
NBER WORKING PAPER SERIES

PREDICTABLE STOCK RETURNS: REALITY OR STATISTICAL ILLUSION?

Charles R. Nelson

Myung J. Kim

Working Paper No. 3297

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
March 1990

We are grateful to John Campbell for providing us with the data set assembled
by him and Robert Shiller. Helpful comments from Andrew Lo, Pierre Perron,
Richard Startz and participants in seminars at the Federal Reserve Board,
Princeton University, and the University of Washington are acknowledged with
thanks, but responsibility for errors is entirely that of the authors. This
paper is part of NBER's research program in Financial Markets and Monetary
Economics. Any opinions expressed are those of the authors and not those of
the National Bureau of Economic Research.



NBER Working Paper #3297
March 1990

PREDICTABLE STOCK RETURNS: REALITY OR STATISTICAL ILLUSION?

ABSTRACT

Recent research suggests that stock returns are predictable from
fundamentals such as dividend yield, and that the degree of predictability
rises with the length of the horizon over which return is measured. This paper
investigates the magnitude of two sources of small ssmple bias in these
reaults.

First, it is a standard result in econometrics that regression on the
lagged value of the dependent variable is biased in finite samples. Since a
fundamental such as the price/dividend ratio is a statistical proxy for lagged

price, predictive regressions are potentially subject to a corresponding small
sample bias. This may create the illusion that one can buy low and sell high
in the sample even if the relationship is useless for forecasting. Second,
multiperiod returns are positively autocorrelated by construction, raising the
possibility of spurious regression. Standard errors which are computed from
the asymptotic formula may not be large enough in small samples.

A set of Monte Carlo experiments are presented in which data are generated
by a version of the present value model in which the discount rate is constant
so returns are not in fact predictable. We show that a number of the
characteristica of the historical results can be replicated simply by the
combined effects of the two small sample biases.
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Introduction

The proposition that stock returns are not predictable was until very
recently regarded as one of the most (some would say the only) firmly
established empirical results in economics. In his classic 1965 paper
"The Behavior of Stock-Market Prices" Eugene Fama concluded that it had
'presented strong and voluminous evidence in favor of the random walk
hypothesis." Subsequent research over the next two decades only
reinforced the evidence that neither past returns nor publicly available
information were of any value in prediction. This large literature was
widely interpreted as providing strong evidence that the capital markets
are efficient in the sense of incorporating all available information in
current prices. The extent to which the non-predictability result has been
overturned in just the last few years in reflected in the opening
statement in a recent paper by Fama and French (1988): "There is much
evidence that stock returns are predictable." They cite estimates made by
themselves and others that 25 to 40% of the variance in returns over
periods of three to five years is predictable from past returns.

Two sources of predictability have been identified in the recent
literature: past returns themselves and "fundamentals" such as dividend
yield and price-earnings ratios. Poterba and Summers (1988) and Fama
and French (1988b) report negative autocorrelation in returns over long
horizons. Apparently, moves in prices tend to be reversed over several
years, a tendency referred to as mean reversion. Lo and MacKinlay (1988)
have reported evidence of positive autocorrelation at lags measured in
weeks, suggesting persistence in returns over shorter periods. In an
earlier paper (see Kim, Nelson and Startz (1989)) we have questioned the
strength of the evidence for mean reversion over long horizons by
demonstrating its dependence on pre-1947 data and by showing that
randomization methods suggest that estimated standard errors may have
been too small

The hypothesis that fundamentals should be useful in predicting
stock returns follows from the seminal paper of Shiller (1981) which
concluded that stock prices move too much to be justified by subsequent
movement in dividends, If stock prices contain transient components
unrelated to fundamentals but are anchored to fundamentals over the long
term, then the fundamentals should contain information that is useful in
predicting the future direction of prices. Indeed, Keim and Stambaugh
(1986), Campbell and Shiller (1988), Fama and French (1988) and Cutler,
Poterba, and Summers (1989) report that lagged ratios of dividends or



earnings to price may explain more than 25% of the variation in stock
returns measured over intervals of several years.

A finding that stock returns are to some extent predictable would
not of itself contradict the efficient markets hypothesis since expected
returns may well vary over time in a predictable way. Whether the
observed degree of predictability constitutes evidence against efficient
markets is, however, a subject of continuing debate in the literature.
Cecchetti, Lam and Mark (1990) show that mean reversion can be a
property of equilibrium returns in an economy where investors are risk
averse.

The purpose of this paper is to consider the extent to which
inferences about the predictability of stock returns might be influenced
by small sample biases. One source of concern that we have comes from
the use of multi-period overlapping stock returns data which introduces
positive Serial correlation by construction. For example, if annual one-
year returns are serially random then overlapping annual observations on
ten-year returns will have a MA(9) structure with first order
autocorrelation equal to 0.9 by construction. Granger and Newbold (1974)
cautioned against interpreting a high R2 as evidence in itself of a
relationship when the data are positively autocorrelated. Hansen and
Hodrick (1980) and subsequent authors have recognized the need to correct
regression standard errors in the case of overlapping observations. We
are interested in investigating the adequacy of the correction in relevant
sample sizes.

Another potential small sample problem is closely related to the
bias which occurs in regressions involving a lagged dependent variable. To
motivate the possibility of such a bias, consider the regression of the log
of price, denoted p, on its lagged value,

= a+ b

If price is a random walk with drift then the true coefficient of is

one. It is a standard result in econometrics that least squares is biased in
regression on a lagged dependent variable for finite samples, and in this
case we know the sample slope coefficient b to be biased towards zero;
see Fuller (1976) and Evans and Savin (1984). Subtracting lagged price
from both sides of the equation we have

2



tt-i a+b' ti
where b' = (b-i). In the case that price is a random walk, the true slope is
zero but the expected value of the OLS coefficient b' is negative. Evans
and Savin show that the bias is a decreasing function of the true value of
the intercept "a" and of the sample size n. Thus, it will appear that the
change in price is predictable from the price level.

The effect of the small sample bias is, therefore, to create the
statistical illusion that it is possible to buy low and sell high when in
fact future price changes are unpredictable in real time. To illustrate
this we make use of the approximation due to Kendall (1954) which
implies an expected value for b' of -(4/n) where n is the number of
nonoverlapping observations. While this approximation was derived for
stationary processes, it works well in the sample and parameter range
relevant in this paper. Combining the bias in b' with the standard formula
for the intercept in OLS one obtains the following expression for the
predicted price change:

- Pt-i) — (P - Pi) - (4/n) (Pt-i - p).

The regression says that the predicted price change is the average of past
changes minus a fraction of the amount that the most recently observed
price exceeds the average level of past prices. In other words, during the
sample period it would have paid to buy when the price was below the
average level in the sample and sell when it was above. The catch of
course is that this rule for trading uses information that was only
available after the sample period was over. The expected future price
change given information available today is still just the drift parameter
of the random walk.

Regressions of return on the log of the dividend-price ratio differ
from this regression by the addition of the dividend return to the
dependent variable and by the subtraction of the dividend from the
explanatory variable, namely

- nt-i + rdt = a + b" (Pti - dti)

where rd is the dividend return. In effect, the explanatory variable is now
only one component of the log of price, the other component being the log
of the dividend. Intuition would suggest that the size of the bias in b"
would depend on the degree to which the price/dividend ratio is a proxy
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for price. If the dividend series is smooth then variation in (p - d) will be
dominated by variation in p and the two will be strongly correlated over a
finite sample. This correlation is apparent in the annual Standard and
Poor's Index data from Campbell and Shiller (1988) plotted in Figure 1 for
the period 1871-1986.

I. Lagged Price as a Predictor of Stock Returns

If lagged dependent variable bias is an important factor in the
apparent predictive power of ratios involving price, then price by itself
should also predict stock returns. The coefficients for the log of price
and for the log of the price/dividend ratio should both be negative,
reflecting the negative bias in regression on a lagged dependent variable.
In Table 1 are reported the regression coefficients, t-ratios, and R2 for a
set of regressions based on those reported by Campbell and Shiller (1988)
using their annual data set for the Standard and Poor's Index 1871-1987.
The dependent variable is total return on the Index adjusted for inflation
using the PPI. Explanatory variables are logs of the ratio of price to
lagged dividends, versions of these using 10 and 30 year moving averages
of dividends (denoted by superscripts), and the price alone. Note that
price is measured at the beginning of year t and dividends are paid during
year t. Return is measured alternatively over one year and overlapping
three and ten year intervals. For each combination of return and
price/dividend ratio there is a sample-matched regression on price.
Following Hansen and Hodrick (1980), standard errors for t-ratios take
into account the serial correlation induced by overlapping observations;
see Appendix 1. The resulting ratio of coefficient to asymptotic standard
error is denoted HH t(b).
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Table I
OLS Coefficient, HH t-ratio, and R2 for Predictive Regressions
Real Total Return for the Standard and Poor's Index 1871-1987

b HH t(b)

Predictor: One Year Return
(p - d) -.12 -2.33 .039
p -.06 -2.41 .036

(p - d10) -.08 -1.85 .025
p -.06 -2.25 .035

(p - d30) -.11 -3.03 .061
p -.07 -2.16 .037

Three Year Return
(p - d) -.36 -3.00 .110
p -.17 -2.96 .120

(p - d10) -.24 -2.26 .077
p -.18 -2.70 .110

(p - d30) -.33 -3.47 .186
p -.21 -2.60 .121

Ten Year Return
(p - d) -.97 -3.42 .267
p -.57 -5.16 .397

(p - d10) -.94 -4.54 .372
p -.59 -4.44 .359

(p - d30) -1.02 -6.66 .559
p -.68 -5.16 .393
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As predicted by lagged dependent variable bias, all the slope
coefficients are negative. Further, price by itself has about as much or
more explanatory power and statistical significance as do the ratios of
price to the lagged dividends and to the 10 year moving average of
dividends. The coefficient on the price/dividend ratio is larger that on
price in every case, reflecting in part the smaller sample variance of the
ratio. While these features of the historical regressions are consistent in
direction with the bias explanation of predictability, they are also
consistent with the hypothesis that price itself is a source of information
on future returns. We know of no economic motivation, however, for such
a hypothesis. Further, it would imply that expected return is
nonstationary with a positive drift through time since that is true of the
price level.

Note that the longer the horizon over which return is measured, the
greater is the fraction of variation that is predicted and the stronger is
the statistical significance. The increase in R2 with return horizon has
been emphasized in this literature as a strong and important feature of
the empirical evidence. However, the positive serial correlation induced
by overlapping observations would in itself tend to increase R2. Granger
and Newbold (1974) showed that the expected value of rises with the
degree of autocorrelation regardless of any relation between the
variables, creating a spurious correlation. They conclude (op cit p. 114):
"Thus, a high value of R2 should not, on the grounds of traditional tests, be
regarded as evidence of a significant relationship between autocorrelated
series." The t-ratios are therefore of greater relevance in judging
whether predictability increases with return horizon. However, since
price by itself shares this property with the ratios, the horizon effect
may also reflect the fact that the bias is a decreasing function of (non-
overlapping) sample size which is reduced by the calculation of returns
over longer horizons. The relation of significance to horizon may also
involve the small sample properties of the HH standard errors used in the
case of overlapping returns.

When the 30 year moving average of dividends used in calculating
the price/dividend ratio it results in greater the explanatory power and
statistical significance than price alone. One consequence of a longer
moving average is shortened sample size and therefore larger bias, but
price by itself in the sample-matched regressions shows no
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correspondingly large effect. Similarly, increased small sample bias in
the HH standard errors would also have shown up in regressions on price
alone. Whether the 30 year results are too large to be attributed to
sampling error depends on the unknown small sample distribution.

The next section of the paper describes a Monte Carlo experiment
designed to investigate the extent to which the main features of the
historical results can arise in hypothetical data where price does in fact
adjust fully to fundamentals and returns are not predictable.

II. Monte Carlo Estimates of Small Sample Bias

The strategy behind a Monte Carlo experiment is to generate
artificial data under the null hypothesis and tabulate the empirical
distribution of sample statistics. We take as our null hypothesis the
present value model of stock prices which says that the price is the
discounted present value of expected dividends or net cash flow. This is,
however, an incomplete specification since we need to say how
information about the future is generated and how the term structure of
discount rates moves over time. The actual predictability of returns will
depend on these details of the complete specification and, as we shall see,
the small sample bias in predictive regressions will also. For this reason
there cannot be a unique bias, rather we can only report the bias found
under particular specifications which at least account for some
observable features of the data.

To complete the null hypothesis we assume that expected future real
dividends are discounted at rate r which is constant through time. Under
this specification, expected real return is of course constant through time
and equal to r. The actual predictability of real returns is zero, so any
that we find in predictive regressions is spurious. To investigate the
effect of dividend smoothing on the bias we assume a version of the
Lintner (1956) model with values of the smoothing parameter taken over a
range suggested by the historical data. We anticipate that a smoother
dividend series will produce stronger spurious predictability as the
price/dividend ratio becomes a better proxy for price.

The target level of dividends toward which actual dividends adjust
has the character of a long horizon forecast. From the result of Beveridge
and Nelson (1981) it will therefore be a random walk with drift. The
generating process is then
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dt=dti +y+ Ut

where dt is the target level for the log of dividends that is established

in period t, y is the long run growth rate of dividends, and u is i.i.d. N(0,2).
The actual dividend paid during t depends on d and on past history

according to the partial adjustment equation

dt = dti + A (dti - dti).

These two equations specify the process for actual dividends and
therefore the forecasting equation used to calculate price through the
present value formula. As in the C&S data, price is generated at the
beginning of the period (year) conditional on observed dividends through t-
1. Since d is the long horizon forecast of d, it is irrelevant whether we
assume that agents know d explicitly or simply forecast the actual
dividend.

Values for parameters gamma and 2 to used in the simulation were
obtained from corresponding sample 0mt5 for p since the change in p
will be dominated by the change in d for a constant discount rate. These
are .015 and .03 respectively. The discount rate is the historical average
real return, .066. We expect the lagged dependent variable bias to depend
on the degree to which (p-d1) is a proxy for p, which will in turn increase
as we consider smaller values of A. The AR(1) model estimated for
historical dividends suggests a value of A of about .2 with a standard error
of 0.1, but it is clear that A was considerably smoother after WWII than
before. To see how the bias varies with A we examine results for A equal
to 0.5 and 0.1, denoted experiments A and B respectively, representing a
range that includes the point estimate. The process is given 100 periods
to stabilize before the sample data are taken. The number of replications
is 1000 and the random disturbances driving the d process are normally
distributed. Further details may be found in Appendix 2.

Tables II, Ill, and IV present Monte Carlo estimates of the
distribution of the slope coefficients, R2, and their t-ratios respectively
for this model. Sample size is initially set at 116 for comparison with
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the historical Standard and Poor's results from C&S which are tabulated
for comparison. The dependent variable is total return over, successively,
one, three and ten periods. The predictive variables are the log of the
ratio of price to dividends and to ten and thirty year moving averages of
dividends as well as the log of price by itself. In addition, a random walk
variable called z which is unrelated to anything else is also a used as a
predictive variable to check the distributions of t-ratios computed using
the HH correction in the case of multiperiod returns and to calibrate the
distribution of R2 (the coefficient of z having expectation zero).
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Table II A

Empirical Distribution of the Slope Coefficient
Speed of Adjustment of Dividends: . = 0.5

Sample Size is 116

Monte Carlo: Fractiles
Predictor Historical Mean .025 .975

One Year Return
(p-d) -.12 -.03 -.38 .26
p -.06 -.04 -.12 .01

(p - d10) -.08 -.03 -.16 .07

(p - d30) - .11 - .04 - .1 7 .03

Three Year Return
(p-d) -.36 -.09 -.81 .66
p -.17 -.10 -.35 .02

(p - d10) -.24 -.07 -.39 .18

(p - d30) - .33 - .11 - .43 .09

Ten Year Return
(p - d) -.97 -.28 -1 .58 1.44
p -.57 -.31 -.88 .10

(p - d10) -.94 -.18 -.83 .56

(p - d30) -1.02 -.31 -1.06 .26
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Table II B

Empirical Cumulative Distribution of the Slope Coefficient
Speed of Adjustment of Dividends: . 0.1

Sample Size is 116

Monte Carlo: Fractiles
Predictor Historical Mean .025 .975

One Year Return
(p - d) -.12 -.04 -.17 .05
p -.06 -.03 -.11 .01

(p - d10) -.08 -.03 -.13 .03

(p - d30) -.11 -.04 -.13 .02

Three Year Return
(p-d) -.36 -.11 -.46 .14
p -.17 -.09 -.31 .02

(p - d10) -.24 -.09 -.35 .08

(p - d30) -.33 - .11 -.39 .05

Ten Year Return
(p - d) -.97 -.30 -1.07 .38
p -.57 -.26 -.74 .06

(p - d10) -.94 -.24 -.82 .23

(p - d30) -1.02 -.29 -.90 .17
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Slope coefficients

The slope coefficients are negatively biased in all of these
regressions. When price level is the explanatory variable, Kendall's
approximation, (-4/n) where sample size n is taken to be the number of
non-overlapping observations, provides a good rule of thumb for the
magnitude of the bias. For one year returns we have -0.035, for three year
returns -0.104, and for ten year returns -0.348. Thus, reduction in
effective sample size explains why the multiperiod return regressions are
more biased than those for one period returns.

The bias in the regression on (p - d) is larger when ? is 0.1 than
when X is 0.5. The more smoothing there is of dividends the more (p - d)
reflects variation in price and is therefore a better proxy for price. The
fractiles also show that the sampling distribution of the ratio coefficient
becomes more like that of the price coefficient with smaller values of ?..
The influence of ?. on bias is smaller when the moving average of dividends
is used to calculate the ratio, presumably since dividends are smoothed
anyway by the moving average. Recall that the coefficients for the ratios
were larger in magnitude than those for price in the historical
regressions. This is also the case on average in the artificial data when X
is 0.1.

Calculation of the price/dividend ratio using a moving average of
dividends evidently has offsetting effects. As we go from no smoothing to
the ten year moving average the bias decreases in magnitude. The
averaging of dividends has a smoothing effect, tending to make the ratio a
better proxy for price, and a noise-introducing effect since variation in
the moving average involves lagged dividend innovations which are
irrelevant to current price. When we go to the thirty year moving average
from ten years, the bias increases in magnitude. Observations are lost in
calculating the moving average and the smaller sample size tends to
increase the bias.

To what degree do the sampling distributions of the Monte Carlo
experiments account for the historical results? The negative signs of the
coefficients, the increase in magnitude with the horizon over which return
is measured, the coefficient for the ratio being larger than the coefficient
of price alone, and the U-shaped pattern with respect to the length of the
moving average of dividends are common to both. The historical
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coefficients, however, are larger in magnitude than the Monte Carlo
means. One is outside the 95% range for A equal to 0.5 and two are outside
for equal to 0.1; all these cases are for ten year returns with dividend
averaging. Of course, these are not statistically independent.
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Table Ill A

Empirical Cumulative Distribution of R2
Speed of Adjustment of Dividends: = 0.5

Sample Size is 116

Monte Carlo: Fractile
Predictor Historical Mean .95

One Year Return
(p - d) .039 .009 .034
p .036 .023 .065

(p - d0) .025 .011 .042

(p - d30) .061 .018 .067

z na .009 .033

Three Year Return
(p - d) .110 .016 .059
p .120 .066 .186

(p - d°) .077 .029 .109

(p - d30) .186 .050 .179

z na .025 .094

Ten Year Return
(p - d) .267 .028 .103
p .397 .197 .481

(p - d10) .372 .066 .233

(p - d30) .559 .139 .445

z na .077 .274
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Table Ill B

Empirical Cumulative Distribution of R2
Speed of Adjustment of Dividends: . — 0.1

Sample Size is 116

Monte Carlo: Fractile
Predictor Historical Mean .95

One Year Return
(p - d) .039 .011 .042
p .036 .024 .068

(p - d10) .025 .013 .047

(p - d30) .061 .021 .067

z na .008 .032

Three Year Return
(p - d) .110 .031 .111
p .120 .070 .184

(p - d10) .077 .038 .133

(p - d30) .186 .059 .186

z na .023 .088

Ten Year Return
(p - d) .267 .082 .279
p .397 .204 .490

(p - d10) .372 .101 .341

(p - d30) .559 .165 .479

z na .075 .278
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A2

Monte Carlo estimates of the mean of for the ratios increase
with return horizon. This reflects the spurious regression phenomenon
identified by Granger and Newbold (1974) arising from the induced
positive autocorrelation of multiperiod returns, which is confirmed by
similar results for z (the unrelated random walk variable).

The mean also increases with the length of the moving average
for dividends. This second effect partially reflects decreased sample size
since sample-matched regressions on price alone (not displayed) show a
similar but less dramatic increase. It is also partially due to the ratio
becoming a better proxy for price as the length of the moving average
increases.

Note that price by itself has more explanatory power than do the
ratios. The smaller value of ? makes actual dividends smoother, so again

the ratio is a better proxy for price resulting in higher mean R2.

The pattern of historical values is similar but not entirely
consistent with the Monte Carlo sampling distribution. Historical R2 does
rise with horizon over which the return is calculated. Taking a ten year
moving average of dividends does not increase R2 in the one and three year
regressions, but it does when we go to a thirty year moving average. Price
by itself has a larger R2 for the three and ten year returns regressions.
Finally, the historical R2 for the ratios are compared to the .95 fractile of
the sampling distribution since it is only large values of the statistic that
contradict the null hypothesis. Note that the value of ?. has a large impact

on the .95 fractile. Historical exceed the .95 fractile for all of the ten
year, two of the three year, and one of the one year return regression when
we assume ? is .5. When the dividend process is more smooth with ?. equal
to 0.1, all but two of the ten year return results are within the range.
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Table IV A

Empirical Cumulative Distribution of the HH t-ratio
Speed of Adjustment of Dividends: . = 0.5

Sample Size is 116

Monte Carlo: Fractiles
Predictor Historical Mean .025 .975

One Year Return
(p - d) -2.33 -.17 -2.22 1 .85
p -2.41 -1.41 -3.39 .57

(p - d10) -1.85 -.39 -2.61 1.63

(p - d30) -3.03 -.79 -2.90 1.26

z na .02 -2.03 1.99

Three Year Return
(p - d) -3.00 -0.35 -2.93 1.84
p -2.96 -1.76 -4.37 .58

(p - &0) -2.26 -.52 -3.09 1.87

(p - d30) -3.47 -1.05 -3.86 1.36

z na 0.01 -2.59 2.49

Ten Year Return
(p - d) -3.42 -.81 -4.57 1.81
p -5.16 -2.45 -6.89 1.03

(p - d'0) -4.54 -.95 -5.18 1.98

(p - d30) -6.66 -1.71 -6.83 1.68

z na .03 -3.39 3.49
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Table IV B

Empirical Cumulative Distribution of the HH t-ratio
Speed of Adjustment of Dividends: ?. = 0.1

Sample Size is 116

Monte Carlo: Fractiles
Predictor Historical Mean .025 .975

One Year Return

(p - d) -2.33 -.62 -2.61 1.39

p -2.41 -1 .49 -3.24 .40

(p - d10) -1.85 -.74 -2.65 .1.17

(p - d30) -3.03 -1 .02 -2.83 .99

z na -.05 -2.08 1.88

Three Year Return
(p - d) -3.00 -.82 -3.45 1.53

p -2.96 -1.82 -4.35 .51

(p - d10) -2.26 -.94 -3.59 1.45

(p - d30) -3.47 -1.30 -3.98 1.18

z na -.06 -2.50 2.30

Ten Year Return

(p - d) -3.42 -1.31 -5.34 1.54

p -5.16 -2.48 -7.43 .64

(p - d10) -4.54 -1.39 -5.46 1.48

(p - d30) -6.66 -1.97 -6.72 1.38

z na -.06 -3.57 3.37
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The t-ratio

There are two issues to be investigated with regard to the sampling
distribution of the t-ratio, which is the ratio of the OLS slope coefficient
to the HH standard error. One is the negative shift in the distribution due
to the negative bias in the coefficient. The other is the appropriateness
of the HH correction for autocorrelation induced by overlapping
muftiperiod returns. To isolate the latter effect we included z, the
unrelated random walk series, as another predictor of returns.

The distribution of the t-ratio for the case of autoregression when
the data are a driftless gaussian random walk has been investigated by
Dickey (1976), Fuller (1976) and Dickey and Fuller (1979), and it is
centered around roughly -1 .5 for any sample size larger than 25. This is
essentially what we see in Table IV for the regression of one year return
on lagged price and estimated fractiles also compare closely with Table
8.5.2 of Fuller (1976). The rate of drift of the price series is not large
enough to have an important effect on the distribution along the lines
suggested by Evans and Savin (1984). We expect that the effect of a
slower rate of adjustment of dividends will be to make the distribution of
the t-ratio for the price/dividend ratio more like that for price by itself.
This is what we see in Table IV as a slower speed of adjustment or a
longer moving average is considered.

A multiperiod horizon for the return introduces positive
autocorrelation in the residuals which the HH correction is designed to
take into account. If we did not use the correction then standard
econometric theory leads us to expect too large a dispersion for the t-
ratio, but if the correction is successful the range between the .025 and
.975 fractiles should be roughly 4. What we see in Table IV is that this
range increases to about 5 for three year returns and to about 7 or 8 for
ten year returns. Since the z variable shows the same pattern the
spreading is clearly due to the HH adjustment to the standard error not
being large enough to correct for autocorrelation. Of course, the HH
standard errors would be correct asymptotically so this can be viewed as
another small sample bias.

While the historical t-ratios are larger in magnitude than the
sampling means, they are generally within the .025-.975 range. With X at
0.5 there are three exceptions, and with ). at 0.1 the single exception is
for the regression of the one year return on the ratio which uses the 30
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year moving average of dividends. The difference between taking the
historical t-ratios at face value and taking them as drawings from the
sampling distributions of this experiment is the difference between a
significance level around .05 and one that is infinitesimal. Equivalently,
it is the difference between a test statistic that is about two standard
deviations from the mean and one that is 3 to 6.

Ill. Larger Sample Size and Monthly Data

In this section we describe two additional experiments designed to
show how small sample bias changes with sample size and with more
frequent intervals of observation. In the first experiment we simply
double the sample size to 232 while retaining the annual observations
generating model. In the second experiment we consider what happens if
prices and returns are observed monthly. This is different from just going
from n=116 to n=12x116 because ? is the annual rate of adjustment of
dividends. The results for the first experiment are given in Table V for a
? value of 0.1.
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Table V

Empirical Means of the Slope, R2, and HH t-ratio
Speed of Adjustment of Dividends: = 0.1

Sample Sizes 116 and 232 Years

Slope R2 HH t-ratio
Sample N: 116 232 116 232 116 232

One Period Return
(p - d) - .04 - .02 .011 .005 -.62 -.46
p -.03 -.01 .024 .009 -1.49 -1.15

(p - d10) -.03 -.01 .013 .005 -.74 -.52

(p - d30) -.04 -.01 .021 .007 -1.02 -.68

z .008 .004 -.05 ..05

Three Period Return
(p - d) -.11 -.05 .031 .014 -.82 -.57
p -.09 -.03 .070 .026 -1.82 -1.35

(p - d10) -.09 -.04 .038 .016 -.94 -.63

(p - d30) -.11 - .04 .059 .020 -1.30 -.82

z .023 ..013 -.06 ..06

Ten Period Return
(p - d) - .30 -.16 .082 .037 -1.31 -.79
p -.26 -.09 .204 .085 -2.48 -1.61

(p - d10) -.24 -.12 .101 .044 -1.39 -.81

(p - d30) -.29 -.12 .165 .060 -1.97 -1.03

z .075 ..044 -.06 ..06
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The work of Dickey, Fuller and Evans and Savin give some guidance
about what we should expect to see when the number of annual
observations is doubled. For regression on the lagged level of a driftless
random walk we know that the bias is proportional to 1/n, and the results
of Evans and Savin (1984) suggest that the bias will decrease faster in
the presence of a nonzero expected change. The bias for the coefficient of
lagged price is indeed about a third as large when n is doubled, and there
is a similar decrease for the price/dividend ratio. The t-ratio is
essentially independent of sample size in the driftiess random walk case,
and this implies that R2 will decline in proportion to 1/n. We see in Table
V that the decline in mean R2 is somewhat faster than this, relecting a
decline in mean t-ratios with the doubling of n. These results suggest
that the erroneous inference of predictability becomes less of a problem
as sample size grows.

Recall that the sampling variance of the t-ratio was also too large
for three and ten year returns because the HH correction for overlapping
observations was not large enough. Fractiles of the t-ratio which are not
shown confirm that the sampling distribution is also becoming less
disperse with sample size, although it is still too large. For n=116 the
distances between the .025 and .975 fractiles were approximately 4, 5,
and 7 for one, three and ten year returns respectively when the
independent variable was (p-d). For n232 these distances become
approximately 4, 4.8, and 5.5. A similar pattern was also found when the
predictive variable was the unrelated random walk z. Thus the
contribution of overlapping observations to the inference of predictability
yields only slowing to increasing sample size.

In the second experiment we consider the whether monthly
observations instead of annual mitigate small sample bias. The data
generating mechanism has the same form as that for annual data except
that the target dividend process is monthly with drift and variance one
twelfth as large. Actual dividends adjust toward the target at one
twelfth the annual rate (?.) and price is calculated from the discounted
present value of expected future divdiends each month. We have
12x1161392 monthly observations on total return, the log of price, and
the price/dividend ratio. Results for one period return regressions are
reported in Table VI.
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Table VI

Empirical Distribution of the Slope, R2, and HH t-ratio
Annual Speed of Adjustment of Dividends: = 0.1

Sample Sizes are 116 Years and 1392 (12x116) Months

Slope Coefficient
Mean .025 fractile .975 fractile

(p-d)
Annual -.04 -.17 .05
Monthly -.003 -.011 .003

p
Annual -.03 -.11 .01
Monthly -.002 -.007 - .00

R2
Mean .95 fractile

(p-d)
Annual .011 .042
Monthly .001 .003

p
Annual .024 .068
Monthly .002 .005

HH t-ratio
Mean .025 fractile .975 fractile

(p-d)
Annual -.62 -2.61 1.39
Monthly -.62 -2.22 1.11

p
Annual -1.49 -3.24 .40
Monthly -1.45 -3.10 -.06

Note: Based on 200 replications of monthly data.
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Note that the distribution of the t-ratio is essentially the same in
monthly data as it is in annual data. Observing the process at monthly
intervals instead of annual does not alter the apparent statistical
evidence for predictability. This is consistent with the insensitivity of
the distribution of the t-ratio to sample size reported by Dickey (1976) in
autoregressions with unit roots. While the monthly observations multiply
the number of independent observations by 12, that is irrelevant. The
relevant difference is that we are observing the same nonstationary
process 12 times more frequently, running what amounts to an
autoregression as explained in the introduction, and that does not
substantially alter our inferences about the process. The values of R2 are
proportionally smaller for monthly data in accordance with the algebraic
relation between t and R2. Of course the slope coefficient is about one
twelfth as large for monthly data since the corresponding predicted return
is at a montly rate.

Fama and French (1988) reported t-ratios in the range of 1 .15 to
2.76 for regressions of the monthly returns from the CRSP tapes 1926-86
on the the raw dividend yield. We intend to run a further experiment that
is more directly comparable to their regression, however based on the
above experiment we would not expect that the reported t-ratios are as
strongly significant as they had appeared.

IV. Summary and Conclusions

A number of recent studies have reported that stock returns can be
predicted to a statistically significant degree by fundamentals and that
predictability increases as one considers returns over multiperiod
horizons. In this paper we have looked at whether these findings could to
some degree be attributed to small sample biases. Regression on a lagged
dependent variable is subject to small sample bias and this suggests that
regression of stock returns on the price/dividend ratio or similar value
measures involving price may be subject to a related bias. Further,
multiperiod returns are by construction positively autocorrelated,
suggesting the possibility of spurious regression as another source of
apparent predictability. To investigate the size and economic significance
of these biases we have run a Monte Carlo experiment in which prices and
returns are generated by a version of the present value model in which
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expected returns are constant. While the generating model replicates
some features of the distribution of historical annual real returns since
1871, it is not the only specification of the present value model nor the
only one with constant expected returns. A different specification of the
null hypothesis would presumably imply somewhat different biases.

Under the specification we have chosen, a number of the features of
the historical regression results arise as the consequence of small sample
biases: reliably negative coefficients on the price/dividend ratio which
seems to suggest one can buy low and sell high, an increase in A2 as
returns are calculated over longer horizons, and the apparent increase in
statistical significance as longer horizons and more dividend averaging
are used. Judging the statistical significance of regressions with
multiperiod returns requires an appropriate upward adjustment of
standard errors due to the induced autocorrelation. We find that the
correction based on asymptotic theory is not large enough in small
samples, resulting in spuriously large t-ratios.

Generating monthly data of equivalent length in years, we find that
statistical inferences are essentially the same as in annual data.
Although it would seem that one would have twelve times the number of
independent observations, the relevant analogy is to taking observations
on a nonstationary series twelve times as frequently. The latter does not
change greatly inferences about the process.

The magnitude of the historical results reported for annual returns
by Campbell and Shiller (1988) and monthly returns by Fama and French
(1988) is such that they cannot be dismissed entirely as the result of
small sample bias under our generating model. Their statistical
significance, however, would seem to be substantially weaker than if
taken at face value.
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Appendix 1: The Correction for the Standard Errors in the Multiyear Returns

Regression

Our procedure of calculating the standard errors is in the spirit of White's [19801 consistent

estimators for the covariance matrix of estimators. That is, the asymptotic covariance matrix of

$K in the regression of K-multiyear returns (rt,,+K) on the predictor X can be estimated from

=

where X = (x1, ,zr)', Ur = (u1, ,UT)' and i,'s are the least square residuals. As is shown in

H&H, the T by T matrix UTU. will include not only the T-elements main diagonal, but also K-I off-

diagonal terms (pararell to the main diagonal) reflecting the (K-1)th order serial correlations induced

by overlapping data, and zeros elsewhere. The difference between the original H&H correction and

ours lies in that H&H imposed equality along the diagonals. in fact the standard errors estimated

from both methods are very close. C&S reported SE's of .0570, .1443 and .2997 from the regression

of 1, 3 and 10-year returns on the dividend-price ratio, while the White version estimates .0529,

.1183 and .2843, respectively.

When there are large negative sample serial covariances the variances can take on negative

values. To ensure the positive definiteness of the variances the nonzero off-diagonal terms may

be modified by multiplying those by the arithematically declining weights proposed by Newey and

West [1987] and Phillips 11987]. Thus the modification may be written as

T K—i T
X.UTU.XT = ugxzu + 2. (1 —

+ fl+I
and the t-statistics based on the modified standard error are calculated in the Monte Carlo simu-

lation and are reported as HHt(b) in the paper.
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Appendix 2: Data Generating Mechanism under the Present Value Model

This section briefly describes the data generating mechanism under the null hypothesis of the

PV model. We assume that the actual log of dividend (di) follows a partial adjustment process

towards the target level (di):

d = d_1 + \(d..1 — d_1) (1)

= d_1 + + U, Uj — :.i.d. N(O, ) (2)

where y is the long run growth rate of dividends. In the PV model, the price P is

P = E(D)/(l + r) + E(D1+1)/(1 + r)2 +.. (3)

where " " means a random variable and the capital letter for the level. For a simplifying

approximation to the expected future dividend, we note

E(D+1) = E, exp{J,+,}

= exp{E(J÷,) + Var(J+)}

exp{Et(+1)} (4)

since the density function for A÷. is log-nonnal and the variance Var(d1+1) does not vary over

time. Now let d÷ denote the expected value of at the beginning of period t. Similarly,

= Using the ARI(1,1) model implied by the equation (1) and (2), we construct

the forecasts recursively,

= (1 — A)id_1 + \7; it,t = d..1 + (5)

= (1 — \)&i, + Xy; d,,+1 = +Lt,i+i

= (1 — A),+1.1 + )t7; = &t+i-1 +

Idt,t+BIo 7; dt,t+Bf G = dt,t+BIG1 +7
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The price P is then

= ezp{,g)/ezp{r} + exp{d,,j}/exp{2r} ÷••. +ezp{d+,}/exp{(i + 1)r} +

VBIG + VBjGezp{'7 — r}+ VB,aexp{2('y — r)} +... (6)

where VBIG = exp{Jgt÷BjG}/ezp{(BIG + 1)r} and the second line of equation (6) equals VBJG/[l —

exp{7 — r}. From experimentation setting "BIG = 50" years takess ?d close enough to y. Values

for y and o' used in the simulation are .015 and .03, which are obtained from the historical data.

The mean first order serial correlation of returns calculated from the generated data with 116

observations was -.0087 (-.0049 for 232 observations), which is close to the expected value (—T)

for random data.
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