremendous opportunities to infer causal relationships among relevant variables, facilitating

optimal decision-making (e.g., setting prices or advertisement budgets to maximize prof-

its). However, except in the case of experimentally generated data (e.g., field or conjoint

experiments), these data sets are often observational that complicates causal inference.

Researchers and practitioners often encounter two prominent challenges that plague stan-

dard panel regression analysis based on observational data. The first challenge is the po-

tential regressor-error dependence. Frequently, the regressors of primary interests such as

marketing mix variables, are endogenous and set by managers based on relevant demand

shocks (e.g., certain product characteristics) unobserved to data analysts. Such unmeasured

confounders generate dependence between these key regressors and the error term in the

panel regression model, which can cause severely biased effect estimates of these marketing

mix variables if ignored. In a meta-analysis, Bijmolt et al. (2005) found substantial differ-

ences in price elasticity estimates, depending on whether price endogeneity is accounted for.

By including unit-specific intercepts in the model, the fixed-effects (FE) approach can elimi-

nate confounding effects of time-constant unobservables. However, dependence between the

regressors and the current error term can persist and lead to inconsistent estimation because

of time-varying unmeasured confounders. Examples of such confounders are consumer tastes

or unobserved brand attributes evolving over time when modeling consumer choices (Chinta-

gunta et al., 2005), and purchase intent when studying effects of Internet advertising (Hoban

and Bucklin, 2015; Blake et al., 2015). Such endogeneity also arises with correlated measure-
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ment errors in variables, simultaneity, or reverse causality. We name it “contemporaneous

regressor endogeneity.”

The second challenge is the potential regressor-coefficient dependence. The values of

marketing mix regressors observed in historical data can be set by managers who possess

private information about marketing response coefficients. For example, store managers may

charge higher prices in markets with lower price elasticity. Broadly speaking, the correlations

between heterogeneous responses coefficients and marketing mix regressors are naturally in-

duced by targeted promotions and advertisements (Manchanda et al. 2004, Luan and Sudhir

2010, Goldfarb and Tucker 2011, Blake et al. 2015, Hoban and Bucklin 2015, Esteves and

Resende 2016) and behavior-based pricing (Li, 2018).1 Neglecting such regressor-coefficient

correlations can yield biased estimates for the average effects (i.e., the mean of response

coefficients), as shown in Wooldridge (2005) and Pesaran and Yang (2024). Hence, we term

it as “slope endogeneity” (Luan and Sudhir, 2010).

This paper introduces a copula control function approach to estimating the average ef-

fects of potentially endogenous regressors in heterogeneous panel data models with correlated

random coefficients. A two-stage copula endogeneity corrected mean group (2sCOPE-MG)

estimator is proposed, simultaneously addressing both concerns of contemporaneous regres-

sor endogeneity and slope endogeneity without using instrumental variables (IVs). Extending

the two-stage copula endogeneity correction approach in Yang et al. (2024) to the panel data

setting, we capture the dependence between the current error term and endogenous regres-

sors using a general location Gaussian copula that employs nonparametric marginals and

1Game-theoretical models are employed to examine the impacts of targeted advertisements (Iyer et al.,

2005) and behavior-based pricing (Li, 2018) on equilibrium sales, profits, etc. In these models, consumers

are targeted based on their purchase history or attributes, where the impact of consumer heterogeneity on

equilibrium outcomes is highlighted. Similarly, it is crucial to incorporate correlated heterogeneous responses

in empirical studies of causal effects of marketing mix variables. For example, Goldfarb and Tucker (2011),

Blake et al. (2015), and Hoban and Bucklin (2015) estimate the causal effect of Internet advertising using data

from field experiments. With the concern of regressor endogeneity being relieved, they capture heterogeneous

treatment effects by interacting the treatment dummy with observed characteristics of ads and consumers.

For observational studies, this strategy may not fully account for heterogeneity in consumer responses, which

can be correlated with regressors in unknown functional forms.
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accounts for the panel data structure. Assuming either the error term or the endogenous

part of the error term is locally Guassian distributed within each panel unit, we can decom-

pose the error term as a linear combination of first-stage residuals computed using copula

transformed regressors, known as the “copula control function (CCF)”, plus a new indepen-

dent error term. Then we augment the panel data model with CCF in the second stage. As

CCF captures the regressor-error dependence, the new error term in the augmented panel

data model is orthogonal to all the regressors, addressing the regressor endogeneity problem.

Given this augmented panel data model with heterogeneous coefficients, we adopt the mean

group (MG) estimator (Pesaran and Smith, 1995; Pesaran and Yang, 2024) for the average

effects.

Compared with the likelihood-based copula FE estimator for panel data by Haschka

(2022), 2sCOPE-MG requires neither a normal error distribution nor a Gaussian copula

regressor-error dependence structure and is more robust, easier to implement, and more

general by allowing for slope endogeneity. Treating heterogeneous coefficients as fixed pa-

rameters, the estimator we propose is agnostic to (i) the underlying distributions of het-

erogeneous coefficients and (ii) the dependence structure between heterogeneous coefficients

and regressors (such as marketing mix variables, customer characteristics, and product at-

tributes). Moreover, the 2sCOPE-MG estimator is extended to dynamic panels with lagged

outcome variables as regressors. Dynamic panel models allow researchers to separately an-

alyze short-term and long-term effects, making them especially valuable for studying the

impact of marketing mix activities on the growth and market potential of a new brand. As

the incidental parameter problem is inherent in estimating dynamic panels with fixed effects,

we correct the small time-period (T ) bias by the Jackknife (JK) method.

By Monte Carlo (MC) simulations, we examine finite sample properties of the 2sCOPE-

MG estimator, compared with the FE and two-stage copula augmented fixed effects (2sCOPE-

FE) estimators. In static panel models, it is shown that the 2sCOPE-MG estimator remains

unbiased in the presence of regressor endogeneity, slope endogeneity, or both and is robust
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under various data generating processes of the error term and regressors. We also caution

practitioners about the substantial bias exhibited in the FE estimates in these scenarios, as

well as bias in the 2sCOPE-FE estimator that addresses regressor endogeneity but neglects

slope correlated heterogeneity. In dynamic panels, while FE and 2sCOPE-FE estimators

exhibit more pronounced bias, the 2sCOPE-MGJK estimator continues to provide unbiased

inference. Moreover, the MC results also demonstrate the effectiveness of including addi-

tional lagged variables as regressors to resolve the regressor endogeneity induced by serially

correlated errors. Accompanied by a detailed guideline in subsection 3.7, these simulations

aim to assist researchers in applying the 2sCOPE-MG estimator in practice.

We apply the 2sCOPE-MG method to estimate price elasticity and promotion effects

(bonus and price reduction) in a dynamic sales response model, analyzing store-week panel

data from Dominick’s scanner data (1991–1994) for each of the 21 categories separately. We

find that failing to account for price endogeneity leads to significant attenuation bias in the

price elasticity for 19 categories. The price elasticity estimates after endogeneity correction

can be twice the size of the uncorrected ones in certain categories. Comparisons with alter-

native methods show that ignoring slope endogeneity alone can lead to either overestimation

or underestimation in the price elasticity estimates, depending on the correlation between

store-specific price elasticities and within-store price variations. Consistent with reference

price theory, the result shows that consumer response parameters vary not only with the

levels but also with the variability of prices and promotions over time. Overall, averaging

over 21 categories, the estimated price elasticity, which does not account for either endogene-

ity issue, is 0.258 smaller in size than the 2sCOPE-MG estimate. The difference amounts

to 18.4% of the category-average price elasticity estimate of -1.407 based on the 2sCOPE-

MG method. Moreover, the FE estimated price reduction effect for all categories has a

large upward bias, that is, on average, 40.6% of the corresponding 2sCOPE-MG estimate of

0.233.2 These results indicate that ignoring endogeneity in observational data can distort

2For the average bonus effect and persistence of sales (measured by the mean autoregressive coefficients),

the bias direction varies across categories.
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our understanding of marketing mix responses and misguide the design of future marketing

strategies.

The rest of the paper is organized as follows. Section 2 reviews the literature on estimation

methods handling regressor endogeneity and/or slope endogeneity. Section 3 sets out the

model and derives the 2sCOPE-MG estimator. Section 4 presents MC evidence. Section

5 shows the application of estimating the dynamic sales response model using Dominick’s

scanner data. Section 6 concludes.

2 Literature review

Existing estimation methods in the literature are often designed to solve a single type

of endogeneity. While considerable progress has been made, these methods often require

the availability of auxiliary data (e.g., IVs) to identify causal effects or accurate knowledge

of the dependence between consumer response parameters and marketing mix variables to

address slope endogeneity. As an alternative, the 2sCOPE-MG method requires neither

condition, enabling straightforward and potentially broader applications using observational

panel data.

There is a rich set of estimation methods explicitly modeling heterogeneity in consumer

responses by the random coefficient approach, with a focus on optimizing the marketing mix

strategy. The Hierarchical Bayesian (HB) method reviewed in Rossi and Allenby (2003) is

widely used in the marketing literature, particularly with a Gaussian prior of random co-

efficients. The HB models have been used in modeling discrete choices (Rossi et al., 1996;

Allenby and Rossi, 1999; Andrews et al., 2002), discrete choices jointly with consideration

sets (Van Nierop et al., 2010) or with selectively missing values in marketing mix variables

(Qian and Xie, 2011), demand with marketing mix variables (Manchanda et al., 2004; Fok

et al., 2006), customer channel migration (Ansari et al., 2008), and optimal price targeting

(Smith et al., 2023). Alternatives to parametric HB include semiparametric finite mixture

models assuming discrete random coefficients (Allenby and Rossi, 1999; Andrews et al., 2002)
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and more flexible prior distributions for heterogeneous coefficients (Fiebig et al., 2010; Ebbes

et al., 2015). Besides the Bayesian approach, in conjoint analysis, Evgeniou et al. (2007)

introduce a new approach to model heterogeneity using convex optimization and ridge regres-

sions with unit-specific coefficients, and Chen et al. (2017) further develop a sparse learning

approach for a multimodal continuous heterogeneity distribution. The above approaches

have improved model fits and predictions by explicitly modeling consumer heterogeneity.

However, these methods are designed for experimental data or otherwise assume no endo-

geneity issues (i.e., independence between marketing mix regressors and response coefficients

as well as between these regressors and the error term conditional on observables) and may

yield significant estimation bias in the presence of slope or regressor endogeneity, with only

a few exceptions described below. To address slope endogeneity, Manchanda et al. (2004),

Fok et al. (2006), and Luan and Sudhir (2010) model the relationships between the latent

heterogeneous coefficients and marketing mix variables, which may additionally require the

availability of IVs (Luan and Sudhir, 2010). In contrast, the proposed 2sCOPE-MG es-

timator can handle arbitrary types of slope endogeneity, while requiring neither IVs nor

knowledge about the nature of slope endogeneity. Given this advantage, Dubois et al. (2020)

also use the MG approach to estimate individual preferences in a logit demand model with

consumer-level purchase panel data. The flexibility in heterogeneity distributions enables

the evaluation of soda taxes’ effectiveness in reducing sugar consumption among targeted

groups. Moreover, only Luan and Sudhir (2010) and our 2sCOPE-MG method simultane-

ously consider the problem of regressor endogeneity (regressor-error dependence), which we

discuss next.

To tackle regressor endogeneity, the conventional approach is to use IVs, where available

data on exogenous variations play a key role. However, good IVs that affect the outcome

only through the focal regressor (i.e., the exclusion restriction) can be hard to find and

validate in practice (Rossi, 2014). Even with theoretical guidance, ruling out alternative

causal pathways requires significant efforts, especially when an IV has been used across dif-
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ferent studies (Mellon, 2024). Given these challenges, the recent copula-modeling approaches

(Park and Gupta, 2024; Qian et al., 2024) have the comparative advantage when facing a

data problem. The IV-free copula approach to correcting regressor endogeneity was first

introduced in Park and Gupta (2012), who proposed the maximum likelihood (MLE) and

least squares estimators with copula-generated regressors. Later, Haschka (2022) generalizes

the approach to linear panel models with fixed effects but homogeneous slopes and derives

an alternative MLE that permits correlations between endogenous and exogenous regressors.

The generalized least squares transformation employed by Haschka (2022) can only eliminate

impacts of unit-specific intercepts but not those of correlated heterogeneous slopes. Hence,

the MLE estimator will be susceptible to bias due to slope endogeneity. Yang et al. (2024)

propose a two-stage copula control function estimator that can handle endogenous regres-

sors with insufficient nonnormality and/or correlated with exogenous regressors. Its greater

usage over various regressor distributions and robustness lay a good foundation for our fur-

ther development in heterogeneous panel data models.3 Nevertheless, none of the existing

copula approaches or standard IV procedures handles the salient slope endogeneity problem

in heterogeneous panel data models.4

We also adapt the copula procedure for dynamic panel models with heterogeneous slopes.

The advantages of leveraging historical purchase data to enhance prediction accuracy are em-

phasized in Rossi et al. (1996), where they showed that the optimal customization procedure

predicted using individual observations over all periods yields the largest net revenue. An

alternative approach involves constructing aggregate/average measures and using them as

regressors (Bucklin and Sismeiro, 2003; Smith et al., 2023). However, state dependence is a

key feature in many outcome variables, like consumption and income. It is less clear how

3For reviews of other IV-free endogeneity correction methods, see Ebbes et al. (2009), Park and Gupta

(2012) (p. 568) and Yang et al. (2024) (p. 10). Lewbel et al. (2024) propose a higher moments approach,

where they assume the endogenous regressor can be decomposed linearly into an endogenous component and

an exogenous component that does not affect the outcome.
4While Park and Gupta (2012) and Yang et al. (2024) use copula models to address slope endogeneity in

cross-sectional data, we employ the model-free MG approach to handle slope endogeneity in heterogeneous

panel models.
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serial correlations in the outcome and regressor processes can be dealt with in the above

papers. We capture dynamics using lagged variables as regressors (Montgomery et al., 2004;

Fok et al., 2006) and discuss conditions and appropriate copula procedures to handle serial

correlations in the error term, ensuring they do not pose difficulties in applying our method.

3 Models and estimation procedures

3.1 Static panels with regressor and slope endogeneity

Consider the following static panel data model for an outcome variable:

yit = αi + β
′
ipit + γ

′
i,1wit,1 + γ

′
2wit,2 + ξit, for i = 1, 2, ..., n, and t = 1, 2, ..., T, (1)

where pit is a Kp × 1 vector of continuous endogenous regressors (e.g., price), and wit =

(w′
it,1,w

′
it,2)

′ is a Kw × 1 vector of strictly exogenous control variables, with possibly hetero-

geneous coefficients. Let xit = (1,p′it,w
′
it,1)

′. Stacking (1) over time, we have

yi =X iθi +W i,2γ2 + ξi, (2)

where yi = (yi1, yi2, ..., yiT )
′, X i = (xi1,xi2, ...,xiT )

′, W i,2 = (wi1,2,wi2,2, ...,wiT,2)
′, ξi =

(ξi1, ξi2, ..., ξiT )
′, and θi = (αi,β

′
i,γ

′
i,1)

′. One is often interested in estimating the mean

coefficients (i.e., the average partial effects): θ0 = E [E(θi|X i,W i,2)]. For example, in

category demand models, these mean coefficients may represent average category price or

advertising elasticity across a population of stores or markets. Such population-averaged

category elasticity estimates are often a key piece of information for policymakers to design

policy interventions (e.g., soda tax) or for marketers to set optimal product pricing strategy

and advertising budget.

When using the historical data to estimate the above panel data model, the popular FE

panel data estimator assumes that the fixed effects αi and the time-varying control variables

in (wit,1,wit,2) capture all time-constant and time-varying confounders, respectively. When

this assumption is violated and regressors and errors (or unit-specific coefficients) are actually

correlated (e.g., because of potential omission of relevant time-varying confounders (Germann
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et al., 2015)), the FE panel data estimator can be severely biased. Furthermore, when slope

coefficients are heterogeneous and correlated with regressors, the FE estimator that neglects

such correlation between regressors and slopes, also resulting in severe bias and misleading

inference.

Remedies require availability of additional data (measuring and controlling for all time-

varying confounders or obtaining valid IVs) that is often impossible or difficult to obtain

in practice. In these cases, we address endogenous regressors in panel data using a general

and feasible IV-free copula endogeneity correction approach as described next. Then we

demonstrate how to use the MG estimator to address slope endogeneity.

3.2 A generalized framework for IV-free copula correction

The rationale for the proposed approach is to correct the endogeneity bias via directly

accounting for the dependence between the regressors and the structural error using copulas.

A primary reason for such regressor-error dependence in a regression model is due to omitted

variables. For example, in the sales response model, the structural error term may contain

unmeasured managerial knowledge in decision-making (e.g., demand shocks, unmeasured

product characteristics, or the cost of production) affecting both consumer purchases and

retailer price decisions, leading to the regressor-error dependence.

In these cases, it appears reasonable to decompose the structural error term as ξit =

σiξ
∗
it + vit, where ξ

∗
it is the error’s (rescaled) endogenous part that captures the combined

effects of all omitted variables mentioned above, and vit is a disturbance term independent

of the regressors and omitted variables such that E(vit|pis,wis, ξ
∗
is) = 0 for all i, t, and s.

As ξ∗it represents the combined effects of many omitted variables, it is reasonable to assume

it approximately follows a normal distribution with ξ∗it
iid∼ N(0, 1). The distribution of the

disturbance term is left unspecified, so the error term does not need to follow a normal

distribution.

To account for contemporaneous regressor endogeneity, we propose to capture the de-

pendence between the regressors and the endogenous part of the error term (ξ∗it) using the
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following general location Gaussian copula (GC) model that takes into consideration the

panel data structure:

pit = αip + ϕ
P
i zit + eit,p, wit = αiw + ϕW

i zit + eit,w, (3)

and 
e∗it,w

e∗it,p

ξ∗it

 ∼ IIDN (0,V i,ρ) with V i,ρ =


V i,w V ′

i,pw 0

V i,pw V i,p ρi

0′ ρ′
i 1

 , (4)

where e∗it,p = Φ−1 (Fp(eit,p)) and e∗it,w = Φ−1 (Fw(eit,w)), V i,ρ, V i,w, and V i,p are (Kp +

Kw + 1) × (Kp +Kw + 1), Kw ×Kw, and Kp ×Kp positive definite and bounded matrices

with diagonal elements being one and possibly non-zero elements off the diagonal, V i,pw is

a Kp ×Kw matrix, and ρi is a Kp × 1 vector.

Notations. For a random variable x with a continuous distribution function (CDF) F (·),

denote x∗ = Φ−1(F (x)), where Φ(·) is the standard normal CDF.

We propose using the above general location GC model for a number of reasons. Broadly

speaking, a GC model has a number of merits that makes it widely applicable and flexible

to adequately capture multivariate dependence (Danaher and Smith, 2011; Park and Gupta,

2012; Christopoulos et al., 2021; Eckert and Hohberger, 2023; Qian and Xie, 2024). The

GC model links marginal distributions of the variables in Equation 4 to form their joint

distribution, even when these variables follow arbitrarily disparate marginal distributions,

such as bounded supports, multi-modals, or skewed distributions. By using the nonpara-

metric empirical CDF estimates of F (·), the GC model does not require these variables to

take particular distributional forms, is capable to faithfully maintain the important marginal

distributional features of regressors for model identification while simultaneously capturing

the dependence of focal variables in Equation 4 separately from their marginal distributions.

The above general location GC model also explicitly accounts for panel data structure

and possible heterogeneous endogeneity across panel units. In Equation 3, the regressors
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{pit} and {wit} are allowed to depend on unit-specific mean levels (α′
ip,α

′
iw)

′ and observed

exogenous covariates in zit (such as time trends) with the respective coefficients ϕP
i and

ϕW
i , and eit,p ⊥ zit, and eit,w ⊥ zit. We do not require zit to contain IVs that meet the

exclusion restriction condition. In fact, zit can be null. The error terms in (2) and (3) then

follow a Gaussian copula model described in Equation 4, capturing the regressor endogeneity

of pit and the dependence among endogenous and exogenous regressors. Thus, the general

location GC model captures both linear and nonlinear effects of exogenous regressors on

the endogenous ones while taking into consideration panel data structure and strengthening

identification for endogenous regressors with Gaussian errors as will be shown later. Fur-

thermore, in Equation 4, the correlations between eit,w, eit,p, and ξ∗it is characterized by a

possibly heterogeneous Gaussian copula model that permits the GC dependence structure to

vary by panel units. Thus, the above general location model includes prior copula correction

models (Park and Gupta, 2012; Haschka, 2022; Yang et al., 2024; Breitung et al., 2024) as

special cases.5

Finally, the above general location GC model has the desirable property of double robust-

ness. It is important to note that Equation 4 does not involve the error’s exogenous part, vit.

Therefore, the dependence between the structural error ξit and regressors’ errors needs not

to follow a GC model and is left unspecified. Alternatively, one can assume ξit = σiξ
∗
it where

ξ∗it is simply the standardized error term. Then Equation 4 does impose the assumption of

GC regressor-error dependence while not assuming the error term can be decomposed to

exogenous and exogenous parts. The proposed copula correction approach can work under

either set of assumption and thus possesses the property of double robustness. Furthermore,

even when both assumptions are wrong, the copula correction demonstrates robustness to a

range of departures to the violation of both assumptions.

5Breitung et al. (2024) consider a degenerated GC model between the structural error’s endogenous part

and the error of endogenous regressor in which the correlation coefficient in the GC model is fixed at ±1.

Such a one-to-one deterministic linear relationship appears to be a too strong assumption to hold in practice.
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3.3 An overview of how it works

The copula model given by (4) can be rewritten as
e∗it,w

e∗it,p

ξ∗it

 =


V

1/2
i,w 0Kw×Kp 0Kw×1

V i,pwV
−1/2
i,w

(
V i,p − V i,pwV

−1
i,wV

′
i,pw

)1/2
0Kp×1

0′
Kw×1 ρ′

i,1 ρi,2



ω∗

it,w

ω∗
it,p

ω∗
it

 , (5)

with ρi,1 =
(
V i,p − V i,pwV

−1
i,wV

′
i,pw

)− 1
2 ρi, ρi,2 =

[
1− ρ′

i

(
V i,p − V i,pwV

−1
i,wV

′
i,pw

)−1
ρi

] 1
2
,

and
(
ω∗′

it,p,ω
∗′
it,w, ω

∗
it

)′ ∼ IIDN (0, Ik). Given (5), the transformed error terms of the en-

dogenous regressors can be decomposed into two orthogonal components:

e∗it,p = V i,pwV
−1
i,we

∗
it,w + ϵit,p, (6)

where ϵit,p is independent of e∗it,w but possibly correlated with ξ∗it, given by

ϵit,p =
(
V i,p − V i,pwV

−1
i,wV

′
i,pw

)1/2
ω∗

it,p = e
∗
it,p −Πi,pwe

∗
it,w, (7)

with Πi,pw = V i,pwV
−1
i,w. Finally, we obtain a decomposition of the structural error term:

ξ∗it = ρ
′
i,1ω

∗
it,p + ρi,2ω

∗
it = ρ̃

′
iϵit,p + ρi,2ω

∗
it, (8)

with ρ̃′
i = ρ

′
i,1

(
V i,p − V i,pwV

−1
i,wV

′
i,pw

)−1/2
.

Stacking (8) over time, we have ξ∗i = ϵipρ̃i + ρi,2ω
∗
i , with ϵip = (ϵi1,p, ϵi2,p, .., ϵiT,p)

′ and

ω∗
i = (ω∗

i1, ω
∗
i2, ..., ω

∗
iT )

′, and then plugging it into (2), we obtain the following panel model

augmented by the copula generated regressors, ϵip, given by

yi =X iθi +W i,2γ2 + ϵipδi + ui, (9)

with δi = σiρ̃i and ui = σiρi,2ω
∗
i + vi. Given (5) and recognizing vit as the exogenous

component of the structural error, the new error uit is exogenous to all regressors in (9):

Ei(uit|X i,W i,2, ϵip) = 0, for t = 1, 2, ..., T. (10)

Thus, the augmented panel regression model in (9) is free from the regressor endogeneity

problem. Based on the Gaussian copula model, we only need to estimate Πi,pw in (7) to

obtain the generated regressors and control for regressor endogeneity.
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3.4 Identification and estimation

The identification of the augmented panel regression model in (9) requires the full rank

condition of the predictor matrix. Specifically, the copula generated regressor ϵip cannot

be perfectly collinear with the existing regressors in (2). Thus, we need to further impose

certain distributional assumptions and rank condition on eit,p and eit,w, summarized below.

Theorem 1 (Identification). Given Equations (2), (3) and (4) and Assumptions A.1 (ran-

dom sampling), A.2(either the structural error or its endogenous part is normally distributed),

A.4(The regressors’ errors have bounded marginal density functions) and A.5(Either the

structure error or its endogenous part follows a GC model jointly with regressors’ errors.)

in the online appendix hold. Then (θ′,γ ′
2, δ

′)′ are identified if and only if for each endoge-

nous regressor, either (a) its error term has a marginal non-Gaussian distribution, or (b) its

error term has a marginal Gaussian distribution but is correlated with non-Gaussian error

terms of at least one distinct exogenous regressors errors. (See Assumption A.6 in the online

appendix.)

As noted previously, Assumptions A.2 and A.5 means that the proposed approach does

not require structural error be normally distributed or have a joint GC dependence with

regressors’ errors. Also, when the GC dependence structure are allowed to vary by panel

units, ξ∗it is normally distributed conditional on unit-specific effects and over t = 1, 2, ..., T .

Effectively, we do not impose normality assumption on the unconditional distribution of

ξ∗it across units. Furthermore, Assumptions A.2 and A.5 are working assumptions used in

the derivation of the control functions. 2sCOPE-MG demonstrates robustness to a range of

violations of both assumptions. With the identification conditions in place, we are ready to

formulate a new estimator based on regressions that addresses slope endogeneity. As shown

above, we adopt a general framework that allows for multiple heterogeneous effects in the

outcome model (2), the regressor decomposition (3), and the Gaussian copula (4), consistent

estimation of which requires a moderately large number of periods, T , of a panel dataset.
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Otherwise, small-sample bias may lead to poor estimates.

Table 1 presents our estimation algorithm. The copula correction assuming homogenous

GC dependence has shown robustness to heterogeneous endogeneity (Haschka, 2022). For

sufficiently long panel data, one can explicitly permit heterogeneous GC dependence across

panel units and obtain unit-specific endogeneity estimates. Specifically, we consider a

group-specific Gaussian copula model. When T is sufficiently large, each unit can be viewed

as a group. When T is moderately short, we cluster cross-sectional units into a much smaller

number of groups, where the group structure can be identified based on some categorical

variables (e.g., store-specific price tiers or consumer demographic characteristics) or informed

by prior beliefs. In the first stage, the copula generated regressors are computed as residuals

given group-specific estimates of the first-stage panel regression model. In the second stage,

we augment the original panel model with these generated regressors and estimate the mean

coefficients by averaging over the unit-specific OLS estimates.

3.5 Standard errors and inference

The asymptotic properties of the 2sCOPE-MG estimator for the mean coefficients are

summarized in Theorem 2. A proof is provided in the online appendix. Unlike Yang et al.

(2024), the proof needs to take into account the fact that copula transformations are per-

formed on the unobserved errors in the general location GC model for the regressors instead

of on the observed regressors themselves. As n, T → ∞ and n
T 2 → 0, θ̂ in (14) converges

to the same asymptotic distribution, regardless of whether a pooling or a known grouping

strategy is used in the estimation process.

Unlike all the previous copula endogeneity approaches, our inference does not require

bootstrapped standard errors for inference. The variance estimator given by (15) already

incorporates the estimation errors associated with θ̂i as well as the generated regressors.

Also, it is a consistent estimator for the asymptotic variance of θ̂. As confirmed by our MC

simulations, the estimated standard errors based on (15) are unbiased for the true variation

of the estimator (e.g., see Table 3).
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Table 1: Algorithm of the 2sCOPE-MG estimator

Data: {yit,pit,wit} for i = 1, 2, . . . , n, and t = 1, 2, . . . , T

Stage 1: Estimation of copula generated regressors.

1. Unit-specific demeaning: êit,p = pit − 1
T

∑T
t=1 pit and êit,w = wit − 1

T

∑T
t=1wit.

2. Apply group-specific Gaussian copula transformation based on empirical CDFs:

ê∗it,p = Φ−1
(
F̂g(i),p(êit,p)

)
and ê∗it,w = Φ−1

(
F̂g(i),w(êit,w)

)
.

3. Obtain residuals from group-specific regressions:

ϵ̂ip = P̂
∗
i − Ŵ

∗
i Π̂

′
g(i),pw, (11)

with P̂
∗
i = (ê∗i1,p, ê

∗
i2,p, ..., ê

∗
iT,p)

′, Ŵ
∗
i = (ê∗i1,w, ê

∗
i2,w, ..., ê

∗
iT,w)

′, and

Π̂
′
g,pw =

(
1
ng

∑ng

i∈[ng ]
Ŵ

∗′
i Ŵ

∗
i

)−1 (
1
ng

∑ng

i∈ng
Ŵ

∗′
i P̂

∗
i

)
.

Stage 2: Estimation and statistical inference of the average partial effects in Model (9),

including ϵ̂ip as the control function. The estimation procedure involves four steps.

1. Estimate the homogeneous effects:

γ̂2 =

(
1

n

n∑
i=1

W ′
i,2M ix,2W i,2

)−1(
1

n

n∑
i=1

W ′
i,2M ix,2yi

)
, (12)

with M ix,2 = IT −X i,2(X
′
i,2X i,2)

−1X ′
i,2 and X i,2 = (X i, ϵ̂ip).

2. Estimate group-specific coefficients of the copula generated regressors:

δ̂g =

 1

ng

ng∑
i∈[ng ]

ϵ̂′ipM ixϵ̂ip

−1  1

ng

ng∑
i∈[ng ]

ϵ̂′ipM ix(yi −W i,2γ̂2)

 , (13)

with M ix = IT −X i(X
′
iX i)

−1X ′
i.

3. Estimate the mean coefficients:

θ̂ =
1

n

n∑
i=1

θ̂i, (14)

where θ̂i = (X ′
iX i)

−1X ′
i

(
yi −W i,2γ̂2 − ϵ̂ipδ̂g(i)

)
.

4. The inference for θ̂ is based on a consistent estimator of its asymptotic variance:

Ω̂θ =
1

n

n∑
i=1

(θ̂i − θ̂)(θ̂i − θ̂)′. (15)

Notes: (i) g(i) and i ∈ [ng] denote that unit i belongs to Group g with ng number of units. (ii) For

group-specific coefficients, when T is sufficiently large, each cross-section unit can be a group. If there is

no heterogeneity in the Gaussian copula dependence structure, ϵ̂ip can be obtained given a homogeneous

estimator using all observations. (iii) In the second stage, the homogeneous effects γ2 are estimated using

pooled OLS after projecting out the influence of regressors with heterogeneous coefficients.
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Theorem 2 (Asymptotic distributions and consistent variance estimator). Suppose Equa-

tions (2), (3) and (4) and Assumptions A.1–A.7 in the online appendix hold. For the esti-

mator of mean coefficients, θ̂ given by (14), as n, T → ∞ and n/T 2 → 0,
√
n(θ̂ − θ0) →d

N(0,Ωθ), where Ωθ = V ar(θi) ≻ 0, which can be consistently estimated by Ω̂θ in (15).

3.6 Extensions to dynamic panel data models

3.6.1 Dynamic heterogeneous panels with serially uncorrelated errors

It is natural to extend the above analysis to heterogeneous dynamic panels with weakly

exogenous regressors. Unlike strictly exogenous regressors, there is feedback from past out-

comes to these regressors in the current period, resulting in a non-zero correlation between

them and past errors. Some examples are lagged outcome and independent variables, which

capture state dependence, expectation, and dynamic effects. To illustrate, consider a first-

order autoregressive panel data model with covariates (namely, an ARX(1) panel model):

yit = αi + ϕiyi,t−1 + β
′
ipit + γ

′
i,1wit,1 + γ

′
2wit,2 + ξit, (16)

where yi,t−1 is the first lagged outcome variable. Consistent with the earlier discussion, pit

and wit are contemporaneously endogenous and strictly exogenous, respectively. Our focus

is on stationary dynamic models with possible time effects and trends, where |ϕi| < 1 for all

i. See Assumption A.8 in the online appendix.6

For dynamic panels, the errors are usually assumed to be serially uncorrelated, partic-

ularly given a sufficient number of lagged variables used to model the outcome process.

Moreover, as the lagged variables are realized in the past, it is unlikely they are affected by

the current shock. Thus, we assume E(yi,t−1ξit) = 0 with ξit independently distributed over

time for all i and t, under which there is no need to modify the Gaussian copula in (4).

However, we need to highlight the differences between imposing homogeneity on the au-

6As extensively studied in the time series and panel model literature, the unit root process (ϕi = 1)

has distinctive properties, requiring different estimation approaches. Researchers often apply the stationary

dynamic panel model given by (16) after first or higher order differencing the outcome variable, which then

becomes stationary.
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toregressive coefficients, ϕi, and not. As well documented in the literature (Pesaran and

Smith, 1995), the FE estimator can be severely biased with presence of heterogeneity, even

for randomly distributed ϕi. In this case, the MG estimator is to be applied to estimate

ϕ0 = E(ϕi). Moreover, there exists a small-T bias in estimating dynamic panels whether

ϕi is heterogeneous or not. As inference based on the asymptotic distribution will be dis-

torted when the time dimension is relatively smaller than the cross-sectional dimension, bias

correction should be implemented in this case.

In summary, the copula-generated regressors are computed as previously mentioned.

The mean coefficients of weakly exogenous regressors are estimated in Stage 2, along with

other regressors with heterogeneous coefficients, namely, xit = (1, yi,t−1,p
′
it,w

′
it,1)

′ with

θi = (αi, ϕi,β
′
i,γ

′
i,1)

′. For panel datasets with T relatively small to n, it is recommended to

apply the Jackknife bias-correction given by

θ̂MG−JK =
1

n

n∑
i=1

θ̂i,JK , (17)

where θ̂i,JK = 2θ̂i − 1
2
(θ̂iH2,1 + θ̂iH2,2), and θ̂i, θ̂iH2,1 , and θ̂iH2,2 are the unit-specific OLS

estimates based on individual i’s all (t = 1, 2, ..., T ), the first half (t = 1, 2, ..., h), and the

second half (t = h+ 1, h+ 2, ..., T ) of time-series observations.

3.6.2 Heterogeneous autoregressive panels with serially correlated errors

Though we abstract from serially correlated errors in the previous subsection, the Gaus-

sian copula model can also be used to address endogeneity due to dynamic misspecification

under stationarity. We first provide a new estimation strategy for a heterogeneous AR(1)

panel with no other time-varying covariates, then extend the estimation method to the

ARX(1) panel model. Consider a heterogeneous panel AR(1) model given by

yit = αi + ϕiyi,t−1 + ξit, (18)
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with ξit = ρeξi,t−1 + ξ∗it and ξ
∗
it ∼ IIDN(0, 1) for all t. Then (18) can be written as

yit = αi + ϕiyi,t−1 + ρe (yi,t−1 − αi − ϕiyi,t−2) + ξ∗it = α̃i + ϕ̃iyi,t−1 + δi∆yi,t−1 + ξ∗it, (19)

with ∆yi,t−1 = yi,t−1 − yi,t−2, α̃i = αi(1 − ρe), ϕ̃i = ϕi + ρe − ρeϕi, and δi = ρeϕi, where

yi,t−1 and ∆yi,t−1 are exogenous to ξ
∗
it, and the process {yit} is stationary for all i. Note that

the autoregressive structure of the error term, ξit, allows the serially uncorrelated shocks

ξ∗it to be the new error term by including a finite number of lagged outcome variables as

regressors. Since ξ∗it is uncorrelated with lagged outcome variables, the mean coefficient

E(ϕ̃i) can be estimated consistently by adding ∆yi,t−1 into the regression. For AR(1) panels

with a general AR(p) error term, the contemporaneous endogeneity can be eliminated by

including (∆yi,t−1,∆yi,t−2, ...,∆yi,t−p)
′ as additional regressors.

Alternatively, note that ξ∗it is Gaussian distributed for all t. It can be shown that under

Assumption A.8 of stationarity, ∆yit is also Gaussian distributed for all t. Then the con-

temporaneous endogeneity between ξit and yi,t−1 can be represented by a Gaussian copula

model, which only involves a finite number of further lags, yi,t−2 in the case of the AR(1)

error process. Hence, the transformed first difference, (∆yi,t−1)
∗, can be used as a gener-

ated regressor, and we can estimate the mean coefficients in the following augmented model

consistently by the MG or MG-JK estimators,

yit = α̃i + ϕ̃iyi,t−1 + δ̃i (∆yi,t−1)
∗ + ξ∗it, (20)

with δ̃i = δiσ̃ and σ̃2 = E [(∆yit)
2].

3.6.3 Heterogeneous dynamic panels with covariates and serially correlated er-

rors

The above analysis shows why further lags of the outcome variable need to be added

to AR(1) panels with serially correlated errors. Now consider the ARX(1) panel model in

(16) with contemporaneous regressor endogeneity given by (4) and serially correlated errors

ξit = ρeξi,t−1+ ξ
∗
it. With the presence of other covariates in the model, we directly substitute
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ξi,t−1 by (yi,t−1 − θ′ixi,t−1 − γ ′
2wi,t−1,2) into (16), then we have

yit = (1−ρe)αi+(ϕi+ρe)yi,t−1+β
′
ipit+γ

′
i,1wit,1+γ

′
2wit,2−ρe(θ′ixi,t−1+γ

′
2wi,t−1,2)+ξ

∗
it. (21)

As yi,t−1 is weakly exogenous in (21), to address contemporaneous endogeneity between

pit and ξ∗it, we can directly apply the 2sCOPE-MG or 2sCOPE-MGJK estimators for the

(mean) coefficients. In the first stage, the copula-generated regressors are constructed in

the same way by regressing ê∗it,p on ê∗it,w. Then the mean coefficients of all regressors with

coefficient heterogeneity in (21) including xi,t−1 and wi,t−1, are estimated in the second stage

by the MG (or MG-JK) estimator. Whether the Jackknife bias correction is applied or not,

the analytical variance estimator in (15) provides asymptotically unbiased inference.

3.7 Guidelines for using the 2sCOPE-MG estimation approach

For both dynamic and static panels, incorporating heterogeneous effects eliminates the

concern of slope endogeneity bias.7 The choice between dynamic and static model specifica-

tions hinges on whether individual decisions are influenced by past outcomes or if information

sets of decision-makers include historical outcomes. It is context-specific and relies on insti-

tutional knowledge. For dynamic panels, the presence of serially correlated errors leads to

the regressor endogeneity problem, to which a common solution is by including higher-order

lags of regressors. We have illustrated the rationality of this procedure in sections 3.6.2 and

3.6.3. Its effectiveness in restoring consistency is shown by MC simulations in section 4.3.

To preprocess the data, we remove unit-specific means from the regressors based on

the general location Gaussian copula before applying the Gaussian copula transformation.

Then people can employ the procedures suggested by Yang et al. (2024) to empirically

validate the non-Gaussionality (and relevance) conditions on the residuals. That is, we first

check the non-Gaussianality of êit,p by the Kolmogorov-Smirnov (KS) test. If the p-value

is smaller than 0.05, we are on the safe side to proceed with the 2sCOPE-MG estimation.

Otherwise, we further examine the non-Gaussianality of êit,w by the KS test and the strength

7Formal tests for slope heterogeneity can be found in Pesaran and Yamagata (2008) for dynamic panels

and Pesaran and Yang (2024) for static panels, where the exogeneity condition is assumed to hold.
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of correlation between êit,p and êit,w by the F test. The sufficient identification condition for

the 2sCOPE-MG estimation requires that there is at least one variable in êit,w with sufficient

non-Gaussianality, p-value < 0.001, and explanatory power of êit,p, F-statistic > 10. When

such conditions also fail, we suggest people collect more data on other control variables

satisfying the non-Gaussianality and relevance conditions. Different from IVs, these control

variables can be some of the omitted variables researchers are concerned about – with non-

zero impacts on the outcome. Validating the rank condition using the aforementioned rules

of thumb can enhance our confidence in proceeding with the 2sCOPE-MG estimation.

Last but not least, for unbiased inference in dynamic panel data models, we suggest

applying the 2sCOPE-MGJK estimator given by (17) to the copula augmented model, par-

ticularly with short T (relative to n) panel datasets. A sufficient condition is provided for

the existence of its finite second-order moments in heterogeneous dynamic panel models in

Yang (2023). Researchers are recommended to check this condition before estimation.

4 Monte Carlo simulations

We design MC simulations to inspect the effects of (i) regressor endogeneity, (ii) slope en-

dogeneity induced by correlated heterogeneous coefficients, and (iii) both regressor and slope

endogeneity on the estimation of the mean coefficients, separately. For the data generating

process (DGP) of the outcome variable, yit, we consider both static and dynamic panel data

models, without and with serial correlations in the error process. In the following, we first

focus on static panel data models. A number of DGPs are considered to examine whether

our proposed estimator is robust to heteroskedastic errors, serially correlated errors, and

different distributions of individual fixed effects in the regressors processes, which are likely

to present in various practical data sets. Then we investigate the finite-sample properties of

our estimation approach in dynamic panels with lagged dependent variables as explanatory

variables. Finally, for the case of dynamic panels with autoregressive errors, subsections

3.6.2 and 3.6.3 introduce a different estimation strategy, whose finite-sample properties are
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shown by MC simulations below. Table 2 summarizes the MC designs.

Table 2: Summary of MC designs

1. Static panel data models

1.1. One endogenous regressor and one exogenous regressor

1.2. Two exogenous regressors with correlated heterogeneous coefficients

1.3. One endogenous regressor and one exogenous regressor with correlated heterogeneous coefficients

1.4. Robustness to heteroskedastic errors

1.5. Robustness to serially correlated errors

1.6. Robustness to uniform-distributed fixed effects in regressor processes

2. Dynamic panel data models with serially uncorrelated errors

2.1. A lagged dependent variable, one endogenous covariate, and one exogenous covariate as regressors

2.2. A lagged dependent variable and two exogenous covariates as regressors with correlated

heterogeneous coefficients

2.3. A lagged dependent variable, one endogenous covariate, and one exogenous covariate as regressors

with correlated heterogeneous coefficients

3. Dynamic panel data models with serially correlated errors

3.1. A lagged dependent variable as a regressor with homogeneous autoregressive coefficients

3.2. A lagged dependent variable as a regressor with heterogeneous autoregressive coefficients

3.3. A lagged dependent variable, one endogenous covariate, and one exogenous covariate as regressors

with correlated heterogeneous coefficients

Two alternative estimation approaches are considered, including the FE estimator and the

two-stage Copula augmented fixed effects (2sCOPE-FE) estimator computed by applying the

FE estimator to the copula augmented panel model. As the FE estimator for heterogeneous

intercepts is one of the most popular estimators for panel data, its performance in the

MC simulations provides relevant measures of the estimation bias and size distortions when

ignoring regressors and/or slope endogeneity. For the 2sCOPE-FE estimator, while the

second-stage regression does not suffer from regressor endogeneity, it does not account for

correlated heterogeneity in slope coefficients. For dynamic panel data models, following

our recommendation to apply the Jackknife method for correcting small-T bias, we present

simulation results of the 2sCOPE-MGJK estimator given by (17) instead of the 2sCOPE-

MG estimator. We report the mean bias, standard deviation of the estimates (SD), mean

21



estimated standard error (ŝe), root mean squared errors (RMSE), mean size of testing the

null hypothesis θ̂ = θ0, and the ratio of the absolute mean bias to the mean estimated

standard error (tbias) over 1,000 replications for each simulation.8 We consider a combination

of sample sizes: n = 100 and T ∈ {10, 50, 100}.

4.1 Static panel data models

We generate {yit} by a static panel data model as

yit = αi + βipit + γiwit + ξit, for i = 1, 2, ..., n, and t = 1, 2, ...., T, (22)

where pit and wit are endogenous and exogenous regressors, respectively, with possibly serially

correlated errors, ξit = ϕeξi,t−1 + σiξ
∗
it, and individual fixed effects. The slope coefficients for

regressors, (βi, γi)
′, are individual-specific, which is an important feature of panel data but

hasn’t been considered in Haschka (2022). The regressors are generated from the following

general location Gaussian copula model: pit = αi,p + eit,p, and wit = αi,w + eit,w, with

αi,p ∼ IIDN(1, 1) and αi,w ∼ IIDN(1, 1). Following Assumption A.6, we generate eit,p

from a mixture normal distribution, eit,p = vit,1 + vit,2 with vit,1 ∼ IIDN(µp1, σp1) and

vit,2 ∼ IIDN(µp2, σp2), and eit,w from an exponential distribution, eit,w ∼ IIDExp(µw),

with |ρpw| > 0. We set θ0 = (α0, β0, γ0)
′ = (1, 1,−1)′.

4.1.1 Regressor endogeneity

To induce regressor endogeneity, the shocks in the processes of dependent variables and

regressors are jointly generated based on a Gaussian copula model for Case 1.1,
e∗it,p

e∗it,w

ξ∗it

 ∼ IIDN




0

0

0

 ,


1 ρpw ρpe

ρpw 1 0

ρpe 0 1


 , (23)

8The standard errors of FE and 2sCOPE-FE estimators are computed based on the“clustered” covariance

estimator on p. 654 of Pesaran (2015), shown to be consistent under the respective modeling assumptions.

When these underlying assumptions for derivation do not hold in our DGP, the estimated standard errors

may not be consistent. The standard errors of the 2sCOPE-MG estimator are computed by (15).
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with ρpw = ρpe = 0.5. Then we generate eit,p = H−1
(
Φ(e∗it,p)

)
and eit,w = G−1

(
Φ(e∗it,w)

)
.

{yit} is generated by (22) with individual fixed effects that are correlated with {pit} as

αi = 0.25
(

1
T

∑T
t=1 pit

)
+ ηiα, and ηiα ∼ IIDN(0, 0.5), homogeneous slopes βi = β0 = 1 and

γi = γ0 = −1 for all i, and homoskedastic serially uncorrelated errors ξit = ξ∗it for all i and

t. For all MC simulations, αi are always generated to be correlated with regressors. With

homogeneous coefficients in (23), we pool all panel observations to compute δ̂ = δ̂g in (13).

Table 3 shows simulation results of FE, 2sCOPE-FE, and 2sCOPE-MG estimators under

regressor endogeneity. The FE estimator is severely biased. Particularly for slope coefficients,

the inferences using the default estimator of standard errors incorrectly reject the true value

with a 100% chance over 1,000 replications. As the generated correlation between error term

and endogenous regressor is constant for each period, the bias of the FE estimator does not

vary by T . For 2sCOPE-FE and 2sCOPE-MG estimators, the contemporaneous regressor

endogeneity is eliminated in the augmented panel regression. Hence, for the slope coefficients

under homogeneity, they are both unbiased, with size around the 5% nominal level. It is

worth noting that the 2sCOPE-MG estimator exhibits better small-sample (T ) performance

compared with 2sCOPE-FE, displaying a smaller finite-sample bias when T = 10.

4.1.2 Slope endogeneity

To investigate the impacts of slope endogeneity without regressor endogeneity, we set

ρpw = ρpe = 0 in (23) and generate θi to be correlated with regressors for Case 1.2:

θi = (αi, βi, γi)
′ = θ0 +ψµēip +ψλλi + ηi, (24)

where ēip = T−1
∑T

t=1 eit,p, λi =
e′i,pei,p−n−1

∑n
j=1 e

′
j,pej,p√

(e′i,pei,p−n−1
∑n

j=1 e
′
j,pej,p)

2
with ei,p = (ei1,p, ei2,p, ..., eiT,P )

′,

ηi = (ηiα, ηiβ, ηiγ)
′ ∼ IIDN(0, 0.5Ik), ψµ = (ψµα, ψµβ, ψµγ)

′, and ψλ = (ψλα, ψλβ, ψλγ)
′.9

The three unit-specific terms in the right-hand side of (24) correspond to (i) a component

correlated with the levels of regressors (i.e., ēip), (ii) a component correlated with the within-

unit variations of regressors (i.e., λi), and (iii) an idiosyncratic component, respectively. For

9λi is constructed to have zero mean and unit variance s.t. E(θi) = θ0 and V ar(θi) is constant over T .

23



T
ab

le
3:

M
C

re
su
lt
s
of

F
E
,
2s
C
O
P
E
-F
E
an

d
2s
C
O
P
E
-M

G
es
ti
m
at
or
s
in

C
as
e
1.
1:

st
at
ic

p
an

el
s
u
n
d
er

re
gr
es
so
r
en
d
og
en
ei
ty

B
ia
s

S
D

ŝe
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ŝe
R
M
S
E

S
iz
e

t b
ia
s

B
ia
s

S
D

ŝe
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example, consumers’ responses to ads may vary with income levels, price variability, and

personal emotions at the moment.

To examine the impacts of slope correlated heterogeneity with respect to the unit-specific

means and variations of regressors, we set ψµ = ψλ = (0.25, 0.25, 0.25)′. Table 4 reports the

simulation results with ξit = ξ∗it for all i and t. The magnitudes of bias and bias ratio for

both FE and 2sCOPE-FE estimators of β are large, showing that both approaches cannot

address the issue of slope endogeneity. In contrast, the 2sCOPE-MG estimator is shown to

be consistent, exhibiting negligible small-sample bias and a near-zero bias ratio, and its size

is at the 5% nominal level uniformly across all sample sizes.

4.1.3 Regressor and slope endogeneity

In Case 1.3, to induce both regressor and slope endogeneity, we generate the errors by

(23) with ρpw = ρpe = 0.5 where ξit = ξ∗it for all i and t, and heterogeneous coefficients by

(24) with ψµ = ψλ = (0.25, 0.25, 0.25)′. Under both regressor and slope endogeneity, Table

5 shows that the bias of the FE estimator closely matches the sum of its biases from Tables

3 and 4. Since both regressor and slope endogeneity induce positive bias, the overall bias

increases when both are present. The 2sCOPE-FE estimator also displays substantial bias,

which is greater than its bias in Case 1.2. However, the 2sCOPE-MG estimator continues

to be unbiased and has comparable performances in Cases 1.1 and 1.3. As discussed earlier,

the standard errors and RMSE of the 2sCOPE-MG estimator increase in copula-augmented

panel regressions when there is no regressor endogeneity, as in Case 1.2. As it is designed for

heterogeneous panels, its estimation errors do not rise much. The increase in RMSEs for the

slope estimates can be attributed to the positive variances of the heterogeneous coefficients.

In summary, the 2sCOPE-MG estimator demonstrates unbiasedness, exhibits the smallest

RMSE and bias ratios, and consistently offers valid inference across various sample sizes,

under either regressor endogeneity, slope endogeneity, or both.
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4.1.4 Robustness to different processes of errors and regressors

The Gaussian copula we impose is on the primitive shocks, and it does not forbid either

serial correlation or heteroskedasticity in the error term of the outcome process, nor individ-

ual fixed effects or time effects in the regressors processes. For practitioners, we experiment

beyond the cases where the error term in (22) and regressors are independently and identi-

cally distributed, to illustrate the robustness of the 2sCOPE-MG estimator. The DGPs for

Cases 1.4–1.6 are the same as that in Case 1.3 except for the following variations:

• Case 1.4. Heteroskedastic errors: ξit = σiξ
∗
it and σ

2
i = 0.5+0.5ν2i with νi ∼ IIDN(0, 1)

• Case 1.5. Serial correlated errors: ξit = ρeξi,t−1 + ξ∗it with ρ = 0.4

• Case 1.6. Uniformly distributed individual fixed effects in regressors:

αi,p ∼ IIDUniform
(
1−

√
3, 1 +

√
3
)
and αi,w ∼ IIDUniform

(
1−

√
3, 1 +

√
3
)

The simulation results of Cases 1.4–1.6 are reported in Table A.1 of the online appendix.

The performances of the estimators are similar to those in Case 1.3, where the 2sCOPE-

MG estimator continues to be the only unbiased estimator of the mean coefficients under

both regressor and slope endogeneity. Particularly, the simulation results of Case 1.4 show

that the 2sCOPE-MG estimator can accommodate cross-sectional random heteroskedasticity

in the error term. Results of Case 1.5 show that the 2sCOPE-MG estimator can handle

contemporaneous endogeneity and provides a valid inference even with serially correlated

errors. Case 1.6 shows that as we de-mean the covariates separately for each unit, the

2sCOPE-MG estimator can allow for arbitrary distributions of individual-specific means in

the regressor processes with bounded moments.

4.2 Dynamic panel data models with serially uncorrelated errors

It has been shown that the 2sCOPE-MG estimator effectively restores exogeneity for un-

biased estimation in static panels. For dynamic panel data models containing lagged depen-

dent variables as regressors, the autoregressive structure automatically introduces non-zero

correlations between the lagged dependent variables and past error terms. Thus, consistent
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ŝe
R
M
S
E

S
iz
e

t b
ia
s

B
ia
s

S
D

ŝe
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(asymptotically unbiased) estimation of the mean autoregressive coefficients relies on the

weak exogeneity assumption, where the current error term is not correlated with the cur-

rent and lagged dependent variables. It also implies that the current error term would be

uncorrelated with past errors, a scenario for which we conduct MC simulations to examine

performances of the 2sCOPE-MGJK estimator introduced in subsection 3.6.1 as follows.

We consider a first-order autoregressive panel model with covariates (namely, an ARX(1)

panel model) as a leading example, where the first lag of the outcome variable, yi,t−1, is

one of the regressors in (25), with weak exogeneity, E(ξit|yi,t−1, yi,t−2, ...) = 0. The weakly

exogenous condition essentially implies that yi,t−1 is sufficient to represent the information

set of a decision maker i at time t. As the past errors, ξi,t−h for h = 1, 2, ..., naturally

correlate with yi,t−1, weak exogeneity further dictates the absence of serial correlation in the

error processes.

yit = αi + ϕiyi,t−1 + βipit + γiwit + ξit (25)

For the DGP of Cases 2.1–2.3, the contemporaneously endogenous regressor pit and

strictly exogenous regressor wit as well as (αi, βi, γi)
′ are generated according to Cases 1.1–1.3

in subsection 4.1, respectively. For Case 2.1, we consider homogeneous AR(1) coefficients,

ϕi = ϕ0 = 0.5 for all i. For Cases 2.2 and 2.3, we also generate random AR(1) coefficients as

ϕi ∼ IIDUniform(0.1, 0.9). Tables A.2 and A.3 in the online appendix report the results

for Cases 2.1 and 2.2, respectively, and the results of Case 2.3 under both regressor and slope

endogeneity are summarized in Table 6.

Since in the DGP, yi,t−1 is not correlated with either the current error term, pit, or wit,

having yi,t−1 as a regressor or not does not affect performances of FE and 2sCOPE-FE

estimators for β and γ, comparing the results in Tables A.2, A.3, and 6 of Cases 2.1–2.3

with those in Tables 3–5 of Cases 1.1–1.3, respectively. yi,t−1 can be viewed as an exogenous

regressor which is not correlated with the endogenous regressor. Thus, the estimated AR(1)

coefficient of yi,t−1 is not affected by whether the regression is augmented by the copula
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generated regressor.10 As can be seen in Tables A.2, A.3, and 6, the simulation results of FE

and 2sCOPE-FE estimators for ϕ are almost identical. With homogeneous AR(1) coefficients

in Case 2.1, there is a negative small-T bias for T = 10, which shrinks over T . But with

heterogeneous AR(1) coefficients in Cases 2.2 and 2.3, there is an upward bias for relatively

large T = 50, 100 (resembling the large T asymptotics).11

Now focusing on the 2sCOPE-MGJK estimator which addresses both contemporaneous

endogeneity and slope endogeneity, when the Jackknife method is exploited to correct for the

small-T bias particularly of ϕ̂, it introduces greater sampling errors such that the estimated

standard errors and RMSEs of β̂ and γ̂ increases slightly. We aim to obtain asymptoti-

cally unbiased inference, despite a cost in estimation precision measured by RMSE. As the

2sCOPE-MGJK estimator always delivers a size around the 5% nominal level with a much

smaller bias than the 2sCOPE-FE estimator even with homogeneous slopes, it is recom-

mended to apply the 2sCOPE-MGJK estimator to dynamic panels.

4.3 Dynamic panel data models with serially correlated errors

For the DGP of regressor endogeneity, the MC simulations above focus on the scenario

where the endogenous regressor is correlated with the current error term but not with past

errors. For dynamic panels, it rules out non-zero correlations between lagged dependent

variables as regressors and the current error term. Subsection 3.6.1 has introduced an es-

timation approach to dealing with autoregressive error processes in dynamic panels, where

the 2sCOPE-MGJK estimator given by (17) is used after including further lags of regressors

in the model. We assess the effectiveness of this approach by MC simulations as follows.

We first consider the AR(1) panel model given by (18), yit = αi + ϕiyi,t−1 + ξit, with

ξit = ρeξi,t−1 + ξ∗it, and we set ρe = 0.4. For the AR(1) coefficients, we consider both

homogeneous and heterogeneous DGPs: ϕi = 0.5 for all i and ϕi ∼ IIDUniform(0.1, 0.9)

for all i, respectively. Table 7 summarizes the MC results of both cases.

10This finding is consistent with that in Yang et al. (2024).
11This result is in line with the theoretical results on p. 725 of Pesaran (2015).
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With homogeneous AR(1) coefficients, there are substantial bias and size distortions in

the FE estimator. With different values of T , its bias direction varies, due to its vulnerability

to regressor endogeneity caused by serially correlated errors and the Nickell bias in estimating

dynamic panels. As we augment the homogeneous AR(1) model with the copula generated

regressor, we may expect both 2sCOPE-FE and 2sCOPE-MG estimator to be consistent.

Unfortunately, the 2sCOPE-FE estimator still exhibits substantial bias, particularly when T

is short (T = 10) and severe size distortions. In contrast, the 2sCOPE-MGJK estimator has

negligible bias and delivers size around the 5% nominal level across different sample sizes.

Note that the Jackknfe bias correction approach faces a bias-variance trade-off such that the

RMSE of the 2sCOPE-MGJK estimator can be quite large with small T = 10. Thus, we

recommend applying the Jackknife bias correction when T is relatively short compared with

n. In the case of heterogeneous AR(1) coefficients, the performances of FE and 2sCOPE-FE

estimators remain undesirable, with even greater bias and RMSEs for T = 50, 100. However,

the performance of the 2sCOPE-MGJK estimator is shown to be robust, irrespective of

whether the AR(1) coefficients are homogeneous or heterogeneous.

We further extend our investigation to an ARX(1) panel model given by

yit = αi + ϕiyi,t−1 + βipit + γiwit + ξit, (26)

with ξit = ρeξi,t−1 + ξ∗it. The estimation approach in subsection 3.6.1 requires us to estimate

the following model given by

yit = α̃i + ϕi1yi,t−1 + βipit + γiwit + ϕi2yi,t−2 + βi1pi,t−1 + γi1wi,t−1 + (δpϵit,p + uit), (27)

where ϕi1 = ϕi + ρe, ϕi2 = −ρeϕi, βi1 = −ρeβi, γi1 = −ρeγi, and ϵit,p is the copula-

generated regressor. Accordingly, we set ρe = 0.4 and generate the heterogeneous coefficients

(αi, ϕi, βi, γi)
′ and the Gaussian copula among (pit, wit, ξit)

′ as in Case 2.3. Note that the

number of regressors in (27) is much more than the ones in the other cases. Hence, we

perform MC simulations with sample sizes of T = 20, 50, and 100, taking into account the

implementation of the Jackknife bias correction on our estimator. The simulation results
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are summarized in Table 8. Remarkably, even with the presence of slope, contemporaneous,

and dynamic endogeneity, the 2sCOPE-MGJK estimator continues to deliver valid inference

around the 5% level for n = 100, while the FE and 2sCOPE-FE estimators continue to be

severely biased. With larger n, the 2sCOPE-MGJK is expected to perform better as the

estimation precision is enhanced.

5 An application of price elasticity on Dominick’s scanner data

Price elasticity is a key factor for managers to optimize the marketing mix strategy and

for policymakers to evaluate taxation policies and regulations. While correlation analysis

provides some information, its insights are limited. Moreover, these estimates fail to yield

credible causal estimates, when prices are confounded by unobservables in the errors, or

when correlated heterogeneity in consumer response parameters is disregarded.

Using Dominick’s scanner data from 1990–1994, we apply the 2sCOPE-MG method to

estimate average price elasticities and promotion effects. In subsection 5.1, we first illustrate

the use of the 2sCOPE-MG estimator in the cereal category following the guidelines in

subsection 3.7, and by comparison, we show the bias magnitudes in the FE estimates. Also,

we discuss factors influencing store-specific price elasticities and promotion effects. Then

in subsection 5.2, we examine the presence of regressor and/or slope endogeneity across 21

categories systematically.

5.1 2sCOPE-MG v.s. alternative estimators: the cereal category

For the cereal category, we construct a balanced panel data set of 80 stores observed over

170 weeks. Given the size information of different products with the universal product code

(UPC) as an identifier, we first standardize prices and sales quantities based on each UPC’s

size information, then compute the aggregate sales and market-share weighted prices and

promotions (including bonus promotion and direct price reduction) at the store level. The

variables related to promotions are represented as dummy variables at the store-UPC level.

When weighted by market shares, they indicate the proportions of sales associated with
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each promotion at the store level. The summary statistics of the outcome and independent

variables are reported in Table 9, computed before demeaning and detrending the variables.

Table 9: Summary statistics of outcome and independent variables of 80 stores over 170
weeks in the cereal category

Mean SD Min 25% Quantile Median 75% Quantile Max No. obs.

log(Sales) 8.219 0.363 5.374 7.967 8.229 8.468 9.536 13,600

log(Price) 0.789 0.087 -0.067 0.753 0.794 0.843 1.004 13,600

Bonus 0.119 0.117 0.000 0.046 0.087 0.154 1.000 13,600

Price reduction 0.061 0.095 0.000 0.000 0.017 0.087 0.700 13,600

We consider a dynamic sales response model, which accommodates potential effects of

past outcomes on the current outcome. Such a dynamic structure is suitable when the

persistence of outcome processes, like sales, is a parameter of interest itself. It also enables

researchers to disentangle short-run and long-run effects. But for consistent estimation of

dynamic panels, relatively large T panels are required such as the one used in our empirical

application. The logarithm of sales of store i in week t, log(Salesit), varies according to

log(Salesit) = αi+τt+ϕi log(Salesi,t−1)+βi1 log(Priceit)+βi2Bonusit+βi3PriceReduit+ξit,

(28)

where log(Priceit), Bonusit, and PriceReduit are the logarithm of market-share weighted

price, and market-share weighted bonus and price reduction of store i in week t, respectively,

and αi and τt denote store- and time-fixed effects, respectively. The structural error term,

ξit, is possibly correlated with the price due to unobserved demand shocks among other

confounders, as shown in Park and Gupta (2012), Haschka (2022), and Yang et al. (2024).

On the other hand, following Sriram et al. (2007), we consider bonus and price reduction

promotions as exogenous due to the typical quarterly decision-making process and the lead

time required for implementation. We allow for heterogeneous coefficients for all regressors.

The 2sCOPE-MG approach does not rely on any IVs. However, as a commonly used

alternative to handle endogeneity, we also explore estimation using an IV for price. The IV

is constructed based on the average prices of UPCs (with positive sales throughout the sample

periods) over different stores for each week. Then for each store, we aggregate the prices of
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UPCs using market shares averaged over the first 26 weeks (excluded from estimation) as

weights. The weights are predetermined, not reacting to demand shocks in the later period.12

Given possible time trends in sales and prices, we use detrended log sales and log price (and

its instrument) in estimation. The correlation coefficient between the detrended IV and price

is 0.362, thereby meeting the relevance condition.

We first validate the non-normality assumption using the data on demeaned price (after

detrending), bonus, and price reduction. For all three regressors, the resulting p-values are

close to zero up to seven decimal points, indicating significant non-normality. The empirical

distribution of log price residuals exhibits left-skewness with a heavy tail on the left-hand

side (Figure 1). Now we can proceed with 2sCOPE-MG estimation.

Figure 1: Histogram of the distribution of log price residuals

Notes: The histogram shows the empirical distribution of Log(Priceit) residuals after removing store-specific

means and trends.

Table 10 presents estimated average price elasticity and promotion effects in Model (28).

Columns (1) and (2) display results of applying FE and MG estimators directly. Columns

(3)–(4) and (5)–(6) show FE and MG estimation results using copula-generated regressors

12This IV is constructed as the Bartik instrument in Goldsmith-Pinkham et al. (2020) (on p. 2592). For

estimation consistency, a sufficient assumption requires that the predetermined weights (or initial shares)

are strictly exogenous to changes in the outcome variable over time. In our case, these weights are linked to

UPCs, with a large number of UPCs used in the calculation. It is unlikely that these weights directly affect

sales changes in later periods, particularly when the regressors, market-share weighted prices and promotions,

already account for the effects of current-period market shares. An example of the Bartik IV can also be

found in Li et al. (2014) (p. 318). Moreover, Chevalier et al. (2003) found that prices, on average, tend

to be countercyclical and largely varied with retail margins, indicating that variations in average prices are

largely driven by wholesale costs. The UPCs are typically more established, and according to Nevo (2001),

they are less susceptible to systematic demand shocks. These, combined with the predetermined weights,

lend greater credence to the satisfaction of the exclusion restriction.
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Table 10: Estimated average price elasticity and promotion effects on cereal sales in a dy-
namic sales response model

Copula generated regressors IV

(1) (2) (3) (4) (5) (6)

Estimator FE MG 2sCOPE-FE 2sCOPE-MG FE-IV MG-IV

log(Priceit) -1.200 -1.089 -1.700 -1.550 -1.674 -1.478

(0.056) (0.022) (0.089) (0.100) (0.131) (0.049)

Bonusit 0.205 0.199 0.160 0.160 0.193 0.215

(0.024) (0.020) (0.028) (0.032) (0.023) (0.022)

PriceReduit 0.153 0.150 0.091 0.103 0.114 0.125

(0.030) (0.014) (0.033) (0.033) (0.027) (0.023)

log(Salesi,t−1) 0.089 0.117 0.089 0.116 0.067 0.112

(0.021) (0.015) (0.021) (0.016) (0.017) (0.016)

Store fixed effects Y Y Y Y Y Y

Week fixed effects Y Y Y Y Y Y

Test of price endogeneity

Pearson cor. - - 0.269 0.222 - -

p-value - - 0.000 0.000 - -

Slope endogeneity - Y - Y - Y

Regressor endogeneity - - Y Y Y Y

No. observations 13,520 13,520 13,520 13,520 11,440 11,440

Notes: The estimates are computed based on a balanced panel of 80 stores over 169 weeks of the cereals

category from Dominick’s database. The dynamic sales response model is given by (28). The coefficients

of the Gaussian copula model are assumed to be homogeneous across stores. (i) Price, bonus, and price

reduction are computed as market share weighted averages over UPCs sold in each store. (ii) log(Salesit)

and log(Priceit) are detrended prior to estimation with linear and quadratic trends, respectively. (iii) To

construct an IV for the price, we consider the weekly prices of UPCs average over different stores (for those

UPCs whose prices are observed over all periods) and further aggregate the prices over UPCs for each store

with “predetermined” weights. The weights are computed as market shares of these UPCs in each store

average over the first 26 weeks, which are excluded from the sample used in IV estimation (T = 143). The

first stage regression includes time fixed effects and exogenous regressors and assumes homogeneous and

heterogeneous slopes of the IV for FE-IV and MG-IV estimators, respectively.

and the IV for price, respectively. Standard errors are calculated using consistent estimators

of asymptotic variance, given the respective underlying assumptions.

We first examine the effects of price endogeneity on estimation outcomes. Given the

potential bias from slope endogeneity in the FE approach, we focus on comparing MG,

2sCOPE-MG, and MG-IV estimates. Similar patterns are likewise observed in the FE es-

timation outcomes. The MG estimated price elasticity, assuming price exogeneity, is lower

compared to the 2sCOPE-MG and MG-IV estimates, which account for price endogeneity.
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Specifically, the average price elasticity shifts from -1.089 (0.022) to -1.478 (0.049) based on

the MG-IV estimator. We denote standard errors in brackets throughout the paper. Re-

markably, even without external exogenous variations provided by an IV, the 2sCOPE-MG

estimator recovers the causal average price effect at -1.550 (0.1), which closely aligns with

the MG-IV estimate. The average bonus effect and sales persistence estimates remain com-

parable whether adjusting for price endogeneity or not. Conversely, the average effect of

price production decreases slightly after accounting for price endogeneity at 0.103 (0.033) of

the 2sCOPE-MG estimator, showing contamination bias.

Moreover, the 2sCOPE-MG method can be utilized to measure correlations between en-

dogenous variables and the structural error. The Pearson correlation coefficient between

price and estimated structural error terms is 0.222, with a near-zero p-value, strongly reject-

ing the hypothesis of no price endogeneity. The positive correlation suggests that as prices

rise, store managers often intensify efforts to enhance consumers’ willingness to purchase,

for example, by offering higher-quality products, to counteract potential negative price ef-

fects. As researchers may not always have access to observations of the kind of variables, the

2sCOPE-MG approach is equipped to handle their absence when estimating causal effects.

We now address the issue of slope endogeneity, the presence of which leads to disparities

between FE and MG estimates. As demonstrated in Section A.2.3 of the online appendix,

under the assumption of regressor exogeneity, the FE estimator can be written as a weighted

average of unit-specific OLS estimators. These weights are proportional to the variance-

covariance matrix of each unit’s regressor processes, capturing within-unit variations like

price and promotion activities over time. For the current application, stores with larger

temporal variations in their regressor processes receive higher weights on their store-specific

estimates. However, non-zero correlations between these weights and the heterogeneous slope

coefficients introduce bias in the FE estimation, while the different weights may not make a

difference with homogeneous coefficients.

Under the assumption of heterogeneous slope coefficients, the 2sCOPE-MG estimator
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shows a smaller-sized price elasticity compared with the 2sCOPE-FE estimator. This ob-

servation remains consistent when comparing MG vs FE and MG-IV vs FE-IV, regardless

of whether price endogeneity is considered. The presence of an upward neglected hetero-

geneity bias implies a negative correlation between within-store regressor variations and

store-specific estimates. In other words, stores with more frequent or intense price variations

or promotional activities exhibit higher store-specific price elasticities. Given that consumers

frequently visit retail stores, they are more likely to make purchases at lower prices or during

promotions when they expect such activities to occur more frequently or encounter greater

price variations. Conversely, when consumers visit stores with fewer price variations or pro-

motions, their purchase decisions may exhibit less variability across different prices. On

the other hand, the 2sCOPE-MG and 2sCOPE-FE estimates of bonus and price reduction

promotion effects are comparable, with a mild difference in sales persistence, indicating ho-

mogeneous effects across different stores. The bonus effect is at 0.16, slightly higher than the

price reduction effect, (remembering that bonus and price reduction variables are measured

in terms of the proportions of brands under promotion in a store). Tables A.4 and A.5 in

the online appendix present estimation results of other models. The biases due to regressor

and slope endogeneity remain consistent across three model specifications.

In light of the direction of slope endogeneity bias, Figure 2 illustrates the relationship be-

tween the 2sCOPE-MG estimated store-specific coefficients and scaled within-store variance

of regressors. The correlation coefficient and the associated p-value between each pair of co-

efficients and regressor variations are presented in the upper right corner of each subplot. In

the first row, the estimated price elasticities exhibit substantial heterogeneity across stores,

ranging between -1.882 and -1.07. The correlation coefficients between price elasticities and

within-store variations in price and price reduction promotion are significant, at -0.32 and

-0.241, respectively. The results provide further evidence that the intensity of price variation

and promotion frequency can affect consumers’ response parameters as shown in Kalwani

et al. (1990) and Fok et al. (2006). The fact that consumers’ price consciousness rises with
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the degree of variations in price and discount can be rationalized by a learning model of

price formation or a reference price adaptation model as in the literature.

Figure 2: Scatter plots of 2sCOPE-MG store-specific estimates on within-store regressor
variations

Notes: The x-axis is computed as
1/T

∑T
t=1(xit,(j)−x̄i,(j))

2

1/(nT )
∑n

i=1

∑T
t=1(xit,(j)−x̄i,(j))

2 with x̄i,(j) =
1
T

∑T
t=1 xit,(j) for each regressor

j, denoted as V (log(Pricei)), V (Bonusi), V (PriceRedui), and V (log(Salesi,−1)), respectively. In each sub-

plot, “cor.” and “p-value” denote the Pearson correlation coefficient between the 2sCOPE-MG store-specific

estimates and within-store regressor variations, and the associated p-value. See notes under Table 10 for the

model and estimation procedure.

For store-specific bonus and price reduction effects in the second and third rows, the

variation across different stores is relatively modest, leading to close estimates between the

2sCOPE-MG and 2sCOPE-FE estimators. Since promotion activities are typically planned

and implemented uniformly across different stores, it is expected that they have rather homo-

geneous impacts. However, we still observe significant correlations between price variations

and responses to promotions. Specifically, as price variations increase, the influences of pro-

motions on consumer purchasing decisions are strengthened. It is also worth noting that

the effect of each promotion does not vary much with its own degree of variation, but with

the degree of variations in the other types of promotion activity. In the last row, the esti-
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mated autoregressive coefficients of sales are negative for certain stores. This suggests two

counteracting effects: one leads to persistence in sales, and another one drives sales back to

the long-term level. When prices and promotional activities exhibit greater variability, it is

more likely to observe mean reversions in sales. It is important to note that these two kinds

of sales dynamics have significantly distinct implications for forecasting future sales. It can

be seen in the last column that not only the mean but the variance of sales varies with price

and promotions. As expected, greater price elasticity, greater responses to price reduction,

and less persistence are tied to increased sales volatility.

As sales response parameters are often modelled as linear in store-specific regressor mean

levels in the HB approach, we also examine the correlations between store-specific coefficients

and regressor levels, shown in Figure A.1 in the online appendix. The results reveal that price

sensitivity and bonus effects increase with the proportion of brands sold under price reduction

promotions, but remain relatively constant with price and bonus levels. The impact of price

reduction diminishes with lower price levels, which may explain why price reduction is not

as effective as marketing managers desire. Furthermore, sales persistence tends to decrease

with a larger fraction of brands under bonus or price reduction promotions. Based on the

2sCOPE-MG store-specific estimates, store managers can evaluate whether the current sales

response function and marketing mix strategy are desirable to maximize revenues/profits.

In cases where an adjustment is needed, the above analysis suggests directions to proceed.

5.2 Regressor and slope endogeneity across different categories

Table 11 summarizes the 2sCOPE-MG estimation results across 21 categories in Do-

minick’s scanner data. The corresponding results based on the FE method (not accounting

for either endogeneity issues) are shown in Table A.6 in the online appendix. First, we find

prevalent price-error dependence, specifically a significant positive correlation between price

and the structural error term across 19 categories. Failing to account for this regressor en-

dogeneity properly results in attenuation bias in the estimates of price elasticity. Second,

18 categories show non-negligible correlated heterogeneity in store-specific price elasticities.
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The slope endogeneity bias, calculated as the difference between 2sCOPE-FE and 2sCOPE-

MG estimates, is negative in 14 categories. As discussed earlier, this indicates that consumer

price elasticity increases with price variability in these categories. The 2sCOPE-MG esti-

mates of average price elasticity range from -2.388 (the cheese category) to -0.845 (the cracker

category) across categories. Hence, not only do we find substantial cross-store heterogene-

ity, there presents cross-category heterogeneity. Overall, the bias due to both endogeneity

(calculated as the difference between FE and 2sCOPE-MG estimates) ranges from 0.007 to

0.904 across categories with a median of 0.187, highlighting potentially large deviations from

the intended targets when setting marketing mix variables based on the biased estimates.13

Additionally, our estimation results show that consumers, in general, preferred price reduc-

tions over bonuses, given the higher estimated effects of price reduction compared to bonus

effects. The last two columns provide evidence of sales persistence. The estimates range

from 0.076–0.264, which is reasonable given the relatively high-frequency weekly data versus

monthly or annual data.

The results above assume homogeneous coefficients in the Gaussian copula across stores.

Table A.8 in the online appendix presents 2sCOPE-MG estimates with store-specific Gaus-

sian copula coefficients. The estimates for each category are very similar to those in Table 11,

supporting the homogeneity assumption. It also shows the robustness of the 2sCOPE-MG

estimator. Averaged across the 21 categories, the total, regressor, and slope endogeneity

bias are approximately 0.25, 0.34, and -0.14, respectively.

6 Conclusions

The undesirable bias caused by regressor endogeneity and slope endogeneity has been

widely recognized in the two strands of the literature as reviewed. To our knowledge, the

proposed estimator in this study is the first remedy for both types of endogeneity biases in the

estimation of the average effects for panel regressions without IVs. Given the general location

13The overall bias is somewhat reduced as positive bias from regressor endogeneity is offset by negative

bias from slope endogeneity in most categories. Note that the biases can have potentially opposite signs.
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Gaussian copula model with possibly heterogeneous dependence structure, the 2sCOPE-MG

estimator can cope with contemporaneous regressor endogeneity, which challenges the va-

lidity of hypothesis testing using observational data. The homogeneity assumption on slope

coefficients is also relaxed, which is less realistic as individual responses may be governed by

different parameters. Treated as unit-specific fixed parameters, the heterogeneous slope coef-

ficients can be functions of individual characteristics and depend on the relative magnitudes

of changes and even the entire path of dependent and independent variables.

By a comprehensive set of MC simulations, we illustrate the use of the 2sCOPE-MG and

2sCOPE-MGJK estimators in static and dynamic panels with contemporaneous regressor

endogeneity, correlated slope heterogeneity, and even dynamic misspecification, separately

and jointly. While the FE and 2sCOPE-FE estimators exhibit severe biases and size dis-

tortions, the 2sCOPE-MG and 2sCOPE-MGJK estimators are shown to provide unbiased

inferences.

Using Dominick’s scanner data, we apply the 2sCOPE-MG approach to consistently es-

timate the average causal effects of price and promotions in dynamic sales response panel

models, addressing both regressor and slope endogeneity without IVs. We highlight the ubiq-

uitous presence of regressor and slope endogeneities in the conventional estimation method

across different categories, and the resulting bias can be substantial. Our findings com-

plement the existing studies on consumer heterogeneity in the literature, suggesting that

micro-marketing pricing strategies at the store level need to account for both the level and

variability of past prices and promotional activities. Specifically, sales and marketing man-

agers could integrate the indirect effects of past pricing and advertising strategies on sales

response parameters into their future pricing and marketing strategies.
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A.1 Introduction

The online appendix is organized as follows. Section A.2 details the assumptions for the

panel data models we consider and the two-stage copula augmented mean group (2sCOPE-

MG) estimator, provides proof for the theorems in the main paper, and illustrates biases

in the pooled OLS and standard fixed effect estimators with correlated heterogeneous co-

efficients. Sections A.3 and A.4 present supplementary Monte Carlo (MC) evidence and

empirical results.

A.2 Mathematical appendix

Notations. Generic positive finite constants are denoted by C when large and c when small.

They can take different values at different instances. [K] denotes a set of K indices. For a

symmetric matrix A, A ≻ 0 denotes that A is positive definite. ⊙ denotes the element-wise

matrix product. Suppose {fn}∞n=1 is any real sequence and {gn}∞n=1 is a sequences of positive

real numbers, then fn = O(gn) if there exists a constant C such that |fn| /gn ≤ C for all n;

and fn = o(gn) if fn/gn → 0 as n → ∞. Similarly, fn = Op(gn) if fn/gn is stochastically

bounded, and fn = op(gn) if fn/gn →p 0. →p denotes convergence in probability, and →d

denotes convergence in distribution.

A.2.1 Assumptions

Assumption A.1 (Sampling). {yi,P i,W i,θi}ni=1 is an i.i.d random sample from the pop-

ulation distributions of interest.

Assumption A.2 (Errors). (i) For i = 1, 2, ..., n and t = 1, 2, ..., T , there exists a decompo-

sition of the structural error term: ξit = σiξ
∗
it + vit, where ξ

∗
it ∼ IIDN(0, 1), E(ξ∗it|W i) = 0,

and E(vit|P i,W i) = 0, with 0 < E(v2it|pis,wis) < C and E(v4it) < C. (ii) E(ξitξis) = 0 for

t ̸= s. (iii) σ2
i is distributed independently of ξ∗it, with 0 < infi σ

2
i < supi σ

2
i < C.

Assumption A.3 (Correlated random coefficients). For i = 1, 2, ..., n, there exists a decom-

position of the correlated random coefficients: θi = E(θi|P i,W i, αi) +ηi, where E(ηi) = 0,

A2



E(θi) = θ0 with ∥θ0∥ < C, V ar(θi) = Ωθ ≻ 0 is bounded, and E ∥θi∥4 < C.

Assumption A.4 (Regressors). (i) For each k ∈ [Kp +Kw], the k-th regressor error term,

eit,k, is identically and independently drawn from an absolutely continuous marginal distri-

bution function (CDF) Fk for all i and t, with a Lipschitz continuous and bounded marginal

density function fk, E(eit,k) = 0, V ar(eit,k) = σ2
k > 0, and E(e4it,k) < C. (ii) eit,k is uncor-

related with zit in (3). (iii) For i = 1, 2, ..., n, there exists a T0 such that for all T > T0,

1
T
(P i,W i)

′(P i,W i) ≻ 0. As T → ∞, 1
T
(P i,W i)

′(P i,W i) →p Σi ≻ 0 with supi ∥Σi∥ < C.

Assumption A.5 (Semiparametric Gaussian copula). (i) (e∗′it,p, e
∗′
it,w, ξ

∗
it)

′ follows a Gaussian

copula given by (4) with a positive definite covariance matrix, V i,ρ ≻ 0 for all i. (ii)

E(V i,ρ) = V ρ ≻ 0 with ∥V ρ∥ < C, V ar(V i,ρ) ⪰ 0, and E∥V i,ρ∥4 < C.

Assumption A.6 (Identification). The following holds for i = 1, 2, ..., n. The Kp endoge-

nous regressors are divided into two sets: [Kp,NG] and [Kp,G]. (i) For each k ∈ [Kp,NG], the

marginal distribution of the k-th endogenous regressor error term, eit,p(k) in (3), is not Gaus-

sian. (ii) For each k ∈ [Kp,G], the marginal distribution of the k-th endogenous regressor

error term is Gaussian. A similar partition applies to the Kw exogenous regressors. Define

Πi,[Kp,G][Kw,NG] as the submatrix of Πi,pw = V i,pwV
−1
i,w (see Equation (6)) containing entries

with row indices in [Kp,G] and column indices in [Kw,NG]. Rank
(
Πi,[Kp,G][Kw,NG]

)
= Kp,G.

Assumption A.7. There exists a constant γ satisfying 1/2 < γ < min{2τ, 1} (τ > 1/4)

such that for each k ∈ [Kp + Kw], the following holds for the density function of the k-th

regressor error term: as a→ 0,

sup
u∈(a,1−a)

fk(F
−1
k (u))

min{u, 1− u}
= o

(
a−

1
3γ

)
.

Assumption A.8 (Stationarity for dynamic panel models). For i = 1, 2, ..., n, (i) supi |ϕi| <

1; (ii) and the initial observation, yi0, is drawn from the stationary distribution of {yit}Tt=1.

Remark A.1. Assumption A.2 (ii) assumes serially uncorrelated ξit. For dynamic panel

models, it implies that there is no misspecification in the order of lagged variables. When
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estimating dynamic panels, a standard procedure to address endogeneity due to serially cor-

related errors is to include higher order lags of the regressors. The Akaike and Bayesian

information criteria can be used to select the appropriate lag orders.

Remark A.2. Assumption A.6 requires that any Gaussian distributed eit,k of an endogneous

regressor (k ∈ [Kp]) must be correlated with at least one distinct non-Gaussian distributed

eit,k′ of an exogenous regressor (k′ ∈ [Kw]). This is analogous to the IV identification condi-

tion that the number of IVs must be at least equal to the number of endogenous regressors.

Remark A.3. Assumption A.7 imposes a restriction on the marginal density of regressor

error terms to facilitate the derivation of asymptotic properties of the 2sCOPE-MG esti-

mator. It is used to bound the difference between the residual ranks F̂g(i),k(êit,k), based on

unit-specific demeaned residuals, and the oracle ranks F̂g(i),k(eit,k), based on unobserved true

eit,k.

A.2.2 Proof

A.2.2.1 Proof of Theorem 1

Proof. To begin with, note that under Assumption A.5, for each k ∈ [Kp + Kw], if Fk is

Gaussian, then e∗it,k = Φ−1(Fk(eit,k)) = eit,k/σk, where σk is the standard deviation of eit,k

with 0 < σk < C. Suppose (θ′,γ ′
2, δ

′)′ in (9) are not identified under Assumptions A.1, A.2,

A.4, and A.5, then there exists a non-zero (2Kp+Kw)×1 vector κ =
(
κ′

ϵ,κ
′
p,κ

′
w

)′
such that

κ′
ϵϵit,p + κ

′
peit,p + κ

′
weit,w = κ′

ϵ

(
e∗it,p −Πpwe

∗
it,w

)
+ κ′

peit,p + κ
′
weit,w = 0. (A.1)

Under Assumptions A.5 (V ρ ≻ 0) and A.4, if κϵ = 0, then (A.1) holds only when
(
κ′

p,κ
′
w

)′
=

0, and vice versa. Thus, for (A.1) to hold with a non-zero κ, there must be at least two

non-zero entries in the two vectors, κϵ and
(
κ′

p,κ
′
w

)′
, separately.

First, suppose for all k ∈ [Kp +Kw], Fk is Gaussian, then (A.1) is solved with σp ⊙κϵ =

−κp and σw ⊙ Π′
pwκϵ = −κw, where σp = (σp,1, ..., σp,Kp)

′, σw = (σw,1, ..., σw,Kw)
′, and ⊙

denotes the element-wise product.
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Next, we focus on the case where not all eit,k for k ∈ [Kp +Kw] have marginal Gaussian

distributions. The Kp endogenous regressors are divided into two sets: [Kp,NG] and [Kp,G],

where for each k ∈ [Kp,NG], the marginal density of eit,k is not Gaussian, and for each

k′ ∈ [Kp,G], the marginal distribution of eit,k′ is Gaussian; similarly for the Kw exogenous

regressors. For any non-Gaussian distributed regressor k ∈ [Kp,NG] (or k ∈ [Kw,NG]), since

σk > 0, it requires that κp,k = 0 (or κw,k = 0) for (A.1) to hold, i.e., κp,[Kp,NG] = 0 and

κw,[Kw,NG] = 0. Furthermore, as κp,[Kp,NG] = 0 and V ρ ≻ 0, it also requires κϵ,[Kp,NG] = 0.

Then for k ∈ [Kp,G], given a fixed non-zero κϵ,[Kp,G], we can choose κp,[Kp,G] = −σp,[Kp,G]⊙

κϵ,[Kp,G] such that κ′
ϵϵit,p + κ

′
peit,p = 0. Let Π[Kp],[Kw,G] denotes the submatrix of Πpw =

V pwV
−1
w (see Equation (6)) containing entries with row indices in [Kp] and column indices

in [Kw,G]. For k ∈ [Kw,G], we can choose σw,[Kw,G] ⊙ Π′
[Kp][Kw,G]κϵ = κw,[Kw,G] such that

−κ′
ϵΠ[Kp],[Kw,G]e

∗
it,w[Kw,G]+κ

′
w,[Kw,G]eit,w[Kw,G] = 0. Now the only remainding term is given by

−κ′
ϵ,[Kp,G]Π[Kp,G],[Kw,NG]e

∗
it,w[Kw,NG], if [Kw,NG] is not an empty set. Since κϵ,[Kp,G] is a non-zero

vector, κ′
ϵ,[Kp,G]Π[Kp,G],[Kw,NG] = 0 holds if and only if Rank(Π[Kp,G],[Kw,NG]) < Kp,G, where

Kp,G is the number of eit,k (k ∈ [Kp]) with a marginal Gaussian distribution. Therefore,

Assumption A.6 provides the identification condition for (θ′,γ ′
2, δ

′)′.

A.2.2.2 Lemmas for the proof of Theorem 2

Lemma A.1. Suppose Equation (3) in the main paper and Assumptions A.1, A.2, A.4, A.5,

and A.7 hold. Let ng denote the number of units in Group g, for g = 1, 2, ..., G. For the

estimator of group-specific coefficients in the first stage regression, Π̂g,pw in (11) of the main

paper, as n, T → ∞ and T/n→ ∞,
√
ngT (Π̂g,pw −Πg,pw) →d N(0,ΣΠ,g) where ΣΠ,g ≻ 0.

Proof. The asymptotic property of Π̂g,pw can be established using Theorem 3.4 of Zhao

et al. (2020). To begin, we derive the order of the estimation errors for êit,p and êit,w.

Given Equation (3), êit,p = pit − α̂ip with α̂ip = 1
T

∑T
t=1 pit. As T → ∞, α̂ip − αip =

Op

(
T−1/2

)
. Similarly, α̂iw − αiw = Op

(
T−1/2

)
. Next, we investigate the conditions under

which Assumption 3.4 in Zhao et al. (2020) holds under two practical grouping schemes.
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When T is sufficiently large such that each unit can be viewed as a group, i.e., ng = 1. Then

it follows that O(ngT ) = O(T ), and Assumption 3.4 in Zhao et al. (2020) holds trivially. For

moderately short T and a finite number of groups, O(ng) = O(n). In this case, Assumption

3.4 in Zhao et al. (2020) is satisfied if T/n→ ∞.

By Theorem 3.4 of Zhao et al. (2020), the asymptotic distribution of
√
ngT (Π̂g,pw−Πg,pw)

coincides with the asymptotic distribution of
√
ngT (Π̃g,pw −Πg,pw), where each element in

Π̃g,pw is the normal scores rank correlation coefficient estimator based on the empirical CDFs

of the unobserved eit,p and eit,w. As established in Theorem 3.1 of Klaassen and Wellner

(1997), it is asymptotically normally distributed with mean zero and a positive variance.

Lemma A.2. Suppose Equations (2) and (3) in the main paper and Assumptions A.1–A.7

hold. For the estimator of the homogeneous coefficients in the augmented panel data model,

γ̂2 in (12), as n, T → ∞,
√
nT (γ̂2 − γ2) →d N(0,Σγ,2) where Σγ,2 ≻ 0.

Proof. Given γ̂2 in (12), we have

√
nT (γ̂2 − γ2) =

(
1

n

n∑
i=1

W ′
i,2M ix,2W i,2

)−1 [
1√
nT

n∑
i=1

W ′
i,2M ix,2

(
ui + ϵipδg(i)

)]
.

Given (10) in the main paper, E(W ′
i,2M ix,2ui) = E

[
W ′

i,2M ix,2E(ui|X i,W i,2, ϵip)
]
= 0.

Under Assumption A.5, ϵit,p is distributed independently of eis,w with a zero mean such that

conditional onM ix,2 and δg(i), E
(
wit,2ϵ

′
is,p

)
= 0 for all t, s, and thus, Ei(W

′
i,2M ix,2ϵip)δg(i) =

0. Combined these two terms, as n, T → ∞, we have E(γ̂2) = γ2 + o(1). Hence, under

Assumptions A.1–A.7, by the Central Limit Theorem,
√
nT (γ̂2 − γ2) →d N(0,Σγ,2), where

Σγ,2 = Ψ−1
w,2

[
lim

n,T→∞

1

nT

n∑
i=1

W ′
i,2M ix,2

(
ui + ϵipδg(i)

) (
ui + ϵipδg(i)

)′
M ix,2W i,2

]
Ψ−1

w,2,

with Ψw,2 = limn,T→∞
1
nT

∑n
i=1W

′
i,2M ix,2W i,2 ≻ 0.

Lemma A.3. Suppose Equations (2) and (3) in the main paper and Assumptions A.1–A.7

hold. For the estimator of group-specific coefficients of the copula generated regressors in the

augmented panel data model, δ̂g in (13), as n, T → ∞ and T/n → ∞,
√
ngT (δ̂g − δg) →d

N(0,Σδ,g) where Σδ,g ≻ 0, and ng denotes the number of units in Group g, for g = 1, 2, ..., G.
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Proof. Without loss of the generality, we consider the case with a scalar endogenous regressor,

pit, and a scalar exogenous regressor, wit, to simplify the mathematical exposition. δ̂g in (13)

can be rewritten as δ̂g = Ψ−1
ϵp,Ng

(
1
Ng

∑ng

i∈[ng ]
ϵ̂′ipM ixyi

)
with Ψϵp,Ng = 1

Ng

∑ng

i∈[ng ]
ϵ̂′ipM ixϵ̂ip

and Ng = ngT . Then we have

Ψϵp,Ng

√
Ng

(
δ̂g − δg

)
=

1√
Ng

ng∑
i∈[ng ]

ϵ̂′ipM ix [ui + (ϵip − ϵ̂ip) δg] = ANg +BNg ,

where ANg =
1√
Ng

∑ng

i∈[ng ]
ϵ̂′ipM ixui, and BNg =

1√
Ng

∑ng

i∈[ng ]
ϵ̂′ipM ix (ϵip − ϵ̂ip) δg.

We first analyze ANg = ANg ,1 + ANg ,2 + ANg ,3, where ANg ,1 = 1√
Ng

∑ng

i∈[ng ]
ϵ′ipM ixui,

ANg ,2 =
1√
Ng

∑ng

i∈[ng ]
(ϵ̃ip − ϵip)′M ixui, and ANg ,3 =

1√
Ng

∑ng

i∈[ng ]
(ϵ̂ip − ϵ̃ip)′M ixui, with

ϵ̃ip = ẽ
∗
ip − Πg(i),pwẽ

∗
iw, (A.2)

ẽ∗ip = (ẽ∗i1,p, ..., ẽ
∗
iT,p)

′, ẽ∗iw = (ẽ∗i1,w, ..., ẽ
∗
iT,w)

′, ẽ∗it,p = F̂g(i),p(eit,p), and ẽ∗it,w = F̂g(i),w(eit,w).

Given (10), ANg ,1 →d N(0,ΣA,1) with ΣA,1 = limNg→∞
1
Ng

∑ng

i∈[ng ]
ϵ′ipM ixuiu

′
iM ixϵip.

To analyze ANg ,2, let ANg ,2(1) =
1√
Ng

∑Ng

i∈[Ng ]
(ϵ̃ip − ϵip)′τ T , where τ T is a T × 1 vector of

ones. There exist two orderings of the indices {1, 2, ..., Ng} such that for Group g,

ANg ,2(1)

=
1√
Ng

Ng∑
s∈[Ng ]

[Φ−1(F̂−1
g,p (s/Ng))− Φ−1(s/Ñg)]−

Πpw√
Ng

Ng∑
j∈[Ng ]

[Φ−1(F̂−1
g,w(j/Ng))− Φ−1(j/Ñg)]

=
1√
Ng

Ng∑
s∈[Ng ]

F̂−1
g,p (s/Ñg)− s/Ñg

ϕ(Φ−1(s/Ñg))
− Πpw√

Ng

Ng∑
j∈[Ng ]

F̂−1
g,w(j/Ñg)− j/Ñg

ϕ(Φ−1(j/Ñg))
+ op(1),

with Ñg = Ng + 1.A1 By the weak convergence of the uniform quantile process,

1√
Ng

Ng∑
s∈[Ng ]

F̂−1
g,p (s/Ñg)− s/Ñg

ϕ(Φ−1(s/Ñg))
→d H1 =

∫ 1

0

B(u)

ϕ(Φ−1(u))
du,

and

Πpw√
Ng

Ng∑
j∈[Ng ]

F̂−1
g,w(j/Ñg)− j/Ñg

ϕ(Φ−1(j/Ñg))
→d H2 = Πpw

∫ 1

0

B(v)

ϕ(Φ−1(v))
dv,

where B(·) is a standard Brownian bridge. Thus, ANg ,2(1) →d H = H1 −H2, where E(H) =

A1Here we use s and j to replace the double indices it, since we assume eit,p and eit,w are i.i.d draws.
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E(H1 −H2) = 0 as E(H1) = 0 and E(H2) = 0. For the variance,

V (H) = V (H1) + V (H2)− 2E(H1H2),

where V (H1) = 1, V (H2) = Π2
pw,

E(H1H2) = −Πpw

∫ 1

0

∫ 1

0

B(u)B(v)f
(
Φ−1(u),Φ−1(v)

)
dudv,

and f(x, y) is the density function of a standard bivariate normal distribution with a correla-

tion coefficient Πpw. By some algebra, it can be shown that E(H1H2) = E [min(Φ(x),Φ(y))]−

E [Φ(x)Φ(y)], where Φ(x) and Φ(y) are the standard normal CDFs of x and y. Since

E [min(Φ(x),Φ(y))] = 1
2
− 1

2π
sin−1(Πpw) and E [Φ(x)Φ(y)] = 1

4
+ 1

2π
sin−1(Πpw), E(H1H2) =

1
4
− 1

π
sin−1(Πpw) where |E(H1H2)| ≤ 1/4 for all Πpw ∈ (0, 1). Thus, V (H) = 1 + Π2

pw −

2
(
1
4
+ 1

2π
sin−1(Πpw)

)
≥ 1+Π2

pw−1/2 > 0, and ANg ,2(1) converges to a non-degenerate random

variable with mean zero. Furthermore, since uit is mean zero and distributed independently

of eit,p and eit,w, conditional on the weight matrix M ix = {mj,x}j=1,...,T 2 ,

ANg ,2 =
1√
Ng

Ng∑
s∈[Ng ]

usms,x

(
F̂−1
g,p (s/Ñg)− s/Ñg

ϕ(Φ−1(s/Ñg))

)
− Πpw√

Ng

Ng∑
j∈[Ng ]

ujmj,x

(
F̂−1
g,p (j/Ñg)− j/Ñg

ϕ(Φ−1(j/Ñg))

)

= Op(N
−1/2
g ) = op(1).

For the term ANg ,3, let ANg ,3(1) =
1√
Ng

∑Ng

i∈[Ng ]
(ϵ̂ip−ϵ̃ip)′τ T . As Π̂g,pw−Πg,pw = Op(N

−1/2
g )

by Lemma A.1, we have ANg ,3(1) =
1√
Ng

∑Ng

i∈[Ng ]

[
(ê∗ip − ẽ∗ip)− Πg,pw(ê

∗
iw − ẽ∗iw)

]′
τ T + op(1).

Using a first-order Taylor expansion and the arguments from the proof of Theorem 3.4 in Zhao

et al. (2020), it follows that ANg ,3(1) = Op

[
log1/2(Ng)N

1/2
g T−1

]
= Op

[
log1/2(nT )(n/T )1/2

]
.

As T/n→ ∞, this implies ANg ,3(1) = op(1). Analogously to the derivation of the ANg ,2 term,

conditional on the weight matrix M ix, ANg ,3 = op(1). Thus, combining the three terms, we

have ANg = ANg ,1 + op(1).

We now analyze BNg = BNg ,1 +BNg ,2 +BNg ,3 +BNg ,4, where

BNg ,1 =
1√
Ng

ng∑
i∈[ng ]

ϵ′ipM ix (ϵip − ϵ̃ip) δg,

BNg ,2 =
1√
Ng

∑ng

i∈[ng ]
(ϵ̂′ip−ϵ̃′ip)M ix (ϵip − ϵ̃ip) δg, BNg ,3 =

1√
Ng

∑ng

i∈[ng ]
(ϵ̂′ip−ϵ̃′ip)M ix (ϵ̂ip − ϵ̃ip) δg =
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op(1), and BNg ,4 = 1√
Ng

∑ng

i∈[ng ]
ϵ̂′ipM ix (ϵ̃ip − ϵ̂ip) δg. Using the Cauchy–Schwarz’s inequal-

ity repeatedly and 1√
Ng

∑ng

i∈[ng ]
(ϵ̃′ip − ϵ′ip)M ix (ϵip − ϵ̃ip) δg = op(1), BNg ,2 = op(1). Given

ANg ,2(1) = Op(N
1/2
g ), BNg ,3 = op(1). Similarly, BNg ,4 = op(1). Thus, BNg = BNg ,1 + op(1).

For the BNg ,1 term, there exist two orderings of the indices {1, 2, ..., Ng} such that

BNg ,1 =
1√
Ng

Ng∑
s∈[Ng ]

Φ−1(F̂−1
g,p (s/Ñg))

F̂−1
g,p (s/Ñg)− s/Ñg

ϕ(Φ−1(s/Ñg))

− Πpw√
Ng

Ng∑
j∈[Ng ]

Φ−1(F̂−1
g,w(j/Ñg))

F̂−1
g,w(j/Ñg)− j/Ñg

ϕ(Φ−1(j/Ñg))
+ op(1),

with Ñg = Ng + 1. By the weak convergence of the uniform quantile process,

1√
Ng

Ng∑
s∈[Ng ]

Φ−1(F̂−1
g,p (s/Ñg))

F̂−1
g,p (s/Ñg)− s/Ñg

ϕ(Φ−1(s/Ñg))
→d H3 =

∫ 1

0

h(u)B(u)du,

and

Πpw√
Ng

Ng∑
j∈[Ng ]

Φ−1(F̂−1
g,w(j/Ñg))

F̂−1
g,w(j/Ñg)− j/Ñg

ϕ(Φ−1(j/Ñg))
→d H4 = Πpw

∫ 1

0

h(v)B(v)dv,

where h(x) = Φ−1(x)
ϕ(Φ−1(x))

, and B(·) is a standard Brownian bridge. Thus, as Ng → ∞, BNg ,1 →d

(H3 −H4), where E(H3 −H4) = 0 and V ar(H3 −H4) = ΣB,1 > 0.

The above results also imply that Ψϵp,Ng →p Ψϵp = lim
Ng→∞

1
Ng

∑ng

i∈[ng ]
ϵ′ipM ixϵip. Thus, as

n, T → ∞ and T
n
→ ∞,

√
ngT (δ̂g−δg) →d N(0,Σδ,g), with Σδ,g = Ψ−2

ϵp (ΣA,1+ΣB,1) > 0.

A.2.2.3 Proof of Theorem 2

Proof. From Lemmas A.1–A.3, it follow that θ̂i − θi = (X ′
iX i)

−1X ′
iui + Op

[
(ngT )

−1/2
]
=

(X ′
iX i)

−1X ′
iui + op(1). Also, E(θ̂i) = θi + O (T−1), where the incidental parameter bias

arises from the estimation of αip and αiw. Then under Assumptions A.1–A.7, the asymptotic

distribution of θ̂ in (14) and a consistent estimator of its variance are derived using Theorems

3.1 and 3.2 from Chudik and Pesaran (2019), respectively.
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A.2.3 Comparisons of Pooled OLS, FE, and MG estimators in

heterogeneous panel data models

Consider a heterogeneous panel data model given by

yit = αi + x
′
itβi + ξit,

for i = 1, 2, ..., n and t = 1, 2, ..., T . Assuming the regressors are exogenous, the pooled

ordinary least squares (OLS) and fixed effects (FE) estimators can be rewritten as weighted

averages over individual-specific OLS estimators, with non-uniform weights shown below.

For the slope coefficients, the pooled OLS estimator is given by

β̂POLS =

[
(nT )−1

n∑
i=1

T∑
t=1

(xit − x̄)(xit − x̄)′
]−1 [

(nT )−1

n∑
i=1

T∑
t=1

(xit − x̄)(yit − ȳ)

]

=
n∑

i=1

1

n

[
1
T

∑T
t=1(xit − x̄i)(xit − x̄i)

′

1
nT

∑n
i=1

∑T
t=1(xit − x̄)(xit − x̄)′

][
1
T

∑T
t=1(xit − x̄)(yit − ȳ)

1
T

∑T
t=1(xit − x̄i)(yit − ȳi)

]
︸ ︷︷ ︸

the weight on the individual-specific OLS estimate

β̂i,

where x̄ = 1
n

∑n
i=1 x̄i with x̄i =

1
T

∑T
t=1 xit, ȳ = (nT )−1

∑n
i=1 ȳi with ȳi =

1
T

∑T
t=1 yit, and

β̂i =

[
1

T

T∑
t=1

(xit − x̄i)(xit − x̄i)
′

]−1 [
1

T

T∑
t=1

(xit − x̄i)(yit − ȳi)

]
.

The FE estimator for panel data models is given by

β̂FE =

[
(nT )−1

n∑
i=1

T∑
t=1

(xit − x̄i)(xit − x̄i)
′

]−1 [
(nT )−1

n∑
i=1

T∑
t=1

(xit − x̄i)(yit − ȳi)

]

=
n∑

i=1

1

n

[
1
T

∑T
t=1(xit − x̄i)(xit − x̄i)

′

1
nT

∑n
i=1

∑T
t=1(xit − x̄i)(xit − x̄)′

]
︸ ︷︷ ︸
the weight on the individual-specific OLS estimate

β̂i.

Also, the mean group (MG) estimator is given by

β̂MG =
n∑

i=1

1

n
β̂i,

with a uniform weight of 1/n on all individual-specific estimates.

When the weights in pooled OLS and FE estimators are correlated with individual-specific

slope coefficients, they may not serve as unbiased or consistent estimators for the population

A10



mean of heterogeneous coefficients, given by β0 = plimn→∞
1
n

∑n
i=1 βi. In contrast, the MG

estimator is consistent and can be viewed as a sample analog of β0.

A.3 Supplementary MC evidence

Table A.1 shows simulation results of FE, 2sCOPE-FE, and 2sCOPE-MG estimators in

Cases 1.4–1.6: static panel data models under both regressor and slope endogeneity with

different error and regressor processes. For detailed data generating processes and discus-

sions, see subsection 4.1.4 in the main paper. Tables A.2 and A.3 present simulation results

in Cases 2.1 and 2.2 of dynamic panel data models under regressor endogeneity and slope

endogeneity, respectively. See subsection 4.2 in the main paper for details.
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A.4 Supplementary empirical results using Dominick’s scanner

data

For the cereal category, Figure A.1 shows scatter plots of 2sCOPE-MG store-specific

estimates of the dynamic sales response model in (28) of the main paper against store-

specific regressor means. The estimation results using a static sales response model are

reported in Table A.4. Table A.5 presents results using a dynamic sales response model with

lagged sales and lagged price, and the corresponding scatter plots are shown in Figures A.2

and A.3. See subsection 5.1 in the main paper for details.

Tables A.6 and A.7 provide FE, MG, and 2sCOPE-FE estimation results across 21 cat-

egories in Dominick’s scanner database, respectively, for the dynamic sales response model

in (28) of the main paper. Table A.8 shows the 2sCOPE-MG estimation results assuming

store-specific coefficients in the Gaussian copula model, where the estimates are comparable

to those in Table 11 in the main paper with homogeneous Gaussian copula coefficients. See

subsection 5.2 in the main paper for our discussions.
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Figure A.1: Scatter plots of 2sCOPE-MG store-specific estimates on store-specific mean of
regressors in a dynamic panel data model with lagged sales as regressors

Notes: The x-axis is computed as
x̄i,(j)−n−1 ∑n

i=1 x̄i,(j)√
n−1

∑n
i=1(x̄i,(j)−n−1

∑n
i=1 x̄i,(j))2

with x̄i,(j) = T−1
∑T

t=1 xit,(j) for each

regressor j, denoted as log(Pricei), Bonusi, PriceRedui, and log(Salesi,−1), respectively. In each sub-

plot, “cor.” and “p-value” denote the Pearson correlation coefficient between the 2sCOPE-MG store-specific

estimates and store-specific mean of regressors, and the associated p-value. See notes under Table 10 in the

main paper for the model and estimation procedure.
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Table A.4: Estimates of average price elasticity and promotion effects on cereal sales in a
static panel data model using a homogeneous Gaussian copula

Copula generated regressors IV

(1) (2) (3) (4) (5) (6)

Estimator FE MG 2sCOPE-FE 2sCOPE-MG FE-IV MG-IV

log(Priceit) -1.199 -1.106 -1.702 -1.587 -1.679 -1.554

(0.055) (0.028) (0.090) (0.103) (0.130) (0.050)

Bonusit 0.203 0.199 0.158 0.159 0.190 0.212

(0.025) (0.017) (0.029) (0.032) (0.023) (0.020)

PriceReduit 0.152 0.143 0.089 0.094 0.113 0.113

(0.030) (0.017) (0.033) (0.034) (0.027) (0.023)

Store fixed effects Y Y Y Y Y Y

Week fixed effects Y Y Y Y Y Y

Test of price endogeneity

Pearson cor. - - 0.269 0.232 - -

p-value - - 0.000 0.000 - -

Slope endogeneity - Y - Y - Y

Regressor endogeneity - - Y Y Y Y

No. observations 13,600 13,600 13,600 13,600 11,520 11,520

Notes: The estimates are based on a balanced panel of 80 stores over 170 weeks (1990–1994) of the cereals

category from Dominick’s database. The static sales response model is given by log(Salesit) = αi + τt +

βi1 log(Priceit) + βi2Bonusit + βi3PriceReduit + ξit, where αi and τt denotes store and week fixed effects,

respectively. The coefficients of the Gaussian copula model are assumed to be homogeneous across stores. (i)

Price, bonus, and price reduction are computed as market share weighted averages over UPCs sold in each

store. (ii) log(Salesit) and log(Priceit) are detrended prior to estimation, using linear and quadratic trends,

respectively. (iii) To construct an instrument for price, we consider the weekly prices of UPCs average over

different stores (for those UPCs whose prices are observed over all periods), and we further aggregate the

prices over UPCs for each store with “predetermined” weights. The weights are computed as market shares

of these UPCs in each store average over the first 26 weeks, which are excluded from the sample used in IV

estimation (T = 144). The first stage regression includes time fixed effects and the exogenous variables, and

assumes homogeneous and heterogeneous slopes of the IV for FE and MG estimators, respectively.
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Table A.5: Estimates of average price elasticity and promotion effects on cereal sales on
cereal sales in a dynamic panel data model with lagged sales and lagged price as regressors
using a homogeneous Gaussian copula

Copula generated regressors IV

(1) (2) (3) (4) (5) (6)

Estimator FE MG 2sCOPE-FE 2sCOPE-MG FE-IV MG-IV

log(Salesi,t−1) 0.115 0.148 0.112 0.145 0.108 0.114

(0.024) (0.015) (0.024) (0.017) (0.020) (0.020)

log(Priceit) -1.289 -1.214 -1.675 -1.566 -1.868 -1.670

(0.058) (0.021) (0.087) (0.097) (0.144) (0.047)

log(Pricei,t−1) 0.360 0.375 0.321 0.346 0.095 0.465

(0.049) (0.023) (0.051) (0.055) (0.027) (0.027)

Bonusit 0.195 0.189 0.161 0.159 0.608 0.203

(0.024) (0.019) (0.028) (0.031) (0.062) (0.027)

PriceReduit 0.143 0.136 0.094 0.100 0.180 0.103

(0.029) (0.016) (0.032) (0.032) (0.023) (0.022)

Store fixed effects Y Y Y Y Y Y

Week fixed effects Y Y Y Y Y Y

Test of price endogeneity

Pearson cor. - - 0.218 0.179 - -

p-value - - 0.000 0.000 - -

Slope endogeneity - Y - Y - Y

Regressor endogeneity - - Y Y Y Y

No. observations 13,520 13,520 13,520 13,520 11,440 11,440

Notes: The estimates are based on a balanced panel of 80 stores over 169 weeks (1990–1994) of the cereals

category from Dominick’s database. The dynamic sales repsonse model is given by log(Salesit) = αi +

τt + ϕi log(Salesi,t−1) + βi1 log(Priceit) + ϕi2 log(Pricei,t−1) + βi2Bonusit + βi3PriceReduit + ξit, where αi

and τt denotes store and week fixed effects, respectively. The coefficients of the Gaussian copula model are

assumed to be homogeneous across stores. (i) Price, bonus, and price reduction are computed as market

share weighted averages over UPCs sold in each store. (ii) log(Salesit) and log(Priceit) are detrended prior

to estimation, using linear and quadratic trends, respectively. (iii) To construct an instrument for price, we

consider the weekly prices of UPCs average over different stores (for those UPCs whose prices are observed

over all periods), and we further aggregate the prices over UPCs for each store with “predetermined” weights.

The weights are computed as market shares of these UPCs in each store average over the first 26 weeks,

which are excluded from the sample used in IV estimation (T = 143). The first stage regression includes

time fixed effects and the exogenous variables, and assumes homogeneous and heterogeneous slopes of the

IV for FE and MG estimators, respectively.
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Figure A.2: Scatter plots of 2sCOPE-MG store-specific estimates on within-store regressor
variations in a dynamic panel data model with lagged sales and lagged price as regressors

Notes: The x-axis is computed as
T−1 ∑T

t=1(xit,(j)−x̄i,(j))
2

(nT )−1
∑n

i=1

∑T
t=1(xit,(j)−x̄i,(j))

2 with x̄i,(j) = T−1
∑T

t=1 xit,(j) for each re-

gressor j, denoted as V (log(Pricei)), V (Bonusi), V (PriceRedui), V (log(Salesi,−1)), and V (log(Pricei,−1)),

respectively. In each sub-plot, “cor.” and “p-value” denote the Pearson correlation coefficient between the

2sCOPE-MG store-specific estimates and within-store regressor variations, and the associated p-value, re-

spectively. See notes under Table A.5 for the model and estimation procedure.
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Figure A.3: Scatter plots of 2sCOPE-MG store-specific estimates on store-specific mean of
regressors in a dynamic panel data model with lagged sales and lagged price as regressors

Notes: The x-axis is computed as
x̄i,(j)−n−1 ∑n

i=1 x̄i,(j)√
n−1

∑n
i=1(x̄i,(j)−n−1

∑n
i=1 x̄i,(j))2

with x̄i,(j) = T−1
∑T

t=1 xit,(j) for each

regressor j, denoted as log(Pricei), Bonusi, PriceRedui, log(Salesi,−1), and log(Pricei,−1), respectively.

In each sub-plot, “cor.” and “p-value” denote the Pearson correlation coefficient between the 2sCOPE-MG

store-specific estimates and store-specific mean of regressors, and the associated p-value. See notes under

Table A.5 for the model and estimation procedure.
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