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1. Introduction

“Financial conditions have tightened significantly in recent months... We remain attentive to

these developments because persistent changes in financial conditions can have implications for

the path of monetary policy.” (Chair Jerome Powell, Economic Club of New York Luncheon,

October 19, 2023)

Monetary policy has been transitioning from a narrow emphasis on short-term interest rates

to a significantly wider focus on financial conditions—a summary measure of aggregate asset

prices such as stocks, bonds, real estate, and exchange rates. This shift acknowledges the

large role played by the price of risky assets in driving aggregate demand. In fact, Financial

Conditions Indices (FCI), which aggregate asset classes based on their impact on aggregate

spending, identify risky asset prices, especially stock prices, as their main driver in the U.S.

and most major economies (see, e.g., Hatzius et al. (2017)). It is also well-documented in the

finance literature that these types of risky asset prices fluctuate without meaningful changes in

underlying fundamentals (see, e.g., Campbell (2014)). These fluctuations partly reflect noise

shocks—changes in asset demand or supply that are orthogonal to fundamentals—which affect

asset prices because sophisticated investors face constraints or risks that limit their ability to

trade against noise (see De Long et al. (1990); Gabaix and Koijen (2021)). Consistent with

this mechanism, we estimate (identified) vector-autoregression (VAR) models that show noisy

financial flows can explain up to 55% of the variance of financial conditions and between 20%

and 50% of the variance of output gaps in the U.S. (see Section 2). How should monetary policy

react to this financial noise?

Bernanke and Gertler (2000, 2001) address this question within a New Keynesian model

with asset bubbles. They argue that, in this context, central banks should not focus on asset

prices directly but instead on stabilizing the inflation and output gaps that arise from asset

price fluctuations. In this paper, we take this analysis one step further and propose a model in

which it is optimal for the central bank to target and (partially) stabilize financial conditions

beyond their direct impact on output and inflation gaps. Furthermore, we demonstrate that

in our model financial conditions targeting is strictly superior to the traditional interest rate

forward guidance. Lastly, extending recent policy counterfactual methods, we find that finan-

cial conditions targeting would have significantly reduced the volatility of the output gap and

financial conditions in the U.S. over recent decades.

Our model builds on the “risk-centric” New Keynesian framework developed in Caballero

and Simsek (2023). The distinctive feature of this framework is that monetary policy transmits

to macroeconomic activity through financial conditions. Specifically, aggregate demand is in-

fluenced by the aggregate asset price (the FCI in our model), reflecting a consumption wealth

effect (as a proxy for broader mechanisms linking financial conditions to aggregate demand).

Monetary policy tries to steer the aggregate asset price, by adjusting the policy interest rate, to

influence aggregate demand and close the output gap.
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There are two key differences from Caballero and Simsek (2023). First, the aggregate asset

price is not only influenced by the policy rate and standard financial forces but also by (financial)

“noise” shocks. Specifically, households delegate their portfolio decisions to managers of three

types: noise traders, inelastic funds, and risk-averse arbitrageurs. Noise traders create random

market flows that must be absorbed by other investors. Inelastic funds cannot absorb these

flows, since they passively invest according to the average optimal portfolio benchmark. Risk-

averse arbitrageurs can absorb the noisy flows, but their limited capacity leaves substantial room

for noise to impact aggregate asset prices. Second, monetary policy reacts to aggregate noise

shocks only with a delay, preventing it from fully managing financial conditions and aggregate

demand.

Our main result demonstrates that an expanded monetary policy framework, where the

central bank announces a (soft and temporary) Financial Conditions Index (FCI) target and

sets the policy interest rate in the near-future to keep the actual FCI close to the target, is welfare

improving. The reason is that FCI targeting “recruits” arbitrageurs for monetary policy. That

is, it enables arbitrageurs to absorb more of the noise flows in real time, without the reaction

lags of monetary policy.

At the core of this result is an endogenous volatility feedback loop: noise has a greater impact

on aggregate asset prices when return volatility is higher. This happens because higher return

volatility makes arbitrageurs more reluctant to trade against noise. The larger price impact of

noise leads to an endogenous increase in return volatility, which further amplifies the price impact

of noise, and so on. This noise-driven volatility in aggregate asset prices affects macroeconomic

activity and leads to “excessive” fluctuations in the output gap.

In this context, FCI targeting operates in two ways: First, it centers the target FCI at the ex-

pected level needed to close future output gaps, as in Caballero and Simsek (2023). Second, and

central to our main result, it dampens the response of monetary policy to future macroeconomic

data, reducing the return volatility associated to these responses. This lower return volatility

is the key mechanism by which the policy recruits the arbitrageurs: with lower volatility, the

arbitrageurs trade more aggressively to counter noisy financial flows and the market becomes

more elastic with respect to these flows. This counterforce reverses the volatility feedback loop

and thereby reduces the impact of noise on the FCI and output. Surprisingly, this reduction in

the price impact of noise also implies that, in many instances, the policy objective gain can be

achieved with lower policy rate volatility.

The downside of the volatility reduction mechanism is that it makes monetary policy less

responsive to macroeconomic shocks, allowing these shocks to have a greater impact on the out-

put gap. However, this trade-off is worthwhile. We show that starting from a perfect-flexibility

(discretionary) benchmark, implementing some degree of FCI targeting is always optimal. This

is because the reduced flexibility with respect to macroeconomic shocks results in only a second-

order loss, while the significant reduction in the impact of noise generates first-order gains in

stabilizing the output gap.
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FCI targeting is akin to providing forward guidance about the future path of the FCI,

assuming that this type of guidance entails some degree of commitment. We show that FCI

forward guidance is strictly superior to guidance on the policy interest rate. This is because FCI

forward guidance naturally allows the policy to react to future noise shocks, whereas interest

rate forward guidance reduces the flexibility of the central bank to react to these shocks. In

other words, the optimal policy reduces data-dependency with respect to macroeconomic shocks

while increasing data-dependency with respect to noise shocks. FCI targeting achieves both

goals, while interest rate forward guidance only achieves the former.

Beyond the specific mechanisms we emphasize, FCI targeting could stabilize asset prices for

a variety of additional reasons. For instance, as emphasized by Jeanne and Rose (2002), noise

itself tends to decline when a stabilizing policy framework is in place, creating a virtuous cycle

of reduced volatility. This stabilization is not limited to noise traders but extends to belief-

driven fluctuations in asset prices, such as the anticipation of transformative events like an AI

revolution. In an extension of our model, we demonstrate that when markets anticipate the

Fed’s commitment to maintaining stable financial conditions, belief shocks —whether justified

or not—lead to smaller asset price fluctuations, thereby mitigating their broader impact on

macroeconomic stability.

In the final part of the paper we conduct an empirical evaluation of FCI targeting by building

upon the counterfactual policy evaluation methods described in McKay and Wolf (2023b) and

Caravello et al. (2024). The key idea is to combine estimated impulse responses to monetary

policy shocks to approximate the effects of counterfactual monetary policy rules. Substituting

shocks for rules in this way identifies the correct counterfactual as long as the model is linear

and monetary policy operates through current or expected policy interest rates. However, in our

model, this approach encounters a crucial complication: FCI targeting stabilizes the economy

by reducing risk, and this risk reduction is a non-linear element. We adapt the methodology to

account for this non-linearity and estimate counterfactuals for policies that reduce FCI volatility,

along the lines of the FCI targeting rule in our theoretical model.

Our main empirical results examine a scenario in which the Fed minimizes a weighted average

of output gaps, inflation gaps, interest rate changes, and the FCI deviations from a preannounced

(optimized) FCI target. We show that this policy framework significantly reduces the impact of

noise shocks on financial conditions, the output gap, and inflation compared to historical data.

This stabilization is achieved with only a slight increase in frontloading but reduced volatility of

the policy interest rate, as the framework encourages arbitrageurs to absorb more of the noise.

With arbitrageurs playing a larger stabilizing role, the policy interest rate reacts less to these

shocks. Beyond noise shocks, targeting financial conditions substantially reduces the volatility of

macroeconomic and financial variables. Compared to historical data, the variance of the output

gap, inflation, and interest rates decreases by 36%, 2%, and 6%, respectively, while the condi-

tional variance of financial conditions decreases by 55%. These reductions outperform standard

alternatives, such as a flexible dual mandate framework or interest rate forward guidance. A
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significant portion of these gains can be achieved with an augmented version of a Taylor rule

that gives a large weight to a simplified financial conditions target.

Literature review. Our paper connects two main literatures: one in macroeconomics and one

in finance. On the macroeconomics side, our paper is part of an emerging literature on New

Keynesian models with risk and asset prices (e.g., Caballero and Farhi (2018); Caballero and

Simsek (2020, 2021, 2023, forthcoming); Pflueger et al. (2020); Kekre and Lenel (2022); Kekre

et al. (2023); Beaudry et al. (2024); Adrian and Duarte (2018); Adrian et al. (2020)). Our main

new ingredient is the presence of financial noise, which interferes with the monetary policy trans-

mission. Our main result demonstrates the benefits of FCI targeting in such an environment.

On the finance side, our paper is related to a large literature that emphasizes asset price

fluctuations driven by noise and limits to arbitrage (see Black (1986); Shleifer and Summers

(1990); De Long et al. (1990) for early contributions). Noise is a catch-all term for nonfun-

damental demand or supply by some market participants that might emerge from a variety of

sources such as behavioral biases, institutional frictions, and segmented markets (see Gromb and

Vayanos (2010)). Limits to arbitrage refers to the constraints faced by sophisticated investors

in trading against noise (see Shleifer and Vishny (1997)). The literature has applied these in-

gredients to explain asset price fluctuations in many markets, including aggregate assets that

affect financial conditions such as treasury bonds (Greenwood and Vayanos (2014); Vayanos and

Vila (2021)), exchange rates (Gabaix and Maggiori (2015); Gourinchas et al. (2022); Greenwood

et al. (2023)), and the aggregate stock market (Gabaix and Koijen (2021)). The VAR evidence

that we present in Section 2 confirms these findings and indicates that noisy aggregate flows

drive not only financial conditions but also macroeconomic activity. Our main contribution to

this literature is to embed noise and limits-to-arbitrage into a macroeconomic model and show

that these ingredients create a natural rationale for FCI targeting. In our model, FCI targeting

works because it reduces the aggregate return volatility and recruits sophisticated investors to

trade against noise.

Our model shares similarities with Jeanne and Rose (2002); Itskhoki and Mukhin (2021),

who demonstrate that a monetary policy regime stabilizing the exchange rate can reduce ex-

change rate volatility without significantly changing other macroeconomic variables, offering an

explanation of the Mussa puzzle. As mentioned earlier, Jeanne and Rose (2002) show that ex-

change rate stabilization deters the entry of noise traders creating a virtuous cycle of reduced

volatility. Similarly, Itskhoki and Mukhin (2021) show that exchange rate stabilization enables

sophisticated investors to trade against noise more aggressively. While our mechanism resem-

bles that of Itskhoki and Mukhin (2021), the macroeconomic implications differ. In our model,

noise-driven fluctuations in financial conditions have significant effects on macroeconomic activ-

ity, as we confirm in Section 2, whereas in their model, exchange rate fluctuations have minimal

impact on aggregate activity. This large macroeconomic impact in our framework justifies the

FCI-targeting policy.

Our paper is related to Woodford (2003), who shows that adding an interest-rate smoothing
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term to central bank objectives might be desirable, even though interest rate smoothing per se

is not a social objective. In similar vein, we show that adding an FCI targeting to central bank

objectives might be desirable, but the mechanism and the source of welfare gains are different.

Interest rate smoothing affects the private sector’s expectations of future interest rates, which

in turn enables the central bank to shift the long-term interest rate through moderate changes

in the short-term rate. In contrast, FCI targeting affects the private sector’s expectations of

aggregate asset price volatility, which encourages the arbitrageurs to trade against noise and

stabilizes financial conditions.

Our paper connects with the large literature on forward guidance about the path of policy

interest rates (see, e.g., Campbell et al. (2012); Woodford (2013); Svensson (2014); Bassetto

(2019)). The recent literature emphasizes the role of forward guidance as a commitment device

that might be especially useful when the policy rate is constrained by the effective lower bound

(e.g., Eggertsson and Woodford (2003)). Our model shows that forward guidance about the

FCI, viewed as a soft commitment to an FCI target, can stabilize financial conditions and

output gaps.1

Our paper also belongs to a literature that empirically identifies the macroeconomic effects

of financial shocks (Gilchrist et al., 2009; Gilchrist and Zakraǰsek, 2012), and the transmission of

monetary policy via financial markets (Gertler and Karadi, 2015; Caldara and Herbst, 2019).2

While the previous literature focuses on the effects of shocks to credit spreads, our financial

noise captures the price impact of equity flows. We also relate to several papers (Hatzius et al.,

2017; Hatzius and Stehn, 2018; Ajello et al., 2023a) that show that: (i) innovations in various

financial conditions indices are strongly correlated with output growth, (ii) equity is the main

driver of financial conditions indices for the United States. Our identification strategy isolates

plausibly exogenous variation in flows to equity, which allows for a causal interpretation of our

estimates. Overall, our results highlight the significant role that noise shocks in the stock market

play in macroeconomic fluctuations, which, although related, are distinct from other financial

shocks identified in the literature.

Finally, our paper is part of a recent literature on semi-structural policy counterfactuals

(Hebden and Winkler, 2021; Barnichon and Mesters, 2023; Beraja, 2023; McKay and Wolf,

2023b; Caravello et al., 2024). We contribute to this literature by showing how, within the class

of models we consider, a simple departure from a purely linear setting is sufficient to account for

the effects of endogenous changes in the level of risk in the counterfactuals. We use this approach

to evaluate the efficacy of FCI targeting to stabilize macroeconomic and financial fluctuations.

The rest of the paper is organized as follows. Section 2 present facts on the macroeconomic

1Caballero and Simsek (2022) show that when central banks and markets disagree, forward guidance (about
interest rates) can be beneficial by communicating the central bank’s beliefs to the market and preventing misin-
terpretations. While we do not model disagreements in this paper, we conjecture that this communication channel
would complement the commitment channel that we emphasize. Specifically, FCI forward guidance would help
to communicate the central bank’s beliefs to the market, which would reduce the policy risk premium (Caballero
and Simsek (2023)) and further enable sophisticated investors to absorb noise.

2For a more structural approach, see (i.a.) Del Negro et al. (2013); Christiano et al. (2014) .
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effects of financial noise that motivates our theoretical analysis. Section 3 describes the model,

characterizes the equilibrium with discretionary policy, and demonstrates the destabilizing effects

of noise. Section 4 presents our main theoretical results, which demonstrate that FCI targeting

can reduce financial volatility and improve macroeconomic stability. This section also compares

FCI targeting with interest rate targeting and discusses the robustness of FCI targeting in

various model extensions, including an inflation-output trade-off and the presence of shocks

to arbitrageurs’ beliefs about future productivity. Section 5 extends recent methodology on

counterfactual policy analysis to account for the endogenous volatility feedback loop in our

model and uses it to empirically support the main implications of our model. Section 6 provides

final remarks. The theory appendix A contains the derivations and various model extensions.

The data appendix B presents the details of the empirical analysis and additional results.

2. The macroeconomic impact of financial noise

In this section, we explore the influence of stock market noise on financial conditions and macroe-

conomic activity. We focus on the stock market because it is the primary driver of FCI fluc-

tuations in both the U.S. and other major economies. Our findings reveal that the effects of

financial noise shocks are similar to those of classic demand shocks. These noise shocks account

for a significant portion of the forecast variance of the FCI, contributing up to 55% at the initial

impact. Moreover, they have a substantial effect on the variance of output gaps, peaking at a

contribution of up to 50% to the forecast variance over a two-year horizon.

2.1. Data and methodology

We measure financial conditions with the Financial Conditions Impulse on Growth index (FCI-

G) constructed by Ajello et al. (2023a). This index applies the macroeconomic models used

by the Fed to predict the GDP growth over the next year implied by the recent changes (up

to three years ago) in seven different financial variables—the Dow Jones stock price index, the

Zillow house price index, the broad dollar index, the federal funds rate, the 10-year Treasury

yield, the 30-year fixed mortgage rate, and the triple-B corporate bond yield. The index has

the sign convention of interest rates and is scaled so that a reading of 1 implies that financial

conditions will decrease next-year’s GDP growth by 1 percentage point. Figure 1 illustrates the

index along with the contribution of each financial variable over 1990Q1-2024Q2. The stock

market is the key driver of the index followed by the exchange rate. The housing market is an

important driver during the buildup of the GFC and the COVID-19 shock recovery.
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Figure 1: The FCI-G index (with a three-year lookback) and its drivers over 1990Q1-2024Q2. Positive values imply a decrease in GDP
growth in the next year. Source: Ajello et al. (2023a)
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We investigate the relationship between financial conditions and macroeconomic activity

using a vector autoregression (VAR) that includes the FCI-G. Appendix B.1 contains a detailed

discussion of our data construction. Our main sample is 1990Q1:2019Q4. We start in 1990

since the FCI-G index starts in this year and we stop before the Covid period to avoid outliers.3

The baseline variables are the FCI-G, real potential GDP (estimated by the CBO), the output

gap, real investment, real consumption, annualized PCE inflation, the Excess Bond Premium of

Gilchrist and Zakraǰsek (2012), and the 3-month nominal interest rate. Aside from the FCI-G,

the rest of the variables are standard in monetary and financial VAR specifications (Gilchrist and

Zakraǰsek, 2012; Gertler and Karadi, 2015). We use this baseline set of variables to estimate the

impulse responses in Section 2.2. We include two lags in the VAR as suggested by the BIC; and

linearly detrend potential GDP, investment, and consumption. All other variables are included

in levels.

Our variance decomposition analysis in Section 2.3 partly relies on the assumption of in-

vertibility, which posits that structural shocks can be recovered from the VAR residuals. To

make this assumption more plausible, we follow Caravello et al. (2024), and include three more

variables in the VAR when computing variance decompositions, all in logs: (i) hours per worker,

(ii) labor share, (iii) (detrended) labor productivity.

We proxy for the financial noise shock using a Granular IV (Gabaix and Koijen, 2024). In

particular, we construct the proxy exactly as in Gabaix and Koijen (2021) using the Flow of

Funds data. Appendix B.1.2 reviews the details of the construction. The gist of the idea is as

follows: using flow-of-funds data, we can measure the proportional changes in equity held by

different sectors at different points in time, ∆qit. Since these flows are endogenous, we residualize

them using fixed effects, sector-specific trends, macro observables, and principal components,

to obtain a residual ∆q̃it of idiosyncratic flow shocks for each sector. This residual can be

interpreted as sector-specific financial noise shocks. Finally, we do an equity-share-weighted-

average of these residuals to construct the financial flow series Zµt as:

Zµt =
I∑
i=1

Si,t−1∆q̃it (1)

where Si,t−1 is the fraction of total equity held by sector i at time t − 1. Since households are

large in the flow of funds data, in practice this measure is mostly driven by residual changes

in households’ equity holdings. Gabaix and Koijen (2021) argue that this is an appropriate

measure of net flows into equities. For this procedure to be valid, ∆q̃it must be uncorrelated

with other aggregate shocks. In the Appendix, we show that our results are robust to various

residualization methods.4

3Appendix B.2.3 shows what happens if the Covid period is included. In a nuthsell, the estimated IRFs are
unchanged and the variance contribution to output gaps goes down given that the Covid shock is quite large and
the noise shock plays a limited role in the post-Covid subsample.

4Note that the residualization step is key to tackle the issue that “for every buyer there is a seller.” Absent
residualization, prices always adjust such that the flows sum up to zero. The residualization eliminates the price
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Given the shock and observables, we assume that the data generating process can be char-

acterized (in demeaned terms) as:

Yt =

∞∑
ℓ=0

Θℓεt−ℓ (2)

Z̃µt = αεµt + vt, (3)

Yt =

L∑
ℓ=1

AℓYt−ℓ + ut, (4)

where Yt is the vector of macro variables of interest (already demeaned and detrended), Z̃µt =

Zµt −L
[
Zµt |{Z̃

µ
τ , Yτ}τ<t

]
is the proxy shock after residualizing it with respect to lags of itself and

other macro variables (where L(x|y) denotes the linear projection of variable x onto variables

y), εµt is the structural shock of interest, vt is measurement error and ut is the vector of Wold

innovations. We assume that εµt , vt are white noise, and independent of each other.

Equation (2) is the structural vector moving average representation of the data: Yt depends

on a set of structural shocks, εt, that propagate according to Θℓ. Equations (3) and (4) are

measurement equations: (3) relates the measured proxy Zµt to the structural shock of interest

εµt , whereas (4) is a reduced-form Wold representation of the data. Within this framework,

different assumptions can be used to recover impulse responses and variance decompositions

from the data. We explain the details in the following subsections.

2.2. Causal effects of noise shocks

First, we use the constructed proxy Zµt to estimate the effect of noise shocks on macro and

financial variables. In order to do so, we use a VAR that includes the baseline set of macro

variables. Following Plagborg-Møller and Wolf (2021), we add the proxy to the VAR and use

a recursive identification scheme, where the proxy is ordered first. That is, we consider the

augmented vector Xt = [Zµt , Y
′
t ]

′, run a VAR on Xt, and use recursive identification. The red

line in Figure 2 depicts the shock we use to obtain the impulse response. As can be seen, the

series is relatively well mixed over different quarters. There is a large, negative shock around the

GFC, but there are also other shocks of comparable magnitude in other points in the sample,

as in the early 1990s or the mid 2000s.

First Stage. In order to evaluate instrument relevance, we perform an F-test for the relevance

of the financial noise shock in explaining movements in the residuals of the FCI equation. The

conventional F-statistic is 19.96, whereas the heteroskedasticity-robust F equals 13.75. Given

that both values are above the conventional level of 10, we proceed using standard inference.

adjustment required for this identity to hold. See Section 4.1 of Gabaix and Koijen (2021) for details.
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Figure 2: Red: raw shock, Z̃µt as in (3). Blue: shock identified using SVAR-IV as in (5).

Figure 3: Impulse response to a financial noise shock. Shaded and light shaded grey bands
indicate 68 and 90 confidence sets respectively.

11



Impulse Responses. Figure 3 depicts the impulse-response of several macroeconomic out-

comes of interests to an expansionary noise shock, i.e., an exogenous inflow into equity. The

shock lowers the FCI index on impact, which implies looser financial conditions. This generates

a positive output gap and inflation in the first few quarters. There is some positive response

of the interest rate, but it is insufficient to fully stabilize the shock. Overall, the effect of the

financial noise shock is that of a textbook demand shock, that is only imperfectly stabilized by

monetary policy.5

2.3. Importance of noise shocks for macroeconomic fluctuations

In this subsection, we estimate the extent to which output fluctuations in this sample period

are driven by the financial noise shocks. This is the key magnitude that determines the poten-

tial volatility reductions from adopting FCI targeting, since the policy works by endogenously

reducing the impact of noise shocks.

Forecast Variance Ratios. Given its relevance, we present results under several alternative

assumptions to estimate the contribution of the shock to forecast variance. The object of interest

is the Forecast Variance Ratio (FVR). Following Plagborg-Møller and Wolf (2022), we define

the FVR for variable i at horizon h as

FV Ri,h = 1−
Var (Yi,t+h|{Yτ}τ<t, {εµτ }t≤τ<∞)

Var (Yi,t+h|{Yτ}τ<t)
.

This measures by how much does the forecast error (for variable i at horizon h) would be reduced

if we knew with certainty the realization of the shock at all future dates.

Within the DGPs of the form (3)-(4), there are several alternative assumptions regarding

the relation between Z̃µt , ε
µ
t and ut, that yield different identified Forecast Variance Ratios.

First, the most common assumption is invertibility. Under this assumption, the structural

shock satisfies

εµ,t = q′ut. (5)

that is, there exists a linear combination of the (contemporaneous) Wold residuals that spans the

shock of interest. Given that we have a proxy for this shock, we can use a SVAR-IV procedure

(Mertens and Ravn, 2013) to identify q and, therefore, εµ,t. Intuitively, in this case we are

assuming that the true structural shock can be recovered from the Wold residuals. But since we

can estimate the pattern of comovements that the structural shock generates using Z̃µt , we can

back out the correct structural shocks from knowledge of the residuals and the proxy. The blue

line in Figure 2 depicts the identified shock under this assumption. The potential problem of

5Appendix B.2 shows that the estimated responses are robust to i) controlling for additional principal com-
ponents when constructing the shock; ii) controlling for changes in consumer sentiment when constructing the
shock; iii) using an SVAR-IV procedure. Also, in Appendix B.2.2 we show that the shock does not predict TFP,
which suggests that it is not a proxy for news about future fundamentals.
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(a) (b)

(c) (d)

Figure 4: Identified Forecast Variance Ratios of the noise shock. Blue: SVAR-IV, assuming in-
vertibility. Red: lower bound, assumes perfect measurement of the shocks. Grey: recoverability-
based FVR. VAR includes the full set of macro outcomes (baseline + labor market variables).
Dashed lines are 90% confidence intervals of the identified set, (Plagborg-Møller and Wolf, 2022)
computed via bootstrap with 1000 repetitions.

this strategy is that, if the invertibility assumption is violated, it could lead to an overestimation

of the identified shock’s variance contribution.6

A second assumption that gives point identification of the FVR is to rule out measurement

error, i.e., vt = 0 for all t. In contrast to the previous case, if this assumption is violated, we

would underestimate the shock’s contribution: If Z̃µt appears to have low correlation with Yt, we

would attribute that to the shock being unimportant instead of being caused by measurement

error. In fact , this assumption provides a lower bound for the true FVR of the shock (Plagborg-

Møller and Wolf, 2022). The red line in Figure 2 corresponds to the shock identified under this

non-measurement error assumption. Of course, in practice, a prevalent type of measurement

error is that we simply do not fully observe the shock. That is, the Gabaix and Koijen (2021)

shock may be only one of many financial noise shocks. Thus, one interpretation under this

assumption is that we are capturing the importance of the directly measured noise, whereas

under the previous assumption we aim to capture the full importance of the noise shocks by

imposing additional structure.

6See, e.g., Plagborg-Møller and Wolf (2022) for an illustration of this bias in the context of a model with
monetary and oil shocks.
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Finally, a third assumption that allows identification of the FVR is recoverability (Plagborg-

Møller and Wolf, 2022; Forni et al., 2023). Under this assumption, the structural shock satisfies:

εµ,t = q′
(
L−1

)
ut, (6)

where q(L−1) is now a lead polynomial. Thus, εµ,t can be recovered from the data, but we may

need future values of ut to do so. This assumption is less stringent than invertibility, and it

provides an upper bound on the FVR (Plagborg-Møller and Wolf, 2022). However, even in this

case, we are still assuming that we can properly recover the shock based on observables.

Figure 4 shows the FVRs identified under each of these three assumptions. As we can see, the

standard invertibility-based SVAR-IV produces variance ratios that are almost indistinguishable

to the recoverability-based estimates. Under any of these two assumptions, the noise shock

explains up to 50% of the forecast error in output gap at a 2 year horizon. The share of

unconditional output gap variance explained by the shock is around 35%.7 Furthermore, the

shock explains up to 55% of the contemporaneous variation in FCI. The lower bound, obtained

under the perfect measurement assumption, shows lower contributions, but still a sizeable share

of output gap’s forecast variance at a 2 year horizon (20%) is driven by the shock, as well as a

non-trivial portion of the unconditional output gap volatility (15%). The shock also explains a

large share of FCI fluctuations. Overall, even at the lower bound, the evidence indicates that

the shock is a significant driver of FCI and output gap fluctuations.8

Historical decomposition. In order to provide an interpretation of what kind of historical

episodes are driven by the shock, we perform the following exercise: we take the estimated

VAR, and feed in only the identified noise shock, setting all other innovations to zero. More

specifically, we create alternative time series Y̌t using:

Y̌t =

L∑
ℓ=1

ÂℓY̌t−ℓ + p̂ε̂µt , Y̌j = 0 for j < 0. (7)

Where {Âℓ} are the estimated VAR coefficients, p̂ is the vector of estimated contemporaneous

effect of the structural shock on each VAR equation, and ε̂µt is the estimated time series for the

shock. We do this for two identifying assumptions: (i) SVAR-IV, (ii) no measurement error.

We omit recoverability due to similarity with SVAR-IV. We emphasize that this lacks a direct

counterfactual interpretation, but it is a useful accounting device to see when the shock is

important in the sample.

Figure 5 shows the results of this exercise. The dashed line is the raw data, and the solid lines

7In the Figure, we can proxy this contribution by looking at the FVRs at the longest horizon, since there is
essentially no predictability left at that horizon.

8We also note that, for all sets of assumptions, the shock explains a modest amount of inflation fluctuations
(up to 15% under at the upper bound, around 5% at the lower bound), and also a modest amount of interest rate
fluctuations.
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Figure 5: Alternative time series constructed by setting to zero all shocks other than the iden-
tified noise shock, following (7). Red: raw shock, Z̃µt as in (3). Blue: shock identified using
SVAR-IV as in (5). Note: inflation is reported in year-on-year terms.

show the alternative time series Y̌t based on the SVAR-IV identified shock (in blue), and the

shock identified under the perfect measurement assumption (in red). The alternative series based

on the SVAR-IV assumption track the data on FCI quite well for the 1999-2008 period. Before

and after, there is some relation but the gap between the data and the alternative series is wider.

Something similar happens with the output gap: the blue line tracks the data very well during

the 1999-2008 period, just before the GFC. During the GFC, the noise shock explains some

of the drop, but it is far from explaining the full depth and slow recovery from the recession.

Similar patterns are observed with interest rates and inflation. Overall, the SVAR-identified

shock explains most of the FCI and output fluctuations in the 1999-2008 period, less so before

and after. This is consistent with the narrative that attributes macro fluctuations preceding the

GFC to exuberance in financial markets, associated with positive noise shocks. When the GFC

happened, this is partially amplified by negative noise shocks, but other factors (such as rising

risk premium and the binding ZLB) also must have played a role, since financial noise shocks

alone cannot explain the data after the GFC. Focusing on the shock identified under the perfect

measurement assumption, the overall patterns point to the same direction, but magnitudes are

smaller. From our earlier discussion, this may reflect measurement error, in particular the fact

that the Gabaix and Koijen (2021) shock is only a subset of all financial noise shocks.
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3. A macroeconomic model with financial noise

In this section, we present a risk-centric macroeconomic model with the following key features:

(i) financial noise can drive the aggregate asset price (FCI) away from the central bank’s desired

level due to policy reaction lags; (ii) sophisticated investors (arbitrageurs) trade against this

noise; and (iii) the arbitrageurs face uncertainty about the future level of FCI. In this setup,

we demonstrate that noise shocks affect both financial conditions and macroeconomic activity,

consistent with our motivating evidence. In the subsequent section, we will use this model to

investigate the effects of an explicit FCI targeting policy.

3.1. Environment

We relegate the details of the environment to Appendix A.1. Here, we summarize the real side

of the economy and describe in more detail the financial market side.

Real economy. On the supply side, (the log of) potential output follows the process:

y∗t = y∗t−1 + εz,t, where σ
2
z ≡ var (εz,t) (8)

and εz,t denotes an i.i.d. aggregate supply shock. Due to nominal price stickiness, (the log of)

output, yt, is determined by aggregate demand and can depart from potential output. For the

baseline model, we assume firms’ prices are fully sticky. Our main results are robust to allowing

for partially flexible prices and a trade-off between inflation and output stabilization, as we show

in Appendix A.5 and discuss in Section 4.6.2.

On the demand side, there are two types of households: hand-to-mouth agents and (asset

holding) households. Hand-to-mouth agents do not play an important role beyond decoupling

the labor supply decisions from household consumption behavior. They supply all of the labor

and spend all of their income. Since their spending is driven by output, which is endogenous,

they create a Keynesian multiplier effect but they do not drive the aggregate demand.

Aggregate demand is driven by (asset holding) households. These households own the ag-

gregate risky asset (the market portfolio): a claim on firms’ share of output (αYt). They have

expected log utility and make portfolio allocation and consumption-savings decisions. They del-

egate the portfolio decision to the portfolio managers that we describe later. Their consumption

rule is centered around the optimal rule with log utility, but it can deviate by an amount denoted

by δt, which we refer to as an aggregate demand shifter. This is a modeling device to capture

various factors that affect aggregate spending, e.g., a consumer sentiment shock, a fiscal policy

shock, or a discount rate shock.

The upshot of these assumptions is the output-asset price relation

yt = m+ pt + δt, (9)

16



where pt denotes (the log of) the price of the market portfolio and m is a derived parameter

that combines households’ marginal propensity to consume and the multiplier. All else equal,

higher aggregate asset prices raise spending and output through a consumption wealth effect. In

practice, a higher price for aggregate assets such as stocks, bonds, and real estate raises spending

for various reasons including wealth effects. Thus, we view pt as the model counterpart to an

FCI, and Eq. (9) as capturing the broader set of channels that links spending to asset prices.9

Naturally, a higher aggregate demand shifter δt also induces higher spending and output.

We assume the aggregate demand shifter follows an AR(1) process

δt = φδδt−1 + εδ,t, where σ2δ ≡ var (εδ,t) (10)

and εδ,t is an i.i.d. aggregate demand shock, which is independent from supply shocks.

Remark 1 (Policy transmits via FCI). Observe that the short-term interest rate does not enter

into the output-asset price relation as a separate variable: it affects output only through its impact

on the price of the market portfolio. This feature is driven by our assumptions (such as log utility)

but it is supported by empirical evidence once we interpret pt as the model counterpart to an FCI.

In Appendix B.2, we use our empirical estimates from Section 2 to perform counterfactuals that

show that broad financial conditions are a critical pathway for the transmission of monetary

policy. In fact, we find that a monetary policy shock that significantly alters short-term interest

rates without affecting financial conditions does not meaningfully impact the output gap or

inflation.

Financial markets. Households make a portfolio choice between two assets: the market

portfolio and the risk-free asset (normalized to have zero net supply). The (log) return on the

risk-free asset rft = logRft is set by the central bank as we describe later. The (log) return on

the market portfolio, rt+1 = logRt+1, is approximately given by (see the appendix)

rt+1 = ρ− (1− β)m+ (1− β) yt+1 + βpt+1 − pt,

where ρ ≡ − log β is the (log of) households’ discount rate. After substituting the output asset

price relation (9) in it, we can write the return as

rt+1 = ρ+ pt+1 − pt + (1− β) δt+1. (11)

That is, the aggregate return is driven by the (log) price change and the aggregate demand

shock (through its impact on cash flows).

Households delegate their portfolio choice to managers.10 In each period, a fraction η of

9We caution that pt is stated in price, rather than the usual rates convention of FCIs. Thus, it has the opposite
sign-convention of the standard FCIs, where an increase in the index typically means tightening (see Section 2).

10Managers do not consume themselves; they simply make a portfolio choice for households. For simplicity, each
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these managers are “noise traders” and their portfolio weight is given by ωNt = 1 + 1
ηµt. That

is, they deviate from the optimal portfolio benchmark by an amount given by 1
ηµt. We refer

to µt as the aggregate noise—the total flow that needs to be absorbed by other investors (see

Remark 2 for a discussion). We assume the aggregate noise µt follows an AR(1) process

µt = φµµt−1 + εµ,t, where σ2µ ≡ var (εµ,t) (12)

and εµ,t is an i.i.d. financial noise shock, which is independent from supply and demand shocks.

Among the remaining managers, a mass 1 − η − α represent “inelastic funds” and their

portfolio weight is given by ωIt = 1. That is, they simply invest according to the average

optimal portfolio benchmark. Finally, a mass α of managers are “arbitrageurs” (or elastic funds)

who choose their portfolio weights optimally as we describe below. Combining the managers’

positions, we obtain the market clearing condition

αωAt + η

(
1 +

µt
η

)
+ (1− η − α) = 1 =⇒ ωAt = 1− µt

α
. (13)

In equilibrium, arbitrageurs must adjust their portfolio weight ωAt to absorb the aggregate noise.

The arbitrageurs choose their portfolio weight to maximize expected log assets-under-

management, after observing the risk-free rate and the current noise µt:
11

max
ωAt

Et

[
log
(
αWt

(
Rft + ωt

(
Rt+1 −Rft

)))]
.

In equilibrium, this implies a standard optimality condition Et

[
Mt+1

(
Rt+1 −Rft

)]
= 0, where

Mt+1 = 1

Rft+ω
A
t

(
Rt+1−Rft

) . Assuming the market and the portfolio returns are log-normally

distributed, we obtain the approximate optimality condition:

ωAt σt,rt+1 =
Et [rt+1] +

(σt,rt+1)
2

2 − rft
σt,rt+1

. (14)

The arbitrageurs’ demand for risk is equal to their (perceived) equilibrium Sharpe ratio. Com-

bining this with (13), we derive the financial market equilibrium condition:

Et [rt+1] = rft +
1

2

(
σt,rt+1

)2 − (σt,rt+1

)2
α

µt. (15)

Substituting (11) into this condition, we further obtain a present discounted value relation that

household invests with a random sample of managers. This ensures there is no portfolio and wealth heterogeneity
across households, even though there is heterogeneity across managers.

11The equilibrium price fully reveals the noise, so this assumption is without loss of generality.
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describes the equilibrium aggregate asset price:

pt = ρ+ Et [pt+1] + (1− β)Et [δt+1]−
(
rft +

1

2

(
σt,rt+1

)2)
+

(
σt,rt+1

)2
α

µt. (16)

Eqs. (16) shows that, all else equal, the effect of noise on the aggregate asset price increases

with return variance. As market volatility rises, arbitrageurs become more reluctant to counter-

act the noise traders’ flows and require a greater change in the price (and expected return) to

absorb these flows. Moreover, the impact of noise is amplified when the mass of arbitrageurs α

is smaller, leading to more inelastic aggregate asset demand.

Remark 2 (Interpreting noise shocks). In practice, noisy flows emerge from various sources.

Retail investors may engage in sentiment-driven trading based on excessive optimism or pes-

simism about assets. Institutional investors often face client inflows and outflows that require

them to expand or reduce positions regardless of market conditions. Portfolio rebalancing by

both retail and institutional investors can generate mechanical trading needs unrelated to asset

fundamentals. While we remain agnostic about the specific sources of noisy flows, the key feature

of our model is that these flows are relatively insensitive to return variance compared to arbi-

trageurs’ portfolios (in the model, we make the stark assumption that noisy flows are completely

insensitive to variance, though this is stronger than necessary for our results). This assump-

tion is supported by extensive research on limits to arbitrage showing that return variance and

risk management are primary constraints on arbitrage activities but play a smaller role in noise

trader behavior (see, e.g., Shleifer and Vishny (1997)).

3.2. Equilibrium with discretionary monetary policy

We next introduce standard discretionary monetary policy and characterize the resulting equi-

librium. The central bank sets the nominal interest rate ift . Since nominal prices are sticky

(until Section 4.6.2), this is the same as the real interest rate, rft = ift , so we assume the central

bank sets rft . The central bank focuses on closing the output gap ỹt ≡ yt − y∗t .

3.2.1. Benchmark without policy reaction lags

As a benchmark, we start with the (unrealistic) first-best scenario in which the central bank can

condition its interest rate choice on the realized noise µt. In this case, the central bank can set

ỹt = 0 in all periods and states. Using (9) , (11) and (16), along with the shock processes in (8)
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and (10), the equilibrium is given by

pt = p∗t ≡ y∗t −m− δt, (17)

rft = ρ− 1

2
σ2 + (1− βφδ) δt +

σ2

α
µt,

rt+1 = ρ+ δt − βδt+1 + εz,t+1,

where σ2 ≡ vart (rt+1) = σ2z + β2σ2δ .

The first line defines p∗t (pstar), which is the aggregate asset price that ensures output is equal

to its potential. The second line describes the interest rate the central bank sets to achieve

pstar (rstar). Note that noise affects the interest rate but it does not affect the aggregate asset

price or output. The central bank fully adjusts the interest rate in response to noise to prevent

noise-driven fluctuations in output. The third line describes the return conditional on pt = p∗t

(and yt = y∗t ) at all times. The last line shows that the conditional return variance depends on

supply and demand variance (macro-induced variance) but it does not depend on noise variance.

3.2.2. Equilibrium with policy reaction lags

Set against this benchmark, our key assumption is that the central bank chooses rft before

observing the current-period noise µt. Therefore, the central bank cannot condition its decision

on the current noise shock εµ,t. In practice, financial markets are noisy even over short horizons

and central banks adjust their policy with some lags (both the inter-meeting lags as well as

the reaction lags). This creates a large scope for noise to affect asset prices beyond the central

banks’ intentions.

For simplicity only, we assume that the central bank still conditions its decision on the

macroeconomic shocks εδ,t, εz,t. We show in Section 4.6.1 that our main results extend to

an environment in which the central bank sets rft before observing all current-period shocks

εµ,t, εδ,t, εz,t.

Formally, we assume the central bank sets the risk-free interest rate (without commitment)

to solve:

Gt = min
rft

Et

[ ∞∑
h=0

βhỹ2t+h

]
. (18)

The central bank minimizes the expected discounted sum of quadratic log output gaps (hence-

forth, output-gap loss) under its information set. We use the notation Et [·] to denote expec-

tations in period t before the realization of the noise shock εµ,t (but after the realization of

macroeconomic shocks εδ,t, εz,t).

The first-best equilibrium described in (17) is no longer feasible. Our main result in this

section characterizes the (second-best) equilibrium with discretionary policy.

Proposition 1 (Equilibrium with Discretionary Policy). Suppose the planner sets policy accord-

ing to (18) and the parameters satisfy α2 ≥ 4σ2µ
(
σ2z + β2σ2δ

)
. Then, there is a (locally stable)
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equilibrium in which the asset price, output, and the interest rate are given by

pt = p∗t +
σ2

α
εµ,t, where p∗t ≡ y∗t −m− δt, (19)

yt = y∗t +
σ2

α
εµ,t, (20)

rft = ρ− 1

2
σ2 + (1− βφδ) δt +

σ2

α
φµµt−1. (21)

The return is given by

rt+1 = ρ+ δt + εz,t+1 − βδt+1 +
σ2

α
(εµ,t+1 − εµ,t) , (22)

and its variance σ2 = vart (rt+1) is the smallest positive solution to the following fixed point

problem:

σ2 = σ2macro +

(
σ2
)2

α2
σ2µ, where σ2macro = σ2z + β2σ2δ. (23)

Greater noise variance σ2µ increases the total return variance σ2, and the output-gap loss Gt =(
σ2

α

)2
σ2
µ

1−β .

We relegate the proof of this Proposition to Appendix A.2 and discuss here the intuition for

the equilibrium. Eq. (19) shows that, unlike in the benchmark case, the surprise component

of noise εµ,t affects the aggregate asset price (cf. (17)). Eq. (20) shows that the noise-driven

fluctuations in the aggregate asset price affect output through the output-asset price relation.

Eq. (21) shows that the central bank adjusts the interest rate to insulate output from the

predictable component of noise Et−1 [µt] = φµµt−1.

Eqs. (22− 23) characterize the equilibrium return and its variance. Note that the total re-

turn variance is greater than macro-induced variance because noise shocks are not fully stabilized

by monetary policy. Crucially, the noise variance is endogenous and increasing with total return

variance (see (16)): a greater variance allows noise shocks to have a greater impact, which then

leads to even greater variance, and so on. Eq. (23) formalizes these feedbacks and shows that

the equilibrium variance corresponds to the solution to a fixed point problem. This problem is a

quadratic that has two positive solutions (under appropriate parametric restrictions). We focus

on the smaller solution, as this solution is locally stable, whereas the larger solution is locally

unstable.12

The last part of the result shows that greater noise variance raises the total variance. More-

over, this channel is amplified by the above reinforcement feedbacks. Importantly, by increasing

12The larger solution is locally unstable in the sense that a small increase (resp. decrease) in volatility would
further increase (resp. descrease) the price impact, which would further increase (resp. decrease) the variance,
and so on. In contrast, the smaller solution is robust to small fluctuations in volatility.
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asset price volatility, greater noise variance also increases the output-gap loss. That is, financial

noise worsens the macroeconomic performance of monetary policy.

Quantifying the impact of noise. How large is the potential impact of noise on the return

and output variance? For a simple calibration, observe that the price impact of a unit change

in asset demand (as a fraction of supply) is given by

I ≡ dpt
dεµ,t

=
σ2

α
.

Recent empirical analyses find that this price impact is large. For instance, Gabaix and Koijen

(2021) suggest that for the stock market it could be as large as 5. To be conservative, suppose we

set the fraction of elastic funds α to target a price impact equal to one, I =σ2

α = 1. Combining

this with (23), we obtain

α = σ2macro + σ2µ = σ2. (24)

With the appropriate choice of α, there is a “candidate” solution in which the price impact is

equal to one and the total variance is the sum of the macro-induced variance and noise variance.

We verify that this corresponds to an actual solution as long as the noise variance is not too large,

σ2µ ≤ σ2macro.
13 In this calibration, the variance of noise affects the return variance additively.

This potentially large effect of noise on market volatility is consistent with the finance liter-

ature emphasizing asset price fluctuations driven by noise and limits to arbitrage (see De Long

et al. (1990)). Proposition 1 demonstrates that this type of noise destabilizes not only financial

markets but also the broader macroeconomy when it affects the aggregate asset price. These

findings highlight the need for an alternative policy framework in which the central bank aims

to mitigate the impact of such noise.

4. FCI targeting

In this section, we show that a framework where the central bank sets a (soft) FCI target for

the upcoming period and strives to maintain the FCI near this target, in addition to focus-

ing on its conventional objectives, enhances the central bank’s ability to achieve its standard

macroeconomic goals. Compared to the standard discretionary policy, this approach results in

greater FCI stability and recruits the arbitrageurs to absorb aggregate noise, thereby lessening

its impact on economic activity. We also illustrate that FCI targeting dominates committing

to future interest rates; in essence, “FCI-based forward guidance” outperforms traditional in-

13In the appendix, we show that a candidate corresponds to the stable solution to (23) only if it satisfies
2σ2

µσ
2 ≤ α2. Together with (24), this implies σ2

µ ≤ σ2
macro. As long as noise variance is not too large (relative

to macro-news variance), the candidate solution with I =σ2

α
= 1 corresponds to a locally stable equilibrium.

If σ2
µ > σ2

macro, then noise is so large that when its unit-price impact is equal to one, it induces destabilizing

dynamics. Specifically, there is no locally stable equilibrium in which σ2
µ > σ2

macro and I =σ2

α
= 1.
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terest rate forward guidance. Moreover, despite relying solely on interest rate adjustments as

its instrument, FCI targeting may lower interest rate volatility. Finally, our analysis shows FCI

targeting does not require the central bank to identify in real time whether asset prices are

driven by noise or fundamentals (see Remark 3); and in fact, allowing asset prices to fluctuate

due to arbitrageurs’ information about future cash flows (that is not available to the central

bank) further increases the stabilization benefits from FCI targeting (see Section 4.6.3).

4.1. Equilibrium with FCI targeting

Formally, suppose the central bank solves the following modified problem:

GFCIt = min
rft ,pt+1

Et

[ ∞∑
h=0

βh
[(
yt+h − y∗t+h

)2
+ ψ

(
pt+h − pt+h

)2]]
, (25)

where pt+h denotes an FCI target announced by the central bank in the previous period, t+h−1

(the initial target p0 is given). That is, in addition to minimizing the output gaps as usual, the

central bank penalizes the deviations of the aggregate asset price from its pre-announced target.

The parameter ψ ≥ 0 captures the strength of the FCI targeting objective relative to the central

bank’s usual objectives. The standard model is a special case with ψ = 0.

While we change the central bank’s operational objective function, it is important to note

that the true objective function is unchanged and given by the output-gap loss in (18). That

is, merely stabilizing asset prices does not improve welfare or the policy performance. Our goal

is to analyze whether adopting an operational FCI targeting framework can improve the true

policy performance. Our next result characterizes the equilibrium with ψ ≥ 0.

Proposition 2 (Equilibrium with FCI Targeting). Suppose the planner follows the FCI targeting

policy in (25) with ψ ≥ 0, the parameters satisfy α2 ≥ 4σ2µ
(
σ2z + β2σ2δ

)
(and β > 1−β), and the

initial target satisfies p0 = E−1 [p
∗
0]. Then, there is a (stable) equilibrium in which the planner

announces the expected “pstar” for the next period as its target

pt+1 = Et
[
p∗t+1

]
where p∗t+1 = y∗t+1 −m− δt+1. (26)

The equilibrium asset price, output, and interest rate are

pt = Et−1 [p
∗
t ] +

1

1 + ψ
(εz,t − εδ,t) +

σ2

α
εµ,t, (27)

yt = y∗t +
ψ

1 + ψ
(εδ,t − εz,t) +

σ2

α
εµ,t, (28)

rft = ρ− 1

2
σ2 + (1− βφδ) δt +

σ2

α
φµµt−1 +

ψ

1 + ψ
(εz,t − εδ,t) . (29)
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The equilibrium return is

rt+1 = Et [rt+1] +
1

1 + ψ
εz,t+1 −

(
1

1 + ψ
− (1− β)

)
εδ,t+1 +

σ2

α
εµ,t+1, (30)

where the expected return Et [rt+1] is given by (A.36). The return variance σ2 = vart (rt+1) is

the smaller positive solution to the following fixed point problem

σ2 = σ2macro (ψ) +

(
σ2
)

α2

2

σ2µ, (31)

where σ2macro (ψ) = σ2z

(
1

1 + ψ

)2

+ σ2δ

(
1

1 + ψ
− (1− β)

)2

.

Let ψ = argminψ≥0 σ
2
macro (ψ). Over the range ψ ∈ [0, ψ), increasing ψ strictly reduces σ2 as

well as σ2macro (ψ) and
(σ2)
α2

2

σ2µ. That is, stronger FCI targeting reduces the return variance and

both of its components.

We provide the equilibrium’s intuition here and relegate the proof to Appendix A.2. Eq.

(26) says that the central bank optimally announces its expected “pstar” as its target for the

next period. Given this target, the central bank’s optimal (interest rate) policy implies

Et [pt] =
1

1 + ψ
p∗t +

ψ

1 + ψ
Et−1 [p

∗
t ] . (32)

That is, the central bank’s expected asset price for the current period (i.e., before observing the

noise shock) is a weighted average of the current “pstar” and the last period’s expected “pstar”,

which it had announced as a target. This implies Eq. (27), which says the asset price reflects

the surprises in “pstar” but only partially : A positive supply shock εz,t > 0 raises the asset price

but less than in the case with discretionary policy (ψ = 0); a positive demand shock εδ,t > 0

decreases the asset price but less than with discretionary policy. This in turn implies Eq. (28),

which says that the slow adjustment of asset prices to macroeconomic shocks affects output.

A positive supply shock εz,t > 0 has a smaller effect on output than with discretionary policy,

because the policy does not allow asset prices (and demand) to adjust to the higher supply

immediately. Conversely, a positive demand shock εδ,t > 0 has some effect on output, because

the policy does not undo the effect of demand fully. Eq. (29) characterizes the policy interest

rate that induces these outcomes. We discuss this policy rate response later in Section 4.4.

Eqs. (30− 31) describe the equilibrium return and its conditional variance. The total return

variance is still determined as the solution to a fixed point problem. The difference is that the

macro-induced variance is now endogenous to the degree of FCI targeting and typically lower

than with discretionary policy. In particular, supply shocks always have a smaller impact on

the return. Demand shocks also have a smaller impact as long as the FCI targeting is not too
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strong.14 Consequently, there is a large range
[
0, ψ

]
(where ψ > β

1−β ) over which FCI targeting

reduces the macro-induced variance σ2macro (ψ). Importantly, over the same range, FCI targeting

also reduces the total return variance σ2. In fact, the reduction in total variance is greater than

the reduction in macro-induced variance, because a lower variance enables the arbitrageurs to

trade against noise more aggressively, reducing the noise-induced variance
(σ2)
α2

2

σ2µ.

In summary, FCI targeting (typically) reduces the return volatility and the impact of noise

on asset prices and output. Since the policy keeps the asset price close to the announced target,

the arbitrageurs become more willing to absorb noise shocks. This reverses the adverse return

volatility feedback loop generated by noise shocks.

Remark 3 (Informational requirements to implement FCI targeting). Proposition 2 shows that

implementing the FCI targeting rule requires only forecasts of potential output and aggregate

demand—variables that central banks already routinely forecast. The central bank does not need

to identify whether asset price movements are driven by fundamentals or noise in real time,

nor does it need to estimate the fundamental value of stocks or other assets. This is because

the optimal target pt+1 = Et
[
p∗t+1

]
depends only on the expected potential output y∗t+1 and the

expected aggregate demand δt+1. When the aggregate asset price (FCI) deviates from this target

due to noise or other factors, the policy response helps stabilize the economy regardless of the

source of the deviation. In Section 4.6.3, we allow arbitrageurs to have additional information

about the future potential output that is not available to the central bank when it announces its

optimal target. We demonstrate that financial conditions targeting is not only desirable in this

extended setting but also provides additional stabilization benefits.

4.2. Macro-stabilization effects of FCI targeting

Proposition 2 demonstrates that a central bank adopting an FCI targeting policy mitigates

market volatility. However, the central bank in our model is not concerned with market volatility

per se. The question then arises: does FCI targeting aids the central bank in fulfilling its

standard macro-stabilization goals? Our main result in this section confirms this: some FCI

targeting always improves macroeconomic stabilization.

We evaluate the policy performance with the output-gap loss function Gt defined in (18).

This function might depend on the current realizations of supply and demand shocks εz,t, εδ,t.

To obtain a welfare measure that averages across different shocks, we consider the expected

14The coefficient, 1
1+ψ

− (1− β), implies that when ψ < β
1−β a positive demand shock decreases the return,

although less than with discretionary policy. When ψ > β
1−β , a positive demand shock increases the return since

its impact on output (cash flows) dominates its dampened effect on the aggregate asset price.
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output-gap loss given by:15

Ge (ψ) = E [Gt (ψ)] = E

[ ∞∑
h=0

βh
(
yt+h (ψ)− y∗t+h

)2]
. (33)

Here, E [·] = E [Et [·]] denotes the unconditional distribution over all shocks. To evaluate this

expectation, observe that Eq. (28) implies the output gap is given by:

ỹt = (εδ,t − εz,t)
ψ

1 + ψ
+ εµ,t

σ2

α
. (34)

Using this expression, we calculate and decompose the expected output gap-loss as follows

Ge (ψ) = Gemacro (ψ) +Genoise (ψ) , (35)

where Gemacro (ψ) =

(
σ2z + σ2δ

) ( ψ
1+ψ

)2
1− β

and Genoise (ψ) =
σ2µ

(
σ2

α

)2
1− β

.

Gemacro (ψ) and Genoise (ψ) are the contributions of macroeconomic shocks and noise shocks to

the expected output-gap loss, respectively. Our next result describes how FCI targeting affects

Ge (ψ) and its components.

Proposition 3 (Macrostabilization Effects of FCI Targeting). Consider the equilibrium in

Proposition 2. Then, a small degree of FCI targeting reduces the expected output-gap loss

dGe (ψ)

dψ
|ψ=0 < 0, with

dGemacro (ψ)

dψ
|ψ=0 = 0 and

dGenoise (ψ)

dψ
|ψ=0 < 0.

Therefore, ψ∗ = argminψ≥0G
e (ψ) > 0; i.e., the output-gap loss minimizing policy features FCI

targeting.

For intuition, observe from Eqs. (34− 35) that FCI targeting has competing effects on

output gaps. On the one hand, the policy creates new sources of output gaps as it does not

fully allow output to adjust to supply surprises and it allows demand surprises to influence

output (the terms (εδ,t − εz,t)
ψ

1+ψ ). On the other hand, the policy reduces return variance

σ2, and this mitigates the asset price and output impact of noise surprises (the term εµ,t
σ2

α ).

However, the noise-reduction force always dominates for sufficiently low levels of ψ because
dGmacro(ψ)

dψ |ψ=0 = 0: starting from the baseline discretionary policy, allowing macroeconomic

surprises to affect the output gap induces only a second-order increase in the output-gap loss.

In contrast, Proposition 2 implies that dσ2

dψ |ψ=0 < 0 and thus dGnoise(ψ)
dψ |ψ=0 < 0: increasing ψ

15Our main result qualitatively also holds with the current gap Gt; that is, some degree of FCI targeting
improves welfare for any given realization of shocks εz,t, εδ,t. However, the magnitude of welfare gains and the
optimal degree of FCI targeting depends on εz,t, εδ,t. The expected value Ge (ψ) ensures that we evalute the
welfare gains and the optimal FCI targeting by averaging across a variety of shocks.
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induces a first-order reduction on return variance caused by noise σ2µ

(
σ2

α

)2
, and this “excess”

variance affects output gaps and asset prices. Therefore, adopting an FCI targeting policy with

positive ψ reduces the output-gap loss.

Although the central bank cannot directly counteract the price fluctuations caused by market

noise, FCI targeting allows it to indirectly alleviate these effects by recruiting rational investors

(the market) to absorb more of the noise. Consequently, FCI targeting reduces the impact of

noise on the output gap.

4.3. Numerical illustration of FCI targeting

For a numerical illustration of Propositions 2 and 3, consider the calibration we introduced in

Section 3.2.2 (see (24))

σ2µ = σ2macro (0) , (36)

σ2δ = σ2z =
σ2macro (0)

1 + β2
,

α = σ2µ + σ2macro (0) = σ2,

with σ2macro (0) = (0.01)2 and β = 0.99.

We equalize the noise variance to the macro-induced variance, and set the variances of demand

and supply to be identical. We set α to target a price impact coefficient of one, I = σ2/α = 1.

We consider a quarterly calibration and set the discount rate to 1%. Finally, we set the macro-

induced standard deviation to 1% to match (roughly) the standard deviation of quarterly output

growth in the data.16

The left panel of Figure 6 illustrates the impact of FCI targeting on return variance and its

components (see (31)). Stronger FCI targeting reduces the return variance as well as both of its

components. The reduction is substantial: at the optimum level of targeting, ψ = ψ∗ (illustrated

by the vertical line), the total variance decreases by approximately two-thirds. Notably, the

variance due to noise diminishes by more than ninety percent. In essence, optimal FCI targeting

nearly eradicates the noise-induced variance, which significantly lowers the total return variance.

The right panel of Figure 6 shows how FCI targeting affects the output-gap loss and its

components (see (35)). Starting from the discretionary policy, FCI targeting substantially re-

duces the noise-component and total output-gap loss, while having a second-order effect on the

macro-induced output-gap loss. As FCI targeting intensity rises, it continues to reduce noise-

induced losses but begins to increase macro-induced losses more rapidly. The optimal level of

FCI targeting, ψ∗ ≃ 0.4, corresponds to a central bank targeting an asset price that roughly

assigns a one-third weight on its pre-announced target and two-thirds to the current “pstar” (see

16In this calibration, the level of σ2
macro (0) does not change the optimal level of FCI targeting since all other

variances scale with σ2
macro (0).
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Figure 6: The left panel shows the effect of FCI targeting ψ on return variance (solid black line)
and its components induced by noise shocks (dashed orange line) and by macroeconomic shocks
(dotted blue line). The right panel shows the effect on the expected output gap loss (solid black
line) and its components induced by noise shocks (dashed orange line) and by macroeconomic
shocks (dotted blue line). The vertical lines illustrate the gap-minimizing level of FCI targeting.
We use the parameters in (36).
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(32)). Although this represents a relatively mild form of FCI targeting, it effectively eliminates

nearly all noise-driven loss, as depicted in the left panel.

4.4. FCI targeting and interest rate volatility

One concern with FCI targeting is that it might require large movements in the policy interest

rate to keep financial conditions close to the target. However, our model reveals that FCI

targeting has competing effects on interest rate volatility and can, in fact, reduce it—even

though reducing rate volatility is not an explicit policy goal.

In order to analyze the effects on interest rate volatility, we write Eq. (29) as

rft = Et−1

[
rft

]
+

ψ

1 + ψ
εz,t +

[
1− βφδ −

ψ

1 + ψ

]
εδ,t +

σ2

α
φµεµ,t−1, (37)

where Et−1

[
rft

]
is the expected interest rate in the previous period t− 1. The remaining terms

reflect the interest rate surprises induced by supply shocks, demand shocks, and financial noise

shocks, respectively. FCI targeting increases the policy rate’s responsiveness to supply shocks.

It may also increase the sensitivity to demand shocks (although in the opposite direction)—

this happens when φδ is high and ψ is not too low. In scenarios of persistent demand shocks,

asset prices react in anticipation of future policy rate changes in response to the demand shift.

Consequently, the central bank might need to adjust the current policy rate in the opposite

direction to counteract these asset price movements. Conversely, FCI targeting diminishes the

policy rate’s sensitivity to financial noise shocks by reducing the return variance σ2 and the

noise’s impact on asset prices. The overall effect hinges on the balance between this decreased

sensitivity to financial noise and the generally increased sensitivity to macroeconomic shocks.

For a quantitative exploration, consider the parameters in (36) along with

φδ = φµ = 0.95. (38)

We set the persistence of demand and noise shocks to match (roughly) the quarterly autocor-

relation of the policy interest rate observed in the data. Figure 7 depicts the impact of FCI

targeting on the conditional interest rate variance, and its macro-induced and noise-induced

components. Stronger FCI targeting increases the macro-induced rate variance but significantly

reduces the noise-induced rate variance. The reduction in the noise-induced variance is notably

more substantial. As a result, FCI targeting overall lowers the total interest rate variance.

Why is the effect of FCI targeting on noise-induced interest rate variance more pronounced?

In this calibration, under a discretionary policy (ψ = 0), financial noise shocks are the primary

contributors to interest rate volatility, despite macroeconomic shocks and noise shocks con-

tributing equally to the return variance (cf. the left panel of Figure 6). Thus, as FCI targeting

diminishes the price impact of noise, it also lessens the need for substantial rate adjustments.

The broader point is that, as arbitrageurs absorb the majority of the noise, the burden on
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Figure 7: This figure shows the effect of FCI targeting ψ on the conditional interest rate vari-
ance (solid black line) and its components driven by noise shocks (dashed orange line) and by
macroeconomic shocks (doted blue line). The line illustrates the gap-minimizing level of FCI
targeting. We use the parameters in (36) and (38).
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the central bank to react to noise shocks is reduced. This can result in greater stability of the

policy interest rate, especially if noise shocks are the primary driver of interest rate volatility.

4.5. FCI targeting vs interest rate forward guidance

In our model, FCI targeting functions similarly to issuing forward guidance about the future

trajectory of the FCI, assuming that this type of guidance implies a soft degree of commitment.

This similarity raises the question of whether (more conventional) interest rate forward guidance,

interpreted as a soft commitment to a future interest rate, could yield similar advantages. We

explore this question in Appendix A.3, where we analyze a policy framework in which the central

bank targets the future interest rate rather than the future FCI. Specifically, suppose the central

bank solves the following modified problem:

Gr
f -target
t = min

rft ,r
f
t+1

Et

[ ∞∑
h=0

βh
[(
yt+h − y∗t+h

)2
+ ψ

(
rft+h − rft+h

)2]]
. (39)

In each period, the central bank sets the policy rate rft and announces a target interest rate for

the subsequent period rft+1. This problem leads to a similar equilibrium as in Proposition 2,

with the key distinction that the central bank does not fully respond to recent noise shocks (in

addition to the current noise shock). Consequently, this strategy leads to a less effective policy

performance compared to a similar FCI targeting policy.

The solution is particularly tractable for the special case in which there are no supply shocks,

εz,t = 0, and demand shocks are transitory, φδ = 0. However, the insights apply more generally.

For this special case, Proposition 5 in the appendix shows that the equilibrium interest rate is

rft = ρ− 1

2
σ2 +

εδ,t
1 + ψ

+
σ2

α

(
φ2
µµt−1 +

1

1 + ψ
φµεµ,t−1

)
.

Compared to FCI targeting, the central bank underreacts to not only demand shocks but also to

the persistent component of recent noise shocks φµεµ,t−1 (cf. (28)). As a result, this predictable

noise also generates volatility in asset prices and output. Moreover, current noise shocks have

a greater effect on asset prices and output because financial markets anticipate that the future

interest rate will underreact to these shocks. Specifically, the equilibrium asset price is

pt = y∗t −m−
εδ,t

1 + ψ
+
σ2

α

(
ψ

1 + ψ
φµεµ,t−1 +

(
1 +

ψ

1 + ψ
φµ

)
εµ,t

)
,

and output is described by a similar expression, detailed in the appendix.

Comparing these expressions with those in Proposition 2, it becomes evident that interest

rate targeting results in larger output gaps and achieves a smaller reduction in return volatility

than FCI targeting. In fact, interest rate targeting might even increase return volatility by

amplifying the price impact of noise shocks for a given σ2. Therefore, the interest rate targeting
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policy is strictly dominated by a comparable FCI targeting policy in this environment.

Intuitively, interest rate targeting reduces the flexibility of the central bank to control the

aggregate asset price (FCI). Given that output is driven by the aggregate asset price rather than

the policy interest rate, this loss of control results in a larger output-gap loss.

4.6. Robustness of FCI targeting

Our baseline model is stylized. In this section, we demonstrate that the logic behind the benefits

of FCI targeting survives in richer economic environments. These extensions also serve as a

transition to the empirical counterfactual analysis presented in the next section.

4.6.1. FCI targeting with policy lags to all current shocks

In Appendix A.4, we explore the implications of FCI targeting when the central bank sets policy

before observing all current-period shocks εµ,t, εδ,t, εz,t (as opposed to only εµ,t). The analysis

mirrors that of our baseline model but with the difference that the policy reacts to macroe-

conomic shocks with a delay. Nevertheless, since markets are forward-looking and anticipate

future policy responses to shocks, FCI targeting still reduces return volatility and improves

macroeconomic stability as in the baseline model.

The analysis is particularly tractable when there are no supply shocks, εz,t = 0, although the

insights apply more generally. For this special case, Proposition 6 in the appendix demonstrates

pt = y∗t −m− φ2
δδt−2 −

1

1 + ψ
φδεδ,t−1 −

(
1

1 + ψ
− (1− β)

)
φδεδ,t +

σ2

α
εµ,t.

Recall that FCI targeting in the baseline model operates via reducing data-dependency with

respect to macroeconomic shocks. The same logic applies here. Under a discretionary

policy (ψ = 0), a positive demand shock εδ,t > 0 still lowers the asset price because(
1

1+ψ − (1− β)
)
φδ = βφδ > 0, although its effect is less pronounced compared to the base-

line model (cf. (27)). While the policy does not immediately react to the demand shock, it

will respond in the subsequent period, and financial markets price this anticipated response.

With FCI targeting (ψ > 0), the future policy response is dampened, and this reduces the price

impact of demand shocks. This reduces the equilibrium volatility σ2 as in the baseline model.

4.6.2. FCI targeting with inflation and output trade-off

In Appendix A.5, we investigate the effects of FCI targeting when prices are partially flexible

and the central bank faces a trade-off between stabilizing inflation and output. We find that

our main results continue to hold in this more realistic setting.

We endogenize inflation via the standard New Keynesian Phillips Curve (NKPC)

πt = κỹt + βEt [πt+1] + ut, (40)
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where πt denotes (the log of) nominal price inflation and ut denotes cost-push shocks that follow:

ut = φuut−1 + εu,t.

We also adjust the central bank’s true objective function to incorporate the costs of inflation

gaps. In particular, with discretion, the central bank targets the real interest rate rft to solve:17

min
rft

Gt = Et

[ ∞∑
h=0

βh
(
ỹ2t+h + ζπ2t+h

)]
, (41)

where ζ denotes the relative welfare weight for the inflation gaps (we normalize the inflation

target to zero). The rest of the model is the same as in Sections 3 and 4.

In the appendix, we show that the equilibrium with discretion satisfies (see (A.60))

pt = pot +
σ2

α
εµ,t, where pot = y∗t −m− δt − Yuut,

πt = Πuut + κ
σ2

α
εµ,t,

yt = y∗t − Yuut +
σ2

α
εµ,t.

The parameters Πu, Yu > 0 are derived coefficients [see (A.59)] and pot is the central bank’s

optimal asset price target absent noise. In equilibrium, cost-push shocks result in positive

inflation gaps and negative output gaps, and they create a new source of asset price volatility.

Importantly, noise shocks remain an important driver of output and (now) inflation gaps.

We then consider an FCI targeting framework in which the central bank minimizes

GFCIt = min
rft ,pt+1

Et−1

[ ∞∑
h=0

βh
[
ỹ2t+h + ζπ2t+h + ψ

(
1 + κ2ζ

) (
pt+h − pt+h

)2]]
,

where
(
1 + κ2ζ

)
is a normalizing term. Proposition 7 in the appendix shows that in equilibrium:

pt = Et−1 [p
o
t ] +

1

1 + ψ
(εz,t − εδ,t − Yuεu,t) +

σ2

α
εµ,t,

yt = y∗t − Yuut +
ψ

1 + ψ
Yuεu,t +

ψ

1 + ψ
(εδ,t − εz,t) +

σ2

α
εµ,t,

πt = Πuut +
ψ

1 + ψ
κYuεu,t +

ψ

1 + ψ
κ (εδ,t − εz,t) +

σ2

α
κεµ,t.

FCI targeting mitigates the aggregate asset price reaction to cost-push shocks εu,t as well as to

supply and demand shocks. Therefore, FCI targeting still reduces the return volatility σ2 and

17We assume the central bank sets the nominal interest rate ift and show that (under appropriate assumptions)
the central bank can still target the real interest rate rft . Along the equilibrium path, the central bank implements
a particular rft by setting ift after accounting for expected inflation and the inflation risk premium.
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the impact of noise shocks εµ,t.
18

Finally, Proposition 8 in the appendix shows that, as in the baseline model, some degree of

FCI targeting always improves the central bank’s true objective function in (41). Intuitively,

while cost-push shocks induce nonzero gaps on average, discretionary policy is already optimized

to minimize the (current-period) losses induced by these shocks. Therefore, small deviations from

this policy generate only second-order losses, while still inducing first-order gains via the same

noise-reduction mechanism as in our baseline model (see Proposition 3).

4.6.3. FCI targeting with time-varying arbitrageur beliefs

In Appendix A.6, we investigate the effects of FCI targeting when asset prices fluctuate not only

because of noisy flows by a group of agents, but also due to changes in arbitrageurs’ beliefs. We

find that our main results continue to hold in this more realistic setting. Moreover, in our model,

beliefs-driven asset price fluctuations create an additional mechanism by which FCI targeting

stabilizes the output gap.

We capture belief shocks by allowing arbitrageurs to receive a signal about future produc-

tivity, nz,t = εz,t+1 + ezt. Their posterior expectation for future productivity is then given by

Et
[
y∗t+1

]
= y∗t + bt. Here, bt denotes the belief shock, which is proprtional to nz,t and has an

ex-ante distribution bt ∼ N
(
0, σ2b

)
. When the news is good and bt > 0, arbitrageurs expect

productivity and cash-flows to grow faster than usual, and vice versa when the news is bad

and bt < 0. We remain agnostic about whether these beliefs are correct or biased—this dis-

tinction does not affect the equilibrium. We assume the central bank shares the same belief

as arbitrageus and it sets policy before observing current-period belief shock bt as well as the

current-period noisy flow shock εµ,t.

In the appendix, we show that the equilibrium with discretion satisfies (see Eqs.

(A.87−A.89))

pt = Et−1 [p
∗
t ] + εz,t − εδ,t + bt +

σ2

α
εµ,t

yt = y∗t + bt +
σ2

α
εµ,t

rt+1 = EAt [rt+1] + (εz,t+1 − bt)− βεδ,t+1 + bt+1 +
σ2

α
εµ,t+1.

Compared to the baseline model, the main difference is that the asset price and output are

also influenced by the arbitrageurs’ belief shocks bt. When arbitrageurs become more opti-

mistic about the future supply, the aggregate asset price increases and this increases the current

output—because the policy cannot immediately react to the shock. Therefore, belief shocks

create another source of asset price and output gap fluctuations. The impact of the belief shock

18Note also that FCI targeting implies that cost-push shocks have a larger impact on inflation gaps and a
smaller effect on output gaps.
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does not depend on its variance, because, unlike noisy flow shocks, these shocks do not induce

trade. However, these belief-driven fluctuations influence the return process, increasing the

return variance σ2 both directly and indirectly by amplifying the price impact of noisy flows.

We then show that FCI targeting changes the equilibrium as follows (see Proposition 9)

pt = Et−1 [p
∗
t ] +

1

1 + ψ
(εz,t − εδ,t) +

1

1 + ψ
bt +

σ2

α
εµ,t

yt = y∗t +
ψ

1 + ψ
(εz,t − εδ,t) +

1

1 + ψ
bt +

σ2

α
εµ,t, (42)

where the variance σ2 is obtained by solving a fixed-point problem and is decreasing in ψ. As

before, FCI targeting mitigates the effect of supply and demand shocks on the asset price (and

raises their impact on output). Importantly, FCI targeting also mitigates the effect of belief

shocks on both asset prices and output. Under FCI targeting, the central bank commits to

limit the immediate response of future asset price to future, pt+1 = Et [p
∗
t ] +

1
1+ψεz,t+1 + ....

The anticipation of this effect reduces the impact of belief shocks. It follows that FCI targeting

reduces the macro-induced variance by reducing the asset price impact of belief shocks as well

as supply and demand shocks. This, in turn, reduces the noise-induced variance as in the main

model.

Eq. (42) shows that in this setup FCI targeting (ψ > 0) is beneficial for two distinct reasons.

As before, FCI targeting reduces variance σ2 and mitigates the output gaps induced by noise

shocks. In addition, FCI targeting also mitigates the output gaps induced by belief shocks. FCI

targeting is still costly because it allows supply and demand shocks to induce some output gaps,

but as before these costs are second order. It follows that FCI targeting is robust to allowing for

belief-driven asset price fluctuations. In fact, our analysis reveals that belief-driven fluctuations

create a new channel by which FCI targeting might be beneficial.

5. Policy Counterfactuals for the U.S.

In this section, we conduct an empirical evaluation of a counterfactual scenario in which U.S.

monetary policy had adopted an FCI-targeting strategy over the past few decades. Our find-

ings reveal that FCI targeting would have delivered substantial improvements over historical

outcomes, particularly by stabilizing the output gap, inflation (less so), and financial market

volatility. Furthermore, FCI targeting outperforms both a dual mandate-based optimal rule

and an interest rate-based forward guidance strategy, achieving lower volatility across macroe-

conomic and financial indicators. We also demonstrate the specific benefits of FCI targeting

from the end of the Dot-com to the pre-GFC economic cycle, which is characterized by large

noise shocks. Finally, we show how to approximate the optimal policy with simpler Taylor-style

rules and simple FCI-targets. We show that an important part of the stabilization gains are

obtained under this approximate, simple version of FCI targeting.
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5.1. Methodology

We adapt the methodology described in McKay and Wolf (2023b) and Caravello et al. (2024)

to our problem. These papers combine estimated VARs with estimated impulse responses to

policy shocks to approximate counterfactual policy rules. This approach generates accurate

counterfactuals as long as the model is linear and monetary policy operates through current or

expected policy interest rates—that is, if the source of changes in the interest rate path, whether

from shocks or policy rules, is inconsequential. However, directly applying this methodology

in our context presents a key challenge: our mechanism operates by reducing risk, and this

risk reduction introduces a non-linear component. In the following discussion, we explain the

necessary extensions to address this non-linearity.

Set-up and objects of interest. Our baseline set up is similar to Caravello et al. (2024). In

particular, we observe data from a data generating process (DGP) of the form:

Yt =

∞∑
ℓ=0

Θℓεt−ℓ =

∞∑
ℓ=0

Θµ,ℓεµ,t−ℓ +

∞∑
ℓ=0

Θ−µ,ℓε−µ,t−ℓ. (43)

That is, a linear SVMA(∞), where Yt is again a vector of macroeconomic aggregates, the shock

vector εt is distributed as

εt ∼ N(0, I), (44)

and the ny×nε-dimensional matrices Θℓ denote the impulse response of the vector of observables

Yt at horizon ℓ to a date-t vector of shocks εt. We partition the shock vector as εt = (εµ,t, ε
′
−µ,t)

′

where εµ,t is the financial noise shock and ε−µ,t stands for the rest of the structural macroeco-

nomic shocks. Analogously, we partition the full impulse response matrices Θℓ = (Θµ,ℓ,Θ−µ,ℓ),

where Θµ,ℓ is a ny × 1 column vector that collects the impulse response to the financial noise

shock, and Θ−µ,ℓ is a ny × (nε − 1) matrix that collects the response to the rest of the shocks.

Next, define also the Wold representation of (43) as:

Yt =

∞∑
ℓ=0

Ψℓut−ℓ, (45)

where ut are orthogonalized Wold innovations, ut = Pεt for some orthogonal matrix P , and

Ψℓ = ΘℓP
′.

We assume that the impulse responses Θℓ can be obtained as the solution to a linear system

of dynamic equations:

Fwwww + Fxxxx+ Fzzzz + Fµ(σ2rεµ,0) = 000, (46)

Hwwww +Hxxxx+Hzzzz +Hεε0 = 000, (47)

Axxxx+Azzzz +Avv0 = 000. (48)
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Here, xxx = (x0, x1, . . . ) denotes the infinite sequence of variable x (analogously for www,zzz). As

in McKay and Wolf (2023b), xxx collects all private sector variables, zzz is the path of the policy

instrument (the policy interest rate), and www collects variables that are unobserved to the econo-

metrician. Θ−µ,ℓ includes the impulse response to ε0 (macroeconomic shocks) and v0 (policy

shocks), and Θµ,ℓ collects the impulse responses to εµ,0 (financial noise shocks).

As explained by Caravello et al. (2024), Eqs. (46− 48) embed common macroeconomic

models that satisfy two key restrictions: (i) structural equations are linear, (ii) policy operates

through current and expected policy interest rates—i.e., it is inconsequential if these policy rates

change because of rule-based policy response captured by Axxxx, or a policy shock captured by

Avv0.

Our main departure from the previous literature is the addition of equation (46), which

represents the Financial Block of the model. The key restriction embedded in (46) is that the

(endogenous) conditional variance of returns, σ2r , only affects the transmission of the financial

noise shock, and it does so proportionally. In particular, we consider models in which the F ,H
or A matrices do not depend on σ2r . This condition is satisfied in our model. This is because

(i) the noise shock influences the remaining equilibrium variables through the aggregate asset

price, (ii) the noise shock affects the equilibrium asset price in proportion to the conditional

variance σ2r (see Eq. (16)), and (iii) the model is conditionally homoskedastic, so the conditional

variance of returns is constant. Although admittedly stringent, these assumptions allow us to

depart from full linearity to study how an FCI targeting policy can reduce risk.

In this setup, our goal is to obtain three objects:

1. the counterfactual impulse responses for the noise shock, i.e., how would the economy react

to the shock if policy had been different?

2. counterfactual second moments, i.e., what would have been the variance of the variables

if the policy had been different?

3. the counterfactual historical evolution between two dates t1 and t2, i.e., what would have

been the realized path of variables in between those dates had the policy been different?

To this end, we consider alternative policy rules, parameterized by Ãx, Ãz, Ãv, Ãε, such that

Ãxxxx+ Ãzzzz + Ãvv0 + Ãεε0 = 000. (49)

In equilibrium, the counterfactual rule induces different impulse response matrices Θ̃ℓ. Our first

object of interest is the counterfactual impulse response corresponding to the noise shock. Our

second object of interest is counterfactual second moments given by,

Γ̃Y (ℓ) =

∞∑
m=0

Θ̃mΘ̃
′
m+ℓ, (50)
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where Γ̃Y (ℓ) is the counterfactual autocovariance function of vector Yt. We can compute the

counterfactual historical evolution as:

Ỹt =

t−t1∑
ℓ=0

Θ̃ℓεt−ℓ + Ỹ 1
t , ∀t ∈ [t1, t1 + 1, . . . , t2], (51)

where Ỹ 1
t = Et1−1[Ỹt] is an initial conditions term.

Accounting for endogenous risk. If we followed Caravello et al. (2024) directly, coupling

(49) with (46) and (47) would yield (a rotation of) counterfactual impulse responses Θ̃ℓ, which

can then be used to mechanically construct the counterfactual second moments using (50), and

the counterfactual impulse response as a by product. However, in the present setting, this would

yield an incorrect counterfactual, since this would not take into account the endogenous reaction

of σ2r . In order to account for the endogenous reduction in risk, we use the following proposition.

Proposition 4. Suppose that the SVMA(∞) process (43) is invertible; i.e., that

εt ∈ span({Yτ}−∞<τ≤t). (52)

Then knowledge of: (i) the Wold representation of Yt (i.e., the history of innovations {ut−ℓ}∞ℓ=0

together with Ψ(L)); (ii) policy causal effects Θν ; and iii) and identified time series for the

financial noise shock, {εµ,t} suffices to construct the counterfactuals of interest— Θ̃ℓ, Γ̃Y (ℓ),

and Ỹt.

Appendix C.1 contains the proof. The essence of the proof begins by implementing the

procedure described in Caravello et al. (2024), followed by rescaling the IRF of the financial

noise shock by σ̃2r/σ
2
r (where σ̃2r is the counterfactual conditional variance, obtained via solving

a quadratic analogous to that in the model section). This rescaling accounts for the endogenous

variance reduction, and allows us to construct the counterfactuals of interest.

Implementation. We use the same data as in Section 2, with the augmented set of variables

that includes labor market series. We use CBO output gap as our measure of output gap, and

PCE inflation as our measure of inflation, the Financial Conditions Index built by Ajello et al.

(2023a) as a proxy for pt, and the 3 month interest rate as a the policy rate. All variables are

demeaned to capture deviations from steady state. For our measured noise shock, we use the

shock identified under SVAR-IV as the baseline.

We employ a fully semi-structural approach, using directly measurable impulse responses to

approximate the counterfactual policy, as detailed in McKay and Wolf (2023b); Caravello et al.

(2024). Although this is an approximation, Caravello et al. (2024) show in their applications

for counterfactual second moments and counterfactual historical evolution, the approximation

obtained with only one shock is quite good.
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We obtain monetary policy impulse responses using the shocks provided by Romer and Romer

(2004) and Aruoba and Drechsel (2022). We use a VAR with the baseline set of macro variables

described in Section 2, but for the extended sample 1973Q1:2019Q4 in order to exploit a longer

time series for monetary policy shocks. We include both shocks in the VAR, and use a recursive

identification scheme as suggested in Plagborg-Møller and Wolf (2021) and implemented in

McKay and Wolf (2023b). In particular, the Aruoba and Drechsel (2022) shock is ordered first,

then output gap, potential output, investment, consumption, inflation, then the Romer and

Romer (2004) shock, and then the rest of the variables. Appendix B.2.4 depicts the estimated

impulse responses to the variables of interest.

We take the Wold innovations and identified noise shock as given, but account for estimation

uncertainty in the monetary IRFs. Specifically, we estimate the confidence bands for the IRFs

using a parametric bootstrap method. Subsequently, for each bootstrap sample of the IRFs, we

construct the relevant counterfactual. We then report the distribution of these counterfactual

outcomes as a means to assess the significance of estimation uncertainty. This is analogous to

the procedure outlined in McKay and Wolf (2023b) or Caravello et al. (2024).

5.2. Evaluation of FCI Targeting

5.2.1. Description of the policy rules

We consider a central bank that minimizes a loss of the form:

L =
∞∑
t=0

βt
[
π2t + ỹ2t + λ∆i(it − it−1)

2 + ψ(FCIt − FCIt))
2
]
. (53)

The benchmark policy rule has ψ = 0. This kind of loss is considered, for example, in

the optimal control exercises reported by the Fed staff to FOMC ahead of their interest rate

decision (Federal Reserve Tealbook, 2016). As in previous sections, the planner takes conditional

volatility as given when choosing the interest rate. The main departure from the theoretical

model is the inclusion of an interest rate smoothing term, λ∆i(it− it−1)
2, as in Woodford (2003).

We refer to policies that arise from minimizing (53) as “Flexible Dual Mandate” (FDM). We

choose the degree of smoothing λ∆i to match the interest rate variance observed in the data.19

We compare this benchmark to the case with ψ∗, i.e.,the value of ψ that minimizes the (true)

loss omitting the FCI term.

Construction of the optimal target under timing constraints. To align our analysis

with the theoretical model, we introduce a timing constraint: policy responses are determined

with a one-period lag to the shock. When constructing counterfactual impulse responses, we

implement the timing restriction by assuming that, at time t = 0, the planner targets i0 at the

average rate, and then from t = 1 onwards it sets its policy optimally in order to minimize a

19We find λ̂∆i = 2.5965.
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quadratic loss as in McKay and Wolf (2023a). We also need to obtain the optimal FCI target.

This is achieved by solving for the policies that minimize (53) as a function of the target. We

then select this target to minimize (53) subject to the timing constraints.

In order to see how this works in more detail, consider the policy response to a non-policy

shock εεε = (ε, 0, 0, · · · )′, which is the building block of all counterfactuals presented in this

section. Denote the sequences of output gap, inflation, nominal interest rate and FCI by ỹ̃ỹy,πππ, iii, fff

respectively. Then the optimal FCI target in response to a shock, f̄̄f̄f , is obtained by solving:

min
ν,f̄̄f̄f

ỹ̃ỹy′W̃ỹỹ̃ỹy + πππ′W̃ππππ + λ∆iiii
′W̃iiii+ ψ(fff − f̄̄f̄f)′W̃f (fff − f̄̄f̄f)

s.t. xxxi = Θxi,vν +Θxi,εεεε, for xxxi = ỹ̃ỹy,πππ, iii, fff (Implementation)

Rf f̄̄f̄f = 0 (Announcement Timing)

Several additional pieces of notation must be clarified. First, W̃ỹ, W̃π, W̃i, W̃f are matrices that

encode discounting and timing restrictions. For example, under the assumption of a one period

lag and discount factor β, W̃ỹ is a diagonal matrix with diag(W̃ỹ) = (0, β, β2, · · · )′, where the

first zero comes from the one period lag. Second, the constraints xxxi = Θxi,vν + Θxi,εεεε encode

how the planner can affect outcomes via choosing policy paths. In particular, the Θxi,εεεε term

is the path of the variable under the baseline rule, i.e., in the IRF estimated in sample. On

top of this, the policymaker can commit to different policy paths by choosing ν appropriately.20

Finally, the constraint Rf f̄̄f̄f = 0 encodes that the FCI path is announced one period in advance.

Since the planner reacts to shocks with a one period lag, for a shock that hits at t = 0, any

changes in ¯FCIt are announced at t = 1 and take effect in t = 2. Thus, Rf encodes that the

first two elements of f̄ must be zero. Appendix C.2 expands on the details.

5.2.2. Results

Impulse Responses. Figure 8 shows the counterfactual impulse response to a noise shock

under FCI targeting. As a preliminary step, the beige line shows the outcome if we did not

account for endogenous risk reduction, essentially applying McKay and Wolf (2023b)’s method-

ology directly. In this scenario, monetary policy stabilizes the noise shock more effectively than

observed in the historical data, with interest rates raised more aggressively and the noise shock

having a smaller effect on the FCI, output gap, and inflation. Our main result is the blue line,

which shows the accurate counterfactual that accounts for the endogenous reduction in FCI

volatility under the FCI targeting policy. This scenario demonstrates even greater stabilization,

with noise shocks having a further reduced impact on the FCI, output gap, and inflation. Ob-

serve also that interest rates are raised less than in the first scenario and only slightly more

than in the data. In fact, future interest rates actually increase even less than in the data. This

20Since we have only a subset of policy shocks in our empirical analysis (i.e only two as opposed to one for each
time horizon), then ν is a two-dimensional vector, and the interpretation is that of a constrained optimal policy
in which the planner can only alter baseline policy in the directions spanned by the two monetary policy shocks.
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Figure 8: Counterfactual Impulse Responses for the noise shock under FCI Targeting. Beige:
not accounting for endogenous risk reduction. Blue: accounting for endogenous risk reduction.

enhanced stabilization with a muted interest rate response occurs because the FCI targeting

policy effectively “recruits” arbitrageurs to help the Fed by trading more aggressively against

noise. As arbitrageurs take on a larger stabilizing role, the policy interest rate needs to react

less to noise shocks. This dynamic is explained in detail in subsection 4.4.

Counterfactual historical evolution. To enhance understanding of how FCI targeting op-

erates in practice, we demonstrate how FCI targeting would have impacted the realized paths of

the output gap, inflation, FCI, and interest rates in the period leading up to the Global Financial

Crisis. We choose this period because our historical decomposition in Section 2.3 shows that the

financial noise shock was a significant driver of the 2001 recession and the main driver of the

later expansion. We consider the period 2000Q1-2007Q4, starting at the peak of the expansion

preceding the 2001 recession and continuing until the start of the GFC. We use the version of

FCI with the interest rate smoothing term discussed before, with the same values of λ∆i and

ψ∗.

Figure 9 shows the results. First, the initial part of the recession appears unavoidable.

However, thanks to FCI targeting, the recession is less deep, with the output gap plateauing

between 2001Q4 and 2003Q2 instead of falling. At the start of the 2001 recession, the planner

targets looser financial conditions in order to stabilize the drop in output gap. Around this

period, FCI targeting makes financial conditions less restrictive than in the data. Interestingly,

this is not due to additional interest rates cuts in that period; if anything, interest rates are
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Figure 9: Counterfactual Historical Evolution for 2000Q1-2007Q4. Black: data. For output gap,
this is demeaned CBO output gap. Inflation is in year-on-year terms. The rest of the variables
are in levels. Blue: FCI targeting, i.e minimize 53 with ψ = ψ∗. Solid: median. Shaded area:
16 and 84 confidence bands. Dashed line in the FCI panel indicates the target FCIt.

higher than in the data starting on 2001Q4. Thus, we can attribute these looser financial

conditions to the positive effects of FCI targeting via encouraging the arbitrageurs.

Turning to the expansionary phase of the cycle stating in 2004Q1, the data shows that finan-

cial conditions became quite loose, a positive output gap opened up, and this was accompanied

by above-target inflation. If policy had followed FCI targeting, looser financial conditions would

have been counteracted by policy, both via interest rate hikes and announcements of tighter

FCI targets. This would have generated tighter financial conditions, which would have helped

to achieve lower output gaps, and consequently, inflation closer to the 2% target. Overall, the

adoption of FCI targeting would have meaningfully smoothed both phases of the cycle.

Counterfactual macro and financial volatility. In order to get a sense of how much macro

and financial volatility would have been reduced had policy followed FCI targeting, Figure 10

displays the counterfactual standard deviation for FDM (i.e., minimize (53) with ψ = 0) in red,

and contrasts these with FCI targeting, shown in blue. Under FCI targeting, the volatility of all

macroeconomic variables is reduced. Relative to the data, these reductions are substantial: the
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Figure 10: Counterfactual Standard Deviations. For Output Gap, Inflation and interest rates,
this is the unconditional standard deviation, for FCI this is the conditional SD. Black dashed:
data. Dashed lines the median. Red: Flexible Dual Mandate, i.e minimize 53 with ψ = 0.
Blue: FCI targeting, i.e minimize 53 with ψ = ψ∗. Beige: FCI targeting, i.e minimize 53
with ψ = ψ∗, but without accounting for the endogenous reduction in risk when constructing
the counterfactual. Solid Line: posterior density for the counterfactual with FCI targeting
counterfactual.

Baseline No it smoothing term
Loss Median 10th Perc. 90th Perc. Median 10th Perc. 90th Perc.

Data 5.45 5.09
Dual Mandate (ψ = 0) 4.47 4.14 4.80 4.12 3.74 4.50
FCI T. (ψ∗ = 19.37) 4.25 3.95 4.62 3.90 3.59 4.25

Simple Target 4.38 4.10 4.78 4.02 3.74 4.39

Taylor Rule + Simple Target 4.63 4.43 5.05 4.14 3.97 4.47

Table 1: Central bank loss function in the data, and median, 10th and 90th percentiles under the
counterfactual policy rules. The policy rules always include the interest rate smoothing term.
The first set of columns shows the baseline loss, E[L] = σ2ỹ + σ2π + λ∆iσ

2
∆i. The second set of

columns shows the values of E[L̃] = σ2ỹ + σ2π
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variance of the output gap, inflation, and interest rates fall by 36%, 2%, and 6%, respectively,

and the conditional variance of the FCI falls by 55%. The small reduction on inflation variance

relative to output gap variance is due to the small and delayed the response of inflation to

monetary policy shocks, consistent with a flat Phillips curve. Conversely, the real effects of

monetary policy are significant, so most of the variance gains come from output gaps.

When compared to FDM, the reductions are more modest, with the output gap and inflation

decreasing by 8% and 2% respectively (when comparing medians), while the interest rate variance

reduction is still 6% (recall that FDM is calibrated to fit the observed interest rate volatility).

However, the decrease in financial conditions variance remains substantial, at approximately

34%.

Table 1 presents the loss (53) with and without the interest rate smoothing term. As ex-

pected, the loss is lower under FCI targeting, and this is not driven by the interest rate smoothing

term.

5.2.3. FCI targeting vs interest rate forward guidance

Following the discussion of Section 4.5, we now compare the performance of FCI targeting with

a version of interest rate forward guidance. In particular, we consider losses of the form:

L =

∞∑
t=0

βt
[
π2t + ỹ2t + ψif (i

f
t − i

f
t ))

2 + ψ(FCIt − FCIt))
2
]
, (54)

and compare interest rate forward guidance (ψif > 0, ψ = 0) with FCI targeting (ψif = 0, ψ > 0).

We pick ψif and ψ∗ to minimize the pure dual mandate loss
∑∞

t=0 β
t[π2t + ỹ2t ]. Notice that we

omit the interest rate smoothing term, in order to make the comparison between both “pure”

regimes.

The inflation variance is roughly the same, but the output gap variance is 21% lower under

FCI targeting compared to interest rate forward guidance. Unsurprisingly, FCI is less volatile

under FCI targeting, while interest rates are less volatile under interest rate targeting. Overall,

this shows that FCI targeting is superior (in terms of the volatility of macroeconomic outcomes)

than standard forward guidance in interest rates. Appendix C.3.1 contains additional details.

5.3. Evaluation of Simple FCI Targets and Simple Rules

The results in Section 5.2 underscore the potential improvements that could have been achieved

under optimal FCI targeting. However, the reader may worry that these gains depend strongly

on the ability to implement the (potentially complex) loss-minimizing plan and committing to

the optimal FCI target.

To address this concern, we simplify the implementation of FCI targeting progressively in

two steps. First, we consider a simpler proxy-target: a reduced form approximation to the fully

optimal FCI target. We show that this proxy-target tracks the actual target reasonably well.
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Figure 11: Black: Financial Conditions Index (FCI). Dashed blue: Optimal FCI target computed
following the procedure outlined in Section 5.2, with ψ∗ = 19.37. Dashed red: simple target,
constructed as the fitted value of the OLS regression in (55).

Second, we consider a simple rule: we fit a Taylor rule to the data, and add an FCI term to it,

using the proxy-target described below. Our results suggest that a large coefficient on the FCI

term is optimal, and substantial stabilization gains can still be achieved even with this simplified

rule.

5.3.1. Simple Approximation to the Optimal Target

In order to assess the robustness to the exact target used, we compare the optimal target

derived in subsection 5.2 to a reduced-form approximation to the optimal target (a proxy-target),

constructed as:

FCIt = ϕ̂fciFt−2(FCI) + ϕ̂ỹFt−2(ỹ) (55)

where Ft−2(x) =
1
4

∑3
j=0 xt−2+j is the cumulative one-year-ahead forecast for variable xt made

at time t − 2. The two lags come from the implementation of the FCI target: 1 lag is the

information lag to all shocks, and the second one reflects the fact that the target is committed

one period in advance. We use the forecasts implied by the VAR described in the implementation

section of Section 5.1. We use forecasts instead of the actual levels of the variables because, given

the forward-looking nature of optimal policy, they provide a significantly better fit. We obtain

the coefficients on the forecasts by fitting equation (55) by OLS. The estimated coefficients are

ϕ̂fci = 0.66, ϕ̂ỹ = 0.02 , both significant. The R2 is around 0.69.21

21We omit inflation forecasts since the fit is essentially the same.
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Figure 12: Counterfactual Historical Evolution for 2000Q1-2007Q4. Black: data. Blue: Taylor
rule (56) with ψTR = 40 and simple target constructed from 55. Solid: median. Shaded area:
16 and 84 confidence bands. Dashed line in the FCI panel indicates the simple target FCIt.

Under the estimated simple target, a higher output gap forecast makes the Fed target tighter

financial conditions, as implied by the model. Furthermore, for a given output gap forecast,

higher FCI forecasts imply higher FCI targets, but the response is less than 1 to 1. Since the

target is adjusted less than proportionally, this implies that there is a “leaning against the wind”

component in the optimal FCI target.

Figure 11 depicts the fully optimal target in blue, and the simple target in red. The fit is

reasonably good: the approximate target tracks the overall patters in the optimal target closely,

although there are some small discrepancies that sometimes persist for up to a few years.

5.3.2. FCI-expanded Taylor Rule

In a second step, we replace the full optimal policy for a Taylor rule augmented with an FCI

term. In particular, we consider rules of the form:

it = ρiit−1 + (1− ρi)(ϕππt + ϕyỹt − ψTR(FCIt − FCIt)). (56)

Setting ψTR = 0 in (56), we obtain the benchmark with no FCI targeting term. We pick

parameters ρi, ϕπ, ϕy, such that the unconditional variance of inflation, interest rates and output

gaps under the benchmark are the same as in the data.22 We compare this benchmark with a

Taylor rule that features ψTR > 0. We select a large coefficient of ψTR = 40, because it turns

out to be the best in terms of minimizing the unconditional loss (see Appendix C.3.2). This

22We obtain ρ̂i = 0.76, ϕ̂π = 1.53 and ϕ̂ỹ = 0.76. Results are robust to using different coefficients on the Taylor
Rule, such as the ones obtained via direct OLS estimation.
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policy is close to a policy that directly targets FCIt = FCIt.

The bottom two rows of Table 1 report the unconditional losses under i) loss mimimization

but using the proxy-target; ii) the previously discussed Taylor rule with the proxy-target. As we

can see, the loss becomes progressively worse as we add each layer of approximation. However,

even under the Taylor Rule, the distribution of losses is significantly below the observed loss in

the data.

To illustrate how this operates during a specific episode, Figure 12 presents the Counterfac-

tual Historical Evolution under the FCI-augment Taylor Rule, using the proxy-target constructed

in the previous subsection. Compared to the fully optimal FCI targeting: the gains in terms of

reduced output gap and inflation volatility are similar. The volatility in financial conditions is

somewhat lower, as the target moves less and the deviations from target are smaller. Given the

relatively higher stability of financial conditions, the interest rate also fluctuates less.23

Overall, these findings demonstrate that an expanded Taylor rule that gives a large weight

to the financial conditions gap can notably stabilize macroeconomic outcomes, even if the target

used is just a simple approximation to the true optimal target.

6. Final Remarks

This paper theoretically and empirically investigates how monetary policy should respond to

macroeconomic fluctuations driven by financial noise.

We motivate our analysis by using (identified) vector-autoregression (VAR) models to demon-

strate that financial noise shocks can account for up to 55% of the variance in financial conditions

and up to 50% of the variance in output gaps in the U.S.

We then develop a model with financial noise and limits to arbitrage wherein it is optimal

for the central bank to stabilize financial conditions beyond their direct impact on output gaps,

even though stable financial conditions themselves are not a social objective. Our primary find-

ing reveals that an FCI targeting framework—in which the central bank announces a (soft) FCI

target and tries to keep the actual FCI close to this target—reduces FCI volatility and stabilizes

the output gap. This improvement occurs because FCI targeting reduces the macroeconomic

data-dependency of monetary policy. This reduces FCI volatility and recruits arbitrageurs to

mitigate the impact of noise shocks on the FCI, which reduces FCI volatility even more, and

so on. We further demonstrate that in our model FCI targeting is more effective than inter-

est rate forward guidance, because it retains the flexibility of monetary policy to respond to

post-guidance noise shocks. Importantly, FCI targeting does not require the central bank to

distinguish in real time whether asset price movements are driven by noise or fundamentals.

Finally, we extend recent policy counterfactual methods to incorporate our model’s endoge-

nous risk reduction mechanism. We use this method to perform a series of counterfactual

experiments to assess the potential effects of FCI targeting in the U.S. Our findings indicate

23Appendix C.3.3 contains additional details on counterfactual second moments under the Taylor Rule.
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that an FCI targeting policy could have substantially stabilized the macroeconomic effects of

noise shocks and that the gains would have primarily come from arbitrageurs trading more ag-

gressively against noise shocks. Consequently, we find that FCI targeting could have decreased

the variance of the FCI, the output gap, and inflation by 55%, 36% and 2%, respectively, while

also reducing the variance of the interest rate by 6%. We also empirically confirm that FCI

targeting outperforms interest rate forward guidance.
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Online Appendices: Not for Publication

A. Theory Appendix

This appendix contains details related to the theoretical model. Section A.1 provides the microfoundations

for the model. Section A.2 contains the proofs omitted from the main text. The remaining Sections A.3-

A.5 provide the details of various extensions that we discuss in the main text.

A.1. Microfoundations of the model

In this section, we provide the microfoundations of the model that we summarize in Section 3.1 and use

throughout the paper. The real side of the economy is the same as the baseline model in Caballero and

Simsek (2023). The financial market side is different and allows for noise shocks.

The economy is set in discrete time t ∈ {0, 1, ..}. The model consists of four agent types: asset-holding

households (households), hand-to-mouth agents, portfolio managers, and the central bank. The hand-to-

mouth agents primarily serve to decouple labor supply decisions from household consumption behavior.

The asset-holding households are the main drivers of aggregate demand through their consumption and

savings choices. The portfolio managers act on behalf of these households by making portfolio allocation

decisions that determine asset prices in financial markets. The central bank conducts monetary policy.

A.1.1. Supply side

Hand-to-mouth agents provide all of the labor supply and spend all of their income (they do not save).

Their problem is

max
Lt

logCHMt − χ
L1+φ
t

1 + φ
, (A.1)

QtC
HM
t =WtLt + Tt.

Here, φ denotes the Frisch elasticity of labor supply, Qt denotes the nominal price for the final good,

Wt denotes the nominal wage, and Tt denotes lump-sum transfers from the government (described sub-

sequently). The optimality condition implies a standard labor supply equation

Wt

Qt
= χLφt C

HM
t . (A.2)

The rest of the supply side is similar to the standard New Keynesian Model. A competitive final

goods producer combines the intermediate goods according to the CES technology,

Yt =

(∫ 1

0

Yt (ν)
εt−1
εt dν

)εt/(εt−1)

where Yt (ν) = ZtLt (ν)
1−ν

. (A.3)

Here, εt > 1 denotes the elasticity of substitution that determines the firm markups in equilibrium. We

assume it is stochastic around a steady-state level ε∗ > 1, which allows us to accommodate cost-push
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shocks. With these technologies, the demand for intermediate good firms satisfies,

Yt (ν) ≤
(
Qt (ν)

Qt

)−εt
Yt, (A.4)

where Qt =

(∫ 1

0

Qt (ν)
1−εt dν

)1/(1−εt)

. (A.5)

Qt (ν) denotes the nominal price set by the intermediate good firm ν and Qt is the ideal price index.

The goods market clearing condition is:

Yt = CHt + CHMt . (A.6)

Here, CHt and CHMt denote consumption by the asset holding households and the hand-to-mouth agents,

respectively.

The labor market clearing condition is ∫ 1

0

Lt (ν) dν = Lt. (A.7)

Finally, to simplify the distribution of output across factors, we assume the government taxes part of

the firms’ profits lump-sum and redistributes to the hand-to-mouth agents to ensure they receive their

production share of output. Specifically, each intermediate firm pays lump-sum taxes determined as

follows:

Tt = (1− ν)QtYt −WtLt. (A.8)

This ensures that in equilibrium hand-to-mouth agents receive and spend their production share of output,

(1− ν)QtYt, and consume [see (A.1)]

CHMt = (1− ν)Yt. (A.9)

Substituting this into the goods market clearing condition (A.6), we further obtain

Yt =
CHt
ν

. (A.10)

Hand-to-mouth agents create a Keynesian multiplier effect, but output is ultimately determined by (asset-

holding) households’ spending, CHt .

Flexible-price equilibrium. Consider a benchmark without nominal rigidities. In this benchmark,

the intermediate good firm ν solves

Π = max
Q,L

QY −WtL− Tt, (A.11)

where Y = ZtL
1−ν =

(
Q

Qt

)−εt
Yt.

The firm takes as given the aggregate price, wage, and output, Qt,Wt, Yt, and chooses its price, labor

input, and output Q,L, Y .
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The optimal price is given by

Q =
εt

εt − 1
Wt

1

(1− ν)ZtL−ν . (A.12)

The firm sets an optimal markup over the marginal cost, where the markup depends (inversely) on the

elasticity of substitution and the marginal cost depends on the wage and (inversely) on the marginal

product of labor.

In equilibrium, all firms choose the same prices and allocations, Qt = Q and Lt = L. Substituting

this into (A.12), we obtain a labor demand equation,

Wt

Qt
=
εt − 1

εt
(1− ν)ZtL

−ν
t . (A.13)

Combining this with the labor supply equation (A.2), and substituting the hand-to-mouth consumption

(A.9), we obtain the equilibrium labor as the solution to,

χ (L∗
t )
φ
(1− ν)Y ∗

t =
εt − 1

εt
(1− ν)Zt (L

∗
t )

−ν
.

In equilibrium, output is given by Y ∗
t = Zt (L

∗)
1−ν

. Therefore, the flexible-price equilibrium conditions

are given by:

χ (L∗
t )

1+φ
=

εt − 1

εt
, (A.14)

Y ∗
t = Zt (L

∗
t )

1−ν
.

Potential output. Consider the flexible-price allocation in which the firms’ markups are at their

steady-state level, εt = ε∗, that is:

χ (L∗)
1+φ

=
ε∗ − 1

ε∗
, (A.15)

Y ∗
t = Zt (L

∗)
1−ν

.

We refer to L∗ as the potential labor supply and Y ∗ = Zt (L
∗)

1−ν
as the potential output. In the main

text, we assume the central bank attempts to keep labor and output demand at these levels. In particular,

the central bank attempts to stabilize the output fluctuations driven by shocks to εt (or markups), because

these shocks are distortionary. This enables us to accommodate cost-push shocks that create a trade-off

for the central bank for stabilizing inflation and output.24

Sticky prices and demand-driven output. We next describe the equilibrium with nominal

rigidities. We start with the special case with full price stickiness and then extend the analysis to

partially flexible prices. With fully sticky prices, intermediate good firms have a preset nominal price

that remains fixed over time, Qt (ν) = Q∗. This implies the nominal price for the final good is also fixed

and given by Qt = Q∗. Then, each intermediate good firm ν at time t solves the following version of

24The central bank does not attempt to stabilize the distortions generates by the average markup, because this
would induce an average inflationary bias. In practice, these average distortions should ideally be corrected by
other policy tools rather than monetary policy.
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problem (A.11),

Π = max
L

Q∗Y −WtL− Tt (A.16)

where Y = AL1−ν ≤ Yt.

Since the firm operates with a markup, for small aggregate demand shocks (which we assume) it optimally

chooses to meet the demand for its goods, Y = ZL1−ν = Yt. Therefore, each firm’s output is determined

by aggregate demand, which is driven by households’ spending CHt according to (A.10).

Partially flexible prices and the New Keynesian Phillips curve. We next allow for

partially flexible prices. With partially flexible prices, each firm still optimally serves the demand and

output is still determined by aggregate demand. However, inflation is also endogenous and reacts to

output gaps as well as other (cost-push) shocks. We derive a Phillips curve that describes inflation.

We consider the setup in the textbook New Keynesian model in which in each period a randomly

selected fraction, 1 − θ, of firms reset their nominal prices. The firms that do not adjust their price in

period t, set their labor input to meet the demand for their goods.

Consider the firms that adjust their price in period t. Let Qadjt denote the optimal price set by these

firms. We assume Qadjt solves the following version of problem (A.11)

max
Qadj

t

∞∑
h=0

θhEt

{
Mt,t+h

(
Yt+h|tQ

adj
t −Wt+hLt+h|t − Tt

)}
, (A.17)

where Yt+h|t = Zt+hL
1−ν
t+h|t =

(
Qadjt
Qt+h

)−εt+h

Yt+h

and Mt,t+h = βh
1/Pt+h
1/Pt

Qt
Qt+h

.

The terms Lt+h|t and Yt+h|t denote the input and the output of the firm (that resets its price in period

t) in a future period t + h. The term Mt,t+h is the stochastic discount factor (SDF) between periods t

and t+h. Here, Pt denotes the end-of-period price of the market portfolio which we describe later in the

appendix.25

The optimality condition for problem (A.17) is given by

∞∑
h=0

θhEt

{
Mt,t+hQ

εt+h

t+h Yt+h

(
Qadjt − εt+h

εt+h − 1

Wt+h

(1− ν)Zt+hL
−ν
t+h|t

)}
= 0, (A.18)

where Lt+h|t =

(
Qadjt
Qt+h

)−εt+h
1−ν (

Yt+h
Zt+h

) 1
1−ν

.

We next combine Eq. (A.18) with the remaining equilibrium conditions to derive the New Keynesian

Phillips curve. Specifically, we log-linearize the equilibrium around the allocation that features real

25Consistent with the financial market side of our model, we assume the SDF is determined by asset-holding
households’ wealth rather than their consumption. In equilibrium, asset-holding households’ wealth is equal to
the value of the market portfolio. The exact specification does not affect our analysis because we log-linearize the
equation and the interaction of the SDF and prices, Mt,t+hQ

adj
t , generates second-order terms that drops out of

the log linearization.
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potential outcomes (with constant markups) and zero inflation, that is, Lt = L∗, Yt = Y ∗
t ,

εt
εt−1 =

ε∗

ε∗−1 , Qt = Q∗ for each t, where recall that L∗ is given by (A.15) and Y ∗
t = Zt(L

∗)1−ν . Throughout, we

use the notation x̃t = log (Xt/X
∗
t ) to denote the log-linearized version of the corresponding variable Xt

and we use µ̃t =
εt
εt−1 − ε∗

ε∗−1 to denote the deviation of the desired markup from its steady-state level

level. We also let Wnorm
t = Wt

ZtQt
denote the normalized (productivity-adjusted) real wage.

We first log-linearize the labor-supply equilibrium condition (A.2) and use CHMt = (1− ν)Yt to

obtain

w̃normt = φl̃t + ỹt. (A.19)

Log-linearizing Eqs. (A.3) and (A.7), we also obtain

ỹt = (1− ν) l̃t. (A.20)

Finally, we log-linearize Eq. (A.18) (and linearize for µ̃t) to obtain

∞∑
h=0

(θβ)
h
Et

{
q̃adjt −

(
w̃normt+h + νl̃t+h|t + q̃t+h

)
− µ̃t+h

}
= 0, (A.21)

where l̃t|t+h =
−ε∗

(
q̃adjt − q̃t+h

)
1− ν

+ l̃t+h.

The second line uses ỹt = (1− ν) l̃t.

We next combine Eqs. (A.19−A.21) and rearrange terms to obtain a closed-form solution for the

price set by adjusting firms

q̃adjt = (1− θβ)

∞∑
h=0

(θβ)
h
Et
[
Θỹt+h + q̃t+h + µ̃t+h

]
,

where Θ =
1 + φ

1− ν + νε

Since the expression is recursive, we can also write it as a difference equation

q̃adjt = (1− θβ) (Θỹt + q̃t + µ̃t) + θβEt

[
q̃adjt+1

]
. (A.22)

Here, we have used the law of iterated expectations, Et [·] = Et [Et+1 [·]].
Next, we consider the aggregate price index (A.5)

Qt =

(
(1− θ)

(
Qadjt

)1−ε
+

∫
St

(Qt−1 (ν))
1−ε

dν

)1/(1−ε)

=

(
(1− θ)

(
Qadjt

)1−ε
+ θQ1−ε

t−1

)1/(1−ε)

,

where we have used the observation that a fraction θ of prices are the same as in the last period. The

term, St, denotes the set of sticky firms in period t, and the second line follows from the assumption that

adjusting terms are randomly selected. Log-linearizing the equation, we further obtain q̃t = (1− θ) q̃adjt +

θq̃t−1. After substituting inflation, πt = q̃t − q̃t−1, this implies

πt = (1− θ)
(
q̃adjt − q̃t−1

)
. (A.23)
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Hence, inflation is proportional to the price change by adjusting firms.

Finally, note that Eq. (A.22) can be written in terms of the price change of adjusting firms as

q̃adjt − q̃
t−1

= (1− θβ) (Θỹt + µ̃t) + q̃t − q̃t−1 + θβEt

[
q̃adjt+1 − q̃t

]
.

Substituting πt = q̃t− q̃t−1 and combining with Eq. (A.23), we obtain the New Keynesian Phillips curve

(40) that we use in the main text

πt = κỹt + βEt [πt+1] + ut, (A.24)

where κ =
1− θ

θ
(1− θβ)

1 + φ

1− ν + νε

and ut =
1− θ

θ
(1− θβ) µ̃t, where µ̃t =

εt
εt − 1

− ε∗

ε∗ − 1
.

A.1.2. Demand side and financial markets

We next describe households’ consumption-savings and portfolio allocation decisions. In equilibrium,

together with monetary policy, these decisions determine aggregate demand, asset prices, and output.

Financial assets. There are two assets. There is a market portfolio, which is a claim on firms’ profits

νYt (the firms’ share of output). We let Pt denote the ex-dividend price of the market portfolio (which we

also refer to as “the aggregate asset price” or “aggregate asset prices”). The gross return of the market

portfolio is

Rt+1 =
νYt+1 + Pt+1

Pt
. (A.25)

There is also a risk-free asset in zero net supply. Its gross return Rft is set by the central bank, as we

describe in the main text.

Households’ consumption-savings decisions. Households have standard preferences:

Et

[ ∞∑
h=0

βt+h logCHt+h

]
, (A.26)

along with the budget constraint

Wt+1 + CHt+1 = Wt

(
(1− ωt)R

f
t + ωtRt+1

)
= Dt+1 +Kt+1, (A.27)

where Dt+1 = Wt

[
(1− ωt)

(
Rft − 1

)
+ ωt

νYt+1

Pt

]
and Kt+1 = Wt

[
1− ωt + ωt

Pt+1

Pt

]
.

Wt denotes the end-of-period wealth and ωt denotes the market portfolio weight in period t. The term

Wt

(
(1− ωt)R

f
t + ωtRt+1

)
is the beginning-of-period wealth in period t+1. The second line breaks this

term into a component that captures the interest and dividend income (Dt+1) and a residual component

that captures the capital (Kt+1).
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Households take their portfolio allocation as given (delegated to the portfolio managers) and make a

consumption-savings decision. We assume their consumption follows the rule

CHt = (1− β) (Dt +Kt exp (δt)) . (A.28)

When δt = 0, this is the optimal rule given the log preferences in (A.26). When δt > 0 (resp. δt < 0),

households spend more (resp. less) than the optimal rule. We refer to δt as an aggregate demand shock

and view it as a modeling device to capture various factors that affect aggregate spending in practice, e.g.,

a consumer sentiment shock, a fiscal policy shock, or a discount rate shock. Having the demand shock

multiply Kt rather than Dt +Kt does not play an important role beyond simplifying the expressions.26

The portfolio managers (the market) and the portfolio allocation. Households delegate

their portfolio choice to managers. The portfolio managers are infinitesimal and they do not consume

themselves; they simply make a portfolio choice decision for households. For simplicity, each household

invests with a continuum of managers randomly sampled from all managers. This assumption ensures

that there is no portfolio heterogeneity across households and thus no individual wealth dynamics.

In each period, a fraction η of portfolio managers are “noise traders” and their portfolio weight is

given by ωNt = 1+ 1
ηµt. That is, they deviate from the optimal portfolio benchmark by an amount given

by 1
ηµt. We refer to µt as the aggregate noise—the total amount of flow that needs to be absorbed by

other investors. Among the remaining managers, a mass 1− η − α represent “inelastic funds” and their

portfolio weight is given by ωIt = 1. Finally, a mass α of managers are “arbitrageurs” (or elastic funds)

who choose their portfolio weights to maximize expected log assets-under-management, after observing

the risk-free rate rft = logRft and the current noise µt:
27

max
ωA

t

Et

[
log
(
αWt

(
Rft + ωt

(
Rt+1 −Rft

)))]
.

As we describe in the main text, the optimality condition is approximately given by (14)

ωAt σt,rt+1
=
Et [rt+1] +

(σt,rt+1)
2

2 − rft
σt,rt+1

.

Financial market clearing. Financial markets are in equilibrium when the households in the

aggregate hold the market portfolio, both before and after the portfolio allocation:

Wt = Pt and ωt = αωAt + η

(
1 +

µt
η

)
+ (1− η − α) = 1. (A.29)

Output-asset price relation. We next derive the equilibrium condition (9) that we use in the main

text. Combining Eqs. (A.27) and (A.29), we obtain Dt = νYt,Kt = Pt. In equilibrium, dividends are

26We could alternatively capture demand shocks as shocks to households’ discount factor β in a fully optimizing
framework. We prefer our approach where we view demand shocks as small consumption “mistakes” because doing
so simplifies the analysis and gives us greater flexibility in specifying the process for δt.

27We assume arbitrageurs maximize log-wealth in line with the households’ preferences in (A.26). In the special
case where households follow the optimal rule (σ2

δ = 0), this problem results in portfolio allocations that maximize
the households’ utility. We formulate the portfolio problem in terms of wealth, rather than consumption, because
we allow consumption to deviate from the optimal rule. In our setup, wealth is a more accurate representation of
welfare, as it captures the ideal consumption a household could choose if she followed the optimal rule.
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equal to the firms’ share of output. Capital is equal to the (ex-dividend) value of the market portfolio.

Substituting these observations into the consumption rule in (A.28), we obtain

CHt = (1− β) (νYt + Pt exp (δt)) .

Substituting Eq. (A.10) (CHt = νYt) into this expression yields Eq. (9)

Yt = (1− β)
1

νβ
Pt exp (δt)

=⇒ yt = m+ pt + δt, where m ≡ log

(
1− β

νβ

)
. (A.30)

We refer to this as the output-asset price relation. In equilibrium, output depends on aggregate wealth,

Pt, the MPC out of wealth, 1 − β, the demand shock, δt, and the Keynesian multiplier, 1/ (νβ). The

second line describes the relation in logs and obtains the derived parameter m.

Financial market equilibrium condition. We next derive the equilibrium condition (15) that

we use in the main text. Eq. (A.29) implies ωAt = 1− µt

α . Substituting this into (14), we obtain (15)

Et [rt+1] = rft +

(
σt,rt+1

)2
2

+ µt

(
σt,rt+1

)2
α

.

In equilibrium, the expected return on the market portfolio depends on the risk premium, return vari-

ance, and noise. The impact of noise is increasing in the return variance and decreasing in the mass of

arbitrageurs.

Campbell-Shiller approximation to the equilibrium return. We next derive the Campbell-

Shiller approximation in (11). First note that Eq. (A.25) implies

rt+1 = log

(
αYt+1

Pt+1

Pt+1

Pt
+
Pt+1

Pt

)
= log

(
αYt+1

Pt+1
+ 1

)
+ log

(
Pt+1

Pt

)
= log (1 +Xt+1) + pt+1 − pt. (A.31)

Here, we have defined the dividend price ratio, Xt = αYt/Pt.

Setting the demand shifter to zero (δt = 0) and output equal to its potential Y = Y ∗, Eq. (A.30)

implies Y ∗ = (1− β) 1
αβP

∗. This implies X∗ = αY ∗
t /P

∗
t = 1−β

β .

Finally, log-linearize (A.31) around Xt+1 = X∗. Let xt+1 = log (Xt+1/X
∗) denote the log de-

viation of the dividend price ratio from its steady-state level. Consider the term, log (1 +Xt+1) =

log (1 +X∗ exp (xt+1)). Using a Taylor approximation around xt+1 = 0, we obtain

log (1 +Xt+1) ≈ log (1 +X∗) +
X∗

1 +X∗xt+1

≈ log

(
1

β

)
+ (1− β)

(
log

(
αYt+1

Pt+1

)
− log

(
1− β

β

))
.
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Substituting this into (A.31) and collecting the constant terms, we obtain Eq. (11)

rt+1 = ρ− (1− β)m+ (1− β) yt+1 + βpt+1 − pt

= ρ+ pt+1 + (1− β) δt+1 − pt,

where the second line substitutes the output asset price relation (9) to simplify the expression.

Present discounted value relation. Substituting Eq. (11) into the financial market equilibrium

condition (15), we also obtain the present discounted value relation (16) that describes the equilibrium

asset price

pt = ρ+ Et [pt+1] + (1− β)Et [δt+1]−
(
rft +

1

2

(
σt,rt+1

)2)
+ µt

(
σt,rt+1

)2
α

.
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A.2. Omitted proofs

This section contains the proofs omitted from the main text.

Proof of Proposition 1. To characterize the equilibrium, first observe that the central bank’s problem

is

Gt = min
rft

Et

[
(yt − y∗t )

2
]
+ βEt [Gt+1] .

The expected future gaps Et [Gt+1] do not depend on the current policy rate rft , because the model

is forward looking without any endogenous state variables. Thus, the optimality condition is given by

Et

[
dyt
drft

ỹt

]
= 0. We conjecture (and verify) that in equilibrium dyt

drft
= −1. Consequently, the optimality

condition implies

Et [ỹt] = 0 =⇒ Et [yt] = Et [y
∗
t ] = y∗t . (A.32)

Since the central bank sets policy before observing the noise, it cannot ensure output is equal to its

potential in every state, yt = y∗t . Instead, it does so in expectation. Combining this with Eq. (9), we

also obtain

Et [m+ pt + δt] = y∗t =⇒ Et [pt] = p∗t ≡ y∗t −m− δt. (A.33)

That is, the central bank sets the asset price equal to “pstar” in expectation.

We next conjecture (and verify) that there is an equilibrium in which the return volatility σ2 is

constant and the aggregate asset price is given by (19). Substituting this into the output asset price

relation (9), we obtain (20). Note that Eqs. (19− 20) satisfy the optimality conditions (A.32−A.33)

since Et [εµ,t] = 0. Substituting (19) into (11), we also obtain

rt+1 = ρ+ pt+1 + (1− β) δt+1 − pt

= ρ+ p∗t+1 +
σ2

α
εµ,t+1 + (1− β) δt+1 −

(
p∗t +

σ2

α
εµ,t

)
= ρ+ y∗t+1 −m− δt+1 +

σ2

α
εµ,t+1 + (1− β) δt+1 −

(
y∗t −m− δt +

σ2

α
εµ,t

)
= ρ+ δt + εz,t+1 − βδt+1 +

σ2

α
(εµ,t+1 − εµ,t) .

The third line substitutes for p∗t+1 and p∗t , the fourth line uses (8) and simplifies the expressions. This

proves (22). Combining this with (15), we also characterize the interest rate as

rft = Et [rt+1]−
1

2
σ2 +

σ2

α
µt

= ρ+ δt − βφδδt +
σ2

α
Et [µt − εµ,t]

= ρ+ (1− βφδ) δt + φzzt +
σ2

α
φµµt−1.

The second line substitutes the AR(1) process for δt and the last line substitutes the AR(1) process for

µt. This proves (21).

We next characterize the return volatility corresponding to this equilibrium. Using (22), along with
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the observation that all shocks are conditionally independent, we obtain

σ2 = vart (rt+1) = σ2
macro +

(
σ2
)2

α2
σ2
µ, where σ2

macro = σ2
z + β2σ2

δ .

In particular, the conditional volatility is a root of a quadratic, P
(
σ2
)
= 0, given by

P (x) =
σ2
µ

α2
x2 − x+ σ2

macro. (A.34)

As long as the parameters satisfy α2 > 4σ2
µσ

2
macro, which we assume, this polynomial has two positive

roots. The larger root is unstable in the sense that small changes in volatility induce further changes

in volatility that move the equilibrium away from this point. The smaller root corresponds to a stable

equilibrium. This verifies that the equilibrium volatility is the smaller solution to the fixed point equation

in (23). To assist with the calibrations, we observe that the smaller root is associated with a negative

derivative for the polynomial,

P ′ (x) = 2
σ2
µ

α2
x− 1

∣∣∣∣∣
x=σ2

≤ 0.

This shows that a candidate solution that satisfies P
(
σ2
)

= 0 is stable as long as it also satisfies

2σ2
µσ

2 ≤ α2. In contrast, the positive root has 2σ2
µσ

2 ≥ α2.

It remains to verify our conjecture that dyt
drft

= −1. Along the equilibrium path, output satisfies

yt = m+ pt + δt, where the asset price satisfies (16)

pt = ρ+ Et [pt+1] + (1− β)Et [δt+1]−
(
rft +

1

2
σ2

)
+
σ2

α
µt.

This shows dyt
drft

= −1 and completes the characterization of equilibrium.

We next establish the comparative statics with respect to the noise variance σ2
µ. Observe that P (x) in

(A.34) corresponds to an upward-sloping parabola with two positive roots. Observe also that increasing

σ2
µ increases P (x) for each x and therefore lifts the parabola upward. Therefore, increasing σ2

µ increases

the smaller root (while reducing the larger root). Since the equilibrium volatility σ2 corresponds to the

smaller root, increasing σ2
µ increases σ2.

Finally, we characterize the output-gap loss Gt = Et

[∑∞
h=0 β

hỹ2t+h

]
along the equilibrium path. Note

that the output gaps are given ỹt+h = εµ,t+h
σ2

α . This implies Gt =
σ2
µ(σ

2)
2

1−β . In particular, increasing σ2
µ

also increases Gt both directly by increasing noise and also indirectly by increasing the impact of noise.

This completes the proof of the proposition.

Proof of Proposition 2. To characterize the equilibrium, observe that the central bank’s modified

problem can be written as

GFCIt (pt) = min
rft ,pt+1

Et

[
(yt − y∗t )

2
+ ψ (pt − pt)

2
]
+ βEt

[
GFCIt+1

(
pt+1

)]
.

The expected future gaps Et
[
Gt+1

(
pt+1

)]
depend on the announced target pt+1 but not on the current
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policy rate rft (because the model is forward looking). Thus, the optimality condition for rft is given by

Et

[
dyt

drft
(yt − y∗t )

2
+ ψ

dpt

drft
(pt − pt)

2

]
= 0.

We conjecture (and verify) that in equilibrium dyt
drft

= dpt
drft

= −1. Therefore, the optimality condition

implies

Et [yt − y∗t ] + ψEt [pt − pt] = 0.

Substituting yt = m+ pt + δt and y
∗
t = p∗t +m+ δt, we obtain

Et [pt]− p∗t + ψ (Et [pt]− pt) = 0.

After rearranging, we obtain the optimality condition

Et [pt] =
1

1 + ψ
p∗t +

ψ

1 + ψ
pt = p∗t +

ψ

1 + ψ
(pt − p∗t ) . (A.35)

Under FCI targeting, the central bank’s expected asset price is a weighted average of its pre-announced

target pt and the current “pstar” p∗t .

We next conjecture an equilibrium in which σ2
t,rt+1

≡ σ2 is constant over time, the central bank

announces the expected “pstar” as its target pt = Et−1 [p
∗
t ], and the aggregate asset price satisfies

pt =
ψ

1 + ψ
pt +

1

1 + ψ
p∗t +

σ2

α
εµ,t.

Taking the expectation of this expression and using Et [εµ,t] = 0, we obtain (A.35). Hence, the conjectured

allocation satisfies the optimality condition. Note also that this expression implies

pt = Et−1 [p
∗
t ] +

1

1 + ψ

(
p∗t − Et−1 [p

∗
t ]
)
+
σ2

α
εµ,t

= Et−1 [p
∗
t ] +

1

1 + ψ

(
y∗t − δt − Et−1 [y

∗
t − δt]

)
+
σ2

α
εµ,t

= Et−1 [p
∗
t ] +

1

1 + ψ
(εz,t − εδ,t) +

σ2

α
εµ,t.

The first line substitutes the optimal target for period t − 1 using (26), pt = Et−1 [p
∗
t ], the second line

substitutes for p∗t , and the last line uses the definition of supply and demand surprises, y∗t = Et−1 [y
∗
t ]+εz,t

and δt = Et−1 [δt] + εδ,t. This proves Eq. (27).

Substituting (27) into (9), we further obtain

yt = m+ δt + Et−1 [y
∗
t − δt −m] +

1

1 + ψ
(εz,t − εδ,t) +

σ2

α
εµ,tx

= εδ,t + y∗t − εz,t +
1

1 + ψ
(εz,t − εδ,t) +

σ2

α
εµ,t

= y∗t +
ψ

1 + ψ
(εδ,t − εz,t) +

σ2

α
εµ,t

The last line substitutes the definition of demand shocks εδ,t = δt − Et−1 [δt]. This proves (28).
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We substitute the aggregate asset price into (11) to characterize the equilibrium return,

rt+1 = ρ+ pt+1 + (1− β) δt+1 − pt

= ρ+ Et
[
p∗t+1

]
+

1

1 + ψ
(εz,t+1 − εδ,t+1) +

σ2

α
εµ,t+1 + (1− β) δt+1

−
(
Et−1 [p

∗
t ] +

1

1 + ψ
(εz,t − εδ,t) +

σ2

α
εµ,t

)
= ρ+ Et

[
y∗t−1 + εz,t + εz,t+1 − δt+1

]
+

1

1 + ψ
(εz,t+1 − εδ,t+1) +

σ2

α
εµ,t+1 + (1− β) δt+1

−
(
Et−1

[
y∗t−1 + εz,t − δt

]
+

1

1 + ψ
(εz,t − εδ,t) +

σ2

α
εµ,t

)
= ρ+

(
φδδt−1 +

εδ,t
1 + ψ

)
−
(
φδδt +

εδ,t+1

1 + ψ

)
+ (1− β) (φδδt + εδ,t+1)

+
εz,t+1

1 + ψ
+

(
εz,t −

1

1 + ψ
εz,t

)
+
σ2

α
(εµ,t+1 − εµ,t) .

The third equation substitutes p∗t+1 and p∗t . We also replace E [·] with E [·] since the realization of noise

does not affect the terms inside the expectation. The last equation substitutes the AR(1) process for δt

and collects similar terms together. This proves (30) where the expected return is given by

Et [rt+1] = ρ+ φδδt−1 +
εδ,t
1 + ψ

− βφδδt +
ψεz,t
1 + ψ

− σ2

α
εµ,t. (A.36)

We next combine the expression for the expected return with (15) to calculate the interest rate,

rft = ρ− 1

2
σ2 + φδδt−1 +

εδ,t
1 + ψ

− βφδδt +
ψεz,t
1 + ψ

+
σ2

α
φµµt−1,

where we substituted the AR(1) process for µt from (12). This proves (29).

We next use (30) to calculate the conditional return volatility as

σ2 = vart (rt+1) = σ2
macro (ψ) +

(
σ2

α

)2

σ2
µ

where σ2
macro (ψ) = σ2

z

(
1

1 + ψ

)2

+ σ2
δ

(
1

1 + ψ
− (1− β)

)2

.

In particular, the conditional volatility is a root of a quadratic, P
(
σ2;ψ

)
= 0, given by

P (x;ψ) =
σ2
µ

α2
x2 − x+ σ2

macro (ψ) . (A.37)

Note that σ2
macro (ψ) is convex, minimized at some ψ > 0, and satisfies σ2

macro (0) = σ2
z + β2σ2

δ

and limψ→∞ σ2
macro (ψ) = (1− β)

2
σ2
δ . Since β > 1 − β, this implies σ2

macro (0) ≥ σ2
macro (ψ) for

each σ2
macro (ψ) Therefore, the assumed parametric condition α2 > 4σ2

µ

(
σ2
z + β2σ2

δ

)
implies that

α2 > 4σ2
µσ

2
macro (ψ) for each ψ ≥ 0. Consequently, the polynomial in (A.37) has two positive roots

for each ψ ≥ 0. The smaller root corresponds to the stable equilibrium. This proves (31).
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Along the equilibrium path, output satisfies yt = m+ pt + δt where the asset price satisfies (16)

pt = ρ+ Et [pt+1] + (1− β)Et [δt+1]−
(
rft +

1

2
σ2

)
+
σ2

α
µt.

This verifies our conjectures dyt
drft

= dpt
drft

= −1.

It remains to verify our conjecture that it is optimal for the central bank to announce the target in

(26). Fix period t − 1 and consider the optimal choice of pt. This is chosen to minimize the objective

function Et−1

[
GFCIt (pt)

]
(since pt does not affect the gaps in period t − 1). To characterize this, note

that Eq. (A.35) applies for an arbitrary target pt,

Et [pt] = p∗t +
ψ

1 + ψ
(pt − p∗t ) = pt +

1

1 + ψ
(p∗t − pt) .

Combining this with yt = m+ pt + δt and y
∗
t = p∗t +m+ δt, we also obtain the following expression for

output that applies for an arbitrary target pt,

Et [yt] = y∗t +
ψ

1 + ψ
(pt − p∗t ) .

Substituting these expressions into the objective function, we obtain

Et−1

[
GFCIt (pt)

]
= Et−1

[
(yt − y∗t )

2
+ ψ (pt − pt)

2
]
+ βEt−1

[
GFCIt+1

(
pt+1

)]
=

((
ψ

1 + ψ

)2

+ ψ

(
1

1 + ψ

)2
)
Et−1

[
(pt − p∗t )

2
]
+ βEt−1

[
GFCIt+1

(
pt+1

)]
.

Taking the derivative with respect to pt and observing that GFCIt+1

(
pt+1

)
does not depend on pt, we find

pt = Et−1 [p
∗
t ]. This verifies (26) and completes the characterization of equilibrium.

Next consider the comparative statics of return variance with respect to ψ. Recall that x = σ2

corresponds to the smaller (positive) root of the polynomial P (x;ψ) in (A.37). This is an upward

sloping parabola with two positive roots and the solution corresponds to the smaller root. Note that

P (0;ψ) = σ2
macro (ψ). Note also that σ2

macro (ψ) is convex with a minimum that satisfies ψ > β
1−β > 0.

Therefore, increasing ψ over the range
[
0, ψ

]
shifts the parabola upward and reduces the smaller root.

This proves that increasing ψ over the range
[
0, ψ

]
reduces both σ2

macro (ψ) and σ
2. Conversely, increasing

ψ over the range
(
ψ,∞

)
increases both σ2

macro (ψ) and σ
2.

Proof of Proposition 3. Note that Eq. (28) implies (34). After substituting this into (33) and

calculating the variances, we further obtain (35). Differentiating with respect to ψ, we obtain
dGe

macro(ψ)
dψ =

0 and
dGe (ψ)

dψ
|ψ=0 =

dGenoise(ψ)

dψ
|ψ=0 =

2

1− β

(
σ2
µσ

2 dσ
2

dψ
|ψ=0

)
< 0.

The inequality follows since Proposition 2 shows that dσ2

dψ < 0 over the range ψ ∈
[
0, ψ

]
. This completes

the proof.
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A.3. FCI targeting vs interest rate targeting

This section analyzes the extension we discuss in Section 4.5 where the central bank targets the future

interest rate rather than the future FCI. We show that FCI targeting is strictly superior to interest rate

targeting.

To capture interest rate targeting, consider the baseline model from Section 4 but suppose the central

bank solves problem (39), which we replicate here:

GR-target
t = min

rft ,r
f
t+1

Et

[ ∞∑
h=0

βh
[(
yt+h − y∗t+h

)2
+ ψ

(
rft+h − rft+h

)2]]
,

where rft+h denotes an interest rate target that the central bank announces in the previous period, t+h−1

(the initial target rf0 is given). Similarly to FCI targeting, the central bank penalizes the deviations of

the interest rate (rather than the FCI) from a pre-announced target. As before, the central bank’s true

objective function is unchanged and still given by (33).

The following result characterizes the equilibrium with interest rate targeting. We focus on the case

in which there are no supply shocks, εz,t = 0, and demand shocks are transitory, φδ = 0. This case

makes the analysis tractable and directly comparable to FCI targeting, but the qualitative results also

hold with supply shocks and more general processes for demand shocks.

Proposition 5 (Equilibrium with Interest Rate Targeting). Suppose the planner follows the interest

rate targeting policy in (39) with ψ ≥ 0, there are no supply shocks εz,t = 0 and demand shocks are

transitory φδ = 0, the parameters satisfy α2 > 4σ2
δ

(
1

1+ψ − (1− β)
)2
σ2
µ

(
1 + ψ

1+ψφµ

)2
, and the initial

target satisfies r0 = E−1

[
rf0

]
. There is a (stable) equilibrium in which the planner announces the expected

interest rate for the next period as its target rft+1 = Et

[
rft+1

]
. The equilibrium, asset price, output, and

interest rate are given by

pt = y∗t −m− εδ,t
1 + ψ

+
σ2

α

(
ψ

1 + ψ
φµεµ,t−1 +

(
1 +

ψ

1 + ψ
φµ

)
εµ,t

)
, (A.38)

yt = y∗t +
ψεδ,t
1 + ψ

+
σ2

α

(
ψ

1 + ψ
φµεµ,t−1 +

(
1 +

ψ

1 + ψ
φµ

)
εµ,t

)
, (A.39)

rft = ρ− 1

2
σ2 +

εδ,t
1 + ψ

+
σ2

α

(
φ2
µµt−1 +

1

1 + ψ
φµεµ,t−1

)
. (A.40)

The equilibrium return is

rt+1 = Et [rt+1]− εδ,t+1

(
1

1 + ψ
− (1− β)

)
+
σ2

α

(
1 +

ψ

1 + ψ
φµ

)
εµ,t+1, (A.41)

where Et [rt+1] = ρ+
εδ,t
1 + ψ

−
[
εµ,t +

ψ

1 + ψ
φµεµ,t−1

]
σ2

α
.

The return variance σ2 = vart (rt+1) is the smaller positive solution to the fixed point problem

σ2 = σ2
macro (ψ) +

(
σ2
)

α2

2(
1 +

ψ

1 + ψ
φµ

)2

σ2
µ, (A.42)

where σ2
macro (ψ) = σ2

δ

(
1

1 + ψ
− (1− β)

)2
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For a fixed ψ, the solution satisfies σ2 >
(
σFCI

)2
where

(
σFCI

)2
is the equilibrium return variance with

FCI targeting characterized in Proposition 2.

Comparing Eqs. (A.39) and (28) shows that for a given return variance σ2 interest rate targeting

generates greater output gap volatility than FCI targeting. The last part of the result shows that interest

rate targeting also induces greater return variance σ2, which further increases output gap volatility.

It follows that interest rate targeting is inferior to FCI targeting (it achieves higher expected squared

output gaps). Intuitively, as we discuss in the main text, interest rate targeting stabilizes the incorrect

financial variable and reduces the central bank’s flexibility to respond to recent noise shocks, φµεµ,t−1.

This reduced flexibility implies that recent noise shocks affect asset prices and output gaps (captured by

the term φµεµ,t−1). Moreover, current noise shocks have a larger price impact, because financial markets

anticipate that the central bank will not fully offset noise shocks (captured by the term 1 + ψ
1+ψφµ).

Proof of Proposition 5. We conjecture and verify an equilibrium in which the return volatility σ2 is

constant, the central bank announces the expected future rate as its target rft =Et−1

[
rft

]
, and the asset

price and the interest rate satisfies

pt = y∗t −m+Dpεδ,t +
(
Mp,1φµεµ,t−1 +Mp,0εµ,t

) σ2

α
, (A.43)

rft = ρ− 1

2
σ2 +Drεδ,t +

(
φ2
µµt−2 +Mr,1φµεµ,t−1

) σ2

α

for undetermined coefficients Dp, Dr,Mp,1,Mp,0,Mr,1. Note that we allow the asset price and interest

rate to react to the past period noise surprise as well as the current-period noise surprise εµ,t. However,

the interest rate cannot respond to the current noise surprise εµ,t.We also conjecture that the interest

rate will fully stabilize the current price impact of the noise shock from two periods before.

The optimality condition for rft is given by

Et

[
dyt

drft
(yt − y∗t )

2
+ ψ

(
rft − rft

)2]
= 0.

As before, we conjecture (and verify later) that dyt
drft

= −1. Therefore, the optimality condition implies

Et [yt]− y∗t = ψEt

[
rft − rft

]
.

Using the conjecture Et−1

[
rft

]
= rft , observing that Et

[
rft

]
= rft , this further implies

Et [yt]− y∗t = ψ
(
rft − Et−1

[
rft

])
.

The pre-noise output is centered around y∗t but it shifts with the information that shifts rft between

periods t − 1 and t due to the policy pre-commitment. Substituting yt = m + pt + εδ,t (since demand

shocks are i.i.d.), we further obtain

Et [pt] = y∗t −m− εδ,t + ψ
(
rft − Et−1

[
rft

])
. (A.44)
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Combining this with (A.43), we find

Dpεδ,t +Mp,1φµεµ,t−1
σ2

α
= −εδ,t + ψ

(
Drεδ,t +Mr,1φµεµ,t−1

σ2

α

)
.

The optimality condition holds for all shocks if the undetermined coefficients satisfy

Dp = −1 + ψDr, (A.45)

Mp,1 = ψMr,1.

We next substitute the conjectured price into (11) to calculate the equilibrium return

rt+1 = ρ+ pt+1 + (1− β) εδ,t+1 − pt

= ρ+ [Dp + 1− β] εδ,t+1 −Dpεδ,t

+
[(
Mp,1φµ −Mp,0

)
εµ,t +Mp,0εµ,t+1 −Mp,1φµεµ,t−1

] σ2

α

= Et [rt+1] + εδ,t+1 [Dp + 1− β] + εµ,t+1Mp,0
σ2

α
,

where the expected return is given by

Et [rt+1] = ρ−Dpεδ,t +
[(
Mp,1φµ −Mp,0

)
εµ,t −Mp,1φµεµ,t−1

] σ2

α
.

We combine this expression with (15) to calculate the interest rate,

rft = ρ− 1

2
σ2 −Dpεδ,t +

[
µt +

(
Mp,1φµ −Mp,0

)
εµ,t −Mp,1φµεµ,t−1

] σ2

α

= ρ− 1

2
σ2 −Dpεδ,t +

[
φ2
µµt−1 +

(
1 +Mp,1φµ −Mp,0

)
εµ,t + (1−Mp,1)φµεµ,t−1

] σ2

α
.

Here, the second line substitutes µt = φ2
µµt−1 +φµεµ,t−1 + εµ,t and collects terms. Comparing this with

the conjectured interest rate in (A.43), the undetermined coefficients must satisfy

Dr = −Dp, (A.46)

Mr,1 = 1−Mp,1,

1 +Mp,1φµ −Mp,0 = 0.

Combining Eqs. (A.45) and (A.46), we solve for the equilibrium coefficients

Dp = − 1

1 + ψ
and Dr =

1

1 + ψ
,

Mp,1 =
ψ

1 + ψ
and Mr,1 =

1

1 + ψ
,

Mp,0 = 1 + φµ
ψ

1 + ψ
.

Substituting the solution into (A.43) verifies that the equilibrium asset price and interest rate are given

by (A.38) and (A.40). Combining the asset price expression with yt = m+ pt + εδ,t verifies that output
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is given by (A.39). Substituting the solution into the expression for the return verifies that the return is

given by (A.41).

Finally, observe that Eq. (30) implies that σ2 solves the fixed point problem (A.42). Under the

assumed parametric condition, this problem has two positive roots. The smaller root corresponds to the

stable equilibrium.

It remains to verify our conjectures that dyt
drft

= −1 and the central bank optimally announces the

expected interest rate as its target Et−1

[
rft

]
= rft . These follow from similar steps as in the proof of

Proposition 2.

Finally, consider the comparative statics exercise. Note that σ2 and
(
σFCI

)2
are the smaller root of

the following two polynomials, respectively:

P (x) =

(
1 +

ψ

1 + ψ
φµ

)2 σ2
µ

α2
x2 − x+ σ2

macro (ψ) ,

PFCI (x) =
σ2
µ

α2
x2 − x+ σ2

macro (ψ) .

Observe that P (x) > PFCI (x) for each x > 0. Since P
(
σ2
)
= 0, this implies PFCI

(
σ2
)
< 0. This in

turn implies
(
σFCI

)2
< σ2 because

(
σFCI

)2
is the smaller positive root of PFCI (x).
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A.4. FCI targeting with policy lags to all current shocks

This section analyzes the extension we discuss in Section 4.6.1 the central bank sets policy before observing

all current-period shocks εµ,t, εδ,t, εz,t (rather than only εµ,t). We show that macroeconomic shocks still

induce asset price volatility due to the anticipated policy reaction to these shocks. Therefore, as in the

main text, an appropriate FCI targeting policy reduces return volatility and the price impact of noise

shocks.

Formally, consider the baseline model from Section 4 but suppose the central bank solves the following

modified problem

GFCIt = min
rft ,pt+1

Et−1

[ ∞∑
h=0

βh
[(
yt+h − y∗t+h

)2
+ ψ

(
pt+h − pt+h

)2]]
. (A.47)

The policy sets the interest rate rft and next-period’s price target pt+1 under the information set of period

t− 1, before observing the shocks in period t. The following result characterizes the equilibrium for the

case without supply shocks, εz,t = 0 (results qualitatively hold also with supply shocks).

Proposition 6 (Equilibrium with policy lags to all current shocks). Suppose the planner sets policy

before observing all current-period shocks and it follows the FCI targeting policy in (A.47) with ψ ∈ [0, ψ)

where ψ is defined below. Suppose there are no supply shocks εz,t = 0, the parameters satisfy α2 ≥
4σ2

δσ
2
µ (βφδ − (1− β))

2
, and the initial target satisfies p0 = E−2 [p

∗
0]. There is a (stable) equilibrium in

which the planner announces the expected “pstar” for the next period as its target pt+1 = Et−1

[
p∗t+1

]
where p∗t+1 = y∗t+1 −m− δt+1. The equilibrium asset price, output, and interest rate are given by

pt = y∗t −m− φ2
δδt−2 −

1

1 + ψ
φδεδ,t−1 −

(
1

1 + ψ
− (1− β)

)
φδεδ,t +

σ2

α
εµ,t, (A.48)

yt = y∗t +
ψ

1 + ψ
φδεδ,t−1 +

[
1−

(
1

1 + ψ
− (1− β)

)
φδ

]
εδ,t +

σ2

α
εµ,t, (A.49)

rft = ρ− 1

2
σ2 + (1− βφδ)φ

2
δδt−2 +

(
1

1 + ψ
− βφδ

)
φδεδ,t−1 + µt−1

σ2

α
. (A.50)

The equilibrium return is

rt+1 = Et [rt+1]− εδ,t+1

[
φδ

(
1

1 + ψ
− (1− β)

)
− (1− β)

]
+ εµ,t+1

σ2

α
, (A.51)

where Et [rt+1] = ρ+ (1− βφδ)φ
2
δδt−2 +

(
1

1 + ψ
− βφδ

)
φδεδ,t−1 − εµ,t

σ2

α
.

The return variance σ2 = vart (rt+1) is the smaller positive solution to the fixed point problem

σ2 = σ2
macro (ψ) + σ2

µ

(
σ2
)

α2

2

, (A.52)

where σ2
macro (ψ) = σ2

δ

[
φδ

(
1

1 + ψ
− (1− β)

)
− (1− β)

]2
.

Let ψ = argminψ≥0 σ
2
macro (ψ). Over the range ψ ∈ [0, ψ), increasing ψ strictly reduces σ2. That is,

stronger FCI targeting reduces the return variance.
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Proof of Proposition 6. We conjecture and verify an equilibrium in which the return volatility σ2 is

constant, the central bank announces the expected future “pstar” as its target pt = Et−2 [p
∗
t ], and the

asset price and the interest rate satisfies

pt = y∗t −m− φ2
δδt−2 +Dp,1φδεδ,t−1 +Dp,0εδ,t + εµ,t

σ2

α
, (A.53)

rft = ρ− 1

2
σ2 + (1− βφδ)φ

2
δδt−2 +Dr,1φδεδ,t−1 + µt−1

σ2

α

for appropriate coefficients Dp,1, Dp,0, Dr,1. Note that we allow the asset price to react to the past period

demand shocks as well as the current-period demand shock. However, the interest rate cannot react to

the current period demand shock since the central bank sets the policy before observing δt. We also

conjecture that the central bank will fully stabilize the current price impact of the demand shock from

two periods before as well as the noise shock from the last period.

Following similar steps as in the proof of Proposition 2, we obtain

Et−1 [pt] =
1

1 + ψ
Et−1 [p

∗
t ] +

ψ

1 + ψ
pt.

Substituting pt = Et−2 [p
∗
t ] , p

∗
t = y∗t −m− δt and the AR(1) process for δt, we further obtain

Et−1 [pt] =
1

1 + ψ
Et−1 [p

∗
t ] +

ψ

1 + ψ
Et−2 [p

∗
t ]

= y∗t −m− 1

1 + ψ
Et−1 [δt] +

ψ

1 + ψ
Et−2 [δt]

= y∗t −m− φ2
δδt−2 −

1

1 + ψ
φδεδ,t−1.

The central bank’s expected asset price partially incorporates the recent demand shock εδ,t−1. Combining

this with (A.53), we find that the optimality condition holds if the coefficient on past demand satisfies:

Dp,1 = − 1

1 + ψ
. (A.54)

We next substitute the conjectured price into (11) to calculate the equilibrium return

rt+1 = ρ+ pt+1 + (1− β) δt+1 − pt

= ρ− φ2
δδt−1 +Dp,1φδεδ,t +Dp,0εδ,t+1 + εµ,t+1

σ2

α

+φ2
δδt−2 −Dp,1φδεδ,t−1 −Dp,0εδ,t − εµ,t

σ2

α

+(1− β)
[
φ2
δδt−1 + φδεδ,t + εδ,t+1

]
= Et [rt+1] + εδ,t+1 [Dp,0 + 1− β] + εµ,t+1

σ2

α
,
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where the expected return is given by

Et [rt+1] = ρ+ φ2
δδt−2 − βφ2

δδt−1

+(Dp,1φδ −Dp,0 + (1− β)φδ) εδ,t −Dp,1φδεδ,t−1 − εµ,t
σ2

α

= ρ+ (1− βφδ)φ
2
δδt−2 + (Dp,1φδ −Dp,0 + (1− β)φδ) εδ,t

−
(
Dp,1φδ + βφ2

δ

)
εδ,t−1 − εµ,t

σ2

α
.

Here, the second line substitutes δt−1 = φδδt−2 + εδ,t−1 and collects terms. We combine this expression

with (15) and substitute µt − εµ,t = φµµt−1 to calculate the interest rate

rft = ρ− 1

2
σ2 + (1− βφδ)φ

2
δδt−2 + (Dp,1φδ −Dp,0 + (1− β)φδ) εδ,t

−
(
Dp,1φδ + βφ2

δ

)
εδ,t−1 + φµµt−1

σ2

α
.

Comparing this with the equilibrium conjecture in (A.53), we solve for the undetermined coefficients as

Dp,0 = (1− β)φδ +Dp,1φδ = φδ

(
1− β − 1

1 + ψ

)
, (A.55)

Dr,1 = − (Dp,1 + βφδ) =
1

1 + ψ
− βφδ.

Substituting (A.54) and (A.55) into (A.53) verifies that the equilibrium asset price and interest rate

are given by (A.48) and (A.50). Combining the asset price expression with yt = m+ pt + δt verifies that

output satisfies (A.49). Substituting the solution into the expression for the return, we also find that the

return satisfies (A.51).

Finally, observe that Eq. (A.51) implies that σ2 solves the fixed point problem (A.52). Under the

assumed parametric condition, this problem has two positive roots for each ψ ∈ [0, ψ). The smaller root

corresponds to the stable equilibrium. The rest of the proof follows from similar steps as in the proof of

Proposition 2.

A.5. FCI targeting with inflation and output trade-off

This section analyzes the extension we discuss in Section 4.6.2 where prices are partially flexible and

the central bank might face a trade-off between stabilizing inflation and output. In this case, cost-push

shocks result in positive inflation and negative output gaps and create a new source of aggregate asset

price volatility that further deters arbitrageurs. Moreover, noise shocks affect inflation gaps as well as

output gaps. FCI targeting reduces the aggregate return volatility and enables arbitrageurs to absorb

noise more effectively, reducing the impact of noise on inflation and output. Moreover, some degree of

FCI targeting is still optimal and enables the central bank to achieve lower output gap and inflation

losses. Intuitively, while cost-push shocks induce nonzero gaps on average, discretionary policy is already

optimized to minimize the (current-period) losses induced by these shocks. Therefore, small deviations

from this policy generate only second-order losses, while still inducing first-order gains via the noise-

reduction mechanism.
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Environment with inflation. Formally, consider the baseline model from Section 4 but suppose

inflation is not necessarily zero and follows the New Keynesian Phillips Curve (NKPC) that we derived

in Appendix A.1 (see (A.24))

πt = κỹt + βEt [πt+1] + ut,

where ut = φuut−1 + εu,t and σ
2
u ≡ var (εu,t) .

Here, πt ≃ log Qt

Qt−1
denotes inflation measured as the log change of the nominal price index Qt. We

assume the cost-push shocks ut follow an AR(1) process that is independent from all other (supply,

demand, and noise) shocks.

We adjust the financial market side of the model to allow for a nominal interest rate (which is what

the Fed sets) in addition to the real interest rate. There is a nominal risk-free asset with nominal rate

denoted by exp
(
ift

)
, in addition to the real risk-free asset with real rate exp

(
rft

)
, and the market

portfolio with real return Rt+1. Both risk-free assets are in zero net supply. There are three sets of

investors as in Section 3: noise traders, arbitrageurs, and inelastic funds. Noise traders and arbitrageurs

are the same as before; in particular, they do not trade the nominal bonds. Likewise, inelastic funds are

constrained to hold the average market portfolio weight ωIt = 1. These assumptions ensure that we still

have the financial market equilibrium condition in (15)

Et [rt+1] +
1

2

(
σt,rt+1

)2
= rft +

(
σt,rt+1

)2 (
1− µt

α

)
.

There is a second financial equilibrium condition that describes the relationship between the nominal

and the real rates. To derive this condition, we assume for simplicity that only the inelastic funds

can trade the nominal bond in exchange for the real bond. They maximize the expected wealth under

management similar to arbitrageurs. In equilibrium, their optimization problem implies

Et

M I
t+1

 exp
(
ift

)
Qt+1/Qt

− exp
(
rft

) = 0, where M I
t+1 =

1

Rt+1
.

Assuming Rt+1 and inflation Qt+1

Qt
are (approximately) log-normally distributed, we obtain

ift = rft +

[
Et [πt+1]−

1

2
σ2
t (πt+1)

]
− covt (πt+1, rt+1) . (A.56)

This equation is like the Fisher equation except that it also accounts for inflation risk. The nominal

interest rate is equal to the real rate plus the expected inflation (adjusted for a Jensen’s term) and an

inflation risk premium. The latter depends on the covariance between the inflation and the real return,

−covt (πt+1, rt+1). Our assumption that nominal bonds are traded only by the inelastic funds ensures

that the current noise µt does not affect the wedge between the nominal and the real rate (future noise

can still affect the wedge via the covariance term). Thus, even though the Fed decides before observing

µt, it can effectively still target a particular real interest rate rft by setting the nominal rate ift according

to (A.56). In the rest of this appendix, we will assume the Fed “sets” the real interest rate rft and verify

that the implied nominal rate ift does not depend on µt.
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Finally, we modify the central bank’s (true) objective function to capture the costs of inflation:

Gt = Et

[ ∞∑
h=0

βh
[
ỹ2t+h + ζπ2

t+h

]]
. (A.57)

We normalize the inflation target to zero. The parameter ζ captures the cost of inflation gaps relative to

output gaps. The rest of the environment is the same as in Sections 3 and 4. The baseline model is the

special case with κ = ut = 0.

Equilibrium with discretionary policy. We first characterize the discretionary equilibrium.

Suppose the central bank (effectively) sets rft to maximize (A.57) subject to the equilibrium conditions

and taking its future actions as given. The solution is as in the textbook New Keynesian model (see

Clarida et al. (1999)) with the difference that noise also affects the equilibrium outcomes. In particular,

the central bank may no longer target a zero output gap on average. Its optimality condition is given by:

Et [ỹt] = −κζEt [πt] . (A.58)

With a positive cost-push shock, the central bank targets a negative average output gap to stabilize

inflation. The output gap is more negative when it has a greater impact on inflation (higher κ) and when

the central bank puts a greater weight on inflation (high ζ). To solve for the equilibrium, we conjecture

that the (pre-noise) output and inflation gaps are linear functions of the cost-push shock

Et [πt] = Πuut and Et [ỹt] = −Yuut.

Combining this conjecture with the NKPC (and the AR(1) process for the cost-push shocks), we obtain

the closed-form solutions

Πu =
1

1 + κ2ζ − βφu
and Yu =

κζ

1 + κ2ζ − βφu
. (A.59)

The rest of the equilibrium is similar to Section 3.2 and is given by:

pt = pot +
σ2

α
εµ,t where pot ≡ y∗t −m− δt − Yuut, (A.60)

yt = y∗t − Yuut +
σ2

α
εµ,t,

πt = Πuut + κ
σ2

α
εµ,t,

rft = ρ− 1

2
σ2 + (1− βφδ) δt + (1− φu)Yuut +

σ2

α
φµµt−1.

pot is the central bank’s optimal asset price target, which is different from p∗t due to cost-push shocks.

Noise creates additional gaps from central bank’s targets and its impact depends on σ2, which is the

smaller solution to:

σ2 = σ2
macro +

(
σ2
)2

α2
σ2
µ, where σ

2
macro = σ2

z + Y 2
u σ

2
u + β2σ2

δ .

In this case, the impact of noise is higher because cost-push shocks create a new source of asset price and
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return volatility.

Equilibrium with FCI targeting. We next consider the equilibrium with FCI targeting. In

particular, suppose the central bank instead solves

GFCIt = min
rft ,pt+1

Et−1

[ ∞∑
h=0

βh
[(
yt+h − y∗t+h

)2
+ ζπ2

t+h + ψ
(
1 + κ2ζ

) (
pt+h − pt+h

)2]]
. (A.61)

Here, the term 1 + κ2ζ is a normalizing factor for the FCI targeting objective that helps to simplify the

expression. The next result characterizes the equilibrium.

Proposition 7 (Equilibrium with Inflation and FCI Targeting). Consider the setup with inflation de-

scribed above and suppose the planner follows the FCI targeting policy in (A.61) with ψ ≥ 0. Let Πu, Yu

denote the coefficients in (A.59), and suppose the parameters satisfy α2 ≥ 4σ2
µ

(
σ2
z + Y 2

u σ
2
u + β2σ2

δ

)
(and

β > 1 − β) and the initial target satisfies p0 = E−1 [p
o
0]. Then, there is a (stable) equilibrium in which

the planner announces as its target the expected optimal asset price for the next period

pt+1 = Et
[
pot+1

]
where pot+1 = y∗t+1 −m− δt+1 − Yuut+1. (A.62)

The equilibrium asset price, output, inflation, and real and nominal interest rates are

pt = Et−1 [p
o
t ] +

1

1 + ψ
(εz,t − εδ,t − Yuεu,t) +

σ2

α
εµ,t, (A.63)

yt = y∗t − Yuut −
ψ

1 + ψ
(εz,t − εδ,t − Yuεu,t) +

σ2

α
εµ,t, (A.64)

πt = Πuut −
ψ

1 + ψ
κ (εz,t − εδ,t − Yuεu,t) +

σ2

α
κεµ,t, (A.65)

rft = ρ− 1

2
σ2 + (1− βφδ) δt + Yu (1− φu)ut +

ψ

1 + ψ
(εz,t − εδ,t − εu,t) +

σ2

α
φµµt−1. (A.66)

The equilibrium return is

rt+1 = Et [rt+1] +
1

1 + ψ
(εz,t+1 − Yuεu,t+1)−

(
1

1 + ψ
− (1− β)

)
εδ,t+1 +

σ2

α
εµ,t+1, (A.67)

where Et [rt+1] is given by (A.36). The return variance σ2 = vart (rt+1) is the smaller positive solution

to the following fixed point problem

σ2 = σ2
macro (ψ) +

(
σ2
)

α2

2

σ2
µ, (A.68)

where σ2
macro (ψ) =

(
σ2
z + Y 2

u σ
2
u

)( 1

1 + ψ

)2

+ σ2
δ

(
1

1 + ψ
− (1− β)

)2

.

Let ψ = argminψ≥0 σ
2
macro (ψ). Over the range ψ ∈ [0, ψ), increasing ψ strictly reduces σ2 as well as

σ2
macro (ψ) and

(σ2)
α2

2

σ2
µ. The equilibrium nominal interest rate ift is given by (A.74) and it does not

depend on the current noise shock µt.

We relegate the proof of this result to the end of the theory appendix. The equilibrium with FCI
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targeting has a similar structure as before, with the difference that FCI targeting mitigates the policy

response to cost-push shocks ut as well as to supply and demand shocks (cf. Proposition 2). Consequently,

cost-push shocks have a greater effect on inflation than with discretion. Moreover, since supply and

demand shocks affect the output gaps, they also affect inflation unlike the case with discretion (cf.

(A.60)). On the other hand, FCI targeting exerts a stabilizing influence on inflation, by mitigating the

return volatility and the impact of noise on inflation as well as on output gaps.

Macro-stabilization effects of FCI targeting. We next explore the macro-stabilization effects

of FCI targeting more systematically. As before, we evaluate the policy performance with the true loss

function Gt in (A.57). This function might depend on the current supply, demand, and cost-push shocks

as well as the expected level of the cost-push shock, εz,t, εδ,t, εu,t, φuut−1. To evaluate performance across

a variety of shocks, we consider the unconditional expectation of this function given by

Ge (ψ) = E [Gt (ψ)] = E

[ ∞∑
h=0

βh
[
ỹ2t+h (ψ) + ζπ2

t+h (ψ)
]]

. (A.69)

Using Eqs. (A.64) and (A.65), output and inflation gaps are given by:

ỹt = −Yu (φuut−1 + εu,t) +
ψ

1 + ψ
Yuεu,t −

ψ

1 + ψ
(εz,t − εδ,t) +

σ2

α
εµ,t,

πt = Πu (φuut−1 + εu,t) +
ψ

1 + ψ
κYuεu,t −

ψ

1 + ψ
κ (εz,t − εδ,t) +

σ2

α
κεµ,t.

We substitute ỹt and πt into (A.69) to calculate and decompose Ge (ψ) into two components:

Ge (ψ) = Gemacro (ψ) +Genoise (ψ) . (A.70)

Genoise (ψ) is the expected loss driven by noise shocks, which is given by a similar expression as before

(cf. (35))

(1− β)Genoise (ψ) = σ2
µ

(
σ2

α

)2 (
1 + ζκ2

)
. (A.71)

Gemacro (ψ) is the expected loss driven by macroeconomic shocks, which is given by

(1− β)Gemacro (ψ) =
(
Y 2
u + ζΠ2

u

) φ2
uσ

2
u

1− φ2
u

(A.72)

+

[(
Yu −

ψ

1 + ψ
Yu

)2

+ ζ

(
Πu +

ψ

1 + ψ
κYu

)2
]
σ2
u

+

[(
ψ

1 + ψ

)2 (
σ2
z + σ2

δ

)] (
1 + ζκ2

)
.

The first line uses the observation that the unconditional distribution of φuut−1 is given by N
(
0,

φ2
uσ

2
u

1−φ2
u

)
to evaluate the losses driven by the conditionally expected level of the cost-push shock φuut−1. The

second line evaluates the losses driven by the surprise component of cost-push shocks εu,t. The last

line evaluates the losses driven by the supply and demand shocks. Our next result describes how FCI

targeting affects Ge (ψ) and its components.
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Proposition 8 (Macrostabilization Effects of FCI Targeting with Inflation). Consider the equilibrium

in Proposition 2. Then, a small degree of FCI targeting reduces the output-gap loss

dGe (ψ)

dψ
|ψ=0 < 0, with

dGemacro (ψ)

dψ
|ψ=0 = 0 and

dGenoise (ψ)

dψ
|ψ=0 < 0.

Thus, ψ∗ = argminψ≥0Gt (ψ) > 0, i.e., the gap loss minimizing policy features FCI targeting.

Proof of Proposition 8. We differentiate Eq. (A.72) with respect to ψ to obtain

dGemacro(ψ)

dψ
|ψ=0 =

2σ2
u

1− β

[
−Y 2

u + ζκYuΠu
]
= 0,

where we have used the observation that the coefficients satisfy Yu = ζκΠu in view of the central bank’s

optimality condition [see (A.59) and (A.58)]. It follows that

dGe (ψ)

dψ
|ψ=0 =

dGenoise(ψ)

dψ
|ψ=0 =

2
(
1 + ζκ2

)
1− β

(
σ2
µσ

2 dσ
2

dψ
|ψ=0

)
< 0.

The inequality follows since Proposition 7 shows that dσ2

dψ < 0 over the range ψ ∈
[
0, ψ

]
.

In this case, unlike in the baseline model without inflation, Gemacro (0) is not necessarily zero: even

absent FCI targeting, macroeconomic (cost-push) shocks induce some gap losses. Nonetheless, it is still

the case that small degrees of FCI targeting has a second-order effect on these losses,
dGe

macro(ψ)
dψ |ψ=0 =

0. Intuitively, while cost-push shocks create nonzero gaps on average, discretionary policy is already

optimized to minimize the (current-period) losses induced by the cost-push shocks, ut, captured by the

condition Yu = ζκΠu [see (A.58) and (A.59)]. Thus, small deviations from this policy generate only

second-order losses, while still inducing first-order gains by reducing the impact of noise on inflation and

output.

Proof of Proposition 7. The central bank’s modified problem is given by

GFCIt (pt) = min
rft ,pt+1

Et

[
(yt − y∗t )

2
+ ζπ2

t + ψ
(
1 + κ2ζ

)
(pt − pt)

2
]
+ βEt

[
GFCIt+1

(
pt+1

)]
.

The optimality condition for rft is given by

Et

[
dyt

drft
(yt − y∗t )

2
+ ζ

dπt

drft
πt + ψ

(
1 + κ2ζ

) dpt
drft

(pt − pt)
2

]
= 0.

We conjecture (and verify) that in equilibrium dyt
drft

= dpt
drft

= −1 and dπt

drft
= κ. Therefore, the optimality

condition implies

Et [yt − y∗t ] + κζEt [πt] + ψ
(
1 + κ2ζ

)
Et [pt − pt] = 0. (A.73)

We next conjecture and verify an equilibrium in which the return volatility σ2 is constant, the central

bank announces the expected future asset price target pt = Et−1 [p
o
t ], the expected next-period inflation

is the same as in the case with discretion Et [πt+1] = Πuφuut [see (A.60)], and the equilibrium asset price

is given by

pt = Et−1 [p
o
t ] + Pzεz,t − Pδεδ,t − PuYuεu,t +

σ2

α
εµ,t,
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for appropriate coefficients Pδ, Pz, Pu that describes the central bank’s response new information. Sub-

stituting this conjecture into the output and asset price relation and using pot = y∗t −m − δt − Yuut we

obtain

yt = y∗t − Yuut − (1− Pz) εz,t + (1− Pδ) εδ,t + (1− Pu)Yuεu,t +
σ2

α
εµ,t,

where we have used y∗t = Et−1 [y
∗
t ] + zt, δt = Et−1 [δt] + εδ,t and ut = Et−1 [ut] + εu,t. Substituting this

into the NKPC and using Et [πt+1] = Πuφuut, we further obtain

πt = −κYuut + βΠuφuut

−κ (1− Pz) εz,t + κ (1− Pδ) εδ,t + κ (1− Pu)Yuεu,t + κ
σ2

α
εµ,t

= Πuut − κ (1− Pz) εz,t + κ (1− Pδ) εδ,t + κ (1− Pu)Yuεu,t + κ
σ2

α
εµ,t.

Here, we have used −κYu + βφuΠu = Πu which holds from the definition of Yu,Πu (see (A.59)). Substi-

tuting these expressions into the optimality condition (A.73), and using Yu = κζΠu, we obtain[ (
1 + κ2ζ

)
(− (1− Pz) εz,t + (1− Pδ) εδ,t + (1− Pu)Yuεu,t)

+ψ
(
1 + κ2ζ

)
(Pzεz,t − Pδεδ,t − PuYuεu,t)

]
= 0.

Solving for the undetermined coefficients, we obtain

Pz = Pδ = Pu =
1

1 + ψ
.

This proves Eqs. (A.63−A.65). We verify that the solution for inflation satisfies the conjecture for

expected inflation since Et [πt+1] = ΠuEt [ut+1] = Πuφuut.

We next substitute the aggregate asset price into (11) to characterize the equilibrium return,

rt+1 = ρ+ pt+1 + (1− β) δt+1 − pt

= ρ+ Et
[
pot+1

]
+

1

1 + ψ
(εz,t+1 − εδ,t+1 − Yuεu,t+1) +

σ2

α
εµ,t+1 + (1− β) δt+1

−
(
Et−1 [p

o
t ] +

1

1 + ψ
(εz,t − εδ,t − Yuεu,t) +

σ2

α
εµ,t

)
= Et [rt+1] +

1

1 + ψ
(εz,t+1 − Yuεu,t+1)−

(
1

1 + ψ
− (1− β)

)
εδ,t+1 +

σ2

α
εµ,t+1

where

Et [rt+1] = ρ+ (1− β)φδδt + Yu (1− φu)ut +
ψ

1 + ψ
(εz,t − εδ,t − εu,t)−

σ2

α
εµ,t.

This proves Eq. (A.67). Combining this with (15) proves (A.66).

Eq. (30) implies the conditional return volatility is the solution to the following quadratic

σ2 = vart (rt+1) = σ2
macro (ψ) +

(
σ2

α

)2

σ2
µ,

where σ2
macro (ψ) =

(
σ2
z + Y 2

u σ
2
u

)( 1

1 + ψ

)2

+ σ2
δ

(
1

1 + ψ
− (1− β)

)2

.

Under the assumed parametric condition, this quadratic has two positive roots for each ψ ≥ 0. The
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smaller root corresponds to the stable equilibrium. This proves (A.68).

We verify the conjectures dyt
drft

= dpt
drft

= −1 and pt = Et−1 [p
o
t ] as in the proof of Proposition 2. To

verify the conjecture dπt

drft
= κ, observe that along the equilibrium path inflation satisfies the NKPC

πt = κỹt + βEt [πt+1] + ut,

where the expected inflation Et [πt+1] = Πuφuut is exogenous to the current policy rate. Therefore, we

have dπt

drft
= dyt

drft
= κ, verifying the remaining conjecture.

Finally, we characterize the equilibrium nominal interest rate ift . Combining Eqs. (A.56) with (A.65)

and (A.67), we have

ift = rft +

[
Et [πt+1]−

1

2
σ2
t (πt+1)

]
− covt (πt+1, rt+1) , (A.74)

where Et [πt+1] = Πuφuut

σ2
t (πt+1) =

(
Πu + κYu

ψ

1 + ψ

)2

σ2
u +

(
ψ

1 + ψ

)2

κ2
(
σ2
z + σ2

δ

)
+

(
σ2

α

)2

κ2σ2
µ

−covt (πt+1, rt+1) =

(
Πu + κYu

ψ

1 + ψ

)
1

1 + ψ
Yu

+
ψ

1 + ψ
κ

[
1

1 + ψ
σ2
z +

(
1

1 + ψ
− (1− β)

)
σ2
δ

]
−
(
σ2

α

)2

κσ2
µ.

Note that ift does not depend on the current noise shock µt (although it depends on the variance of the

future noise shocks σ2
µ). This verifies that the central bank can implement the equilibrium by setting the

nominal rate ift under its information set and completes the proof.

A.6. FCI targeting with time-varying beliefs

In this appendix, we consider a version of our model in which the aggregate asset price can fluctuate due

to the market’s (arbitrageurs’) average beliefs about future productivity in addition to noise shocks. We

accommodate cases in which these beliefs are informative about future productivity (driven by news) as

well as cases they are not informative. For either case, we show that some FCI targeting is still optimal.

In fact, belief-driven asset price fluctuations create an additional mechanism by which FCI targeting

stabilizes the aggregate asset price and output gaps.

Model with time-varying beliefs. We consider the baseline model in Section 3.1 with two

changes. First, we modify Eq. (8) slightly so that:

y∗t+1 = y∗t + εz,t+1 where εz,t+1 ∼ N
(
0, σ2

z

)
. (A.75)

We assume εz,t is i.i.d. Normally distributed and we denote the variance with σ2
z (we reserve the notation

σ2
z for the variance of εz,t+1 conditional on news). Second, we assume the arbitrageurs receive a signal

(news) that they believe is informative about future productivity

nz,t =
A εz,t+1 + ezt where ezt ∼ N

(
0, σ̃2

z

)
. (A.76)
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Here, ezt is i.i.d. Normally distributed and the notation =A describes arbitrageurs’ beliefs. For simplicity,

we assume the central bank has the same belief as the arbitrageurs (we could relax this assumption with

minor adjustments, since the central bank’s beliefs about future productivity does not play a central

role).28

We remain agnostic about whether these beliefs are correct. For concreteness, suppose nz,t is actually

(in the data) drawn according to the relation nz,t = ηt + εz,t+1 + ezt where ηt ∼ N
(
ηt, σ

2
η

)
. When

ηt = σ2
η = 0, the arbitrageurs’ beliefs are correct. When ηt = 0 but σ2

η > 0, the arbitrageurs have

unbiased beliefs but they are overconfident (the signal is less informative than what they think). When

ηt ̸= 0, arbitrageurs’ beliefs are also biased. As we will see, the parameters ηt and σ
2
η do not affect the

equilibrium. Therefore, our model accommodates these possibilities.

The rest of the model is the same as in Section 3.1. In particular, demand shocks and noisy flow

shocks follow the same processes as before (see (10) and (12)) and agents do not have any signal about

these processes.

To characterize the equilibrium, observe that Eqs. (A.75) and (A.76) imply that the arbitrageurs’

posterior belief is given by

εz,t+1 ∼ AN
(
bt, σ

2
z

)
where (A.77)

bt =
1/σ̃2

z

1/σ̃2
z + 1/σ2

z

nzt and σ2
z =

1

1/σ̃2
δ + 1/σ2

δ

.

Observe also that ex-ante (before observing the news) agents believe arbitrageurs’ posterior belief will be

distributed according to

bt ∼A N
(
0, σ2

b

)
where σ2

b = σ2
z − σ2

z. (A.78)

The ex-ante mean of beliefs is zero as the news is unpredictable, and the ex-ante variance of beliefs is

equal to the variance reduction induced by (perceived) news.

Arbitrageurs choose their portfolio allocations to maximize expected log assets-under-management

under this belief. This implies that Eqs. (11) and (16) in the main text still hold but with beliefs driven

by (perceived) news about future productivity. In particular, the equilibrium asset price satisfies

pt = ρ+ EAt [pt+1] + (1− β)EAt [δt+1]−
(
rft +

1

2
varAt [rt+1]

)
+
varAt [rt+1]

α
µt.

Benchmark equilibrium without policy reaction lags. As before, we start by describing the

benchmark equilibrium without reaction lags:

pt = p∗t ≡ y∗t −m− δt,

rft = ρ− 1

2
σ2 + (1− βφδ) δt + bt +

σ2

α
µt,

rt+1 = ρ+ δt − βδt+1 + εz,t+1 − bt,

where σ2 ≡ varAt (rt+1) = σ2
z + β2σ2

δ .

28We remain agnostic about the households’ beliefs. The households’ belief does not affect the equilibrium in our
model as they do not make a portfolio choice decision and their consumption is driven by asset prices and demand
shocks, which we take as exogenous (in practice, households’ beliefs can be one driver of demand shocks—we leave
this extension for future work).
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These equations are similar to their counterparts in (17). The aggregate asset price depends on neither

noisy flows nor beliefs about future productivity. Both factors are absorbed by the interest rate, bt+
σ2

α µt.

The “pstar” that ensures zero output gaps is determined by the current (near-term) supply and demand.

Therefore, the central bank needs to adjust the interest rate to insulate economic activity from asset

price fluctuations driven by beliefs about future productivity. Observe also that the return expression

is slightly different and depends on the productivity surprise, εz,t+1 − bt. Since we have redefined σ2
z =

varA (εz,t+1 − bt), the expression for total variance is unchanged.

Equilibrium with policy reaction lags and FCI targeting. We next consider the main

setup in which the central bank sets rft before observing the current-period noisy flows µt and the

current period beliefs of the arbitrageurs bt. We allow for FCI targeting: that is, the central bank solves

the same problem as before

GFCIt = min
rft ,pt+1

EAt

[ ∞∑
h=0

βh
[(
yt+h − y∗t+h

)2
+ ψ

(
pt+h − pt+h

)2]]
. (A.79)

Discretionary policy is the special case with ψ = 0. The following result generalizes Proposition 2 to this

setting.

Proposition 9 (Equilibrium with FCI Targeting and Time-Varying Beliefs). Suppose the planner follows

the FCI targeting policy in (25) with ψ ≥ 0, the parameters satisfy α2 ≥ 4σ2
µ

(
σ2
z + σ2

b + β2σ2
δ

)
(and

β > 1 − β), and the initial target satisfies p0 = EA−1 [p
∗
0]. Then, there is a (stable) equilibrium in which

the planner announces the expected “pstar” for the next period as its target

pt+1 = EAt
[
p∗t+1

]
where p∗t+1 = y∗t+1 −m− δt+1. (A.80)

The equilibrium asset price, output, and interest rate are

pt = EAt−1 [p
∗
t ] +

1

1 + ψ
(εz,t − εδ,t) +

1

1 + ψ
bt +

σ2

α
εµ,t, (A.81)

yt = y∗t +
ψ

1 + ψ
(εδ,t − εz,t) +

1

1 + ψ
bt +

σ2

α
εµ,t, (A.82)

rft = ρ− 1

2
σ2 + (1− βφδ) δt +

σ2

α
φµµt−1 +

ψ

1 + ψ
(εz,t − εδ,t) . (A.83)

The equilibrium return is

rt+1 = EAt [rt+1] +

[
1

1+ψ (εz,t+1 − bt)

−
(

1
1+ψ − (1− β)

)
εδ,t+1

]
+

1

1 + ψ
bt+1 +

σ2

α
εµ,t+1 (A.84)

where the expected return is

EAt [rt+1] = ρ+ δt (1− βφδ) +
ψ

1 + ψ
(εz,t − εδ,t)−

σ2

α
εµ,t. (A.85)
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The return variance σ2 = varAt (rt+1) is the smaller positive solution to the following fixed point problem

σ2 = σ2
macro (ψ) +

(
σ2
)

α2

2

σ2
µ, (A.86)

where σ2
macro (ψ) =

(
1

1 + ψ

)2 (
σ2
z + σ2

b

)
+

(
1

1 + ψ
− (1− β)

)2

σ2
δ.

Let ψ = argminψ≥0 σ
2
macro (ψ). Over the range ψ ∈ [0, ψ), increasing ψ strictly reduces σ2 as well as

σ2
macro (ψ) and

(σ2)
α2

2

σ2
µ.

First consider the case with discretionary policy ψ = 0. For this case, the result shows the equilibrium

is similar to its counterpart in Proposition 1 with the main difference that the asset price and output are

also influenced by the arbitrageurs’ belief shocks

pt = EAt−1 [p
∗
t ] + εz,t − εδ,t + bt +

σ2

α
εµ,t (A.87)

yt = y∗t + bt +
σ2

α
εµ,t (A.88)

Consequently, these belief shocks also generate return variance, in addition to the previous drivers of

return variance

rt+1 = EAt [rt+1] + (εz,t+1 − bt)− βεδ,t+1 + bt+1 +
σ2

α
εµ,t+1. (A.89)

The rest of the equilibrium is as before. In particular, the return variance is the solution to a fixed point

problem. Observe that the “macro-induced” variance σ2
macro (ψ) is driven by not only supply and demand

shocks but also the belief shocks about future supply.

Next consider the case with FCI targeting ψ > 0. In this case, the asset price and output are given

by

pt = EAt−1 [p
∗
t ] +

1

1 + ψ
(εz,t − εδ,t) +

1

1 + ψ
bt +

σ2

α
εµ,t

yt = y∗t +
ψ

1 + ψ
(εδ,t − εz,t) +

1

1 + ψ
bt +

σ2

α
εµ,t.

As before, the supply and demand shocks have a smaller effect on the asset price (and some effect

on output), because the central bank is partially committed to the previously announced FCI target.

Importantly, belief shocks about future supply have a smaller effect on the asset price and output. This

is because FCI targeting implies the central bank will not allow the future asset price to adjust to the

future supply immediately, pt+1 = EAt [p∗t ] +
1

1+ψ εz,t+1 + .... This reduces the impact of arbitrageurs’

beliefs about future supply on the aggregate asset price and output. It follows that FCI targeting reduces

the macro-induced variance by reducing the impact of belief shocks as well as supply and demand shocks.

This in turn reduces the noise-induced variance as in the main text.

In this setup FCI targeting (ψ > 0) is beneficial for two distinct reasons. To see this, consider the

expression for the output. As before, FCI targeting reduces variance σ2 and mitigates the impact of noise

shocks on output gaps. Moreover, FCI targeting also reduces the effect of belief shocks on the output gap

through the mechanism we described. FCI targeting also creates a new source of gaps through supply

and demand shocks, but as before these costs are second order in ψ. In contrast, the benefits through
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the belief shocks is first order in ψ, similar to the benefits through the noise shocks. It follows that FCI

targeting is robust to allowing for belief-driven fluctuations in asset prices. In fact, these fluctuations

create an additional channel by which FCI targeting stabilizes the aggregate asset price and output gaps.

Proof of Proposition 9. We conjecture and verify an equilibrium in which the return volatility σ2 is

constant, the central bank announces the expected future “pstar” as its target pt = EAt−1 [p
∗
t ], and the

asset price and the interest rate satisfies (A.81) and (A.83), which can be written as

pt = y∗t−1 −m− φδδt−1 +
1

1 + ψ
(εz,t − εδ,t) +

1

1 + ψ
bt +

σ2

α
εµ,t,

rft = ρ− 1

2
σ2 + (1− βφδ) δt +

ψ

1 + ψ
(εz,t − εδ,t) +

σ2

α
φµµt−1

Following similar steps as in the proof of Proposition 2, the central bank’s optimality condition

satisfies

Et [pt] =
1

1 + ψ
p∗t +

ψ

1 + ψ
pt.

Substituting pt = Et−1 [p
∗
t ] , p

∗
t = y∗t −m− δt and the AR(1) process for δt, we obtain

Et [pt] =
1

1 + ψ
(y∗t −m− δt) +

ψ

1 + ψ
Et−1

[
y∗t−1 + εz,t −m− δt

]
= y∗t−1 −m− φδδt−1 +

ψ

1 + ψ
εz,t −

1

1 + ψ
εδ,t

= y∗t −m− φδδt−1 +
1

1 + ψ
(εz,t − εδ,t) .

This verifies that the conjectured price satisfies the optimality condition.

We next substitute the conjectured price into (11) to calculate the equilibrium return

rt+1 = ρ+ pt+1 + (1− β) δt+1 − pt

= ρ+ y∗t − φδδt +
1

1 + ψ
(εz,t+1 − εδ,t+1) +

1

1 + ψ
bt+1 +

σ2

α
εµ,t+1

+(1− β) δt+1 −
(
y∗t−1 − φδδt−1 +

1

1 + ψ
(εz,t − εδ,t) +

1

1 + ψ
bt +

σ2

α
εµ,t

)
= ρ+ εz,t +

1

1 + ψ
(εz,t+1 + bt+1 − (εz,t + bt)) +

σ2

α
(εµ,t+1 − εµ,t)

+δt (1− βφδ)−
ψ

1 + ψ
εδ,t +

(
1− β − 1

1 + ψ

)
εδ,t+1

= EAt [rt+1] + (εz,t+1 − bt + bt+1)
1

1 + ψ
+ εδ,t+1

(
1− β − 1

1 + ψ

)
+ εµ,t+1

σ2

α
,

where the expected return is given by (A.36)

EAt [rt+1] = ρ+ δt (1− βφδ) +
ψ

1 + ψ
(εz,t − εδ,t)−

σ2

α
εµ,t.
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We combine this expression with (15) and substitute µt − εµ,t = φµµt−1 to calculate the interest rate

rft = ρ− 1

2
σ2 + (1− βφδ) δt +

ψ

1 + ψ
(εz,t − εδ,t) +

σ2

α
φµµt−1.

This verifies the expression for the interest rate.

Combining the conjecture for the price with yt = m + pt + δt verifies that output satisfies (A.82).

Substituting the solution into the expression for the return, we also find that the return satisfies (A.84).

Finally, observe that Eq. (A.84) implies that σ2 solves the fixed point problem (A.86). Under the

assumed parametric condition, this problem has two positive roots for each ψ ∈ [0, ψ). The smaller root

corresponds to the stable equilibrium. The rest of the proof follows from similar steps as in the proof of

Proposition 2.
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B. Empirical Appendix

B.1. Data

B.1.1. Macroeconomic data

We download the following data from FRED (FRED series name in parenthesis): nominal potential

GDP (NGDPPOT), nominal GDP (GDP), nominal investment (GPDI), nominal personal consumption

expenditures (PCEC), GDP deflator (GDPDEF), PCE price index (PCEPI), the Chicago Fed National

Financial Conditions Index (NFCI), the 3-month yield (TB3), labor productivity (OPHNFB), labor

share (PRS85006173), weekly hours (PRS85006023), employment (CE16OV), population (CNP16OV)

and consumer sentiment (UMCSENT). We obtain the updated series for the Excess Bond Premium from

Favara et al. (2016). In order to compute real variables, we divide the nominal variables by the GDP

deflator. For the new FCI index from Ajello et al. (2023b), we use the baseline construction, that allows

shocks to have effects up to 3 years. Using the 1-year version does not alter the results. We compute

hours per worker as weekly hours times employment divided over population. Inflation is computed as 400

times the log-difference in the PCE price index. Since the FCI index is available from 1990 onwards, we

use the Chicago Fed FCI (NFCI) for the sample period 1973-1990 when computing the IRFs of monetary

policy shocks. Ajello et al. (2023b) show that their index is similar in sample to the Chicago Fed FCI,

and estimated IRFs are similar if we use that FCI for the full sample.

B.1.2. Construction of the financial noise shock

In order to construct the shock, we follow Gabaix and Koijen (2021) closely. We use quarterly data

(sample: 1990Q1 to 2024Q2) from the Flow of Funds.29 We use unadjusted flows (FU), and for the levels

we use unadjusted market values when available (LM), and otherwise the estimated level. We collect

data on flows for the following sectors: 15 (households), 21 (state and local governments), 22 (state and

local retirement funds), 26 (rest of the world), 34 (federal retirement funds), 51 (property and casualty

insurance), 54 (life insurance companies), 55 (closed end funds), 56 (ETFs), 57 (private pension funds),

63 (money market funds), 65 (mutual funds), 66 (securities brokers and dealers), and 76 (us chartered

deposit institutions). As in Gabaix and Koijen (2021), we use data on three asset classes: 30611 (treasury

securities), 30630 (corporate and foreign bonds), 30641 (corporate equities). Notice that the monetary

authority does not hold equity in our data, so we drop it to build the flows into equity. For returns

data, we use ex-dividend returns on the CRSP value-weighted market portfolio. For GDP growth, we

use the log difference of real GDP obtained from FRED. We adjust the data on flows for foreign holdings

following Appendix C.1.3 in Gabaix and Koijen (2021).

We follow the same notation and conventions as Appendix C.1.2 in Gabaix and Koijen (2021). We

construct a measure of the proportional change of the quantity of equity in sector i between t − 1 and

t (∆qEit) as follows: In the FoF, equity flows are defined by ∆F E
it = W E

it −W E
i,t−1R

X
t . We assume the

securities are adjusted at the end of the period, so ∆F E
it = (∆QE

it)P
E
t , where Qit is the amount of equities

held by sector i at time t, and P E
t is the price of each share. The relative flow in equities is ∆fEit =

∆F E
it

W E
i,t−1

.

The proportional change in quantity of equity is ∆qEit = ∆fEit(R
X
t )−1 =

∆QE
it

QE
i,t−1

.

29Raw data is downloaded from https://www.federalreserve.gov/datadownload/Build.aspx?rel=Z1.
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With our measure of ∆qEit in hand, we proceed exactly as in Appendix B of Gabaix and Koijen (2021)

in order to construct the financial flow shock series. We briefly expand on each of the steps below:

1. Construct pseudo-equal value weights Ẽi as in Gabaix and Koijen (2021).

2. Run the panel regression:

∆qit = αi + βt + γi∆yt + δit+∆q̌it (B.1)

using Ẽi as weights. Here ∆yt is quarter-on-quarter real GDP growth. In an alternative specifi-

cation, we also control for changes in the consumer sentiment index (Sentt), i.e we add ∆Sentt

as an additional control. We implement the weighting scheme by multiplying each observation by

Ẽ
1/2
i and then running a normal regression. Denote the residuals of this transformed regression as

Ẽ
1/2
i ∆q̌it

3. We run PCA on Ẽ
1/2
i ∆q̌it. In our baseline specification, we control for aggregate factors by

removing the first N principal components (ordered in terms of share of variance explained) from

Ẽ
1/2
i ∆q̌it. That is, we construct:

∆q̃it = Ẽ
1/2
i ∆q̌it −

N∑
n=1

λi,nη
PC
t,n (B.2)

where ηPCt,n is principal component n at time t, and λi,n is the loading of sector i on that principal

component. Our baseline uses N = 2. Our results are essentially unchanged if we use N = 3 or

N = 4 instead.

4. Finally, we construct the financial flow shock as:

Zµt =

I∑
i=1

Si,t−1∆q̃it

where Si,t−1 =
WE

it∑I
j=1W

E
jt

is the share of total equity held by sector i at time t− 1.

B.2. Additional Empirical results

B.2.1. Robustness for impulse response estimation

Figures 13 and 14 show the estimated IRFs when we control for 3 and 4 Principal components (respec-

tively) in equation (B.2). As we can see, results are virtually identical, which is strong evidence that the

procedure followed adequately controls for aggregate factors in this setting (Gabaix and Koijen, 2024).

Figure 15 shows the results when we further residualize by changes in consumer sentiment in the con-

struction of the shock. Figure 16 depicts the IRF estimated using an SVAR-IV procedure. Results are

similar to the baseline, but with tighter confidence bands, which is expected.

B.2.2. Robustness: drivers of the financial noise shock

As it is well known, news shocks about future productivity or earnings may drive financial trade and

look similar to financial noise shocks. In order to test for this competing interpretation, we look at the

responses of TFP, stock prices and price-to-earnings ratios (all in logs) to the identified shock. Given

that some of this shocks may take several years to unfold, we use local projections since VARs are biased
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Figure 13: Impulse response to a financial noise shock, where the shock is identified controlling
for 3 Principal Components in (B.2). Shaded and light shaded grey bands indicate 68 and 90
confidence sets respectively.

Figure 14: Impulse response to a financial noise shock, where the shock is identified controlling
for 4 Principal Components in (B.2). Shaded and light shaded grey bands indicate 68 and 90
confidence sets respectively.
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Figure 15: Impulse response to a financial noise shock, where we also residualize by changes
in consumer sentiment when constructing the shock. Light shaded grey bands indicate 90
confidence sets.

Figure 16: Impulse response to a financial noise shock, where the shock is identified using and
SVAR-IV procedure. Light shaded grey bands indicate 90 confidence sets.
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Figure 17: Impulse response to a financial noise shock for FCI, S&P 500, TFP and Price-to-
earnings ratio (all in logs)

at longer horizons (Li et al., 2024). As controls, we use two lags of TFP, stock prices, price-to-earnings

ratios, FCI, output gap, inflation and interest rates. We use the same controls for all equations. For TFP,

we use the utilization adjusted measure by Fernald (2014), available up to 2023 in Fernald’s website. For

earning and stock prices, we use the real values reported in the Shiller database. We convert to quarterly

by taking the value at the end of the quarter.

Figure 17 shows the results. The estimated path for FCI after the shock is essentially the same as

the one estimated with the main VAR specification. The shock induces an increase in stock prices, that

mean reverts back to zero in the following years. This is consistent with the shock being financial noise,

that generates a transitory increase in stock prices that then reverts. TFP basically does not react to the

shock in short horizons, and then reacts negatively after two years. This is consistent with a financial

noise shock that is unrelated to TFP, and inconsistent with the view that these shocks are generated by

positive news about future TFP. Finally, the price-to-earnings ratio has an initially negative reaction,

which quickly reverts to zero. This is consistent with the boom in aggregate demand generated by the

shock, that increases earnings in the first few quarters. Notice that if the shock was generated by news

about future earnings, then the price-to-earnings ratio should increase in the short run, since prices will

lead earnings. Empirically, the opposite happens. Overall, this additional empirical evidence supports the

notion that the shock is related to financial noise, as opposed to some news about future fundamentals.

B.2.3. Robustness: extending the sample to include Covid

In order to assess the stability of our estimates to including the recent Covid period, we extend the

sample to 2024Q2. In order to deal with Covid during the construction of the shock, we dummy out the

observations for 2020Q2 and 2020Q3, which are the two big outliers in quarterly GDP growth.
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Figure 18: Impulse response to a financial noise shock, sample: 1990Q1-2024Q2. Shaded and
light shaded grey bands indicate 68 and 90 confidence sets respectively.

Figure 18 shows the estimated impulse response. The overall patterns are unchanged: upon the shock,

there are a delayed responses in the output gap and policy rates, and a faster response in inflation and

FCI. There is a mild initially negative response, although this is not significantly different from zero.30

Figure 19 depicts the forecast variance ratios. The importance for output gaps is lower, in the order of

15-20% for the SVAR or recoverability based estimates. This outcome is expected: the large COVID

shock increases the total forecast variance in the sample. However, since this shock is orthogonal to

financial noise shocks, the estimated proportional significance of the latter is reduced.

B.2.4. Monetary Policy Shocks IRFs

Figures 20 and 21 contain the impulse-response to monetary policy shocks identified by Aruoba and

Drechsel (2022) and Romer and Romer (2004) respectively. The responses are standard. The time

pattern of the response of FCI is different in both specifications, with FCI spiking more strongly for the

Romer and Romer (2004) IRF. Using two shocks that generate different paths allows for extra degrees of

freedom when implementing the counterfactuals.

B.2.5. Counterfactual propagation of monetary policy shocks

One of the key observation of risk-centric models (Caballero and Simsek (2020)) is that monetary policy

affects the economy via asset prices. Given our setting, we can test this claim empirically using the tools

developed in McKay and Wolf (2023b).

30If we add exogenous dummies for the 2020Q2 and 2020Q3 quarters in the VAR, this initially negative response
disappear.
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(a) (b)

(c) (d)

Figure 19: Identified Forecast Variance Ratios of the noise shock. Blue: SVAR-IV, assuming in-
vertibility. Red: lower bound, assumes perfect measurement of the shocks. Grey: recoverability-
based FVR. VAR includes the full set of macro outcomes (baseline + labor market variables).
Dashed lines are 90% confidence intervals of the identified set, (Plagborg-Møller and Wolf, 2022)
computed via bootstrap with 1000 repetitions.

Specifically, we examine the following counterfactual question: how would a monetary policy shock

propagate if financial conditions were unresponsive to monetary policy? To answer that question, we take

the impulse-response of the Aruoba and Drechsel (2022) monetary policy shock, and use the identified

response to a financial flow shock to approximately enforce FCIt = 0 on impact and in expectation.

Importantly, although the methodology is the same as in McKay and Wolf (2023b), this is not a policy

counterfactual. Instead, we are asking how a given policy shock would have propagated under a different

mapping between monetary policy and financial conditions.31

Figure 22 shows the results. As we can see, the approximation is good for the first 12 quarters, but we

still get some delayed response of financial conditions at longer horizons approximation error. Crucially,

the path of interest rates is basically unchanged. Turning to output gap, the response is essentially

zero at all horizons.32 The real effect of the monetary policy shock is much smaller for the first two

years. Regarding inflation, except for a positive initial response attributable in part to a price-puzzle-

type response in the original monetary impulse-response, the path for inflation is essentially zero at all

horizons. Overall, the result is consistent with the key tenet of the risk-centric view of monetary policy:

31The assumptions required for this to yield the correct counterfactual are analogous to the ones in McKay
and Wolf (2023b): we need that financial conditions enter in the rest of the private sector equations and in the
monetary policy rule only through its expected values.

32Only the response on impact is marginally significant at the 90% level.
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Figure 20: Impulse response to the Aruoba and Drechsel (2022) monetary policy shock. Shaded
and light shaded grey bands indicate 68 and 90 confidence sets respectively.

Figure 21: Impulse response to the Romer and Romer (2004) monetary policy shock. Shaded
and light shaded grey bands indicate 68 and 90 confidence sets respectively.
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Figure 22: Counterfactual impulse response to a monetary policy shock, identified following
Aruoba and Drechsel (2022). The orange line is the original point estimate, black line is the
best approximation to the counterfactual impulse response. Shaded and light shaded grey bands
indicate 68 and 90 confidence sets respectively.

monetary policy affects the economy via financial conditions. Our results indicate that in a counterfactual

economy where short-term interest rates and broader Financial Conditions are disconnected, monetary

policy shocks would have essentially no impact in output gap or inflation.
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C. Policy Counterfactuals

C.1. Proof of Proposition 4

Without loss of generality, assume that the noise shock is ordered first in the εt vector. Using the time

series of the shock, we can partition the rotation matrix P ′ in two. The first column (known) (P
′
)•,1,

and the rest of the matrix (P
′

•,−1, which does not need to be fully identified. The first column identifies

the financial flow shock, which is the only one whose transmission is affected by risk. This column is

identifiable up to scale by regressing the Wold residuals on εµt . For the remaining macroeconomic shocks,

we simply identify a rotation of these shocks, as argued in Caravello et al. (2024), which suffices for our

purposes.

We then apply the same procedure as in Caravello et al. (2024). This yields the correct counterfactual

for (a rotation of) Θ̃−µ,ℓ. We only have left to construct the correct Θ̃µ,ℓ. Applying McKay and Wolf

(2023b) to Θµ,ℓ yields Θ̂µ,ℓ, which is the solution to a unit-size shock for the impulse response system

that satisfies:

FwΘ̂µ,w + FxΘ̂µ,x + FzΘ̂µ,z + Fµ(σ2
r × 1) = 000,

HwΘ̂µ,w +HxΘ̂µ,x +HzΘ̂µ,z = 000,

ÃxΘ̂µ,x + ÃzΘ̂µ,z = 000.

However, the true counterfactual solves that system with σ̃2
r instead of σ2

r. By linearity of the solution,

if we knew σ̃2
r, we can obtain the true counterfactual as Θ̃µ,ℓ = Θ̂µ,ℓ

σ̃2
r

σ2
r
. Finally, in order to obtain σ̃2

r,

note that the true conditional volatility satisfies:

σ2
r =

(
θr,µ,0/σ

2
r

)2
σ4
r +Θr,−µ,0Θ

′
r,−µ,0

=
(
θr,µ,0/σ

2
r

)2
σ4 +Ψr,0P•,−1P

′
•,−1Ψ

′
r,0

where θr,µ,0 is the response on impact of returns to the financial noise shock, Θr,−µ,0 is a 1× (nε−1) row

vector that contains all the responses to structural shocks other than εµ, Ψr,−µ,0 is the analogous object

for Wold innovations, and P•,−1 is a ny × (ny − 1) matrix obtained by taking P and deleting the first

column, which corresponds to the financial noise shock. Note, therefore, that the original volatility is the

root of a quadratic of the form P (x) = ax2 − x+ c where a =
(
θr,µ,0/σ

2
r

)2
, and c = Ψr,0P•,−1P

′
•,−1Ψ

′
r,0,

and that c is the same for any rotation of the Wold shocks since P•,−1P
′
•,−1 always equals a matrix that

has a zero in the (1,1) element, ones along the rest of the diagonal and zeros everywhere else, given that

P is orthogonal and because of our identification assumption on εµ,t, the first column and row of P are

equal to the ny vector (1, 0, . . . ).33

In order to find the counterfactual conditional variance, we solve the quadratic:

ãx2 − x+ c̃ = 0

where ã =
(
θ̃r,µ,0/σ

2
r

)2
and c̃ = Ψ̃r,0P•,−1P

′
•,−1Ψ̃

′
r,0 can be both constructed from the initial step.

Given that, we obtain the correct Θ̃µ,ℓ, and a rotation of the correct Θ−µ,ℓ as in Caravello et al.

33In our implementation, we pick the first shock to correspond to εµ, and then build the rest of the rotation
recursively by imposing that the shock εn has to be orthogonal to the past n− 1 shocks.
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(2024). This yields the counterfactual impulse response of interest. With the full Θ̃ℓ matrix, we can

proceed as in Caravello et al. (2024) to obtain the counterfactuals second moments, our second object of

interest. Note that, for the counterfactual historical evolution, the treatment of the initial condition is

the same as in Caravello et al. (2024): since the policy change is unanticipated, whatever extra volatility

the reaction to the initial condition generates is unanticipated, and moving forward future conditional

volatility is not affected by this term.

C.2. Policy with a time-varying target set one period in advance

The building block of our counterfactuals is the counterfactual response to a particular shock. Intu-

itively, once we know how to obtain this, we can collect the response to multiple shocks to obtain a full

counterfactual.

Consider the response to a shock. We assume the policy minimizes a quadratic loss. Define λiW̃i as a

matrix that collects proper discount factors (in W̃i) and weights (in λi) for variable i. For example, using

W̃i with terms βt along the diagonal defines the standard loss as in McKay and Wolf (2023a). Putting a

zero in the first element of such matrix means that the planner ignores that variable in the first period.

As explained, we account for the transmission lags by having a planner that targets i0 at the natural rate

in the first period (no reaction), and then optimal policy from then onwards. Let yyy = (ỹ0, ỹ1, . . . ) denote

the sequence of output gaps, πππ denote the sequence of inflation, iii denote the sequence of interest rates,

and fff denote the sequence of FCI.

The problem of the central bank can be written in two steps. First, an “operational” central bank,

who picks policy to minimize its loss subject to an FCI target. Second, a “long run” central bank who

optimally chooses the target for the future periods.

First, the operational central bank solves:34

min
vvv

1

2

∑
i

λi[xxx
′
iW̃ixxxi + 2c′ixi] + λf (fff − f̄̄f̄f)′W̃f (fff − f̄̄f̄f)

s.t. xxxi = Θxi,vvvv +Θxi,εεεε,

fff = Θf,vvvv +Θf,εεεε.

The first order condition is: ∑
i

λiΘ
′
xi,v[W̃ixxxi + ci] + λfΘ

′
f,vW̃f (fff − f̄̄f̄f̄f̄f̄f̄f̄f̄f) = 0, (C.1)

34In our application, the c′ixi term only shows up in order to account for the initial conditions when we start
the historical episode counterfactual. After the initial period, it plays no role.
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and the shock that solves this is:

ṽ∗(f̄̄f̄f̄f̄f̄f̄f̄f̄f) = −

(∑
i

λiΘ
′
xi,vW̃iΘxi,v + λfΘ

′
f,vW̃iΘf,v

)−1

︸ ︷︷ ︸
A−1

(∑
i

λiΘ
′
xi,v[W̃iΘxi,εεεε+ ci] + λfΘ

′
f,vW̃f (Θf,εεεε− f̄̄f̄f̄f̄f̄f̄f̄f̄f)

)

ṽ∗(f̄̄f̄f̄f̄f̄f̄f̄f̄f) = −A−1

(
∑
i

λiΘ
′
xi,vW̃iΘxi,v) (

∑
i

λiΘ
′
xi,vW̃iΘxi,v)

−1(
∑
i

λiΘ
′
xi,v[W̃iΘxi,εεεε+ ci])︸ ︷︷ ︸

−v∗∗

+λfΘ
′
f,vW̃f (Θf,εεεε− f̄̄f̄f̄f̄f̄f̄f̄f̄f)


ṽ∗(f̄̄f̄f̄f̄f̄f̄f̄f̄f) = −A−1

(
−Av∗∗ + λfΘ

′
f,vW̃fΘf,vv

∗∗ + λfciΘ
′
f,vW̃f (Θf,εεεε− f̄̄f̄f̄f̄f̄f̄f̄f̄f)

)
ṽ∗(f̄̄f̄f̄f̄f̄f̄f̄f̄f) = ṽ∗∗ −

(∑
i

λiΘ
′
xi,vW̃1Θxi,v + λfΘ

′
f,vW̃fΘf,v

)−1

λfciΘ
′
f,vW̃f (f

∗∗ − f̄̄f̄f)

where ṽ∗∗ = −
(∑

i λiΘ
′
xi,vW̃iΘxi,v

)−1 (∑
i λiΘ

′
xi,v[W̃iΘxi,εεεε+ ci]

)
is the shock that would solve the

pure dual mandate problem, and f∗∗ = Θf,εεεε+Θf,vv
∗∗ is the value of f∗∗ that a pure dual mandate CB

would choose. From now on, denote Θf̄ =
(∑

i λiΘ
′
xi,vW̃iΘxi,v + λfΘ

′
f,vW̃fΘfci,v

)−1

λfΘ
′
f,vW̃f .

Secondly, we have the “long-run” central bank, who chooses f̄̄f̄f in order to minimize the loss, condi-

tional on their timing constraints:

min
f̄̄f̄f

1

2

∑
i

λi[xxx
′
iW̃ixxxi + 2c′ixi] + λf (fff − f̄̄f̄f)′W̃f (fff − f̄̄f̄f)

s.t . xxxi = Θxi,v(ṽ
∗∗ −Θf̄ (f

∗∗ − f̄)) + Θxi,εεεε,

fff = Θf,v(ṽ
∗∗ −Θf̄ (f

∗∗ − f̄)) + Θf,εεεε,

Rf̄̄f̄f = 0,

where R is a N × T matrix that incorporates timing restrictions, in this case that f̄̄f̄f has to be equal to

zero in the first N + 1 periods.35 Forming a Lagrangian with vector of multipliers γ′ = (γ1, γ2, . . . ), the

first order condition is:

R′γ +
∑
i

λiΘ
′
f̄Θ

′
x,v[W̃i

(
Θxi,v(ṽ

∗∗ −Θf̄ (f
∗∗ − f̄)) + Θxi,εεεε

)
+ ci]+

λfΘ
′
f̄Θ

′
f,vW̃f (Θf,v(ṽ

∗∗ −Θf̄ (f
∗∗ − f̄)) + Θf,εεεε− f̄)− λfW̃f (Θf,v(ṽ

∗∗ −Θf̄ (f
∗∗ − f̄)) + Θf,εεεε− f̄)− f̄) = 0

35Take, for example, N = 1. In the first period, the target is preset at the SS value of 0. The target in the
second period is chosen in the first period before observing any shock, thus it also equals zero.
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and the constraint. Working with the first equation:

R′γ +Θ′
f̄

(∑
i

λiΘ
′
x,v[W̃i(xxx

∗∗
i −Θxi,vΘf̄ (fff

∗∗ − f̄̄f̄f)) + ci] + λfΘ
′
f,vW̃f (I −Θf,vΘf̄ )((fff

∗∗ − f̄̄f̄f))

)
+

−λfW̃f (I −Θf,vΘf̄ )(fff
∗∗ − f̄̄f̄f) = 0

R′γ +Θ′
f̄

(∑
i

λiΘ
′
x,v[W̃ixxx

∗∗
i + ci]

)
−Θ′

f̄ (
∑
i

λiΘ
′
x,vW̃iΘxi,v + λfΘ

′
f,vW̃fΘf,v)Θf̄ (fff

∗∗ − f̄̄f̄f)+

λfΘ
′
f̄Θ

′
f,vW̃f (fff

∗∗ − f̄̄f̄f)− λfW̃f (I −Θf,vΘf̄ )(fff
∗∗ − f̄̄f̄f) = 0

Define the following matrices:

A1 = −

(
Θ′
f̄ (
∑
i

λiΘ
′
x,vW̃iΘxi,v + λfΘ

′
f,vW̃fΘf,v)Θf̄ + λf (W̃f − W̃fΘf,vΘf̄ −Θ′

f̄Θ
′
f,vW̃f )

)
,

A2 = Θ′
f̄

(∑
i

λiΘ
′
x,v[W̃ixxx

∗∗
i + ci]

)
,

then the equations can be written more compactly as:

−A1(f̄̄f̄f − fff∗∗) +A2 +R′γ = 0, (C.2)

A1(f̄̄f̄f − fff∗∗) = (A2 +R′γ). (C.3)

If the matrix A1 is invertible, we can solve for f̄ as:

f̄̄f̄f = fff∗∗ +A−1
1 [A2 +R′γ],

and then using the constraint:

0 = Rf̄̄f̄f = Rfff∗∗ +RA−1
1 [A2 +R′γ] (C.4)

γ = −
[
RA−1

1 R′]−1
[Rfff∗∗ +RA−1

1 A2] (C.5)

which fully characterizes the target.

If transmission lags are included, then A1 is not invertible. In particular, if the Central Bank reacts

with a lag of N periods, the first N rows and columns are zeros. Furthermore, the first N ×N submatrix

of A2 is also full of zeros. Thus, this implies that we can solve this by setting γ1, . . . , γN = 0, and then

in find γN+1 by deleting the rows and columns of zeros of A1, A2 and the first N equations in R. We

obtain:

A1,(N+1:•,N+1:•)(f̄̄f̄f − fff∗∗) = (A2,(N+1:•) +R′
•,N+1γN+1)

and then we can proceed as before to find γ. With γ, the elements N+1, . . . of f̄ are uniquely determined

by C.3, and the first N elements are zeros thanks to the constraint.
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Figure 23: Counterfactual Standard Deviations. For Output Gap, Inflation and interest rates,
this is the unconditional standard deviation, for FCI this is the conditional SD. Black dashed:
data. Dashed lines the median. Red: Pure Dual Mandate with Forward Guidance in interest
rates. Blue: FCI targeting, i.e minimize 54 with ψ = ψ∗. Solid Line: posterior density for the
counterfactual with FCI targeting counterfactual.

C.3. Additional Results

C.3.1. FCI vs interest rate targeting

Figure 23 compares of unconditional second moments under optimal FCI targeting and interest rate

forward guidance as described in subsection 5.2.3.

C.3.2. Loss as a function of Taylor Rule coefficient

Figure 24 depicts the loss E[L] = σ2
ỹ + σ2

π + λ∆iσ
2
∆i as a function of the parameter ψTR for i) the

optimal FCI target consirered in section 5.2, ii) the simple FCI target constructed in Section 5.3.1 and

iii) a constant FCI target. For all three cases, initially the loss declines sharply with ψTR. The loss is

essentially monotone in ψTR and it levels off for high values of ψTR. This shows that, compared to the

benchmark Taylor Rule, adding some reaction to financial conditions, even if the target is not exactly

optimal, leads to better outcomes. However, the size of the possible gains is sensitive to the construction

of the target: there are non-trivial differences in the gains between using the optimal target with respect

to using an approximate or constant target.

Notice also that as ψTR grows, the loss levels off but, for the range we plot, does not start to increase.

This is driven by how the approximation to the counterfactual is constructed: when ψTR grows large,

we are essentially trying to enforce FCIt = ¯FCIt as well as possible given the monetary policy shocks

we have. Thus, an alternative interpretation of the rule for high ψTR is simply that the Fed is setting

its interest rate to enforce FCIt = ¯FCIt as well as possible. When ¯FCIt is constructed optimally, then

ψTR → ∞ is very close to the optimal policy, since we are enforcing FCIt = ¯FCIt in expectation, but

that is also what the optimal policy does. For that reason, if we tried to pick the ψTR that minimizes
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Figure 24: Loss E[L] = σ2ỹ + σ2π + λ∆iσ
2
∆i as a function of coefficient ψTR in (56), for different

assumptions about ¯FCIt. Blue: optimal ¯FCIt. Red: approximate ¯FCIt constructed via equa-
tion (55). Beige: constant ¯FCIt. Dashed: loss under optimal FCI targeting.

the loss using the optimal target, we get ψTR → ∞.36

C.3.3. Counterfactual Second Moments under FCI-augmented Taylor Rule

Figure 25 presents (in blue) the counterfactual second moments for a Taylor Rule with ψTR = 40, where

the target is constructed according to equation (55). The value of ψTR is chosen because the loss function

is essentially flat after ψTR = 40.

Figure 25 also compares the results with the benchmark Taylor Rule, in red. As expected, the

benchmark Taylor Rule (red dashed) aligns closely with the targeted unconditional standard deviations

observed in the data (black dashed), though it predicts somewhat lower FCI conditional variance. Relative

to this benchmark, adding a FCI target substantially reduces the variance of macroeconomic outcomes.

Comparing medians, the unconditional variance of the output gap, inflation and the interest rate drop

by 27%, 4% and 6% respectively. Regarding the conditional variance of the FCI, it sees a 27% reduction

compared to the benchmark Taylor rule, which is already markedly lower than the levels observed in the

data.

36For the approximate or constant targets, the minimum loss is attained for a finite but very large ψTR.
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Figure 25: Counterfactual Standard Deviations. For Output Gap, Inflation and interest rates,
this is the unconditional standard deviation, for FCI this is the conditional SD. Black dashed:
data. Dashed lines the median. Red: baseline, Taylor Rule in 56 with ψ = 0. Blue: Taylor
Rule with ψTR = 20 and ¯FCIt constructed suing (55). Solid Line: posterior density for the
counterfactual, same Taylor Rule as blue.
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