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As talented women and Black men have entered high skilled professions, improvements in the 

allocation of talent have contributed 20-40% of productivity growth since the 1960s (Hsieh et al. 

2019). Yet, children from low-income families continue to be underrepresented among inventors 

(Bell et al. 2019, Aghion et al. 2018), PhD recipients (Stansbury and Schultz 2023), professors 

(Morgan et al. 2022), and in creative occupations (Biasi, Deming, and Moser 2022; Biasi, Dahl 

and Moser 2024).  

This paper investigates the influence of socioeconomic status (SES) in science, specifically, 

whether a person’s childhood SES influences their chances of becoming a “star.”  

While stardom is an important factor in hiring and promotion, it is difficult to quantify because 

conversations about stardom typically happen behind closed doors and are rarely recorded. We 

address this data challenge by exploiting a unique feature of American Men of Science (MoS 

1921), an exceptionally comprehensive biographical dictionary of “all persons in the nation who 

were contributing to science” (Rossiter 1982, p. 25). To collect data for his own analyses of 

intelligence, the original editor of the MoS, James McKeen Cattell asked scientists to rank each 

other. Based on these rankings, Cattell placed a star (*) next to the entries of roughly 1,000 

“leading men of science.” We hand-collect these data, along with each scientist’s full name, 

exact birth date and birthplace, university education, employment, and research topics, and use 

machine-learning algorithms to match scientists with the census record of their childhood home. 

Owing to the rich biographical information in the MoS, we achieve exceptionally high (84%) 

linking rates; 15.5% of the linked scientists are stars.  

Examining selection into the field of science, we show that patterns of underrepresentation 

that affect innovation today (e.g., Bell et al. 2019; Aghion et al. 2018) already existed more than 

a century ago. Children of attorneys, physicians, and clergymen are overrepresented in science, 

while children of farmers, farm laborers, and other low-SES jobs are severely underrepresented. 

Using fathers’ occupational income ranks (OCCSCORE) to measure childhood SES, we show 

that the median scientist is drawn from the 78th percentile of the income distribution (equivalent 

to the rank of a salesperson or carpenter), while the median boy of the same age in the population 

is the son of a farmer. Alternative measures of SES that capture differences in education and 
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occupational prestige imply even greater underrepresentation of people with low childhood 

SES.1  

To complement composite measures, such as the OCCSCORE, we create a simple, direct 

measure of SES by recording the presence of live-in servants in a person’s childhood home. This 

alternative measure confirms severe underrepresentation by SES: Scientists are nearly 20 times 

as likely to have grown up in households with servants compared with boys of the same age in 

the population. 8.6% of scientists whom we observe as children in the census of 1880 grew up in 

households with servants, compared with just 0.4% of same-aged boys in the population. 20 

years later, in 1900, 24.1% of scientists lived in households with servants, compared with just 

1.4% in the population. 

Extending our analyses, we investigate whether SES matters beyond participation, by 

influencing peer recognition in science. Research in social psychology suggests that inequality 

influences how we perceive wealthy and poor individuals (e.g., Jetten et al. 2017; Moya and 

Fiske 2017) and, specifically, how highly we rank them on competence and assertiveness, traits 

that allow individuals to “get ahead” (Tanjitpiyanond, Jetten, and Peters 2022).2 If scientists from 

poor families are less likely to be considered competent and assertive, they may also be less 

likely to be leaders in their fields, or “stars.” We use linked data on scientists, their education, 

jobs, publications, and childhood SES to investigate this hypothesis. 

Consistent with a link between childhood SES and peer recognition, we find that scientists 

from high-SES families are consistently more likely to be stars. Using the occupational income 

score (OCCSCORE) of the scientist’s father as a measure of SES, we find that children from the 

top half of the occupational income distribution have 38.7% higher odds of becoming stars. 

Similarly, we find that scientists from households with servants have 75.7% higher odds of 

becoming stars. Alternative measures of childhood SES confirm these findings, with 35.0% to 

53.0% higher odds of stardom for scientists from high-SES homes.  

 
1 See the “Integrated Occupation and Industry Codes and Occupational Standing Variables in the IPUMs”, as well as 
our data section for a discussion of the OCCSCORE and alternative measures of SES. 
2 This literature classifies stereotypes in a vertical and horizontal dimension: The vertical dimension covers a 
group’s competence and assertiveness – that is the ability of its group members to “get ahead” and achieve higher 
status in society (Abele, Ellemers, Fiske, Koch, and Yzerbyt 2021), while the horizontal dimension captures a 
group’s friendliness and morality, or the prosocial tendencies of group members to “get along.” Evidence on the 
impact of inequality on stereotyping is stronger on the vertical dimension (Heiserman and Simpson 2017). 
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To extend these findings, we investigate alternative mechanisms by which SES may influence 

peer recognition in science. For example, scientists from high-SES families may become stars 

because high SES is associated with better health, cognitive, and socioemotional outcomes (e.g., 

see Bradley and Corwyn 2002). Similarly, high-SES scientists may attend better universities 

(Chetty et al. 2017), which are closer to the knowledge frontier (Biasi and Ma 2023), preparing 

them to write more and better papers.  

The link between SES and stardom, however, is robust to controlling for differences in the 

number and the quality of publications. Controlling for publications and citations, scientists from 

high-SES families have 38.3% higher odds of becoming a star (just slightly below the 38.7% 

without controls for publications), and scientists from households with servants have 55.8% 

higher odds (compared with 75.7%). Moreover, all results are robust to controlling for alternative 

measures for the quality of publications. 

Importantly, the influence of childhood SES may vary across disciplines depending on 

variation in the intensity of classism or in the importance of early childhood investments (e.g., 

National Research Council 2009). Social psychologists have found that social class stereotyping 

is stronger in societies with greater degrees of inequality (e.g., Tanjitpiyanond et al. 2022), and 

disciplines with greater degrees of inequality may similarly stereotype more, creating a “leg up” 

for high-SES scientists in becoming stars. To investigate differences across disciplines, we use 

natural language processing to assign scientists uniquely to 12 disciplines in which Cattell 

identified stars: anatomy, anthropology, astronomy, botany, chemistry, geology, mathematics, 

pathology, physics, physiology, psychology, and zoology.  

Re-estimating the correlation between SES and stardom within disciplines, we find that for 

mathematics – but not other disciplines – SES influences stardom through publications. Without 

controls for publications, high-SES mathematicians have 73.5% higher odds of becoming stars. 

Interestingly, that link disappears with controls for publications, suggesting that SES may 

influence peer recognition through publications. This result, however, is unique to math; in other 

disciplines, the correlation between SES and recognition is robust to controlling for publications. 

In pathology, for example, scientists from high-SES families have nearly three times higher odds 

of becoming stars, controlling for publications.  

In addition to disciplines, the types of jobs that scientists hold may influence whether they are 

perceived as stars, irrespective of publications. Specifically, scientists whose advisors have 
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pushed them to pursue academic jobs may attach more prestige to university employment. In 

contrast, SES may play a larger role in industry if jobs are passed on through family networks 

(e.g., San 2023) or if research productivity in industry is more difficult to observe, leaving more 

room for bias. To control for such differences, we use career titles to distinguish academic from 

industry scientists. This analysis reveals that industry scientists have 66.6% lower odds of 

stardom. Moreover, controlling for industry employment strengthens the link between childhood 

SES and stardom: high-SES scientists have 46.9% higher odds of becoming stars controlling for 

industry jobs and publications, and scientists from households with servants have 66.7% higher 

odds. Industry scientists are also more likely to come from high-SES families, and the link 

between childhood SES and stardom is stronger in industry. Taken together, these results suggest 

that despite inequities, academia is more egalitarian than industry.    

Elite undergraduate degrees explain more of the correlation between SES and stardom than 

any other controls. Yet, even controlling for elite undergraduate degrees, scientists from high-

SES families have 43.3% higher odds of being stars, and scientists with servants have 58.1% 

higher odds controlling for publications and industry employment. Controlling for elite graduate 

degrees leaves the estimate at 44.9% higher odds for scientists from high-OCCSCORE homes 

and 66.6% for those from households with servants. By comparison, controls for patents, 

connections with existing stars, birth order, family size, parents’ immigration status, and 

mothers’ education leave estimates substantially unchanged. 

Farmers account for a disproportionate share of the population and scientists in our data. In 

the 1870 census, 31.1% of scientists and 45.6% of boys of the same age in the population are the 

sons of farmers. Did SES, and more specifically, personal wealth, influence the odds that the son 

of a farmer would become a star? We investigate this question using data on personal wealth in 

the census of 1870, and again confirm the importance of SES: The sons of farmers in the top 

2.5% of personal wealth have 60.5% higher odds of becoming stars.  

Taken together, our findings indicate that patterns of inequality that affect science and 

innovation today already existed in the early 20th century, and that inequality extends to peer 

recognition, even conditional on participation. Decomposing the sources of U.S. productivity 

growth, Hsieh et al. (2019) show that 20 to 40% of productivity growth between 1960 and 2010 

is due to improvements in the allocation of talent, as talented women and Black men have 

entered high-skilled professions. Yet, linking tax records with patents for children born 1980-84, 
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Bell et al. (2019) show that children in the top 1% of parental income are 10 times more likely to 

become inventors than children in the bottom half. Examining inventors in Finland, Aghion et al. 

(2018) find that controlling for parental SES, education, and children’s IQ weakens the 

correlation between parental income and patenting. Analyzing linked data on innovators in the 

United States and Finland, Einiö, Feng, and Jaravel (2024) show that innovators create products 

for consumers like them in terms of SES, gender, and age. Our findings complement analyses of 

contemporary data by investigating the historical roots of socioeconomic inequality and by 

documenting inequality in peer recognition. 

Existing research on star scientists has analyzed the positive spillovers that stars create for 

their collaborators (e.g., Azoulay, Graff Zivin, and Wang 2010; Akcigit et al. 2018) and 

investigated the effects of taxation on the location decisions of star inventors. Azoulay et al. 

(2010) exploit the unexpected death of 112 academic superstars to investigate changes in the 

productivity of coauthors after the death of a star and document a lasting 5 to 8% decline in 

quality-adjusted publications for coauthors. Examining teams of inventors in European patent 

applications, Akcigit et al. (2018) show that inventors produce more patents after they interact 

with star inventors. Akcigit, Baslandze, and Stantcheva (2016) use U.S. and European patents to 

investigate the effects of top tax rates in the international mobility of inventors and show that 

inventors’ location decisions are significantly affected by top tax rates. Investigating the effect of 

taxes on the location decisions of star inventors across U.S. states, Moretti and Wilson (2017) 

show that star inventors move from states with high tax rates to lower tax locations. In this 

literature, star scientists are typically defined by exceptional productivity, e.g., in terms of 

patents and publications. To these findings, we add an analysis of peer recognition, conditional 

on productivity. 

Examining peer recognition in economics, Card et al (2022) show that women with 

comparable publications and citations were less likely to be elected Fellows of the Econometric 

Society between 1933 and 1980. After 1980, however, women were more likely to be elected if 

they were in the top 10% of publications. Extending these analyses to mathematics and 

psychology, Card et al. (2023) show that women with similar publications were less likely to be 

elected to the National Academy of Science and the American Academy of Arts and Science in 

the 1960, 70, and 80s but are currently more likely to be elected. While these results indicate that 

conditions for women have improved, survey data suggest that children of college-educated 
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parents (as a proxy for parental SES) are overrepresented among PhDs, especially at top 

economics programs (Stansbury and Schultz 2023) and among professors (Morgan et al. 2022).  

Examining changes in the distribution of award-winning researchers across universities since the 

1950s, Freeman et al. (2024) document declining concentration in all fields except economics. 

We complement these findings by investigating the early influence of SES on peer recognition 

across 12 disciplines, and by showing that these results are robust to differences in the number 

and the quality of publications, elite degrees, and other traits of scientists.  

Our results also contribute to analyses of intergenerational mobility (e.g., Black and 

Devereaux 2011; Chetty et al. 2014) and, more specifically, to the growing evidence on the role 

of universities in diversifying the professional elite. Analyzing intergenerational mobility among 

students at U.S. colleges, Chetty et al. (2017) show that elite college degrees offer an effective 

path to upward mobility for children from low-income families. Children from the bottom 20% 

of the income distribution are, however, 77 times less likely to attend elite colleges than children 

from the top 1%. Exploiting idiosyncratic variation in admissions decisions for waitlisted 

applicants, Chetty, Deming, and Friedman (2023) show that attending an Ivy-Plus university (Ivy 

League, plus Stanford, MIT, Duke, and Chicago) instead of a public flagship increases students’ 

chances of reaching the top 1% of the earnings distribution by 60%, nearly doubles their chances 

of attending an elite graduate school, and triples their chances of working at a prestigious firm. 

Our analysis complements these findings by investigating the influence of elite education one 

century earlier, at a critical junction in U.S. history. Analyzing old boys’ clubs at Harvard in the 

1920s, Michelman, Price and Zimmerman (2022) show that students from prestigious private 

schools were overrepresented among club members while academic high achievers were largely 

absent; upon graduation, members earned 32% more. We add to this literature by investigating 

how elite colleges influence peer recognition and stardom, a key marker of success that is critical 

to hiring and promotions, yet poorly understood. 

 

I. DATA 

“There were two awards whose value was apparent to all in the 1920s and 1930s: a ‘star’ in the 
American Men of Science, and the supreme accolade, the Nobel Prize.” (Rossiter 1982, p. 289) 
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Data cover all 9,554 entries in the American Men of Science (MoS 1921), including stars and 

other scientists. First published in 1906 by James McKeen Cattell, the MoS is an exceptionally 

comprehensive source of biographical information for male and female scientists in the United 

States and Canada. Cattell collected these data originally for his own research on the psychology 

of intelligence. Born into a wealthy Pennsylvania family, Cattell earned his PhD in Leipzig, 

Germany, and became the first American to publish a dissertation in psychology. Between 1894 

and his death in 1944, Cattell served as the editor of Science. 

Cattell used this expertise to establish a comprehensive compendium of scientists whose work 

“contributed to the advancement of pure science.” To collect his data, Cattell started with the 

membership of scientific societies: 
 

“The National Academy of Sciences, Fellows of the American Association for the Advancement 
of Science, the American Society of Naturalists, the Association of American Anatomists, the 
Association of American Geographers, the Association of American Physicians, the American 
Association of Pathologists and Bacteriologists, the Astronomical and Astrophysical Society of 
America, the Geological Society of America, the American Mathematical Society, fellows of the 
American Ornithologists’ Union, the American Philosophical Association, the American 
Physical Society, the American Psychological Association, the American Society of 
Bacteriologists, the Society for the Promotion of Agricultural Science, the Society for 
Experimental Biology and Medicine, the Society for Horticultural Science, the Society for Plant 
Morphology and Physiology, and the American Society of Zoologists.” (Preface to the first 
edition, 1906, p. v.) 
 
To these membership lists, he added names from “catalogues of institutions of learning,” along 

with the authors of articles in scientific journals. In addition, Cattell printed requests for names 

omitted in Science, The Popular Science Monthly, and in The Nation (Cattell 1906, p. vi). 

As a result of this thorough process, the MoS is “tolerably complete for those in North 

America who have carried on research work in the natural and exact sciences” (Cattell 1921, 

p.v), including a total of 9,554 scientists—a response rate of 95% relative to 10,000 requests. 

With the publication of his data, Cattell hoped to provide the "chief service” to the profession to 

"make men of science acquainted with one another and with one another’s work” (Cattell 1921). 

Entries in the MoS include the scientist’s full name, date and place of birth, discipline, 

university education, and employment history. Simon Flexner, for example, was born in 

“Louisville, Ky, March 25, 1863” (Figure A1). Information on the exact birth date and place is 

available for 97% of scientists. This information is invaluable for matching scientists with the 

census and allows us to separate U.S.-born from foreign-born scientists. 8,146 of 9,554 scientists 
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in the MoS (1921, 85%) are U.S.-born. The oldest scientist in the MoS (1921) is Francis H. 

Smith, a physicist born in 1829; the youngest is the chemist William A. Noyes Jr, born in 1898.  

We focus on male scientists because women are difficult to match with their childhood home. 

Using historical gender frequencies in the US Social Security Administration Records between 

1880 and 2011, Python’s gender-detector package identifies 7,791 U.S.-born scientists (96% of 

all U.S.-born scientists) as male. 

 

Stars 

To identify star scientists, Cattell asked their peers to choose “leading scientific men arranged in 

the order of merit” (Cattell 1906, p. 699). For instance, Simon Flexner’s entry shows a * next to 

“Pathology” (Figure A1). Among a total of 9,554 scientists in the MoS (1921), 1,322 (13.8%) 

were stars. Among 7,791 U.S.-born males in the MoS, 1,112 (14.3%) were stars.  

Criteria of merit emphasize “contributions to the advancement of science, primarily by 

research.” In addition, contributions to “teaching, administration, editing, the compilation of 

textbooks, etc., should be considered” (Science 1910, p. 635). For the MoS (1906 and 1910), 

Cattell asked 10 leading scientists in each of the 12 disciplines to rank their peers and attached a 

star to the top 1,000 entries.  

To identify stars for the MoS (1921), Cattell asked stars in the 1906 and 1910 editions to 

nominate up to ten people whom they considered leaders in their discipline. Next, he asked 

scientists who were nominated at least twice to create a shortlist of ten names. From this list, 

Cattell extracted the top quartile for the 12 disciplines. This created a list of electors, ranging 

from just 20 scientists in anthropology to 100 in psychology and 175 in chemistry. Electors then 

marked scientists in the top 50% with one checkmark and those in the top 5% with a double 

checkmark. Cattell added these votes to determine stars.   

While the MoS (1921) does not report the year when a scientist first became a star, we collect 

this information from Scientists starred, 1903-1943, in “American Men of Science (Visher 

1947). In addition to the 1,322 scientists marked by *, another 443 scientists in the MoS (1921) 

became stars after 1921; we treat them as non-stars in the main specifications.3  

 
3 In the late 1930s, this system of adding stars began to break down, partly because Cattell found it difficult to take 
away stars from older scientists whose work no longer put them in the top 1,000 (Rossiter 1982, p. 289). When his 
son Jacques took over the MoS in 1943, he abolished the system of stars. 
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Using Text Analysis to Assign Scientists to 12 Disciplines  

Cattell asked scientists within 12 disciplines to elect stars; these disciplines, however, are only 

observable for stars but not for other scientists. Visher (1947) reports the names (and disciplines) 

of 2,605 stars elected between 1906 and 1939.4 We match stars in Visher (1947) to the MoS 

(1921) to create training data for a nearest centroid matching algorithm. We then apply the 

trained algorithm to the research topics of the remaining scientists in the MoS to match each non-

star with a unique discipline.    

First, using the full name and date of birth, we match 1,782 stars scientists in the MoS (1921) 

with Visher and assign the discipline reported in Visher to these stars.5 Next, we assign 4,342 

scientists who list one of the 12 disciplines as their subject in the MoS to the respective 

discipline. Flexner, for example, is one of 176 scientists in “pathology.” We assign all 176 

scientists to the discipline of “pathology.”6 Finally, we exploit unique links between 89 subjects 

and the 12 disciplines to assign 1,487 non-star scientists uniquely to one of the 12 disciplines. 

Charles Dana, for example, is a star in “pathology” and lists “nervous and mental diseases” as his 

subjects in the MoS. Since Dana is the only star in “nervous and mental disease,” this subject is 

uniquely linked with pathology. Using this one-to-one link, we assign all scientists who list their 

subject as “nervous and mental disease” to the discipline of “pathology.”  

This three-step process creates a training data set of 7,611 scientists matched to 12 disciplines. 

We use the text that describes the research of these 7,611 scientists to train a nearest centroid 

classification algorithm that allows us to assign the remaining 1,943 scientists to disciplines. 

Flexner, for example, describes his research as  

“bacteriology; pathology of toxalbumin intoxication; terminal infection; snake venom; 
histological alterations of eytoxinic intoxication; etiology of dysentery; serum therapy of 
epidemic cerebrospinal meningitis; etiology and pathology of infantile paralysis; lethargic 
encephalitis.”  
 

 
4 116 scientists are stars in more than one discipline, we assign them to the discipline in which they ranked highest. 
5 1,322 stars in Visher are stars in the MoS (1921); 443 other scientists became stars after 1921. 
6 Scientists in the MoS (1921) report 385 subjects. All scientists in the MoS report a primary subject; 988 scientists 
report one or more additional, secondary subject(s). Disciplines range from extremely broad (such as chemistry, 
with 1,504 scientists, physics 679 scientists, and mathematics 604 scientists), to extremely narrow (such as Water 
Supply and Child Hygiene, with 1 scientist each). 155 of 324 primary subjects in the MoS have just one scientist, 
making it impractical to use disciplines alone to classify scientists. 
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Research topics are available for 93.7% (8,951 of 9,554 scientists in the MoS (1921) and 90.8% 

(1,764) of the remaining 1,943 scientists.  

     Methodologically, we use a GloVe model (pre-trained on 300-dimensional word vectors from 

Wikipedia 2014 and Gigaword 5, Pennington et al. 2014) to create vector representations of 

scientists’ research subjects and topics. With this vectorization, a scientist is represented by the 

average of the GloVe vectors of the words that describe their research. We use the subject and 

research topics of the 7,611 scientists whom we can assign to a unique discipline to train a 

nearest centroid classifier model (using Euclidian distance as the distance metric) and apply the 

trained algorithm to assign the 1,943 remaining scientists uniquely to the 12 disciplines.  

A key advantage of GloVe embeddings and the nearest centroid metric is that they can 

recognize similar words that lie outside the average human’s vocabulary but may be used by 

scientists. For example, the target words for “frog” include “toad,” along with scientific terms 

such as eleutherodactulus and leptodactylidae, which would be difficult to recognize in manual 

assessments. Word clouds represent the most frequent words that describe the research topics in 

each discipline (Figure B2). As a robustness test of the algorithm, we compare the algorithmic 

assignment with manual assignments for a random sample of 200 scientists (Appendix B). 

With 1,984 and 1,480 scientists, chemistry and physics are the largest disciplines (Figure 1, 

Panel A), followed by botany (1,242), zoology (987), pathology (855), geology (841), 

mathematics (622), and psychology (520). The four smallest disciplines are physiology (370), 

anatomy (286), astronomy (235), and anthropology (132). Astronomy has the largest share of 

stars: 28.1% of all scientists who are astronomers are stars (Figure 1, Panel A). Astronomers are 

also among the oldest when they first become stars, at a median of 45 years and a range of 31 to 

66 years. The oldest scientist to become a star is a biologist, John Gulick, who studied 

“Achatinella” (a tree snail) and became a star in 1910, at the age of 78.  

Physics, mathematics, and physiology have the lowest median age of becoming a star, with 

40, 39, and 39 years, respectively. The youngest person to become a star is Irwin Priest, a 

physicist who studied “Interferometry; wave lengths; flexure; elasticity, fatigue, and effects of 

straining iron and steel” and became a star in 1910 at the age of 24. The second youngest star is 

the mathematician Edwin Wilson, who studied “multiple algebra; mechanic; advanced calculus; 

relativity; aeronautics” and became a star in 1906 at the age of 25.  
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Linking Scientists with Census Records 

We use machine-learning algorithms to match all 7,791 U.S.-born male scientists in the MoS 

(1921), with 16.5 million U.S.-born entries in the census of 1870, 21.8 million in 1880, and 33 

million in 1900. Methodologically, we adopt machine learning methods that Feigenbaum (2016) 

developed to link individuals across census waves to match scientists with the census (see 

Appendix C for details).7  

First, we create a training data set by hand-matching 2,000 scientists with the census of 1880 

and hand-matching 1,000 scientists, each with the census of 1870 and 1900. Next, we create a 

script that defines potential matches as census records whose first and last names are within a 0.2 

Jaro-Winkler string distance of the scientist’s name and born in the same state within three years 

of the scientist’s year of birth. We manually review all potential matches, select the best match 

for scientists with multiple matches, and classify other MoS-census pairs as false matches.  

Using 1,000 scientist-census matches for 1880, half of the training sample for 1880, we fine-

tune the matching parameters from Feigenbaum (2016).8 Specifically, we estimate a probit 

model for a matching score between 0 and 1 for each scientist-census pair, where values closer to 

1 indicate greater similarity. Matching variables reflect similarity in names, birth years, and 

characteristics of other potential matches.9 For each scientist, we choose census records whose 

match probability is above a minimum threshold in absolute terms and relative to second-best 

candidates. We fine-tune this step to maximize a combination of recall and precision. Recall is 

the True Positive Rate (TPR), the share of correctly identified matches over the set of possible 

matches: TPR = True Positives/ (True Positives + False Negatives). Precision, or the Positive 

Predicted Value (PPV), is the share of correctly identified matches over the number of scientist-

census pairs classified as matches, PPV= True Positives/ (True Positives + False Positives). We 

set a minimum of 90% precision to train and validate the algorithm.  

 
7 Linking birth certificates with schooling records for children born in Florida 1992-2002, Autor et al. (2019) find 
that relative to their sisters, boys from disadvantaged families have higher rates of disciplinary problems, lower 
achievement scores, and fewer high-school completions, which suggests that childhood SES matters more for men.  
8 Feigenbaum (2016) uses the matching procedure to match children in the 1915 Iowa State Census to their adult-
selves in the 1940 Federal Census; he matches 57.4% of children with their adult self. 
9 To measure distance in names, we use Jaro-Winkler and Soundex distances and indicators for a match between the 
first or last letter of the first, middle, and last name. To measure distances in birth years, we use dummies for births 
that are one, two or three years apart. Additional matching variable include an indicator for an exact name match, 
the total number of exact name matches in the sample, and the number (in levels and squared) of census candidates. 
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The remainder of the hand-matched training sample allows us to evaluate the out-of-sample 

performance of our matching algorithm. 1,000 matches between the MoS (1921) and the census 

of 1870, 1880 and 1900 respectively. Out-of-sample performance is high, with 81-87% for recall 

and 83-88% for precision (Table C3). 

Applying this machine-learning algorithm to the MoS (1921), we match 6,104 U.S.-born male 

scientists (78.4%) with at least one census wave and observe 4,866 (67.4%) of scientists in their 

childhood home in at least one census year.10 945 stars (71.5%) matched scientists and 699 

(52.9%) of scientists whom we observe as children are stars. Matched scientists are distributed 

similarly across fields (Figure 1, Panel B) to the full sample (Figure 1, Panel A), and matching 

rates are consistent across fields, ranging from 57.3% of U.S.-born anthropologists to 62.4% of 

chemists (Appendix Figure C1). Matched and unmatched star and other scientists are also similar 

in terms of age and education (Table A1, Panel B, Figures A3-A5). 

 

Measuring Childhood SES by Matching Scientists with their Census Records 

We use the occupation of the scientist’s father to measure the scientist’s childhood SES. Father’s 

occupation is available for 4,067 of 4,866 (84%) census-matched male U.S.-born scientists, 

including 1,142 of 1,334 (85.6%) scientists who were minors in the census of 1870, 2,274 of 

2,566 (88.6%) in 1880, and 1,182 of 1,644 (71.9%) in 1900.11 For scientists whom we observe as 

minors in more than one census year (678 scientists each in 1870 and 1880), we use the father’s 

occupation in the 1870 census.12 By this process, we observe the childhood SES of 4,067 

scientists, 67% of all U.S.-born males who were minors in a census year, and 14.6% of stars. 

OCCSCORE is an income score measuring the relative economic standing of occupations 

using the median total income—in hundreds of dollars—for persons with positive income in 

1950. As an alternative measure, the ERSCORE counts the percentage of persons in occupations 

having lower standardized median earnings than the respondent’s occupation. The EDSCORE 

 
10 We match 1,334 scientists (57.5%) who were minors in 1870 with the census of 1870, 2,566 (65.6%) with 1880, 
and 1,644 (64.4%) with 1900. 678 scientists are observed in both the 1870 and 1880 census (Table 1, Panel B). 
11 50 scientists in 1870, 69 in 1880 and 291 in 1900 live with a father who is retired, unemployed, or has an 
unclassified occupation. Nine fathers pursue an occupation in the armed forces, so that ERSCORE, EDSCORE and 
Siegel are not available for them. Another 372 (7.5%) of male U.S.-born scientists live with a single mother, 
including 98 scientists in 1870 (7.3%) ,153 (6%) in 1880, and 131 (7.6%) in 1900. Since few mothers work (1% in 
1870, 14% in 1880 and 4% in 1900), we cannot observe parental SES consistently for these scientists.  
12 We match 678 scientists to both the 1870 and 1880 census and observe the father’s OCCSCORE in both years for 
531 scientists; for these scientists we define high-SES using the earlier wave in 1870. Since we focus on scientists 
below 18 when we observe them in the census, there is no overlap between children matched in 1880 and 1900. 
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captures the share of individuals in each occupation with one or more years of college education 

in 1950. The Duncan Socioeconomic Index, SEI, is a weighted sum of occupational income and 

education based on a 1947 survey by the National Opinion Research Center. The Siegel (1971) 

prestige score, PRESGL, uses survey responses on the “general standing” and “social standing” 

of occupations from the National Opinion Research Center in the 1960s. 

As an alternative to these composite measures of SES, we create a simple, directly observable 

measure of SES using the presence of live-in servants. Servants are observable in the census of 

1880 and 1900. We construct this variable for 2,516 scientists in 1880 and 1,671 in 1900. 

Encouragingly, the presence of servants is positively correlated with the OCCSCORE, even 

though the two measures of SES are methodologically distinct.   

In addition, we create a wealth-based measure that is available for the 1870 census measured 

as personal property (persprop in IPUMS): “the contemporary dollar value of all stocks, bonds, 

mortgages, notes, livestock, plate, jewels, and furniture owned by the respondent.”  

 

Matching Scientists with Publications and Citations 

To measure scientific productivity, we match scientists with their publications and citations from 

Microsoft Academic Graph (MAG, Sinha et al. 2015). MAG was updated weekly until 

December 2021; we use the version from August 20, 2020. To perform the matching, we restrict 

the data to authors with at least one English-language publication between 1900 and 1970. We 

match scientists in the MoS (1921) with authorids in the MAG, using first and last names, as 

well as middle initials. Using information on birth years from the MoS, we further restrict 

matched publications to those published when the scientist was between 18 and 80 years old. To 

measure achievements before becoming a star, we restrict the analyses to articles and books 

published before 1921. Our final data consists of 98,076 publications matched to 6,592 scientists. 

5,485 U.S.-born scientists (70% of all U.S.-born scientists) and 3,423 (71.3%) U.S.-born 

scientists matched with their childhood home have at least one publication before 1921. 

Conditional on having at least one publication, the median U.S.-born scientist has 8 publications 

by 1921, and the median scientists matched with his childhood home has 4 publications by 1921.   

We construct four complementary measures for the quality of publications. Three citations-

based measures distinguish highly cited authors in the top 10, 5, and 1% of their disciplines. 

Conditional on having at least 1 publication, the median matched scientist has 1.5 citations per 
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paper, with an average of 9.4. To complement citations-based measures, we create an indicator 

for papers in Science, which has consistently been a top journal across disciplines. 763 (15.7%) 

of the matched scientists have at least one publication in Science.  

 

Matching Scientists with Patents 

To measure scientific productivity, we match scientists with their patents using Google Patents. 

We construct a matching algorithm that matches the full name of scientists with the names of 

inventors on 2,748,078 successful patent applications filed between 1880 and 1970. Requiring 

precise matching of names for computing efficiency, we match 6,277 scientists to 48,345 

successful patent applications filed between 1880 and 1970.  

    We use co-inventor connections until 1921 to investigate whether scientists who became stars 

in 1921 had collaborated with an existing star. A total of 22,635 patents by 2,170 scientists in our 

matched data were filed by 1921. Among 4,067 scientists who we observe as minors in their 

childhood home, 915 scientists (22.5%) have at least one patent by 1921. 408 scientists (10.0%) 

have patents with co-inventors, and only 34 (0.8%) have at least one patent with a star. 

 

Academic versus Industry Scientists 

To separate academic from industry scientists, we exploit detailed information on scientists’ 
career histories in the MoS. We define academic scientists as the 7,622 scientists in the MoS 
(1921) who held an academic position, such as a lecturer, assistant professor, or associate 
professor, at least once in their career. The remaining 1,932 scientists are industry scientists. 
Flexner, for example, is an academic scientist because he was an associate professor at Johns 
Hopkins from 1896 to 1899 (Figure A1), while William de Chastignier Ravenel, a scientist at the 
U.S. Fish Commission who never worked in academia, is an industry scientist. 81.1% of the 
4,081 scientists whom we observe as children are academics, while just 18.9% work in industry.   
  

Elite University Degrees 

Universities have been shown to help shape generational persistence (e.g., Chetty et al. 2020, 

Michelmann et al. 2022) and may have an even greater impact on science. We explore this 
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channel by collecting information on college attendance and degrees from the MoS.13 7,964 

scientists (83.4% of all scientists) have graduate degrees, including M.A., M.D.s or PhDs, and 

6,831 U.S.-born scientists (83.9%) have graduate degrees. Data on undergraduate degrees are 

available for 7,844 scientists (82.1% of all scientists) and 6,861 U.S.-born males (84.2%). We 

create unique identifiers for universities by first cleaning acronyms and creating a crosswalk 

between historical institutions in the MoS (1921) and 1,060 unique contemporary institutions.  

To define “elite” education, we implement Chetty et al.’s (2017) definition of Ivy-Plus 

universities, which includes eight Ivies (Brown, Columbia, Cornell, Dartmouth, Harvard, Penn, 

and Yale), along with Chicago, Duke, MIT, and Stanford. 23.5% of scientists (and 31.7% of 

stars) in the MoS 1921 earn at least one undergraduate degree from an Ivy-Plus institution, and 

40.1% of scientists (and 46.4% of stars) earn at least one graduate degree from an Ivy-Plus 

institution.  

   

II. WHO BECOMES A SCIENTIST?  

First, we examine whether scientists were disproportionately drawn from high-SES families. 

Specifically, we compare the occupational status of scientists’ fathers for 4,866 U.S.-born male 

scientists in the MoS (1921) with a stratified 5% sample of U.S.-born males of the same age in 

the same census waves. Existing research has shown that children from high-SES families are 

overrepresented among inventors today (e.g., Bell et al. 2019; Aghion et al. 2018).  

 

Children from High-SES Families are Overrepresented in Science 

Linked scientist-census data show that patterns of underrepresentation today were already 

present in 1921. Children of attorneys, physicians, and clergymen are overrepresented in science, 

while children of farmers and other low-income occupations are underrepresented. 6.9% of 

scientists whom we observe as children in the census of 1880 are the sons of clergy, compared 

with 0.6% of boys of the same age in the population (Figure 2). Similarly, 4.9% of scientists are 

the sons of physicians (0.7% of boys in the population), and 3.3% are the sons of attorneys 

(compared with 0.5% of boys in the population).  

 
13 We separate summer programs, exchange programs, fellowships, and other non-degree programs from degrees. 
8.2% of scientists (and 7.5% of stars), earn two or more undergraduate degrees and 38.6% of scientists (and 49.2% 
of stars) earn two or more graduate degrees (excluding honorary degrees). 
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     Notably, just 34.4% of scientists whom we observe as children in the 1880 census are the 

children of farmers, compared with 55.6% of boys in 1880. Even more strikingly, 0.8% of 

scientists are the sons of farm laborers, compared with 6.1% in the population.  

    Patterns of underrepresentation are remarkably stable over time (Table 2, Panel A). For 

instance, 45.6%, 55.6% and 56.2% of boys in the census of 1870, 1880 and 1900 are the sons of 

farmers, compared with just 31.1, 34.4%, and 30.3% of future scientists (see Figure 3 for the 

census of 1870 and Figure 4 for the census of 1900).  

     Using the occupational income rank (OCCSCORE) of a person’s father as a measure of 

childhood SES, we find that the median scientist is drawn from the 78th percentile of income in 

1880 (with an OCCSCORE=24, equivalent to the rank of a salesclerk or carpenter), while the 

median boy of the same age in the population is the son of a farmer (OCCSCORE = 14). For 

scientists in the census of 1870 and 1900, the median OCCSCORE is 24, compared with 14 in 

the population (Figures 3 and 4).  

     Scientists are also more likely to have grown up in households with servants: 8.6% of 

scientists who were children in the census of 1880 lived in households with servants, compared 

with just 0.5% of the population (Table 2, Panel B). 24.1% of scientists who were children in 

1900 lived in households with servants, compared with just 1.4% of the population. Capturing 

differences in parental education and occupational prestige, alternative measures of SES imply 

even larger differences in participation (Table 2, Panel B).  

Taken together, these results suggest that patterns of inequality that impact innovation and 

science today (e.g., Bell et al. 2019; Aghion et al. 2018) already existed in the early 20th century, 

affecting children born as early as the 1860s.  

 

III. WHO BECOMES A STAR?  

Beyond participation, SES may impact a person’s professional success through selection, 

inequities in educational opportunities, peer recognition, and many other forces. If barriers to 

entry exist, scientists from low-SES backgrounds may be positively selected, increasing their 

likelihood of becoming stars. If educational opportunities are unequal, however, children from 

low-SES families may be less productive, reducing a person’s chances of becoming a star. 
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Moreover, if recognition for achievements is conferred primarily through social networks, 

individuals from low-SES families may receive less recognition for the same work.  

 

Children from High-SES Families are More Likely to Become Stars 

Comparing how stars and other scientists are distributed across the spectrum of childhood SES, 

we find that the children of managers, clergy, and attorneys are overrepresented among stars 

relative to other scientists, as well as relative to the population (Figure 2): 19.9% of stars whom 

we observe as children in 1880 are the children of managers, compared with just 16.3% of 

scientists and 5.6% of boys of the same age in the population; 8.7% of stars are children of 

clergy (compared with 6.9% and 0.6%) and 4.7% are children of attorneys (compared with 3.3% 

and 0.5%).  

At the same time, the children of farmers and farm laborers are underrepresented among stars 

(Figures 2-4, Panel C). Just 29.0% of stars we observe as children in 1880 are the children of 

farmers, compared with 34.4% of scientists and 55.6% of the population. 0.0% of stars are the 

children of farm laborers, compared with 0.8% of scientists and 6.1% of boys in the population.  

Comparing the fathers of stars, scientists, and the population, we find that stars had fathers 

with the highest OCCSCORE, with a median of 25 in 1880 (equivalent to a kindred worker), 

compared with 24 (carpenter) across all scientists and 14 (farmer) for the population (Figure 2).   

Notably, SES seems to matter much more for scientists whom we observe when they are 

young, below the age of 40 (Figure 4, for scientists whom we observe as children in the census 

of 1900). At that age, observers have less information about the “quality” of the scientist, and 

they may put greater weight on traits that are associated with a scientist’s class, such as their 

social assuredness. By comparison, parental SES appears to matter much less for becoming a star 

when scientists are old, above the age of 50, when observers have more information on quality 

(Figure 3, for scientists whom we observe as children in the census of 1870).   

 

Logit Estimates of a Scientist’s Odds of Becoming a Star 

To evaluate differences in parental SES more systematically, we estimate maximum likelihood 

logit models of the probability of becoming a star, controlling for the scientist’s age, discipline, 

and the year when we observe him in the U.S. census: 
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!(#$%&) = )1 + ,!(#$%&'&!"#!	%&%$('$(($)*+,)-!.         (1) 
 
where ././0+/	&'& is an indicator for scientists whose father was in the upper half of the 

distribution of SES in a given census year, 02 is a vector of census year fixed effects for 1870 

and 1900, with 1880 as the excluded category,	03 is a vector of fixed effects for 11 of the 12 

scientific disciplines (using chemistry, the largest discipline, as the excluded category), age is  

the scientist’s age in 1921, and 2 is an intercept. The coefficient 34	measures log odds. 

Converting it using the exponential function ,%4  captures the odds ratio of being a star for 

scientists from high-SES families compared with other, low-SES scientists. We calculate the 

additional odds for a high-SES scientist of becoming a star as  

 
%	D		in	odds = ,%4 − 1	 (2) 

 

Estimates for SES are consistently positive and significant (Table 3). Scientists who grew up 

above the median OCCSCORE of 24 (ranked above a clergy, carpenter, or salesclerks) have 

38.7% (= ,5.789 − 1	) greater odds of being stars compared with other scientists (Table 3, 

Column 1). Scientists who grew up in a household with live-in servants (14.6% of all scientists) 

had 75.7% higher odds of being stars (Table 3, Column 6). 

Converting estimates to probabilities confirms the influence of SES. Table 3 reports 

probabilities evaluated at the baseline averages (specified in Table D1): A 46-year-old chemist 

scientist who lived in a high-OCCSCORE home in the 1880 census has a 33.5% greater 

probability of being a star compared with a scientist of the same age from a low-OCCSCORE 

family. A 46-year-old scientist from a household with live-in servants in 1880 has a 63.9% 

higher probability of being a star. Since probabilities must be evaluated at specific values of the 

explanatory variables, we report coefficients in odds and convert only key values into 

probabilities. Appendix D provides details on all conversions. 

Alternative measures of SES suggest an even stronger link between childhood SES and peer 

recognition (Table 3, columns 3 to 5). Scientists from the top of the ERSCORE (an alternative 

measure for the occupational income rank) have 35.0% higher odds of becoming stars. Estimates 

for measures of occupational prestige yield similar results, with an estimate of 44.4% for the 

Duncan SEI and 53.0% for the SIEGEL. 
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    Scientists from families in the top half of the EDSCORE have 50.3% higher odds of becoming 

stars (Table 3, Column 2). Recent surveys of PhD recipients show that children of college-

educated parents are overrepresented among U.S.-born PhDs: 50% of U.S.-born PhD students 

had a parent with a graduate degree, and 12% had a parent with a PhD (Stansbury and Schultz 

2023). Moreover, a 2017-20 survey of 7.204 U.S.-based tenure track faculty across eight 

disciplines in STEM, social science, and the humanities shows that faculty are up to 25 times 

more likely to have a parent with a PhD (Morgan et al. 2022). Our results indicate that parents’ 

education already mattered in the early 20th century and that it mattered for peer recognition, 

conditional on participation.   

 

IV. WHY ARE CHILDREN FROM HIGH-SES FAMILIES MORE LIKELY TO BE STARS? 

In this section, we investigate mechanisms by which a scientist’s childhood SES may influence 

their odds of becoming a star, starting with publications. We also examine differences across 

disciplines and between academia vs. industry. We explore the influence of connections to 

existing stars, degrees at elite universities, family size, birth order, foreign-born parents, illiterate 

mothers, links with the father’s occupation, and personal wealth.  

 

Are High-SES Scientists Stars because they Publish More and Better Papers? 

People from high-SES families may become stars because SES is associated with better health, 

cognitive, and socioemotional outcomes (e.g., see Bradley and Corwyn 2002), enabling them to 

produce more and better papers.14 To investigate this mechanism, we re-estimate equation (1) 

controlling for the number and the quality of publications: 

 
!(#$%&) = (1 + ,!:#$%&'&!"#!	%&%$	;<=>?($	('$(($))#*@)!.         (3) 

 
where pubsd counts a scientist’s publications before 1921 and citations to these publications. In 

the baseline specification, publications and citations are transformed by inverse hyperbolic sine 

(asinh) to account for the large share of scientists (29%) without publications and the large share 

 
14 In politics, this mechanism is what Dal Bó, et al. (2017) call “exclusive meritocracy:” “politics select the 
competent, which makes the political class (accidentally) elitist.”  
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of publications (56%) without citations.15 Alternative specifications include a logarithmic 

specification (adding 0.01 to the count of publications and citations), indicators for scientists in 

the top 1, 5, or 10% in the distribution of publications and citations within their discipline d, as 

well as publications in the prestigious journal Science.  

Logit estimates of equation (3) show that publications and citations increase the odds of 

becoming a star, but they cannot explain the influence of SES. Controlling for publications and 

citations, scientists from the top half of the distribution of OCCSCORE have 38.3% higher odds 

of becoming a star (Table 4, Panel A, column 2), just 0.4% less compared with 38.7% without 

controls for publications (column 1). Estimates with alternative controls for scientists in the top 

1, 5, and 10% of publications and citations imply 37.7-40.6% higher odds of stardom for 

scientists from high-SES families (columns 3 to 5); estimates with controls for papers in Science 

imply 35.4% higher odds (column 7).  

Regressions with servants as an alternative measure for SES confirm these results (Table 4, 

Panel B). Scientists who grew up in households with servants have 55.8% higher odds of 

becoming a star than scientists without servants (Table 4, Panel B, column 2).  

 

Does the Influence of SES Vary across Disciplines? 

SES may matter more in some disciplines, depending, for example, on differences in status bias 

or access to education.16 A pathologist from a low-income family, for example, may have found 

it more difficult to get top of the line training in the early 20th century, when most medical 

education was for-profit (Duffy 2011, p. 273), and only a small number of elite universities in 

the Northeast trained students in the cutting-edge European model, teaching two years of 

laboratory sciences before progressing to clinical training in hospital wards (Duffy 2011, p. 271). 

Under these conditions, children from high-SES families may have become stars because they 

were better educated, enabling them to publish more and better papers.  

 
15 asinh(') = ln	(' +	√1 + '+). The transformation asinh is well-defined at zero as	asinh(0) = 0. For ' > 2, 
asinh(') 	≈ ln(') + ln	(2). Investigating log transformations of the outcome variable, Chen and Roth (2024) argue 
that ATEs for the asinh (and other log-like transformations) should not be interpreted as approximating percentage 
effects, since log-like transformations depend on the units of the outcome variable, unlike a percentage. While we 
use the asinh to transform the explanatory variable, we also present alternative measures without the asinh.  
16 Surveys of PhD recipients today show that just 13% of U.S.-born PhD students in economics were first-generation 
college students (defined as having no parent with a college degree), compared with 49% in education, 19% in math, 
22% in the physical sciences, and 26% across all disciplines (Stansbury and Schultz 2023, p. 2010). 
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     Class differences in access to participation may be particularly salient in disciplines in which 

access to early childhood education is critical for success. For instance, the National Research 

Council’s (2009, pp.1-2) report on Early Childhood Education in Mathematics emphasizes the 

importance of early childhood education and concludes that  

“although virtually all young children have the ability to learn and become competent in 
mathematics, for most the potential to learn mathematics in the early years of school is not 
currently realized. This stems from a lack of opportunities to learn mathematics either in early 
childhood settings or through everyday experiences in homes and in communities. This is 
particularly the case for economically disadvantaged children, who start out behind in 
mathematics and will remain so without extensive, high-quality mathematics instruction.”  
 
To investigate variation across disciplines, we estimate equation (1) within the 12 disciplines:  

 
!3(#$%&) = )1 + ,!(#$%&'&!"#!	%&%$('$))#*)-!.         (4) 

 
Estimates reveal much variation across disciplines. SES matters most in geology, a field in which 

high-SES scientists have 117.1% higher odds of becoming stars (Table 5), followed by 

psychology (109.0%), pathology (103.6%), botany (89.7%), and math (73.5%).  

In nearly all fields, controlling for publications intensifies the link between high-SES and 

becoming a star: Pathologists from high-SES families have nearly three times higher odds of 

becoming a star (with an estimate of 1.379, Table 5, significant at 1%), implying a 297.1% 

increase in odds. In geology, high-SES scientists have 207.7% higher odds of stardom (with an 

estimate of 1.124 significant at 1%). In psychology, they have 135.4% higher odds (0.856, 

significant at 10%), and in botany, they have 104.0% higher odds (0.713, significant at 10%).  

Mathematics is the only field in which the link between SES and stardom operates through 

publications. Without controls for publications, high-SES mathematician scientists have 73.5% 

higher odds of becoming a star. With controls for publications, the coefficient on SES becomes 

small and is no longer statistically significant. This result is consistent with inequities in access 

to early childhood education, which puts children from lower SES families at a disadvantage 

(National Research Council 2009). 

 

Does SES Matter More in Academia or Industry? 

In addition to disciplines, the types of jobs that scientists hold may influence whether they are 

perceived as stars, irrespective of publications. Specifically, scientists may attach more prestige 
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to university employment if only because they were trained at universities and advisors push 

PhD students to strive for university appointments. Moreover, if academia is more elitist, 

childhood SES may matter more in academia relative to industry. 

   Notably, industry scientists are more likely to come from high-SES families than academic 

scientists, suggesting that academia may, in fact, be more egalitarian than industry. The father of 

the median industry scientists has an OCCSCORE of 24, compared with 26.5 for academic 

scientists (Figure 6, Panels A and B). At a more granular level, 5.9% of industry scientists are the 

children of lawyers and judges, compared with 5.0% of academic scientists. Most strikingly, the 

children of farmers, who make up 34.2% of academic scientists, are underrepresented among 

industry scientists, with a share of 25.1%.  

   If academia is more egalitarian than industry, childhood SES may matter more in industry. For 

instance, it may be harder for a child from a low-SES family to become an industry scientist 

because lucrative jobs may be transferred through connections (e.g., San 2023). To control for 

such differences, we first add an indicator for industry scientists to equation (3): 

  

!(#$%&) = (1 + ,!:#$%&'&!"#!	%&%$	A0B3=?CDE$	;<=>?$	('$(($))#*@)!.         (5) 
 

Logit estimates imply that industry scientists are 66.6% less likely to be stars than academic 

scientists (Table 6, column 2, significant at 1%, without controls for publications). Controlling 

for publications increases this industry penalty to 68.8% (column 3, significant at 1%). 

Controlling for industry employment and publications, scientists from high-SES families have 

46.9% higher odds of being stars (column 3, significant at 1%), and scientists from households 

with servants have 66.7% higher odds of being stars (Table A2, column 3, significant at 1%). 

     Estimating the baseline separately for industry and academic scientists confirms that the link 

between childhood SES and stardom is stronger in industry. Controlling for publications and 

citations, an industry scientist from a high-SES family has 72.7% higher odds of becoming a star 

(Table A3, column 4) compared with 45.9% in academia (Table A3, column 2).  

 

Do Elite Universities Mitigate or Exacerbate Inequality in Sciences? 

Next, we investigate whether elite universities mitigate inequality or whether they make it worse. 

Chetty et al. (2017) match students at U.S. colleges between 1999 and 2013 with their parents’ 
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tax records to evaluate colleges’ effectiveness in encouraging upward mobility. They find that 

elite Ivy-Plus universities—Brown, Columbia, Cornell, Chicago, Dartmouth, Duke, Harvard, 

MIT, Pennsylvania, Princeton, Stanford, and Yale—succeed in moving admitted low-income 

children up in the income distribution but fail at training enough of these students. Elite colleges 

may, however, amplify the importance of socioeconomic inequality in science if elite colleges 

are more likely to teach cutting-edge materials (Biasi and Ma 2023), granting their graduates a 

head start. Moreover, elite colleges may amplify inequality if they create social networks that 

disproportionately benefit people of higher SES (Michelman et al. 2022). 

    To investigate the role of elite colleges in peer recognition, we add controls for Ivy-Plus 

degrees to equation (5). These estimates confirm that graduates from elite colleges have 

significantly higher odds of becoming stars, even controlling for publications and academic jobs. 

Scientists with elite undergraduate degrees have 41.5% higher odds of becoming stars (with a 

coefficient of 0.347, Table 6, column 4 significant at 1%), and scientists with elite graduate 

degrees have 48.9% higher odds (with an estimate of 0.398, column 5, significant at 1%).  

    Controlling for elite undergraduate degrees reduces the estimate for high-SES more than any 

other control: Controlling for elite undergraduate degrees (in addition to publications and 

academic jobs), high-SES scientists have 43.3% higher odds of becoming stars (Table 6, column 

4, and Figure 5, Panel A), the largest reduction relative to the baseline of 46.9% (column 3). 

Similarly, scientists who grew up in households with servants have 58.1% higher odds (Table 

A2, column 4 and Figure 5, Panel B), a large reduction relative to the baseline of 66.7% (Table 

A2, column 3). Controlling for elite graduate degrees leaves the estimates at 44.9% for high-SES 

(Table 6, column 5) and at 66.6% for scientists with servants (Table A2, column 5).  

 

Are First-Born Children More Likely to be Stars? 

To further investigate the channels by which SES influences stardom, we extend the analyses to 

control for family size (measured by the number of siblings) and birth order (measured by being 

the oldest living child). First-born children may be more likely to become scientists (and stars) 

because they benefit from higher level of prenatal investment (Buckles and Kolka 2014) or more 

quality time with parents (Price 2008).17 In modern data, first-born children have higher 

 
17 Analyzing the behavior of 3,755 mothers in the NLSY79, Buckles and Kolka find that mothers are 15.4% less 
likely to breastfeed a second-born child than a fourth, 6.6% less likely to take prenatal vitamins in a fourth or higher-
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measured IQ (Black, Devereux, and Salvanes 2011), higher noncognitive abilities, and a higher 

likelihood of working in occupations with leadership skills (Black, Gronqvist and Ocker 2018).  

    Consistent with these findings, scientists in the MoS have fewer siblings and are more likely to 

be the first-born child (Table 2, Panel B): The average scientist who was a child in 1880 had 2.6 

siblings, and the average star had 2.7 siblings, significantly less than the 3.2 average for boys of 

the same age in the population. Similarly, 34.1% of scientists and stars each were first-born 

compared with 27.9% of boys in the population.  

   Controlling for family size and birth order, however, leaves the estimate for High SES 

substantially unchanged, at 0.382 (significant at 1%, Table 6, column 6), implying a 46.5% 

change in the odds of becoming a star, nearly identical to the baseline odds of 46.9%. Estimates 

for the number of siblings and for being a first-born are negative but not statistically significant, 

with p-values of 0.243 and 0.472, respectively.  

Using servants as a measure of SES slightly increases the estimated class gap in recognition. 

Controlling for family size and birth order, scientists who grew up with servants have 69.9% 

higher odds of becoming stars (Table A2, column 6), up from 66.7% in the baseline.  

 

Are the Children of Immigrants Less Likely to be Stars? 

While high-skilled immigration has encouraged US innovation (e.g., Moser, Voena, and 

Waldinger 2014), many immigrants to the United States have been low-skilled, drawn to the 

United States by a heightened demand for unskilled workers (Rosenbloom 2002) or pushed from 

their homeland by poverty (e.g., O’Rourke 1997, pp.775-76). When these immigrants arrived in 

the United States, they had to overcome hardships that made it difficult for them and their 

children to succeed (e.g., Collins and Zimran 2023), and possibly become academic stars. 

    We find that a person’s nativity status is much less important than their SES. Controlling for 

foreign-born parents leaves the estimate for high-SES at 0.384 (Table 6, column 7 and Figure 5, 

Panel A), implying a 46.9% change in odds. Moreover, the estimate for foreign-born parents is 

close to zero (at 0.026, with a p-value of 0.884). Equivalent estimates for servants confirm that 

foreign-born parents cannot explain the outsized influence of SES (with an estimate of 0.511, 

 
order birth than in a first and are 10.6 % less likely to receive early prenatal care. Using data from the American 
Time Use Survey, Price (2008) finds that first-born children receive 20-30 additional minutes of quality time per day 
compared with second-born children in the same family. 
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implying 66.7% higher odds, Table A2, column 7, and Figure 5, Panel B).  

 

Are the Children of Uneducated Mothers Less Likely to be Stars? 

Finally, we investigate the effects of mothers, and more specifically their literacy, as a measure 

of education.18 Investigating the link between parental education and IQ for 1,528 California 

school children who scored in the top 1% of the national IQ distribution in 1921, Leibowitz 

(1974) found that mothers’ education is a significant predictor of boys’ IQ, while fathers’ 

education is insignificant.19 Examining the influence of parental education in modern data, Black 

et al. (2005) find that mothers’ education has a positive impact on the education of children in 

Norway, while there is no effect of fathers’ education.   

Among scientists in the MoS (1921), having grown up with an illiterate mother reduces the 

odds of stardom by 67.5% (with an estimate of -1.123, significant at 10%, Table 6, column 8), 

confirming the important role mothers play even among this selective group of professionals.  

Yet, maternal literacy explains only a small share of the correlation between SES and stardom. 

Controlling for illiterate mothers, high-SES scientists have 45.5% higher odd of becoming a star 

(just 1.4% less than the baseline of 46.9%) and scientists who grew up with servants have 66.0% 

higher odds of becoming a star (just 0.7% less than the baseline of 66.7%).  

 

Do Network Connections with Existing Stars Facilitate Stardom? 

In their analysis of gender bias in recognition, Card et al. (2022) find that connections with an 

existing Fellow of the Econometric Society increase one’s probability of being nominated and 

selected into the Society in subsequent years. To evaluate such connections as a mechanism for 

becoming a star in the MoS, we match scientists with their patents and use co-inventor 

connections with an existing star as a measure for connections. Charles Parsons, for example, is 

connected with Archibald Campbell (a star in 1910) because they collaborated on patent 

US656208A for a “reversing steam-turbine.” Consistent with existing results on differences in 

inventors’ reliance on patents across industries (Moser 2012), chemistry and physics have the 

 
18 Just 6% of married mothers of scientists in the MoS worked outside the home; this low rate of employment 
prevents us from using mothers’ occupation as a measure for childhood SES.   
19 These data, which were originally collected by Lewis M. Terman, include 857 boys and 671 girls, with a mean IQ 
of 151.5 and 150.4, respectively (Leibowitz 1974, p.436). Notably these children tended to taller and stronger than 
their classmates. Their fathers had a median 12.4 years of schooling and their mothers a median of 11.7 years, nearly 
4 years above the U.S. average of their generation. 
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largest number of scientist inventors: 342 and 294 scientists in chemistry and physics have at 

least one patent, respectively.20 Across all 12 disciplines, 489 scientists (including 175 chemists 

and 136 physicists) have at least one patent with co-inventors.   

     Star chemists are twice as likely to be connected with an existing star than other scientists: 6 

of 29 stars with co-inventors (20.7%) are connected with at least one scientist who had become a 

star already in 1906 or 1910. By comparison, just 10.3% of other scientists with co-inventors (15 

of 146) are connected with an existing star. Adding to the importance of connections, another 10 

of the connected non-stars in 1921 became stars in later editions.  

To investigate the influence of connections more systematically across all disciplines, we re-

estimate equation 5 with indicators for scientists with patents and for scientists who are 

connected by a joint patent with a scientist who had been voted a star already. These estimates 

show that scientists who are connected with an existing star have 208.0% higher odds of 

becoming a star themselves (Table 6, column 9). Importantly, however, the link between SES 

and stardom is robust to controlling for patents and connections, which suggests that SES matters 

even conditional on connections. Controlling for patents and connections, scientists from high-

SES homes have 47.7% higher odds of becoming stars (Table 6, column 9), and scientists from 

households with servants have 88.9% higher odds (Table A2, column 9, Figure 5).21  

 

Do Scientists Learn from their Fathers Occupations? 

Investigating the influence of early exposure to innovation, Bell et al. (2019) show that the 

children of inventors are more likely to work in the same field (USPTO technology class) as their 

fathers. Investigating political dynasties, Dal Bó et al. (2009 and 2017) document 

intergenerational persistence in politics, where powerful politicians manage to transfer power to 

family members. To investigate this channel in science, we match the disciplines of stars and 

other scientists with the occupations of their fathers.  

We find strong evidence for intergenerational persistence in medicine. 13.6%, 13.3%, and 

15.1% of scientists in pathology, physiology, and anatomy, respectively, were the children of 

 
20 We observe 1,161 chemists in the MoS (1921) as children. 342 of them (47.8%) have at least one patent before 
1921; all of them together created a total of 2,836 patents. 175 of the chemists with a patent have a co-inventor; 
together, they produce a total of 612 patents with co-inventors. Chemists with co-inventors include 29 stars and 146 
non-star scientists. 29 stars have 94 patents with co-inventors, and 146 non-stars have 518 patents with co-inventors. 
21 The estimate for connections stays positive but loses statistical significance when we control for publications and 
citations in addition to patents, with an estimate of 0.649 and a p-value of 0.154.  
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physicians, compared with just 3.58% of scientists in other disciplines (Figure A6, Panel A) and 

0.7% of boys of the same age in the 1880 census (Figure 2, Panel A). Moreover, 12.9%, 7.8%, 

and 13.3% of stars in pathology, physiology, and anatomy, respectively, were the children of 

physicians (Figure A6, Panel B), compared with just 3.63% of stars in other disciplines.  

    Similarly, having a professor father increases a person’s odds of becoming a scientist and 

becoming a star: 1.7% of scientists and 2.4% of stars are the children of professors; by 

comparison, just 0.02% of boys in the census of 1880 are the children of professors. Data from a 

2017-20 survey of 7,204 U.S.-based tenure-track faculty suggest that nearly one quarter of 

faculty today have at least one PhD parent, compared with 0.9% of the population and 11.8% of 

PhD recipients (Morgan et al. 2022, p. 1626). Our results indicate intergenerational persistence at 

an even more elite level, above the PhD, among scientists and stars.   

    Moreover, we find that the children of farmers are most likely to become scientists and stars in 

botany. 51.1% of scientists in botany are the children of farmers, compared with 28.4% of 

scientists in other disciplines. 42.5% of stars botanists are the children of farmers, compared with 

23.8% of stars in other disciplines. Taken together, our results indicate that scientists acquire 

valuable occupation-specific human capital through their fathers and that such capital increases 

their odds of becoming scientists—and stars—in a related discipline.    

    

Are the Sons of Wealthy Farmers More Likely to be Stars? 

Next, we investigate the influence of SES (and more specifically, parental wealth) within the 

occupation of “farmers,” who account for a large share of our scientists and the population. 

29.3% of star scientists whom we observe as children in the census of 1870 were the children of 

farmers, compared with 31.1% of all scientists and 45.6% of boys of the same age in the 

population (Figure 3). In the census of 1880, 29.0% of star scientists were farmers, compared 

with 34.4% of scientists and 55.6% of the population (Figure 2), and in the census of 1900, 

14.3% of star scientists were farmers, compared with 30.3% of scientists and 56.2% of the 

population (Figure 4). Data on personal wealth is available only for the 1870 census. In that year, 

personal wealth for farmers ranged between $0 and $999,997, equivalent to $23 million in 2023 

(measured as the relative share in GDP per capita, MeasuringWorth.com 2024). 

Confirming the importance of SES, the sons of farmers with less wealth are underrepresented 

among scientists and stars (Figure A7). Among the children of farmers, 8.9% of star scientists 
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and 6.9% of all scientists grew up on farms with zero wealth, compared with 12.2% of the 

population. In 1870, the median star scientists lived in a farm household with $1,400 of personal 

wealth, compared with $1,000 for all scientists and $500 in the population. Similarly, the average 

star scientist lived in a farm household with $7,805 of personal wealth, compared with $5,575 for 

all scientists and $2,788 in the population.   

Scientists from the top of the wealth distribution had dramatically higher odds of becoming 

stars. A scientist whose father was a farmer with more than $20,000 of personal wealth (the top 

2.5% of personal wealth for this sample) had 60.5% higher odds of becoming a star than a farmer 

with similar publications but less than $20,000 in wealth (Table A4, column 2).  

 

V. CONCLUSIONS 

To examine the influence of inequality on science, we have applied machine-learning methods to 

link comprehensive biographical data on scientists with individual census records. Our analyses 

of these linked records indicate that patterns of underrepresentation that affect innovation today 

were already present more than a century ago, in the early 1920s. Children of attorneys, 

physicians, and clergy are overrepresented in science, while children of farmers and other low-

income occupations are underrepresented. Using the occupational income rank of a person’s 

father as a measure of childhood SES, we find that the median scientist is drawn from the 78th 

percentile of SES. Capturing differences in parental education and occupational prestige, 

alternative measures of SES imply even larger differences in participation.  

Beyond participation, we show that SES influences peer recognition in science. Scientists 

from high OCCSCORE families have 46.9% higher odds of becoming a star, and scientists from 

families with servants have 66.7% higher odds, controlling for the number and the quality of 

publications. Mathematics is the only field in which the influence of SES operates through 

publications; in all other fields, controlling for publications fails to reduce the influence of SES. 

Using job titles to identify academic scientists, we show that there is a significant prestige 

penalty of holding industry jobs, and that academia is more egalitarian than industry. Controlling 

for academic jobs, as well as publications, scientists from high-SES families have 46.9% higher 

odds of being stars, and scientists from households with servants have 66.7% higher odds. In 

addition to publications and academic employment, the correlation between SES and stardom is 
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robust to controlling for patents, connections with existing stars, elite graduate degrees, family 

size, birth order, and maternal education; none of these controls significantly reduces the 

correlation between stardom and SES. 

Consistent with recent findings on the importance of colleges as a mechanism of upward 

mobility (e.g., Chetty 2017, 2023; Michelman 2023), scientists with elite undergraduate degrees 

have 41.5% higher odds of becoming stars, controlling for publications. Elite college degrees 

explain more of the correlation between SES and stardom than any other control; yet, even 

controlling for elite degrees, high-SES scientists have 43.3% higher odds of becoming stars, and 

those from families with servants have 58.1% higher odds. These findings emphasize the 

importance of SES and indicate that a person’s class may unduly influence how we perceive 

their work.  
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FIGURE 1 – STARS AND OTHER SCIENTISTS ACROSS 12 DISCIPLINES 

 
Notes: This figure plots the distribution of scientists across the 12 disciplines, in which scientists chose 
stars among their peers. Disciplines are arranged by their size (measured by the number of scientists in 
that discipline, in grey). The number on top of each bar represent the total number of scientists in each 
discipline. The black shaded area represents the number of stars; we report the share of stars above the 
black bar. Disciplines are observable for stars in Visher (1947), but not for other scientists. To assign the 
remaining (non-star) scientists to disciplines, we use the text that describes the research of stars to create 
training data for a nearest-neighbor algorithm. This algorithm assigns each of the remaining scientists 
uniquely to one of the 12 disciplines. Panel A includes all 9,554 scientists, Panel B includes 4,067 
scientists whom we can match with at least one census wave when they are minors. These 4,067 
scientists, which form the data set for our main analyses, are distributed similarly across disciplines to the 
full sample (Appendix Figure C1).  
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FIGURE 2 –SES (MEASURED BY FATHERS’ OCCSCORE) FOR SCIENTISTS AND STARS  

COMPARED WITH BOYS OF THE SAME AGE IN THE CENSUS OF 1880  

 
Notes: To investigate whether stars and other scientists are disproportionately drawn from high-income 
families, we plot the distribution of fathers’ OCCSCORE for scientists (Panel B) and stars (Panel C) 
against the distribution of boys of the same age in the population (Panel A). Data include 2,274 scientists 
whom we observe as minors in the census of 1880.  
  



 35 

 
FIGURE 3 – SES (MEASURED BY FATHERS’ OCCSCORE) FOR SCIENTISTS AND STARS  

COMPARED WITH BOYS OF THE SAME AGE IN THE CENSUS OF 1870 

 
Notes: To investigate whether stars and other scientists are disproportionately drawn from high-income 
families, we plot the distribution of fathers’ OCCSCORE for scientists (Panel B) and stars (Panel C) 
against the distribution of boys of the same age in the population (Panel A). Data include 1,142 scientists 
whom we observe as minors in the census of 1870.  
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FIGURE 4 – SES (MEASURED BY FATHERS’ OCCSCORE) FOR SCIENTISTS AND STARS 
COMPARED WITH BOYS OF THE SAME AGE IN THE CENSUS OF 1900  

 
Notes: To investigate whether stars and other scientists are disproportionately drawn from high-income 
families, we plot the distribution of fathers’ OCCSCORE for scientists (Panel B) and stars (Panel C) 
against the distribution of boys of the same age in the population (Panel A). Data include 1,182 scientists 
whom we observe as minors in the census of 1900. 
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FIGURE 5 – CONTROLLING FOR ELITE EDUCATION AND FAMILY TRAITS 

 
Notes: To investigate alternative mechanisms for the link between SES and stardom, we re-
estimate equation 3 with controls for Ivy-Plus undergraduate and graduate degrees, siblings and 
being first-born, having foreign-born parents or an illiterate mother, as well as having a patent 
and being connected by a joint patent with a star. Baseline estimate includes control for industry 
jobs, publication and citations (Table 6 and Table A2, column 3). Panel A plots the % Change in 
Odds (reported in Table 6) with 95% confidence interval for scientists from high-OCCSCORE 
families and panel B plots the % Change in Odds (reported in Table A2) with 95% confidence 
interval for scientists from families with servants. 
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FIGURE 6 – THE CHILDHOOD SES OF SCIENTISTS AND STARS IN ACADEMIA VS. INDUSTRY 

 
Notes: To investigate whether academic and industry scientists are disproportionately drawn from high-
SES families, we plot the distribution of fathers’ OCCSCORE for academic scientists (Panel A) against 
the distribution of fathers’ OCCSCORE for industry scientists (Panel B) for the pooled sample of 
scientists whom we match with at least one census wave in 1870, 1880, or 1900. Panels C and D plot the 
same comparison for stars. Academic scientists are those who held an academic position, such as a 
lecturer, assistant professor, or associate professor, at least once in their career. Data include 3,694 
academic scientists, 830 industry scientists, 642 stars in academia, and 66 stars in industry.  
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 TABLE 1 – MATCHING SCIENTISTS WITH THEIR CHILDHOOD HOME IN THE CENSUS 

 US-born US-born male  Matched with the US census Living with their father 

  N N N Rate (in %) N Rate (in %) 

  Panel A: All scientists 

1870 2,753 2,658 1,484 55.83 1,176 79.25 
1880 5,209 5,009 3,189 63.67 2,493 78.17 
1900 8,146 7,791 4,687 60.16 1,724 36.78 

Any census 8,146 7,791 6,104 78.35   

  Panel B: Scientists who were minors in a census year 

1870 2,409 2,319 1,334 57.52 1,142 85.61 
1880 4,083 3,910 2,566 65.63 2,274 88.62 

1900 2,693 2,550 1,644 64.47 1,182 71.90 

Any census 7,549 7,215 4,866 67.44 4,067 83.58 

Notes: Counts and shares (in %) of scientists linked with the US census. Panel A covers the full sample of US-born, male 
scientists, irrespective of their age in a census year. Panel B focuses on scientists who were minors in a census year; we match 
these scientists with individual records in the US census. “Living with their father” includes US-born male scientists whose 
father’s occupation we can observe in the census. Any census reports data for scientists we match with at least one census wave. 
For 531 scientists we observe father’s occupation in both 1870 and 1880; we use the earlier census, reducing the number of 
observations for the 1880 census to 1,743 and creating a regression sample of 4,067 scientists (N in Panel B, column Living with 
their father, and row Any census). Individual census records for 1890 were destroyed by a fire in 1921. 
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Table 2 –Traits of Scientists and their Childhood Homes Compared with the Population 
 1870 Census 1880 Census 1900 Census 
 Scientists Population Scientists Population Scientists Population 
N 1,334 427,892 2,566 539,416 1,644 787,878 
 Panel A: Childhood SES Measured by Father’s Occupation (Median)  
OCCSCORE 24.0 14.0 24.0 14.0 24.0 14.0 
ERSCORE 44.1 9.9 44.1 9.9 56.7 9.9 
EDSCORE 6.3 4.6 16.4 4.6 17.1 4.6 
Duncan SEI 32.0 14.0 44.0 14.0 47.0 14.0 
SIEGEL 40.7 40.7 40.7 40.7 40.7 40.7 
 Panel B:  Other Traits of the Scientist’s Childhood Home (Mean and SD) 

Servant 
  0.086 0.004 0.241 0.014 

  (0.01) (0.00) (0.02) (0.00) 

Siblings 
2.304 2.979 2.571 3.234 2.202 3.364 
(0.05) (0.00) (0.04) (0.00) (0.05) (0.00) 

First-born 
0.400 0.280 0.341 0.279 0.507 0.324 
(0.01) (0.00) (0.01) (0.00) (0.01) (0.00) 

Foreign-born parents 
0.068 0.058 0.088 0.078 0.106 0.093 
(0.01) (0.00) (0.01) (0.00) (0.01) (0.00) 

Illiterate mother 
0.017 0.176 0.007 0.159 0.005 0.096 

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 
Notes: This table compares scientists whom we observe in their childhood home with a 5% stratified sample of children of the 
same age in the same census year. Panel A reports the median of alternative measures of SES: OCCSCORE and ERSCORE for 
fathers’ occupational income ranks, EDSCORE for fathers’ education, Duncan SEI and SIEGEL for occupational prestige. Panel B 
reports means (and SD) for other traits. Servants indicates scientists who grew up in households with at least one live-in servant; 
this variable is available for 1880 and 1900 but not 1870. Siblings counts the number of siblings living in the same household and 
first-born indicates scientists who are the oldest child in their household. The variable foreign-born parents indicates scientists 
who have at least one foreign-born parent. An illiterate mother can neither read nor write. 
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TABLE 3 –LOGIT ESTIMATES FOR THE ODDS OF BEING A STAR AS A FUNCTION OF CHILDHOOD SES 

 (1) (2) (3) (4) (5) (6) 
 OCCSCORE EDSCORE ERSCORE Duncan SEI SIEGEL Servant 

High SES 0.327*** 0.407*** 0.300*** 0.368*** 0.425*** 0.564*** 

 (0.095) (0.095) (0.096) (0.095) (0.095) (0.146) 

Age  0.044*** 0.044*** 0.043*** 0.045*** 0.043*** 0.072*** 

 (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) 

Constant -4.223*** -4.269*** -4.173*** -4.290*** -4.238*** -5.555*** 

 (0.490) (0.490) (0.490) (0.490) (0.490) (0.517) 

% D  in odds 38.66% 50.28% 35.04% 44.43% 52.98% 75.71% 

% D  in probabilities 33.46% 43.37% 30.41% 38.41% 45.59% 63.90% 

Discipline and census FE Y Y Y Y Y Y 

N 4,067 4,067 4,067 4,067 4,067 4,067 

Notes: Logit estimates of	"($%&') = *1 + -!(#$%&'&!"#!	%&%$('$(($)*+,).!.where	/0//0+/	&'&  indicates scientists whose father had an 
occupation in the top half of SES when the scientist was between 0 and 18 years old. OCCSCORE and ERSCORE measures the 
occupational income rank of the father’s occupation. EDSCORE measures the share of people in that occupation who have attended 
college. Duncan and Siegel capture the prestige of the father’s occupation. Servant indicates scientists who grew up in families with at 
least one live-in servant. We calculate % D in odds of being star as -%2 − 1	 and  % D in probability of being star as 
3(45*6|&'&!"#!	%&%8.)
3(45*6|&'&!"#!	%&%89)

− 1. For more details on these calculations see Appendix D.	
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TABLE 4 –LOGIT ESTIMATES OF THE ODDS OF BEING A STAR CONTROLLING FOR PUBLICATIONS AND CITATIONS 

Panel A: High SES is high OCCSCORE 

 
No controls 

for pubs. 
asinh Top 1% Top 5% Top 10% ln(+0.01) 

Pub in 
Science 

High SES 0.327*** 0.324*** 0.320*** 0.335*** 0.341*** 0.309*** 0.303*** 

 -0.095 -0.102 -0.096 -0.099 -0.1 -0.1 -0.1 
Publications  0.079 1.188*** 1.163*** 0.938*** -0.054 0.381*** 

 
 -0.056 -0.332 -0.174 -0.135 -0.044 -0.056 

Citations  0.440*** 2.286*** 1.809*** 1.540*** 0.305*** 0.003 

  -0.043 -0.381 -0.186 -0.146 -0.036 -0.009 
% D in odds 38.66% 38.26% 37.71% 39.79% 40.64% 36.21% 35.39% 

Panel B: Scientists from households with servants 

 
No controls 

for pubs. 
asinh Top 1% Top 5% Top 10% ln(+0.01) 

Pub in 
Science 

Servants 0.564*** 0.443*** 0.528*** 0.572*** 0.504*** 0.437*** 0.549*** 

 (0.146) (0.155) (0.152) (0.154) (0.157) (0.153) (0.157) 
Publications  0.088 1.239*** 1.115*** 0.836*** -0.075 1.019*** 

 
 (0.060) (0.384) (0.188) (0.147) (0.048) (0.156) 

Citations  0.088 1.239*** 1.115*** 0.836*** -0.075 1.019*** 

  (0.045) (0.403) (0.177) (0.147) (0.039) (0.121) 
% D in odds 75.70% 55.78% 69.56% 77.18% 65.61% 54.88% 73.13% 
Age, discipline, and census 
year FE Y Y Y Y Y Y Y 

Notes: To investigate whether scientists are stars because they publish more, we re-estimate the baseline (column 1) with 
controls for the quantity and quality of publications, in addition to age, discipline, and census year FE. Our preferred 
specification (in column 2) controls for the inverse hyperbolic sine of a scientists’ pre-1921 publications and citations to 
these publications. Alternative measures for quality include indicators for scientists in the top 1, 5, or 10% of 
publications and citations within their discipline as well as publications in Science. Panel A includes 4,067 scientists 
whose fathers’ occupation we can observe in the census of 1870, 1880, or 1900.  Panel B includes 4,132 scientists whom 
we observe in the census of 1880 and 1900, when census data includes information on servants. 
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TABLE 5 – LOGIT ESTIMATES – WITHIN DISCIPLINES - OF THE ODDS OF BEING A STAR  

 Chemistry (N = 864) Physics (N = 684) Botany (N = 538) Zoology (N = 403) 
High SES 0.214 0.321 -0.063 -0.044 0.640** 0.713** 0.346 0.185 

 (0.24) (0.254) (0.23) (0.239) (0.27) (0.318) (0.26) (0.290) 
Publications  0.177  -0.040  0.111  -0.260 

  (0.163)  (0.119)  (0.173)  (0.177) 
Citations  0.270**  0.422***  0.558***  0.631*** 

  (0.123)  (0.095)  (0.123)  (0.135) 
%  D  in odds 23.89% 37.90% -6.12% -4.34% 89.65% 104.01% 41.31% 20.36% 

 Pathology (N = 352) Geology (N = 332) Mathematics (N = 260) Psychology (N = 223) 
High SES 0.711* 1.379*** 0.775** 1.124*** 0.551* 0.316 0.737* 0.856* 

 (0.39) (0.518) (0.32) (0.347) (0.33) (0.397) -0.399 (0.449) 
Publications  -0.008  0.408  0.326  0.637** 

  (0.286)  (0.250)  (0.205)  (0.285) 
Citations  0.619***  0.278*  0.508***  0.426** 

  (0.178)  (0.166)  (0.134)  (0.172) 
%  D  in odds 103.60% 297.09% 117.06% 207.71% 73.50% 37.10% 108.97% 135.37% 
Age FE and census FE Y Y Y Y Y Y Y Y 
Notes: To investigate whether the link between childhood SES and stardom varies across disciplines, we estimate equation (1) 
separately within each of the 12 disciplines, using father’s OCCSCORE as a measure of SES. Disciplines are important because 
they serve as the comparison group within which scientists rank each other. They are, however, only observable for stars and not for 
other scientists. To address this issue, we use the text that describes the research of stars to train a nearest-neighbor matching 
algorithm and use this algorithm to assign all scientists uniquely to one of the disciplines. Publications and citations are transformed 
using the inverse hyperbolic sine. All estimates include age and census year FE. Robust standard errors in parentheses. 
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TABLE 6 –LOGIT OF THE ODDS OF STARDOM AS A FUNCTION OF CHILDHOOD SES (OCCSCORE), PUBLICATIONS, AND OTHER TRAITS 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) 
High SES 0.327*** 0.394*** 0.385*** 0.360*** 0.371*** 0.382*** 0.384*** 0.375*** 0.390*** 

 (0.095) (0.096) (0.103) (0.103) (0.103) (0.103) (0.103) (0.103) (0.097) 
Industry jobs  -1.096*** -1.164*** -1.137*** -1.072*** -1.166*** -1.164*** -1.174*** -1.119*** 

  (0.155) (0.178) (0.177) (0.179) (0.177) (0.178) (0.178) (0.158) 
Publications   0.113** 0.116** 0.119** 0.113** 0.113** 0.113**  

   (0.057) (0.058) (0.058) (0.058) (0.057) (0.058)  

Citations   0.423*** 0.417*** 0.413*** 0.423*** 0.423*** 0.426***  
   (0.042) (0.043) (0.043) (0.042) (0.042) (0.043)  

Elite undergrad   
 0.347***      

 
   (0.110)      

Elite grad     0.398***     
 

    (0.105)     

N siblings      -0.038    
      (0.033)    

First-born      -0.085    
      (0.119)    

Foreign-born parents       0.026   
       (0.177)   

Illiterate mother        -1.123*  
        (0.575)  

Patent         -0.029 
         (0.115) 

Connect         1.125*** 
         (0.403) 
%  D  in odds 38.66% 48.26% 46.94% 43.32% 44.86% 46.49% 46.88% 45.46% 47.69% 
Notes: Industry job indicates scientists who work in industry, rather than academia before 1921. Patent is an indicator for scientists who 
patented at least 1 invention by 1921. Connect indicates scientists who have patented with at least one star before 1921. Elite undergrad and 
elite grad indicate scientists who have completed a degree at an Ivy Plus university (as in Chetty et al. 2019). First-born scientists indicates 
scientists who are the oldest child in their household. Foreign-born parents indicates scientists with at least one foreign-born parent. An 
illiterate mother can neither read nor write. All estimates include age, discipline, and census year FE; robust standard errors in parentheses. 


