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calibrated model implies that almost 20 percent of the variance in lifetime earnings is accounted for 
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preferences. Higher lifetime hours contribute to lifetime earnings via two channels: a direct channel 
(more hours spent in production at given productivity) and a human capital channel (more hours 
spent investing in human capital, which increases future productivity). Roughly one-half of the 
effect of lifetime hours on lifetime earnings is due to the human capital channel. Higher lifetime 
hours are also an important source of upward earnings mobility over the life-cycle for many 
workers.
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1 Introduction

What are the quantitatively important forces that shape earnings inequality? One basic determi-
nant of an individual’s earnings is the time they spend working, and it is well documented that
cross-sectional variation in hours worked is an important contributor to cross-sectional earnings
inequality.1 But economists have long recognized that, for many questions, inequality in lifetime
earnings is more relevant than inequality at a given point in time; see, e.g., Farr (1853). While re-
cent empirical work has leveraged administrative data to document inequality in lifetime earnings
(e.g., Guvenen, Kaplan, Song, and Weidner (2022)), little is known about the extent of differences
in lifetime hours of work. The goal of this paper is to document inequality in lifetime hours of
work and assess its contribution to lifetime earnings inequality.

We study lifetime earnings from the perspective of human capital theory. Textbook human
capital models robustly predict that current hours affect future wages. Assessing the impact of
lifetime hours on lifetime earnings therefore requires not only data on lifetime hours, but also a
model that accounts for the effect of life-cycle hours on life-cycle wages. Our analysis extends
previous life-cycle human capital models to capture differences in lifetime hours.

Our empirical analysis uses the National Longitudinal Study of Youth 1979 (hereafter, NLSY79)
to build a balanced panel of individuals from ages 25 to 55 with annual data on earnings and hours
worked. We document four key properties. First, dispersion in lifetime hours is large: the in-
terquartile range for lifetime hours is about 25 percent of median lifetime hours for men and 50
percent for women. Second, annual hours worked at the individual level are persistent, even at very
long horizons, and are not well-approximated by an AR(1) process. Third, the relative importance
of years worked, weeks worked per year, and hours worked per week varies systematically across
the lifetime hours distribution: in the lower part of the lifetime hours distribution, the dominant
margin is years worked, while in the upper part of the distribution the dominant margin is hours per
week. Fourth, there is a strong positive relationship between lifetime hours and life-cycle earnings
growth. These patterns are very similar for men and women, except that women’s hours have a
lower mean and greater variance.

We show analytically in a simplified Ben-Porath model that higher future hours of work in-
creases the incentive for human capital accumulation today.2 As a result, differences in expected
future hours lead to differences in human capital accumulation, which in turn generate additional
variation in lifetime earnings beyond the direct effect of (future) hours worked. We then embed

1For example, in the 2024 March CPS, 27.9 percent of the variance in log annual earnings for men aged 25–55
comes from the variance of log annual hours and 2.0 percent from the covariance between log annual hours and log
wages.

2A similar result is shown in Neal and Rosen (2000) and would also arise in a model where human capital ac-
cumulates through learning by doing. While our analysis could be conducted within such a framework, we adopt a
Ben-Porath specification to facilitate comparison with the existing literature.
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this mechanism into a rich heterogeneous agent life-cycle model. Like the existing literature, we
allow for heterogeneity in initial human capital and learning ability, as well as permanent shocks
to human capital. A key feature of our model is that we introduce heterogeneity in tastes for work
in order to replicate the salient facts about hours heterogeneity. These taste differences may cap-
ture a variety of factors, including differences in health, the value of leisure, the productivity of
non-market time, family demands on time, and social norms. We calibrate the parameters of this
model to match a large set of moments that characterize the distribution of earnings and hours over
the life-cycle for a sample of highly attached men that represents 80 percent of our overall male
sample. Importantly, we include both transitory and permanent differences in the taste for work to
capture both the transitory and permanent components of cross-sectional variation in hours.

We use the calibrated model to quantitatively assess the factors that generate inequality in life-
time earnings and hours. Five key results emerge. First, eliminating hours heterogeneity reduces
the variance of log lifetime earnings by nearly one-fifth (18.3 percent). Second, roughly one-half
of this effect is attributed to human capital accumulation. Third, preference heterogeneity accounts
for virtually all of the dispersion in lifetime hours. That is, heterogeneity in initial human capital,
learning ability, and idiosyncratic shocks to human capital effectively generate no dispersion in
lifetime hours. Fourth, the contribution of hours to lifetime earnings inequality operates largely
through the permanent component of preference heterogeneity. If we eliminate the permanent
component of preference heterogeneity, our model still generates dispersion in lifetime hours, but
this variation in lifetime hours contributes essentially nothing to the variation in lifetime earnings.
Fifth, working long hours is an important channel of upward earnings mobility over the life-cycle
for many workers with low initial human capital.

Our paper contributes to several related strands of literature. Our empirical work relates to Mor-
chio (2020) and Glover, Mustre-del Rı́o, and Pollard (2022). Morchio (2020) uses the NLSY79 to
study the distribution of lifetime unemployment for men and shows that a small share of individu-
als account for a large share of unemployment spells. Consistent with this, we find that variation
in years and weeks worked is an important source of variation in lifetime hours for a relatively
small part of the male population. Morchio (2020) does not study the contribution of lifetime un-
employment to lifetime earnings inequality and his model does not feature human capital. Glover
et al. (2022) document that differences in lifetime years of work between black and white men
are an important contributor to the lifetime earnings differences between those groups, even after
conditioning on differences in education.3

Our paper complements the analysis in Hosseini, Kopecky, and Zhao (2025). Like us, they
study how differences in lifetime labor supply contribute to inequality in lifetime earnings. While
they highlight the role of health shocks via their impact on participation rates of older individuals,
we highlight the role of permanent heterogeneity on labor supply along the intensive margin among

3Rauh and Valladares-Esteban (2023) emphasize the importance of differences in initial human capital and learning
ability to account for the black-white wage gap for men in a life-cycle model with learning by doing.
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highly attached males aged 25-55. Our analysis stresses the importance of endogenous human
capital accumulation, whereas they assume that human capital accumulation is exogenous.

Kaplan (2012) and Heathcote, Storesletten, and Violante (2014) study hours heterogeneity in
life-cycle models. Kaplan (2012) specifically focuses on the reduction in cross-sectional variance
of hours in the early part of the life-cycle, an issue that we do not explicitly address, as this is not
such a prominent feature in our sample of men with high labor market attachment. Heathcote et al.
(2014) study cross-sectional inequality in both wages and hours over the life-cycle. Both papers
focus on differences in hours in the cross-section and do not consider the distinction between
variation in hours at a point in time and variation in lifetime hours. Neither paper allows for
human capital accumulation, nor do they study inequality in lifetime earnings.

Several papers use Ben-Porath models to quantitatively study aspects of inequality in a life-
cycle setting. Among these, our quantitative analysis is most similar to Huggett, Ventura, and
Yaron (2006, 2011). Like us, they study lifetime income inequality through the lens of a heteroge-
neous agent life-cycle model that features a Ben-Porath human capital accumulation technology.
But they assume no variation in hours worked either across individuals or over time. Relative to
them, our key contribution is to assess the role of hours inequality for lifetime earnings inequality.

Our analysis is also similar to the contemporaneous and independent study by Fillmore and
Gallen (2023). They use the NLSY79 to document heterogeneity in mean total hours for men
between the ages 30 and 44 who work in at least 14 out of these 15 years. In contrast, our empirical
analysis covers a longer age span (25-55), considers both men and women, and excludes only
individuals who essentially never work during these 31 years. Their quantitative work also uses
a Ben-Porath model to understand how heterogeneity in hours affects heterogeneity in earnings
via its effect on human capital, but abstracts from shocks to both human capital and preferences.
This likely explains why they find a much stronger role for hours worked than we do. When
they eliminate preference heterogeneity, the variance of earnings inequality at age 44 drops by 75
percent, versus 19 percent in our model.

Guvenen, Kuruscu, and Ozkan (2014) and Erosa, Fuster, and Restuccia (2016) both use a Ben-
Porath model with endogenous labor supply to study aspects of cross-sectional wage inequality.4

Guvenen et al. (2014) use a heterogeneous agent model to study the effect of progressive taxation
on human capital investment and the evolution of cross-sectional wage inequality over the life-
cycle. Although they include an endogenous decision about hours of work, they do not include
any preference heterogeneity. We show that their model generates essentially none of the variation

4A large literature studies labor supply in models of human capital accumulation. While not unrelated to inequality,
many of these papers have focused on labor supply elasticities and the effects of policy. Heckman (1976a,b) and Shaw
(1989) are early contributions. Subsequent contributions of note include Keane and Wolpin (1997), Imai and Keane
(2004), Wallenius (2011, 2013), Keane and Wasi (2016), Blundell, Dias, Meghir, and Shaw (2016)), and Blundell,
Costa-Dias, Goll, and Meghir (2021). Stantcheva (2017) and Badel, Huggett, and Luo (2020) study optimal taxation
of labor income in models with human capital accumulation.
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in lifetime hours found in the data. Relative to them, our key contribution is to assess the role of
heterogeneity in lifetime hours on human capital accumulation. Relative to Erosa et al. (2016),
our quantitative analysis adds several important features: endogenous variation of hours on the
intensive margin, permanent and transitory preference heterogeneity, heterogeneity in learning
ability and initial human capital, and permanent shocks to human capital. Additionally, whereas
they focus on across-group differences (how gender gaps in hours lead to gender gaps in wages),
we focus on within-group differences for men. Importantly, our empirical work shows that the
interquartile range for lifetime hours among men is even larger than the gender gap in median
lifetime hours.

A key mechanism in our model is the effect of lifetime hours on human capital accumulation.
This mechanism is also central in Manuelli, Seshadri, and Shin (2012) and Fan, Seshadri, and Taber
(2024). These papers use Ben-Porath models to study how tax and transfer programs affect human
capital accumulation by changing retirement decisions. Whereas we abstract from endogenous
retirement decisions, these papers abstract from the intensive margin of labor supply.5 Neither of
these papers studies lifetime earnings inequality.

A distinct strand of literature studies lifetime earnings inequality in life-cycle models featuring
frictional labor market models with heterogeneous firms and workers. Examples include Bagger,
Fontaine, Postel-Vinay, and Robin (2014) and Ozkan, Song, and Karahan (2023).6 We view our
work as complementary to these papers. Whereas they abstract from heterogeneity in hours worked
and model human capital as an exogenous process in order to focus on the role of job ladder
dynamics in a frictional labor market, we capture job ladder dynamics as exogenous shocks to
human capital in order to focus on the role of endogenous choices of hours and investment in
human capital.

An outline of the paper follows. Section 2 describes how we use the NLSY79 to create a bal-
anced panel of observations on annual hours and annual earnings. Section 3 documents properties
of lifetime hours and earnings using the NLSY79. Section 4 establishes analytically that higher
future hours lead to higher human capital accumulation in a simple Ben-Porath model. Section 5
describes our quantitative model and Section 6 calibrates it. Section 7 presents our main results
about the role of lifetime hours for lifetime earnings inequality. Section 8 concludes.

5Fan et al. (2024) briefly consider an extension which distinguishes between part-time and full-time work. This
margin is not important for highly attached men, which is the focus of our quantitative analysis.

6Other recent examples of papers that use search models to study heterogeneous earnings profiles include Pa-
pageorgiou (2014); Lise and Postel-Vinay (2020); Jarosch, Oberfield, and Rossi-Hansberg (2021); Jarosch (2023);
Herkenhoff, Lise, Menzio, and Phillips (2024).
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2 Data

This section describes how we use the NLSY79 to create a balanced panel of individual observa-
tions on annual earnings and annual hours worked from age 25 to 55.

2.1 The NLSY79

The NLSY79 is a longitudinal study of 12,686 individuals born between 1957 and 1964.7 Re-
spondents were recruited and initially interviewed in 1979, when they were between 14 and 22
years old. Interviews were conducted annually through 1994, after which they were conducted
biennially, occurring in even-numbered years. We use data up to and including the 2020 interview
year. This interview provides earnings data for 2019, at which point the youngest individuals in
the sample are 55 and the oldest are 63. All statistics reported in the paper use the initial NLSY79
sample weights.

Each NLSY79 interview records the start and end dates of all jobs held since the individual’s
most recent interview, as well as the individual’s usual weekly hours worked at each job. Therefore,
even though interviews are biennial after 1994, we can construct a weekly history of employment
status and hours worked spanning 1978-2019. We aggregate this information to produce annual
measures of weeks worked, usual weekly hours, and total annual hours.

Respondents report annual earnings for the calendar year preceding the interview year. Thus,
whereas employment histories are collected for all years, earnings are not collected for even-
numbered years starting in 1994. Information is collected separately for two categories of earnings:
(i) income from wages, salary, commissions, or tips from all jobs before deductions for taxes or
anything else last year and (ii) income received from a farm/business owned last year. Our measure
of earnings is the sum of these two components. Following Guvenen et al. (2022) we deflate earn-
ings with the Personal Consumption Expenditures index normalized to one in 2013. We measure
hourly wages as annual earnings divided by annual hours.8

7In addition to this core sample there were two supplemental samples (a military sample and an economically dis-
advantaged non-Black, non-Hispanic youth sample) that were subsequently discontinued. 201 respondents randomly
selected from the military sample remained in the survey. We keep these 201 individuals in our baseline sample but
do not use any other respondents from the discontinued samples.

8Following the procedure in Bick, Blandin, and Rogerson (2025), we make two adjustments to control for hourly
wage outliers. First, wages below half of the Federal minimum wage are set equal to that value, with earnings adjusted
accordingly. Second, motivated by the evidence in Bick et al. (2025), we treat wage observations in the top 0.1 percent
of the wage distribution as due to misreported hours, and set weeks worked and weekly hours to missing for these
observations.
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2.2 Creating a Balanced Panel

We use this annual data at the individual level to create a balanced panel that covers individuals
from age 25 to 55. We stop at age 55 because that is the age of the youngest members of the
NLSY79 in 2019, and so dictates the longest balanced panel that we can create. We start at age
25 to focus on outcomes after formal education is complete for most individuals. Guvenen et al.
(2022) and Ozkan et al. (2023) also focused on the age range of 25 to 55 in their analysis of lifetime
earnings.

To create this balanced panel we need to address the issue of missing values. In addition
to the years in which earnings data are not collected, there is also missing data for individual
responses to hours and/or earnings questions in some interviews. We impute missing values using
the interpolation procedure described in Bick et al. (2025). Given that we rely on interpolation to
fill in missing values and our goal is to have a balanced panel through age 55, we remove from our
sample any individuals who do not have a complete interview at age 55 or older. In particular, this
will remove all individuals who leave the sample prior to age 55. We also exclude individuals who
lack sufficiently nearby observations for use in the imputation procedure. Specifically, we impose
for any year in which employment status, hours worked, or earnings are missing for the entire year,
there must be at least one observation within the previous or next five years.9

Implementing our procedure produces a balanced panel data set with annual data on weeks
worked, usual weekly hours, total hours, earnings, and average hourly wages for individuals be-
tween ages 25 and 55. We drop 74 individuals from our sample that work less than one hour per
year on average. This leaves us with a sample of 6261 individuals.

For ease of interpretation, in what follows we will report all lifetime measures as annualized
values. That is, we measure lifetime hours and lifetime earnings by summing values over the 31
years of our panel and dividing by 31. This is the same measure of lifetime earnings that has been
used by Guvenen et al. (2022) and Ozkan et al. (2023).10

2.3 Validating the Balanced Panel

One potential concern with the balanced panel we create is that the effects of attrition and our
selection criterion based on missing values may not be random. In Bick et al. (2025), we argue
that selection effects are not significant and that our imputation method works well. In particular,

9In Bick et al. (2025), we document the effects of varying this threshold and conclude that five years strikes a
reasonable balance between maximizing sample size and minimizing measurement error in our imputation procedure.

10This method implicitly assumes a zero interest rate when computing lifetime earnings. We have also computed
lifetime earnings using an interest rate of four percent. This had essentially no impact on any of our results.
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Figure 1: Comparison of the NLSY79 and SSA Data by Ozkan et al. (2023)
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Notes: SSA data are from Figure 1 in Ozkan et al. (2023). In Figure 1a, we normalize average annualized lifetime
earnings in the SSA data so that median earnings match those of the NLSY79 sample. In Figure 1b, life-cycle earnings
growth is defined as the log difference between average earnings at age 55 and average earnings at ages 25, 30, and
35, respectively. For the NLSY79, we plot a centered moving average with two lags and leads of these growth rates
over the lifetime earnings quantile distribution.

we show that life-cycle profiles of employment, hours worked, and earnings (both means and
standard deviations, where applicable) in our balanced panel are comparable to those in the Current
Population Survey (CPS) for the same cohorts. We also show that the balanced panel closely aligns
with both men’s and women’s lifetime earnings distributions in Social Security Administration
(SSA) data, as documented by Guvenen et al. (2022). This is particularly reassuring given the
larger sample size and administrative nature of their data, which does not rely on self-reported
earnings.

Figure 1 provides an additional comparison between our sample and SSA data. Ozkan et al.
(2023) produce estimates for the distribution of lifetime earnings and life-cycle earnings growth for
US birth cohorts born between 1953-1960. We apply their sample selection criterion to our sample
of birth cohorts born from 1957-1964. This leaves us with 47.1 percent of the initial balanced
panel sample, very similar to the 45.5 percent reported by Ozkan et al. (2023) for the SSA data.

Figure 1a displays lifetime earnings distributions in each sample. Median lifetime earnings
in the SSA data are higher than in our sample (by 14 percent). To focus on earnings inequality,
the figure normalizes the SSA data so that median earnings match that of the NLSY sample. The
resulting distributions essentially lie on top of one another, with the exception of the top 2 percent
of earners, which are higher in the SSA data.

Figure 1b plots earnings growth from ages 25-55, 30-55, and 35-55 by lifetime earnings quan-
tiles. Given the smaller sample size of the NLSY79, we present results using a centered moving
average with two lags and leads over the lifetime earnings quantile distribution. With the excep-
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tion of somewhat higher growth rates for individuals with very low lifetime earnings and somewhat
lower growth rates for individuals with very high lifetime earnings, the patterns between the two
datasets align closely.

Taken together, the CPS comparisons of life-cycle profiles of employment, hours worked, and
earnings, along with SSA comparisons of lifetime earnings and earnings growth, suggest that our
NLSY79 balanced panel is nationally representative along the key dimensions of interest.

3 Facts About Lifetime Hours and Lifetime Earnings

In this subsection we document four key facts. First, dispersion in lifetime hours is large. Second,
hours at the individual level are persistent, even at long horizons, and are not well approximated
by an AR(1) process. Third, the importance of variation along three margins—years with positive
hours, weeks worked per year and hours worked per week worked—varies systematically along
the lifetime hours distribution. Fourth, there is a positive relationship between lifetime hours and
life-cycle earnings growth, and the reduced-form elasticity of lifetime earnings with respect to
lifetime hours is significantly greater than one. We document that these facts hold for both men
and women, with the main difference being that the distribution of lifetime hours for women has a
lower mean and higher variance.

3.1 Dispersion in Lifetime Hours

The left panel of Figure 2 displays the distribution of lifetime hours for both men and women when
we sort individuals into hours bins that are 250 hours wide. The right panel shows the cumulative
distribution function.

The distribution of lifetime hours for women is shifted to the left relative to men; median
lifetime hours for women (1761 hours per year) are 20 percent lower than median lifetime hours
for men (2189). The distribution of lifetime hours for women also displays more dispersion than
the distribution for men; the standard deviation of log lifetime hours is 0.39 for men and 0.55
for women. But importantly, the amount of dispersion is large for both men and women: the
interquartile ranges for men and women are 525 and 839, respectively. For men this value is
almost 25 percent of median hours, and for women it is nearly half of median hours.

We note that the dispersion in annual hours in the cross-section is even larger than the dispersion
in lifetime hours. To show this we compare dispersion in lifetime hours with dispersion in the
pooled sample of observations on annual hours from our balanced panel. (Appendix Figure B.1
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Figure 2: Lifetime Hours Worked Distribution

(a) PDF of Lifetime Hours
0

.0
5

.1
.1

5
.2

.2
5

.3
Fr

ac
tio

n

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500
Lifetime Hours Bin

 Men  Women

(b) CDF of Lifetime Hours

0
.2

.4
.6

.8
1

Fr
ac

tio
n

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500
Lifetime Hours

 Men  Women

Notes: In panel (a), each lifetime hours bin starts at the value displayed, e.g., the 250 hours bin includes anyone with
lifetime hours from 250 to 499. The 0 hours bin includes anyone with lifetime hours from 1 to 249 (as discussed
previously we drop anyone with lifetime hours below 1), and the 3500 hours bin anyone with lifetime hours of at least
3500.

compares the full distributions directly). Because the annual data include some zero values, we
compute the coefficient of variation for hours rather than the standard deviation of log hours. We
find that the coefficient of variation for pooled annual hours is more than 50 percent larger than the
coefficient of variation for lifetime hours for both men and women. A simple message is that the
magnitude of dispersion in annual hours is a poor proxy for the dispersion in lifetime hours.

3.2 Persistence of Hours Worked Over Time

The fact that lifetime hours are less dispersed than annual hours implies that some differences in
annual hours are transitory and tend to average out over time. To quantify this, we exploit the long
panel dimension of our sample to compute the autocorrelation of hours at lags ranging from one
to twenty years. To construct autocorrelations at lag length t > 0, we collect all length-t pairs of
hours {(hi,a,hi,a+t)}55−t

a=25 from our sample of individual hours profiles {hi,a}55
a=25 and compute the

pairwise correlation of this collection. Figure 3 plots the resulting correlation coefficients for lag
lengths t = 1, ...,20 for both men and women.11

Figure 3 shows that although there is some tendency for mean reversion, hours display consid-
erable persistence over long horizons. The one year autocorrelation of hours is 0.81 for men and
0.84 for women. These values fall by about 40 percent, to 0.50 and 0.52, when moving to a lag
length of five years, after which it continues to decrease, but at a slower rate. At twenty years, the

11One may worry that the survey design and our imputation procedure creates too much persistence in annual hours
worked. We address this concern in Appendix Figure B.2, which shows that the autocorrelation profile excluding
imputed values for annual hours is virtually identical to the profile shown in Figure 3.
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Figure 3: Autocorrelation of Annual Hours worked
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Notes: Person-year observations with zero hours are included.

autocorrelation is still substantially above zero, at 0.25 and 0.21, for men and women, respectively.
The autocorrelations at one- and twenty-year horizons are not consistent with a simple AR(1) pro-
cess. AR(1) processes with autocorrelations of 0.81 and 0.84 at a lag of one year would have an
autocorrelation of effectively zero at a twenty-year lag (to be precise, 0.01 and 0.03, respectively).
This observation will influence modeling choices later in the paper.

3.3 Components of Lifetime Hours: Years, Weeks per Year, and Hours per
Week

Differences in lifetime hours may arise because of differences along three distinct margins: years
of work (number of years with positive hours), average weeks worked in years with positive hours,
and average usual hours worked per week worked. Panels (a) and (b) of Figure 4 show how
the role of these three margins varies across the lifetime hours distribution for men and women,
respectively. In these figures each variable is normalized by its respective gender-specific value
in the 1750 lifetime hours bin (1750 lifetime hours corresponds to the 20th percentile of men’s
lifetime hours and the 54th percentile for women). Panel (c) reports this decomposition in levels
for three selected lifetime hours bins.

The figure exhibits very similar patterns for women and men. Below 1750 hours per year,
differences in lifetime hours are primarily due to differences in years worked. For example, men
in the 500 lifetime hours bin work 61 percent fewer years relative to men in the 1750 hour bin,
compared with 28 percent fewer weeks per year worked and 13 percent fewer hours per week
worked. By contrast, above 1750 hours per year, differences in lifetime hours are almost entirely
due to differences in hours per week worked. For example, men in the 3000 lifetime hour bin work
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Figure 4: The Distribution of Lifetime Hours and Its Components
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(c) Level Information for Selected Lifetime Hours Bins

Men Women
500 1750 3000 500 1750 3000

Annualized Lifetime Hours 432.1 1892.1 3310.9 436.9 1880.3 3184.8
Lifetime Years Worked 11.3 29.3 30.8 12.7 30.2 31.0
Weeks Worked per Year Worked 34.4 47.6 51.0 35.8 48.6 49.2
Hours Worked per Week Worked 36.6 42.2 65.2 30.9 39.7 64.2

Notes: Figure 4 displays each variable normalized by the respective gender-specific value in the 1750 hours bin. The
500 hours bin includes anyone with lifetime hours between 1 to 749 hours, and the 3000 hours bin includes anyone
with lifetime hours of at least 3000 hours. The table in panel (c) reports the corresponding information in levels for the
1750 hours bin and for reference also the respective values for the bins at each end of the lifetime hours distribution.

55 percent more hours per week worked relative to men in the 1750 hour bin, compared with 7
percent more weeks per year worked and 5 percent more years.

3.4 Lifetime Hours and Lifetime Earnings

A key objective of our analysis is to examine the role of dispersion in lifetime hours for life-
time earnings inequality and, in particular, the extent to which differences in lifetime hours affect
lifetime earnings via their effect on human capital accumulation. In this subsection we present
information on two moments that relate lifetime hours and earnings: the (reduced-form) elasticity
of lifetime earnings with respect to hours, and the (reduced-form) elasticity of earnings growth
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Figure 5: Lifetime Earnings and Lifetime Hours
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(b) Lifetime Earnings by Lifetime Hours Decile
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Notes: The 500 hours bin includes anyone with annualized lifetime hours below 750 and the 3000 hours includes
anyone with annualized lifetime hours of at least 3000.

over the life-cycle with respect to lifetime hours. Higher human capital accumulation would lead
one to expect both higher growth in earnings over the life-cycle and higher lifetime earnings. We
emphasize that these reduced-form moments on their own do not provide causal information about
the effect of lifetime hours on human capital accumulation. But it is intuitive that human capi-
tal responses would influence these moments and in our quantitative work we will compute these
moments in our model and the data.

Figure 5a shows the relationship between lifetime hours and lifetime earnings for men and
women. Lifetime earnings are strongly increasing in lifetime hours. For example, relative to men
in the 1750 lifetime hours bin, men in the 750 hours bin have lifetime earnings that are 108 log
points lower, and men in the 2750 hours bin have lifetime earnings that are 73 log points higher.
Using the 750 and 2750 hours bins, the implied elasticity of log lifetime earnings with respect to
log lifetime hours is 1.5. This elasticity is also above one across all adjacent lifetime hours bins
except at the very bottom and top of the hours distribution, where it is approximately one.

The curve for women tracks the curve for men relatively closely up to the 2250 hours bin, but
from 2500 hours onward, the curve for women becomes flat and the gap between men and women
grows substantially. While this divergence above 2500 hours is potentially interesting, we note that
only 4 percent of women lie in this region, compared with 22 percent of men (see Figure 2). As an
alternative representation of the data, the right panel of Figure 5 plots log lifetime earnings versus
gender-specific deciles of the lifetime hours distribution. This figure shows a roughly constant
slope for women beyond the second decile. In particular, the flat portion of the curve for women
in the left panel no longer appears.

Next, we examine the relationship between life-cycle earnings growth and lifetime hours. Fig-
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Figure 6: Earnings Early and Late in the Life-Cycle and Lifetime Hours Deciles

(a) Men
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(b) Women
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Notes: We average over the cross-sectional earnings between ages 25-29 and 51-55 for all person-year observations
with positive hours and then calculate the growth rate.

ure 6 studies how log earnings early in life (ages 25-29) and later in life (ages 51-55) vary with
lifetime hours. The gap between these two curves measures how the slope of the age-earnings pro-
file varies with lifetime hours. Two properties emerge. First, earnings at each age are increasing
in lifetime hours. In particular, individuals with high lifetime hours have higher average earnings
than individuals with low lifetime hours at all ages. Second, the gap between the two curves is also
increasing in lifetime hours. These properties hold for both men and women. The second property
in particular is consistent with higher lifetime hours being associated with greater human capital
accumulation.

The unconditional correlations presented in the previous two figures serve as suggestive evi-
dence for a link between lifetime hours and human capital accumulation. Consistent with much of
the literature on life-cycle earnings growth, the model that we develop later in this paper will allow
for heterogeneity in learning ability. It is of interest to know if the relationships between lifetime
hours and earnings are robust to controlling for learning ability.

To do this we leverage the fact that the NLSY contains information on AFQT scores, which
might plausibly be viewed as a proxy for learning ability. We supplement the bin scatter plots in
Figures 5 and 6 with individual level regression analyses in which we examine the effect of adding
AFQT scores as a control. Results are presented in Table 1.

Two main messages emerge. First, the regressions without AFQT scores confirm the same
relationships found in the bin scatter plots: log lifetime earnings and life-cycle earnings growth are
both increasing in lifetime hours. In particular, the elasticity of log lifetime earnings with respect to
log lifetime hours is greater than one for both men and women. Second, although AFQT scores are
statistically significant in three of the four cases, the effects of lifetime hours remain statistically
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Table 1: Lifetime Hours and Earnings Regressions

Men
(a) log of Lifetime Earnings

(1) (2)

log Lifetime Hours 1.44∗∗∗ 1.30∗∗∗

(0.02) (0.02)
AFQT Percentile 0.01∗∗∗

(0.00)
Constant 10.74∗∗∗ 10.74∗∗∗

(0.01) (0.01)

N 3008 2881
R2 0.59 0.68

(b) Life-Cycle Earnings Growth

(1) (2)

log Lifetime Hours 1.44∗∗∗ 1.20∗∗∗

(0.20) (0.20)
AFQT Percentile 0.02∗∗∗

(0.00)
Constant 1.17∗∗∗ 1.20∗∗∗

(0.05) (0.05)

N 2291 2200
R2 0.02 0.08

Women
(c) log of Lifetime Earnings

(1) (2)

log Lifetime Hours 1.30∗∗∗ 1.28∗∗∗

(0.01) (0.01)
AFQT Percentile 0.01∗∗∗

(0.00)
Constant 10.01∗∗∗ 10.02∗∗∗

(0.01) (0.01)

N 3253 3163
R2 0.75 0.81

(d) Life-Cycle Earnings Growth

(1) (2)

log Lifetime Hours 0.94∗∗∗ 0.96∗∗∗

(0.16) (0.16)
AFQT Percentile -0.00

(0.00)
Constant 1.35∗∗∗ 1.35∗∗∗

(0.05) (0.05)

N 1999 1956
R2 0.02 0.02

Notes: In all regressions, log annualized lifetime hours and AFQT percentiles are demeaned such that the constants are
comparable across specifications (1) and (2). Standard errors are in parentheses. ∗,∗∗ , and ∗∗∗ indicate significance at
the 10 percent, 5 percent, and 1 percent levels, respectively. In panels (b) and (d), we first compute, for each individual,
average earnings at ages 25–29 and 51–55, considering only years with at least 520 hours worked. We then construct
the growth rate between these two averages. The sample is restricted to individuals with at least three years of at least
520 hours worked in both the 25–29 and 51–55 age ranges.
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and economically significant, with the elasticity of lifetime earnings with respect to lifetime hours
still larger than one.

4 Lifetime Hours and Human Capital Accumulation: A First
Look

It is well known in the inequality literature that the cross-sectional dispersion of log earnings (and
wages) increases substantially over the life-cycle (Deaton and Paxson, 1994; Storesletten, Telmer,
and Yaron, 2004; Huggett et al., 2006). The literature has focused on two proximate causes: the
accumulation of persistent shocks and heterogeneity in learning ability. In this section we argue
that heterogeneity in hours worked, which the literature has largely neglected, constitutes a third
relevant factor. We make this argument in the context of a standard Ben-Porath model. The key
economic channel captured by this model is that individuals who expect to work longer hours
throughout their lifetime have greater incentives to invest in human capital. This will in turn have
effects on both lifetime earnings and life-cycle earnings growth.

In the first subsection we lay out the simple benchmark Ben-Porath model that is at the heart
of much recent work on life-cycle models of inequality. In the second subsection we highlight the
mechanism linking permanent differences in hours of work and incentives to accumulate human
capital. A similar result appears in Neal and Rosen (2000). To facilitate transparency, here we
assume that total hours in each period of working life are exogenously fixed at some level and ask
how changes in this level affect incentives to invest in human capital. Our quantitative model in
Section 5 will endogenize total hours.

4.1 A Simple Ben-Porath Model

We consider an individual who is born in period 1, works until period TR, and dies at the end of
period T . They have h units of time each period prior to retirement and preferences over streams
of consumption (ct) given by:

T

∑
t=1

β
tu(ct)

where 0 < β < 1 is a discount rate and u(ct) is strictly increasing, strictly concave, and twice
continuously differentiable.

The individual is endowed with initial human capital x1. At each age t prior to retirement the
individual chooses to divide their h units of time between production (nt) and investing in human
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capital (st). Because the individual does not value leisure, it follows that nt + st = h during this
period of the life-cycle.

Time devoted to human capital investment at age t produces new human capital in the amount
of α · (xtst)

φ , where α > 0 reflects productivity of the human capital production function, xtst

reflects efficiency units of time devoted to human capital investment, and 0 < φ < 1 governs the
extent of diminishing returns in the human capital production function. In what follows we will
refer to α as learning ability. The law of motion for an individual’s human capital follows:

xt+1 = (1−δ )xt +α(xtst)
φ ,

where 0 < δ < 1 reflects depreciation of human capital.

A competitive labor market offers a time-invariant wage rate of w per efficiency unit of pro-
duction labor services, so the individual receives labor earnings equal to ntxtw at age t. While the
individual faces the same wage per efficiency unit of production labor services at all ages, the pay-
ment per unit of time spent working is influenced by both the individual’s level of human capital
and how they divide their time between producing and investing. The individual can borrow and
lend at the time-invariant interest rate r. The only constraint on borrowing is that the individual
cannot die with negative assets.

4.2 The Mechanics of Human Capital Investment

Heterogeneity in human capital accumulation is a potential source of heterogeneity in earnings
growth. Because time devoted to investment directly affects accumulation of human capital, it is
of interest to examine the forces that shape time devoted to human capital investment.

In Appendix A we show that the optimal allocation of time between producing and investing
at each age t, assuming an interior solution, satisfies the following equation:

wxt = αφxφ

t sφ−1
t

TR−1

∑
t ′=t+1

[
1

1+ r

]t ′−t

wh(1−δ )t ′−(t+1) (1)

This condition can be interpreted as requiring that the marginal value of time allocated to
production should equal the marginal value of time allocated to investment. The left-hand side is
the effective wage for an individual at age t and thus reflects the value of a marginal increase in
production time at age t, holding all else constant. Turning to the right-hand side, higher investment
today produces a stream of benefits in all future periods until retirement, and the overall benefit is
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the present value of this stream. To understand the terms in this sum, note that the term αφxφ

t sφ−1
t

reflects the marginal increase in human capital at age t + 1 as a result of a marginal increase in
time devoted to investment. This investment will also increase human capital in period t ′ > t + 1
by the amount αφxφ

t sφ−1
t (1− δ )t ′−(t+1). The value of this additional human capital at age t ′ is

the product of the total number of hours worked at age t ′ and the wage per efficiency unit of labor
services.12 An important point is that higher (future) hours worked increase the marginal benefit
of additional investment today.

We use this equation to highlight two forces that shape time devoted to investment. The first
highlights the key mechanism in the analysis of Huggett et al. (2006). In their framework, hetero-
geneity in learning ability α across individuals leads to heterogeneity in the growth rate of earnings
and thus an increase in the cross-sectional distribution of earnings over the life-cycle. Heterogene-
ity in α will generate heterogeneity in human capital accumulation and earnings even if there is
no impact on time allocation. But importantly, equation (1) shows that an increase in α holding
xt constant raises the right-hand side, thereby requiring an increase in st . The effect is intuitive:
A higher value of α increases the return to time spent investing in human capital relative to time
spent producing output. This reinforces the direct effect of heterogeneity in α .

Next we use Equation (1) to show that higher total hours also creates an incentive to devote
additional time to investment in human capital. In particular, consider two individuals with the
same human capital xt and the same learning ability, but assume that future total hours of work
h are exogenously higher for one individual. The individual with higher future hours will have a
higher value of the right-hand side of Equation (1) and thus will require a higher value of st in order
to maintain equality of the left- and right-hand sides. This result is also intuitive: Higher future
hours increase the marginal value of additional investment today. Differences in human capital
investment will lead to differences in human capital stocks at older ages and are thus a source of
inequality in life-cycle earnings growth.

5 A Structural Model of Lifetime Hours and Earnings

In this section we develop a generalization of the heterogeneous agent Ben-Porath models in
Huggett et al. (2011) and Guvenen et al. (2014) in order to assess the extent to which variation
in lifetime hours of work across individuals affects inequality in lifetime earnings. Our model
features the three sources of heterogeneity in these papers: heterogeneity in initial human capital
endowments, heterogeneity in learning ability, and idiosyncratic shocks to income. Differently
from both of these papers, our model also allows for preference heterogeneity in order to account

12Note that it is total future hours that enter on the right-hand side, and not future production hours. This is because
higher human capital increases productivity for both activities and the marginal value of time is equated across the two
activities.
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for the salient features of heterogeneity in hours of work.

Our framework shares two features with the frameworks in Huggett et al. (2011) and Guvenen
et al. (2014). First, we abstract from fertility. For this reason our model is not well suited to
analyzing life-cycle labor supply decisions of women; and therefore, like Huggett et al. (2011) and
Guvenen et al. (2014), we will connect our model to data on men. Second, individuals in our model
will have positive hours in all time periods. For this reason, we will further restrict our sample to
men for whom the years worked margin is not an important margin. In the conclusion, we discuss
extending our analysis to a larger sample.

5.1 Households

We study the choices of a single cohort of individuals in partial equilibrium. Each individual i in
the cohort lives from age t = 1 to t = T , retires exogenously at age t = TR, and has h̄ units of time
each period.

A key element of our analysis is to extend the basic Ben-Porath model from the previous sec-
tion to account for the differences in lifetime hours across individuals. As documented in Bick,
Blandin, and Rogerson (2022), observables explain very little of the variation in hours worked
across individuals. Like them, we introduce preference heterogeneity as a parsimonious way to
generate the magnitude and nature of hours variation found in the data. As noted in the introduc-
tion, we use preference heterogeneity to capture a variety of factors that influence desired labor
supply holding wages and non-labor income constant, including such things as the productivity of
non-market time, family demands on time, health, and social norms in addition to true differences
in preferences. Our specification of preference heterogeneity is in turn motivated by the properties
of the autocorrelation of hours documented in Figure 3. The fact that the autocorrelation declines
over time suggests a transitory mean reverting component to preference heterogeneity, while the
fact that the autocorrelation plateaus above zero at longer lags suggests a permanent component.
Previous research has allowed for either permanent preference heterogeneity (e.g., Kaplan (2012),
Heathcote et al. (2014), Keane and Wasi (2016) and Bick et al. (2022)) or transitory preference
heterogeneity (e.g., Imai and Keane (2004) and Chang, Kim, Kwon, and Rogerson (2020)), but not
both. We show below that allowing for both is quantitatively important.

We thus assume that individual i has preferences of the form:

T

∑
t=1

β
t−1

 c1−1/σ

i,t

1−1/σ
−ψiπi,t

h1+1/γ

i,t

1+1/γ
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where ci,t is consumption at age t and hi,t is total time devoted to work at age t. The parameters
β , σ , and γ are common to all individuals and satisfy 0 < β < 1, σ > 0, and γ > 0. The terms
ψi and πi,t are individual-specific preference shifters. ψi is time-invariant and assumed to be log-
normally distributed with mean µψ and standard deviation σψ . In contrast, πi,t is time-varying and
follows an AR(1) process:

logπi,t+1 = ρπ logπi,t +νi,t+1 (2)

νi,t+1 ∼ N(0,σπ) (3)

where the innovations νi,t+1 are assumed to be iid over time and across individuals.13

As in Section 4, total hours of work at age t for individual i, hi,t , are allocated between produc-
ing (ni,t) and investing in human capital (si,t). Following Huggett et al. (2011), the human capital
accumulation process is now specified as:

xi,t+1 = zi,t+1

[
(1−δ )xi,t +αi(si,txi,t)

φ

]
where αi is an individual specific learning ability and zi,t+1 is a log-normally distributed shock to
human capital:

logzi,t+1 ∼ N(0,σz)

This shock is iid over time and across individuals. Note that while the shock zi,t+1 is purely
transitory, its effect is persistent because it affects the individual’s stock of human capital. That is,
these shocks will accumulate over the life-cycle and cause human capital levels to spread out. We
take a broad interpretation of these shocks and, in particular, view them as potentially capturing
some part of the stochastic movements up and down the job ladder that are explicitly modeled in
studies such as Bagger et al. (2014) and Ozkan et al. (2023), in addition to any shocks that affect
the value of an individual’s human capital.

Each individual is characterized by two fixed effects (ψi and αi) and two initial conditions (πi,1

and xi,1). In our quantitative analysis we assume that xi,1 and ψi are joint log-normally distributed:

log(xi,1,ψi)∼ N(µx,µψ ,σx,σψ ,ρx,ψ)

We assume that αi is log-normally distributed, and to economize on the size of our state space
we assume that xi,1 is perfectly correlated with αi.14 While our analysis does not explicitly model

13Some of the transitory movements in hours are accounted for by variation in weeks worked, which likely reflect
unemployment spells. Our specification implicitly uses preference shocks to account for these unemployment spells.
Alternatively, we could add explicit unemployment shocks as an additional source of transitory hours variation. While
it is feasible to do this, we have opted not to. This is because transitory changes in hours turn out to not be quantitatively
important for lifetime earnings inequality in our sample, thereby reducing the payoff to exploring multiple distinct
shocks as sources of transitory fluctuations.

14Guvenen et al. (2014) also assumes that learning ability and initial human capital are perfectly correlated. Huggett
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occupations and the potential for human capital accumulation opportunities to vary across occu-
pations, we view the heterogeneity in learning ability αi as reflecting both the innate ability of an
individual to learn as well as the learning abilities inherent in the occupational choice that best
suits the individual’s innate skills. We impose that the initial distribution for πi,1 is the ergodic
distribution for the πt process. Because the innovations for this process are uncorrelated with all
other variables, we assume that πi,1 is uncorrelated with all other variables.

5.2 Government

The government levies a proportional tax τc on consumption and a progressive tax on labor income.
Following Benabou (2002) and Heathcote et al. (2014) we assume an individual with pre-tax labor
income y receives post-tax labor income of

τ0y1−τ1

The parameter τ0 ∈ [0,1) determines the overall level of the income tax, while the parameter τ1 ∈
[0,1) determines the progressivity of the tax. To minimize the state space, we model a simplified
Social Security system. In particular, we assume that all individuals in our model receive a transfer
from the government equal to Iss in each period beginning in period TR. Because our quantitative
analysis will focus on the highly attached sample of men described in Section 6.1 that is eligible
for very few transfers, we abstract from all transfers other than Social Security. Because our model
is partial equilibrium and our quantitative analysis will focus on a subset of the overall population,
we do not require that the government budget balances.

5.3 Markets and Prices

As noted earlier, we study the choices of our cohort in partial equilibrium. We assume a stationary
economic environment in which the interest rate r is constant and the wage per efficiency unit of
labor grows exogenously at constant rate gw. These properties of prices are consistent with a bal-
anced growth path equilibrium in economies with constant-returns-to-scale production functions
and constant productivity growth that is labor augmenting.

We let wt denote the wage per efficiency unit that the cohort faces at age t. An individual of
age t with human capital x that supplies n units of time to production earns pre-tax labor income
nxwt . There are no state contingent securities, but individuals are able to borrow and save at the

et al. (2006) argue that a very high correlation between human capital and learning ability at our starting age of 25 is
consistent with a much lower correlation between these two values at an earlier age. They use a value of 0.746 for the
correlation between initial human capital and learning ability at age 23.
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interest rate r subject to the natural borrowing constraint. An age t individual with human capital
xt and assets kt who is not retired has the following period budget equation:

(1+ τc)ct + kt+1 = τ0 · (wtxtnt)
1−τ1 +(1+ r)kt

A retired individual with assets kt faces a period budget equation:

(1+ τc)ct + kt+1 = Iss +(1+ r)kt

5.4 The Individual’s Problem

At the start of a period, an individual has a six-dimensional state (t,k,x,α,ψ,π) consisting of age
(t), assets (k), human capital (x), learning ability (α), permanent work disutility (ψ), and transitory
work disutility (π). Taking as given the individual state, the wage rate wt , the interest rate r, and
government policies, a working age individual, t < TR, solves the following recursive problem:

V (t,k,x,α,ψ,π) = max
c,k′,s,n

c1−1/σ

1−1/σ
−ψπ

(n+ s)1+1/γ

1+1/γ
+βEz′,π ′V (t +1,k′,z′x̂,a,ψ,π ′) (4)

s.t. (1+ τc)c+ k′ = (1+ r)k+ τ0 · (nxwt)
1−τ1 (5)

x̂ = [(1−δ )x+α(sx)φ ] (6)

c,s,n ≥ 0 and n+ s ≤ h̄ (7)

A retired individual, t ≥ TR, solves an identical problem, except that they receive a Social Security
transfer of Iss and face the added constraint that n = s = 0. An individual in their last period of life,
t = T , faces an additional nonnegative savings constraint: k′ ≥ 0.

6 Calibration

This section describes our model calibration in three steps. First, we describe the sample we use
to connect our model with the data. Second, we describe our procedure for choosing parameters to
match salient features of earnings and hours over the life-cycle. Third, we report on the ability of
the calibrated model to match both targeted and untargeted moments.
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6.1 Sample Selection

The balanced panel that we created in Section 2 included men and women and did not impose
any explicit criterion regarding labor force attachment beyond excluding the very few individuals
with annualized lifetime hours less than one. As noted in the previous section, our model does
not include fertility or adjustment along the years worked margin. This motivates us to focus on a
sample of highly attached men for whom the margin of years worked does not play an important
role.

To create our baseline sample of highly attached men we restrict attention to men who have
(annualized) lifetime hours of at least 1750. Referring back to panel (b) of Figure 4, this thresh-
old serves to eliminate those individuals for whom differences in years worked are an important
contributor to variation in lifetime hours. The sample of men with lifetime hours of at least 1750
includes 80 percent of the men in our balanced panel. While the high attachment sample dis-
plays less dispersion in lifetime hours than the overall sample, dispersion in lifetime hours remains
large. For example, the interquartile range remains large, falling from 525 to 442, and still rep-
resents more than 20 percent of median lifetime hours. A key message is that there is substantial
variation in lifetime hours even after removing individuals with low attachment.

We have also carried out our analysis using a different sample selection criterion and found very
similar results. Rather than applying a threshold based on lifetime hours, this alternative criterion
measured attachment as the number of years in which an individual worked at least 520 hours.
The value of 520 was chosen because it was used by both Huggett et al. (2011) and Guvenen et al.
(2014) to restrict their samples and also appears in the criterion used by Guvenen et al. (2022).

We explored two different thresholds: (i) at least 520 hours in all 31 years and (ii) at least
520 hours in at least 20 of the 31 years. Among all men in our balanced panel, 47 percent meet
threshold (i) and 87 percent meet threshold (ii), compared with 80 percent who work at least 1750
lifetime hours. There is substantial overlap among all three samples, and so it is not surprising that
we find similar results when applying the alternative sample selection criteria.15

6.2 Calibration Procedure

The model described in Section 5 features 22 parameters: three price parameters (r, w1, and gw),
three common preference parameters (β , σ , and γ), three technology parameters for the human
capital accumulation process (δ , φ , and σz), two parameters characterizing the distribution of

1599.1 percent of men who meet threshold (i) and 87.9 percent of men who meet threshold (ii) have lifetime hours
of at least 1750. Conversely, 68.5 percent of men who work at least 1750 lifetime hours meet threshold (i), and 99.9
percent of them meet threshold (ii).

22



Table 2: Externally Calibrated Parameter Values

Parameter Interpretation Value Source

β Patience 0.980 Huggett et al. (2011)
r Interest rate 0.020 1/β

σ CRRA 1.000 −
γ Frisch elasticity 0.300 −
δ Human capital depreciation 0.020 Huggett et al. (2011)
τ0 Tax Rate 0.810 Heathcote et al. (2014)
τ1 Tax Progressivity 0.181 Heathcote et al. (2014)
τc Consumption Tax 0.070 McDaniel (2007)
µx Mean of logx0 0.00 Normalization
gw Exogenous wage growth rate 0.005 CPS

learning ability (µα and σα ), two parameters characterizing transitory preference heterogeneity
(ρπ and σπ ), four parameters characterizing the tax and transfer system (τc, τ0, τ1, and Iss), and
five parameters characterizing the joint distribution of x0 and ψ (µx, µψ , σx, σψ , and ρx,ψ ). When
connecting our model with the data we will allow for classical measurement error in both log
hours and log wages, with standard deviations of σmh and σme, respectively. This increases the
total number of parameters to 24.

Ten parameters are set externally and summarized in Table 2. We normalize the parameter
µx = 0 since it is not identified separately from w1. Setting the period length equal to a year, we
set r = 0.02 and β = 1/(1+ r) = 0.9804. We adopt commonly used values for the two curvature
parameters σ and γ: σ = 1, and γ = 0.3. Tax function parameters are set according to the estimates
in Heathcote, Storesletten, and Violante (2017): τ0 = 0.81 and τ1 = 0.181, and the consumption
tax τc is set to 0.07. Following Huggett et al. (2011), we set δ = 0.02. We set gw = 0.005 by
comparing average real wages of men aged 25-29 in 1981 with average real wages of men aged
25-29 in 2018 using CPS data. Details of this calculation are provided in Appendix B.3.

For the remaining fourteen parameters, we use a simulated method of moments procedure,
selecting values so that the solved model matches fourteen target moments.16 We first list these
moments and then provide some intuition about how they relate to the model parameters.

Because the distributions of hours and earnings are the core outcomes of interest in our analysis,
thirteen of the targeted moments describe these distributions. Specifically, we target five moments
related to hours, six moments related to earnings, and two moments related to joint properties of
earnings and hours. The other targeted moment is the ratio of the Social Security transfer to mean

16When solving the model, we approximate distributions using gridpoints: 9 for ψi, 7 for αi, 21 for xi,0, and 5 each
for the shocks zi,t and πi,t .
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annual earnings.

The five hours moments that we target are the overall mean and standard deviation of log hours
for the pooled sample of all individuals between ages 25 and 55, and values for the autocorrelation
of individual hours at lags of 1, 10, and 20 years. The six earnings moments that we target are
mean log earnings at ages 30 and 50, the standard deviation of log earnings at 30 and 50, and
the autocorrelation of log earnings at lags of 1 and 20 years. The two joint hours and earnings
moments that we target are the correlation between hours and earnings at age 30, and the slope of
the relationship between lifetime hours and life-cycle earnings growth, as depicted in Figure 5a.

Because several of our moments involve taking the log of hours, we drop any annual observa-
tions with a zero value. With a relatively small sample size, standard deviations of logs are quite
sensitive to the presence of a few very low values. For this reason, we follow Huggett et al. (2011)
and Guvenen et al. (2014) and also exclude annual observations with hours less than 520 when
computing our empirical moments. We note that relatively few observations are dropped because
of these choices: 1.6 percent of the annual person-year observations in our sample of men with
lifetime hours of at least 1750 have zero annual hours, and 0.9 percent have positive annual hours
below the 520 hours threshold. We apply the same criterion when computing moments in the
model simulated data.

In what follows we provide some intuition about the connection between the targeted moments
and fourteen parameters that we calibrate. This discussion should be understood as purely heuristic
since all fourteen parameters influence all fourteen moments. Nonetheless, we think it provides
some useful insight into the mechanics of the calibration procedure.

Given values for all of the other parameters, the five moments of the hours distribution can be
used to pin down values for µψ , σψ , ρπ , σπ , and σmh. Intuitively, the value of µψ is tightly linked
to the cross-sectional mean of annual hours. Each of the other four parameters influences both the
variance of log annual hours as well as the shape of the hours autocorrelation profile, so matching
the variance of log annual hours and the value of the autocorrelation at three different lag lengths
will determine their values.

Holding other parameters fixed, w1, σx, µα , σα , σz and σme will impact properties of the
earnings distribution. The values of w1 and σx will impact the level and variance of earnings for
young workers, and µα will influence mean life-cycle earnings growth. The values of σα , σz, and
σme will influence the extent to which earnings become more dispersed with age as well as the
autocorrelation of earnings. Because initial human capital impacts earnings of young individuals
and the value of ψ impacts hours, the correlation parameter ρx,ψ will influence the correlation of
earnings and hours for young workers. We note that because learning ability and initial human
capital are perfectly correlated, the value of ρx,ψ also controls the correlation between learning
ability and tastes for work. The values σz and σme have different effects on the shape of the
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autocorrelation function for earnings, so targeting values of the autocorrelation function for log
earnings will help to determine the values of these parameters.

The final parameter is φ , which determines the elasticity of human capital with respect to
investment. All else equal, a higher value of φ will increase the slope of the relationship between
life-cycle earnings growth and lifetime hours worked. We emphasize that the targeted slope is
not an estimate of the causal effect of lifetime hours on life-cycle wage growth. In particular, if
learning ability varies across the lifetime hours distribution, then the observed relationship between
lifetime hours and life-cycle earnings growth will also include the effect of learning ability. We
also note that our procedure targets a low-frequency relationship to help pin down the value of
φ . Frictional models of wage setting such as Cahuc, Postel-Vinay, and Robin (2006) imply that
wages may respond to productivity with a lag, in which case focusing on short-term variation in
hours and wages may be misleading. Non-linearities in the hours-wage profile that workers face
may also create issues when using short-term variation in hours to estimate the effect of hours on
human capital accumulation, see, e.g., Bick et al. (2022).

Before presenting the calibrated parameter values, it is important to be explicit about how we
connect hours in the data with hours in the model. The potential issue is the extent to which re-
ported hours worked in the data include time devoted to investment in human capital. The standard
convention in the literature is to include time spent in investment as part of reported work hours
for employed individuals.17 We adopt this convention when connecting our model to the data. To
the extent that some of the time devoted to human capital investment is not included in reported
working hours in the data, total work hours are underestimated. We have experimented with other
specifications, allowing for some fraction of investment time to not be counted as reported work
hours in the data. Modest departures from our benchmark were found to have only minor effects
on our quantitative results both in this section and in later sections.

Table 3 displays the calibrated parameter values. We draw attention to four properties of these
values. First, although we use a novel moment to help identify the parameter φ , the calibrated
value of 0.6 is within the broad range of estimates found in the literature, though toward the lower
end.18 Second, despite using different information in our calibration than Huggett et al. (2011),
our procedure yields a very similar value for σz.

Third, we find a modest negative correlation between permanent tastes for work and initial
human capital, with ρx,ψ equal to −0.30. Because we impose that learning ability α and initial
human capital are perfectly correlated, our calibration thus also implies a negative correlation be-
tween permanent disutility for work and learning ability. We previously argued that high learning

17Guvenen et al. (2014) added a constraint that limited the amount of time that could be devoted to investment when
production time is positive.

18See, for example the handbook chapter by Browning, Hansen, and Heckman (1999) as well as the discussion in
Heckman, Lochner, and Taber (1998) and Huggett et al. (2006).

25



Table 3: Internally Calibrated Parameter Values

Parameter Interpretation Value Moment

w1 Wage in first period 24.00 Mean log earnings, age 30
σx SD of logx1 0.35 SD log earnings, age 30
µα Mean of logα -2.30 Mean log earnings, age 55
σα SD of logα 0.18 SD log earnings, age 55
µψ Mean of logψ 4.22 Mean log annual hours, age 25-55
σψ SD of logψ 0.60 SD log annual hours, age 25-55
ρx,ψ Corr. of (logx1, logψ) -0.30 Correlation of hours and earnings, age 30
σπ SD of logπ 0.49 Hours autocorrelation profile
ρπ Autocorrelation of logπ 0.87 Hours autocorrelation profile
σmh SD measurement error 0.10 Hours autocorrelation profile
σme SD measurement error 0.17 Earnings autocorrelation profile
σz SD human capital shock 0.11 Earnings autocorrelation profile
φ HC elasticity wrt investment 0.60 Lifetime hours, earnings growth
Iss Social Security benefit 0.19 0.4ē

ability and high hours are both sources of higher life-cycle earnings growth. Given that the cor-
relation between ψ and α is only −0.30, it follows that these two channels operate somewhat
independently of each other.

Fourth, the transitory component of preference heterogeneity is very persistent and contributes
substantially to the cross-sectional variation in tastes for work. Specifically, the variance of logπ in
the ergodic distribution of the transitory process is equal to 0.99, which is almost three times larger
than the variance in the log of the permanent component ψ , which is equal to 0.36. Our calibration
procedure also implies a substantial amount of measurement error in hours and earnings, with
σmh = 0.10 and σme = 0.17, respectively. These values imply that measurement error in hours and
earnings accounts for 13 and 5 percent of the cross-sectional variance in annual hours and annual
earnings, respectively.

6.3 Fit of the Calibrated Model

In this subsection we report on the ability of the model to match both targeted and untargeted mo-
ments. In what follows we will show several figures that report life-cycle profiles for outcomes
related to hours and earnings. In the literature it is standard to control for time or cohort effects
when documenting life-cycle profiles. Because our sample consists of individuals born in a rela-
tively narrow range of years, we view our sample as effectively representing a single cohort and so
do not control for cohort effects. Rather than extracting time effects from the data, we deal with
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Figure 7: Model Fit for Earnings
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(b) S.D. of Log Earnings
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(c) Persistence of Earnings

1 5 10 15 20
Lag in Years

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n 
of

 A
nn

ua
l E

ar
ni

ng
s Data

Model

time effects by introducing time-varying wages in the model (captured by gw).

We begin by examining the model’s ability to fit moments related to earnings. Results are
shown in the three panels of Figure 7. Overall, the model closely tracks the evolution of the mean
and standard deviation of log earnings over the life-cycle, as well as the persistence of earnings.19

As a reminder, for the mean and standard deviation, we targeted the moments at ages 30 and 50;
and for the autocorrelation, we targeted lags 1 and 20. One small discrepancy to note is that the
model implies a slightly concave profile for the standard deviation, whereas the profile in the data
is slightly convex. This same pattern is present in the calibrated model of Huggett et al. (2011);
see their Figure 2(b).20 We also note that the mean of log earnings in the model for ages 25-30 is
higher than in the data, which – as we will discuss momentarily – stems from a similar discrepancy
between hours in the model and the data.

Next we consider the moments for hours. Results are shown in the three panels of Figure 8.
Panel (a) shows the age profile for log mean hours, and Panel (b) shows the age profile for the
standard deviation of log hours. Recall that our calibration procedure targeted the overall cross-
sectional mean and variance of log hours, but not the values for any particular age. In both the
model and the data these profiles are relatively flat between the ages of 30 and 50, so matching the
overall sample value leads to a reasonable fit to the life-cycle profiles.

As was the case for earnings, we see some discrepancy for hours between the model and data
over the 25-30 age range. In particular, while both profiles are also relatively flat in the model over

19Appendix Figure B.3 shows that as for hours the autocorrelation profile of earnings excluding imputed values for
annual earnings is basically the same as the one shown in Figure 7c.

20In principle, a model like ours could generate a flat profile for the variance in earnings in the early part of the
life-cycle. This would happen if individuals with low initial human capital have high growth of human capital, or if
individuals with high initial human capital spend so much time investing that they have lower initial earnings. But as
the figure shows, these effects are not sufficiently powerful in our calibrated model.
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Figure 8: Model Fit for Hours

(a) Mean of log Hours
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(b) S.D. of log Hours
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(c) Persistence of Hours
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the 25-30 age range, mean log hours are increasing and the variance of log hours is decreasing in
the data over this age range. These two properties are intimately related: the increased prevalence
of individuals with relatively low annual hours of work in this age range tends to both decrease
the mean and increase the variance. We offer two potential rationalizations for this discrepancy.
The first is that individuals in this age range are more likely to have spells of unemployment as
they search for a good match, a feature that our model abstracts from. (See Kaplan (2012) for an
analysis incorporating this feature.) The second is our assumption that the data on hours reflect
both production and investment time. This age range is the period of highest investment in human
capital, so if some investment time is not included in reported work hours in the data, our model
would be expected to overestimate work hours at young ages.21

Panel (c) shows the autocorrelation function for hours. We targeted values at lags of one, ten,
and twenty, and Panel (c) shows that the model does a good job of capturing the entire profile,
though the model profile is somewhat less steep than the data at low values of the lag.

Next we consider the two moments that involve relationships between earnings and hours.
Figure 9a shows the age profile for the correlation between earnings and hours in the model and in
the data. The only targeted value was the correlation at age 30. Both in the data and in the model
the age profile for this correlation displays a very modest downward drift, though in the data there
is an additional dip between ages 35 and 45.

Figure 9b shows the relationship between lifetime hours and life-cycle earnings growth in the
model and in the data. The curve from our calibrated model tracks the curve from the data very
closely except for the 3000 hours bin. Whereas our model shows that the growth rate of earnings
continues to increase as we move from the 2750 hours bin to the 3000 hours bin, in the data this

21In fact, if we assume that a fixed fraction of time devoted to investment is not included in reported total work
hours then our model provides a better match to these patterns in the data.
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Figure 9: Model Fit for the Relationship between Earnings and Hours

(a) Correlation of
log Earnings-log Hours

25 30 35 40 45 50 55 60 65
Age

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Co

rre
la

tio
n:

 lo
g 

Ho
ur

s, 
lo

g 
Ea

rn
in

gs Data
Model

(b) Lifetime Hours
and Earnings Growth
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relationship is flat. One plausible rationale for this discrepancy is that in reality the returns to
investment in human capital may diminish at very long hours. The significance of this discrepancy
is somewhat limited, since both in the model and in the data there are very few individuals in the
3000 hours plus bin.

We now turn to moments that were not explicitly targeted by our calibration procedure. We
did not explicitly target any moments based on wages, but given that we capture the patterns for
earnings and hours individually and do a reasonable job of matching the profile for the correlation
between earnings and hours, it is not surprising that our model does a reasonable job of matching
the properties of wages. The three panels of Figure 10 display the results.

Panel (a) shows that the model closely tracks the evolution of mean log wages over the life-

Figure 10: Model Fit for Wages

(a) Mean of log Wages
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(b) S.D. of log Wages
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(c) Correlation of
log Earnings-log Hours
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cycle. Panel (b) shows the model slightly understates the standard deviation of wages between
ages 25 and 30 but fits the profile quite well between ages 30 and 55. The understatement of
the standard deviation at young ages results from the fact that the model understates the standard
deviation of hours over this age range. Panel (c) displays the correlation between hours and wages
over the life-cycle. Consistent with our results for earnings, the model captures the fact that this
correlation is near zero, but the model generates a slightly larger positive trend over the life-cycle
than is present in the data.

It is noteworthy that our model closely captures the properties of both earnings and wages, as
these measures are of independent interest. When studying consumption and wealth inequality,
inequality of earnings is of primary importance; but when assessing heterogeneity in opportunities
at a point in time, it is inequality in wage rates that is of particular interest. Notably, Huggett et al.
(2011) studied only properties of earnings, and Guvenen et al. (2014) studied only properties of
wages.

Figure 11 displays the distributions of annualized lifetime hours and annualized lifetime earn-
ings in both the model and the data. Neither of these lifetime distributions were explicitly targeted.
For earnings, we targeted the cross-sectional variance at ages 30 and 50 and two values of the
autocorrelation function. For hours, we targeted the mean and variance for log annual hours in the
overall cross-section and three values of the autocorrelation function.

Panel (a) shows that the distribution of lifetime hours in the model and data are broadly similar.
However, the model does not generate sufficient concentration in the 2000 lifetime hours bin.
This reflects the well-known issue that models with log-normally distributed heterogeneity cannot
generate the high concentration found in the distribution of annual hours worked. Simply put, the
large spike of individuals who report 2000 annual hours (40 hours a week for 50 weeks) cannot be
well approximated with a normal distribution. Although the concentration in annualized lifetime

Figure 11: Model Fit of Lifetime Earnings and Hours
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hours is less severe, the issue is still present. Consistent with this, the variance of log lifetime
hours in the data is 0.025, which is modestly larger than the 0.023 value in the data. Although we
could generate additional concentration in the hours distribution by introducing non-linearities into
the mapping from hours to earnings, as in Bick et al. (2022), we have opted not to do so in order
to better focus on the relationship between preference heterogeneity, lifetime hours and human
capital accumulation.

Turning to lifetime earnings in Panel (b), we highlight two discrepancies between the model
and the data. First, it is again true that the model does not generate the level of concentration
found in the data, though the extent of the discrepancy is more modest for earnings than for hours.
This is intuitive: Because there is substantial heterogeneity in wages for workers in the hours bin
containing 2000, the concentration in hours yields much less concentration in earnings. Second,
our model does not generate sufficient mass in the right tail of the distribution. This is a well-
known issue in the literature for models like ours with log-normal shocks. Panel (b) confirms that
we do not have sufficient mass in the final bin, which corresponds to individuals with annualized
lifetime earnings greater than $150,000. When comparing the variance of log lifetime earnings in
the model and the data these two effects partly offset each other, so that these variances are very
similar: 0.348 in the model versus 0.346 in the data.

Panel (c) of Figure 11 shows how average annualized lifetime earnings vary across bins of
the annualized lifetime hours distribution. Although not targeted, the model and data profiles track
each other very closely, except for the highest hours bin. The discrepancy arises because the model-
based relationship is fairly linear, whereas the relationship in the data is slightly concave. This
suggests that it might be reasonable to introduce some additional non-linearities to the investment
production function at both low and high hours.

Lastly, we examine whether the model generates a reasonable joint relationship between life-
time earnings, lifetime hours, and learning ability. In Section 3, we estimated regressions of log
lifetime earnings and life-cycle earnings growth on log lifetime hours and AFQT percentile, which
we considered a reasonable proxy for learning ability in our model. The results in Table 1 were for
our overall balanced panel. We now re-run these regressions in our baseline sample of highly at-
tached men and in our model-simulated data. Table 4 shows that in both regressions we get similar
coefficients on log lifetime hours and AFQT / ability as well as similar R-squareds. In particular,
the estimated lifetime hours coefficients in the model and data regressions are not significantly
different from one another at the 5% level.
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Table 4: Model Fit of Regression Analysis

(a) log of Lifetime Earnings

Data Model

log Lifetime Hours 1.43∗∗∗ 1.36
(0.07)

AFQT Percentile 0.01∗∗∗ 0.01
(0.00)

R2 0.36 0.47

(b) Life-Cycle Earnings Growth

Data Model

log Lifetime Hours 1.82∗∗∗ 2.34
(0.30)

AFQT Percentile 0.02∗∗∗ 0.01
(0.00)

R2 0.08 0.08

In all regressions, log annualized lifetime hours and AFQT percentiles are demeaned. Standard errors are in paren-
theses. ∗,∗∗ , and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively. The model based regressions
are based on a large sample so standard errors are effectively zero. In panel (b), we first compute, for each individual,
average earnings at ages 25–29 and 51–55, considering only years with at least 520 hours worked. We then construct
the growth rate between these two averages. The sample is restricted to individuals with at least three years of at least
520 hours worked in both the 25–29 and 51–55 age ranges. Appendix Table B.1 presents the full regression results for
the data and also includes the regressions for women for the 1750+ lifetime hours sample.

7 Sources of Lifetime Earnings Inequality

In this section we use our calibrated model to shed light on the sources of lifetime earnings in-
equality. We note that while our model generates hours and earnings profiles from age 25 to 65,
we compute all of our lifetime and annual measures in this section using only data from age 25
to 55 in order to be consistent with the age range covered in our empirical analysis. Including
outcomes for the final ten years (i.e., between 56 and 65) has little effect on our conclusions.

7.1 Heterogeneity in Hours of Work and Earnings Inequality

The novel feature of our analysis is its focus on matching the extent and nature of heterogeneity
in life-cycle hours profiles across individuals. In this subsection we highlight the contribution of
heterogeneity in life-cycle hours profiles to lifetime earnings inequality. To do this, we consider a
counterfactual in which individuals are not free to choose their total hours of work, n+ s. Instead,
we assume that all individuals must choose the same total hours of work in each period of their
working life; i.e., ni,t + si,t = ĥ for all i and t. This counterfactual corresponds to the specifica-
tion in Huggett et al. (2011), as they assumed total hours were constant over time and the same
for all individuals. We implement this by choosing ĥ equal to mean total hours for non-retired
individuals in our calibrated model. We re-solve the model with this additional constraint on total
working time, assuming that each individual faces the exact same human capital shocks and draws
of measurement error as in the original simulation.
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Table 5: The Role of Hours Heterogeneity

log Lifetime Earnings log Earnings at 55 & 35 log Earnings at 55
Variance % of BM ∆ Variance % of BM Variance % of BM

Benchmark (BM) 0.348 100% 0.234 100% 0.620 100%

Counterfactual: ni,t + si,t = ĥ 0.284 81.7% 0.138 59.2% 0.444 71.6%

Notes: The first two columns report the variance of log lifetime earnings. The middle two columns report the increase
in the variance of log earnings between ages 35 and 55. The last two columns report the variance of log earnings at
age 55. The first row reports statistics from our benchmark model over the age range 25-55. The second row reports
the same statistics for the counterfactual economy where total hours worked are restricted to be the same across all
individuals and ages. Columns labeled percent of BM report the percent of the benchmark values that remain in the
counterfactual.

Results for this counterfactual are reported in Table 5. The first row repeats statistics for our
benchmark model, and the results in the second row report results for the counterfactual in which
total hours are assumed to be constant over the life-cycle and across individuals.

Eliminating hours heterogeneity reduces the variance of log lifetime earnings by 18.3 percent,
or nearly one fifth.22 Notably, the drop in the variance of log lifetime earnings, 0.064, is much
larger than the drop in the variance of log lifetime hours, 0.025. In a static model in which wages
and hours are uncorrelated, reducing the variance of log hours will reduce the variance of log
earnings by the same amount. This calculation does not translate directly to our Ben-Porath model,
but it is suggestive that effects on human capital accumulation may be significant.

Two additional results in Table 5 also suggest an important role for human capital. Hetero-
geneity in human capital accumulation intuitively leads to heterogeneity in earnings growth and in
earnings at age 55. When we remove heterogeneity in total hours, the increase in the variance of
log earnings from age 30 to 55 falls from 0.234 to 0.138—a reduction of more than 40 percent.
The variance of log earnings at age 55 also drops significantly, from 0.620 to 0.444, a decrease of
nearly 30 percent.

To provide a quantitative assessment of the role of human capital we offer the following decom-
position of the changes in lifetime earnings from eliminating differences in total hours of work. Let
ei,t = ni,t ·xi,t be the earnings for individual i at age t in our benchmark model, and denote the three
analogous series from the counterfactual as êi,t , n̂i,t , and x̂i,t . Lifetime earnings in the benchmark

22This exercise fixes total hours to be the same across all individuals but still allows individuals to vary the allocation
of time between producing and investing. If we instead impose that each of the profiles for production time and
investment time are constant across time and individuals, the variance of log of log lifetime earnings decreases by
more than 23 percent. This larger value reflects the overall importance of time allocation.
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model and the counterfactual are defined as:

eBM
i =

∑
31
t=1 nit · xit

31
(8)

eCF
i =

∑
31
t=1 n̂it · x̂it

31
(9)

Lifetime earnings in the counterfactual reflect changes in both the nt and xt sequences. We define
two additional measures of lifetime earnings to capture the separate effects of changes in each of
these two sequences:

eN
i =

∑
31
t=1 n̂it · xit

31
(10)

eX
i =

∑
31
t=1 nit · x̂it

31
(11)

The measure ēN
i holds the human capital profile fixed at its level in the benchmark model and

considers only the effect of changes in the profile of production time. The measure ēX
i holds the

profile for production time fixed and considers only the effects of changes in the human capital
profile.

We then compute the variance of log lifetime earnings using each of these measures and com-
pute the percent change between the benchmark model and the other three measures. We will refer
to the change between ēBM

i and ēCF
i as the total effect, the change between ēBM

i and ēN
i as the direct

channel, and the change between ēBM
i and ēX

i as the human capital channel. We note that the di-
rect and human capital channels will not necessarily sum to the total change, since production and
investment profiles can be correlated.

Results of this decomposition exercise are reported in Table 6. The direct channel delivers
an 8.8 percent decrease in the variance of log lifetime earnings, while the human capital channel
delivers a 7.9 percent decrease. The sum of these two channels is slightly smaller than the total
effect.

Assessing the contribution of the human capital channel requires that one take a stand on how
to assign the interaction effects. For our headline number we assign the interaction effects propor-
tionately. If we do this, the share of the overall decline in earnings inequality from removing hours
heterogeneity that is due to the human capital channel is 47 percent

(
= 100−92.1

(100−92.1)+(100−91.2)

)
. We

can also generate an interval of values by considering the two extremes in which we assign all of
the interaction effects to either the direct or human capital channels. If we assign all of the inter-
action effects to the human capital channel, then the human capital channel is assigned everything
not accounted for by the direct channel, which implies a 52 percent

(
= 91.2−81.7

100−81.7

)
share for the

human capital channel. If we assign all of the interaction effects to the direct channel, this figure
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Table 6: The Role of Human Capital

log Lifetime Earnings
Variance % of BM

Benchmark (BM) 0.348 100%

Counterfactual: ni,t + si,t = h̄ 0.284 81.7%
Direct Channel 0.317 91.2%
Human Capital Channel 0.320 92.1%

Notes: The first row reports the variance of log lifetime earnings over the age range 25-55. In the subsequent rows,
we report the same statistic under various counterfactuals. The second column reports the percent of the benchmark
values that remain in each counterfactual.

becomes 43 percent
(
= 92.1−81.7

100−81.7

)
. Focusing on either our headline number of 47 percent or the

range of 43 to 52 percent, we conclude that the human capital channel is quantitatively important,
accounting for roughly half of the total effect.

7.2 The Role of Preference Heterogeneity

The previous subsection showed that differences in hours worked across individuals are an impor-
tant contributor to lifetime earnings inequality. We now show that differences in lifetime hours
are almost entirely driven by heterogeneity in preferences (as opposed to heterogeneity in initial
human capital, learning ability, and human capital shock realizations). While permanent and tran-
sitory preference heterogeneity both contribute to differences in lifetime hours, they have very
different implications for lifetime earnings inequality.

We begin by considering a counterfactual that eliminates all preference heterogeneity in our
calibrated model by setting ψi = µψ and πi,t = 1 for all i and t. This is similar to the specification
in Guvenen et al. (2014), in which hours were endogenous but preferences were homogeneous and
time invariant. We then re-solve the model, assuming that each individual experiences the same
sequence of shocks to human capital and measurement error as in the benchmark economy. The
second row of Table 7 shows the results from this exercise. To facilitate comparison, the first row
repeats the results for our benchmark model.

Eliminating preference heterogeneity removes most of the variation in cross-sectional hours,
and virtually all the variation in lifetime hours. Pooling all observations for individuals between
ages 25 and 55, the variance of log annual hours falls by 85 percent, from 0.079 to 0.010. The
variance of log lifetime hours falls by 96 percent, from 0.025 to 0.001.23

23The variation in annual hours in our homogenous preference counterfactual aligns with the variation in Guvenen
et al. (2014), which, as noted earlier, assumes no preference heterogeneity and is calibrated to a sample of male
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Table 7: The Role of Preference Heterogeneity

Variance of log Hours Variance of log Earnings
Annual Lifetime Lifetime

Benchmark (BM) 0.079 0.025 0.348

σψ = σπ = 0 0.010 0.001 0.288
σψ = 0,σψ > 0 0.066 0.009 0.294
σψ > 0,σπ = 0 0.022 0.012 0.311

Notes: The first row reports statistics from our benchmark model over the age range 25-55. The subsequent rows
report the same statistics under various counterfactuals that eliminate one or both sources of preference heterogeneity.

Eliminating preference heterogeneity reduces the variance of log lifetime earnings by 17.2
percent, from 0.348 to 0.288. Recalling that the overall impact of hours heterogeneity on lifetime
earnings was a reduction of 18.3 percent, it follows that 94 percent of the overall impact of hours on
lifetime earnings is driven by preference heterogeneity. Together with the findings in the previous
paragraph, we conclude that preference heterogeneity is essential for the model to capture the
empirical variation in hours and the role of hours for lifetime earnings inequality.

Our model features both permanent and transitory heterogeneity in work preferences. Which
source of heterogeneity has a larger impact on lifetime inequality in hours and earnings? To answer
this question, we start from the specification with no preference heterogeneity (i.e., the second row
of Table 7) and compare it with versions of the model with only one source of heterogeneity (rows
three and four of Table 7).

We find that the transitory component of preference heterogeneity has a larger impact on cross-
sectional hours inequality than the permanent component, while the reverse is true for inequality in
lifetime hours. Starting from the case with no preference heterogeneity (row 2), adding transitory
preference heterogeneity (row 3) increases the variance of log annual hours by 0.056. This increase
is nearly five times larger than when we add permanent preference heterogeneity (an increase of
0.012 from row 2 to row 4). By contrast, transitory heterogeneity increases the variance of log
lifetime hours by 0.008 versus an increase of 0.011 for permanent heterogeneity. In other words,
transitory preference heterogeneity has a much larger effect on cross-sectional hours inequality
than lifetime hours inequality, while permanent heterogeneity has a nearly identical effect on both
measures.

This pattern is even more stark when looking at earnings. Starting from the case with no
preference heterogeneity, adding transitory heterogeneity increases the variance of log lifetime

workers aged 25 to 55 in the PSID. Specifically, they report that their data sample produces a standard deviation of log
hours of 0.369, while their model produces a standard deviation of log hours of 0.112 (corresponding to a variance of
0.013). Since they do not examine the properties of lifetime hours, our finding that the variance of lifetime hours is
almost entirely eliminated is novel.
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earnings by 0.006 versus an increase of 0.023 when adding permanent heterogeneity. That is,
permanent preference heterogeneity increases lifetime earnings inequality by nearly four times as
much as transitory heterogeneity. This is despite the fact that, as shown in the previous paragraph,
both sources of preference heterogeneity produce a similar amount of inequality in lifetime hours.
Intuitively, workers with permanently low disutility from work will invest more in human capital
because they expect to work long hours throughout their career, which raises the return to human
capital investment early in the life-cycle. By contrast, workers with temporarily low disutility from
work do not expect to work much more 10 or 20 years in the future, and so will not increase their
investment as much.

The results in Table 7 also show that there are important interaction effects between the two
components of preference heterogeneity. When adding both components of preference heterogene-
ity together, the effect on the variance of log lifetime earnings is roughly twice as large as the sum
of the individual effects (0.060 versus 0.029). This implies that even though transitory preference
heterogeneity by itself is not an important source of lifetime earnings inequality, it is important to
include it in the analysis.

7.3 Other Sources of Inequality

Huggett et al. (2011) quantified the role of heterogeneity in initial human capital, learning ability,
and human capital shocks for lifetime earnings inequality. Their model imposed that all individ-
uals worked the same total hours. How do their conclusions change in a model that matches the
empirical dispersion in hours worked?24

Results for lifetime measures are reported in Table 8. (Table C.2 in the Appendix provides
results for lifetime and annual measures.) The entries in this table represent the share of overall
variance remaining after the indicated channels are eliminated. For comparison, the row repeats
the earlier results of eliminating preference heterogeneity, as shown in Table 7.

The central exercise in Huggett et al. (2011) is to quantify the roles of initial conditions (initial
human capital and learning ability) versus human capital shocks for lifetime earnings inequality.
Their primary finding is that eliminating differences in initial human capital and learning ability
reduces the variance of lifetime earnings by 61.5 percent. The same exercise in our model reduces
the variance of log lifetime earnings by only 52.1 percent (see row 3, column 1). Their model
is calibrated to match earnings inequality over the life-cycle but features no hours inequality. In-
tuitively, abstracting from hours heterogeneity requires larger differences in initial human capital

24Some caution is in order when interpreting these comparisons. For example, their sample is men in the PSID,
while ours is men in the NLSY79 with at least 1750 lifetime hours. Also, in their model individuals work from ages
23-60, while in our model individuals work from 25-65, though we measure lifetime earnings based on ages 25-55.
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Table 8: Sources of Variation in Lifetime Earnings and Hours

Variance of log Lifetime
Earnings Hours

σψ = σπ = 0 82.8% 2.0%

σz = 0 60.0% 99.2%
σx = σα = 0 48.9% 100.0%

Notes: Each row reports the percent of variance in the benchmark model that remains when eliminating different
sources of heterogeneity.

in order to generate the same distribution of earnings. Their calibrated standard deviation of log
initial human capital is 0.462, compared with 0.353 in our model.

When we eliminate human capital shocks in our model, the variance of log lifetime earnings
decreases by 40.0 percent (see row 4, column 1). This is roughly the same as in Huggett et al.
(2011). This is perhaps not too surprising given that our shock process has a variance that is quite
close to theirs. An important implication implicit in this finding is that an endogenous hours margin
does little to affect the propagation of human capital shocks to lifetime earnings, see column 2.

7.4 Hours Worked and Upward Mobility

A central component of the “American dream” is the idea that one can overcome poor initial con-
ditions through hard work. The results presented in the last subsection indicate that both high
lifetime hours and initial human capital are important determinants of lifetime earnings. In this
subsection we take a closer look at the prevalence of the American dream in our calibrated model.
In particular, we examine the extent to which higher lifetime hours compensates for lower initial
human capital in our calibrated model. We will use the term upward mobility to describe individ-
uals whose position in the lifetime earnings distribution is higher than their position in the initial
human capital distribution.

To do this, we place individuals at age 25 in one of 25 bins. These bins are created using a
two-step procedure. In the first step we sort individuals into five equally size bins based on their
quintile in the distribution of initial human capital. In the second step, we divide each of these bins
into five equally sized bins based on their quintile in the (bin-specific) distribution of ψ values.25

By construction, each bin represents 4 percent of the overall population. Recall that in our model,

25Recall that initial human capital and ψ are negatively correlated, which implies that the distribution of ψ is bin-
specific. An alternative approach is to construct quintiles separately for ψ and initial human capital, which implies
that the mass of individuals varies across the joint distribution of quintiles. The qualitative conclusions we draw in this
section remain very similar under this alternative grouping.
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Figure 12: Hours Worked, Human Capital, and Earnings Mobility
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(b) Human Capital at Age 55
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(c) Lifetime Earnings
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initial human capital and learning ability are perfectly correlated, so that variation in initial human
capital is bundled with variation in learning ability.

Figure 12a shows the variation in mean lifetime hours worked across these 25 bins. Each line
in the figure shows the relationship between initial human capital and mean lifetime hours worked
holding the value of ψ constant. The relationship between mean lifetime hours of work and ψ

holding initial human capital constant is revealed by comparing the relative height of the five lines
at a given level of initial human capital. Two messages appear. First, mean lifetime hours do not
substantially vary over the initial human capital distribution. Second, holding initial human capital
constant, variation in ψ is associated with large differences in mean lifetime hours. (Because
we are computing mean lifetime hours for each bin, variation due to shocks that occur over the
life-cycle is being averaged out.)

Our analysis has emphasized the relationship between permanent preference heterogeneity,
lifetime hours, and human capital accumulation. Figure 12b illustrates this by plotting mean human
capital at age 55 for each of the 25 bins. The fact that each line slopes upward reflects the intuitive
result that, on average, higher initial human capital leads to higher human capital at age 55. But
the vertical distance between the lines shows that a lower value of ψ holding initial human capital
constant also increases human capital at age 55. It follows that a lower ψ value can partially offset
the effects of a lower initial human capital, and thus can be a source of upward mobility in terms
of human capital. For example, moving from the highest to the lowest quintile of the (bin specific)
ψ distribution has a slightly larger positive impact on human capital at age 55 than does moving
an individual with a given value of ψ to the next highest quintile of initial human capital.

Figure 12c shows how mean lifetime earnings varies across the 25 bins. Once again, because
we are reporting mean lifetime earnings for each bin we are averaging out the effects of shocks that
happen over the life-cycle. To better illustrate the position of a given bin within the lifetime earn-
ings distribution, the y-axis in this figure reflects mean earnings for each bin by its corresponding
percentile in the overall lifetime earnings distribution.

39



The key point to notice in Figure 12c is that the distributions of (mean) lifetime earnings cor-
responding to different quintiles of the initial human capital distribution have very large areas of
overlap. Specifically, individuals who are in the lowest quintiles of both initial human capital and
ψ at age 25 have mean lifetime earnings comparable to those in the third ψ quintile among indi-
viduals in the second quintile of initial human capital. It follows that these individuals with both
human capital and ψ in the lowest quintile will “leapfrog” many individuals with initial human
capital in the second quintile in terms of lifetime earnings. This holds when considering other
adjacent quintiles of the initial human capital distribution.

In summary, while previous sections establish that heterogeneity in lifetime hours increases
lifetime earnings inequality, this section shows that high lifetime hours are also a source of upward
mobility for many individuals who start with low initial human capital. Higher hours increase
earnings both directly, through higher production time, but also indirectly through greater human
capital accumulation. Because permanent preference heterogeneity is only mildly correlated with
initial human capital (ρx,ψ = −0.3), many high-hours workers are born with low initial human
capital and are therefore upwardly mobile.

8 Conclusion

A key goal of the literature on inequality is to understand the quantitatively important driving
forces and mechanisms that generate inequality. In this paper, we use the NLSY79 to document
large differences in lifetime hours of work across individuals and then use a heterogeneous agent
model of labor supply and human capital accumulation to argue that these differences in lifetime
hours play a quantitatively important role in shaping lifetime earnings inequality. In particular,
we find that heterogeneity in hours of work over the life-cycle accounts for almost 20 percent
of the variance of log lifetime earnings. Over 90 percent of this effect is due to heterogeneity
in preferences, and roughly one-half of this effect reflects human capital accumulation. A key
message from our analysis is that it is important to include heterogeneity in hours of work in
analyses of inequality.

We close by noting three important areas for future research. First, we have relied on preference
heterogeneity as a parsimonious way to generate the salient features of hours heterogeneity found
in the micro data. Our specification of preference heterogeneity essentially amounts to a wedge
in the first-order conditions involving hours. This wedge can capture the effect of factors beyond
true preference heterogeneity. For some specific issues, like the design of disability insurance, it
is important to have a deeper analysis of these factors. More generally, this will be important for
assessing issues that involve welfare comparisons.

The second is to extend our quantitative analysis to groups beyond the sample of highly at-
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tached men that we studied. Differences in lifetime hours of work are even larger if we consider
broader groups, raising the possibility that effects for the overall population will be even larger
than we find. Extending the analysis to men with low levels of attachment may require a richer
specification beyond the one we have used here. In addition to incorporating an explicit extensive
margin, it may be necessary to allow for correlation between human capital shocks and preference
shocks, to generalize the human capital accumulation process to allow for differential rates of de-
preciation during extended spells of non-participation, and to explicitly model features of the tax
and transfer system. The recent paper by Hosseini et al. (2025) includes these features in their
analysis of health shocks. Extending the analysis to women will also require explicit modeling of
fertility. In view of our results about the importance of permanent heterogeneity, it will potentially
be critical to correctly capture expectations of future work hours. This will require a richer model
that explicitly accounts for spells of non-participation.

A third area is to consider a range of policies that directly affect the distribution of hours of
work. Several European countries have enacted legislation to reduce the standard workweek. An-
other class of policies aims to compress the distribution of hours worked from above. For example,
all advanced economies have legislation that stipulates a threshold for overtime hours and the level
of the overtime premium. France offers a more direct example of this class of policies. Specifi-
cally, in a pair of laws adopted between 1998-2000 and rolled out between 2000-2002 (“Aubry I
and Aubry II”), France imposed a 35-hour workweek and adopted a regulation imposing that most
workers could work no more than 48 hours per week.26 Relatedly, in 2024 Greece enacted legisla-
tion to make it easier for firms to have a six day workweek that would imply a 48-hour workweek.
Our partial equilibrium model implies that these policies have large effects on both the mean and
dispersion of lifetime earnings, holding prices fixed. A more complete examination of the effects
of these policies on both outcomes and welfare will require a general equilibrium analysis that
introduces a richer specification of firm decisions.
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ONLINE APPENDIX
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A Proof for Optimal Human Capital Investment Condition (1)

The sequential formulation of the individual’s utility maximization problem in Section 3.1 is:

max
{ct ,nt ,st}T

t=1

T

∑
t=1

β
tu(ct ,nt + st) (A.1)

s.t.
TR−1

∑
t=1

ct −wxtnt

(1+ r)t = 0 (A.2)

xt+1 = (1−δ )xt +α(xtst)
φ ∀t (A.3)

nt ,st ≥ 0 ∀t, with equality if t ≥ TR (A.4)

This problem can be written recursively as:

Vt(x,k) = max
n,s,k′

u((1+ r)k+wxn− k′,n+ s)+βVt+1(x′,k′) (A.5)

s.t. x′ = (1−δ )x+α(xs)φ (A.6)

n,s ≥ 0, with equality if t ≥ TR (A.7)

Following Guvenen et al. (2014), it is helpful to rewrite this problem in terms of new human
capital produced rather than in terms of investment. Define the following variables: total hours,
ht = nt + st , investment share of total hours, it = st/ht , newly produced human capital as Qt =

α(xtht it)φ , and the opportunity cost of newly produced human capital C(Qt) = w(Qt/α)1/φ =

wxtht it . With these variables defined, we can rewrite the individual’s recursive problem as

Vt(x,k) = max
h,Q,k′

u((1+ r)k+whx−C(Q)− k′,h)+βVt+1(x′,k′)

s.t. x′ = (1−δ )x+Q

h,Q ≥ 0, with equality if t ≥ TR

We can characterize the optimal investment choice (assuming an interior solution) with a FOC and
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an envelope condition:

FOC(Qt) : C′(Q)u1(c,h) = βVt+1,1(x′,k′) (A.8)

Env(xt) : Vt,1(x,k) = u1(c,h)wh+βVt+1,1(x′,k′)(1−δ ) (A.9)

This formulation has two useful results. First, holding h fixed, Q only affects utility via con-
sumption, not via leisure. Second, an individual’s human capital choice yesterday does not affect
the opportunity cost of Q today. For intuition on this latter point, note that if today a worker wants
to produce Q, they need to set the product xhi = (Q/α)1/φ —perhaps surprisingly, this product is
not affected by the worker’s current level of human capital, x. For example, if x is high, then to
produce Q the necessary hi is low, but the opportunity cost of each unit of time is high because x

is high. Alternatively, if x is low then the necessary hi is high, but the opportunity cost of each unit
of time is low because x is low.

Combining (A.8), (A.9) and iterating forward in time yields:

C′(Qt) =
TR−1

∑
t ′=t+1

β
t ′−tw(1−δ )t ′−t−1ht ′

(
u1(ct ′,ht ′)

u1(ct ,ht)

)
(A.10)

where ct ′ = (1+ r)kt ′ +wht ′xt ′ −C(Qt ′)− kt ′+1. From the Euler equation, we know that

β
t ′−t(1+R)t ′−t =

u1(ct ,ht)

u1(ct ′,ht ′)
(A.11)

and substituting this into the previous equation yields

C′(Qt) =
TR−1

∑
t ′=t+1

w(1−δ )t ′−t−1ht ′

(1+R)t ′−t (A.12)

In words, this says that the optimal investment choice equates the static marginal cost of in-
vesting (foregone earnings) to the sum of remaining total work hours, scaled by the wage rate
and discounted by both present value and the human capital depreciation rate. Since C′(Q) =(

w
αφ

)(
Q
α

) 1
φ
−1

, the marginal cost is increasing in Q. Therefore, we can conclude that investment
is higher for individuals who will work more hours in the future (where future hours are discounted
by the depreciation rate and the interest rate), as in (A.12).
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To derive Equation (1) specifically, substitute the above expression for C′(Qt):(
w

αφ

)(
Qt

α

) 1
φ
−1

=
TR−1

∑
t ′=t+1

w(1−δ )t ′−t−1ht ′

(1+R)t ′−t (A.13)

Finally, substitute Qt = α(xtst)
φ and rearrange terms to arrive at:

wxt = αφxφ

t sφ−1
t

TR−1

∑
t ′=t+1

w(1−δ )t ′−t−1ht ′

(1+R)t ′−t (A.14)
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B Data

FIGURE B.1: Cross-Sectional and Lifetime Distribution of Hours Worked
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(c) PDF - Women
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Notes: In the annual sample we only include person-year observations with positive hours worked. For men 7.4
percent and for women 15.5 percent of person-year observations feature zero hours worked.
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B.1 Comparison of Autocorrelation Profiles

One may worry that the survey design and our imputation procedure creates too much persistence
in annual hours worked and annual earnings.

Figure B.2 shows that the autocorrelation profile for anual hours excluding imputed values for
annual hours is virtually identical to the profile shown in Figure 3, see two left panels. The two
middle and two right panels distinguish between the period when the NLSY79 was conducted
annually and when it switched to being conducted every other years. Note that even during this
period we still have observations for hours for every year. In each case, the autocorrelation profile
using only direct reports or both, the direct reports and imputed values, are almost identical.

Figure B.3 performs the same comparison for earnings, focusing only the sample of men used
in our quantitative analysis (lifetime hours are at least 1750). Before 1994, earnings were collected
annually, and during this period the two profiles are virtually identical (middle panel). From 1994
onward, earnings are only reported every other year. The two-year auto-correlation in the directly
reported data is slightly lower than when including imputed values. From lag 4 onward, the two
profiles again lie almost on top of each other.

6



FIGURE B.2: Autocorrelation of Annual Hours and Annual Earnings
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(c) Annual Earnings 1994-2019

-.2
0

.2
.4

.6
.8

1
C

or
re

la
tio

n

1 5 10 15 20
Lag

Direct Report Incl. Imputations

Women

(d) Annual Hours

-.2
0

.2
.4

.6
.8

1
C

or
re

la
tio

n

1 5 10 15 20
Lag

Direct Report Incl. Imputations

(e) Annual Earnings 1978-1993
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(f) Annual Earnings 1994-2019
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FIGURE B.3: Autocorrelation of Annual Earnings for Men with Lifetime Hours ≥ 1750
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B.2 Regressions for the Lifetime Hours ≥ 1750 Sample

Table B.1: Lifetime Hours and Earnings Regressions for Lifetime Hours ≥ 1750 Sample

Men
(a) log of Lifetime Earnings

(1) (2)

log Lifetime Hours 1.57∗∗∗ 1.43∗∗∗

(0.08) (0.07)
AFQT Percentile 0.01∗∗∗

(0.00)
Constant 11.00∗∗∗ 11.00∗∗∗

(0.01) (0.01)

N 2218 2128
R2 0.16 0.36

(b) Life-Cycle Earnings Growth

(1) (2)

log Lifetime Hours 2.02∗∗∗ 1.82∗∗∗

(0.30) (0.30)
AFQT Percentile 0.02∗∗∗

(0.00)
Constant 1.08∗∗∗ 1.09∗∗∗

(0.06) (0.06)

N 2054 1969
R2 0.02 0.08

Women
(c) log of Lifetime Earnings

(1) (2)

log Lifetime Hours 1.42∗∗∗ 1.22∗∗∗

(0.11) (0.10)
AFQT Percentile 0.01∗∗∗

(0.00)
Constant 10.65∗∗∗ 10.65∗∗∗

(0.01) (0.01)

N 1483 1457
R2 0.10 0.25

(d) Life-Cycle Earnings Growth

(1) (2)

log Lifetime Hours 0.86∗ 0.82∗

(0.47) (0.48)
AFQT Percentile 0.00

(0.00)
Constant 1.33∗∗∗ 1.34∗∗∗

(0.06) (0.06)

N 1375 1351
R2 0.00 0.00

In all regressions, log annualized lifetime hours and AFQT percentiles are demeaned such that the constants are
comparable across specifications (1) and (2). Standard errors are in parentheses. ∗,∗∗ , and ∗∗∗ indicate significance at
the 10%, 5%, and 1% levels, respectively. In panels (b) and (d), we first compute, for each individual, average earnings
at ages 25–29 and 51–55, considering only years with at least 520 hours worked. We then construct the growth rate
between these two averages. The sample is restricted to individuals with at least three years of at least 520 hours
worked in both the 25–29 and 51–55 age ranges.
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B.3 Average Wage Growth in the CPS

We compute average annual growth of male wages in the CPS-ASEC by educational attainment
and weight the values by the educational attainment shares for our NLSY79 sample of highly at-
tached males. We first compute mean hourly wages for 25- to 29-year-old males separately by ed-
ucation in 1982, which corresponds to age 25 for our oldest cohort, wold,e

25 . We then compute mean
hourly wages for 25- to 29-year-old males separately by education in 2012, which corresponds to
age 55 for our oldest cohort, wold,e

55 . We compute average annual wage growth by education over

this period as gold,e
w =

(
wold,e

55 /wold,e
25

)1/30
− 1. We then compute the average annual growth rate

across education groups using education weights from our NLSY79 sample, resulting in an aver-
age growth rate gold

w . Next, we repeat this analysis using the years 1989-2019 (which correspond
to ages 25-55 for our youngest cohort) to obtain gyoung

w . The average of gyoung
w and gold

w is 0.5% per
year.
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C Quantitative Results

Table C.2: Sources of Variation in Earnings and Hours

Variance of log Hours Variance of log Earnings
Annual Lifetime Annual Lifetime

σψ = σπ = 0 79.1% 82.8% 13.1% 2.0%

σz = 0 61.8% 60.0% 99.6% 99.2%
σx = σα = 0 71.0% 48.9% 100.1% 100.0%

Notes: Each row reports the percent of variance in the benchmark that remains when eliminating different sources of
heterogeneity.
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