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global demand. Using a shift-share research design, we first show that export shocks cause 
substantial local agricultural expansion and a virtual one-for-one decline in forest cover. We then 
construct a dynamic area-of-effect model that predicts where atmospheric changes should be felt – 
due to loss of forests that would otherwise serve to filter out and absorb air pollutants as they travel 
– downwind of the deforestation areas. Leveraging quasi-random variation in these atmospheric 
connections, we establish a causal link between deforestation upstream and subsequent rises in air 
pollution and premature deaths downstream, with the mortality effects predominantly driven by 
cardiovascular and respiratory causes. Our estimates reveal a large telecoupled health externality of 
trade deforestation: over 700,000 premature deaths in Brazil over the past two decades. This 
equates to $0.18 loss in statistical life value per $1 agricultural exports over the study period.
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1. Introduction   

  Globalization creates complex interactions between consumption, production, and 

environmental impacts that occur in locations far apart.1 This paper demonstrates the importance 

of such telecoupling for understanding the health burden of international trade. We study Brazil, 

where agricultural exports have quadrupled in value over the last two decades due to rising 

global demand. This export boom has been accompanied by substantial forest loss as land is 

cleared to accommodate the expanding agricultural production. We show that export-driven 

deforestation in Brazil has far-reaching health consequences, as the lost forests would otherwise 

have acted as natural air filters – capturing airborne particulates and absorbing harmful gases – 

thereby protecting air quality in cities hundreds or even thousands of miles downwind. As a 

result, trade-induced forest loss in one region can degrade air quality in distant communities. We 

find that the magnitude of the health effects is substantial, even relative to the enormous 

economic value of Brazil’s agricultural trade over the study period. 

  We are motivated by an emerging debate on the “non-economic” effects of trade, 

particularly with regard to its interaction with health and the environment (Nunn and Qian, 2010; 

Copeland, Shapiro, and Taylor, 2022). This is especially relevant in developing country context, 

where the reliance on exporting resource-intensive products plays a key role in achieving 

development goals (Frank and Schlenker, 2016). In current literature, the environmental costs of 

deforestation are predominantly associated with climate change and ecosystem disruptions 

(Copeland, Shapiro, and Taylor, 2022; Balboni et al., 2023). These include projected alterations in 

global temperature and precipitation patterns (Bonan, 2008), impacts on biodiversity (Dasgupta, 

2021), and increased risk of crossing ecosystems tipping point (Franklin and Pindyck, 2018). 

While such long-run effects are expected to be profoundly important, they are difficult to 

empirically pin down due to their diffuse and delayed nature. In contrast, our study examines 

an immediate environmental channel—air pollution—and its direct impact on human health, 

which can be observed in current data. The main message is that the environmental costs of trade-

 
1 Economists have extensively studied how trade enhances growth (Grossman and Helpman, 1990) and 
productivity (Alcalá and Ciccone, 2004), and how it interacts with institutional quality (Levchenko, 2007). 
Empirical studies show international trade could affect the environment in positive or negative ways (e.g., 
Antweiler et al., 2001; Frankel and Rose, 2005; Managi et al., 2009; Abman and Lundberg, 2020), and 
emphasize the large spatial ranges of these impacts. Incorporating multiple locations and environmental 
consequences is important in assessing the overall welfare effects of globalization. 
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induced deforestation are considerable, even when focusing only on short-term cardio-

respiratory health impacts. 

  We begin by estimating the causal effect of agricultural exports on local forest land 

coverage. During the two decades of our study period (1997–2019), Brazil significantly expanded 

its agricultural land use, coinciding with a substantial decline in forest cover. This pattern of 

deforestation is widely suspected to be associated with growing agricultural export demands, 

particularly from China and the European Union, which drive farmers to employ slash-and-burn 

methods for rapid land clearing to boost agricultural production. We estimate the causal link 

between agricultural exports and deforestation using a shift-share research design, which 

exploits variation in regions’ exposure to global demand shocks (“shift”) due to historical 

differences in export capacity across product categories (“share”). Brazilian regions are exposed 

to idiosyncratic import shocks across a wide range of product categories, providing a suitable 

context for applying the shift-share research design (e.g., Adao, Kolesár, and Morales, 2019; 

Borusyak, Hull, and Jaravel, 2022). Our estimates show that each 1,000 BRL increase in export 

per capita reduces forest cover in the area by 0.174 percentage points. Using the same framework, 

we also demonstrate that areas losing forest simultaneously experience agricultural expansion, 

primarily in land-intensive crops long associated with deforestation, notably soybeans and sugar.  

  Next, we estimate the impact of forest loss on downstream environmental and health 

outcomes. To do this, we first need to identify the extent of cross-boundary pollution spillover: 

the impact of a pollution source—or in our case, the absence of forests that would have reduced 

pollution—does not conform to administrative boundaries and can extend far beyond its origin 

(e.g., Heo, Ito, and Kotamarthi, 2023). We develop a simple area-of-effect (AoE) model that 

predicts the geo-temporal influence of a given city’s forest loss by simulating how wind carries 

air pollutants across space and time.  This model yields a comprehensive matrix of “upwind-

downwind” linkages that quantify the intensity of pollution transport between each pair of cities 

in each month. Our model is parsimonious enough to be computationally feasible, yet it captures 

atmospheric transport realistically: we show that when the model predicts a strong downwind 

connection between two cities, the measured pollution levels in those cities (which are data that 

we did not use in training the model) are highly correlated; conversely, when the model predicts 

no connection, the two cities’ pollution levels show little co-movement. Put differently, the AoE 
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model accurately maps potential pollution spillovers across distant locations, allowing us to trace 

pollution from deforestation areas to downwind populations.2 

  Building on this pollution transport model, we implement a quasi-experimental design 

to estimate the causal impact of upstream forest loss on downstream outcomes. For each potential 

“sender” city (a deforestation location) and “receiver” city downwind of that sender, we relate 

changes in the sender’s forest cover to the receiver’s pollution and health outcomes, allowing the 

strength of this relationship to vary with the predicted downwind linkage intensity from the AoE 

model. The regressions include high-dimensional fixed effects such as sender–receiver pair by 

month-of-year fixed effects and year fixed effects to exploit quasi-random variation in wind 

patterns, thereby isolating how upwind deforestation influences downwind conditions. 

  Our findings show that deforestation in upwind cities significantly leads to increased air 

pollution and higher mortality rates in downwind cities. The mortality effect is primarily driven 

by excess deaths from cardiovascular and respiratory causes, consistent with a pollution 

exposure pathway. Falsification tests show that deforestation had no effect on health outcomes 

that are plausibly unrelated to air quality (e.g. accidental death rates), and periods with minimal 

wind connectivity between a given city pair exhibit no pollution or mortality impact. 

  Losses in upwind forests can affect downwind air quality through two potential 

pathways. The first is the loss of natural filtration: deforestation eliminates the forest’s capacity 

to filter and absorb airborne pollutants, allowing more pollution to reach downwind areas. The 

second is a fire effect, as deforestation (often via slash-and-burn) increases the frequency of 

wildfires that produce smoke drifting into downwind cities. Though we cannot disentangle these 

channels perfectly, we incorporate satellite data on fire activity into our analysis, and show that 

when we control flexibly for upwind fire emissions, our pollution and mortality estimates remain 

virtually unchanged. The direct impacts of fires on downwind health outcomes are also much 

less pronounced when jointly estimated with forest losses. The evidence thus points to the loss 

 
2 An expanding body of literature has leveraged variability in wind conditions to estimate the causal effects 
of air pollution (e.g., Deryugina et al., 2019; Rangel and Vogl, 2019; Anderson, 2020; Graff Zivin et al., 2023; 
Guidetti, Pereda, and Severnini, 2024). A key methodological innovation in our work is the development 
of a computationally feasible approach to build a comprehensive matrix of wind transport relationships 
across city pairs. This is crucial when the researcher’s goal is not only to measure the burden of pollution 
in the destination area but also to trace that burden back to its sources. 
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of forests’ filtration function as a more prominent channel linking deforestation to downwind 

pollution and mortality.  

  Together, our estimates can be integrated to gauge the overall impact of trade-induced 

deforestation. We calculate that Brazil’s agricultural export growth over 1997–2019 was 

responsible for approximately 3.6 million hectares of forest loss, which in turn caused an 

estimated 732,000 excess premature deaths across Brazil via increased pollution. In monetary 

terms, the lost life years correspond to roughly 513 billion USD (in 2019 dollars) in life value loss 

using standard Value of Statistical Life (VSL) estimates, equivalent to about 18% of the total 

agricultural export value of Brazil during the period. This headline estimate is quantitatively 

plausible: it implies roughly a 1% increase in mortality risk per 10 µg/m³ of particulate pollution, 

on the same order as prior estimates. For example, Deryugina et al. (2019) report an elasticity of 

around 1.8% for the U.S. elderly population.  Our estimate is likely conservative: we focus on 

contemporaneous mortality responses, whereas the long-term effects of pollution exposure are 

typically larger (Ebenstein et al., 2017), and we do not account for non-fatal health damages such 

as morbidity or reduced labor productivity (Graff Zivin and Neidell, 2012; Borgschulte, Molitor, 

and Zou, 2022). 

  We make three contributions to the literature. First, we quantify the causal impact of trade 

on deforestation. Tropical deforestation remains a critical environmental challenge, with 

implications for climate change and biodiversity loss (Burgess et al., 2012; Balboni et al., 2023). 

While the trade and environment literature has traditionally focused on the role of industrial 

emissions, there is a growing body of work that examines the environmental impact of trade 

through its interaction with natural resources. In particular, recent research explores how trade 

liberalization affects land use and forest cover (Harstad 2024; Farrokhi et al., 2024). To the best of 

our knowledge, this paper provides among the first causal estimates on the impact of exports on 

deforestation. The most closely related work is Carreira, Costa, and Pessoa (2024), who study the 

impact of agricultural productivity changes and China shocks – and their interactions – on forest 

cover in Brazil.3 Earlier work such as Ferreira (2004) also documents a negative relationship 

 
3 Carreira, Costa, and Pessoa (2024) identify a strong negative impact of new agrotechnology (genetically 
engineered soy seeds) on forest cover in Brazil, along with a negative, though less statistically robust, effect 
from trade shocks. Our findings on trade-driven deforestation in Section 4 align broadly with their results, 
though our approach differs in two key ways. First, instead of focusing solely on demand shocks from 
China, our instrumental variable captures agricultural demand variation from multiple major importing 
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between trade and forest cover, though mostly based on cross-country comparison without 

causal identification.4 

  Second, we add to the literature on the environmental and health effects of forests. This 

literature is nascent in itself, but emerging applications have found important implications of 

forest presence on weather, climate, agriculture, infectious diseases, health, among other social 

economic outcomes such as property values (Berazneva and Byker, 2017, 2022; Garg, 2019; Jones 

and Goodkind, 2019; Druckenmiller, 2020; Han et al., 2021; Arujo, 2023; Grosset-Touba, Papp, 

and Taylor, 2023; Li, 2023; Xing et al., 2023). Our study is the first to identify a direct link between 

forests and mortality rates, adding a significant dimension to the costs associated with forest loss, 

and doing so across a wide, inter-city geographical scale. By quantifying how forests safeguard 

human life via pollution reduction, we highlight an immediate public health value of forest 

conservation that complements the longer-run climate and ecosystem values. 

  Third, we formally link trade, deforestation, and health, identifying natural capital 

depletion as an important yet overlooked channel through which trade affects welfare. Prior 

research has recognized that trade shocks can influence health through income channels or 

through changes in local pollution emissions. For example, trade-induced job loss has been 

shown to increase drug overdoses (Pierce and Schott, 2020), reduce access to employment 

insurance (Guerrico, 2021), and worsen workers’ physical and mental health (Adda and Fawaz, 

2020). Bombardini and Li (2020) show that Chinese cities specializing in dirty industries 

experience both pollution and income effects, leading to increases in mortality. In contrast, cities 

specializing in clean industries only enjoy income effects and experience decreases in mortality. 

Gong et al. (2023) examine how foreign demand shocks due to the global economic crisis reduce 

demand for Chinese products, drive local changes in air quality, and affect mortalities. Tanaka, 

Teshima, and Verhoogen (2022) analyzes the effect of a U.S. air‑quality standard on cross‑border 

battery‐recycling flows and finds that recycling shifted from the United States to Mexico which 

in turn led to increased lead exposure and worsened infant health outcomes near Mexican plants 

We extend this literature by emphasizing the role of natural capital—in our case, the Amazon 

 
countries. Second, we use a more extensive dataset with additional years and refined satellite 
measurements of forest cover, likely enhancing the precision of our estimates. 
4 See also Andela et al. (2017) and Curtis et al. (2018) for cross-country estimates. The general link between 
agricultural expansion and deforestation is more extensively studied. See, for example, Busch and Ferretti-
Gallon (2017), Assunção et al. (2020), Heilmayr et al. (2020), and Penderill et al. (2022). 
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forest—as an important determinant of population health. Our analysis shows that trade-

induced depletion of this natural resource can substantially undermine the net social benefits of 

trade, by imposing large health externalities on distant communities that are typically omitted 

from conventional trade benefit–cost calculations. 

  Our work also provides a quantitative basis to account for the environmental externalities 

of trade and the value of ecosystems like forests in economic policy analysis. Policymakers have 

only a limited set of tools (e.g. domestic environmental regulations or conservation policies) to 

mitigate the natural capital depletion associated with trade-driven growth (Copeland, Shapiro, 

and Taylor, 2022). Designing effective policy responses requires rigorous evidence that 

monetizes the value of natural assets, and our study offers one feasible framework to do so.5 In 

addition to providing an overall estimate of the export-health trade-off, our estimates may also 

be useful for targeting, e.g., identifying areas where the same amount of deforestation would 

lead to the largest downwind environmental health damage. This opens new possibility for more 

informed discussions on balancing the economic gains from trade against the often hidden health 

costs of environmental degradation. 

Section 2 continues with institutional knowledge on trade, deforestation, the 

environment, and human health. Section 3 describes the overall research framework and data 

sources. Section 4 presents the causal estimation of the effect of export on forest coverage. Section 

5 presents the health analysis. Section 6 presents the cost calculation and concludes the paper.  

 

2. Institutional Background 

2.1 Agricultural Export and Deforestation in Brazil  

 Brazil is the eighth largest economy and the world’s seventh most populous country. At 

the same time, Brazil is an ecological hotspot, home to 60 percent of the Amazon rainforest and 

the Cerrado biome, the world’s most biodiverse tropical savannah. It is estimated that Brazil 

 
5 See, for example, Recommendation 3 of National Strategy to Develop Statistics for Environmental-Economic 
Decisions, Office of Science and Technology Policy, Office of Management and Budget, Department of 
Commerce (2023). In addition to direct regulations, many alternative methods for fighting deforestation 
may also benefit from concrete estimates of health effects of forest losses, such as conservation contracting 
and ecosystem payment programs (Jayachandran et al., 2017; Harstad, 2024). 
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holds about 10 percent of the world’s known biodiversity (Lewinsohn and Prado, 2005). With the 

rapid expansion of agribusiness in Brazil, deforestation is emerging as an environmental crisis. 

In many developing countries, including Brazil, farmers are driven to deforest land as a means 

to increase their agricultural output and income. The prevalent method of land conversion 

involves slash-and-burn techniques, where trees are cut down and the remaining vegetation is 

burned, enriching the soil with nutrients from the ash. The opening of new lands for agriculture 

is frequently facilitated by government subsidies or lax enforcement of environmental 

regulations, which further incentivizes farmers to engage in these practices (Fearnside, 2005). 

 The interplay between agricultural expansion and deforestation is particularly evident in 

the Brazilian Amazon Rainforest and the Cerrado, where the cultivation of soybeans and the 

expansion of cattle ranching are the primary agricultural activities driving deforestation (Song et 

al., 2021). Soybean have seen increased demand globally, particularly from China and the 

European Union, for use as livestock feed and in various food products. This demand has led to 

Brazilian farmers to clear vast tracts of the Amazon to cultivate this lucrative crop. Similarly, 

cattle ranching, which requires extensive land area for grazing, has expanded dramatically, 

making Brazil one of the world’s largest beef exporters. The profitability of these agricultural 

ventures, along with insufficient regulatory enforcement and government policies that frequently 

favor economic growth over environmental protection, is widely regarded as a major driver of 

significant deforestation in the region (Barona et al., 2010).  

 Weak enforcement of environmental laws has further exacerbated deforestation. Brazil’s 

Forest Code mandates that private landowners conserve a portion of their land under native 

vegetation—80% in the Amazon biome with the remaining 20% allowed for clearing (Brazil WWF, 

2016). Compliance with these rules is ostensibly monitored through various programs, including 

the use of advanced technologies such as satellite remote sensing (Mullan et al., 2022). In practice, 

however, those caught illegally clearing forests often face limited consequences. The Brazilian 

Institute of Environment and Renewable Natural Resources (IBAMA), the federal environmental 

enforcement agency, can issue fines and embargoes on illegally deforested land, and severe cases 

may be prosecuted with potential jail time for offenders. Yet bureaucratic delays and legal 

appeals have frequently blunted the effectiveness of these enforcement tools: by 2020, fewer than 

10% of environmental violation cases had resulted in a fine being paid. This lack of effective 

punishment likely has eroded the deterrent power of the regulations (Nunes et al., 2024). 
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2.2 Forests and the Environment   

 Forests are a crucial part of natural capital and underpin both ecological and 

environmental stability. They provide habitat for roughly 80% of terrestrial species worldwide 

(Aerts and Honnay, 2011). They also regulate water, oxygen, and carbon cycles and maintain 

broader biogeochemical balances. Beyond these roles, forests influence climate at multiple scales. 

Globally, they are the largest carbon reservoirs, absorbing greenhouse gases and serving as a 

foundation for carbon offset programs such as REDD+. Locally, shading and evapotranspiration 

help shape microclimates (Bonan, 2008; Pan et al., 2011). 

Forests are equally central to human well-being. More than 1.6 billion people rely on them 

for food, fuel, or shelter, and around 70 million—including many Indigenous groups—depend 

on forests for settlements (UN, 2021). They also shield communities from environmental risks, 

reducing flood damage and improving air quality. In this paper, we emphasize the role of forests 

in filtering air pollution, which we argue is an often overlooked mechanism through which trade-

induced deforestation affects health. Air quality responds rapidly to changes in forest cover, 

allowing us to link export shocks to environmental outcomes. Because air pollution produces 

immediate mortality risks, this channel offers a direct way to quantify the health externalities of 

deforestation. 

Forests can mitigate air pollution through several mechanisms. One primary channel is 

the physical deposition of particulate pollutants onto plant surfaces. Tree canopies present an 

immense surface area of leaves, needles, and bark that acts as a natural filter for airborne 

particulate matter . As polluted air moves through a forest, particles collide with or settle onto 

these surfaces. Empirical studies confirm that foliage can capture and retain substantial quantities 

of particulate matter pollution, effectively serving as a sink for suspended particulates (e.g., 

Wesely and Hicks, 2000; Betts et al., 2008; Janhall, 2015).  

Forests also directly remove gaseous pollutants such as SO₂, NOₓ, and O₃ from the 

atmosphere via plant physiological processes. Tree leaves absorb pollutant gases through their 

stomatal pores (microscopic openings that plants normally use for CO2 intake and transpiration). 

The plant’s phytoremediation process then transform pollutants into inert or usable compounds 

(Wei et al., 2017).  
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Beyond serving as physical and biochemical sinks, forests can also alter the microclimate 

in ways that can reduce local pollution formation and persistence. A well-known effect is canopy 

shading and evapotranspiration, which cools the air beneath and around trees. Lower air 

temperature directly translates into slower photochemical reaction rates that produce ozone and 

other secondary pollutants, and higher humidity and rainfall promote the removal of particulate 

pollutants from the atmosphere  (Nowak, et al., 2006; Coates et al., 2016). 

Importantly, the deforestation–air pollution–health link is not confined to local areas, 

because wind can transport pollutants over long distances. Prevailing winds carry pollution from 

upwind deforestation zones to downwind regions, so wind speed and direction determine how 

far pollution travels and how long it lingers. Prior research has documented significant 

transboundary air pollution impacts on downwind areas (e.g., Heo, Ito, and Kotamarthi, 2023). 

As a result, deforestation in one location—such as clearing land for export agriculture—can 

degrade air quality and public health in communities far downwind. Recognizing the protective 

role of forests, policymakers have implemented afforestation projects to help shield downwind 

populations from air pollution. For example, China’s Three-North Shelter Forest is a vast 

windbreak intended to reduce dust storms from the Gobi Desert and improve air quality near the 

capital region (Bryan et al., 2018).   

 

3. Research Framework and Data  

3.1 Research Framework 

 Before proceeding, it is worth laying out how various parts of our empirical estimation 

are eventually going to line up. Our goal is to estimate the external health effects of trade-induced 

deforestation that occurs in city i, recognizing that this effect need not confine locally to where 

deforestation occurs. The empirical analyses can be thought of as being organized around the 

following conceptual equation: 

Health Effectsi = ∑ ∂Foresti
∂Tradei�����
Section 4

r ⋅  ( ∂Healthr
∂Foresti

|  Windi→r�����
Section 5.1

�������������
Section 5.2

 )     (1) 
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 Section 4 estimates the causal effect of trade on deforestation ( ∂Foresti
∂Tradei

 ). This estimate is 

entirely local in nature: we want to learn how much of city i’s deforestation is due to trade shocks 

to that city. Section 5 estimates the spillover health effects of city i’s deforestation on all potential 

“receiver” cities indexed by r. Section 5.1 first builds an algorithm that identifies these potential 

receivers. We use high-frequency wind direction information to create a downwind exposure 

index Windi→r which summarizes the degree to which city i may have an influence on city r’s 

environmental condition due to atmospheric motions. Section 5.2 then builds on this information 

to estimate the relationship between city i’s forest cover and receiver city r’s health outcomes – 

which we show is highly dependent on, and nonlinear with respect to, the downwind exposure 

index. The total effect of city i’s is thus the summation across its effects on various downwind 

receiver cities. In Section 6, we come back to an empirical version of equation (1) to derive our 

headline, cost-of-trade-induced-deforestation number.  

 Equation (1) also makes clear that our analysis focuses specifically on one mechanism 

linking trade to health, rather than attempting to capture the full spectrum of trade’s economic, 

environmental, and health effects. Our goal is to quantify the health externality transmitted via 

trade-induced deforestation and long-distance pollution transport. Trade can also influence 

health through other channels – for example, by raising incomes, improving healthcare access, or 

spurring infrastructure development – which lie beyond our scope. By isolating this 

deforestation–pollution–health pathway, we highlight an important but previously overlooked 

channel without making broad claims about trade’s overall welfare effects. 

  

3.2 Data   

 Exports. Our export data is from the Comex database provided by Brazil’s Foreign Trade 

Secretariat (Secretaria de Comércio Exterior - Comex). The original data is at the municipality by 

month level and is structured using the Harmonized System at the 4-digit level (“HS-4”), which 

provides detailed categorization of exported goods. We have access to the data between 1997 and 

2019. 

 Brazil’s export data report the municipality of origin as the fiscal domicile of the exporting 

firm, not necessarily the production site. This can misalign recorded export locations with where 
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commodities are actually produced. This reporting convention is consistent across sectors, though 

its impact varies. For example, large mining or manufacturing companies often base their 

corporate offices in major cities while the mines or factories are in distant rural municipalities. By 

contrast, many agricultural exporters – notably cooperatives and trading companies in the farm 

sector – are located near the farming areas themselves, so the municipality recorded for the export 

is usually within or close to the actual producing zone (Leal and Martins, 2025).6 To alleviate the 

concern, we aggregate the municipal export data to Minimum Comparable Areas (AMC) regions 

which merge municipalities into stable units. Aggregation helps realign exports with production 

areas by capturing cases where an exporter’s city and the production hinterland are in the same 

broader region.  

 Land Use. Our land use data is from MapBiomas. Based on the Landsat satellite images 

produced by NASA and USGS, MapBiomas processes the original, pixel-level satellite data with 

machine learning algorithms through the Google Earth Engine platform. It produces annual land 

use and land cover maps and provides information on the dynamics of different types of land 

cover for Brazil on a 30-meter spatial resolution. There are six general types of land cover, namely 

forest, non-forest natural formation, farming, non-vegetated area, water, and not observed. We 

mainly analyze the data on forest land and farming land. There are four types of forest lands, 

namely forest formation, savanna formation, mangrove, and sandy coastal plain vegetation. 

There are four types of farming land, namely pasture, agriculture, forest plantation, and mosaic 

of uses. For agricultural land, the MapBiomas offers information on major crops, such as soybean, 

sugar cane, rice, cotton, coffee, and citrus. The data used in our paper is the 7.0 version which we 

obtained in 2022.   

 Meteorology. We draw daily temperature and precipitation data from BDMEP (Banco de 

Dados meteorológicos para Ensino e Pesquisa). Between 2000-2015, BDMEP provided data from 

150 weather monitoring stations. The network expanded to include 5,611 stations for the years 

2016-2020. For each station-day, we observe daily minimum and maximum temperatures (°C) – 

from which we calculate average temperature by taking the average of the two – and precipitation 

 
6 In fact, Brazil’s agribusiness supply chains are often regionally anchored. Agricultural cooperatives and 
local trading firms tend to be based in the same regions where crops are grown or cattle raised, which 
means the “municipality-of-record” for exports of major commodities like soybeans or beef often 
corresponds to the production region. See recent study by the Brazilian Agricultural Research Corporation: 
https://www.embrapa.br/macrologistica0/como-fizemos/identificacao-dos-caminhos  

https://www.embrapa.br/macrologistica0/como-fizemos/identificacao-dos-caminhos
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(mm). We then compute station by month average temperature and precipitation. To derive city-

level weather variables, we match all weather stations within a 300-kilometer radius of each city’s 

geographic centroid and calculate the average temperature and precipitation across these 

matched stations. 

             We use wind direction and wind speed data from the European Centre for Medium-Range 

Weather Forecasts Reanalysis 5 (ERA5) reanalysis product. This dataset provides hourly U 

(eastward) and V (northward) components of the wind vectors at a 0.25° grid spatial resolution. 

We use this data to compute daily prevailing wind directions, which are used in the air flow 

analysis in Section 5. 

 Air Quality. Air quality data is sourced from IEMA (the Instituto de Energia e Meio 

Ambiente). It contains hourly air quality monitoring data from 380 stations in 28 cities from 2015-

2022. The IEMA data keeps track of six different air pollutants: fine particulate matter (PM2.5), 

coarse particulate matter (PM10), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2) and 

carbon monoxide (CO). Because trees can mitigate both particulate and gaseous pollutants 

(Section 2.2), rather than focusing on these pollutants individually, we compute the z-scores for 

each of the six pollutants and then average these z-scores to construct an overall air pollution 

index. This index serves as our primary measure of air quality in the regression analysis. 

Regression results using individual pollutant concentrations as the outcome variables are 

available in the Online Appendix Figure 9. 

 Forest Fires. We use fire data from NASA’s Fire Information for Resource Management 

System (FIRMS), which derives fire detection from the MODIS Fire and Thermal Anomalies 

product covering the period 2000–2022. The MODIS instrument identifies active fire hot spots at 

a spatial resolution of 1 km and a daily temporal frequency, detecting both natural and 

anthropogenic fires, whether intentional or accidental. Each detection includes the geographic 

coordinates (at 1 km resolution) and the date of occurrence. We aggregate the number of active 

fire detections to the microregion-by-month level for analysis. 

 Mortality. We obtain mortality microdata from the Mortality Information System 

(Sistema de Informações sobre Mortalidade, or SIM) via the Brazilian National Health System 

Information Technology Department (Departamento de Informática do Sistema Único de Saúde, 
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DATASUS). The SIM data are derived from administrative death records, which are completed 

and issued by physicians, and collected from hospitals and medical examiner offices. 

 From the death record microdata, we observe the decedent’s municipality of residence, 

date of death, and the underlying cause of death coded in the International Classification of 

Diseases ICD-10 classification. Using these information, we aggregate the microdata to obtain 

death counts at the microregion-by-month level between 2000-2021.7 We categorize deaths into 

those due to cardiovascular or respiratory causes (“cardiovascular”, ICD10: I00-I99, J00-J99) and 

all other, non-cardiovascular causes. Separately, we count deaths due to accidents (“external”, 

ICD10: S00-T98, V01/V989), which we will use as a “placebo” outcome in our econometric 

analysis. Finally, we convert death counts to death rate by dividing microregion level population 

counts from the Brazilian Institute of Geography and Statistics. 

 Geography. Because municipality boundaries changed over time during our study 

period, and to address potential misalignment between exporting and production location in the 

COMEX data (as mentioned earlier in this section), we aggregate geographic units to the 3,826 

Minimum Comparable Areas (henceforth “AMC” area) level for temporal consistency (Ehrl, 2017). 

We drop five municipalities that cannot be identified in the municipality-to-AMC crosswalk.8 

Our primary trade-deforestation analysis is based on AMC-level data. Our environmental data 

have a coarser resolution than AMCs (e.g., 0.25 degree for wind, 380 air quality stations). 

Therefore, in airflow modeling and the subsequent environmental health analysis, we aggregate 

AMCs into 557 “microregions” – which we will henceforth refer to as “cities” – as defined by the 

Brazilian Institute of Geography and Statistics.  

 

4. Trade, Agricultural Expansion, and Deforestation 

4.1 Summary Statistics 

 We begin with summary statistics on Brazil’s agricultural export growth, land-use change, 

and deforestation over the study period. Figure 1, panel (a) shows that Brazil’s annual 

 
7  The SIM mortality data began in 1997, although we drop data from 1997 to 1999 due to missing 
information on causes of death. 
8 Mojuí dos Campos, Pescaria Brava, Balneário Rincão, Pinito Bandeira, and Paraíso das Águas. 
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agricultural export value quadrupled from around 20 billion USD in 1997 to over 80 billion USD 

by 2018. Appendix Figure 1 panel (a) shows distribution of export values across agricultural 

products. Appendix Figure 1 panel (b) shows that the increase in exports is mainly driven by 

rising demand from China and the EU. Appendix Figure 3 shows that this export boom was 

concentrated in traditional farming regions: the geographic distribution of agricultural export 

growth indicates that the largest increases occurred in areas with substantial crop production, a 

pattern mirrored by notable agricultural employment gains in those same regions. By contrast, 

Appendix Figure 4 shows that growth in mining exports – the other main sector that saw 

substantial growth during the study period –  followed a very different spatial pattern, suggesting 

that the regions experiencing deforestation were responding primarily to agricultural export 

shocks. 

 Figure 1, panel (b) shows the corresponding land-use changes derived from the satellite-

based MapBiomas data. Brazil’s forest cover declined steadily over the past two decades, almost 

one-for-one with an expansion in farmland area. The map on the right side of the panel highlights 

that deforestation was most pronounced in the same regions that saw large agricultural export 

gains. Consistent with this, Appendix Figure 2 shows that the municipalities with the greatest 

farmland expansion (for example, in Mato Grosso and the Amazon frontier) also suffered the 

largest forest losses. Table 1 presents more summary statistics of key variables used in our 

analysis. We next turn to an empirical strategy to identify the causal effect of export growth on 

land use. 

 

4.2 Research Design  

 We estimate the causal impact of trade shocks on deforestation and other land use 

outcomes using the following regression equation: 

ΔLand Coveri,y = β ⋅ ΔExporti,y + λ ⋅ Wi,y + εi,y  (2) 

where ΔLand Coveri,y is the four-year rate of change in a certain type of land cover at AMC area i 

and year y. For example, when the outcome of interest is deforestation, the land cover variable is 

defined as ΔForesti,y = �Foresti,y+4 − Foresti,y�/Landi,y  where “Forest” denotes forest cover in 

acreage in the AMC-year, and “Land” is total area land size of the AMC. We use a four-year 
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differencing period in both equation (2) and in the construction of our instrumental variable 

below. We will present robustness checks with alternative differencing windows, ranging from 

one to six years. As detailed below, we chose the four-year period as our primary specification 

because the magnitude of the estimated effect stabilizes from this point onward, suggesting that 

a four-year window is sufficiently long to capture the temporal dynamics between export shocks 

and deforestation activities. 

 The key right hand side variable ΔExporti,y is the four-year change in agricultural exports 

per capita. Wi,y is a series of control variables, including macro-region fixed effects, year fixed 

effects, and region-time control variables including income per capita, literacy rate, rural 

population, urban population, population density, and the presence of genetically-modified soy.9 

The coefficient of interest β therefore captures the impact of agricultural export growth on land 

cover changes. We cluster standard errors at the AMC level. All regressions are weighted with 

each AMC’s agricultural population in year y. 

 Simple OLS estimation of equation (2) may suffer from endogeneity and measurement 

errors. We build the following shift-share instrumental variable (IV) for the export variable: 

IVi,y = �∑ Exporti,j,t−4
Exporti,t−4j ⋅

Importj,t+4
 −Importj,t

 

�Importj,t+4
 +Importj,t

 �/2
� ⋅ Exporti,t−4

Popi,t−4
    (3) 

where Exporti,j,t−4/Exporti,t−4 is the “share” of product j in AMC area i’s exports at period t − 4, 

which captures an area’s historical export of a certain type of agricultural product. Importj,t  is 

major importing countries’ total import from the world in product j and year t, which measures 

the global import demand for product j. The term Importj,t+4
 −Importj,t

 

�Importj,t+4
 +Importj,t

 �/2
 therefore captures percent 

change (or “shift”) in product demand over the period of interest. Together, the shift-share terms 

in brackets of equation (3) capture the variation in an area’s exposure to global demand shocks 

due to historical differences in export capacity across product categories. To express the IV 

variable in terms of per-capita dollar value – consistent with the endogenous variable in equation 

(2) – we multiply by Exporti,t−4
Popi,t−4

, which represents area i’s overall historical export exposure.10 

 
9 We follow Carreira, Costa, and Pessoa (2024) in selecting these control variables. Our estimates are 
insensitive to the exclusion of these covariates. 
10  We use time-varying exposure shares rather than fixed shares. This helps capture economically 
meaningful entry into new products rather than restricting attention only to “always-exported” goods, 
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Because the export values of many products are zero in early years, it is not possible to calculate 

growth for some products. To address this issue, we construct the modified version of import 

growth following Davis and Haltiwanger (1992), where the denominator is the average of the 

start-of-period value and end-of-period value. Appendix Table 1 lists the major importing 

countries and products used in constructing the instrument. 

The shift-share IV strategy relies on trade shocks being (i) diverse, uncorrelated across 

product categories, and (ii) as-good-as-random conditional on shock-level unobservables and 

exposure weights (Borusyak, Hull, and Jaravel, 2022). Several empirical facts and tests support 

these assumptions. 

First, Brazil’s agricultural export base is highly diversified: between 1997 and 2019, Brazil 

exported over 190 distinct agricultural products (at the HS-4 level), with an average Herfindahl–

Hirschman Index of 0.07, indicating very low concentration. Second, import demand growth 

varies widely across products – Appendix Figure 5 shows that different crop categories 

experienced markedly different demand trajectories. These facts imply that our instrument draws 

on a large number of disparate shocks rather than any single dominant trend, making it unlikely 

that one particular commodity shock drives the results. 

To assess exogeneity of trade shocks, we follow Borusyak, Hull, and Jaravel (2022) and 

conduct “pre-trend” tests on whether the instrument is correlated with pre-existing regional 

trends or characteristics. Specifically, we regress pre-shock observable characteristics on the IV 

variable, controlling for the same set of fixed effects variables as in equation (2). We look at control 

variables that we used as time-varying covariates in equation (2), including urban, rural, and total 

population, population density, per capita income, literacy rate, and the adoption of genetically 

engineered soy seeds (to capture agrotechnology adoption). We further consider a rich set of 

climatic variables including average temperature, precipitation, humidity, and wind speed, 

which might correlate with agricultural suitability. Table 2 reports the results of the pre-trend 

 
which is particularly relevant for Brazil as a rapidly growing exporter. Borusyak, Hull, and Jaravel (2022) 
explains the econometric tradeoff: updating shares improves the first stage and reflects real shifts in 
exposure, but it requires stronger identification assumptions, since orthogonality may fail if shocks are 
serially correlated and shares respond to past shocks. As discussed later in this section, we construct the 
instrument using product-level import growth and export shares measured four years earlier (and show 
stability across alternative lag windows), and we verify that the instrument is not correlated with pre-shock 
regional trends. These diagnostics support our setting as a permissible case for using time-varying shares. 



18 
 

tests. Among the 12 characteristics examined, we reject imbalance only for per capita income. 

Overall, these patterns are consistent with the instrument being exogenous. In all IV regressions 

below, we control for per capita income together with the demographic, economic, and 

technology covariates listed above.11 

Another potential concern with shift–share designs is that if regions have similar export 

structures, they may experience correlated shocks, which can lead to over-rejection (Adão, 

Kolesár, and Morales, 2019). For simplicity, we follow Adão, Kolesár, and Morales (2019)’s 

specifications and conduct a placebo test where we simulate shift-share IV variables with shift 

shocks randomly drawn from a normal distribution with mean 0 and variance 5. We then estimate 

the reduced form effect by regressing forest growth on the placebo IV, repeating this procedure 

1,000 times and documenting the fraction of times results show significant effects. Appendix 

Figure 6 shows that the placebo regressions render significant results just 11% of time at the 5% 

significance level (compared to 55% of the time in the application analyzed in Adão, Kolesár, and 

Morales, 2019), and 1.5% of the time at the 1% significance level. This suggests that our inference 

is not unduly biased by correlated shocks across regions, and that the conventional clustered 

standard errors are appropriate in our setting. 

 

4.3 Results   

 Figure 2 reports the estimation results. Each node on the tree represents a separate 

regression. All regressions follow the exact same IV specification as laid out in equations (2)–(3), 

except for the outcome variables which are denoted by the name of the node. Branches of the tree 

represent hierarchies of the land use variables defined in the MapBiomas dataset. For example, 

the “forest” land use category consists of four subcategories: “forest formation,” “savanna 

formation,” “mangrove,” and “sandy.” The values on the four sub-nodes represent the causal 

impacts of export on each subcategory, which collectively sum to the overall causal impact on the 

main forest node. We find that the total deforestation effect is driven mainly by reductions in the 

 
11 In an additional and likely over-conservative check, we construct alternative IV by excluding all Brazil’s 
exports when computing world import growth, and pre-residualizing product-level import growth on HS-
2 category fixed effects to remove any common component of shocks at the broader product-group level. 
These adjustments likely lead to understatement of the true demand shock magnitudes but may further 
reduce reverse-causality concerns. Our results remain robust under this alternative IV. 
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“forest formation” and “savanna formation” subcategories (i.e., primary forests and woody 

savannas), with minimal changes in mangrove or sandy cover. 

 The headline “export-deforestation” estimate of this paper is shown on the “ΔForest” 

node of the figure: each 1,000 BRL increase in export per capita reduces forest cover by 0.174 

percentage points. This estimate is statistically significant at the 5 percent level, and the effect size 

converts to about 5.7 percent of a standard deviation (S.D.) reduction in forest cover per 1 S.D. 

change in export. Consistent with the sub-node breakdown mentioned above, this total 

deforestation effect is driven mainly by decreases in forest and savanna formation. 

 Turning to the lower parts of the graph, we find that export leads to significant increases 

in total farmland coverage by about 0.214 percentage points. This effect is diluted by the fact that, 

in the land use data, “forest plantation” is counted toward farming activities, which – consistent 

with our deforestation results above – is negatively affected by exports. The smaller net gain in 

overall farmland relative to the larger increase in cropland (0.334 percentage points) suggests 

some land use substitution – for example, part of the new crop expansion comes from converting 

existing pasture or mixed-use land to row crops, rather than exclusively clearing new forest land. 

This indicates that export booms can induce both extensification (clearing forests for new farms) 

and intensification (repurposing previously cleared land toward higher-value crops), consistent 

with well-known patterns in Brazilian agriculture. 

 We can further look at which crop types drive the agriculture effects. The right-hand side 

parts of the graph show that export’s effect on agriculture is driven primarily by an increase in 

soybean farming. Indeed, soybean cultivation accounts for the bulk of the export-induced 

expansion in crop area, which is consistent with Brazil’s dominant role in global soy markets. The 

prominence of soy-driven deforestation has been a focal point of policy discussions in Brazil – for 

example, the 2006 Soy Moratorium in the Amazon biome was introduced to curb forest clearing 

for soybean fields. Our results empirically confirm that soybean export demand was a key driver 

of land use change, which reinforces the importance of such policy measures. 

 Finally, it is worth noting that our choice of a four-year differencing window was guided 

by stability of the coefficient. Table 3 shows that using shorter windows yields smaller immediate 

effects, whereas beyond four years the cumulative effect plateaus. This suggests that 

deforestation in response to an export shock can play out over several years, but most of the 



20 
 

impact materializes within a four-year period. The consistency of the estimates across these 

checks provides confidence in the stability of the export–deforestation relationship.  

 

5. Health Effects 

5.1 Area-of-Effect Modeling 

 To capture downwind environmental and health effects, we build a matrix that 

summarizes monthly wind flow intensities between all pairs of cities in Brazil. In the interest of 

space, here we provide an intuitive explanation of the procedure, leaving computational details 

to the Online Appendix. 

 Model. The main input data are 0.25-degree resolution by hourly wind direction and 

speed information (i.e., vectors) from the ERA5 product. We first generate a spatial representation 

of wind flows from individual wind vectors, as illustrated in Figure 3a. Beginning from a particular 

day and city, we construct streamlines by sequentially following the wind’s speed and direction 

on a daily basis. This process maps out the evolving trajectories of the wind field, giving us daily 

representations of the distribution of wind flows throughout the country. 

 Our goal is to build an index, Windi→r,d , which is a summary of downwind intensity 

blowing from a sender city i to a receiver city r on day d. Note that, for any pair of cities that are 

significantly distant from each other, it is meaningless to talk about up/downwind relationship 

on any given “day” because winds blowing from the sender city may take days to arrive at the 

receiver city. We therefore track the trajectory of winds “originating” from a sender city and their 

impacts of downwind cities over multiple days – or “steps” as we refer to them below – using the 

wind streamline data that we constructed earlier.  

 We define downwind intensity score using the following formula: 

Windi→r,d,t = exp�−α ⋅ radt − β ⋅ |θ|i→r,d,t − γ ⋅ disti→r,d,t�     (4) 

 Starting from sender city i on day d and at step t, we assume downwind intensity of 

receiver city r follows an exponential decay as a function of three components (U.S. EPA, 2018; 

Phillips et al., 2021). The first component is the search radius at the step (radt), which captures 

general decreases of downwind intensity over steps. The initial radius is 300 km, and we increase 
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the search radius by 20 km at each step to capture both the uncertainty in the streamline 

computation and the dispersion of air. The second component is the scalar product of the angle 

between the receiver city and the wind direction originating from the sender’s location (|θ|i→r,d,t), 

which means we assign higher intensity to receiver cities that sit closer to the exactly-downwind 

direction of the sender. The third component is simply the distance between the sender and the 

receiver city (disti→r,d,t), which captures geographic decay. We assume Windi→r,d,t to be zero if 

di→r,d,t > radt (i.e., if receiver city lies outside of the search radius at step t) or if θi→r,d,t > 0.4π  

(i.e., if the receiver city is not obviously in the downwind direction from the sender city.12 Starting 

from each particular sender city and day, we iterate the procedure for seven steps (i.e., a week).  

 Perhaps an easier way to think about the procedure above is that, we essentially “move” 

the location of the sender city with the wind flow and see which receiver cities it touches along 

the path over the next week period. A visualization of the procedure is shown in Figure 3b. The 

red arrow at the center represents the locus of the wind flow starting from the sender city. The 

growing ball of uncertainty around the arrow shows expanding search radius rad over steps in 

equation (4). The visualization also explains why both the relative angle and distance variables 

(θ and dist) have starting day and step subscripts (d and t): we track where winds originate and 

where they move to, and we compute each receiver city’s relative angle and distances 

dynamically.  

 We aggregate step-wise downwind intensity scores to the day level: 

Windi→r,d = ∑ Windi→r,d,tt     (5) 

and in the econometric analysis below, we further average this city pair-daily score to the monthly 

frequency (Windi→r,m,𝑦𝑦 where the variable is indexed by month m, and year y) to make the size of 

the regression dataset manageable. Because the numerical values of these scores lack direct 

contextual meaning, in econometric analysis we use a nonparametric approach, grouping this 

variable into decile bins for positive values plus a separate bin for when downwind score is zero 

 
12 We use parameter values {α,β, γ} = {0.7, 0.5, 0.2}. These numbers are empirically determined such that 
we would obtain a spatially continuous flow coefficient function through the successive steps, and that the 
directionality of the observed winds are respected through the flow coefficient representation. See Online 
Appendix for more details. 
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(i.e., because the receiver city is too far away or it is not in the downwind direction, as discussed 

earlier).     

 Validation. Estimating atmospheric transport between cities is a complex task, but the 

model we outlined above is deliberately parsimonious. This naturally raises the question of 

whether it is sufficient to capture long-range air movement. We propose a validation test: we 

examine whether our downwind index predicts pollution passthrough from upwind to 

downwind cities. Specifically, we focus on fine particulate matter (PM2.5), which is well known 

to travel long distances, and test whether a receiver city’s pollution more closely resembles that 

of its upwind counterpart when the corresponding downwind intensity score is high. 

Importantly, because pollution data were not used in constructing the downwind intensity scores, 

this test provides an independent validation of the model’s ability to capture atmospheric 

transport. 

 We model the passthrough between Pollutioni,m,y and Pollutionr,m,y  – particulate matter 

pollution levels at the sender city i and at the receiver city r in month m and year y – as a function 

of the associated downwind intensity score between the city pair, Windi→r,m,y. We estimate the 

following regression equation: 

         Pollutionr,m,y = β ⋅ Pollutioni,m,y × Windi→r,m,y + γ ⋅ Windi→r,m,y + αi,r,m + αy + εi,r,m,y      (6) 

where Windi→r,m,y is specified as a categorical variable comprising 11 groups: ten decile bins for 

non-zero downwind scores and an additional bin for zero wind values, representing “calm” 

conditions where no downwind relationship is observed between the two cities. We omit the 

main effect of Pollutioni,m,y  from the regression, so that the origin-to-destination pollution 

passthrough β coefficients can be identified for each of the 11 downwind score bins. Equation (6) 

includes sender-by-receiver-by-month-of-year fixed effects (αi,r,𝑚𝑚). The identifying variation thus 

comes from within sender-receiver-seasonal pairs across different years, where variations in 

wind intensities are plausibly exogenous. We also include year fixed effects (αy) to account for 

common shocks at the year level. Standard errors are two-way clustered at both the sender and 

receiver levels. 

 Figure 4 reports the β estimates. We find strong sender-to-receiver PM2.5 passthrough 

when the modeled downwind intensity is high, with a monotonic decline in passthrough as the 

downwind score decreases. Reassuringly, the passthrough effect is near zero when the modeled 
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downwind intensity is zero (i.e., under “calm” conditions). In other words, we observe 

substantial pollution transmission when our model predicts strong atmospheric connectivity, and 

little to no transmission when it predicts none. Taken together, these results provide validation 

that our downwind index effectively captures the potential extent of pollution transport between 

cities. 

 Equation (6) examines how pollution transport varies with downwind intensities. A 

natural question next is whether forest cover along the downwind trajectory between two cities 

reduces this transport. To test this, we estimate a modified version of Equation (6). For each pair 

of sender and receiver cities i and r that has a downwind relationship in a given month (i.e., 

Windi→r,m,y > 0), we compute a measure of upwind forest exposure: the average forest cover 

across all cities located along the i → r  path in the relevant year, which we denote as 

ForestPathi→r,y.13 We then replace the Windi→r,m,y variable in equation (6) with ForestPathi→r,y, 

leaving all other specifications unchanged. Appendix Figure 7 reports the results, grouping 

observations into bins by increments of ForestPathi→r,y. The “none” bin includes pairs with no 

forest cover along the downwind path, while the “10th” bin corresponds to pairs with the densest 

forest cover. The pattern mirrors our earlier findings: pollution passthrough is strongest when 

forest cover is minimal (up to 70% in the absence of any along-path forest) and weakens as forest 

cover increases, falling to about 15% among city pairs with the greatest along-path forest 

concentration. 

 

5.2 Research Design 

 Our goal is to estimate the relationship between a sender city’s quantity of forests and its 

downwind receiver’s environmental and health outcomes, leveraging month-to-month 

fluctuations in the downwind score as illustrated in Figure 3b. Our estimation equation is as 

follows: 

Yr,m,y = β ⋅ Foresti,y × Windi→r,m,y + γ ⋅ Windi→r,m,y + αi,r,m + αy + εi,r,m,y   (7) 

 
13 We use average, rather than total, forest cover across cities along the path, because city pairs that are 
farther apart naturally span more forest area, while they will mechanically have lower rates of pollution 
passthrough between them. 
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 Equation (7) mirrors the structure of Equation (6), with the only difference being that the 

upwind pollution variable is replaced by the amount of forest cover in the upwind area.  A unique 

observation in our estimation data is indexed by sender city (i), receiver city (r), month (m), and 

year (y). The three key variables in this estimation equation are: Yr,m,y, which is the receiver city’s 

outcome in a given month; Foresti,y, which is the sender city’s forest acreage in the corresponding 

year (standardized to mean zero and standard deviation one) multiplied by minus one to capture 

the effects of losses; and Windi→r,m,y, which is the downwind score reflecting strength of wind 

blowing from i to r in that month. Like in equation (6), we categorize the Windi→r,m,y variable into 

11 groups: 10 decile bins for non-zero downwind scores and one additional bin for zero wind 

scores representing “calm” conditions with no downwind relationship between the two cities. 

We then include Windi→r,m,y as a categorical variable in the regression, and so there is one β 

coefficient for each of the 11 downwind score bins.14  

We include sender by receiver by month-of-year fixed effects (αi,r,m ), which isolate 

downwind variation arising within a city pair and month of the year to address potential cross-

sectional and seasonal confounds. For example, consider the city pair of Sao Paulo and Brasilia. 

Our specification compares a particular January when the wind blowing from Sao Paulo to 

Brasilia is particularly strong with other Januaries in different years when the wind strength for 

the same city pair is comparatively weaker. This strategy enables us to parse out cross-sectional 

correlations (e.g., the fact that downwind relationships tend to be generally stronger for city pairs 

where the two cities are in close proximity) and city pair-specific seasonality of wind patterns. 

We also include year fixed effects (αy) to account for common shocks at the year level. In all 

regressions, we two-way cluster standard errors at the sender and receiver levels. 

 Our coefficients of interest are the β’s, which capture the relationship between upwind 

forest losses and downwind environmental or health condition at varying levels of wind intensity 

blowing from the upwind to the downwind city. We hypothesize that at high levels of wind 

intensity, the coefficient should be positive, indicating that forest losses in the upwind city 

 
14 As in Equation (6), we omit the main effect term Foresti,y  from the regression, so that the origin-to-
destination pollution passthrough β coefficients can be identified for all 11 downwind score bins, with the 
coefficient on the “calm” (no downwind relationship) bin serving as a placebo check.  
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increases pollution and mortality in the downwind city. As wind intensity decreases, we expect 

this relationship to weaken.  

Our identifying assumption is that, conditional on the fixed effects controls, the residual 

variation in a receiver city’s upwind forest exposure is as good as random. Note that the “calm” 

wind condition provides an informative falsification check, as little correspondence between 

upwind forest losses and downwind outcomes is expected in the absence of aerodynamic 

relationships between the two cities. 

A potential alternative explanation for the observed relationship between upwind forest 

cover and downwind pollution and mortality is a fire channel, where land-clearing fires—a 

common method for deforestation and farmland conversion—generate air pollution that drifts 

downwind, thereby degrading air quality and creating a spurious negative relationship between 

upwind forest cover and downwind pollution. To examine the relevance of this mechanism, we 

incorporate remote-sensing data on fire activity (Section 3.2) in upwind cities and modify 

equation (7) by including a full interaction of upwind fire activity with downwind wind exposure 

bins. The augmented specification is: 

              Yr,m,y = β ⋅ Foresti,y × Windi→r,m,y + θ ⋅ Firei,m,y × Windi→r,m,y 

                                                                         +γ ⋅ Windi→r,m,y + αi,r,m + αy + εi,r,m,y   (8) 

Here, Firei,m,y  captures the number of fire spots in the sender city during the month, 

measured based on satellite observations (Section 3.2). Equation (8) effectively tests a “horserace” 

between the effects of forest cover and fire activity in upwind areas on downwind outcomes. We 

are interested in two sets of parameter estimates. First, the coefficients on θ reveal the direct 

impact of upwind fires on downwind pollution and mortality. This serves as a useful benchmark, 

since fires are expected to worsen environmental outcomes. Second, we examine how the 

estimated forest coefficient β changes relative to estimates from equation (7), which does not 

control for fire activity. If the observed forest effect primarily reflects fire-driven pollution, then 

introducing fire controls should attenuate the β estimates accordingly. 

 



26 
 

5.3 Results  

 Figure 5 plots the β coefficients from equation (7). Each chart represents results for a 

separate outcome. Start with panel (a), which shows atmospheric outcomes. To facilitate 

interpretation and comparison of results, we use standardized outcomes (mean 0, standard 

deviation 1) in each regression, so that the interpretation of the β coefficients is “the number of 

standard deviation change in receiver city’s atmospheric outcome per 1 standard deviation 

decrease in sender city’s forest coverage.” 

 The left panel of Figure 5a shows that forests have a large effect on downwind air 

pollution reduction. Two notable patterns are worth pointing out about the pollution effect. First, 

the forest-pollution effect increases monotonically with the downwind intensity score. In the 

strongest wind decile bin (bin “1st” on the x-axis), a standard deviation decrease in upwind 

forests increases downwind pollution concentrations by 3 standard deviations.15 Second, we find 

precisely estimated zero effect for the no-wind bin (bin “calm” on the x-axis). This serves as a 

reassuring “placebo” exercise, suggesting that our econometric specification indicates an absence 

of forests’ downstream environmental effect when our wind analysis indeed suggests an absence 

of a significant downwind relationship between the city pair. These two patterns (strong effects 

under high wind, and null effects under calm wind) bolster a causal interpretation: they align 

with the hypothesized mechanism that forest loss affects downwind pollution only when the 

atmospheric transport pathway is active. 

 Appendix Figure 9 disaggregates the pollution impact of upwind deforestation, showing 

that the downwind gradient persists across multiple air pollutants. The magnitudes vary by 

pollutant, with PM₁₀ and O3 showing the largest standardized rises.16 

 The middle and right panels of Figure 5a suggest there is little effect of upwind forests on 

downwind temperatures and precipitation. The empirical impacts of forests on the atmospheric 

conditions is a subject of ongoing research. Here we compare our findings to some existing 

 
15 We will discuss plausibility of this effect size in conjunction with the health effects estimates.  
16 Although ozone is a secondary pollutant, it is well known that ozone and its precursors (e.g., NOₓ) can 
be carried long distances in aged air masses from their source (e.g., Auvray and Bey, 2005). The long-range 
transport is recognized in policy as well: for example, the U.S. EPA’s Cross-State Air Pollution Rule 
explicitly targets upwind NOₓ emissions because they contribute to elevated ozone in downwind states 
(https://www.epa.gov/Cross-State-Air-Pollution/overview-cross-state-air-pollution-rule-csapr).  

https://www.epa.gov/Cross-State-Air-Pollution/overview-cross-state-air-pollution-rule-csapr
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studies. On temperature effects, most empirical studies we are aware of document the local 

cooling effects of forests through shading and evapotranspiration (e.g., Han et al., 2021), and so 

it is not surprising we are not finding a transported effect at large-distance scale. The small 

negative coefficient in the strongest wind bin (less than 3% standard deviation change) may 

reflect a mechanical effect of strong winds, which can enhance ventilation and slightly lower 

ambient temperatures. On precipitation effects, our null effects seem at odds with recent studies 

that show positive impacts of forests on downwind rainfalls (Grosset-Touba, Papp, and Taylor, 

2023). One important difference of our estimation and Grosset-Touba, Papp, and Taylor (2023) is 

the time scale: while we look at monthly frequency impacts, their findings pertain mostly to 

longer-term changes. In Appendix Figure 8, we show that, when aggregating our analysis to the 

annual level, we do see a substantial positive impact of forests on downwind precipitation.17  Our 

pollution results echo Xing et al. (2023) which uses a similar design – though looking at within-

city scale – to examine the impact of urban forests on city air quality improvement.  

 We report health effect estimates in Figure 5b. Given the findings of forests’ impact on air 

quality, we separately examine mortality due to cardiovascular/respiratory causes – which are 

expected to be more responsive to pollution changes – and other, non-cardiorespiratory causes. 

The left panel of Figure 5b shows that upwind forest losses lead to significant increase in 

downwind cardiorespiratory mortality rates. Once again, as we saw in the pollution analysis 

results, the mortality effects are monotonic with respect to downwind intensity score, and we 

find a precise-zero effect when there are no significant downwind connections between the city 

pair. The middle panel reports that we find little impact of upwind forests on mortality of non-

cardiorespiratory causes. Finally, as an additional “placebo” exercise, in the right panel we look 

specifically at mortality due to external causes (“accidents”) and we find no relationship between 

upwind forests and external mortality, regardless of downwind intensity levels. 

 In Appendix Figure 10 we present a heterogeneity analysis in which we use land cover 

transition information to classify each upwind city-year’s forest volume based on its land cover 

type from the previous year, distinguishing how much of the current year’s forest acreage was 

 
17 While forests can contribute to increased local humidity through evapotranspiration, this increased 
moisture might not be sufficient to alter weather patterns significantly in the downwind area, especially 
over short distances or periods. Over the long term, extensive forests can modify regional climate patterns. 
As forests mature, they contribute to higher levels of evapotranspiration. This increased moisture in the air 
can eventually influence weather patterns, potentially leading to more rainfall in downwind areas. 
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previously forest, non-forest vegetation land, agricultural land, or non-vegetated land (i.e., 

urbanized area). We then separately estimate the impacts of upwind forests on downwind air 

quality and cardio-respiratory mortality based on the previous year’s land cover. We found that 

environmental and health benefits primarily arise when upwind areas were forested in the 

previous year, as opposed to other land cover types. In other words, losing an area of intact 

natural forest has a much larger downwind pollution and health impact than losing an equivalent 

area of secondary vegetation or farmland. This result implies that mature forests provide larger 

pollution-filtering services, whereas recently planted forests or areas that were not forest to begin 

with do not confer the same protective benefit. This heterogeneity strengthens the case that it is 

the loss of natural forests (and the ecosystem functions they perform) that is driving the pollution 

and mortality increases. 

Appendix Figure 11 presents tests on the role of upwind fire activity in mediating the 

effects of deforestation, based on estimation results from Equation (8). Panel (a) shows the direct 

effect of upwind fire activity on downwind pollution and cardio-respiratory mortality. We 

observe a clear increase in pollution levels following fire events, particularly in the highest wind 

deciles. While the estimated cardio-respiratory mortality effects exhibit a similar gradient, they 

are imprecisely estimated and not statistically distinguishable from zero. One potential 

explanation is that fire-induced pollution tends to be short-lived and episodic—producing sharp 

but brief spikes in air pollution—whereas mortality risk is more likely to reflect both short-term 

and sustained exposure. In our setting, pollution from deforestation (via the loss of forest filtering) 

likely alters background air quality more persistently, increasing the likelihood of a detectable 

mortality signal. Indeed, Panel (b) shows that our baseline forest effect estimates are virtually 

unchanged after controlling for upwind fire activity, across both pollution and mortality 

outcomes. Together, these findings suggest that the pollution-cleansing mechanism, rather than 

transient emissions from fires, is the dominant channel linking deforestation to downwind 

environmental and health harm in our setting. 

 The magnitude of our pollution and health estimates is also important to contextualize. 

At the strongest downwind wind exposure, a one standard deviation decrease in forest cover was 

associated with roughly a 65 µg/m³ rise in particulate matter (PM₁₀) concentration. The 

corresponding impact on the downwind cardiorespiratory mortality rate is on the order of +0.37 

deaths per 100,000 people. This implies a pollution-mortality elasticity of about 1%, which is well 
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within the range of estimates from prior literature. For example, Deryugina et al. (2019) find an 

elasticity of approximately 1.86% for PM2.5 and mortality among the elderly in the United States. 

Our estimate, encompassing the general population in Brazil, is somewhat smaller but of the same 

order of magnitude. This comparison suggests our results are plausible and perhaps even 

conservative relative to well-studied pollution-health relationships, lending credibility to the 

causal interpretation of the health impact.  

  

6. Discussion and Conclusion 

 Health Costs of Trade-Induced Deforestation. Bringing together our empirical estimates, 

we assess the aggregate health cost attributable to trade-induced deforestation in Brazil. We plug 

in various pieces of our empirical estimates back into the conceptual equation (1) we laid out in 

Section 3. The empirical version of the equation is as follows: 

 Excess deaths due to city i′s agricultural trade deforestation 

                                 = ∑  (βΔTrade→ΔForest ⋅ ΔTradei)r,m,y ⋅ (βForest→CR mortality
i→r,m,y ⋅ Populationr,y)     (9) 

 That is, the total excess deaths due to city i  equals the product of trade-induced 

deforestation in i  (the first parenthesis) and excess deaths per unit of deforestation at a receiver 

city r (the second parenthesis), summed across all receiver cities and time periods. The subscript 

of the term βForest→CR mortality
i→r,m,y  means we only consider the impact of forest on downwind 

cardiovascular mortality – what we found to be responding to upwind forest changes; the 

superscript indicates we use nonlinear estimates as shown in Figure 5, panel (b) based on the 

downwind index associated with the city pair i → r, month m, and year y.  

 One key qualitative insight from this calculation is that trade shocks (and the resulting 

deforestation) occur in areas distinct from where the associated mortality burden is felt. Figure 5, 

panel (a) shows a map of trade-induced deforestation based on our estimates. In panel (b), we 

plot the distribution of total mortality burdens at receiver cities. That is, for each city, we sum up 

excess deaths due to deforestation from all upwind cities over the study period. The difference of 

the spatial patterns between the two panels is apparent: because of wind directivity and 

population distribution, areas with large numbers of excess deaths may situate hundreds if not 

thousands of miles away from where trade deforestation is happening.    
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 Quantitatively, our estimates suggest a total of 3.6 million ha loss of Brazilian forests due 

to trade, resulting in over 732,000 excess deaths over the study period. For reference, total deaths 

in Brazil in the year of 2018 is estimated to be around 1.28 million. We quantify the mortality 

impacts in terms of its statistical life value, which is a common way to think about the costs 

(values) of environmental damage (protection) (e.g., U.S. EPA, 2000). Because direct estimation 

of the value of a statistical life (VSL) for Brazil is lacking, we use a transfer approach that 

downscales the U.S.-based VSL estimate of $2.3 million (Ashenfelter and Greenstone, 2004) by 

factors of a transfer elasticity of 1.2 (Narain and Sall, 2016) times a Brazil-U.S. income per capita 

ratio of 7. This yields a VSL estimate of $0.7 million USD in 2019 dollars.18 The total statistical life 

value loss of the 732,000 extra deaths thus amounts to about 513 billion USD. This represents a 

significant number – about 18 percent of the total agricultural export value of Brazil over the 

study period.    

 Our estimated elasticity of 0.18 may underestimate the actual health effects of trade-

induced deforestation, as it does not account for morbidity, long-term health impacts beyond 

same-month pollution exposure, or productivity and income losses that could indirectly worsen 

health outcomes. In addition to air pollution, trade-induced deforestation may also degrade water 

quality, alter microclimates, and disrupt ecosystems, all of which could further affect health and 

increase the actual elasticity between agricultural exports and mortality. 

 Our study does not suggest that agricultural trade is inherently negative. Trade can 

generate multiplier effects in the exporting country through sectoral changes, employment, and 

migration, leading to welfare gains that exceed the value of the exports themselves. However, 

our paper highlights a large negative aspect of trade on health and the resulting regional 

inequality, as the mortality costs and income benefits may not be distributed in the same areas.  

With increased globalization, to meet foreign demand without high health costs, 

agricultural producers should prioritize increasing yield rather than expanding agricultural lands.  

 
18 The only alternative estimate of the monetary value of mortality risk in Brazil that we are aware of is 
from Soares (2005). While the paper does not report a standalone VSL for Brazil, it uses a VSL-based 
willingness-to-pay (WTP) framework to value the mortality component of violence. Specifically, it 
estimates that the marginal WTP of an 18-year-old to eliminate deaths from violence in Brazil is $3,912 (in 
1996 dollars). Using this figure and the calibration in Soares (2005), we back out an implied value per 
discounted life-year of $24,271 (in 2019 dollars). Multiplying this by the expected discounted number of 
remaining years if a death at age 18 were averted yields an estimated VSL of $630,000, which is close to the 
$0.7 million figure used in this paper. Appendix B contains more details of this calculation. 
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This requires domestic policies for deforestation monitoring, which are shown to be effective in 

our heterogeneity results across presidential administrations. International pressure or green 

trade policy can also effectively avoid deforestation shown by existing studies (e.g. Nolte et al., 

2013; Kerr, 2013; Hsiao, 2021).  

Concluding Remarks. This study documents a sizeable and previously underappreciated 

cost of agricultural trade by establishing a causal link between export-driven deforestation and 

human mortality across distant locations. Our empirical findings highlight that the 

environmental impacts of globalization are not confined to local areas of resource extraction; they 

propagate through natural networks (like atmospheric flows) to affect populations far away. This 

insight expands our understanding of trade–environment interactions, showing that analyses of 

trade policy must account for spatially diffuse externalities and the unequal distribution of costs 

and benefits. Importantly, our results do not imply that trade liberalization or agricultural 

development is unwelcome; rather, they stress that sustainable development requires balancing 

growth with the stewardship of natural capital. The fact that even immediate health impacts of 

deforestation are sizable sends an important message that preserving forests is not only about 

long-run climate goals or ecosystem equilibrium, but also about saving lives today. 

For future research, our paper provides a framework to estimate the value of forest and 

other natural capitals. Our identification strategy relies on foreign demand changes that serve as 

exogeneous drivers of forest loss, as well as quasi-random wind flow that separates upwind 

drivers and downwind recipients. For the latter, future studies may exploit other networks that 

connect spatially different regions. In addition, our wind trajectory simulation is also helpful for 

future environmental economics studies to estimate the impacts of air pollution. 

  

  



32 
 

References 

Abman, Ryan, and Clark Lundberg. "Does free trade increase deforestation? The effects of 
regional trade agreements." Journal of the Association of Environmental and Resource 
Economists 7.1 (2020): 35-72.  

Adda, Jérôme, and Yarine Fawaz. "The health toll of import competition." The Economic Journal 
130, no. 630 (2020): 1501-1540. 

Adão, Rodrigo, Kolesár, Michal and Morales, Eduardo, (2019), Shift-Share Designs: Theory and 
Inference, The Quarterly Journal of Economics, 134, issue 4, p. 1949-2010.  

Aerts, Raf, and Olivier Honnay. "Forest restoration, biodiversity and ecosystem functioning." 
BMC Eology 11 (2011): 1-10. 

Alcalá, Francisco, and Antonio Ciccone. "Trade and productivity." The Quarterly Journal of 
Economics 119, no. 2 (2004): 613-646.  

Andela, Niels, Douglas C. Morton, Louis Giglio, Yang Chen, Guido R. van der Werf, Prasad S. 
Kasibhatla, Rurth S. DeFries et al. "A human-driven decline in global burned area." Science 356, 
no. 6345 (2017): 1356-1362.  

Anderson, Michael L. "Multiple inference and gender differences in the effects of early 
intervention: A reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects." 
Journal of the American Statistical Association 103, no. 484 (2008): 1481-1495. 

Anderson, Michael L. "As the wind blows: The effects of long-term exposure to air pollution on 
mortality." Journal of the European Economic Association 18, no. 4 (2020): 1886-1927. 

Antweiler, Werner, Brian R. Copeland, and M. Scott Taylor. "Is free trade good for the 
environment?" American Economic Review 91, no. 4 (2001): 877-908. 

Ashenfelter, Orley, and Michael Greenstone. "Using mandated speed limits to measure the value 
of a statistical life." Journal of Political Economy 112, no. S1 (2004): S226-S267. 

Assunção, Juliano, Clarissa Gandour, Romero Rocha, and Rudi Rocha. "The effect of rural credit 
on deforestation: evidence from the Brazilian Amazon." The Economic Journal 130, no. 626 (2020): 
290-330. 

Auvray, M., and I. Bey. "Long‐range transport to Europe: Seasonal variations and implications 
for the European ozone budget." Journal of Geophysical Research: Atmospheres 110, no. D11 
(2005). 

Balboni, Clare, Aaron Berman, Robin Burgess, and Benjamin A. Olken. "The economics of tropical 
deforestation." Annual Review of Economics 15 (2023): 723-754. 

Barona, Elizabeth, Navin Ramankutty, Glenn Hyman, and Oliver T. Coomes. "The role of pasture 
and soybean in deforestation of the Brazilian Amazon." Environmental Research Letters 5, no. 2 
(2010): 024002. 



33 
 

Berazneva, Julia, and Tanya S. Byker. "Does forest loss increase human disease? Evidence from 
Nigeria." American Economic Review 107, no. 5 (2017): 516-521. 

Berazneva, Julia, and Tanya S. Byker. "Impacts of Environmental Degradation: Forest, Loss, 
Malaria, and Child Outcomes in Nigeria." Review of Economics and Statistics (2022): 1-46. 

Betts, Richard, Michael Sanderson, and Stephanie Woodward. "Effects of large-scale Amazon 
forest degradation on climate and air quality through fluxes of carbon dioxide, water, energy, 
mineral dust and isoprene." Philosophical Transactions of the Royal Society B: Biological Sciences 
363.1498 (2008): 1873-1880. 

Bombardini, Matilde, and Bingjing Li. "Trade, pollution and mortality in China." Journal of 
International Economics 125 (2020): 103321. 

Bonan, Gordon B. "Forests and climate change: forcings, feedbacks, and the climate benefits of 
forests." Science 320, no. 5882 (2008): 1444-1449. 

Borgschulte, Mark, David Molitor, and Eric Yongchen Zou. "Air pollution and the labor market: 
Evidence from wildfire smoke." Review of Economics and Statistics (2022): 1-46. 

Borusyak, Kirill, Peter Hull, and Xavier Jaravel. "Quasi-experimental shift-share research 
designs." The Review of Economic Studies 89, no. 1 (2022): 181-213. 

Brazil, W. W. F. "Brazil’s new Forest Code: A guide for decision-makers in supply chains and 
governments." (2016). 

Bryan, Brett A., Lei Gao, Yanqiong Ye, Xiufeng Sun, Jeffery D. Connor, Neville D. Crossman, 
Mark Stafford-Smith et al. "China’s response to a national land-system sustainability emergency." 
Nature 559, no. 7713 (2018): 193-204. 

Burgess, Robin, Matthew Hansen, Benjamin A. Olken, Peter Potapov, and Stefanie Sieber. "The 
political economy of deforestation in the tropics." The Quarterly Journal of Economics 127, no. 4 
(2012): 1707-1754. 

Busch, Jonah, and Kalifi Ferretti-Gallon. "What drives deforestation and what stops it? A meta-
analysis." Review of Environmental Economics and Policy (2017). 

Carreira, Igor, Francisco Costa, and Joao Paulo Pessoa. "The deforestation effects of trade and 
agricultural productivity in Brazil." Journal of Development Economics 167 (2024): 103217. 

Coates, Jane, Kathleen A. Mar, Narendra Ojha, and Tim M. Butler. "The influence of temperature 
on ozone production under varying NOx conditions – a modelling study." Atmospheric 
Chemistry and Physics 16, no. 18 (2016): 11601-11615. 

Copeland, Brian R., Joseph S. Shapiro, and M. Scott Taylor. Globalization and the Environment. 
No. w28797. National Bureau of Economic Research, 2021. 

Curtis, Philip G., Christy M. Slay, Nancy L. Harris, Alexandra Tyukavina, and Matthew C. 
Hansen. "Classifying drivers of global forest loss." Science 361, no. 6407 (2018): 1108-1111. 



34 
 

Dasgupta, Partha. The Economics of Biodiversity: the Dasgupta Review. Hm Treasury, 2021. 

Davis, Steven J., and John Haltiwanger. "Gross job creation, gross job destruction, and 
employment reallocation." The Quarterly Journal of Economics 107, no. 3 (1992): 819-863. 

Deryugina, Tatyana, Garth Heutel, Nolan H. Miller, David Molitor, and Julian Reif. "The 
mortality and medical costs of air pollution: Evidence from changes in wind direction." American 
Economic Review 109, no. 12 (2019): 4178-4219. 

Ebenstein, Avraham, Maoyong Fan, Michael Greenstone, Guojun He, and Maigeng Zhou. "New 
evidence on the impact of sustained exposure to air pollution on life expectancy from China’s 
Huai River Policy." Proceedings of the National Academy of Sciences 114, no. 39 (2017): 10384-
10389. 

Ehrl, Philipp., 2017. Minimum comparable areas for the period 1872-2010: an aggregation of 
Brazilian municipalities. Estudos Econômicos (São Paulo), 47, pp.215-229. 

Farrokhi, Farid, Elliot Kang, Heitor S. Pellegrina, and Sebastian Sotelo. "Deforestation: A global 
and dynamic perspective." (2023). Working paper. 

Fearnside, Philip M. "Deforestation in Brazilian Amazonia: history, rates, and consequences." 
Conservation Biology 19, no. 3 (2005): 680-688. 

Ferreira, Susana. "Deforestation, property rights, and international trade." Land Economics 80, no. 
2 (2004): 174-193. 

Frank, Eyal G., and Wolfram Schlenker. "Balancing economic and ecological goals." Science 353, 
no. 6300 (2016): 651-652. 

Frankel, Jeffrey A., and Andrew K. Rose. "Is trade good or bad for the environment? Sorting out 
the causality." Review of Economics and Statistics 87.1 (2005): 85-91. 

Franklin Jr, Sergio L., and Robert S. Pindyck. "Tropical forests, tipping points, and the social cost 
of deforestation." Ecological Economics 153 (2018): 161-171. 

Garg, Teevrat. "Ecosystems and human health: The local benefits of forest cover in Indonesia." 
Journal of Environmental Economics and Management 98 (2019): 102271. 

Gong, Yazhen, Shanjun Li, Nicholas J. Sanders, and Guang Shi. "The mortality impact of fine 
particulate matter in China: Evidence from trade shocks." Journal of Environmental Economics 
and Management 117 (2023): 102759. 

Graff Zivin, Joshua, and Matthew Neidell. "The impact of pollution on worker productivity." 
American Economic Review 102, no. 7 (2012): 3652-3673. 

Graff Zivin, Joshua, Matthew Neidell, Nicholas J. Sanders, and Gregor Singer. "When externalities 
collide: Influenza and pollution." American Economic Journal: Applied Economics 15, no. 2 (2023): 
320-351. 



35 
 

Grosset-Touba, Florian, Anna Papp, and Charles Taylor. "Rain follows the forest: Land use policy, 
climate change, and adaptation." Climate Change, and Adaptation (December 1, 2023) (2023). 

Grossman, Gene M., and Elhanan Helpman. "Trade, innovation, and growth." The American 
Economic Review 80.2 (1990): 86-91. 

Guerrico, Sofía Fernández. "The effects of trade-induced worker displacement on health and 
mortality in Mexico." Journal of Health Economics 80 (2021): 102538. 

Guidetti, Bruna, Paula Pereda, and Edson R. Severnini. Health shocks under hospital capacity 
constraint: Evidence from air pollution in sao paulo, brazil. No. w32224. National Bureau of 
Economic Research, 2024. 

Han, Lu, Stephan Heblich, Christopher Timmins, and Yanos Zylberberg. Cool cities: The value of 
urban trees. No. w32063. National Bureau of Economic Research, 2024. 

Harstad, Bård. "Trade and trees." American Economic Review: Insights 6, no. 2 (2024): 155-175. 

Heilmayr, Robert, Lisa L. Rausch, Jacob Munger, and Holly K. Gibbs. "Brazil’s Amazon soy 
moratorium reduced deforestation." Nature Food 1, no. 12 (2020): 801-810. 

Heo, Seonmin Will, Koichiro Ito, and Rao Kotamarthi. International spillover effects of air 
pollution: evidence from mortality and health data. No. w30830. National Bureau of Economic 
Research, 2023. 

Hsiao, Allan. "Coordination and commitment in international climate action: evidence from palm 
oil." Unpublished, Department of Economics, MIT (2021). 

Jayachandran, Seema, Joost De Laat, Eric F. Lambin, Charlotte Y. Stanton, Robin Audy, and 
Nancy E. Thomas. "Cash for carbon: A randomized trial of payments for ecosystem services to 
reduce deforestation." Science 357, no. 6348 (2017): 267-273. 

Jones, Benjamin A., and Andrew L. Goodkind. "Urban afforestation and infant health: Evidence 
from MillionTreesNYC." Journal of Environmental Economics and Management 95 (2019): 26-44. 

Kerr, Suzi C. "The economics of international policy agreements to reduce emissions from 
deforestation and degradation." Review of Environmental Economics and Policy (2013). 

Leal, Alan, and Michelle Marcia Viana Martins. "Brazilian exports imputation: A new algorithm 
for estimating the municipal production directed at the foreign market." Revista Brasileira de 
Estudos Regionais e Urbanos 19, no. 2 (2025): 266-288. 

Levchenko, Andrei A. "Institutional quality and international trade." The Review of Economic 
Studies 74.3 (2007): 791-819. 

Lewinsohn, Thomas M., and Paulo Inácio Prado. "How many species are there in Brazil?." 
Conservation Biology 19, no. 3 (2005): 619-624. 

Li, Liqing. "Environmental goods provision and gentrification: Evidence from MillionTreesNYC." 
Journal of Environmental Economics and Management 120 (2023): 102828. 



36 
 

Managi, Shunsuke, Akira Hibiki, and Tetsuya Tsurumi. "Does trade openness improve 
environmental quality?" Journal of Environmental Economics and Management 58.3 (2009): 346-
363. 

Mullan, Katrina, Trent Biggs, Jill Caviglia-Harris, Jime Rodrigues Ribeiro, T. Ottoni, Erin Sills, 
and T. A. West. "Estimating the value of NearReal-time satellite information for monitoring 
deforestation in the Brazilian Amazon." Resources for the Future (2022). 

Narain, Urvashi, and Chris Sall. "Methodology for valuing the health impacts of air pollution: 
discussion of challenges and proposed solutions." (2016). 

Nolte, Christoph, Arun Agrawal, Kirsten M. Silvius, and Britaldo S. Soares-Filho. "Governance 
regime and location influence avoided deforestation success of protected areas in the Brazilian 
Amazon." Proceedings of the National Academy of Sciences 110, no. 13 (2013): 4956-4961. 

Nowak, David J., Daniel E. Crane, and Jack C. Stevens. "Air pollution removal by urban trees and 
shrubs in the United States." Urban Forestry & Urban Greening 4, no. 3-4 (2006): 115-123. 

Nunes, Felipe SM, Britaldo S. Soares-Filho, Amanda R. Oliveira, Laura VS Veloso, Jair Schmitt, 
Richard Van der Hoff, Debora C. Assis et al. "Lessons from the historical dynamics of 
environmental law enforcement in the Brazilian Amazon." Scientific Reports 14, no. 1 (2024): 1828. 

Nunn, Nathan, and Nancy Qian. "The Columbian exchange: A history of disease, food, and 
ideas." Journal of Economic Perspectives 24, no. 2 (2010): 163-188. 

Pan, Yude, Richard A. Birdsey, Jingyun Fang, Richard Houghton, Pekka E. Kauppi, Werner A. 
Kurz, Oliver L. Phillips et al. "A large and persistent carbon sink in the world’s forests." Science 
333, no. 6045 (2011): 988-993. 

Pendrill, Florence, Toby A. Gardner, Patrick Meyfroidt, U. Martin Persson, Justin Adams, Tasso 
Azevedo, Mairon G. Bastos Lima et al. "Disentangling the numbers behind agriculture-driven 
tropical deforestation." Science 377, no. 6611 (2022): eabm9267. 

Phillips, Benjamin B., James M. Bullock, Juliet L. Osborne, and Kevin J. Gaston. "Spatial extent of 
road pollution: A national analysis." Science of the Total Environment 773 (2021): 145589. 

Pierce, Justin R., and Peter K. Schott. "Trade liberalization and mortality: evidence from US 
counties." American Economic Review: Insights 2, no. 1 (2020): 47-63. 

Rangel, Marcos A., and Tom S. Vogl. "Agricultural fires and health at birth." Review of Economics 
and Statistics 101, no. 4 (2019): 616-630. 

Song, Xiao-Peng, Matthew C. Hansen, Peter Potapov, Bernard Adusei, Jeffrey Pickering, Marcos 
Adami, Andre Lima et al. "Massive soybean expansion in South America since 2000 and 
implications for conservation." Nature Sustainability 4, no. 9 (2021): 784-792. 

Soares, Rodrigo R. "The welfare cost of violence across countries." Journal of Health Economics 
25, no. 5 (2006): 821-846. 



37 
 

Tanaka, Shinsuke, Kensuke Teshima, and Eric Verhoogen. "North-South displacement effects of 
environmental regulation: The case of battery recycling." American Economic Review: Insights 4, 
no. 3 (2022): 271-288. 

UN Department of Economics of Social Affairs. “The Global Forest Goals Report 2021.” United 
Nations Publication (2021). 

U.S. Environmental Protection Agency. "Guidelines for Preparing Economic Analyses." EPA 240-R-
00-003 (2000). 

Wei, Xiangying, Shiheng Lyu, Ying Yu, Zonghua Wang, Hong Liu, Dongming Pan, and Jianjun 
Chen. "Phylloremediation of air pollutants: exploiting the potential of plant leaves and leaf-
associated microbes." Frontiers in Plant Science 8 (2017): 270745. 

Wesely, M. L., and B. B. Hicks. "A review of the current status of knowledge on dry deposition." 
Atmospheric Environment 34, no. 12-14 (2000): 2261-2282. 

Xing, Jianwei, Zhiren Hu, Fan Xia, Jintao Xu, and Eric Zou. Urban Forests: Environmental Health 
Values and Risks. No. w31554. National Bureau of Economic Research, 2023.  



38 
 

 

Figure 1. Trends in Trade, Agricultural Expansion and Deforestation 

(a) Agricultural Exports 

    

 

(b) Agricultural Land Expansion and Deforestation 

     

Notes: Panel (a) shows temporal and geographic trends in Brazil’s agricultural exports. Panel (b) shows temporal 
and geographic trends in the substitution between agricultural land and forests. “Fluctuations” correspond to 
areas with less than 3 percent changes in forest or farmland coverage over the study period.  
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Figure 2. The Effect of Trade on Deforestation and Agricultural Expansion 

 

Notes: Each node on the tree represents a separate IV regression following the exact same specification except 
for the outcome variable, which is denoted by the name of the node. Each regression has 57,189 underlying 
observations with a first-stage Kleibergen-Paap (Cragg-Donald) F-statistic of 8.1 (826). Branches of the tree 
represent hierarchies of the land use categorizations. Interpretation of the coefficients is change in land cover 
land use type (in percentage points) per 1,000 BRL increase in export per capita.  
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Figure 3. Area-of-Effect Modeling 

(a) Airflow Modeling 

     
(b) Downwind Score: Belo Horizonte as Example 

    

Notes: Figures show dotted map of Brazil where each dot represents centroid of a city. Panel (a) shows a day 
snapshot of wind flows built from location-specific wind vectors data (left) and a visualization of our wind flow 
model that tracks downwind cities influenced by winds from a sender city (Belo Horizonte in this example) over 
the course of seven steps (i.e., days). Panel (b) shows aggregation of step-specific downwind scores to sender-
receiver-day level (left) and sender-receiver-month level (right) where the sender city is Belo Horizonte. See 
Appendix A for modeling details. 
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Figure 4. Validation Test of Air Pollution Passthrough from Upwind to Downwind Cities 

by Downwind Score Deciles 

  

Notes: This figure shows coefficients from a regression of a receiver city’s PM2.5 concentration on an upwind 
city’s PM2.5 concentration, with the effect allowed to vary by the downwind score from the upwind location to 
the downwind location according to our area-of-effect model. All regression controls for city pair by month-of-
sample fixed effects and year fixed effects. Standard errors are two-way clustered at the sender city and receiver 
city levels. Range bars show 95 percent confidence intervals.   
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Figure 5. The Downwind Effects of Forest Losses 

(a) Atmospheric Outcomes 

   
 

(b) Mortality Outcomes 

   

Notes: Charts show estimates on changes in downwind outcomes per 1 SD decrease in upwind forest cover, 
separately by downwind exposure score bins. Each chart shows a separate regression following the exact same 
specification except for the outcome variable. Within each chart, horizontal step lines show point estimates, and 
range bars show 95 percent confidence intervals. 
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Figure 6. Distribution of Trade-Induced Forest Losses and Excess Deaths  
 

      

Notes: The map on the left shows the spatial distribution of trade-induced deforestation over the study period. 
The map on the right shows the spatial distribution of the downstream cardio-respiratory deaths due to trade-
induced deforestation.  
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Table 1. Summary Statistics 

Variable Name Obs Mean SD 
ΔForest land share (%) 57189 -0.14 1.802 
   ΔForest formation (%) 57189 0.04 0.994 
   ΔSavanna formation (%) 57189 -0.18 1.488 
   ΔMangrove (%) 57189 0.00 0.041 
   ΔSandy (%) 57189 0.00 0.070 
ΔFarming land share (%) 57189 0.08 1.990 
   ΔPasture (%) 57189 -1.08 3.919 
   ΔAgriculture (%) 57189 1.00 2.827 
      ΔSoybean (%) 57189 0.51 2.629 
      ΔSugar cane (%) 57189 0.60 2.710 
      ΔRice (%) 57189 0.01 0.467 
      ΔCotton (%) 57189 0.00 0.051 
      ΔCoffee (%) 57189 0.05 0.419 
      ΔCitrus (%) 57189 0.01 0.176 
ΔForest plantation (%) 57189 0.26 0.730 
ΔMosaic of uses (%) 57189 -0.10 2.764 
ΔExport per capita (real 1000 BRL) 57189 0.19 1.562 
Population 57189 48431.3 2.45e5 
Agricultural employee 57189 23721.2 1.82e5 
Income per capita 57189 191.4 114.5 
Literacy rate (%) 57189 70.32 16.445 
Population density 57189 0.82 3.808 
Rural population 57189 9398.8 16462.8 
Urban population 57189 28374.8 1.99e5 
GE soy 57189 0.03 0.005 

 

Notes: The variables for land use and export per capita describe the growth over four years within the period 
from 2001 to 2019; Real export values have been deflated by the Brazilian Consumer Price Index (IPCA) 
calculated by IBGE and are denominated in 2019 reals; Income per capita, literacy rate, population density, rural 
population, and urban population are values from 1991, calculated by IBGE.  
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Table 2. Shift-Share Shock Balance Tests 

  (1) (2) (3) (4) 
  Coef.  S.E. p value q value 
Urban population 4704.3 3952.7 0.234 0.429 
Rural population 3050.8 2608.7 0.242 0.429 
Total population 7755.0 6395.6 0.225 0.429 
Per capita income 4.635 1.635 0.005 0.060 
Literacy rate 0.264 0.151 0.081 0.429 
Population density -0.003 0.007 0.691 0.754 
GE soy seeds 0.000 0.000 0.608 0.730 
Average temperature 0.030 0.031 0.332 0.498 
Average humidity  -0.005 0.078 0.947 0.947 
Average pressure -0.478 0.416 0.250 0.429 
Average wind speed -0.006 0.007 0.383 0.511 
Total precipitation 652.9 438.5 0.137 0.429 

 

Notes: Each row represents a separate regression. The independent variable is the four-year shift-share 
instrument generated for the growth of Brazilian agricultural exports. All regressions include Year fixed effects 
and macroregion fixed effects. “q value” is the False Discovery Rate adjusted significance level (Anderson, 2008) 
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Table 3. Trade-Deforestation Regression Estimates: Alternative Differencing Windows 

 (1) (2) (3) (4) (5) (6) 
Panel A. First stage Export 

(Δ1y) 
Export 
(Δ2y) 

Export 
(Δ3y) 

Export 
(Δ4y) 

Export 
(Δ5y) 

Export 
(Δ6y) 

Shift-share IV 0.17 1.04*** 1.61*** 0.69*** 0.87*** 0.83** 
 (0.16) (0.12) (0.25) (0.24) (0.21) (0.32) 
       
Panel B. Second stage Forest  

(Δ1y) 
Forest  
(Δ2y) 

Forest  
(Δ3y) 

Forest  
(Δ4y) 

Forest  
(Δ5y) 

Forest  
(Δ6y) 

ΔExport per capita (1000 BRL)  -0.118 -0.038** -0.043* -0.174** -0.207*** -0.192** 
 (0.12) (0.02) (0.02) (0.08) (0.07) (0.10) 

 
Observations 68,585 68,585 64,814 57,189 49,564 41,939 
First-stage F-stat (Kleibergen-Paap) 1.25 81.63 41.01 8.07 16.59 6.49 
First-stage F-stat (Cragg-Donald) 232 8,393 8,706 826 1,177 852 
Year FE Yes Yes Yes Yes Yes Yes 
Macroregion FE Yes Yes Yes Yes Yes Yes 
Other controls Yes Yes Yes Yes Yes Yes 
 

Notes: Panel A reports first-stage estimates of the shift–share IV for agricultural exports. The 
corresponding Kleibergen–Paap and Cragg-Donald F-statistics are reported at the bottom panel. Panel B 
reports the corresponding 2SLS estimates of the effect of agricultural exports on forest cover, with exports 
instrumented by the shift–share IV. Each column corresponds to a different differencing window (e.g., 
“Δ1y” uses 1-year differences). “Other controls” include income per capita, literacy rate, rural and urban 
population, population density, and the presence of genetically modified soy. All monetary values are 
deflated to 2019 reals using the Brazilian Consumer Price Index (IPCA). *: p < 0.10; **: p < 0.05; ***: p < 
0.01. 
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Appendix A. Area of Effect Estimation Details 

 This appendix details the construction of a matrix summarizing monthly wind-flow intensities between 

all pairs of cities in Brazil. We develop an area-of-effect (AoE) model that simulates atmospheric transport from 

a “sender” city to various “receiver” cities and computes a downwind influence score for each pair. The model 

traces wind trajectories (streamlines) originating from a given city and day, following the prevailing wind 

direction and speed on a daily basis. The result is a comprehensive matrix of upwind–downwind linkage 

intensities for each city pair in each month. 

 Wind Data and Interpolation. he AoE model uses daily wind direction and speed data for each city 

(derived from ERA5 reanalysis at 0.25° resolution). As a first step, we generate a continuous wind vector field 

for each day over Brazil by interpolating the city-level wind data onto a latitude–longitude grid covering the 

country. We choose the grid’s spatial resolution (denoted Δ) to balance accuracy and computational tractability: 

a finer grid yields more precise wind representations at the cost of longer computation time. In practice, we set 

Δ such that the grid is sufficiently fine to capture key variations in wind patterns while keeping computation 

time reasonable (on the order of the country’s width divided into a few hundred increments). The daily wind 

field on this grid allows us to estimate wind vectors at any location in Brazil via interpolation. 

Stepwise Trajectory Simulation. Using the wind field, we simulate how wind carries pollutants from 

each sender city through time. The procedure can be summarized as follows: 

1. Initialization: Select a sender city i and a start day d. Set the step index t = 0 and initialize the current 

position p0 to the coordinates of city i. We also define an initial search radius rad0 = 300 km (this radius will 

expand over time, as described below). 

2. Iterative wind advection (up to 7 days): For t = 0,1, … ,6 (a one-week trajectory): 

 Construct the wind vector field for day d + t on the grid, and interpolate to obtain the wind vector at the 

current position pt. Denote this interpolated wind vector as wt, which has direction (bearing) and speed 

components 

 Identify all potential receiver cities r located within a radius radt of the current position pt. This defines 

the “downwind footprint” at step t 

 For each such city r, compute a raw downwind intensity score Windi→r,d,t that captures the contribution 

of city i (starting on day d) to city r’s pollution on day d + t. We model this intensity as an exponential 

decay function of three factors – (i) the time/dispersion step, (ii) the wind direction alignment, and (iii) 

distance – following guidance from U.S. EPA (2018) and Phillips et al. (2021). In particular, we write: 

Windi→r,d,t = exp�−α ⋅ radt − β ⋅ |θ|i→r,d,t − γ ⋅ disti→r,d,t� 
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where α,β, γ are empirically calibrated parameters. In this formulation, radt is the search radius at step 

t (which grows with t, reflecting general dispersion over time); |θ|i→r,d,t is a measure of the angular 

deviation of city r from the exact downwind direction of the wind at pt (with larger θ meaning r is more 

off-center from the wind path); and disti→r,d,t is the distance from the original sender i to the current 

position pt (i.e. the total distance the wind has traveled from the source up to step t). Intuitively, this 

functional form assigns higher intensity when the receiver is close to the wind trajectory and relatively 

near the source, and lower intensity as the plume disperses over time, deviates in direction, or travels 

farther. We impose two cut-offs: if a candidate city r  lies outside the radius radt  or if the angular 

difference is θi→r,d,t >  0.4 radian (approximately 23°), then we set Windi→r,d,t = 0  (meaning city r  is 

considered too far or not sufficiently downwind at that step to receive any pollution from i). We choose 

parameter values {α,β, γ} = {0.8,0.49,0.23}. These coefficients are chosen empirically so that the function 

that attributes wind scores over 7 days is approximately continuous. For that purpose, we used 

visualisations consisting in heatmaps that simulate the wind scores values not only for cities of interest 

but for all points of the map for different days and different sender cities. Examples of those heatmaps 

showing the approximate continuity of the wind score function for the final value of the parameters can 

be seen on the figure below. 

 Whenever t < 6, coefficients need to be updated for step t + 1. We increase radt as described previously 

by 0.2 to obtain radt+1. We update pt = (xt, yt) by following the local direction and speed of the wind i.e. 

using wt : 

xt+1 = xt + 24 ∗ 3600 ∗ ut/distm((xt, yt), (xt + 1, yt)) 

yt+1 = yt + 24 ∗ 3600 ∗ vt/distm((xt, yt), (xt + 1, yt)) 

pt+1 = (xt+1, yt+1) 

To understand those expressions, we must consider that x and y coordinates are in degrees while the 

vectors’ coordinates u and v are in m/s. The distance (positive or negative) in meters crossed by the 

wind in 24 hours is of dm,x = 24 ∗ 3600 ∗ ut along the x-axis and dm,y = 24 ∗ 3600 ∗ vt along the y-axis. 

To obtain an approximation of the distance dp  crossed in polar coordinates corresponding to a distance 

dm in meters, we use a cross product : if a delta of 1 degree in longitude at the latitude yt represents 

distm((xt, yt), (xt + 1, yt)) meters, then, an approximation of dp is dp ≈ 1 ∗ dm/distm((xt, yt), (xt + 1, yt)). 

Thus,  

dp,x ≈ 1 ∗ dm,x/distm�(xt, yt), (xt + 1, yt)� 

dp,y ≈ 1 ∗ dm,y/distm((xt, yt), (xt + 1, yt)) 
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hence the expression of xt+1 =  xt + dp,x and yt+1 = yt + dp,y. 

We can then proceed to step t + 1. 

 Starting from each particular sender city and day of our sample period, we iterate the procedure for 

seven steps (i.e., a week) so for t = 0 to t = 6.  

Examples of wind indexes heat maps for two senders 

 

 Aggregation to Monthly Intensities. The raw outputs of the AoE simulation are step-level intensity 

contributions Windi→r,d,t (for t = 0,1, … ,6) associated with specific sender–receiver–day combinations. We next 

aggregate these contributions first to the daily level and then to the monthly level for use in our econometric 

analysis. 

We combine step-wise contributions so that each sender–receiver pair (i, r) has a single daily downwind 

intensity score on each day that reflects all pollution from i arriving in r on that day. If a wind starting in city i 

on day d reaches city r after t days, we assign that contribution to day d + t for the pair. Formally:  

Windi→r,d′ = ∑ Windi→r,d,td+t=d′   

To integrate these results into a panel regression framework, we further aggregate the daily indices to 

the monthly level. This aggregation consists in computing average intensity scores for each tuple (sender city i, 

receiver city r, month of arrival m): 

Windi→r,m = Averaged′∈m Windi→r,d′ 

This averaging smooths out daily fluctuations and drastically reduces the dimensionality of the data, 

which makes the regressions computationally manageable. We construct Windi→r,m for all months from January 

1997 to December 2019. Because our wind simulations covered 1997–2019, we implicitly assume that each 

month-of-year’s wind pattern is recurrent; in practice, we assign the intensity for, say, January 2010 to be equal 

to the average intensity we computed for January (across 1997–2019) for the same pair (i, r). If a given pair had 

no wind connection in a particular month during the study period (i.e. Windi→r,d=0 for all days d in that month 



50 
 

window), we record its monthly intensity as 0 (or “calm” conditions as we call it in the paper) for that month in 

all years. The final output is a matrix of monthly intensity scores Windi→r,m. This upwind–downwind intensity 

matrix forms the basis for our downstream pollution and health impact analysis in the paper. 

 

Appendix B. Brazil VSL Calculation  

 Due to the lack of direct estimates of the value of a statistical life (VSL) for Brazil, in Section 6 of the paper, 

we use a VSL for Brazil based on an income transfer approach by downscaling a U.S.-based VSL estimate. Here 

we show an alternative approach, where we back out a Value of Statistical Life (VSL) figure based on estimates 

and calibration reported in Soares (2005), which contains a direct estimate of the marginal WTP to eliminate 

deaths from violence in Brazil. From Equation (4), and (5)–(7) of the Soares (2005) paper, with constant 

consumption c = y, the willingness to pay for a small change in survival at age a is: 

MWPa =
u(y)
u′(y)

��
1

1 + r
�
t−a

ΔS(t, a)
t≥a

 

where  u(c) = c1−
1
γ/ (1 − 1

γ
)   + α is the instantaneous utility function, r is the discount rate, and S(t, a) is the 

probability of survival to age t of an individual currently at age a. We have 

u(y)
u′(y)

=
y

1 − 1/γ
+ αy1/γ 

which represents the value per discounted life-year at income y. We plug in the following calibration from the 

paper: real GDP per capita y = $6,591 (1996 dollars), γ = 1.25, α = −16.1, and r = 3%. This gives us u(y)
u′(y) ≈ $14,606. 

To turn a life‑year value into a VSL, we multiply by the expected discounted number of remaining years if a 

death this year were averted. We use an approximation of life expectancy at birth (69 years) to proxy remaining 

years at 18, which equals a remaining years of 51 years. With a discount rate of 3%, that equals of present value 

of approximately ∑ � 1
1.03

�51
𝑠𝑠=1

𝑠𝑠
≈  26 years. Multiplying this with $14,606 per life year gives a VSL of about 

$379,000 in 1996 dollars, or about $629,800 in 2019 dollars.  
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Appendix C. Appendix Figures and Tables 

 

Appendix Figure 1. Brazil’s Agricultural Export Structure 

(a) Product Categories 

 

(b) Trade Partners 

 

Notes: Panel (a) shows distribution of export values in billions of USD by product category. Panel (b) shows 
agricultural export share by trade partner in 1997 (left) and in 2019 (right). 
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Appendix Figure 2. Geography of Land Use Changes 

 

Notes: Maps show 1997-2018 percentage change in land use for farming purposes (left) and forest land (right). 
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Appendix Figure 3. Geography of Agricultural Growth 

(a) Agricultural Employment Growth 

 

(b) Agricultural Export Growth 

 

Notes: Panel (a) shows growth in agricultural employment over the 1997-2007 period (left) and the 2007-2019 
period (right). Panel (b) shows growth in agricultural exports per capita over the 1997-2007 period (left) and 
the 2007-2019 period (right). 
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Appendix Figure 4. Geography of Mining Activities 

 

Notes: Maps show mineral exports per capita in year 1997 (left) and in year 2018 (right). 
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Appendix Figure 5. Export Demand Shock Variability 

 
Notes: Major importing countries’ export demand growth rates variation across HS-4 product categories, 
represented by points. Points are grouped into broader HS-2 categories.   
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Appendix Figure 6. Effects of Placebo Export Shocks on Forest Cover 

 
Notes: This figure plots the coefficient on placebo shocks in 1,000 separate regressions, where the dependent 
variable is the forest land use 4 years growth. The placebo shock is the placebo change in agricultural import 
growth by HS code and municipality, a normally distributed random variable with mean 0 and variance 5. The 
regression also contains year and macroregion fixed effects, and agricultural employees are used as weights. 
Standard errors are clustered at the AMC level.   
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Appendix Figure 7. Air Pollution Passthrough from Upwind to Downwind Cities 

by Forest Coverage Rate along the Downwind Path 

  

Notes: This figure shows coefficients from a regression of a receiver city’s pollution concentration on an upwind 
city’s pollution concentration, with the effect allowed to vary by the forest coverage rate along the downwind 
path. All regression controls for city pair by month-of-sample fixed effects and year fixed effects. Standard errors 
are two-way clustered at the sender city and receiver city levels. Range bars show 95 percent confidence 
intervals.    
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Appendix Figure 8. The Downwind Effect of Forest Losses on Precipitation:  

Month-Of versus Annual Effects 

  

Notes: Charts show estimates on changes in downwind precipitation outcomes per 1 SD decrease in upwind 
forest cover. Left panel shows regression estimates based on monthly data. Right panel shows regression 
estimates from the same data aggregated to the annual level. The annual regression equation, analogous to the 
monthly equation (7), controls for sender-by-receiver fixed effects and year fixed effects, with standard errors 
two-way clustered at the sender and receiver levels.   
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Appendix Figure 9. The Downwind Effect of Forest Losses on Air Pollutants 

  

Notes: Chart shows estimates on changes in downwind pollution outcomes per 1 SD decrease in upwind forest 
cover. Each line represents a separate regression using standardized pollutant concentrations as the outcome 
variable.    
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Appendix Figure 10. The Downwind Effect of Forests: Heterogeneity by Prior Land Type 

  

Notes: Charts show estimates on changes in downwind outcomes per 1 SD decrease in upwind forest cover, 
separately by land cover in the previous year. We use land cover transition information to classify each upwind 
city-year’s forest volume based on its land cover type from the previous year, distinguishing how much of the 
current year’s forest acreage was previously forest, non-forest vegetation land, agricultural land, or non-
vegetated land (i.e., urbanized area). We then separately estimate the impacts of upwind forests losses on 
downwind air quality and cardio-respiratory mortality based on the previous year’s land cover. 
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Appendix Figure 11. The Downwind Effects of Forest Losses: Fire Controls 

(a) Direct Fire Effect Estimates 

 

(b) Forest Effect Estimates, with and without Fire Effect Controls 

 

Notes: Panel (a) shows estimates on changes in downwind outcomes per 1 SD increase in fire activities. Panel (b) 
shows estimates on changes in downwind outcomes per 1 SD increase in upwind forest cover, separately by 
downwind exposure score bins. Each chart shows two separate regression, one with and the other without 
controls for upwind fire occurrences.  
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Appendix Table 1. Major Import Countries Selection 

 

Notes: This table tabulates Brazil’s major export destinations ranked by Brazil’s export value, highlighting 
countries that are selected in constructing the shift-share instruments. Excluded countries are those with either 
missing UN import or Comex export data, low correlation between UN import and Comex export data, or those 
with high numbers of mismatches between UN import HS-4 and HS-2 product categories. 
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