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ABSTRACT

This paper shows a cascading mechanism through which international trade-induced deforestation
results in a decline of health outcomes in cities distant from where trade activities occur. We
examine Brazil, which has ramped up agricultural export over the last two decades to meet rising
global demand. Using a shift-share research design, we first show that export shocks cause
substantial local agricultural expansion and a virtual one-for-one decline in forest cover. We then
construct a dynamic area-of-effect model that predicts where atmospheric changes should be felt —
due to loss of forests that would otherwise serve to filter out and absorb air pollutants as they travel
— downwind of the deforestation areas. Leveraging quasi-random variation in these atmospheric
connections, we establish a causal link between deforestation upstream and subsequent rises in air
pollution and premature deaths downstream, with the mortality effects predominantly driven by
cardiovascular and respiratory causes. Our estimates reveal a large telecoupled health externality of
trade deforestation: over 700,000 premature deaths in Brazil over the past two decades. This
equates to $0.18 loss in statistical life value per $1 agricultural exports over the study period.
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1. Introduction

Globalization creates complex interactions between consumption, production, and
environmental impacts that occur in locations far apart.! This paper demonstrates the importance
of such telecoupling for understanding the health burden of international trade. We study Brazil,
where agricultural exports have quadrupled in value over the last two decades due to rising
global demand. This export boom has been accompanied by substantial forest loss as land is
cleared to accommodate the expanding agricultural production. We show that export-driven
deforestation in Brazil has far-reaching health consequences, as the lost forests would otherwise
have acted as natural air filters - capturing airborne particulates and absorbing harmful gases -
thereby protecting air quality in cities hundreds or even thousands of miles downwind. As a
result, trade-induced forest loss in one region can degrade air quality in distant communities. We
find that the magnitude of the health effects is substantial, even relative to the enormous

economic value of Brazil’s agricultural trade over the study period.

We are motivated by an emerging debate on the “non-economic” effects of trade,

particularly with regard to its interaction with health and the environment (Nunn and Qian, 2010;

Copeland, Shapiro, and Taylor, 2022). This is especially relevant in developing country context,

where the reliance on exporting resource-intensive products plays a key role in achieving

development goals (Frank and Schlenker, 2016). In current literature, the environmental costs of

deforestation are predominantly associated with climate change and ecosystem disruptions

(Copeland, Shapiro, and Taylor, 2022; Balboni et al., 2023). These include projected alterations in

global temperature and precipitation patterns (Bonan, 2008), impacts on biodiversity (Dasgupta,

2021), and increased risk of crossing ecosystems tipping point (Franklin and Pindyck, 2018).
While such long-run effects are expected to be profoundly important, they are difficult to
empirically pin down due to their diffuse and delayed nature. In contrast, our study examines
an immediate environmental channel —air pollution—and its direct impact on human health,

which can be observed in current data. The main message is that the environmental costs of trade-

! Economists have extensively studied how trade enhances growth (Grossman and Helpman, 1990) and
productivity (Alcala and Ciccone, 2004), and how it interacts with institutional quality (Levchenko, 2007).
Empirical studies show international trade could affect the environment in positive or negative ways (e.g.,
Antweiler et al., 2001; Frankel and Rose, 2005; Managi et al., 2009; Abman and Lundberg, 2020), and
emphasize the large spatial ranges of these impacts. Incorporating multiple locations and environmental
consequences is important in assessing the overall welfare effects of globalization.
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induced deforestation are considerable, even when focusing only on short-term cardio-

respiratory health impacts.

We begin by estimating the causal effect of agricultural exports on local forest land
coverage. During the two decades of our study period (1997-2019), Brazil significantly expanded
its agricultural land use, coinciding with a substantial decline in forest cover. This pattern of
deforestation is widely suspected to be associated with growing agricultural export demands,
particularly from China and the European Union, which drive farmers to employ slash-and-burn
methods for rapid land clearing to boost agricultural production. We estimate the causal link
between agricultural exports and deforestation using a shift-share research design, which
exploits variation in regions’ exposure to global demand shocks (“shift”) due to historical
differences in export capacity across product categories (“share”). Brazilian regions are exposed
to idiosyncratic import shocks across a wide range of product categories, providing a suitable

context for applying the shift-share research design (e.g., Adao, Kolesar, and Morales, 2019;

Borusyak, Hull, and Jaravel, 2022). Our estimates show that each 1,000 BRL increase in export

per capita reduces forest cover in the area by 0.174 percentage points. Using the same framework,
we also demonstrate that areas losing forest simultaneously experience agricultural expansion,

primarily in land-intensive crops long associated with deforestation, notably soybeans and sugar.

Next, we estimate the impact of forest loss on downstream environmental and health
outcomes. To do this, we first need to identify the extent of cross-boundary pollution spillover:
the impact of a pollution source —or in our case, the absence of forests that would have reduced
pollution — does not conform to administrative boundaries and can extend far beyond its origin

(e.g., Heo, Ito, and Kotamarthi, 2023). We develop a simple area-of-effect (AoE) model that

predicts the geo-temporal influence of a given city’s forest loss by simulating how wind carries
air pollutants across space and time. This model yields a comprehensive matrix of “upwind-
downwind” linkages that quantify the intensity of pollution transport between each pair of cities
in each month. Our model is parsimonious enough to be computationally feasible, yet it captures
atmospheric transport realistically: we show that when the model predicts a strong downwind
connection between two cities, the measured pollution levels in those cities (which are data that
we did not use in training the model) are highly correlated; conversely, when the model predicts

no connection, the two cities” pollution levels show little co-movement. Put differently, the AoE



model accurately maps potential pollution spillovers across distant locations, allowing us to trace

pollution from deforestation areas to downwind populations.2

Building on this pollution transport model, we implement a quasi-experimental design
to estimate the causal impact of upstream forest loss on downstream outcomes. For each potential
“sender” city (a deforestation location) and “receiver” city downwind of that sender, we relate
changes in the sender’s forest cover to the receiver’s pollution and health outcomes, allowing the
strength of this relationship to vary with the predicted downwind linkage intensity from the AoE
model. The regressions include high-dimensional fixed effects such as sender-receiver pair by
month-of-year fixed effects and year fixed effects to exploit quasi-random variation in wind

patterns, thereby isolating how upwind deforestation influences downwind conditions.

Our findings show that deforestation in upwind cities significantly leads to increased air
pollution and higher mortality rates in downwind cities. The mortality effect is primarily driven
by excess deaths from cardiovascular and respiratory causes, consistent with a pollution
exposure pathway. Falsification tests show that deforestation had no effect on health outcomes
that are plausibly unrelated to air quality (e.g. accidental death rates), and periods with minimal

wind connectivity between a given city pair exhibit no pollution or mortality impact.

Losses in upwind forests can affect downwind air quality through two potential
pathways. The first is the loss of natural filtration: deforestation eliminates the forest’s capacity
to filter and absorb airborne pollutants, allowing more pollution to reach downwind areas. The
second is a fire effect, as deforestation (often via slash-and-burn) increases the frequency of
wildfires that produce smoke drifting into downwind cities. Though we cannot disentangle these
channels perfectly, we incorporate satellite data on fire activity into our analysis, and show that
when we control flexibly for upwind fire emissions, our pollution and mortality estimates remain
virtually unchanged. The direct impacts of fires on downwind health outcomes are also much

less pronounced when jointly estimated with forest losses. The evidence thus points to the loss

2 An expanding body of literature has leveraged variability in wind conditions to estimate the causal effects
of air pollution (e.g., Deryugina et al., 2019; Rangel and Vogl, 2019; Anderson, 2020; Graff Zivin et al., 2023;
Guidetti, Pereda, and Severnini, 2024). A key methodological innovation in our work is the development
of a computationally feasible approach to build a comprehensive matrix of wind transport relationships
across city pairs. This is crucial when the researcher’s goal is not only to measure the burden of pollution
in the destination area but also to trace that burden back to its sources.

4



of forests’ filtration function as a more prominent channel linking deforestation to downwind

pollution and mortality.

Together, our estimates can be integrated to gauge the overall impact of trade-induced
deforestation. We calculate that Brazil’s agricultural export growth over 1997-2019 was
responsible for approximately 3.6 million hectares of forest loss, which in turn caused an
estimated 732,000 excess premature deaths across Brazil via increased pollution. In monetary
terms, the lost life years correspond to roughly 513 billion USD (in 2019 dollars) in life value loss
using standard Value of Statistical Life (VSL) estimates, equivalent to about 18% of the total
agricultural export value of Brazil during the period. This headline estimate is quantitatively
plausible: it implies roughly a 1% increase in mortality risk per 10 pg/m?3 of particulate pollution,

on the same order as prior estimates. For example, Deryugina et al. (2019) report an elasticity of

around 1.8% for the U.S. elderly population. Our estimate is likely conservative: we focus on
contemporaneous mortality responses, whereas the long-term effects of pollution exposure are

typically larger (Ebenstein et al., 2017), and we do not account for non-fatal health damages such

as morbidity or reduced labor productivity (Graff Zivin and Neidell, 2012; Borgschulte, Molitor,
and Zou, 2022).

We make three contributions to the literature. First, we quantify the causal impact of trade
on deforestation. Tropical deforestation remains a critical environmental challenge, with

implications for climate change and biodiversity loss (Burgess et al., 2012; Balboni et al., 2023).

While the trade and environment literature has traditionally focused on the role of industrial
emissions, there is a growing body of work that examines the environmental impact of trade
through its interaction with natural resources. In particular, recent research explores how trade

liberalization affects land use and forest cover (Harstad 2024; Farrokhi et al., 2024). To the best of

our knowledge, this paper provides among the first causal estimates on the impact of exports on

deforestation. The most closely related work is Carreira, Costa, and Pessoa (2024), who study the

impact of agricultural productivity changes and China shocks - and their interactions - on forest

cover in Brazil.? Earlier work such as Ferreira (2004) also documents a negative relationship

3 Carreira, Costa, and Pessoa (2024) identify a strong negative impact of new agrotechnology (genetically
engineered soy seeds) on forest cover in Brazil, along with a negative, though less statistically robust, effect
from trade shocks. Our findings on trade-driven deforestation in Section 4 align broadly with their results,
though our approach differs in two key ways. First, instead of focusing solely on demand shocks from
China, our instrumental variable captures agricultural demand variation from multiple major importing
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between trade and forest cover, though mostly based on cross-country comparison without

causal identification.4

Second, we add to the literature on the environmental and health effects of forests. This
literature is nascent in itself, but emerging applications have found important implications of
forest presence on weather, climate, agriculture, infectious diseases, health, among other social
economic outcomes such as property values (Berazneva and Byker, 2017, 2022; Garg, 2019; Jones

and Goodkind, 2019; Druckenmiller, 2020; Han et al., 2021; Arujo, 2023; Grosset-Touba, Papp,

and Taylor, 2023; Li, 2023; Xing et al., 2023). Our study is the first to identify a direct link between

forests and mortality rates, adding a significant dimension to the costs associated with forest loss,
and doing so across a wide, inter-city geographical scale. By quantifying how forests safeguard
human life via pollution reduction, we highlight an immediate public health value of forest

conservation that complements the longer-run climate and ecosystem values.

Third, we formally link trade, deforestation, and health, identifying natural capital
depletion as an important yet overlooked channel through which trade affects welfare. Prior
research has recognized that trade shocks can influence health through income channels or
through changes in local pollution emissions. For example, trade-induced job loss has been

shown to increase drug overdoses (Pierce and Schott, 2020), reduce access to employment

insurance (Guerrico, 2021), and worsen workers” physical and mental health (Adda and Fawaz,

2020). Bombardini and Li (2020) show that Chinese cities specializing in dirty industries

experience both pollution and income effects, leading to increases in mortality. In contrast, cities
specializing in clean industries only enjoy income effects and experience decreases in mortality.

Gong et al. (2023) examine how foreign demand shocks due to the global economic crisis reduce

demand for Chinese products, drive local changes in air quality, and affect mortalities. Tanaka,

Teshima, and Verhoogen (2022) analyzes the effect of a U.S. air-quality standard on cross-border

battery-recycling flows and finds that recycling shifted from the United States to Mexico which
in turn led to increased lead exposure and worsened infant health outcomes near Mexican plants

We extend this literature by emphasizing the role of natural capital —in our case, the Amazon

countries. Second, we use a more extensive dataset with additional years and refined satellite
measurements of forest cover, likely enhancing the precision of our estimates.

4 See also Andela et al. (2017) and Curtis et al. (2018) for cross-country estimates. The general link between
agricultural expansion and deforestation is more extensively studied. See, for example, Busch and Ferretti-
Gallon (2017), Assuncéo et al. (2020), Heilmayr et al. (2020), and Penderill et al. (2022).
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forest—as an important determinant of population health. Our analysis shows that trade-
induced depletion of this natural resource can substantially undermine the net social benefits of
trade, by imposing large health externalities on distant communities that are typically omitted

from conventional trade benefit-cost calculations.

Our work also provides a quantitative basis to account for the environmental externalities
of trade and the value of ecosystems like forests in economic policy analysis. Policymakers have
only a limited set of tools (e.g. domestic environmental regulations or conservation policies) to

mitigate the natural capital depletion associated with trade-driven growth (Copeland, Shapiro,

and Taylor, 2022). Designing effective policy responses requires rigorous evidence that

monetizes the value of natural assets, and our study offers one feasible framework to do so.5 In
addition to providing an overall estimate of the export-health trade-off, our estimates may also
be useful for targeting, e.g., identifying areas where the same amount of deforestation would
lead to the largest downwind environmental health damage. This opens new possibility for more
informed discussions on balancing the economic gains from trade against the often hidden health

costs of environmental degradation.

Section 2 continues with institutional knowledge on trade, deforestation, the
environment, and human health. Section 3 describes the overall research framework and data
sources. Section 4 presents the causal estimation of the effect of export on forest coverage. Section

5 presents the health analysis. Section 6 presents the cost calculation and concludes the paper.

2. Institutional Background

2.1 Agricultural Export and Deforestation in Brazil

Brazil is the eighth largest economy and the world’s seventh most populous country. At
the same time, Brazil is an ecological hotspot, home to 60 percent of the Amazon rainforest and

the Cerrado biome, the world’s most biodiverse tropical savannah. It is estimated that Brazil

5See, for example, Recommendation 3 of National Strategy to Develop Statistics for Environmental-Economic
Decisions, Office of Science and Technology Policy, Office of Management and Budget, Department of
Commerce (2023). In addition to direct regulations, many alternative methods for fighting deforestation
may also benefit from concrete estimates of health effects of forest losses, such as conservation contracting
and ecosystem payment programs (Jayachandran et al., 2017; Harstad, 2024).
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holds about 10 percent of the world’s known biodiversity (Lewinsohn and Prado, 2005). With the

rapid expansion of agribusiness in Brazil, deforestation is emerging as an environmental crisis.
In many developing countries, including Brazil, farmers are driven to deforest land as a means
to increase their agricultural output and income. The prevalent method of land conversion
involves slash-and-burn techniques, where trees are cut down and the remaining vegetation is
burned, enriching the soil with nutrients from the ash. The opening of new lands for agriculture
is frequently facilitated by government subsidies or lax enforcement of environmental

regulations, which further incentivizes farmers to engage in these practices (Fearnside, 2005).

The interplay between agricultural expansion and deforestation is particularly evident in
the Brazilian Amazon Rainforest and the Cerrado, where the cultivation of soybeans and the
expansion of cattle ranching are the primary agricultural activities driving deforestation (Song et
al., 2021). Soybean have seen increased demand globally, particularly from China and the
European Union, for use as livestock feed and in various food products. This demand has led to
Brazilian farmers to clear vast tracts of the Amazon to cultivate this lucrative crop. Similarly,
cattle ranching, which requires extensive land area for grazing, has expanded dramatically,
making Brazil one of the world’s largest beef exporters. The profitability of these agricultural
ventures, along with insufficient regulatory enforcement and government policies that frequently
favor economic growth over environmental protection, is widely regarded as a major driver of

significant deforestation in the region (Barona et al., 2010).

Weak enforcement of environmental laws has further exacerbated deforestation. Brazil’s
Forest Code mandates that private landowners conserve a portion of their land under native

vegetation —80% in the Amazon biome with the remaining 20% allowed for clearing (Brazil WWF

2016). Compliance with these rules is ostensibly monitored through various programs, including

the use of advanced technologies such as satellite remote sensing (Mullan et al., 2022). In practice,

however, those caught illegally clearing forests often face limited consequences. The Brazilian
Institute of Environment and Renewable Natural Resources (IBAMA), the federal environmental
enforcement agency, can issue fines and embargoes on illegally deforested land, and severe cases
may be prosecuted with potential jail time for offenders. Yet bureaucratic delays and legal
appeals have frequently blunted the effectiveness of these enforcement tools: by 2020, fewer than

10% of environmental violation cases had resulted in a fine being paid. This lack of effective

punishment likely has eroded the deterrent power of the regulations (Nunes et al., 2024).



2.2 Forests and the Environment

Forests are a crucial part of natural capital and underpin both ecological and
environmental stability. They provide habitat for roughly 80% of terrestrial species worldwide

(Aerts and Honnay, 2011). They also regulate water, oxygen, and carbon cycles and maintain

broader biogeochemical balances. Beyond these roles, forests influence climate at multiple scales.
Globally, they are the largest carbon reservoirs, absorbing greenhouse gases and serving as a

foundation for carbon offset programs such as REDD+. Locally, shading and evapotranspiration

help shape microclimates (Bonan, 2008; Pan et al., 2011).

Forests are equally central to human well-being. More than 1.6 billion people rely on them

for food, fuel, or shelter, and around 70 million —including many Indigenous groups—depend

on forests for settlements (UN, 2021). They also shield communities from environmental risks,
reducing flood damage and improving air quality. In this paper, we emphasize the role of forests
in filtering air pollution, which we argue is an often overlooked mechanism through which trade-
induced deforestation affects health. Air quality responds rapidly to changes in forest cover,
allowing us to link export shocks to environmental outcomes. Because air pollution produces
immediate mortality risks, this channel offers a direct way to quantify the health externalities of

deforestation.

Forests can mitigate air pollution through several mechanisms. One primary channel is
the physical deposition of particulate pollutants onto plant surfaces. Tree canopies present an
immense surface area of leaves, needles, and bark that acts as a natural filter for airborne
particulate matter . As polluted air moves through a forest, particles collide with or settle onto
these surfaces. Empirical studies confirm that foliage can capture and retain substantial quantities
of particulate matter pollution, effectively serving as a sink for suspended particulates (e.g.,

Wesely and Hicks, 2000; Betts et al., 2008; Janhall, 2015).

Forests also directly remove gaseous pollutants such as SO,, NOy, and O3 from the
atmosphere via plant physiological processes. Tree leaves absorb pollutant gases through their
stomatal pores (microscopic openings that plants normally use for CO; intake and transpiration).
The plant’s phytoremediation process then transform pollutants into inert or usable compounds

(Wei et al,, 2017).




Beyond serving as physical and biochemical sinks, forests can also alter the microclimate
in ways that can reduce local pollution formation and persistence. A well-known effect is canopy
shading and evapotranspiration, which cools the air beneath and around trees. Lower air
temperature directly translates into slower photochemical reaction rates that produce ozone and
other secondary pollutants, and higher humidity and rainfall promote the removal of particulate

pollutants from the atmosphere (Nowalk, et al., 2006; Coates et al., 2016).

Importantly, the deforestation-air pollution-health link is not confined to local areas,
because wind can transport pollutants over long distances. Prevailing winds carry pollution from
upwind deforestation zones to downwind regions, so wind speed and direction determine how
far pollution travels and how long it lingers. Prior research has documented significant

transboundary air pollution impacts on downwind areas (e.g., Heo, Ito, and Kotamarthi, 2023).

As a result, deforestation in one location—such as clearing land for export agriculture —can
degrade air quality and public health in communities far downwind. Recognizing the protective
role of forests, policymakers have implemented afforestation projects to help shield downwind
populations from air pollution. For example, China’s Three-North Shelter Forest is a vast

windbreak intended to reduce dust storms from the Gobi Desert and improve air quality near the

capital region (Bryan et al., 2018).

3. Research Framework and Data

3.1 Research Framework

Before proceeding, it is worth laying out how various parts of our empirical estimation
are eventually going to line up. Our goal is to estimate the external health effects of trade-induced
deforestation that occurs in city i, recognizing that this effect need not confine locally to where
deforestation occurs. The empirical analyses can be thought of as being organized around the

following conceptual equation:

Section 5.1
dForest; dHealth et
Health Effects; = L. Y| Wind; 1
i = 2r dTrade; ( OForest; | ior ) ( )
Section 4 Section 5.2
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dForest;
dTrade;

Section 4 estimates the causal effect of trade on deforestation ( )- This estimate is

entirely local in nature: we want to learn how much of city i’s deforestation is due to trade shocks
to that city. Section 5 estimates the spillover health effects of city i’s deforestation on all potential
“receiver” cities indexed by r. Section 5.1 first builds an algorithm that identifies these potential
receivers. We use high-frequency wind direction information to create a downwind exposure
index Wind;_,, which summarizes the degree to which city i may have an influence on city r’s
environmental condition due to atmospheric motions. Section 5.2 then builds on this information
to estimate the relationship between city i’s forest cover and receiver city r’s health outcomes -
which we show is highly dependent on, and nonlinear with respect to, the downwind exposure
index. The total effect of city i’s is thus the summation across its effects on various downwind
receiver cities. In Section 6, we come back to an empirical version of equation (1) to derive our

headline, cost-of-trade-induced-deforestation number.

Equation (1) also makes clear that our analysis focuses specifically on one mechanism
linking trade to health, rather than attempting to capture the full spectrum of trade’s economic,
environmental, and health effects. Our goal is to quantify the health externality transmitted via
trade-induced deforestation and long-distance pollution transport. Trade can also influence
health through other channels - for example, by raising incomes, improving healthcare access, or
spurring infrastructure development - which lie beyond our scope. By isolating this
deforestation-pollution-health pathway, we highlight an important but previously overlooked

channel without making broad claims about trade’s overall welfare effects.

3.2 Data

Exports. Our export data is from the Comex database provided by Brazil’s Foreign Trade
Secretariat (Secretaria de Comércio Exterior - Comex). The original data is at the municipality by
month level and is structured using the Harmonized System at the 4-digit level (“HS-4"), which
provides detailed categorization of exported goods. We have access to the data between 1997 and

2019.

Brazil’s export data report the municipality of origin as the fiscal domicile of the exporting

firm, not necessarily the production site. This can misalign recorded export locations with where
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commodities are actually produced. This reporting convention is consistent across sectors, though
its impact varies. For example, large mining or manufacturing companies often base their
corporate offices in major cities while the mines or factories are in distant rural municipalities. By
contrast, many agricultural exporters - notably cooperatives and trading companies in the farm
sector - are located near the farming areas themselves, so the municipality recorded for the export

is usually within or close to the actual producing zone (Leal and Martins, 2025).¢ To alleviate the

concern, we aggregate the municipal export data to Minimum Comparable Areas (AMC) regions
which merge municipalities into stable units. Aggregation helps realign exports with production
areas by capturing cases where an exporter’s city and the production hinterland are in the same

broader region.

Land Use. Our land use data is from MapBiomas. Based on the Landsat satellite images
produced by NASA and USGS, MapBiomas processes the original, pixel-level satellite data with
machine learning algorithms through the Google Earth Engine platform. It produces annual land
use and land cover maps and provides information on the dynamics of different types of land
cover for Brazil on a 30-meter spatial resolution. There are six general types of land cover, namely
forest, non-forest natural formation, farming, non-vegetated area, water, and not observed. We
mainly analyze the data on forest land and farming land. There are four types of forest lands,
namely forest formation, savanna formation, mangrove, and sandy coastal plain vegetation.
There are four types of farming land, namely pasture, agriculture, forest plantation, and mosaic
of uses. For agricultural land, the MapBiomas offers information on major crops, such as soybean,
sugar cane, rice, cotton, coffee, and citrus. The data used in our paper is the 7.0 version which we

obtained in 2022.

Meteorology. We draw daily temperature and precipitation data from BDMEP (Banco de
Dados meteorolégicos para Ensino e Pesquisa). Between 2000-2015, BDMEP provided data from
150 weather monitoring stations. The network expanded to include 5,611 stations for the years
2016-2020. For each station-day, we observe daily minimum and maximum temperatures (°C) -

from which we calculate average temperature by taking the average of the two - and precipitation

¢ In fact, Brazil's agribusiness supply chains are often regionally anchored. Agricultural cooperatives and
local trading firms tend to be based in the same regions where crops are grown or cattle raised, which
means the “municipality-of-record” for exports of major commodities like soybeans or beef often
corresponds to the production region. See recent study by the Brazilian Agricultural Research Corporation:
https:/ /www.embrapa.br/macrologistical/como-fizemos/identificacao-dos-caminhos
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(mm). We then compute station by month average temperature and precipitation. To derive city-
level weather variables, we match all weather stations within a 300-kilometer radius of each city’s
geographic centroid and calculate the average temperature and precipitation across these

matched stations.

We use wind direction and wind speed data from the European Centre for Medium-Range
Weather Forecasts Reanalysis 5 (ERAD5) reanalysis product. This dataset provides hourly U
(eastward) and V (northward) components of the wind vectors at a 0.25° grid spatial resolution.
We use this data to compute daily prevailing wind directions, which are used in the air flow

analysis in Section 5.

Air Quality. Air quality data is sourced from IEMA (the Instituto de Energia e Meio
Ambiente). It contains hourly air quality monitoring data from 380 stations in 28 cities from 2015-
2022. The IEMA data keeps track of six different air pollutants: fine particulate matter (PM.s),
coarse particulate matter (PMio), ozone (Os), nitrogen dioxide (NOy), sulfur dioxide (SO) and
carbon monoxide (CO). Because trees can mitigate both particulate and gaseous pollutants
(Section 2.2), rather than focusing on these pollutants individually, we compute the z-scores for
each of the six pollutants and then average these z-scores to construct an overall air pollution
index. This index serves as our primary measure of air quality in the regression analysis.
Regression results using individual pollutant concentrations as the outcome variables are

available in the Online Appendix Figure 9.

Forest Fires. We use fire data from NASA’s Fire Information for Resource Management
System (FIRMS), which derives fire detection from the MODIS Fire and Thermal Anomalies
product covering the period 2000-2022. The MODIS instrument identifies active fire hot spots at
a spatial resolution of 1 km and a daily temporal frequency, detecting both natural and
anthropogenic fires, whether intentional or accidental. Each detection includes the geographic
coordinates (at 1 km resolution) and the date of occurrence. We aggregate the number of active

fire detections to the microregion-by-month level for analysis.

Mortality. We obtain mortality microdata from the Mortality Information System
(Sistema de Informagdes sobre Mortalidade, or SIM) via the Brazilian National Health System

Information Technology Department (Departamento de Informatica do Sistema Unico de Sadde,
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DATASUS). The SIM data are derived from administrative death records, which are completed

and issued by physicians, and collected from hospitals and medical examiner offices.

From the death record microdata, we observe the decedent’s municipality of residence,
date of death, and the underlying cause of death coded in the International Classification of
Diseases ICD-10 classification. Using these information, we aggregate the microdata to obtain
death counts at the microregion-by-month level between 2000-2021.7” We categorize deaths into
those due to cardiovascular or respiratory causes (“cardiovascular”, ICD10: 100-199, J00-]99) and
all other, non-cardiovascular causes. Separately, we count deaths due to accidents (“external”,
ICD10: S00-T98, V01/V989), which we will use as a “placebo” outcome in our econometric
analysis. Finally, we convert death counts to death rate by dividing microregion level population

counts from the Brazilian Institute of Geography and Statistics.

Geography. Because municipality boundaries changed over time during our study
period, and to address potential misalignment between exporting and production location in the
COMEX data (as mentioned earlier in this section), we aggregate geographic units to the 3,826
Minimum Comparable Areas (henceforth “AMC” area) level for temporal consistency (Ehrl, 2017).
We drop five municipalities that cannot be identified in the municipality-to-AMC crosswalk.8
Our primary trade-deforestation analysis is based on AMC-level data. Our environmental data
have a coarser resolution than AMCs (e.g., 0.25 degree for wind, 380 air quality stations).
Therefore, in airflow modeling and the subsequent environmental health analysis, we aggregate
AMC s into 557 “microregions” - which we will henceforth refer to as “cities” - as defined by the

Brazilian Institute of Geography and Statistics.

4. Trade, Agricultural Expansion, and Deforestation

4.1 Summary Statistics

We begin with summary statistics on Brazil's agricultural export growth, land-use change,

and deforestation over the study period. Figure 1, panel (a) shows that Brazil’s annual

7 The SIM mortality data began in 1997, although we drop data from 1997 to 1999 due to missing
information on causes of death.
& Mojui dos Campos, Pescaria Brava, Balnedrio Rincao, Pinito Bandeira, and Paraiso das Aguas.
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agricultural export value quadrupled from around 20 billion USD in 1997 to over 80 billion USD
by 2018. Appendix Figure 1 panel (a) shows distribution of export values across agricultural
products. Appendix Figure 1 panel (b) shows that the increase in exports is mainly driven by
rising demand from China and the EU. Appendix Figure 3 shows that this export boom was
concentrated in traditional farming regions: the geographic distribution of agricultural export
growth indicates that the largest increases occurred in areas with substantial crop production, a
pattern mirrored by notable agricultural employment gains in those same regions. By contrast,
Appendix Figure 4 shows that growth in mining exports - the other main sector that saw
substantial growth during the study period - followed a very different spatial pattern, suggesting

that the regions experiencing deforestation were responding primarily to agricultural export

shocks.

Figure 1, panel (b) shows the corresponding land-use changes derived from the satellite-
based MapBiomas data. Brazil’s forest cover declined steadily over the past two decades, almost
one-for-one with an expansion in farmland area. The map on the right side of the panel highlights
that deforestation was most pronounced in the same regions that saw large agricultural export
gains. Consistent with this, Appendix Figure 2 shows that the municipalities with the greatest
farmland expansion (for example, in Mato Grosso and the Amazon frontier) also suffered the
largest forest losses. Table 1 presents more summary statistics of key variables used in our
analysis. We next turn to an empirical strategy to identify the causal effect of export growth on

land use.

4.2 Research Design

We estimate the causal impact of trade shocks on deforestation and other land use

outcomes using the following regression equation:

ALand Cover;y, = 8- AExport;, + A - Wi, + &y (2)
where ALand Cover;, is the four-year rate of change in a certain type of land cover at AMC area i
and year y. For example, when the outcome of interest is deforestation, the land cover variable is

defined as AForest;, = (Foresti,er4 - Forestily) /Land; , where “Forest” denotes forest cover in

acreage in the AMC-year, and “Land” is total area land size of the AMC. We use a four-year
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differencing period in both equation (2) and in the construction of our instrumental variable
below. We will present robustness checks with alternative differencing windows, ranging from
one to six years. As detailed below, we chose the four-year period as our primary specification
because the magnitude of the estimated effect stabilizes from this point onward, suggesting that
a four-year window is sufficiently long to capture the temporal dynamics between export shocks

and deforestation activities.

The key right hand side variable AExport; y is the four-year change in agricultural exports
per capita. W; ; is a series of control variables, including macro-region fixed effects, year fixed
effects, and region-time control variables including income per capita, literacy rate, rural
population, urban population, population density, and the presence of genetically-modified soy.?
The coefficient of interest (3 therefore captures the impact of agricultural export growth on land
cover changes. We cluster standard errors at the AMC level. All regressions are weighted with

each AMC’s agricultural population in year y.

Simple OLS estimation of equation (2) may suffer from endogeneity and measurement

errors. We build the following shift-share instrumental variable (IV) for the export variable:

Exportjjt—a Import; ¢, ,—Import; EXportjt_g4

Exportjt—4 (Importj't+4+lmp0rti't)/2 Popjt-a

IVi,y = Z] (3)

where Export;; ._4/Export;_, is the “share” of product j in AMC area i’s exports at period t — 4,
which captures an area’s historical export of a certain type of agricultural product. Import; is

major importing countries” total import from the world in product j and year t, which measures

Importj't+4—lmp0rt]—,t

the global import demand for product j. The term ( therefore captures percent

Importj,t+4+lmportj,t)/2

change (or “shift”) in product demand over the period of interest. Together, the shift-share terms
in brackets of equation (3) capture the variation in an area’s exposure to global demand shocks
due to historical differences in export capacity across product categories. To express the IV

variable in terms of per-capita dollar value - consistent with the endogenous variable in equation

Exportjt_4

(2) - we multiply by Pop
it—4

, which represents area i’s overall historical export exposure.0

9 We follow Carreira, Costa, and Pessoa (2024) in selecting these control variables. Our estimates are
insensitive to the exclusion of these covariates.

10 We use time-varying exposure shares rather than fixed shares. This helps capture economically
meaningful entry into new products rather than restricting attention only to “always-exported” goods,
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Because the export values of many products are zero in early years, it is not possible to calculate

growth for some products. To address this issue, we construct the modified version of import

growth following Davis and Haltiwanger (1992), where the denominator is the average of the
start-of-period value and end-of-period value. Appendix Table 1 lists the major importing

countries and products used in constructing the instrument.

The shift-share IV strategy relies on trade shocks being (i) diverse, uncorrelated across
product categories, and (ii) as-good-as-random conditional on shock-level unobservables and

exposure weights (Borusyak, Hull, and Jaravel, 2022). Several empirical facts and tests support

these assumptions.

First, Brazil's agricultural export base is highly diversified: between 1997 and 2019, Brazil
exported over 190 distinct agricultural products (at the HS-4 level), with an average Herfindahl-
Hirschman Index of 0.07, indicating very low concentration. Second, import demand growth
varies widely across products - Appendix Figure 5 shows that different crop categories
experienced markedly different demand trajectories. These facts imply that our instrument draws
on a large number of disparate shocks rather than any single dominant trend, making it unlikely

that one particular commodity shock drives the results.

To assess exogeneity of trade shocks, we follow Borusyak, Hull, and Jaravel (2022) and

conduct “pre-trend” tests on whether the instrument is correlated with pre-existing regional
trends or characteristics. Specifically, we regress pre-shock observable characteristics on the IV
variable, controlling for the same set of fixed effects variables as in equation (2). We look at control
variables that we used as time-varying covariates in equation (2), including urban, rural, and total
population, population density, per capita income, literacy rate, and the adoption of genetically
engineered soy seeds (to capture agrotechnology adoption). We further consider a rich set of
climatic variables including average temperature, precipitation, humidity, and wind speed,

which might correlate with agricultural suitability. Table 2 reports the results of the pre-trend

which is particularly relevant for Brazil as a rapidly growing exporter. Borusyak, Hull, and Jaravel (2022)
explains the econometric tradeoff: updating shares improves the first stage and reflects real shifts in
exposure, but it requires stronger identification assumptions, since orthogonality may fail if shocks are
serially correlated and shares respond to past shocks. As discussed later in this section, we construct the
instrument using product-level import growth and export shares measured four years earlier (and show
stability across alternative lag windows), and we verify that the instrument is not correlated with pre-shock
regional trends. These diagnostics support our setting as a permissible case for using time-varying shares.
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tests. Among the 12 characteristics examined, we reject imbalance only for per capita income.
Overall, these patterns are consistent with the instrument being exogenous. In all IV regressions
below, we control for per capita income together with the demographic, economic, and

technology covariates listed above.!

Another potential concern with shift-share designs is that if regions have similar export
structures, they may experience correlated shocks, which can lead to over-rejection (Adao,

Kolesédr, and Morales, 2019). For simplicity, we follow Addo, Kolesar, and Morales (2019)’s

specifications and conduct a placebo test where we simulate shift-share IV variables with shift
shocks randomly drawn from a normal distribution with mean 0 and variance 5. We then estimate
the reduced form effect by regressing forest growth on the placebo IV, repeating this procedure
1,000 times and documenting the fraction of times results show significant effects. Appendix
Figure 6 shows that the placebo regressions render significant results just 11% of time at the 5%

significance level (compared to 55% of the time in the application analyzed in Adao, Kolesar, and

Morales, 2019), and 1.5% of the time at the 1% significance level. This suggests that our inference

is not unduly biased by correlated shocks across regions, and that the conventional clustered

standard errors are appropriate in our setting.

4.3 Results

Figure 2 reports the estimation results. Each node on the tree represents a separate
regression. All regressions follow the exact same IV specification as laid out in equations (2)-(3),
except for the outcome variables which are denoted by the name of the node. Branches of the tree
represent hierarchies of the land use variables defined in the MapBiomas dataset. For example,

vou

the “forest” land use category consists of four subcategories: “forest formation,” “savanna

i

formation,” “mangrove,” and “sandy.” The values on the four sub-nodes represent the causal
impacts of export on each subcategory, which collectively sum to the overall causal impact on the

main forest node. We find that the total deforestation effect is driven mainly by reductions in the

1 In an additional and likely over-conservative check, we construct alternative IV by excluding all Brazil’s
exports when computing world import growth, and pre-residualizing product-level import growth on HS-
2 category fixed effects to remove any common component of shocks at the broader product-group level.
These adjustments likely lead to understatement of the true demand shock magnitudes but may further
reduce reverse-causality concerns. Our results remain robust under this alternative IV.
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“forest formation” and “savanna formation” subcategories (i.e., primary forests and woody

savannas), with minimal changes in mangrove or sandy cover.

The headline “export-deforestation” estimate of this paper is shown on the “AForest”
node of the figure: each 1,000 BRL increase in export per capita reduces forest cover by 0.174
percentage points. This estimate is statistically significant at the 5 percent level, and the effect size
converts to about 5.7 percent of a standard deviation (S.D.) reduction in forest cover per 1 S.D.
change in export. Consistent with the sub-node breakdown mentioned above, this total

deforestation effect is driven mainly by decreases in forest and savanna formation.

Turning to the lower parts of the graph, we find that export leads to significant increases
in total farmland coverage by about 0.214 percentage points. This effect is diluted by the fact that,
in the land use data, “forest plantation” is counted toward farming activities, which - consistent
with our deforestation results above - is negatively affected by exports. The smaller net gain in
overall farmland relative to the larger increase in cropland (0.334 percentage points) suggests
some land use substitution - for example, part of the new crop expansion comes from converting
existing pasture or mixed-use land to row crops, rather than exclusively clearing new forest land.
This indicates that export booms can induce both extensification (clearing forests for new farms)
and intensification (repurposing previously cleared land toward higher-value crops), consistent

with well-known patterns in Brazilian agriculture.

We can further look at which crop types drive the agriculture effects. The right-hand side
parts of the graph show that export’s effect on agriculture is driven primarily by an increase in
soybean farming. Indeed, soybean cultivation accounts for the bulk of the export-induced
expansion in crop area, which is consistent with Brazil’s dominant role in global soy markets. The
prominence of soy-driven deforestation has been a focal point of policy discussions in Brazil - for
example, the 2006 Soy Moratorium in the Amazon biome was introduced to curb forest clearing
for soybean fields. Our results empirically confirm that soybean export demand was a key driver

of land use change, which reinforces the importance of such policy measures.

Finally, it is worth noting that our choice of a four-year differencing window was guided
by stability of the coefficient. Table 3 shows that using shorter windows yields smaller immediate
effects, whereas beyond four years the cumulative effect plateaus. This suggests that

deforestation in response to an export shock can play out over several years, but most of the
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impact materializes within a four-year period. The consistency of the estimates across these

checks provides confidence in the stability of the export-deforestation relationship.

5. Health Effects

5.1 Area-of-Effect Modeling

To capture downwind environmental and health effects, we build a matrix that
summarizes monthly wind flow intensities between all pairs of cities in Brazil. In the interest of
space, here we provide an intuitive explanation of the procedure, leaving computational details

to the Online Appendix.

Model. The main input data are 0.25-degree resolution by hourly wind direction and
speed information (i.e., vectors) from the ERA5 product. We first generate a spatial representation
of wind flows from individual wind vectors, as illustrated in Figure 3a. Beginning from a particular
day and city, we construct streamlines by sequentially following the wind’s speed and direction
on a daily basis. This process maps out the evolving trajectories of the wind field, giving us daily

representations of the distribution of wind flows throughout the country.

Our goal is to build an index, Wind;_, 4, which is a summary of downwind intensity
blowing from a sender city i to a receiver city r on day d. Note that, for any pair of cities that are
significantly distant from each other, it is meaning]less to talk about up/downwind relationship
on any given “day” because winds blowing from the sender city may take days to arrive at the
receiver city. We therefore track the trajectory of winds “originating” from a sender city and their
impacts of downwind cities over multiple days - or “steps” as we refer to them below - using the

wind streamline data that we constructed earlier.
We define downwind intensity score using the following formula:
Windi—>r,d,t = exp{—a : radt - B : |6|i—>r,d,t —-Y- diSti—>r,d,t} (4)

Starting from sender city i on day d and at step t, we assume downwind intensity of

receiver city r follows an exponential decay as a function of three components (U.S. EPA, 2018;

Phillips et al., 2021). The first component is the search radius at the step (rad;), which captures

general decreases of downwind intensity over steps. The initial radius is 300 km, and we increase
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the search radius by 20 km at each step to capture both the uncertainty in the streamline
computation and the dispersion of air. The second component is the scalar product of the angle
between the receiver city and the wind direction originating from the sender’s location (|0[;_yq ),
which means we assign higher intensity to receiver cities that sit closer to the exactly-downwind
direction of the sender. The third component is simply the distance between the sender and the
receiver city (distj_q¢), which captures geographic decay. We assume Wind;_, 4 to be zero if
disrqt > rady (i.e., if receiver city lies outside of the search radius at step t) or if 6;_,q¢ > 0.4m
(i.e., if the receiver city is not obviously in the downwind direction from the sender city.!2 Starting

from each particular sender city and day, we iterate the procedure for seven steps (i.e., a week).

Perhaps an easier way to think about the procedure above is that, we essentially “move”
the location of the sender city with the wind flow and see which receiver cities it touches along
the path over the next week period. A visualization of the procedure is shown in Figure 3b. The
red arrow at the center represents the locus of the wind flow starting from the sender city. The
growing ball of uncertainty around the arrow shows expanding search radius rad over steps in
equation (4). The visualization also explains why both the relative angle and distance variables
(6 and dist) have starting day and step subscripts (d and t): we track where winds originate and
where they move to, and we compute each receiver city’s relative angle and distances

dynamically.
We aggregate step-wise downwind intensity scores to the day level:
Windi—>r,d = Zt Windi—>r,d,t (5)

and in the econometric analysis below, we further average this city pair-daily score to the monthly
frequency (Wind;_,,n, ,, where the variable is indexed by month m, and year y) to make the size of
the regression dataset manageable. Because the numerical values of these scores lack direct
contextual meaning, in econometric analysis we use a nonparametric approach, grouping this

variable into decile bins for positive values plus a separate bin for when downwind score is zero

12 We use parameter values {«a, 3, v} = {0.7,0.5,0.2}. These numbers are empirically determined such that
we would obtain a spatially continuous flow coefficient function through the successive steps, and that the
directionality of the observed winds are respected through the flow coefficient representation. See Online
Appendix for more details.
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(i.e., because the receiver city is too far away or it is not in the downwind direction, as discussed

earlier).

Validation. Estimating atmospheric transport between cities is a complex task, but the
model we outlined above is deliberately parsimonious. This naturally raises the question of
whether it is sufficient to capture long-range air movement. We propose a validation test: we
examine whether our downwind index predicts pollution passthrough from upwind to
downwind cities. Specifically, we focus on fine particulate matter (PM2.5), which is well known
to travel long distances, and test whether a receiver city’s pollution more closely resembles that
of its upwind counterpart when the corresponding downwind intensity score is high.
Importantly, because pollution data were not used in constructing the downwind intensity scores,
this test provides an independent validation of the model’s ability to capture atmospheric
transport.

We model the passthrough between Pollution; ;,, ; and Pollution, , , - particulate matter
pollution levels at the sender city i and at the receiver city r in month m and year y - as a function
of the associated downwind intensity score between the city pair, Wind;_,; 1, ;. We estimate the

following regression equation:

Pollution; i, ; = B - Pollution; p, y X Windjrmy + v - Windirmy + Qirm + 0y + € rmy (6)

where Wind;_, ., y is specified as a categorical variable comprising 11 groups: ten decile bins for
non-zero downwind scores and an additional bin for zero wind values, representing “calm”
conditions where no downwind relationship is observed between the two cities. We omit the
main effect of Pollution;,, from the regression, so that the origin-to-destination pollution
passthrough {3 coefficients can be identified for each of the 11 downwind score bins. Equation (6)
includes sender-by-receiver-by-month-of-year fixed effects (a; ;. ,). The identifying variation thus
comes from within sender-receiver-seasonal pairs across different years, where variations in
wind intensities are plausibly exogenous. We also include year fixed effects (ay) to account for
common shocks at the year level. Standard errors are two-way clustered at both the sender and

receiver levels.

Figure 4 reports the  estimates. We find strong sender-to-receiver PMz5 passthrough
when the modeled downwind intensity is high, with a monotonic decline in passthrough as the

downwind score decreases. Reassuringly, the passthrough effect is near zero when the modeled
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downwind intensity is zero (i.e., under “calm” conditions). In other words, we observe
substantial pollution transmission when our model predicts strong atmospheric connectivity, and
little to no transmission when it predicts none. Taken together, these results provide validation
that our downwind index effectively captures the potential extent of pollution transport between

cities.

Equation (6) examines how pollution transport varies with downwind intensities. A
natural question next is whether forest cover along the downwind trajectory between two cities
reduces this transport. To test this, we estimate a modified version of Equation (6). For each pair
of sender and receiver cities i and r that has a downwind relationship in a given month (i.e.,
Wind;_,;my > 0), we compute a measure of upwind forest exposure: the average forest cover
across all cities located along the i —»r path in the relevant year, which we denote as
ForestPath;_,.1* We then replace the Wind;_, ,,, variable in equation (6) with ForestPath;_,, ,
leaving all other specifications unchanged. Appendix Figure 7 reports the results, grouping
observations into bins by increments of ForestPath;_,.;,. The “none” bin includes pairs with no
forest cover along the downwind path, while the “10th” bin corresponds to pairs with the densest
forest cover. The pattern mirrors our earlier findings: pollution passthrough is strongest when
forest cover is minimal (up to 70% in the absence of any along-path forest) and weakens as forest
cover increases, falling to about 15% among city pairs with the greatest along-path forest

concentration.

5.2 Research Design

Our goal is to estimate the relationship between a sender city’s quantity of forests and its
downwind receiver’s environmental and health outcomes, leveraging month-to-month
fluctuations in the downwind score as illustrated in Figure 3b. Our estimation equation is as

follows:

Yrmy = B - Forestjy X Windj_;my + v - WindiLrmy + Qirm + a4y + € rmy  (7)

13 We use average, rather than total, forest cover across cities along the path, because city pairs that are
farther apart naturally span more forest area, while they will mechanically have lower rates of pollution
passthrough between them.
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Equation (7) mirrors the structure of Equation (6), with the only difference being that the
upwind pollution variable is replaced by the amount of forest cover in the upwind area. A unique
observation in our estimation data is indexed by sender city (i), receiver city (r), month (m), and
year (y). The three key variables in this estimation equation are: Y, n, ;, which is the receiver city’s
outcome in a given month; Forest;, which is the sender city’s forest acreage in the corresponding
year (standardized to mean zero and standard deviation one) multiplied by minus one to capture
the effects of losses; and Wind;_, iy, which is the downwind score reflecting strength of wind
blowing from i to r in that month. Like in equation (6), we categorize the Wind;_,, r, ; variable into
11 groups: 10 decile bins for non-zero downwind scores and one additional bin for zero wind
scores representing “calm” conditions with no downwind relationship between the two cities.
We then include Wind;_,,,y as a categorical variable in the regression, and so there is one f3

coefficient for each of the 11 downwind score bins.14

We include sender by receiver by month-of-year fixed effects (a;,r,), which isolate
downwind variation arising within a city pair and month of the year to address potential cross-
sectional and seasonal confounds. For example, consider the city pair of Sao Paulo and Brasilia.
Our specification compares a particular January when the wind blowing from Sao Paulo to
Brasilia is particularly strong with other Januaries in different years when the wind strength for
the same city pair is comparatively weaker. This strategy enables us to parse out cross-sectional
correlations (e.g., the fact that downwind relationships tend to be generally stronger for city pairs
where the two cities are in close proximity) and city pair-specific seasonality of wind patterns.
We also include year fixed effects (ay) to account for common shocks at the year level. In all

regressions, we two-way cluster standard errors at the sender and receiver levels.

Our coefficients of interest are the s, which capture the relationship between upwind
forest losses and downwind environmental or health condition at varying levels of wind intensity
blowing from the upwind to the downwind city. We hypothesize that at high levels of wind

intensity, the coefficient should be positive, indicating that forest losses in the upwind city

14 As in Equation (6), we omit the main effect term Forest;, from the regression, so that the origin-to-
destination pollution passthrough B coefficients can be identified for all 11 downwind score bins, with the
coefficient on the “calm” (no downwind relationship) bin serving as a placebo check.
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increases pollution and mortality in the downwind city. As wind intensity decreases, we expect

this relationship to weaken.

Our identifying assumption is that, conditional on the fixed effects controls, the residual
variation in a receiver city’s upwind forest exposure is as good as random. Note that the “calm”
wind condition provides an informative falsification check, as little correspondence between
upwind forest losses and downwind outcomes is expected in the absence of aerodynamic

relationships between the two cities.

A potential alternative explanation for the observed relationship between upwind forest
cover and downwind pollution and mortality is a fire channel, where land-clearing fires—a
common method for deforestation and farmland conversion—generate air pollution that drifts
downwind, thereby degrading air quality and creating a spurious negative relationship between
upwind forest cover and downwind pollution. To examine the relevance of this mechanism, we
incorporate remote-sensing data on fire activity (Section 3.2) in upwind cities and modify
equation (7) by including a full interaction of upwind fire activity with downwind wind exposure

bins. The augmented specification is:

Yrmy = B - Forest;y X Wind;_,; my + 6 - Fire; o, y X Windrm y

+y - WindiLrmy + ®irm + Ay + € rmy )

Here, Fire; ,, captures the number of fire spots in the sender city during the month,
measured based on satellite observations (Section 3.2). Equation (8) effectively tests a “horserace”
between the effects of forest cover and fire activity in upwind areas on downwind outcomes. We
are interested in two sets of parameter estimates. First, the coefficients on 0 reveal the direct
impact of upwind fires on downwind pollution and mortality. This serves as a useful benchmark,
since fires are expected to worsen environmental outcomes. Second, we examine how the
estimated forest coefficient 3 changes relative to estimates from equation (7), which does not
control for fire activity. If the observed forest effect primarily reflects fire-driven pollution, then

introducing fire controls should attenuate the (8 estimates accordingly.
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5.3 Results

Figure 5 plots the {3 coefficients from equation (7). Each chart represents results for a
separate outcome. Start with panel (a), which shows atmospheric outcomes. To facilitate
interpretation and comparison of results, we use standardized outcomes (mean 0, standard
deviation 1) in each regression, so that the interpretation of the  coefficients is “the number of
standard deviation change in receiver city’s atmospheric outcome per 1 standard deviation

decrease in sender city’s forest coverage.”

The left panel of Figure 5a shows that forests have a large effect on downwind air
pollution reduction. Two notable patterns are worth pointing out about the pollution effect. First,
the forest-pollution effect increases monotonically with the downwind intensity score. In the
strongest wind decile bin (bin “1st” on the x-axis), a standard deviation decrease in upwind
forests increases downwind pollution concentrations by 3 standard deviations.!5> Second, we find
precisely estimated zero effect for the no-wind bin (bin “calm” on the x-axis). This serves as a
reassuring “placebo” exercise, suggesting that our econometric specification indicates an absence
of forests” downstream environmental effect when our wind analysis indeed suggests an absence
of a significant downwind relationship between the city pair. These two patterns (strong effects
under high wind, and null effects under calm wind) bolster a causal interpretation: they align
with the hypothesized mechanism that forest loss affects downwind pollution only when the

atmospheric transport pathway is active.

Appendix Figure 9 disaggregates the pollution impact of upwind deforestation, showing
that the downwind gradient persists across multiple air pollutants. The magnitudes vary by

pollutant, with PM,, and O; showing the largest standardized rises.1®

The middle and right panels of Figure 5a suggest there is little effect of upwind forests on
downwind temperatures and precipitation. The empirical impacts of forests on the atmospheric

conditions is a subject of ongoing research. Here we compare our findings to some existing

15 We will discuss plausibility of this effect size in conjunction with the health effects estimates.

16 Although ozone is a secondary pollutant, it is well known that ozone and its precursors (e.g., NO) can
be carried long distances in aged air masses from their source (e.g., Auvray and Bey, 2005). The long-range
transport is recognized in policy as well: for example, the U.S. EPA’s Cross-State Air Pollution Rule
explicitly targets upwind NOy emissions because they contribute to elevated ozone in downwind states
(https:/ /www.epa.gov/Cross-State-Air-Pollution / overview-cross-state-air-pollution-rule-csapr).
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studies. On temperature effects, most empirical studies we are aware of document the local

cooling effects of forests through shading and evapotranspiration (e.g., Han et al., 2021), and so

it is not surprising we are not finding a transported effect at large-distance scale. The small
negative coefficient in the strongest wind bin (less than 3% standard deviation change) may
reflect a mechanical effect of strong winds, which can enhance ventilation and slightly lower
ambient temperatures. On precipitation effects, our null effects seem at odds with recent studies

that show positive impacts of forests on downwind rainfalls (Grosset-Touba, Papp, and Taylor,

2023). One important difference of our estimation and Grosset-Touba, Papp, and Taylor (2023) is

the time scale: while we look at monthly frequency impacts, their findings pertain mostly to
longer-term changes. In Appendix Figure 8, we show that, when aggregating our analysis to the
annual level, we do see a substantial positive impact of forests on downwind precipitation.” Our

pollution results echo Xing et al. (2023) which uses a similar design - though looking at within-

city scale - to examine the impact of urban forests on city air quality improvement.

We report health effect estimates in Figure 5b. Given the findings of forests” impact on air
quality, we separately examine mortality due to cardiovascular/respiratory causes - which are
expected to be more responsive to pollution changes - and other, non-cardiorespiratory causes.
The left panel of Figure 5b shows that upwind forest losses lead to significant increase in
downwind cardiorespiratory mortality rates. Once again, as we saw in the pollution analysis
results, the mortality effects are monotonic with respect to downwind intensity score, and we
find a precise-zero effect when there are no significant downwind connections between the city
pair. The middle panel reports that we find little impact of upwind forests on mortality of non-
cardiorespiratory causes. Finally, as an additional “placebo” exercise, in the right panel we look
specifically at mortality due to external causes (“accidents”) and we find no relationship between

upwind forests and external mortality, regardless of downwind intensity levels.

In Appendix Figure 10 we present a heterogeneity analysis in which we use land cover
transition information to classify each upwind city-year’s forest volume based on its land cover

type from the previous year, distinguishing how much of the current year’s forest acreage was

17 While forests can contribute to increased local humidity through evapotranspiration, this increased
moisture might not be sufficient to alter weather patterns significantly in the downwind area, especially
over short distances or periods. Over the long term, extensive forests can modify regional climate patterns.
As forests mature, they contribute to higher levels of evapotranspiration. This increased moisture in the air
can eventually influence weather patterns, potentially leading to more rainfall in downwind areas.
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previously forest, non-forest vegetation land, agricultural land, or non-vegetated land (i.e.,
urbanized area). We then separately estimate the impacts of upwind forests on downwind air
quality and cardio-respiratory mortality based on the previous year’s land cover. We found that
environmental and health benefits primarily arise when upwind areas were forested in the
previous year, as opposed to other land cover types. In other words, losing an area of intact
natural forest has a much larger downwind pollution and health impact than losing an equivalent
area of secondary vegetation or farmland. This result implies that mature forests provide larger
pollution-filtering services, whereas recently planted forests or areas that were not forest to begin
with do not confer the same protective benefit. This heterogeneity strengthens the case that it is
the loss of natural forests (and the ecosystem functions they perform) that is driving the pollution

and mortality increases.

Appendix Figure 11 presents tests on the role of upwind fire activity in mediating the
effects of deforestation, based on estimation results from Equation (8). Panel (a) shows the direct
effect of upwind fire activity on downwind pollution and cardio-respiratory mortality. We
observe a clear increase in pollution levels following fire events, particularly in the highest wind
deciles. While the estimated cardio-respiratory mortality effects exhibit a similar gradient, they
are imprecisely estimated and not statistically distinguishable from zero. One potential
explanation is that fire-induced pollution tends to be short-lived and episodic — producing sharp
but brief spikes in air pollution —whereas mortality risk is more likely to reflect both short-term
and sustained exposure. In our setting, pollution from deforestation (via the loss of forest filtering)
likely alters background air quality more persistently, increasing the likelihood of a detectable
mortality signal. Indeed, Panel (b) shows that our baseline forest effect estimates are virtually
unchanged after controlling for upwind fire activity, across both pollution and mortality
outcomes. Together, these findings suggest that the pollution-cleansing mechanism, rather than
transient emissions from fires, is the dominant channel linking deforestation to downwind

environmental and health harm in our setting.

The magnitude of our pollution and health estimates is also important to contextualize.
At the strongest downwind wind exposure, a one standard deviation decrease in forest cover was
associated with roughly a 65 pg/m?® rise in particulate matter (PMjo) concentration. The
corresponding impact on the downwind cardiorespiratory mortality rate is on the order of +0.37

deaths per 100,000 people. This implies a pollution-mortality elasticity of about 1%, which is well
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within the range of estimates from prior literature. For example, Deryugina et al. (2019) find an

elasticity of approximately 1.86% for PM2.5 and mortality among the elderly in the United States.
Our estimate, encompassing the general population in Brazil, is somewhat smaller but of the same
order of magnitude. This comparison suggests our results are plausible and perhaps even
conservative relative to well-studied pollution-health relationships, lending credibility to the

causal interpretation of the health impact.

6. Discussion and Conclusion

Health Costs of Trade-Induced Deforestation. Bringing together our empirical estimates,
we assess the aggregate health cost attributable to trade-induced deforestation in Brazil. We plug
in various pieces of our empirical estimates back into the conceptual equation (1) we laid out in
Section 3. The empirical version of the equation is as follows:

Excess deaths due to city i’s agricultural trade deforestation

— i-»rmy .
- Zr,m,y (BATrade—>AF0rest ' ATradei) : (BForest—»CR morta]ity ' PoplﬂatlonF,Y) (9)

That is, the total excess deaths due to city i equals the product of trade-induced
deforestation ini (the first parenthesis) and excess deaths per unit of deforestation at a receiver

city r (the second parenthesis), summed across all receiver cities and time periods. The subscript

i-»rmy
Forest—CR mortality

of the term f means we only consider the impact of forest on downwind

cardiovascular mortality - what we found to be responding to upwind forest changes; the
superscript indicates we use nonlinear estimates as shown in Figure 5, panel (b) based on the

downwind index associated with the city pair i — r, month m, and yeary.

One key qualitative insight from this calculation is that trade shocks (and the resulting
deforestation) occur in areas distinct from where the associated mortality burden is felt. Figure 5,
panel (a) shows a map of trade-induced deforestation based on our estimates. In panel (b), we
plot the distribution of total mortality burdens at receiver cities. That is, for each city, we sum up
excess deaths due to deforestation from all upwind cities over the study period. The difference of
the spatial patterns between the two panels is apparent: because of wind directivity and
population distribution, areas with large numbers of excess deaths may situate hundreds if not

thousands of miles away from where trade deforestation is happening,.
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Quantitatively, our estimates suggest a total of 3.6 million ha loss of Brazilian forests due
to trade, resulting in over 732,000 excess deaths over the study period. For reference, total deaths
in Brazil in the year of 2018 is estimated to be around 1.28 million. We quantify the mortality
impacts in terms of its statistical life value, which is a common way to think about the costs

(values) of environmental damage (protection) (e.g., U.S. EPA, 2000). Because direct estimation

of the value of a statistical life (VSL) for Brazil is lacking, we use a transfer approach that

downscales the U.S.-based VSL estimate of $2.3 million (Ashenfelter and Greenstone, 2004) by
factors of a transfer elasticity of 1.2 (Narain and Sall, 2016) times a Brazil-U.S. income per capita

ratio of 7. This yields a VSL estimate of $0.7 million USD in 2019 dollars.® The total statistical life

value loss of the 732,000 extra deaths thus amounts to about 513 billion USD. This represents a
significant number - about 18 percent of the total agricultural export value of Brazil over the

study period.

Our estimated elasticity of 0.18 may underestimate the actual health effects of trade-
induced deforestation, as it does not account for morbidity, long-term health impacts beyond
same-month pollution exposure, or productivity and income losses that could indirectly worsen
health outcomes. In addition to air pollution, trade-induced deforestation may also degrade water
quality, alter microclimates, and disrupt ecosystems, all of which could further affect health and

increase the actual elasticity between agricultural exports and mortality.

Our study does not suggest that agricultural trade is inherently negative. Trade can
generate multiplier effects in the exporting country through sectoral changes, employment, and
migration, leading to welfare gains that exceed the value of the exports themselves. However,
our paper highlights a large negative aspect of trade on health and the resulting regional

inequality, as the mortality costs and income benefits may not be distributed in the same areas.

With increased globalization, to meet foreign demand without high health costs,

agricultural producers should prioritize increasing yield rather than expanding agricultural lands.

18 The only alternative estimate of the monetary value of mortality risk in Brazil that we are aware of is
from Soares (2005). While the paper does not report a standalone VSL for Brazil, it uses a VSL-based
willingness-to-pay (WTP) framework to value the mortality component of violence. Specifically, it
estimates that the marginal WTP of an 18-year-old to eliminate deaths from violence in Brazil is $3,912 (in
1996 dollars). Using this figure and the calibration in Soares (2005), we back out an implied value per
discounted life-year of $24,271 (in 2019 dollars). Multiplying this by the expected discounted number of
remaining years if a death at age 18 were averted yields an estimated VSL of $630,000, which is close to the
$0.7 million figure used in this paper. Appendix B contains more details of this calculation.
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This requires domestic policies for deforestation monitoring, which are shown to be effective in

our heterogeneity results across presidential administrations. International pressure or green

trade policy can also effectively avoid deforestation shown by existing studies (e.g. Nolte et al.

2013; Kerr, 2013; Hsiao, 2021).

Concluding Remarks. This study documents a sizeable and previously underappreciated
cost of agricultural trade by establishing a causal link between export-driven deforestation and
human mortality across distant locations. Our empirical findings highlight that the
environmental impacts of globalization are not confined to local areas of resource extraction; they
propagate through natural networks (like atmospheric flows) to affect populations far away. This
insight expands our understanding of trade-environment interactions, showing that analyses of
trade policy must account for spatially diffuse externalities and the unequal distribution of costs
and benefits. Importantly, our results do not imply that trade liberalization or agricultural
development is unwelcome; rather, they stress that sustainable development requires balancing
growth with the stewardship of natural capital. The fact that even immediate health impacts of
deforestation are sizable sends an important message that preserving forests is not only about

long-run climate goals or ecosystem equilibrium, but also about saving lives today.

For future research, our paper provides a framework to estimate the value of forest and
other natural capitals. Our identification strategy relies on foreign demand changes that serve as
exogeneous drivers of forest loss, as well as quasi-random wind flow that separates upwind
drivers and downwind recipients. For the latter, future studies may exploit other networks that
connect spatially different regions. In addition, our wind trajectory simulation is also helpful for

future environmental economics studies to estimate the impacts of air pollution.
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Figure 1. Trends in Trade, Agricultural Expansion and Deforestation
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Notes: Panel (a) shows temporal and geographic trends in Brazil’s agricultural exports. Panel (b) shows temporal
and geographic trends in the substitution between agricultural land and forests. “Fluctuations” correspond to
areas with less than 3 percent changes in forest or farmland coverage over the study period.
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Figure 2. The Effect of Trade on Deforestation and Agricultural Expansion
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Figure 3. Area-of-Effect Modeling

(a) Airflow Modeling
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Notes: Figures show dotted map of Brazil where each dot represents centroid of a city. Panel (a) shows a day
snapshot of wind flows built from location-specific wind vectors data (left) and a visualization of our wind flow
model that tracks downwind cities influenced by winds from a sender city (Belo Horizonte in this example) over
the course of seven steps (i.e., days). Panel (b) shows aggregation of step-specific downwind scores to sender-
receiver-day level (left) and sender-receiver-month level (right) where the sender city is Belo Horizonte. See
Appendix A for modeling details.
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Figure 4. Validation Test of Air Pollution Passthrough from Upwind to Downwind Cities

by Downwind Score Deciles

Pollution passthrough (std.)
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Downwind score (deciles, 1=strongest)

Notes: This figure shows coefficients from a regression of a receiver city’s PMzs concentration on an upwind
city’s PM2s concentration, with the effect allowed to vary by the downwind score from the upwind location to
the downwind location according to our area-of-effect model. All regression controls for city pair by month-of-
sample fixed effects and year fixed effects. Standard errors are two-way clustered at the sender city and receiver
city levels. Range bars show 95 percent confidence intervals.

41



Figure 5. The Downwind Effects of Forest Losses

(@) Atmospheric Outcomes
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(b) Mortality Outcomes
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Notes: Charts show estimates on changes in downwind outcomes per 1 SD decrease in upwind forest cover,
separately by downwind exposure score bins. Each chart shows a separate regression following the exact same
specification except for the outcome variable. Within each chart, horizontal step lines show point estimates, and
range bars show 95 percent confidence intervals.
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Figure 6. Distribution of Trade-Induced Forest Losses and Excess Deaths
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Notes: The map on the left shows the spatial distribution of trade-induced deforestation over the study period.

The map on the right shows the spatial distribution of the downstream cardio-respiratory deaths due to trade-
induced deforestation.

43



Table 1. Summary Statistics

Variable Name Obs Mean SD
AForest land share (%) 57189 -0.14 1.802
AForest formation (%) 57189 0.04 0.994
ASavanna formation (%) 57189 -0.18 1.488
AMangrove (%) 57189 0.00 0.041
ASandy (%) 57189 0.00 0.070
AFarming land share (%) 57189 0.08 1.990
APasture (%) 57189 -1.08 3.919
AAgriculture (%) 57189 1.00 2.827
ASoybean (%) 57189 0.51 2.629
ASugar cane (%) 57189 0.60 2.710
ARice (%) 57189 0.01 0.467
ACotton (%) 57189 0.00 0.051
ACoffee (%) 57189 0.05 0.419
ACitrus (%) 57189 0.01 0.176
AForest plantation (%) 57189 0.26 0.730
AMosaic of uses (%) 57189 -0.10 2.764
AExport per capita (real 1000 BRL) 57189 0.19 1.562
Population 57189 48431.3 2.45e5
Agricultural employee 57189 23721.2 1.82e5
Income per capita 57189 191.4 114.5
Literacy rate (%) 57189 70.32 16.445
Population density 57189 0.82 3.808
Rural population 57189 9398.8 16462.8
Urban population 57189 28374.8 1.99e5
GE soy 57189 0.03 0.005

Notes: The variables for land use and export per capita describe the growth over four years within the period
from 2001 to 2019; Real export values have been deflated by the Brazilian Consumer Price Index (IPCA)
calculated by IBGE and are denominated in 2019 reals; Income per capita, literacy rate, population density, rural
population, and urban population are values from 1991, calculated by IBGE.
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Table 2. Shift-Share Shock Balance Tests

(1) (2) ®) (4)

Coef. S.E. p value g value
Urban population 4704.3 3952.7 0.234 0.429
Rural population 3050.8 2608.7 0.242 0.429
Total population 7755.0 6395.6 0.225 0.429
Per capita income 4.635 1.635 0.005 0.060
Literacy rate 0.264 0.151 0.081 0.429
Population density -0.003 0.007 0.691 0.754
GE soy seeds 0.000 0.000 0.608 0.730
Average temperature 0.030 0.031 0.332 0.498
Average humidity -0.005 0.078 0.947 0.947
Average pressure -0.478 0.416 0.250 0.429
Average wind speed -0.006 0.007 0.383 0.511
Total precipitation 652.9 438.5 0.137 0.429

Notes: Each row represents a separate regression. The independent variable is the four-year shift-share
instrument generated for the growth of Brazilian agricultural exports. All regressions include Year fixed effects
and macroregion fixed effects. “q value” is the False Discovery Rate adjusted significance level (Anderson, 2008)
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Table 3. Trade-Deforestation Regression Estimates: Alternative Differencing Windows

©)

(2)

€)

4)

©)

©)

Panel A. First stage Export Export Export Export Export Export
(Aly) (A2y) (A3y) (Ady) (A5y) (A6y)
Shift-share IV 0.17 1.04%* 1.61%* 0.69%** 0.87%** 0.83**
(0.16) (0.12) (0.25) (0.24) (0.21) (0.32)
Panel B. Second stage Forest Forest Forest Forest Forest Forest
(Aly) (A2y) (A3y) (Ady) (A5y) (A6y)
AExport per capita (1000 BRL) -0.118 -0.038**  -0.043*  -0.174** -0.207***  -0.192**
(0.12) (0.02) (0.02) (0.08) (0.07) (0.10)
Observations 68,585 68,585 64,814 57,189 49,564 41,939
First-stage F-stat (Kleibergen-Paap) 1.25 81.63 41.01 8.07 16.59 6.49
First-stage F-stat (Cragg-Donald) 232 8,393 8,706 826 1,177 852
Year FE Yes Yes Yes Yes Yes Yes
Macroregion FE Yes Yes Yes Yes Yes Yes
Other controls Yes Yes Yes Yes Yes Yes

Notes: Panel A reports first-stage estimates of the shift-share IV for agricultural exports. The
corresponding Kleibergen-Paap and Cragg-Donald F-statistics are reported at the bottom panel. Panel B
reports the corresponding 2SLS estimates of the effect of agricultural exports on forest cover, with exports
instrumented by the shift-share IV. Each column corresponds to a different differencing window (e.g.,
“Aly” uses 1-year differences). “Other controls” include income per capita, literacy rate, rural and urban
population, population density, and the presence of genetically modified soy. All monetary values are
deflated to 2019 reals using the Brazilian Consumer Price Index (IPCA). *: p < 0.10; **: p < 0.05; **: p <

0.01.

46



Appendix A. Area of Effect Estimation Details

This appendix details the construction of a matrix summarizing monthly wind-flow intensities between
all pairs of cities in Brazil. We develop an area-of-effect (AoE) model that simulates atmospheric transport from
a “sender” city to various “receiver” cities and computes a downwind influence score for each pair. The model
traces wind trajectories (streamlines) originating from a given city and day, following the prevailing wind
direction and speed on a daily basis. The result is a comprehensive matrix of upwind-downwind linkage

intensities for each city pair in each month.

Wind Data and Interpolation. he AoE model uses daily wind direction and speed data for each city
(derived from ERADS reanalysis at 0.25° resolution). As a first step, we generate a continuous wind vector field
for each day over Brazil by interpolating the city-level wind data onto a latitude-longitude grid covering the
country. We choose the grid’s spatial resolution (denoted A) to balance accuracy and computational tractability:
a finer grid yields more precise wind representations at the cost of longer computation time. In practice, we set
A such that the grid is sufficiently fine to capture key variations in wind patterns while keeping computation
time reasonable (on the order of the country’s width divided into a few hundred increments). The daily wind

field on this grid allows us to estimate wind vectors at any location in Brazil via interpolation.

Stepwise Trajectory Simulation. Using the wind field, we simulate how wind carries pollutants from

each sender city through time. The procedure can be summarized as follows:

1. Initialization: Select a sender city i and a start day d. Set the step index t = 0 and initialize the current
position p, to the coordinates of city i. We also define an initial search radius rad, = 300 km (this radius will
expand over time, as described below).

2. Iterative wind advection (up to 7 days): For t = 0,1, ...,6 (a one-week trajectory):

* Construct the wind vector field for day d + t on the grid, and interpolate to obtain the wind vector at the
current position p¢. Denote this interpolated wind vector as w¢, which has direction (bearing) and speed
components

* Identify all potential receiver cities r located within a radius rad, of the current position p;. This defines
the “downwind footprint” at step t

* For each such city r, compute a raw downwind intensity score Wind;_, 4 that captures the contribution
of city i (starting on day d) to city r’s pollution on day d + t. We model this intensity as an exponential
decay function of three factors - (i) the time/dispersion step, (ii) the wind direction alignment, and (iii)

distance - following guidance from U.S. EPA (2018) and Phillips et al. (2021). In particular, we write:

Windi—>r,d,t = exp{—a ‘rade — B |9|i—>r,d,t -y diSti—m,d,t}
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where a, 3,y are empirically calibrated parameters. In this formulation, rad, is the search radius at step
t (which grows with t, reflecting general dispersion over time); [8];_q¢ is a measure of the angular
deviation of city r from the exact downwind direction of the wind at p; (with larger 8 meaning r is more
off-center from the wind path); and dist;_, 4 is the distance from the original sender i to the current
position p; (i.e. the total distance the wind has traveled from the source up to step t). Intuitively, this
functional form assigns higher intensity when the receiver is close to the wind trajectory and relatively
near the source, and lower intensity as the plume disperses over time, deviates in direction, or travels
farther. We impose two cut-offs: if a candidate city r lies outside the radius rad, or if the angular
difference is 0,4t > 0.4 radian (approximately 23°), then we set Wind;_q¢ = 0 (meaning city r is
considered too far or not sufficiently downwind at that step to receive any pollution from i). We choose
parameter values {a, B, y} = {0.8,0.49,0.23}. These coefficients are chosen empirically so that the function
that attributes wind scores over 7 days is approximately continuous. For that purpose, we used
visualisations consisting in heatmaps that simulate the wind scores values not only for cities of interest
but for all points of the map for different days and different sender cities. Examples of those heatmaps
showing the approximate continuity of the wind score function for the final value of the parameters can

be seen on the figure below.

* Whenever t < 6, coefficients need to be updated for step t + 1. We increase rad; as described previously
by 0.2 to obtain rad¢;;. We update p; = (%, y;) by following the local direction and speed of the wind i.e.

using wy :
Xeg1 = X + 24 % 3600 * ug/disty, (X, yo), Xe + L yr))
Vi1 = Ye + 24 % 3600 = v /disty, ((Xp Ye), Xe + 1,y1))

Per1 = Ker1r Vea1)

To understand those expressions, we must consider that x and y coordinates are in degrees while the
vectors’ coordinates u and v are in m/s. The distance (positive or negative) in meters crossed by the
wind in 24 hours is of dy, x = 24 * 3600 * u; along the x-axis and dp, ;, = 24 * 3600 * v, along the y-axis.
To obtain an approximation of the distance d, crossed in polar coordinates corresponding to a distance
dp, in meters, we use a cross product : if a delta of 1 degree in longitude at the latitude y; represents
disty, ((Xp, yo), (X¢ + 1, yp)) meters, then, an approximation of dj, is d, & 1 * dy, /disty, (X, yo), (Xe + 1L yo).
Thus,

dpx ~ 1 dm,x/diStm((Xt: ve), (¢ + 1, Yt))

dp,y ~ 1+ dm,y/diStm((Xt: ye), Xe + 1, yp)
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hence the expression of x¢;; = x¢ + dpxand yyq =y +dp g
We can then proceed to step t + 1.

Starting from each particular sender city and day of our sample period, we iterate the procedure for

seven steps (i.e., a week) sofort=0tot = 6.

Examples of wind indexes heat maps for two senders
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Aggregation to Monthly Intensities. The raw outputs of the AoE simulation are step-level intensity
contributions Wind;_,. 4 (for t = 0,1, ...,6) associated with specific sender-receiver-day combinations. We next
aggregate these contributions first to the daily level and then to the monthly level for use in our econometric

analysis.

We combine step-wise contributions so that each sender-receiver pair (i, r) has a single daily downwind
intensity score on each day that reflects all pollution from i arriving in r on that day. If a wind starting in city i

on day d reaches city r after t days, we assign that contribution to day d + t for the pair. Formally:
y y y gn y P y
Windi—mdl = Zd+t=dl Windi—»r,d,t

To integrate these results into a panel regression framework, we further aggregate the daily indices to
the monthly level. This aggregation consists in computing average intensity scores for each tuple (sender city i,

receiver city r, month of arrival m):
Wind;_, ,, = Averageg,em Windj_, g,

This averaging smooths out daily fluctuations and drastically reduces the dimensionality of the data,
which makes the regressions computationally manageable. We construct Wind;_, ,, for all months from January
1997 to December 2019. Because our wind simulations covered 1997-2019, we implicitly assume that each
month-of-year’s wind pattern is recurrent; in practice, we assign the intensity for, say, January 2010 to be equal
to the average intensity we computed for January (across 1997-2019) for the same pair (i, r). If a given pair had

no wind connection in a particular month during the study period (i.e. Wind;_,;. 4=0 for all days d in that month
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window), we record its monthly intensity as 0 (or “calm” conditions as we call it in the paper) for that month in
all years. The final output is a matrix of monthly intensity scores Wind;_,,. ,. This upwind-downwind intensity

matrix forms the basis for our downstream pollution and health impact analysis in the paper.

Appendix B. Brazil VSL Calculation

Due to the lack of direct estimates of the value of a statistical life (VSL) for Brazil, in Section 6 of the paper,
we use a VSL for Brazil based on an income transfer approach by downscaling a U.S.-based VSL estimate. Here
we show an alternative approach, where we back out a Value of Statistical Life (VSL) figure based on estimates
and calibration reported in Soares (2005), which contains a direct estimate of the marginal WTP to eliminate
deaths from violence in Brazil. From Equation (4), and (5)-(7) of the Soares (2005) paper, with constant

consumption ¢ =y, the willingness to pay for a small change in survival at age a is:

_ @) ( ! )t_aAS(t,a)

1
where u(c) =c' v/ (1 - i) + a is the instantaneous utility function, r is the discount rate, and S(t, a) is the

probability of survival to age t of an individual currently at age a. We have

uy) __y
uly) 1-1/y

+ ay/Y

which represents the value per discounted life-year at income y. We plug in the following calibration from the

paper: real GDP per capita y = $6,591 (1996 dollars), y = 1.25, a = —=16.1, and r = 3%. This gives us 1;1,(—(};)) ~ $14,606.

To turn a life-year value into a VSL, we multiply by the expected discounted number of remaining years if a
death this year were averted. We use an approximation of life expectancy at birth (69 years) to proxy remaining

years at 18, which equals a remaining years of 51 years. With a discount rate of 3%, that equals of present value

N
of approximately Y31, (L) ~ 26 years. Multiplying this with $14,606 per life year gives a VSL of about

1.03

$379,000 in 1996 dollars, or about $629,800 in 2019 dollars.
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Appendix C. Appendix Figures and Tables

Appendix Figure 1. Brazil’s Agricultural Export Structure
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Notes: Panel (a) shows distribution of export values in billions of USD by product category. Panel (b) shows
agricultural export share by trade partner in 1997 (left) and in 2019 (right).
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Appendix Figure 2. Geography of Land Use Changes
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Notes: Maps show 1997-2018 percentage change in land use for farming purposes (left) and forest land (right).
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Appendix Figure 3. Geography of Agricultural Growth
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Appendix Figure 4. Geography of Mining Activities
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Notes: Maps show mineral exports per capita in year 1997 (left) and in year 2018 (right).
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Appendix Figure 5. Export Demand Shock Variability
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Appendix Figure 6. Effects of Placebo Export Shocks on Forest Cover
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Notes: This figure plots the coefficient on placebo shocks in 1,000 separate regressions, where the dependent
variable is the forest land use 4 years growth. The placebo shock is the placebo change in agricultural import

growth by HS code and municipality, a normally distributed random variable with mean 0 and variance 5. The

regression also contains year and macroregion fixed effects, and agricultural employees are used as weights.
Standard errors are clustered at the AMC level.
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Appendix Figure 7. Air Pollution Passthrough from Upwind to Downwind Cities
by Forest Coverage Rate along the Downwind Path
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Notes: This figure shows coefficients from a regression of a receiver city’s pollution concentration on an upwind
city’s pollution concentration, with the effect allowed to vary by the forest coverage rate along the downwind
path. All regression controls for city pair by month-of-sample fixed effects and year fixed effects. Standard errors
are two-way clustered at the sender city and receiver city levels. Range bars show 95 percent confidence
intervals.
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Appendix Figure 8. The Downwind Effect of Forest Losses on Precipitation:
Month-Of versus Annual Effects
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Notes: Charts show estimates on changes in downwind precipitation outcomes per 1 SD decrease in upwind
forest cover. Left panel shows regression estimates based on monthly data. Right panel shows regression
estimates from the same data aggregated to the annual level. The annual regression equation, analogous to the

monthly equation (7), controls for sender-by-receiver fixed effects and year fixed effects, with standard errors
two-way clustered at the sender and receiver levels.
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Appendix Figure 9. The Downwind Effect of Forest Losses on Air Pollutants
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Notes: Chart shows estimates on changes in downwind pollution outcomes per 1 SD decrease in upwind forest

cover. Each line represents a separate regression using standardized pollutant concentrations as the outcome
variable.
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Appendix Figure 10. The Downwind Effect of Forests: Heterogeneity by Prior Land Type
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Notes: Charts show estimates on changes in downwind outcomes per 1 SD decrease in upwind forest cover,
separately by land cover in the previous year. We use land cover transition information to classify each upwind
city-year’s forest volume based on its land cover type from the previous year, distinguishing how much of the
current year’s forest acreage was previously forest, non-forest vegetation land, agricultural land, or non-
vegetated land (i.e., urbanized area). We then separately estimate the impacts of upwind forests losses on
downwind air quality and cardio-respiratory mortality based on the previous year’s land cover.
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Appendix Figure 11. The Downwind Effects of Forest Losses: Fire Controls

(a) Direct Fire Effect Estimates
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61 6
air pollutants cardio-respiratory
kel
3 4 z
c © .
o €
= o
= €
8 2
g z
2 3
c [}
2 gl TS —_— o
o
o
= Baseline estimates = Baseline estimates
2 = = With wildfire controls .3 = = With wildfire controls
I T T T T 1 f T T T T 1
1st 3rd 5th 7th 9th calm 1st 3rd 5th 7th 9th calm
Downwind score (deciles, 1=strongest) Downwind score (deciles, 1=strongest)

Notes: Panel (a) shows estimates on changes in downwind outcomes per 1 SD increase in fire activities. Panel (b)
shows estimates on changes in downwind outcomes per 1 SD increase in upwind forest cover, separately by

downwind exposure score bins. Each chart shows two separate regression, one with and the other without
controls for upwind fire occurrences.
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Appendix Table 1. Major Import Countries Selection

Years with Years with low  Mismatch between
Years with missing UN correlation in UN import data
Country Rank in 2011 missigg UN  import t? B.razil .201(]—2[)19: Ll\ I-‘IS4 and HSi Selected
total import and missing import to Brazil (difference>3%,
data Comex export  vs. Comex export  23y*24 HS2, <27
data (below 0.8) mismatches)
USA 1 0 0 0 0 Yes
Germany 2 0 0 0 200 No
Japan 3 0 0 0 0 Yes
China 4 0 0 0 0 Yes
United Kingdom 5 0 0 0 21 Yes
Netherlands 6 0 0 0 11 Yes
France 7 0 0 0 2 Yes
Italy 8 0 0 0 96 No
Belgium 9 2 2 3 0 No
Russian Federation 10 0 0 0 0 Yes
Spain 11 0 0 0 72 No
Canada 12 0 0 0 0 Yes
Rep. of Korea 13 0 0 0 0 Yes
Mexico 14 0 0 2 87 No
China, Hong Kong SAR 15 0 0 0 0 Yes
Nigeria 16 2 2 1 3 No
Saudi Arabia 17 1 1 0 0 No
Poland 18 0 0 0 0 Yes
Indonesia 19 0 0 0 0 Yes
Malaysia 20 0 0 0 0 Yes
Sweden 21 2 0 0 0 No
India 22 0 0 0 8 Yes
Egypt 23 1 0 0 8 No
United Arab Emirates 24 3 23 0 15 No
Denmark 25 0 0 1 17 No
Austria 26 0 0 10 0 No
Switzerland 27 1 0 10 3 No
Singapore 28 0 0 0 53 No
Australia 29 0 0 0 0 Yes
Portugal 30 0 0 0 4 Yes
Brazil 31 0 21 2 0 No
Other Asia, nes 32 0 23 0 12 No
Thailand 33 1 0 0 1 No
Tiirkiye 34 1 0 0 23 No
Algeria 35 2 2 0 2 No
Iran 36 5 6 4 2 No
Viet Nam 37 3 3 0 0 No
Greece 38 0 0 0 0 Yes
Czechia 39 0 0 10 39 No
Ireland 40 0 0 8 3 No
Bangladesh 41 6 6 11 No
Norway 42 0 0 10 1 No
Venezuela 43 6 6 0 8 No
South Africa 44 3 3 0 2 No
Philippines 45 0 0 0 0 Yes
Ukraine 46 1 0 2 4 No
Romania 47 0 0 0 119 No
Finland 48 0 0 0 10 Yes
Morocco 49 0 0 0 6 Yes
Chile 50 0 0 0 0 Yes

Notes: This table tabulates Brazil’s major export destinations ranked by Brazil's export value, highlighting
countries that are selected in constructing the shift-share instruments. Excluded countries are those with either
missing UN import or Comex export data, low correlation between UN import and Comex export data, or those
with high numbers of mismatches between UN import HS-4 and HS-2 product categories.
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