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ABSTRACT

We study whether the sensitivity of economic, health, and livelihood outcomes to climate extremes 
has declined over the last half century, consistent with adaptation. Understanding whether such 
adaptation is already occurring is central to anticipating future climate damages, to calibrating the 
level of ambition needed for emissions mitigation efforts, and to understanding additional 
investments in adaptation that could be required to avoid additional damages. Using 
comprehensive panel data across diverse geographies and outcomes, including data on mortality, 
agricultural productivity, crime, conflict, economic output, and damages from flooding and tropical 
cyclones, we find limited systematic evidence of adaptation to date. Across 21 outcomes we study, 
six show a statistically significant declining sensitivity to a changing climate, five show an 
increasing sensitivity, and the remainder show no statistically significant change. Our results do not 
imply that specific documented adaptation efforts are ineffective or certain locations have not 
adapted, but instead that the net effects of existing actions have largely not been successful in 
meaningfully reducing climate impacts in aggregate. To avoid ongoing and future damages from 
warming, our results suggest a need to identify promising adaptation strategies and understand how 
they can be scaled.
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1 Introduction

Rapidly accumulating greenhouse gases in the atmosphere have warmed the planet roughly 1.3�C
degrees over the last century and could warm it by that much again or more over the next century
(1). Even rapid decarbonization will have a limited effect on near-term warming and associated
climatic changes. It is thus inescapable that human society will have to face, at least in the near
term, a planet that will continue to warm, perhaps substantially.

How a changing climate will impact society is a first order scientific and policy question. An-
swering this question is central to calibrating the level of ambition needed for emissions mitiga-
tion efforts, to understanding the scale and manner of additional investments in adaptation that
could be required to avoid additional damages, and to anticipating the magnitude of remaining
“loss and damage” if mitigation and adaptation fail. A voluminous literature using historical data
demonstrates how a changing climate can affect a diverse array of societal outcomes, including
physical and mental health, energy use, agricultural and labor productivity, cognition, infrastruc-
ture, civil and interpersonal conflict, migration, and economic output, among many other out-
comes (2–13). Whether these documented past relationships between climate and societal out-
comes are a good guide for the impacts of future climate change depends substantially on whether
and how humans themselves respond.

One view, perhaps most popular among economists, is that humans are clever and will figure out
how to adapt as climate conditions change, with such adaptation limiting future damages and ren-
dering past impacts a poor guide for future impacts. An alternate view is that human societies are
surprisingly poorly adapted even to our current climate, as evidenced by the large damages from
extreme climate events that are readily observed, and thus that we should not expect that future
adaptation will be nearly enough to limit damages from future climate change. The underlying
question is empirical: are we adapting to a climate that is changing, and if so, where and how
fast?

Here we use a broad array of longitudinal datasets from around to world to quantify the speed of
recent adaptation to climate. Following the IPCC, we consider adaptation as any response that
improves an outcome or reduces damage, and we take a broad view of actions and behaviors that
could constitute adaptation. These could include actions taken directly in response to climate
exposure (e.g. purchasing flood insurance or drought-tolerant seeds, or building sea walls), or
societal changes that are not a direct response to climate itself but that reduce the impact of cli-
mate shocks (e.g. medical services that get people to the hospital faster, or income growth that
allows people to live in sturdier homes). To quantify the net effect of these and any other adap-
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tive actions that could have taken place, we estimate whether the sensitivity of a range of societal
outcomes to a fixed change in climate has changed over time. This intuitive notion of adaptation,
common in the empirical adaptation literature (3, 14), has the advantage of parsimoniously cap-
turing the individual or interacting impacts of a broad range of possible adaptation actions that
might have taken place, without having to directly observe which actions occurred or measure
their individual impacts. Our approach to measuring adaptation is complementary to a number of
alternative approaches, including cataloging what adaptation actions individuals or communities
have taken or report to have taken (e.g. (15)), or studying whether responses to climate differ as
a function of some adaptation-relevant variable (e.g. income; see below for a discussion of these
other approaches, and tradeoffs among them).

Specifically, for outcomes that are affected by changes in temperature, we study whether the es-
timated impact of 1�C increase in temperature on that outcome has changed over time. For other
climate variables not directly linked to temperature (heavy precipitation, tropical cyclones), we
similarly study whether the impact of a fixed change in the climate variable on a given societal
outcome has changed over time. In either setting, we estimate time-period-specific response func-
tions that relate changes in the climate variable to changes in the outcome of interest, and then
quantify adaptation progress by estimating whether the derivative of the response function with
respect to the climate variable is changing over time. For linear response functions, this deriva-
tive is just the period-specific estimated slope coefficients. For non-linear response functions, we
compute the exposure-weighted average derivative in each period of interest. We also separately
evaluate whether sensitivities have changed differentially at different parts of the response func-
tion, as this sheds additional light on the climate conditions under which adaptation has or has not
been successful. For instance, extreme cold temperatures and extreme hot temperatures are both
known to increase mortality, but progress against one (for instance, from better access to winter-
time heating) might not imply progress against the other.

We estimate changing sensitivities across a broad set of geographies and sectors, including agri-
culture, health, conflict and violence, and aggregate economic output, using a range of exposures
including extreme temperatures, rainfall, and tropical cyclones. Where possible we build directly
on established climate-society relationships, updating datasets and re-analyzing them under com-
mon statistical frameworks. The datasets we use and papers we build upon are listed in Table A1.
We restrict analysis to settings with at least 20 years of panel data – i.e., repeated observations
of outcomes and climate for specific units over time – and estimate the time-varying effects of a
given climate variable on a given outcome using standard, flexible panel econometric approaches
that seek to isolate variation in the climate variable from a broad set of time-invariant or time-
varying confounding variables that could be correlated with both climate and the outcome.
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We then distinguish and quantify two broad ways in which societal sensitivity to a given climate
threat could change over time (Fig A1). In the first, the impact of a specific climate exposure
could change over time – for instance, fewer people could end up at the hospital on a 30�C day in
a recent period relative to an earlier period, perhaps because their homes are now air conditioned.
We call this “changing responses”. In the second, which we call “changing exposures”, people or
productive units (e.g. people, firms, or agricultural fields) could have changing exposure to cli-
mate threats because they have spatially relocated – for instance, if people have moved to cooler
parts of a country from hotter parts, reducing the number of 30�C days they experience. Expo-
sure could also change because the climate itself has changed in a given location, for instance if
a warming climate brings more 30C days in given location. In either case, if response functions
are non-linear, changing exposures can change average societal sensitivity by altering the pro-
portion of the population exposed to different climate extremes; if response functions are linear,
then changing exposures have no effect on average sensitivity and any change in sensitivity will
be driven by changing responses.

We emphasize that our overall approach seeks to answer the question “are we adapting to climate
change”, which is subtly distinct from the question “are we adapting to climate”. An approach
to estimating the latter would be to integrate under a response function relative to some chosen
baseline climate and calculate the total societal burden of sub-optimal climate – e.g count up the
total number of excess deaths on days hotter or colder than a chosen moderate temperature – and
then study how this value changed over time. In this study, we instead calculate the exposure-
weighted derivative of that response function and answer whether the impact of a fixed change in
climate (as estimated by this derivative) has itself changed over time. Both questions are impor-
tant. Our approach is meant to guide our understanding of how future changes in climate might
impact society – the central concern in the calculation of the social cost of carbon, among other
quantities – and whether such damage estimates need to account for recent trends in societal sen-
sitivity.

Briefly, across a broad range of outcomes and climate relevant exposures, we find limited evi-
dence that sensitivities to climate have declined in a way consistent with adaptation. Only in
about one quarter (6 of 21) of settings we study do we identify meaningful, ongoing, statistically
significant declines in the overall sensitivity of an outcome to a fixed change in climate. These
include US maize and EU wheat yield sensitivity to temperature, and the sensitivity of EU mor-
tality, US income, US violent crime, and US injury mortality to temperature. However, some of
these improvements are driven either by much higher sensitivities early on in the study period
with little recent progress (e.g. US maize), or are improvements that have slowed or even begun
to reverse in most recent decades (e.g. US crime and US injury mortality).
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For another quarter of outcomes (5 of 21), we find that sensitivity to a given change in climate
has increased rather than decreased over time, amplifying the negative impacts of a changing
climate. These include soy and maize yields in Brazil, African civil conflict, and suicide in the
US. For the remaining half of outcomes (10 of 21), we find no statistically significant change in
sensitivity over time. This does not necessarily mean that sensitivities are not changing in these
settings, but instead that confidence intervals are such that we cannot rule out meaningful in-
creases or decreases in sensitivity, nor rule out no change in sensitivity for these outcomes. We
conclude by proposing and discussing eight reasons for observed (lack of) adaptation, and high-
light promising future research directions.

Data and methods

Estimating adaptation We study adaptation by using panel data (repeated observation of units
over time) to estimate whether the sensitivity of a given outcome H to variation in a climate vari-
able ⇠ has changed over time across locations 8 and years C. In the simplest linear setting, we esti-
mate:

H8C =
’
32⇡

Dd(V3⇠8C + _3/8C) + U8 + XC + Y8C (1)

where Dd is a vector of decadal dummies equal to one when year C falls into decade 3. Coeffi-
cients of interest V3 estimate the decade-varying effects of ⇠ on H, controlling in some settings
for other time-varying climate variables / (e.g. controlling for precipitation in a regression of
agricultural yields on temperature) and fixed effects for unit and time. In sub-annual data - e.g
monthly US mortality data – we additionally control for location-by-month FE to account for
local seasonality. In data with large numbers of subnational units across large countries – e.g
county or district level data – we additionally control for subnational time FE or subnational
time trends, following closely where possible the original papers on which our estimates and data
build.

In many of our settings, existing literature indicates a non-linear relationship between a climate
variable ⇠ and outcome H. In these settings, we follow this existing literature as closely as pos-
sible, estimating non-linear relationships between ⇠ and H and allowing these to vary by decade.
Specifically:

• For agricultural yields, we follow refs (4, 16) and estimate piecewise linear functions that
model log yields as a linear function of growing degree days between 0-30�C (GDD) and
extreme degree days >30�C (EDD), where these days are cumulated over the growing sea-
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son, and a quadratic in precipitation:

H8C = V1⌧⇡⇡8C + V2⇢⇡⇡8C + 6(%8C) + �⇢ (2)

• For all mortality outcomes where temperature is the climate variable of interest, we follow
ref (12) and model mortality rates as a fourth-order polynomial in cumulative daily temper-
ature exposure and a quadratic in cumulative precipitation:

H8C = 5 ()8C) + 6(%8C) + �⇢ (3)

Estimated response functions are interpretable much like commonly-used binned models,
with the mortality effect of an additional day at a given temperature )⇤ relative to some
base temperature )1 calculated as 5̂ ()⇤) � 5̂ ()1), where 5̂ is the estimated quartic polyno-
mial. We use this same functional form for temperature and US violent crime.

• For the impact of temperature on GDP, we follow ref (5) and model GDP growth as a quadratic
in annual temperature and quadratic in annual precipitation.

• For tropical cyclone impacts on GDP or mortality, we follow existing studies (17, 18) and
model outcomes as a linear function of TC wind exposure in the same year and the previ-
ous 15 years, and calculate cumulative impacts up through year 15. For GDP impacts, we
use estimated TC windfield data from (19). For mortalilty impacts in the US, we use data
from ref (18).

Using these estimates, we then quantify adaptation in two ways. First, following existing litera-
ture, we track what we term “point sensitivities”, or the estimated effect of a given extreme ex-
posure relative to a specified mild exposure – for instance, the effect on mortality of a 30�C day
relative to a 20�C day. In a binned exposure model, this is simply the point estimate of the im-
pact of an additional day in a given bin. In a polynomial model H = 5 (⇠), it is evaluated as
5̂ (⇠4) � 5̂ (⇠1), where ⇠4 is the extreme temperature of interest and ⇠1 is a typically mild (e.g.,
mortality minimizing) temperature. These sensitivities have been the focus of influential past
work, e.g. ref (14).

Second, as our primary measure of adaptation, we compute what we term “total sensitivity”, or
the exposure-weighted derivative of an estimated response function, weighted by the popula-
tion exposure to the climate variable of interest. For our outcomes that respond to temperature,
this derivative measures the estimated impact of +1�C temperature increase on the outcome and
population of interest. For linear response functions, total sensitivity is equivalent to the period-
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specific linear coefficient. For non-linear response functions, total sensitivity will depend on the
shape of the response function as well as the amount of exposure at each point in the function,
each of which is allowed to change by decade. For instance, to compute the total sensitivity of
mortality to temperature in the US in the 1980s, we take the estimated temperature-mortality re-
sponse function in the 1980s and evaluate its derivative at the population-weighted temperature
distribution in the 1980s. Computing total sensitivities in our piecewise linear agricultural func-
tions requires an additional step, where we take the derivative of Equation 2 with respect to tem-
perature:

mH

m⇠

=
mH

m⌧⇡⇡

m⌧⇡⇡

m⇠

+ mH

m⇢⇡⇡

m⇢⇡⇡

m⇠

(4)

where the first partial derivatives in each term come from estimating Equation 2, and the second
partial derivatives are estimated in separate regressions of either GDD or EDD on daily average
temperature, using crop area as weights. This enables changes in the locations of where crops are
grown to affect the average GDD and EDD exposure of a crop, and thus to affect the estimated
total sensitivity.

For non-linear responses, a full understanding of adaptation involes joint examination of point
sensitivities and total sensitivities. Total sensitivity alone is an incomplete measure - for instance,
it is in principle possible that a non-linear function could change shape substantially with no
change in its average derivative�. However, individual point sensitivities – e.g., the effect of a hot
day on mortality – are also an imperfect guide, and could provide an incomplete and even mis-
leading picture of the overall climate sensitivity of an outcome and how it is changing over time,
given non-zero sensitivities at other parts of the temperature distribution. Indeed, our findings
suggest that changes in sensitivities at more moderate temperatures can have outsized impacts on
the total sensitivity of an outcome to climate, given that exposures to these more moderate tem-
peratures are substantially more common than exposures to extremes. Thus for non-linear func-
tions, our main measure of adaptation (total sensitivities) and the range of adaptive actions that
changes in this measure might represent can only be fully understood by also examining point
sensitivities, and we thus compute and discuss them jointly. To compute p-values on comparisons
between estimated decadal sensitivities for a given outcome, we bootstrap regressions 1000 times
(sampling spatial units with replacement) and compute p-values from the comparison of the re-
sulting distributions of decadal parameter estimates.

To quantitatively compare the speed of adaptation across settings, we estimate a variant of Equa-
tion 1 where we interact climate variables with year to estimate the annual change in sensitivity.

�E.g consider two response functions H = G
2 and H = G

4, with a mean-zero normally-distributed G. Each would
have identical total sensitivities but very different point sensitivities.
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In the simplest linear setting, this is:

H8C = V1⇠8C + V2⇠8C ⇤ H40AC + _1/8C + _2/8C ⇤ H40AC + U8 + XC + Y8C (5)

Using these estimates, we then compute the change in total sensitivity over time by calculating
the annual change in the (exposure-weighted) derivative mH/m⇠ implied by Equation 5; for linear
functions, this is just V2. Finally, we convert this to percentage change sensitivity over time by
dividing annual change in total sensitivity by the average total sensitivity, the latter estimated by
running a pooled version of Equation 5 (with no interactions) on the full sample for each outcome
and estimating the total sensitivity in that pooled regression. To compute a confidence interval
on this value, we again bootstrap each regression 1000 times, sampling spatial units with replace-
ment.

Adaptation decomposition We decompose changes in total sensitivity over time into “chang-
ing responses” and “changing exposures”. The former captures any change in the impact of a
fixed exposure over time - e.g., a change in the impact of a 30�C day on mortality. The latter cap-
tures any change in total sensitivity due to changing exposure to the climate variable of interest,
holding fixed the response of that variable to a given climate exposure. Exposures could change
because productive units (individuals, firms, agricultural plots) are moving around in space, be-
cause the climate itself is changing, or both (Fig A1). When response functions are linear, chang-
ing exposures will have no effect on total sensitivity – by definition, the slope of the response is
the same at all points in the climate distribution – and adaptation is driven only by changing re-
sponses. When response functions are non-linear, total sensitivity can be driven by either chang-
ing exposures or changing responses.

To distinguish which is driving an observed change in sensitivity, we estimate period-specific re-
sponse functions and exposures and iteratively fix one at its base value while varying the other.
For instance, for the temperature-mortality relationship in the US, where the 1970s are our first
full decade of data, we estimate changing responses by estimate decade specific response func-
tions H = 53 ()) (where 3 2 1970s, 1980s,.. 2010s) and then evaluating the derivative of each of
these response functions at the 1970s population-weighted temperature distribution We then es-
timate changing exposures by fixing the response function at it’s 1970 estimate and allowing the
population weighted exposure to change over time.

Comparison to other approaches Our approach to measuring adaptation is complementary to
a number of alternative approaches that have been taken. One such approach attempts to compre-
hensively catalog the actions people take or say they are taking in response to climate change (e.g.
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ref (15)). Our approach instead evaluates whether the sum of those actions (observed and unob-
served) are effective. Another popular alternative approach studies whether observed responses
to climate differ as a function of putative adaptation drivers – asking, for instance, whether the
effect of extreme heat on mortality is lower in wealthier regions. If correctly specified, this ap-
proach offers a plausible way to anticipate future climate impacts net of adaptation, given pre-
dicted changes in moderating variables, and also enables an implicit estimation of adaptation
costs under some assumptions (12). Our approach cannot back out adaptation costs as this method
can, but has a few notable advantages. First, it does not require having to take a stand on which
among a large set of correlated moderating variables is the key moderator of past or future cli-
mate impacts. Second, it does not require having to make important assumptions about how vari-
ation in these moderators affects the realized pace of adaptation. For instance, observed cross-
sectional variation in climate sensitivities (say, due to income) could be the result of years, decades,
or centuries of changes in beliefs and behaviors, adaptive investments in technology or infrastruc-
ture, changes to regulation or even institutions, or some other slowly-evolving factor that reduced
sensitivity to climate. Instead we are able to ask, given all observed and unobserved changes in
adaptation-relevant moderators (e.g. income) and mediators (e.g. beliefs, infrastructure), how
have climate sensitivities changed?

Our approach is closest to a more limited set of studies that have also looked at changing societal
sensitivities to climate over time, particularly in the health domain (14, 20–22). These studies
tend to focus on changes at specific points in the temperature distribution - for instance, the im-
pact of a 30�C day on mortality. In addition to examining these changing point sensitivities, we
also quantify whether the overall sensitivity across the temperature distribution is changing. Be-
cause sensitivities can (and often do) change differentially at different points in the temperature
distribution, this approach provides a more complete picture of how a given outcome will respond
to marginal warming, and for what types of exposures adaptation actions have or have not been
successful in reducing impacts.

2 Results

Agriculture Climate impacts in agriculture have been studied for several decades, with a gen-
eral tendency for studies to focus on crop yields but with a growing number also considering
related outcomes such as livestock productivity, total farm revenue or GDP, worker productiv-
ity, and total factor productivity (TFP) (4, 23–26). A small subset of studies have considered
whether sensitivities have changed over time, with reported increases in sensitivity for some cases
(24, 25, 27) and decreases for others (28).
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Here we consider crop yields across major producing countries in both temperate and tropical lo-
cations, as well as total global agricultural TFP. Our data include both irrigated and non-irrigated
areas in each country, and so will account for any average mitigating effect of irrigation on tem-
perature sensitivity (26, 29, 30), as well as any effect that changing use of irrigation over time
will have on changes in sensitivity. For all yield outcomes we consider piecewise linear responses
that allow the effect of warming at extreme temperatures to differ from those at more moderate
temperatures.

Consistent with prior work using these datasets, we estimate on average a negative impact of
warming for all outcomes investigated, including maize in the US, EU, and Brazil; wheat in the
US, EU, and India; soybean in US and Brazil, and global ag TFP (Fig 1, Fig A2). This negative
effect is in some cases a combination of positive effects of warming at moderate temperatures and
negative effects at heat extremes, such as for US soybeans. For other crops, such as Brazil soy-
beans, warming at both moderate and extreme temperatures appears harmful to yields.

Most crops as well as global ag TFP show little evidence of a significant change in sensitivity
over time (see Fig A2 for statistical tests of changing sensitivity). One exception is Brazil, where
sensitivity appears to have increased in recent decades. For both maize and soybean, sensitivity
in the 2010s was roughly twice as negative as in the 1970s in Brazil. Some of this may be due to
greater measurement error of weather in prior decades, leading to underestimation of sensitivity
in earlier decades (see Discussion). The increased sensitivity may also reflect real increases in
heat impacts as the region has transitioned to a much more intensive, but still largely rainfed, pro-
duction system. Crops in other regions (e.g. the US) show higher sensitivity early in the period
but no clear trend over the past 50 years.

Changes in total sensitivity over time, where they were observed, were driven more by changing
responses than changing exposures (Fig A3). The effect of changing exposures was minimal or
slightly negative in most cases, suggesting that any movement of cropped area to more moderate
climates within a given country was offset by the impact of a warming climate on the frequency
of moderate and hot days. Changing responses offset the effect of these changing exposures in
some settings (EU wheat and maize), but amplified them in other settings (Brazil maize and soy-
bean).

Mortality A large body of research documents the impact of extreme hot and cold tempera-
tures on all-cause and cause-specific mortality, but findings are mixed as to whether the effect
of temperature extremes on mortality is changing over time. Studies suggest declining sensitiv-
ity of mortality to extreme hot temperatures but not necessarily extreme cold temperatures in the
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US (14, 31), a declining sensitivity to extreme heat in some wealthy countries and cities but not
in others (20, 32), declining sensitivities to moderate heat but not extreme heat in Europe (33),
and a declining impact of cold temperatures but increasing impact of hot temperatures on mortal-
ity in Colombia (34). Recent reviews and cross country studies similarly suggest generally posi-
tive but sometimes uneven progress in reducing the effects of extreme temperatures on mortality
(21, 22, 35).

Using county-level data from the US since 1968, we find an increasing and then declining sensi-
tivity of mortality to cold temperatures (Fig 2), with the effect of a -10�C or a 0�C day on mortal-
ity about 25-30% lower than in the most recent decade relative to its peak in the 1990s (Fig A4).
For extreme heat, we find that the effect of a 30�C or 35�C day on all-cause mortality declined
through the 2000s, consistent with existing evidence (14), but that it has rebounded since, with
the effect of either a 30�C or 35�C day in the most recent decade higher than in the previous two
decades and only slightly lower than the effect in the 1970s and 1980s, and not significantly dif-
ferent (Fig A4; see Fig A8 for a comparison with results from ref (14)). Results are similar using
models with nonparametric temperature bins (counts of days in different temperature intervals)
rather than polynomials (Fig A6).

We find that the total sensitivity of mortality to warming (the estimated effect of +1�C tempera-
ture increase) is negative in all time periods, a result of populations in our historical sample being
substantially more frequently exposed to extreme cold than extreme heat. However, total sensi-
tivity in the most recent decade was substantially and significantly more positive than in any pre-
vious decade in our sample, a combination of a declining sensitivity to cold, a stable or increas-
ing sensitivity to extreme heat, and increased exposure to hotter temperatures, the latter substan-
tially driven by population growth in warmer locations in the US (Fig A4, Fig A5), which led to
substantial increases in exposure to extreme temperatures relative to had populations not moved.
Therefore, while our findings are consistent with the broader finding that near-term warming will
reduce rather than increase overall temperature-related mortality in the US (12, 36), they also
indicate that current trends are quickly eliminating this mortality benefit and that these changes
might be underestimated by current models (see Fig A8).

In three decades of annual district-level data from 37 European countries, we also find fairly
mixed evidence of changing sensitivity to either extreme cold or extreme heat. Data suggest
that the effect of the coldest days on mortality is perhaps rising. The effect of the hottest days is
falling from its peak in the 2000s but is now equivalent to effects observed in the 1990s, although
larger confidence intervals make precise statements challenging (Fig A4). Overall patterns are
robust to iteratively dropping the most populous countries from the sample (Fig A9). Estimated
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total sensitivity of mortality to temperature in Europe is negative, as in the US, but not signifi-
cantly different than zero and is not discernibly trending over time in the annual data. Our results
are thus again consistent with studies finding some near term benefits of warming for mortality
in Europe (12), and studies that have found in more recent data that the “mortality minimizing
temperature” has increased over time in Europe, limiting the impacts of moderate heat (33).

For a smaller sample of 17 European countries, we obtained weekly district-level mortality data
back to 2000, allowing us to evaluate changing sensitivity in more granular data. We again find
small increases in sensitivity to extreme cold and modest declines in sensitivity to extreme heat
over time (Fig A10), consistent with annual data. Given suggestion in the literature that France
in particular responded with adaptive measures following the deadly 2003 European heat wave
(37), we re-estimate models with only French data, which extend back to the 1980s. Consis-
tent with earlier papers, we find a substantial decline in heat-related mortality in the most recent
decade relative to earlier decades, consistent with adaptation (Fig A10, right panels). Importantly,
however, we find that prior to the 2010s, French mortality was substantially more sensitive to heat
relative to elsewhere in Europe, and that recent progress in reducing this sensitivity in France
has only brought this sensitivity down to levels observed elsewhere in Europe. Our findings are
thus consistent with studies that find that extreme heat continues to be a substantial public health
threat across much of Europe (32, 33, 38).

Finally, we study the impact of tropical cyclone winds on all-cause mortality in the US, using
state level monthly mortality data back to the 1950s, following ref (18). As shown in that pa-
per, excess mortality increases for many years after exposure to TC winds. These long-term in-
direct deaths are likely driven by the complex chain of events that follow a tropical cyclone (such
as disruptions in healthcare access and economic losses) and are, therefore, distinct from direct
deaths occurring during the geophysical event, potentially requiring different adaptive strate-
gies. We compare estimates of cumulative excess mortality 15 years after TC exposure, finding
limited change over time in cumulative mortality from TC exposure (Fig 2g). Populations have
on average moved toward rather than away from more TC-exposed states, modestly increasing
population-average sensitivity relative to had population shares remained at 1950 levels (see ref
(18), Fig 4k).

Economic output, income, and productivity Previous work using a half-century of data on
economic output from a global sample of countries documented a non-linear relationship be-
tween temperature and per capita economic growth (5), with marginal warming beneficial in
the coldest countries and harmful in countries with average temperatures above about 13�C . In
updated data, we find that this relationship has not changed over time (3a-b). The sign of the es-
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timated total sensitivity (average marginal effect) depends on whether GDP or population is used
as weights. Using GDP weights, the effect of +1�C warming is positive but not statistically sig-
nificant early in the period, but becomes increasingly negative through time (? < 0.01, Fig A11).
Using population weights, the marginal effect is negative and statistically significant, and is also
becoming increasingly negative through time (? < 0.01). Population-weighted sensitivities are
more negative that GDP-weighted sensitivities because much of the world’s population lives in
warmer regions (where marginal effects of warming are negative) while much of global GDP is
currently produced in countries with moderate climates.

Related work has shown a similar non-linear relationship between temperature and per capita in-
comes in the US (39). We reproduce this relationship in updated data, finding that the negative
effect of a hot day on annual incomes has gotten smaller over time, but that the negative effect of
cold days has also declined (Fig 3c-d). The net effect has reduced the total sensitivity of US in-
comes to temperature (? < 0.01, Fig A11), with effects in the most recent period 20-30% smaller
than in earlier periods.

Using global data on GDP growth and tropical cyclone (TC) exposure between 1965-2019, with
wind field data from ref (19), we replicate and update results from earlier work (17) and docu-
ment large cumulative effects of TC exposure on subsequent growth in GDP. We find no evidence
that the cumulative impact of TC exposure on GDP growth has declined over time (Fig 3c), and
point estimates suggest that this impact has increased but differences are only marginally statisti-
cally significant (Fig A11).

Finally, we reproduce results on the relationship between extreme precipitation and flood dam-
ages in the US, using data from 1988-2017 and following the empirical approach of ref (13),
who documented a log-linear relationship between flood damages and standardized precipita-
tion anomalies. As in that study, we find that the impact of precipitation increases on (log) flood
damages were marginally higher in the final period (2008-2017) as compared to the early period
(1988-1997), again suggesting limited adaptation over our study period (Fig 3d). Because dam-
ages are measured in logs, differential impacts over time are not driven by secular changes in the
value of capital (buildings, infrastructure) that can be destroyed in a storm.

Crime, violence, and injury We revisit earlier findings on the relationship between temperature
and conflict in Africa (10), using 1-degree gridded data on annual temperature and civil conflict
(40) from the African continent between 1990-2019. Following earlier work, we estimate lin-
ear models between temperature and conflict, dividing estimated coefficients by period-specific
baseline conflict risk to account for the fact that average rates of conflict are changing over time.

13



We find that the impacts of temperature on conflict are substantially and statistically significantly
higher in the most recent decade relative to earlier decades (Fig 4a, Fig A12). Because we are
normalizing coefficients by decade-specific baseline rates, this finding is not a mechanical result
of recent increases in the average risk of conflict.

Building on a range of earlier work (41, 42), we also revisit the relationship between violent
crime and temperature in the US, using county-month FBI data on violent crime (43) back to
1980. Consistent with this work, we find a roughly linear relationship between temperature and
the rate of violent crime. However, we see clear evidence that the impact of hot days on crime has
fallen substantially over time (Fig 4b), which has reduced the total sensitivity of violent crime to
temperature by about one-third since the 1980s (Fig A12), although declines have appear to level
off in the last 20 years.

Finally, using cause-specific US mortality data back to 1968, we study two specific types of mor-
tality identified in prior literature as having a relationship with temperature that is plausibly dis-
tinct from the U-shaped all-cause relationship shown in Fig 2: unintentional injuries and suicides
(9, 44, 45). Unintentional injury mortality in our data includes traffic fatalities, drug overdoses,
poisonings, and workplace accidents. For unintentional injuries, we find a somewhat mixed pic-
ture: a meaningful decline in the impact of hot days on injury mortality beginning in the 1990s,
with total sensitivity since 1990 about one-third lower than pre-1990, but roughly stable in the
decades since 1990 and a statistically significant increase in the most recent decade relative to the
2000s (Fig 4c, Fig A12). The decline in total sensitivity to warming is also driven in part by a
modest increase in the sensitivity of injury mortality to extreme cold temperatures.

For suicide, we similarly find a decline in the impact of hot days on suicide risk starting in the
1990s, but also find that the benefit of colder days in terms of reduced suicide mortality have also
increased meaningfully in recent decades (Fig 4d). The net effect of these changes is a modest but
statistically significant increase in total sensitivity of suicide to a 1�C increase in temperature (Fig
A12).

Summary of results To compare adaptation progress across all studied outcomes, we estimate
the annual percentage change in total sensitivity for each outcome across each of their particu-
lar study periods, and compute whether the observed change is statistically distinguishable from
zero (Figure 5). The sign of the annual change in sensitivity depicted in the figure is set such that
negative estimates are settings in which we conclude that adaptation is occurring, i.e. where the
harmful impacts of a given change in a climate variable are being reduced (e.g. EU wheat yields
and temperature) or the benefits are increasing (e.g. EU mortality and temperature). Positive es-
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timates are settings where the harmful impacts of a given change in a climate variable are being
amplified (e.g. African conflict and temperature, Brazilian soy and temperature). Colors denote
the statistical confidence with which we can say whether observed changes are unlikely to be ob-
served by chance, and match the signs as just described.

Across 21 outcomes, we estimate that 6 show statistically significant evidence of adaptation (28%
of outcomes, shown in blue), measured as a change in total sensitivity that reduces the negative
impact of a climate exposure. These include US maize and EU wheat yield sensitivity to temper-
ature, and the sensitivity of EU mortality, US income, US violent crime, and US injury mortality
to temperature. However, some of these improvements are driven either by much higher sensi-
tivities early on in the study period with little recent progress (e.g. US maize), have slowed or
even reversed in most recent decades (e.g. US crime and US injury mortality, see Fig A12), or
are driven by a combination of decreasing sensitivity to extreme heat and increasing sensitivity
to extreme cold (e.g. EU weekly mortality). In this latter case, both changes result in a reduced
sensitivity to +1�C of warming, but only one change is desirable on its own.

For 5 out of 21 outcomes shown in red, we find changes over time in total sensitivity that have in-
creased the negative impact of a climate exposure. These include soy and maize yields in Brazil,
African civil conflict, and suicide in the US. For the remaining 10 outcomes (grey), we find no
statistically significant change in sensitivity over time. This does not necessarily mean that sen-
sitivities are not changing in these settings, but instead that confidence intervals are such that we
cannot rule out meaningful increases or decreases in sensitivity, nor rule out no change in sensi-
tivity for these outcomes.

3 Discussion

Across a broad range of outcomes and climate relevant exposures, we find limited evidence that
sensitivities to climate have declined in a way consistent with adaptation. Only in about one quar-
ter of settings we study do we identify meaningful, ongoing, statistically significant declines in
the overall sensitivity of an outcome to a fixed change in climate. In all other settings, we see
clear evidence that sensitivities increasing or we do not have strong evidence that they are in-
creasing or decreasing. A key methodological insight across settings is the importance of looking
across the entire temperature distribution in order to assess how sensitivities of a given outcome
to temperature are changing. Demonstrable changes in sensitivity at one end of the temperature
distribution could be offset by changes somewhere else in the distribution, as we find consistently
across many different settings, and accounting for the net effect of these different changes can al-
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ter both quantitative and qualitative findings about the speed and nature of adaptation.

Relationship with existing adaptation estimates Our work is related to a large body of exist-
ing work that has estimated how climate sensitivities vary as a function of cross-sectional (spa-
tial) variation in adaptation-relevant factors, for instance finding evidence that the sensitivity of
agricultural yields to extreme heat is lower in places with more irrigation (26, 29), that mortality
is less sensitive to extreme heat in places that are wealthier and/or more frequently exposed to ex-
treme heat (12), and that crime goes up less on hot days in wealthier neighborhoods (46). Our
findings of limited adaptation over time are not necessarily inconsistent with these findings, either
quantitatively or qualitatively (see Fig A8 for a comparison in the US mortality context; estimates
differ in magnitude but not in sign). Cross-sectional sensitivity gradients could reflect the out-
come of longer-run processes that do not emerge on decadal time scales – for instance, recogni-
tion of the health or productivity impacts of a changed (new) climate, or time lags in investments
in the built environment needed to reduce sensitivity to a changed climate. The benefit of project-
ing future impacts with models that specify the (cross-sectional) climatic or societal factors that
shape climate impacts is that these factors themselves can be projected, allowing future impact
projections that account for adaptation. The challenge is that the longer-run adaptations they im-
ply might be slow to emerge on impact-relevant time-scales. Better reconciling cross-sectional
versus time-series differences in sensitivities is a key area for future work.

Similarly, our findings are not inconsistent with other work that has found a substantial decline
in the sensitivity of certain outcomes to specific temperature exposures – e.g., the century-long
decline in the sensitivity of mortality to hot temperatures (14), or a decline in the sensitivity of
mortality to moderate heat in Europe since 2000 (33). Our estimates of recent sensitivities are
quantitatively similar to that work, but suggest that previous progress against extreme heat in par-
ticular has stalled or progressed slowly in both the US and Europe.

Finally, our broader results are consistent with more qualitative synthesis work that seeks to char-
acterize adaptation actions being taken around the world. This work finds that existing imple-
mented human adaptation efforts have been fragmented and incremental, with little evidence of
“transformational” adaptation likely to substantially reduce impacts (15). Our results are, largely,
a quantitative confirmation of these findings.

Explaining and interpreting limited adaptation What explains the relatively limited observed
adaptation in our data? We discuss eight explanations why sensitivities of a given outcome to a
climatic exposure could change (or not) over time, and whether and where these explanations are
likely to be relevant to our findings.
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The first two explanations focus on how the measurement of climate exposures might affect in-
ferences about adaptation. First, classical measurement error in independent variables attenuates
regression coefficient estimates, and so if this measurement error is trending over time – for in-
stance, if data on temperature or cyclones have gotten more accurate over time – then that could
make more recent estimates larger in absolute value, even absent changes in the “true” sensitiv-
ity of an outcome to climate. While this possibility cannot be ruled out, it is unlikely to explain
many of our results. For US temperature data, we rely on a temperature product constructed from
a fixed set of weather stations, and so our results will not be affected by improvements over time
in station coverage. Similarly, at global scale, the number of temperature stations routinely re-
porting to international monitoring networks has actually declined in recent decades (47), per-
haps implying that the simplest measurement error stories (e.g. better measurement through ex-
panded monitor networks) are unlikely to be driving our results. Finally, TC records are notori-
ously incomplete, especially before the second half of the 20th century (48). However, records of
specifically landfalling cyclones – the cyclones that drive the impacts we observe – are generally
considered complete back to at least the 1930s, likely reducing measurement error in our setting
(49). Additionally, our TC exposure metrics are based on mathematical models of wind fields
which are applied consistently to TC track data and do not vary in time (18, 19).

A second explanation is the role of possible changes in other environmental variables that are rel-
evant for measured outcomes. These could be variables whose impact interacts with a climate
variable of interest (e.g., if the effect of a hot day on mortality is higher if average air pollution
is also higher), and/or variables that cause impacts independently but which are more frequently
co-occuring with a climate variable of interest – for instance, if a hot day is more humid or more
likely to have wildfire smoke in recent years, amplifying mortality, or if a given windspeed dur-
ing a tropical storm is now associated with more storm surge or more rainfall, influencing eco-
nomic damages. These changes or interactions, to the extent they are occurring, would be implic-
itly reflected in our sensitivity estimates. A key analytic question is then whether this inclusion
is a benefit or a shortcoming of our approach. To the extent that these changes or interactions re-
flect phenomena that are likely to continue under future warming, then arguably our sensitivity
estimates provide accurate estimates of near-term impacts of changes in the measured climate
variable of interest. If recent correlations or interactions between measured and unmeasured vari-
ables are likely to change substantially in the future, then our sensitivity estimates using recent
data could be a poor guide for future impacts.

Our results are unlikely to be driven by a third explanation about changes over time in the amount
of people or property available to be lost to a hazard – commonly called “exposure”. For in-
stance, the monetized damage from floods could rise over time simply because the value of as-
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sets that are exposed to floods has gone up. This is a common concern when trying to estimate
changes in impacts of societal exposures over time. Our results are unlikely to be driven by this
concern because we consistently use either scale-invariant measures of outcomes – per capita in-
come growth, log-transformed flood damages and agricultural yields, or mortality rates – or we
normalize estimated effect sizes by differences in baseline rates over time (for the case of civil
conflict). Our results do capture (and are meant to capture) the related phenomenon of population
movements and their influence on average sensitivities – for instance, if more people move to hot
locations from cold locations, then the average effect of warming on mortality will rise. Our esti-
mates capture the impact of these “changing exposures”, and show that in most settings they are
relatively modest relative to changing responses conditional on exposure.

A fourth explanation for changing sensitivities is if agents are adopting profit- or livelihood-
maximizing technologies or practices that amplify productivity when climatic conditions are fa-
vorable, at the cost of increasing sensitivity (the difference between favorable and unfavorable
conditions) when conditions are unfavorable. This tradeoff is perhaps most salient in agriculture
where, for instance, increased sowing density of maize in the US (25) or increased fertilizer use
in Brazil have increased overall productivity while also increasing the gap between output in fa-
vorable climate years versus unfavorable ones. This gap can also be amplified by policies that
insure agents against losses in bad years, as has again been observed in agriculture (50). In both
settings, climate is just one of many factors over which farmers are optimizing, and the net effect
of this optimization is to increase overall output while also increasing sensitivity. It is unclear the
extent to which this explanation is relevant in non-agricultural contexts.

A fifth and related explanation concerns “competing risks”, or the possibility that declines in the
importance of other health- or productivity-limiting factors could amplify the importance of cli-
matic variation. In a health setting, declines in the importance of non-climate related causes of
death could increase the relative impact of climate-related causes of death (with the opposite also
possible). In agriculture, highly nutrient-constrained systems might be less affected by a drought
because there is little productivity to lose. Thus, secular changes in these competing risks could
drive changes in observed climate sensitivities. As in the previous explanation, this explanation
offers another setting in which changes in non-climate related factors can increase climate sensi-
tivities.

A sixth explanation concerns what might be termed “incidental” or “indirect” adaptation, re-
sulting from the fortuitous climate benefits of new technologies or practices aimed at raising
overall productivity or improving health and general comfort. This is yet another way in which
changes in non-climate-related factors might alter climate sensitivities. Many documented ex-
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amples exist in the health domain, including widespread adoption of air conditioning (14) (ar-
guably adopted for home comfort rather than as a mortality-reducing tool), stricter gun laws that
decreased temperature-related homicides (51), or the expansion of community health centers
that reduced temperature-related mortality (52). Existing evidence on these indirect adaptations
makes it clear that absence of adaptation in the aggregate does not imply that adaptation is not oc-
curring at smaller scales. Many such secular changes in society are likely reducing sensitivities,
even if those are not (yet) leading to substantial aggregate benefits.

A seventh explanation, likely important in many settings, is the role of information: individu-
als might not recognize that they’re being exposed, might not realize that exposure is impacting
them, or might not know how to respond. A host of recent papers highlight the importance of ad-
equate information for climate adaptation, including the ability of improved forecasts of extreme
heat and cold to reduce mortality and accidents (53, 54), of improved cyclone forecasts to reduce
economic damages (55), and improved seasonal forecasts for agriculture to increase productivity
(56).

A final set of likely explanations for why climate sensitivities can change, or why they have not
changed, is the range of forces that shape the existence, adoption and use of “direct” adaptive
measures – i.e. technologies or practices whose direct purpose is to reduce climate sensitivity.
Examples include the creation and adoption of drought-tolerant crop varieties or expansion of
irrigation in agriculture, or the choice to stay inside on a hot day in response to a public health
messaging about the risks of extreme heat. A standard economic model suggests that adoption
of these technologies and practices have both benefits and costs, and individuals, firms or com-
munities will adopt them up to the point that the benefits of an additional adaptation action just
equal the costs of that action. Under this model of adaptation, we would not expect sensitivities to
change unless the costs or benefits of adaptation have changed – and in many real-world settings,
perhaps they have not appreciably changed. Difficulty in innovating and disseminating new tech-
nologies could keep adaptation costs high (or infinite, if no relevant technology exists). For in-
stance, multiple studies highlight the complex challenges and long time lags involved in develop-
ing new climate resilient crop varieties (57), and arguably we have no demonstrated technology
or practice for limiting the impact of hot temperatures on conflict. Costs could also remain high
due to existing market failures or frictions – for instance, an inability to borrow or insure – and a
growing literature highlights the existence and importance of these frictions for various types of
climate adaptation and disaster recovery (56, 58–60).These frictions intersect with low incomes
in much of the world, including even in wealthier countries – for instance, low income households
in the US often reduce their use of air conditioning on hot days because it is too expensive to run
(60). Maintaining incomes through cash transfers have been shown to help households to main-
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tain consumption and productivity in the face of climate shocks (61, 62).

We emphasize that the optimal climate sensitivity across each of our settings is unlikely to be
zero. Even absent other competing goals, the cost of completely eliminating the impacts of cli-
matic variation likely exceed the benefits. But competing goals are also important, and the goal
of most human activities is not to reduce climate sensitivity but rather to improve other outcomes,
e.g. incomes, productivity, or happiness. Sometimes pursuing these other goals can reduce sen-
sitivity (AC increases comfort and reduces mortality), but sometimes it increases sensitivity (in-
creased planting density increases average yields but raises yield sensitivity to drought). Some-
times both could be happening and the net effect could be no change in sensitivity. Nevertheless,
existing sensitivities imply very large economic and livelihood losses from climatic variation in
today’s climate, and even larger losses under future climate change, representing a substantial
fraction of global economic output and a meaningful contribution to global and local health bur-
dens (3, 12, 18, 63). The combination of these large existing and projected losses, and a rapidly
growing body of research that shows that adaptation is substantially constrained in many settings,
suggests that current levels of adaptation are likely too low. If this is correct, and substantial ag-
gregate damages from a warming climate are to be reduced, then a critical task will be to uncover
which adaptation actions are successful and cost effective, what might constrain their adoption,
and how these constraints can be lessened and adaptation actions scaled.
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Figure 1: Sensitivity of agricultural yields to temperature over time. Each panel shows
decadal sensitivity for the country-crop combo denoted in the panel title, with kinked lines show-
ing the estimated piecewise linear response function to degree days between 0-30�C and above
30�C , by decade for each crop, with the confidence interval shown for the first period response
function. Colors correspond to decades as labeled in panel insets. Inset panels show estimates
of the “total sensitivity” (or estimated effect of a +1�C increase in temperature). Corresponding
p-values on whether sensitivities differ over time are given in Fig A2. The final plot shows the
sensitivity of global agricultural total factor productivity (TFP) to annual temperature. Most set-
tings show stable or increasing sensitivity of yields to temperature, with declines in sensitivity to
extreme heat offset by declining benefits from moderate (<30�C ) temperatures.
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Figure 2: Sensitivity of mortality to temperature and tropical cyclones. a-c. Temperature-
mortality relationship in the US over 1968-2019, using monthly data at the county level. a

Temperature-mortality response functions by decade, with histograms at bottom showing
population-weighted temperature exposure. Confidence intervals are shown for the first period.
b Effect of an additional cold or hot day on monthly mortality by decade, relative to a day at 20�C
. c “Total sensitivity” to +1�C warming over time, measured as the exposure-weighted derivative
of the decadal response functions shown. Overall sensitivity to +1�C of marginal warming is neg-
ative, because populations are currently much more exposed to extreme cold than extreme heat.
Corresponding p-values on whether sensitivities differ over time are given in Fig A2. d-f Same,
for temperature-mortality relationships in EU countries over 1990-2019, using annual data at the
district level. g Relationship between cumulative mortality and tropical cyclone (TC) exposure in
the US using monthly data at the state level, 1952-2015, adapted from ref (18). Each line shows
cumulative excess mortality out 15 years following TC exposure, for 20 year periods starting in
the 1950s. Estimates at right show period-specific cumulative mortality estimates at 15 years af-
ter exposure.



Temperature and global GDP growth

Temperature and US personal income

Tropical cyclones and global GDP growth Extreme precip and US damages

years since storm
0 5 10 15

ï�����

ï�����

ï�����

�����

�����

cu
m

ul
at

ive
 g

ro
w

th
 im

pa
ct

 o
f 1

m
/s

 w
in

d

���������
���������
����ï����

Effect after
15 years

in
co

m
e 

gr
ow

th

ï�� 0 10 �� ��

ï�Hï��

ï�Hï��

ï�Hï��

ï�Hï��

ï�Hï��

0e+00

�Hï��

����ï��
����ï��
����ï��
����ï��
����ï��

E[
dy

/d
T]

ï�����

ï�����

ï�����

ï�����

ï�����

ï�����

�����

����V
1980s

1990s

����V

����V

annual temperature (C)

gr
ow

th
 in

 G
D

P/
ca

p

0 5 10 15 �� �� ��

ï����

ï����

ï����

ï����

ï����

ï����

����

���� ����ï��
����ï��
����ï��

E[
dy

/d
T]

ï�����

ï�����

�����

�����

����ï�� ����ï��

����ï��

GDP

population

GDP-weighted 
population-weighted

daily temperature (C)

monthly precip (sd)

ln
(n

or
m

al
ize

d 
flo

od
 d

am
ag

e)

ï� ï� 0 1 � � 4

ï�

ï�

0

�

4

6

����ï����
����ï����
����ï����

a b
total sensitivity to warming

total sensitivity to warmingc d

e f

Figure 3: Changes in climate impacts on income and economic output over time. a-b Tem-
perature and growth in per capita GDP, 1961-2019, following refs (5, 63). a Period specific re-
sponse functions colored by period, with the confidence interval shown for the first period. Dis-
tributions at bottom show GDP- or population-weighted temperature observations. b Estimated
period-specific average sensitivity, as estimated by computing the average derivative of the period
specific response functions in (a), using either population (red) or GDP weights (black). c-d Tem-
perature and personal income in the US, 1968-2019, following ref (39). Average sensitivities in
(d) calculated using the population-weighted daily temperature distribution shown at the bottom
of panel (c). e Tropical cyclone winds and GDP growth, 1950-2019, following ref (17). f Precipi-
tation and flood damages in the US, 1988-2017, following ref (13).
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Figure 4: Changes in climate impacts on conflict, violence, and injury. a Temperature and
African civil conflict at the annual 1� grid-cell level, 1989-2019. b Temperature and US violent
crime at the county-month level, 1980-2019. c Temperature and US unintentional injury mortal-
ity at the county-month level, 1968-2019. Unintentional injuries include traffic fatalities, over-
doses and poisionings, and workplace accidents. d Temperature and US suicide at the county-
month level, 1968-2019. Each panel shows period specific response functions colored by period,
with the confidence interval shown for the first period. Histograms at bottom show distribution of
temperature exposure in each sample.
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Figure 5: Summary of adaptation findings across outcomes show no consistent evidence of

adaptation. We summarize adaptation as the percentage change in total sensitivity per year over
the listed study period. Total sensitivity is measured as the exposure-weighted derivative of the
outcome with respect to the exposure listed in the third column, and signs indicate whether adap-
tations are reducing any harmful impact of the climate exposure over time (negative) or amplify-
ing a harmful impact over time (positive). Statistical significance of the annual change is denoted
by the color shading, as shown in the key at bottom; darker shades indicates higher confidence
that the estimated effect is unlikely to happen by chance. Six out of 21 outcomes show a statis-
tically significant decline in the impact of a given climate change, five show an increase, and the
remaining 10 show no statistically significant change.
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Figure A1: Understanding changes in societal sensitivity to climate over time. a. A societal
outcome H is related to a climate variable ⇠ via an estimated response function H = 5 (⇠). We
describe sensitivity (“total sensitivity”) as the average slope of this response function, which is
computed as the exposure weighted average derivative ⇢ [ 5 0(⇠)]. b. With a non-linear response
function, overall sensitivity could change between two time periods due to a changing response
function ( 51 ! 52), changing exposure distributions (⇠1 ! ⇠2), or both. Our primary measure of
adaptation is whether the per-period average sensitivity is changing, X = ⇢ [ 5 02 (⇠2)] � ⇢ [ 5 01 (⇠1)].
We then decompose this change in sensitivity into two main components: “changing responses”,
or changes in the response function over time for a fixed exposure (c); and “changing exposures”,
which is itself made up of two components: “changing locations”, or changes in exposure distri-
butions due to spatial relocation of productive units (people, plants, etc) under a fixed response
function and climate (d); and “changing climates”, or changes in exposure distributions due to a
warming climate, with population movements and response functions held fixed (e). ⇠!

2 describes
the period 2 exposure distribution if the climate was exactly as it was in period 1, yet productive
units had spatially relocated to their observed locations in period 2. ⇠⇠

2 describes the period 2
exposure distribution if the location of productive units was exactly as it was in period 1, yet the
climate in each location had changed to its observed period 2 values.
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Table A1: Data sources and References

Sector Country Years Reference Reference

paper

Climate

dataset

Agriculture US 1950-2019 NASS (2023) Schlenker and
Roberts
(2009) (4)

PRISM

Agriculture Brazil 1974-2022 IBGE (2022) ERA5
Agriculture India 1990-2020 ICRISAT

(2023)
ERA5

Agriculture EU 1980-2020 European
Commission-
Directorate-
General for
Agriculture and
Rural
Development
(2023)

E-OBS

Conflict Global 1990-2020 UCDP (2023) Brosché and
Sundberg
(2023) (40)

BEST

Crime US 1980-2019 OpenICPSR
(2023) (43)

PRISM

Mortality European
Union

1960-2020 Eurostat (2023) Carleton et al
(2022) (12)

E-OBS

Mortality France 1980-2019 INSEE (2023) E-OBS
Mortality
(county)

US 1968-2020 CDC
WONDER
(2023)

PRISM

Mortality
(state)

US 1930-2015 US Vital
Statistics

PRISM

Population European
Union

1960-2020 Eurostat (2023) Carleton et al
(2022) (12)

E-OBS

Population US 1968-2020 US census
Bureau (2023)

PRISM
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Figure A2: Statistical tests on whether climate sensitivity is changing over time for

temperature-agriculture relationships shown in Fig 1. Each panel shows tests of whether cli-
mate sensitivities are quantitatively and statistically different between periods. Key is shown at
right. Heatmaps in each panel show pairwise tests of equivalence in sensitivity between periods,
with period years labeled on rows and columns. Boxes are shaded blue if the sensitivity in the
later period is more positive than the earlier comparison period, and red if the later period is more
negative. Darker shading indicates higher significance levels, as calculated using the p-value on a
two-sided test that the sensitivities are the same. Grey shading indicates ? >= 0.1 in a two-sided
test. Numerical values within the boxes report the ratio between the sensitivity in the later period
and the sensitivity in the earlier period. Ratio values are not reported if the sensitivities in the two
comparison periods differ in sign.
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Figure A3: Decomposing changes in agricultural yield sensitivity to temperature. We de-
compose decadal estimates of “total sensitivity” (black dots and whiskers) into changes resulting
from changing response to a given exposure holding the distribution of temperature exposure at
beginning-period levels (grey open circles) and changes resulting from changing exposures hold-
ing responses fixed at beginning-period responses (light grey filled circles).
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Figure A4: Statistical tests on whether climate sensitivity is changing over time for

temperature-mortality relationships shown in Fig 2. Each panel shows tests of whether cli-
mate sensitivities are quantitatively and statistically different between periods. Key is shown at
right. Heatmaps in each panel show pairwise tests of equivalence in sensitivity between periods,
with period years labeled on rows and columns. Boxes are shaded blue if the sensitivity in the
later period is more positive than the earlier comparison period, and red if the later period is more
negative. Darker shading indicates higher significance levels, as calculated using the p-value on a
two-sided test that the sensitivities are the same. Grey shading indicates ? >= 0.1 in a two-sided
test. Numerical values within the boxes report the ratio between the sensitivity in the later period
and the sensitivity in the earlier period. Ratio values are not reported if the sensitivities in the two
comparison periods differ in sign.
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Figure A5: Decomposing changes in mortality sensitivity to temperature. We decompose
decadal estimates of “total sensitivity” (black dots and whiskers) into changes resulting from
changing response to a given exposure holding the distribution of temperature exposure at
beginning-period levels (grey open circles) and changes resulting from changing exposures hold-
ing responses fixed at beginning-period responses (light grey filled circles). Changing sensitivi-
ties in the US are driven substantially by changing responses, with recent increases in sensitivity
driven by a reduction in cold sensitivity and increasing or stable heat sensitivities; changing ex-
posures have also increased sensitivity, due to a combination of population movements to warmer
regions and a warming climate. EU changes in sensitivity have been more muted.
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Figure A6: US all-cause mortality response to temperature by decade, estimated using a

binned model. Each color shows a response function by decade with confidence interval. Con-
sistent with polynomial models, effect of extreme heat fell through the 2000s and then rebounded.
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Figure A7: Increasing exposure to extreme heat in the US as a function of population

growth in warmer areas. Panels show population-weighted average annual exposure to extreme
cold (days <-5�C ) and extreme heat (days >30�C or 35�C ), either as observed in the data (red
lines) or as estimated would have occurred had the spatial distribution of population remained
fixed at its 1970 locations.
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Figure A8: Comparison of US temperature-mortality estimates from this study versus other

recent work. a Comparison of estimated impact of an additional 80�F (black lines) and 90�F day
(orange lines) from Barreca et al (14) through 2004, vs estimates of impacts at those tempera-
tures from this study through 2019 (red and grey lines). Estimates are largely similar for overlap-
ping periods, although suggest less decline in impacts on the hottest days. b-d Contrasting with
this study’s “over-time” model, we estimate an “over-space” model that allows the impact of daily
temperatures to depend on a location’s long-run average temperature, following (12). b. Esti-
mated temperature-mortality relationships from the “over-space” model in the 1970s (blue) and
2010s (red), given the observed +1.85�C (pop-weighted) long-run average temperature increase
over the period. c. Estimated changes in point sensitivities (impacts on mortality for an additional
day at -10�C , 0�C , 30�C , 35�C relative to 20�C ) in the 1970s vs 2010s, for the over-space and
over-time models; colors given in legend. Both models show qualitatively similar declines in sen-
sitivities at hot temperatures, but differing changes at cold temperatures. d. Estimated changes
in total sensitivity for the two models across the two periods. Total sensitivity in the over-time
model has become less negative more rapidly, due in part to estimated declines in cold sensitivity
from that model (versus increases in cold sensitivity from the over-space model); the over-space
model would project statistically significant declines in mortality from an additional +1�C warm-
ing today, whereas the over-time model would project gains that were half as big and not statisti-
cally significant.

41



No drops

temperature (C)

lo
g 

an
nu

al
 m

or
ta

lit
y 

ra
te

−10 0 10 20 30

−2e−04

0e+00

2e−04

4e−04

6e−04

8e−04

1e−03

1990s
2000s
2010s

No Germany

temperature (C)

lo
g 

an
nu

al
 m

or
ta

lit
y 

ra
te

−10 0 10 20 30

−2e−04

0e+00

2e−04

4e−04

6e−04

8e−04

1e−03

1990s
2000s
2010s

No France

temperature (C)

lo
g 

an
nu

al
 m

or
ta

lit
y 

ra
te

−10 0 10 20 30

−2e−04

0e+00

2e−04

4e−04

6e−04

8e−04

1e−03

1990s
2000s
2010s

No United Kingdom

temperature (C)

lo
g 

an
nu

al
 m

or
ta

lit
y 

ra
te

−10 0 10 20 30

−2e−04

0e+00

2e−04

4e−04

6e−04

8e−04

1e−03

1990s
2000s
2010s

No Italy

temperature (C)

lo
g 

an
nu

al
 m

or
ta

lit
y 

ra
te

−10 0 10 20 30

−2e−04

0e+00

2e−04

4e−04

6e−04

8e−04

1e−03

1990s
2000s
2010s

No Spain

temperature (C)

lo
g 

an
nu

al
 m

or
ta

lit
y 

ra
te

−10 0 10 20 30

−2e−04

0e+00

2e−04

4e−04

6e−04

8e−04

1e−03

1990s
2000s
2010s

No Poland

temperature (C)

lo
g 

an
nu

al
 m

or
ta

lit
y 

ra
te

−10 0 10 20 30

−2e−04

0e+00

2e−04

4e−04

6e−04

8e−04

1e−03

1990s
2000s
2010s

No Turkey

temperature (C)

lo
g 

an
nu

al
 m

or
ta

lit
y 

ra
te

−10 0 10 20 30

−2e−04

0e+00

2e−04

4e−04

6e−04

8e−04

1e−03

1990s
2000s
2010s

Figure A9: EU mortality results are robust to dropping individual countries from the sam-

ple. Results are as in Figure 2c, but with the country in the panel title dropped from the EU sam-
ple. Top left panel is the full sample result.
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Figure A10: EU mortality results using weekly data for 17 EU countries (2000-2019) and

for France (1980-2019). First three columns use the 2000-2019 data across 17 countries, show-
ing decadal temperature-mortality relationships (top row) and point sensitivities (bottom row).
Columns show estimates for the 17 countries pooled, for that sample without France, and for only
France. The last column extends the French data to 1980. France succeeded in reducing heat-
related mortality in the most recent decade, but relative to a very high baseline in prior decades;
sensitivities in the most recent decade now appear on par with the rest of the European sample.
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Figure A11: Statistical tests on whether climate sensitivity is changing over time for climate-

output relationships shown in Fig 3. Each panel shows tests of whether climate sensitivities are
quantitatively and statistically different between periods. Key is shown in bottom right. Heatmaps
in each panel show pairwise tests of equivalence in sensitivity between periods, with period years
labeled on rows and columns. Boxes are shaded blue if the sensitivity in the later period is more
positive than the earlier comparison period, and red if the later period is more negative. Darker
shading indicates higher significance levels, as calculated using the p-value on a two-sided test
that the sensitivities are the same. Grey shading indicates ? >= 0.1 in a two-sided test. Numeri-
cal values within the boxes report the ratio between the sensitivity in the later period and the sen-
sitivity in the earlier period. Ratio values are not reported if the sensitivities in the two compari-
son periods differ in sign.
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Figure A12: Statistical tests on whether climate sensitivity is changing over time for climate-

conflict relationships shown in Fig 4. Each row shows results for a different outcome. Panels
in the left column show the effect of an additional hot or cold day on the outcome, relative to a
day spent at 20C, for responses with a non-linear response function; panel is omitted for African
conflict (top row) which has a linear response function. Middle column reports changes in total
sensitivity, right column the p-values on decadal changes in total sensitivity. Shading is as in pre-
vious plots, using key in upper left of plot.
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