NBER WORKING PAPER SERIES

HOW INSTITUTIONS INTERACT WITH EXCHANGE RATES AFTER THE 2024 US PRESIDENTIAL ELECTION: NEW HIGH-FREQUENCY EVIDENCE

Joshua Aizenman Jamel Saadaoui

Working Paper 33193 http://www.nber.org/papers/w33193

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 November 2024, Revised July 2025

The authors are grateful to Hiro Ito, Rodolphe Desbordes, Milan Vyskrabka, Ellen Pei-yi Yu, Bac Van Luu, Ron Smith, Jihyun Kim, Moon Jung Choi and the participants of the 4th CINSC / 2025 INFINITI conference, the Birkbeck Finance Research Seminar and, the Bank of Korea Internal Research Seminar for useful suggestions and remarks. The authors are also grateful to The Economist Intelligence Unit and to the PRS group for providing TRI and ICRG updated datasets, respectively. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2024 by Joshua Aizenman and Jamel Saadaoui. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

How Institutions Interact with Exchange Rates After the 2024 US Presidential Election: New High-Frequency Evidence
Joshua Aizenman and Jamel Saadaoui
NBER Working Paper No. 33193
November 2024, Revised July 2025
JEL No. F01, F31, F36, F4, F40, F42

ABSTRACT

This paper investigates how institutional quality shaped currency responses to the 2024 U.S. presidential election, using high-frequency exchange rate data for 73 countries. We document that virtually all currencies depreciated against the U.S. dollar immediately following the election result. Surprisingly, countries with stronger institutional quality—typically considered more resilient—experienced larger and more persistent depreciations. We interpret this through the lens of a geopolitical realignment: the election marks a structural break in the U.S. role as guarantor of a rule-based international order. Under the new administration's more transactional and bilateralist orientation, strong institutional alignment with liberal democratic norms may have increased perceived exposure to U.S. policy uncertainty. Our findings reveal how political regime shifts in leading economies can reconfigure the global distribution of financial risk premia.

Joshua Aizenman
University of Southern California
School of International Relations
Department of Economics
and NBER
aizenman@usc.edu

Jamel Saadaoui University of Paris 8 jamelsaadaoui@gmail.com

How Institutions Interact with Exchange Rates After the 2024 US Presidential Election: New High-Frequency Evidence

Joshua Aizenman ^a Jamel Saadaoui ^b

Abstract

This paper investigates how institutional quality shaped currency responses to the 2024 U.S. presidential election, using high-frequency exchange rate data for 73 countries. We document that virtually all currencies depreciated against the U.S. dollar immediately following the election result. Surprisingly, countries with stronger institutional quality—typically considered more resilient—experienced larger and more persistent depreciations. We interpret this through the lens of a geopolitical realignment: the election marks a structural break in the U.S. role as guarantor of a rule-based international order. Under the new administration's more transactional and bilateralist orientation, strong institutional alignment with liberal democratic norms may have increased perceived exposure to U.S. policy uncertainty. Our findings reveal how political regime shifts in leading economies can reconfigure the global distribution of financial risk premia.

Keywords: Exchange Rate Adjustment, High-Frequency Data, Institutional Quality, Political Uncertainty, Geopolitical Risk

JEL: F31, F33, F38, G15, D72

Corresponding author: Joshua Aizenman.

Email addresses: aizenman@usc.edu (Joshua Aizenman), jamelsaadaoui@gmail.com (Jamel Saadaoui)

^a Dockson Chair in Economics and International Relations, University of Southern California, University Park, Los Angeles, CA 90089-0043, United States

^b University Paris 8, Dionysian Lab of Economics, Institute for European Studies, France

^{*} The authors are grateful to Hiro Ito, Rodolphe Desbordes, Milan Vyskrabka, Ellen Pei-yi Yu, Bac Van Luu, Ron Smith, Jihyun Kim, Moon Jung Choi and the participants of the 4th CINSC / 2025 INFINITI conference, the Birkbeck Finance Research Seminar and, the Bank of Korea Internal Research Seminar for useful suggestions and remarks. The authors are also grateful to The Economist Intelligence Unit and to the PRS group for providing TRI and ICRG updated datasets, respectively.

1. Introduction

The outcome of the 2024 US presidential election has resonated all around the world. On the exchange rate markets, virtually all the exchange rates depreciated around midnight of November 6, 2024, when the outcome of the election was certain. The US dollar to Mexican peso exchange rate moved from 20.15 Mexican pesos per US dollar to 20.77 Mexican pesos per US dollar in a couple of hours. These high-frequency exchange rate movements reflect the expectations linked to the future orientations of US policy in terms of trade, immigration, capital flows, security, and foreign affairs. Mexico is expected to be among the first countries that will be impacted by these new policies. To some extent, the depreciation of the Mexican peso is driven by these expectations.

Beyond the striking example of the Mexican peso, Figure 1 presents the evolution of high-frequency exchange rate movements around the 2024 US election using one-minute data. We can observe a global pattern of appreciating currencies before November 6, 2024, and depreciating currencies after, especially for the freely floating currencies. The euro (EUR per USD) currency pair appreciated by 0.5 percent before the election and depreciated by more than 2 percent after the election. A very similar pattern is observed for the Great Britain Pound (GBP per USD), the Japanese Yen (JPY per USD), and the Swiss Franc (CHF per USD).

For the nontraditional reserve currencies (Arslanalp et al., 2022), like the Canadian dollar (CAD per USD) and the Australian dollar (AUD per USD), we also observe a similar pattern, albeit the depreciation was smaller, around 1 percent. Overall, this pattern is global and indicates that the US election was uncertain until the very last moment.

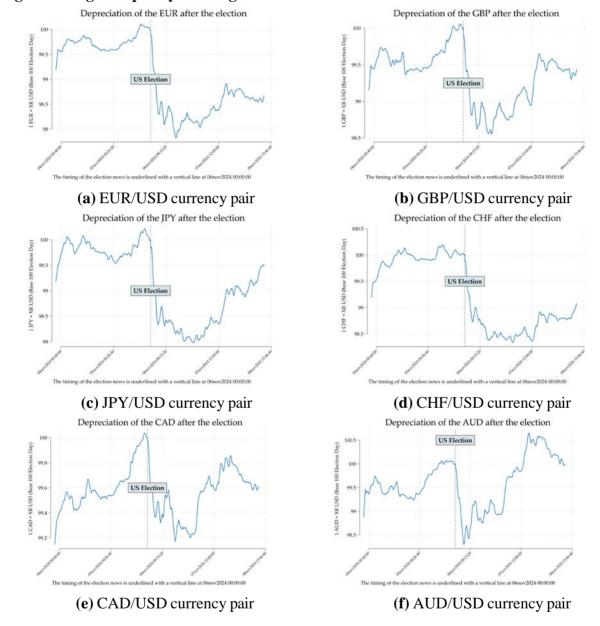
After this information shock, it is worthwhile noting that the depreciation occurred for virtually all countries around the world, as shown in Figure 2. We compute three measures of exchange rate depreciation, namely: first, the maximum depreciation during the first trading day to capture the reaction on the FOREX immediately after the news; second, the depreciation after 4 days to capture the reaction of monetary authorities and financial markets to the shock; and third, the depreciation 1 week after the shock to observe whether some exchange rates experienced a further depreciation or a return to the pre-shock exchange rate level. The overall assessment is that the exchange rate movement observed immediately after the 2024 US election has not been reversed one week later. In 26 countries out of a sample of 73 bilateral exchange rates against the US dollar, the depreciation after 1 week was even more pronounced than just after the election.² Among them, we have the currency pairs of South Africa, Thailand, Hungary, the Czech Republic, Romania, Bulgaria, and Poland as the countries with the largest differences. These movements are at the heart of policymakers' discussions, as they create instability, especially for emerging markets.

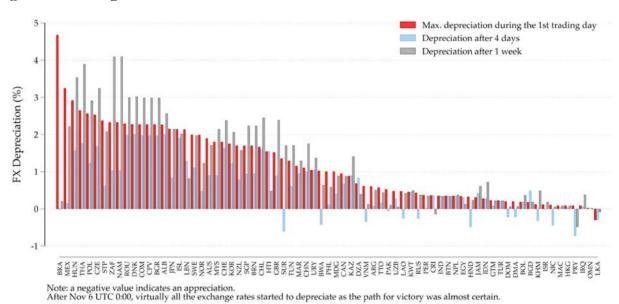
The outcome of the 2024 US election offers us a very well-suited quasi-natural experiment to test the resilience of countries to exchange-rate market pressures. Indeed, due to the nature of the Republican platform and thanks to the use of high-frequency data, we can identify the factors that explain the cross-sectional differences in currency returns against the US dollar. One of the primary conditions for our identification process is that the outcome of the 2024 US presidential election surprised global markets. Figure 1 unequivocally supports this supposition. We can see steady or rising trends in currencies before November 6 and dramatic falls in nearly all exchange rates within minutes after the outcome was realized. Its timing and universality, close to 0:00 GMT on election night, suggest that the event was unexpected to market participants. This would make the outcome

¹ In the text, we refer to high-frequency movements for the exchange rate as we rely on one-minute data to compute the depreciation rates at different time horizons.

² The difference between exchange rate regime will be controlled in the multivariate regressions with the 'Exchange Rate Stability' variable, ensuring reliable estimates without losing any observations.

of the election a good exogenous shock, allowing us to make causal inference credibly in diff-indiff style methodology.




Figure 1: High-frequency exchange rate movements around the 2024 US election.

<u>Note:</u> We select the most traded currency pairs and a two-day window around 6th November 0:00 GMT. We use a moving average of the previous 60 minutes to smooth random fluctuations.

Preliminary graphical evidence reveals an important piece of evidence. In Figure 3, we plot the exchange rate movements against the USD 1 week after the news against the ICRG institutional score, a broad measure of the quality of institutions created and maintained by the PRS group.³ For

³ We focus on the political risk rating component of the ICRG index that includes twelve dimensions related to government stability, corruption, democratic accountability, religious tensions, ethnic tensions, rule of law, quality of

our sample of 73 currencies against the USD, we show that the correlation between the depreciation rate and the institutional score is clearly positive around 40 percent and significant at the 1 percent level. The surprising result—that countries with stronger institutional quality experienced sharper currency depreciations—can be understood through the lens of a broader geopolitical realignment. The 2024 US presidential election represents an inflection point in the global order, where the US is no longer perceived as the anchor of a rule-based, democracy-oriented international system. Instead, there is a growing expectation that the new administration will adopt a more transactional, bilateralist, and possibly authoritarian-friendly foreign policy (as shown by the negotiations around the tariffs). This shift introduces a new form of uncertainty for wellinstitutionalized democracies that had previously benefited from alignment with US-led globalization. In this context, market participants may anticipate a withdrawal of preferential treatment, support, or policy coordination with these countries, triggering sharper depreciations. Conversely, countries with weaker institutional profiles—once considered riskier—may now be perceived as relatively insulated from reputational or strategic downgrades under the new US posture. Thus, the observed currency movements reflect not only economic fundamentals but also a realignment of political risk premia in response to an uncharted global trajectory."

Figure 2: Exchange rate movements in the aftermath of the 2024 US election.

Note: One week after the information shock, the depreciation was even greater in 26 countries out of a sample of 73 bilateral exchange rates against the US dollar. We do not include the euro in the sample because the eurozone is composed of different sovereign countries. We have 73 currencies against the USD, but the sample is reduced to 64 in

Table 1 because of the limited availability of institutional scores. There are 62 in the first three columns of Table 2 due to the availability of the other control variables. In Table 3, it is reduced to 40 due to the limited country coverage of

the EIU's Trump Risk Index.

the bureaucracy, and so on. These institutional features will impact the perception of financial markets during information shocks, like the 2024 presidential US election.

⁴ The correlation around 37 percent and significant at the 1 percent level for the other two measures of exchange rate depreciation.

• HU o C7 • DK O ROO BG o CH MX SEO IS 2 o MA • NO • CA dFX_1week Fitted values 40 50 60 70 80 90 ICRG Institutional Score in 2022

Figure 3: Correlation between institutions and exchange rate movements.

Note: a negative value indicates an appreciation. At Nov 6 UTC 0:00, virtually all the exchange rates started to depreciate as the path for victory was almost certain. dFX_1week is the depreciation after 1 week.

<u>Note:</u> Countries with higher ICRG institutional scores have experienced a stronger depreciation, suggesting that markets' participants expect that these countries will be impacted by the changes in the US policy.

The testable assumptions in this study are the following: first, the 2024 US presidential election constitutes a structural break in the international economic order (Stokes, 2018). This new context implies that the role of the quality of institutions in shaping the financial markets reaction will evolve. The United States is no longer the leader of the rule-based globalization. Thus, we can infer that the market expects that the new US administration will be more favorable or at least more neutral towards countries with political regimes that are less cautious about several dimensions of institutional development, like the democratic accountability, rule of law, corruption.

The second testable assumption that we are going to test relates to the different dimensions of the ICRG institutional score. To identify the economic, institutional, and political channels, we are going to test the 12 different dimensions of the ICRG score. In this way, we will be able to pinpoint the different dimensions that shaped the reaction of market participants.

Thirdly, the financial development and liquidity may also have played a role in the dynamics of exchange rates all around the world. The third testable assumption is to estimate the influence of liquidity/financial development on these high-frequency movements.

This study contributes to the literature on the determinants of exchange rate dynamics around elections (Stein et al., 2005; Bonomo and Terra, 2005; Quinn et al., 2023). Indeed, Frieden and Stein (2001), together with Stein and Streb (1998, 2004) find that voters punish leaders who devalue when the currency was already undervalued. Steinberg (2015) finds that they are more likely to welcome a weak currency in countries where the manufacturing sector is powerful. These insights are not new. In his seminal contribution, Nordhaus (1975) predicted that exchange rate movements may be affected by elections, especially in emerging markets. Nordhaus wrote, "It is predicted that the concern with loss of reserves and balance of payments deficits will be greater in the beginning of electoral regimes, and less toward the end... The basic difficulty in making

intertemporal choices in democratic systems is that the implicit weighting function on consumption has positive weight during the electoral period and zero (or small) weights in the future."

Thus, in Section 2, we present the implemented methodology and provide a brief overview of the related literature. In Section 3, we present and discuss the empirical results. We conclude in the last section, the Section 4.

2. Empirical framework

Our empirical methodology relies on the use of cross-sectional regression analyses following the works of Ahmed et al. (2017), Ahmed et al. (2023), Aizenman et al. (2024), and Aizenman and Saadaoui (2024). We can briefly consider a simple two-period setup in the spirit of differences-in-differences to provide some insights about our approach:

$$p_{it} = \mu + \gamma_i + \delta_t + \beta X_i' D_t + \epsilon_{it}$$
 (1)

where p_{it} is the log exchange rate vis-à-vis the USD for the country i in period $t \in \{0, 1\}$. Period 0 denotes the period before the dollar appreciation and period 1 denotes the treatment period of dollar appreciation; the country- and time-fixed effects are given by γ_i and δ_t , respectively. The variable vector X_i' contains a set of ex-ante or pre-treatment values of country fundamentals and currency factors including FX reserves, and D_t denotes an indicator equal to 0 in the pre-event period and equal to 1 in the treatment period. The vector of coefficients of interest β captures the relationship between country i's ex-ante country fundamentals and its ex-post depreciation vis-à-vis the dollar. As our setting involves two periods, the specification can be expressed in a simpler form by taking differences of the dependent variable to consider the exchange rate return over the treatment period:

$$\Delta p_i = \alpha + \beta X_i' + u_i \tag{2}$$

where $\Delta p_i = p_{i1} - p_{i0}$, $\alpha = \delta_1 - \delta_0$, and $u_i = \epsilon_{i1} - \epsilon_{i0}$. Therefore, our empirical specification takes the form of a cross-sectional regression of the percent depreciation of currency i over the treatment period. Identification is achieved under the assumption that these countries did not anticipate the unexpected results where Trump has full control of Washington with a 'trifecta', 6 and the ensuing US dollar appreciation that came with it. 7

3. Results

In Table 1, we can see that the coefficient for the institutional score is positive, fluctuating around 2.6 and 4.8 percent, significant at the one percent level for a sample of 64 usable observations. As

⁵ In the set of related literature, we find Eichengreen and Gupta (2015) and Ahmed et al. (2017) that investigate the determinants of exchange rate changes over the 2013 Taper Tantrum period. Ahmed (2020) examines cross-sectional exchange rate changes of oil exporters and importers following an unexpected oil supply shock in 2019. Ahmed et al. (2023) and Aizenman et al. (2024) examine the determinants of resilience during US monetary cycles. Aizenman and Saadaoui (2024) extend these two last papers to the resilience of CESEE countries during ECB's monetary cycles.

⁶ BBC news, "Trump has full control of government - but he won't always get his way", BBC, consulted on November 16, 2024.

⁷ The surprise is reflected in the ABC News last pre-election report (Nov. 5, 2024, at 6:00 AM). A similar uncertainty is found in the latest update of The Economist forecasting model for the US election.

you can see in Appendix A in Table A1, the institutional score ranges from 43.75 for Pakistan to 86.56 for Australia.

Variable	(1) ariable Maximum depreciation during the 1st trading day		(3) Depreciation after 1 week		
ICRG institutional	0.035***	0.026***	0.048***		
score Constant	(0.008)	(0.008)	(0.009)		
	-1.102*	-1.086*	-1.931***		
	(0.581)	(0.550)	(0.635)		
Observations	64	64	64		
R-squared	0.140	0.142	0.183		
RMSE	0.930	0.677 1.093			

Table 1: Univariate regression for the exchange rate movements.

Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Authors' estimates. Countries with better institutional scores have known a stronger depreciation, as they are expected to be more impacted by changes in the US policy.

To achieve reliable causal estimates, we also control for a vector of relevant confounding variables in Table 2. The definition and sources of the variables are given in Table A.1 of Appendix A. Table 2 offers multiple insights. First, the evidence presented in Figure 2 and Table 1 is confirmed at all time horizons. The countries with better institutions have known a stronger depreciation. Second, ex-ante exchange rate stability scores (a possible proxy for currency interventions)⁸ have helped to stabilize the currencies at all time horizons. Third, the misalignment of the real effective exchange rate contributes to the exchange rate depreciation only after 4 days. This coefficient can reflect an error-correction mechanism, as overvalued currencies are expected to depreciate in the future. Fourth, the bilateral trade deficit contributed to the depreciation after 4 days. Higher exposure to the risk linked to expected changes in the US policy, measured by the EIU's Trump Risk Index,⁹ contributes to limiting the depreciation after 4 days. This possibly reflects the observation that most exposed economies have experienced the largest movements immediately after the shock (Larson and Madura, 2001).

In Figure 4, it appears that the positive and significant coefficient on the ICRG index in the earlier results is driven by corruption, military involvement in politics, and socioeconomic conditions across the three horizons of depreciation. Additionally, law and order is significant for depreciation after 4 days and 1 week, while investment profile and democratic accountability are significant for the initial depreciation and after 1 week.

The definitions of the different dimensions of the ICRG index are provided in Appendix B. The empirical analysis of our second testable assumption reveals that countries that have more corruption, have more military involvement in the government, and have worse socio-economic conditions have known less depreciation.

Now, we discuss the empirical results of our third testable assumption, namely, the role of

⁸ The exchange rate stability is computed using annual standard deviations of the monthly exchange rate between the home country and the base country. We may reasonably conjecture that countries with more fixed exchange rate regimes, before the event, are more likely to intervene on the currency markets during the event.

⁹ This index is composed of three subcomponents: security, trade and immigration. A score is given to a cross-section of 70 countries, where a higher value means a greater exposure to risk. Mexico is the most exposed economy to the changes in the US policy. Saudi Arabia is the least exposed country, with a score of 9.4.

liquidity and financial development. We check whether more liquid markets experienced more depreciation using IMF data on financial market size. ¹⁰ We introduce an interaction term between the institutional score and the financial in the regressions of Table 2. The interaction terms are never significant, with very high p-values. This shows that our results are not driven by liquidity effects.

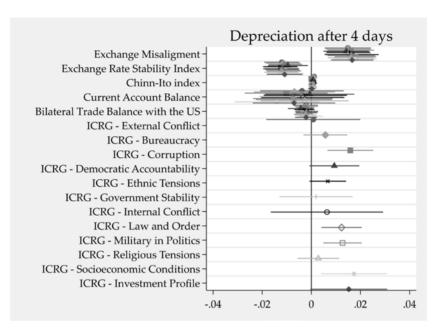
	Maximum 1st day	4 days	1 week	Maximum 1st day	4 days	1 week
ICRG Institutional Score	0.045***	0.031***	0.065***	0.059***	0.038**	0.057**
	(0.013)	(0.011)	(0.016)	(0.021)	(0.015)	(0.026)
REER Misalignment	0.015*	0.019***	0.017	-0.007	0.025**	0.043*
	(0.007)	(0.004)	(0.010)	(0.029)	(0.011)	(0.023)
Exchange Rate Stability	-0.014***	-0.011***	-0.012**	-0.015**	-0.008*	-0.019**
	(0.004)	(0.003)	(0.005)	(0.006)	(0.004)	(0.008)
Capital Account Openness	-0.079	-0.025	-0.133	-0.178	-0.032	-0.117
	(0.114)	(0.068)	(0.132)	(0.153)	(0.100)	(0.210)
Current Account Balance	-0.017*	-0.006	-0.018	-0.016	-0.017	-0.023
	(0.009)	(800.0)	(0.013)	(0.014)	(0.012)	(0.019)
Bilateral Trade with the US	-0.402	-0.240	-0.685**	-0.225	-0.577**	-0.715
	(0.399)	(0.227)	(0.294)	(0.412)	(0.245)	(0.484)
Trump Risk Index				0.004	-0.015**	-0.014
				(0.015)	(0.006)	(0.015)
Constant	-2.572**	-2.838***	-4.185***	-1.365	-3.498**	-5.311**
	(1.202)	(0.878)	(1.379)	(2.924)	(1.376)	(2.389)
Observations	62	62	62	40	40	40
R-squared	0.314	0.356	0.313	0.354	0.450	0.359
RMSE	0.871	0.619	1.054	0.951	0.598	1.110

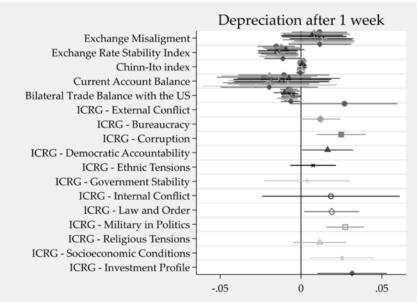
Table 2: Multivariate regressions for exchange rate movements.

Note: Robust standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1. Authors' estimates. The coefficients for the control variables have the expected signs. More overvalued currencies have known stronger depreciation. Currencies with more exchange rate stability (as a proxy for currency intervention), higher current account surpluses at all the horizons, larger trade surpluses on the US, and with larger exposure to Trump policy changes are associated with stronger depreciation, signaling an over-reaction after the election (see, Larson and Madura, 2001). Ex-ante interest differentials with the US policy rates have been tested but are not significant at any horizon. Similarly, ex-ante levels of international reserves are not significant.

Robustness checks. We conduct two main robustness checks about the effect of relative GDP per capita of countries vis-à-vis the US, using data from the World Bank, and about the role of liquidity of the different currency pairs, using data from the Bank for International Settlements.

Relative income of countries vis-à-vis the US: The Balassa-Samuelson effect is traditionally a long-run determinant of exchange rates (Bordo et al., 2017) important for developing economies (Hassan, 2016). Does it have a role in these short-run movements? When we add the relative income to the US, the regressions in the first three columns of Table 2 barely change. The coefficients of the ICRG institutional score are still significant at the conventional levels, and the coefficients of the relative GDP per capita are never significant and provide any improvement in the regressions. This is not a surprising result, as institutions are a fundamental driver of wealth (Acemoglu et al. (2005)).


Role of liquidity of the different currency pairs: Our results may be driven by the different degrees of liquidity on the foreign currency markets. The most liquid currencies may have experienced stronger depreciations. We create a dummy for the most liquid currencies following


8

¹⁰ Financial markets depth, access, and efficiency is defined in Svirydzenka (2016).

the tracked currency pairs on the BIS website.¹¹ Again, the regressions in the first three columns of Table 2 barely change. The liquidity dummy has a p-value of 10.5 percent for the first column of Table 2. We can safely conclude that our results are not driven by liquidity.

Figure 4: Correlation between institutions and exchange rate movements.

Note: The following code snippet produces the estimates, plots the coefficients for 12 different models, and makes the table for these 12 different models. The left-hand-side variable is the cumulative exchange rate depreciation after the election of Donald Trump. Please note that the coefficients have been normalized to have a similar magnitude in the figures. The normalization has no effect on the statistical significance but requires being careful on the interpretation of the magnitude of the US trade balance coefficient.

•

¹¹ We refer to the BIS data on exchange-traded derivatives statistics.

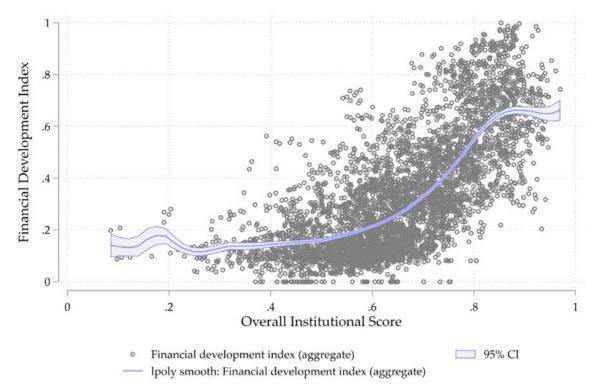


Figure 5: Institutional Development Precedes Financial Development

<u>Note:</u> To estimate this kernel-weighted local polynomial regression, we use the 'lpoly' command of Stata 19 with the Epanechnikov kernel and a bandwidth equal to 0.3.

These last results about liquidity are not surprising. In the Figure 4, we use kernel regressions to show the transition between two steady states for a sample of 4808 observations (132 countries from 1984 to 2022). The first steady state is the weak institutions/low financial development state. The second steady state is the strong institutions/high financial development state. There are no examples of countries that have weak institutions and, at the same time, developed financial markets accompanied by a liquid currency market.

4. Concluding remarks

Our findings suggest a turning point in the global risk architecture. Where institutional quality has traditionally served as a buffer against market volatility, the 2024 U.S. election reversed this logic: alignment with now-deprioritized democratic norms may have amplified uncertainty. This paper thus documents not just a one-time market reaction, but a broader revaluation of institutional exposure under geopolitical disruption. In doing so, it highlights how even the most robust fundamentals can become a source of financial vulnerability when the global hegemon realigns its strategic commitments. Future research should explore whether this inversion persists beyond this episode, and how other large-country regime shifts—past or emerging—similarly rewire financial market expectations.

¹² The data for the financial development comes from the IMF (Svirydzenka (2016)).

¹³ Ju and Wei (2010) provide a theoretical model explaining the interaction between domestic institutions and capital flows.

References

- Acemoglu, D., Johnson, S., and Robinson, J. A. (2005), 'Institutions as a fundamental cause of long-run growth', *Handbook of economic growth* 1, 385-472.
- Ahmed, R. (2020), 'Commodity currencies and causality: Some high-frequency evidence', *Economics Letters* **189**, 109016.
- Ahmed, R., Aizenman, J., Saadaoui, J., and Uddin, G. S. (2023), 'On the effectiveness of foreign exchange reserves during the 2021-22 US monetary tightening cycle', *Economics Letters* **233**, 111367.
- Ahmed, S., Coulibaly, B., and Zlate, A. (2017), 'International financial spillovers to emerging market economies: How important are economic fundamentals?', *Journal of International Money and Finance* **76**, 133–152.
- Aizenman, J., Chinn, M. D., and Ito, H. (2008), Assessing the emerging global financial architecture: Measuring the trilemma's configurations over time, Technical Report w14533, National Bureau of Economic Research.
- Aizenman, J., Park, D., Qureshi, I., Saadaoui, J., and Uddin, G. (2024), 'The performance of emerging markets during the Fed's easing and tightening cycles: a cross-country resilience analysis', *Journal of International Money and Finance* **148**, 103169.
- Aizenman, J. and Saadaoui, J. (2024), The resilience of central, eastern, and southeastern Europe (CESEE) countries during ECB's monetary cycles, Working Paper w32957, National Bureau of Economic Research.
- Arslanalp, S., Eichengreen, B. and Simpson-Bell, C. (2022), 'The stealth erosion of dollar dominance and the rise of nontraditional reserve currencies', *Journal of International Economics* **138**, 103656.
- Bonomo, M., and Terra, C. (2005), 'Elections and exchange rate policy cycles', *Economics & Politics* **17**(2), 151-176.
- Bordo, M. D., Choudhri, E. U., Fazio, G., and MacDonald, R. (2017), 'The real exchange rate in the long run: Balassa-Samuelson effects reconsidered', *Journal of International Money and Finance* **75**, 69-92.
- Chinn, M. D. and Ito, H. (2006), 'What matters for financial development? capital controls, institutions, and interactions', *Journal of Development Economics* **81**(1), 163-192.
- Eichengreen, B. and Gupta, P. (2015), 'Tapering talk: The impact of expectations of reduced Federal Reserve security purchases on emerging markets', *Emerging Markets Review* **25**, 1-15.
- Frieden, J. and Stein E. (2001), 'The political economy of exchange rate policy in Latin America: an analytical overview', in J. Frieden and Stein E. (eds.), *The currency game: exchange rate politics in Latin America*, pp. 1-20.
- Hassan, F. (2016), 'The price of development: The Penn–Balassa–Samuelson effect revisited', *Journal of International Economics* **102**, 291-309.
- Ju, J., and Wei, S.-J. (2010), 'Domestic institutions and the bypass effect of financial globalization', *American Economic Journal: Economic Policy* **2**(4), 173-204.
- Larson, S. J., and Madura, J. (2001), 'Overreaction and underreaction in the foreign exchange market', *Global Finance Journal* **12**(2), 153-177.
- Nordhaus, W. D. (1975). The political business cycle. *The Review of Economic Studies* **42**(2), 169-190.
- Quinn, D. P., Sattler, T., and Weymouth, S. (2023), 'Do exchange rates influence voting? evidence from elections and survey experiments in democracies', *International Organization* **77**(4), 789-823.

- Stein, E. H., and Streb, J. M. (1998). Political stabilization cycles in high-inflation economies. *Journal of Development Economics* **56**(1), 159-180.
- Stein, E. H., and Streb, J. M. (2004). Elections and the Timing of Devaluations. *Journal of International Economics* **63**(1), 119-145.
- Stein, E. H., Streb, J. M., and Ghezzi, P. (2005), 'Real exchange rate cycles around elections', *Economics & Politics* **17**(3), 297-330.
- Steinberg, D. (2015). *Demanding devaluation: Exchange rate politics in the developing world.*Cornell University Press.
- Stokes, D. (2018). Trump, American hegemony and the future of the liberal international order. *International Affairs* **94**(1), 133-150.
- Svirydzenka, K. (2016), Introducing a new broad-based index of financial development, Working Paper, International Monetary Fund.

Appendix A. Descriptive statistics and variable definitions.

Table A.1: Descriptive statistics

	(1) Count	(2) Mean	(3) SD	(4) Min	(5) Max
Maximum depreciation during the 1st trading day	73	1.19	1.00	-0.30	4.68
Depreciation after 4 days	73	0.61	0.74	-0.73	2.01
Depreciation after 1 week	73	1.26	1.20	-0.49	4.09
Current account balance in 2022	117	-1.72	11.90	-42.68	34.50
Capital account openness in 2021	117	0.38	1.50	-1.93	2.30
Exchange rate stability in 2020	116	54.50	31.87	3.86	100.00
ICRG Institutional Score in 2022	85	66.06	10.26	44.17	86.46
REER misalignment in 2020	116	99.27	14.27	56.82	198.55
Bilateral trade balance with the US in 2022	112	-0.04	0.18	-1.64	0.08
Trump Risk Index in 2024	46	31.89	13.44	9.44	71.37

Country list: 1 Albania; 2 Algeria; 3 Argentina; 4 Australia; 5 Bangladesh; 6 Bhutan; 7 Bolivia; 8 Botswana; 9 Brazil; 10 Brunei; 11 Bulgaria; 12 Cambodia; 13 Canada; 14 Cape Verde; 15 Chile; 16 China; 17 Comoros; 18 Costa Rica; 19 Czech Republic; 20 Denmark; 21 Dominica; 22 Dominican Republic; 23 Egypt; 24 Guatemala; 25 Haiti; 26 Honduras; 27 Hong Kong; 28 Hungary; 29 Iceland; 30 India; 31 Indonesia; 32 Iraq; 33 Israel; 34 Jamaica; 35 Japan; 36 Kazakhstan; 37 Kuwait; 38 Laos; 39 Lebanon; 40 Macao; 41 Madagascar; 42 Malaysia; 43 Mexico; 44 Morocco; 45 Namibia; 46 Nepal; 47 New Zealand; 48 Nicaragua; 49 Norway; 50 Oman; 51 Pakistan; 52 Paraguay; 53 Peru; 54 Philippines; 55 Poland; 56 Romania; 57 Russia; 58 Sao Tome and Principe; 59 Singapore; 60 South Africa; 61 South Korea; 62 Sri Lanka; 63 Suriname; 64 Sweden; 65 Switzerland; 66 Thailand; 67 Trinidad and Tobago; 68 Tunisia; 69 Türkiye; 70 United Kingdom; 71 Uruguay; 72 Uzbekistan; 73 Vietnam.

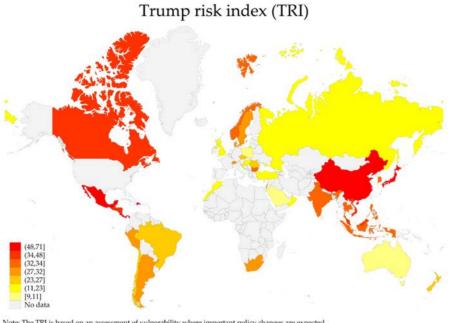
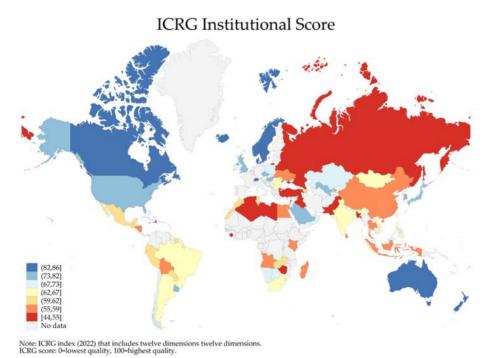

Number of countries, clarifications: We do not include the euro in the sample because the eurozone is composed of different sovereign countries. We have 73 currencies against the USD, but the sample is reduced to 64 in Table 1 because of the limited availability of institutional scores. There are 62 in the first three columns of Table 2 due to the availability of the other control variables. In Table 3, it is reduced to 40 due to the limited country coverage of EIU's Trump Risk Index.

Table A.2: Descriptive statistics

Variable	Definition
Maximum depreciation during the 1st trading day	Maximum depreciation of the bilateral exchange rate against the USD during the 1st trading day (one-
	minute data), source: xe.com.
Depreciation after 4 days	Depreciation of the bilateral exchange rate against the
	USD between Nov. 6 UTC 0:00 and Nov. 10 UTC
	0:00, source: xe.com
Depreciation after 1 week	Depreciation of the bilateral exchange rate against the
	USD between Nov. 6 UTC 0:00 and Nov. 13 UTC
	0:00, source: xe.com.
Current account balance in 2022	World Development Indicators, World Bank,
	BN.CAB.XOKA.GD.ZS.
Capital account openness in 2021	Chinn and Ito (2006),
	https://web.pdx.edu/~ito/Chinn-Ito_website.htm.
Exchange rate stability in 2020	Aizenman et al. (2008),
	https://web.pdx.edu/~ito/trilemma_indexes.htm
ICRG Institutional Score in 2022	The sum of the political risk score components in the
	ICRG dataset, https://www.prsgroup.com/.
REER misalignment in 2020	The ratio between the real effective exchange rate in
	2020 and the average value between 2014 and 2018,
	multiplied by 100, BRUEGEL,
	https://www.bruegel.org/.
Bilateral trade balance with the US in 2022	US Bilateral Trade Balance in Percent of GDP,
	World Bank, https://wits.worldbank.org/.
Trump Risk Index in 2024	An overall risk score is based on an assessment of
	vulnerability across three areas - trade, immigration,
	and security - where important policy changes under
	the Trump administration are expected, The
	Economist Intelligence Unit,
T	https://www.economist.com/.

Note: we use the latest data available for the explanatory variables. To validate the empirical strategy, these explanatory variables have to be observed before the event; see Section 2.


Figure A.1: Exposure to changes in the US policy measured with TRI.

Note: The TRI is based on an assessment of vulnerability where important policy changes are expected. The countries involved in the estimations of Table 2 are displayed. TRI score: 0-least exposed, 100-most exposed.

<u>Note:</u> authors' calculation based on the Economist Intelligence Unit's data. With a score above 40, Mexico, China, Japan, and Canada are expected to be strongly impacted by the policy changes.

Figure A.2: ICRG Institutional Score.

<u>Note:</u> ICRG index that includes twelve dimensions related to government stability, corruption, democratic accountability, religious tensions, ethnic tensions, rule of law, quality of the bureaucracy, and so on.

Appendix B. ICRG institutional score dimensions.¹⁴

- Government Stability

This is an assessment both of the government's ability to carry out its declared program(s) and its ability to stay in office. The risk rating assigned is the sum of three subcomponents, each with a maximum score of four points and a minimum score of 0 points. A score of 4 points equates to very low risk, and a score of 0 points to very high risk.

The subcomponents are government unity, legislative strength, and popular support.

- Socioeconomic Conditions

This is an assessment of the socioeconomic pressures at work in society that could constrain government action or fuel social dissatisfaction. The risk rating assigned is the sum of three subcomponents, each with a maximum score of four points and a minimum score of 0 points. A score of 4 points equates to very low risk, and a score of 0 points to very high risk.

The subcomponents are unemployment, consumer confidence, and poverty.

- Investment Profile

This is an assessment of factors affecting the risk to investment that are not covered by other political, economic, and financial risk components. The risk rating assigned is the sum of three subcomponents, each with a maximum score of four points and a minimum score of 0 points. A score of 4 points equates to very low risk, and a score of 0 points to very high risk.

The subcomponents are *contract viability/expropriation*, *profit repatriation*, and payment delays.

- Internal Conflict

This is an assessment of political violence in the country and its actual or potential impact on governance. The highest rating is given to those countries where there is no armed or civil opposition to the government and the government does not indulge in arbitrary violence, direct or indirect, against its own people. The lowest rating is given to a country embroiled in an on-going civil war. The risk rating assigned is the sum of three subcomponents, each with a minimum score of 0 points. A score of 4 points equates to very low risk, and a score of 0 points to very high risk. The subcomponents are *civil war/coup threat*, *terrorism/political violence*, *and civil disorder*.

- External Conflict

The external conflict measure is an assessment both of the risk to the incumbent government from foreign action, ranging from non-violent external pressure (diplomatic pressures, withholding of aid, trade restrictions, territorial disputes, sanctions, etc.) to violent external pressure (cross-border conflicts to all-out war).

External conflicts can adversely affect foreign business in many ways, ranging from restrictions on operations to trade and investment sanctions, to distortions in the allocation of economic resources, to violent change in the structure of society. The risk rating assigned is the sum of three subcomponents, each with a maximum score of four points and a minimum score of 0 points. A score of 4 points equates to very low risk, and a score of 0 points to very high risk.

The subcomponents are war, cross-border conflict, and foreign pressures.

- Corruption

This is an assessment of corruption within the political system. Such corruption is a threat to foreign investment for several reasons: it distorts the economic and financial environment; it reduces the efficiency of government and business by enabling people to assume positions of power through

¹⁴ Reproduced from the ICRG methodology note.

patronage rather than ability; and, last but not least, it introduces an inherent instability into the political process.

The most common form of corruption met directly by business is financial corruption in the form of demands for special payments and bribes connected with import and export licenses, exchange controls, tax assessments, police protection, or loans. Such corruption can make it difficult to conduct business effectively, and in some cases may force the withdrawal or withholding of an investment.

Although our measure takes such corruption into account, it is more concerned with actual or potential corruption in the form of excessive patronage, nepotism, job reservations, 'favor-for-favors,' secret party funding, and suspiciously close ties between politics and business. In our view, these insidious sorts of corruption are potentially of much greater risk to foreign business in that they can lead to popular discontent and unrealistic and inefficient controls on the state economy and encourage the development of the black market.

The greatest risk in such corruption is that at some time it will become so overweening, or some major scandal will be suddenly revealed, as to provoke a popular backlash, resulting in a fall or overthrow of the government, a major reorganizing or restructuring of the country's political institutions, or, at worst, a breakdown in law and order, rendering the country ungovernable.

- Military in Politics

The military is not elected by anyone. Therefore, its involvement in politics, even at a peripheral level, is a diminution of democratic accountability. However, it also has other significant implications.

The military might, for example, become involved in government because of an actual or created internal or external threat. Such a situation would imply the distortion of government policy to meet this threat, for example by increasing the defense budget at the expense of other budget allocations.

In some countries, the threat of military takeover can force an elected government to change policy or cause its replacement by another government to be more amenable to the military's wishes. A military takeover or threat of a takeover may also represent a high risk if it is an indication that the government is unable to function effectively and that the country therefore has an uneasy environment for foreign businesses.

A full-scale military regime poses the greatest risk. In the short term a military regime may provide a new stability and thus reduce business risks. However, in the longer term the risk will almost certainly rise, partly because the system of governance will be become corrupt and partly because the continuation of such a government is likely to create an armed opposition.

In some cases, military participation in government may be a symptom rather than a cause of underlying difficulties. Overall, lower risk ratings indicate a greater degree of military participation in politics and a higher level of political risk.

- Religious Tensions

Religious tensions may stem from the domination of society and/or governance by a single religious group that seeks to replace civil law with religious law and to exclude other religions from the political and/or social process; the desire of a single religious group to dominate governance; the suppression of religious freedom; or the desire of a religious group to express its own identity, separate from the country as a whole.

The risk involved in these situations range from inexperienced people imposing inappropriate policies through civil dissent to civil war.

- Law and Order

"Law and Order" form a single component, but its two elements are assessed separately, with each element being scored from zero to three points. To assess the "Law" element, the strength and impartiality of the legal system are considered, while the "Order" element is an assessment of popular observance of the law. Thus, a country can enjoy a high rating -3 – in terms of its judicial system, but a low rating -1 – if it suffers from a very high crime rate if the law is routinely ignored without effective sanction (for example, widespread illegal strikes).

- Ethnic Tensions

This component is an assessment of the degree of tension within a country attributable to racial, nationality, or language divisions. Lower ratings are given to countries where racial and nationality tensions are high because opposing groups are intolerant and unwilling to compromise. Higher ratings are given to countries where tensions are minimal, even though such differences may still exist.

- Democratic Accountability

This is a measure of how responsive government is to its people, on the basis that the less responsive it is, the more likely it is that the government will collapse, peacefully in a democratic society, but possibly violently in a non-democratic one.

The points in this component are awarded on the basis of the type of governance enjoyed by the country in question. For this purpose, we have defined the following types of governance: alternating democracy, dominated democracy, de facto one-party state, de jure one-party state, and autocracy.

- Bureaucracy Quality

The institutional strength and quality of the bureaucracy is another shock absorber that tends to minimize revisions of policy when governments change. Therefore, high points are given to countries where the bureaucracy has the strength and expertise to govern without drastic changes in policy or interruptions in government services. In these low-risk countries, the bureaucracy tends to be somewhat autonomous from political pressure and to have an established mechanism for recruitment and training. Countries that lack the cushioning effect of a strong bureaucracy receive low points because a change in government tends to be traumatic in terms of policy formulation and day-to-day administrative functions.