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1 Introduction

Empirical studies find large, systematic, and forecastable differences in labor earnings profiles

across households. One prominent feature of the data is the unequal exposure of household

earnings to the business cycle: the labor earnings of low-income households exhibit a greater

covariance with aggregate fluctuations than those of mid- and high-income households.1 This

heterogeneity in the covariance of individual earnings with aggregate fluctuations contributes

to countercyclical earnings inequality. Notably, these differences are to a large extent system-

atic: according to Guvenen, Ozkan, and Song (2014), “fortunes during recessions are predictable

by observable characteristics before the recession.”

Monetary policy is not an ideal tool for achieving distributional objectives—questions of

redistribution typically fall within the purview of the fiscal authority. Yet countercyclical earn-

ings inequality calls this division of labor into question: if fiscal instruments cannot respond to

short-run movements in the labor earnings distribution, monetary instruments might be the

next best alternative. That said, even if monetary policymakers were to respond to business

cycle variation in the labor earnings distribution, it is not obvious from a theoretical perspective

whether monetary policy should do so and in what manner.

What is the optimal conduct of monetary policy in light of distributional concerns? In this

paper we seek to answer this question. We study a dynamic, general equilibrium economy

with systematic heterogeneity across households, nominal rigidities, and complete markets.

By assuming complete markets, we focus on ex ante heterogeneity, rather than ex post, and

therefore on the question of redistribution rather than a lack of insurance.2 We follow the

Ramsey approach: given a restricted set of tax instruments, we solve for optimal monetary and

fiscal policy jointly. We find that optimal monetary policy targets a state-contingent markup;

the optimal markup covaries positively with a sufficient statistic for labor income inequality.

Framework and Methodology. Our framework is a general equilibrium, heterogeneous

agent economy with nominal rigidities. We model household heterogeneity following Werning

(2007). Households are assigned a “type” at birth and remain that type throughout their lifetime.

Types map to heterogeneous labor productivities and initial (time-0) firm ownership.

Type-specific labor productivities are state-contingent. We allow these contingencies to be

fully general—they can therefore nest any exogenous labor income process. We assume that

markets are complete: in every period, households can trade a complete set of Arrow securities

1Parker and Vissing-Jorgensen (2009); Guvenen, Ozkan, and Song (2014); Guvenen, Schulhofer-Wohl,
Song, and Yogo (2017); Alves, Kaplan, Moll, and Violante (2020).

2By focusing on ex ante heterogeneity and complete markets, our framework stands in contrast to
heterogeneous-agent New Keynesian models (HANK) as in, e.g., Kaplan, Moll, and Violante (2018). These
models typically feature idiosyncratic labor income risk and incomplete asset markets. We discuss the
relationship to the HANK literature below.
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in addition to a nominal bond and firm equity.

A continuum of intermediate-good firms employ workers, produce differentiated goods,

and face aggregate productivity shocks. These firms are monopolistically-competitive and set

prices subject to a nominal rigidity. We model the nominal rigidity as an informational friction

as in Mankiw and Reis (2002); Woodford (2003). For tractability we adopt a particular spec-

ification consistent with Correia, Nicolini, and Teles (2008): we assume that a fixed fraction of

randomly-selected firms set their nominal prices before perfectly observing realized demand. In

our baseline model we assume that firm profits are fully taxed—this is not a crucial assumption,

and we relax it in an extension of the model.

The desirability and efficacy of monetary policy in any context depends on the available

set of fiscal instruments. We consider a consolidated government that controls both fiscal and

monetary policy. The government raises tax revenue and issues state-contingent and risk-free

debt in order to finance uniform, lump-sum transfers (or taxes).

We follow the Ramsey approach and allow for linear taxes on consumption, labor income,

and firm revenue (sales). We assume that all tax rates are non-state-contingent, in line with the

New Keynesian literature. One can think of this lack of fiscal state-contingency as a political

constraint: the fiscal authority cannot change tax rates at business cycle frequency. Further-

more, and in contrast to the typical restriction in the Ramsey literature, we allow for state-

contingent, lump-sum taxes or transfers as in Werning (2007). That is, while the fiscal authority

cannot alter the slope of the tax schedule in response to shocks, it can freely adjust the intercept.

Crucially, however, we restrict lump-sum taxes and transfers to be uniform across households.3

We adopt a utilitarian welfare function with arbitrary Pareto weights. We solve for optimal

fiscal and monetary policy jointly under commitment using the primal approach (Lucas and

Stokey, 1983; Chari and Kehoe, 1999). In particular we adapt the primal approach used in

Werning (2007) for a flexible-price economy with heterogeneous agents, and the primal rep-

resentation employed by Correia, Nicolini, and Teles (2008) and Angeletos and La’O (2020) for

representative agent economies with nominal rigidities, to our setting that features both het-

erogeneous agents and nominal rigidities.

Main Results. Our first main result provides sufficient conditions under which it is opti-

mal for monetary policy to implement flexible-price allocations. Specifically, we show that

when preferences are separable and homothetic and shocks to the labor skill distribution are

proportional—that is, when relative productivities across types are fixed—the Ramsey optimum

can be implemented under flexible prices with the available set of fiscal instruments. The best

that monetary policy can do in this case, is to replicate flexible-price allocations. It can do so by

targeting price stability.

3One can motivate this restriction with an informational constraint on the government: the fiscal
authority cannot tell apart high-type households from low-types.
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To understand this first result, consider the case in which society desires a more equal distri-

bution of resources across households than under laissez-faire (zero taxes and flexible prices).

A positive, linear tax on labor income (or consumption, or sales) is beneficial for redistribution

in the following sense: although all households face the same positive marginal tax rate, high-

skilled, high labor income households face a higher average tax rate than low-skilled, low labor

income households. Total tax revenue finances lump-sum transfers—distributed equally across

households. It follows that a higher labor income tax rate, coupled with uniform transfers,

lowers inequality; see Werning (2007); Correia (2010); Hall and Rabushka (1995).

The planner optimally trades off the redistributional benefit of taxation with its distortionary

cost. Under separable and homothetic preferences and proportional shocks to the labor skill

distribution, both the marginal benefit and the marginal cost of distortionary taxation are con-

stant across states. It follows that the optimal tax rate, at which marginal benefit equals marginal

cost, is also constant and hence can be implemented with the available set of fiscal tools. Mon-

etary policy, under these conditions, should play no redistributive role.

Our second result is the following: we show that under these same conditions, it is optimal

for monetary policy to implement flexible price allocations even if tax rates are set suboptimally.

We thereby generalize the first result: if preferences are separable and homothetic and shocks to

the labor skill distribution are proportional, it is optimal for monetary policy to replicate flexible

price allocations, irrespective of fiscal policy. This result highlights a key limitation of monetary

policy: state-contingent monetary policy is useful to the Ramsey planner only if the marginal

benefit (or cost) of distortionary taxation varies across states.

Our third and primary result concerns the more general and realistic case in which shocks to

the labor skill distribution are disproportional. When relative productivities of households vary

over the business cycle, the available set of fiscal instruments is insufficient to implement the

Ramsey optimum. The Ramsey optimum calls for monetary policy to deviate from replicating

flexible-price allocations and to target a state-contingent markup that co-varies positively with

a sufficient statistic for labor income inequality. In particular, we show that the optimal markup

is high when labor income inequality is high and the optimal markup is low when labor income

inequality is low.4

To understand this, consider again the case in which society desires a more equal distribu-

tion of resources across households than under laissez-faire. A fixed linear tax rate, uniform

lump-sum transfers, and state-contingent monetary policy can jointly attain a more desirable

allocation by lowering overall earnings inequality at the expense of some efficiency. In particu-

4In an extension, we relax the non-state-contingency of tax rates and allow taxes to be set one period
in advance. We obtain an explicit, closed-form solution for the derivative of the optimal monetary wedge
with respect to the sufficient statistic for labor income inequality. We show that this derivative is strictly
positive and strictly less than one. We furthermore provide comparative statics for this derivative with
respect to the elasticity of substitution across goods and the strength of the nominal rigidity.

3



lar, by raising the markup when labor income inequality is high and lowering the markup when

labor income inequality is low, state-contingent monetary policy compresses the lifetime labor

earnings distribution in the desired direction. Monetary policy thereby complements the fiscal

instruments, and together these tools implement the Ramsey optimum.

In our baseline model we assume that profits are fully taxed, rendering heterogeneity in

initial firm ownership irrelevant. In an extension of the model, we assume only partial taxa-

tion of profits. With less than full profit taxation, heterogeneity in initial shares introduces an

additional distributional channel of monetary policy. Initial equity is a lifetime claim to firm

profits. By shifting firm markups, monetary policy affects equilibrium profits and, by implica-

tion, household financial wealth.

We find that our primary qualitative result on the optimal conduct of monetary policy is

robust. In particular, we show that the extent to which profits are taxed and the cross-sectional

covariance between financial and lifetime labor earnings changes the slope of the optimal

response of monetary policy to labor income inequality—yet this slope remains positive. A

constraint on profit taxation thereby does not alter the general lesson that the optimal markup

covaries positively with a sufficient statistic for labor income inequality.

The contribution of this paper is primarily theoretical. However, in a simple, quantita-

tive illustration of the model, we calibrate the labor income distribution to match estimates

of “worker betas”—the percent change in household labor income growth associated with a

percent change in GDP growth—from Guvenen, Schulhofer-Wohl, Song, and Yogo (2017). In

this way, business cycle movements in the earnings distribution in our calibrated model directly

reflect the unequal incidence of GDP fluctuations documented in the data.

We find that the optimal markup is countercyclical. In our baseline calibration, the elasticity

of the optimal markup with respect to real GDP ranges from –.25 to –.39. The countercyclicality

of the optimal markup stems from two features: countercyclical earnings inequality as docu-

mented in the data, and our main theoretical result that the optimal markup covaries positively

with earnings inequality. The behavior of the optimal markup in our calibrated model is thereby

consistent with work that documents countercyclical price markups (Bils, 1987; Rotemberg and

Woodford, 1999; Bils, Klenow, and Malin, 2018) and, more generally, a countercyclical labor

wedge (Hall, 1997; Chari, Kehoe, and McGrattan, 2007).

Related literature. Our paper falls squarely within the Ramsey literature on optimal fiscal

and monetary policy. The standard Ramsey problem consists of choosing an optimal tax struc-

ture in a representative agent economy when only distorting taxes are available. We follow in

the tradition of solving the Ramsey problem using the primal approach (Atkinson and Stiglitz,

1980; Lucas and Stokey, 1983; Chari, Christiano, and Kehoe, 1991, 1994; Chari and Kehoe, 1999).

The primal approach recasts the problem of choosing optimal policy as a problem of choosing
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allocations subject to a set of feasibility and implementabilty constraints (Chari and Kehoe,

1999). In relation to the standard problem, our model has three distinguishing characteristics:

(i) heterogeneous agents with complete markets and lump-sum transfers; (ii) nominal rigidities;

and (iii) state-contingent monetary policy but non-state-contingent fiscal policy. We elaborate

on these three features below.

Earlier work on optimal policy with heterogeneous agents and complete markets include

Judd (1985), Chari and Kehoe (1999), Niepelt (2004), and Bassetto (2014). The paper that we

are closest to in this vein is Werning (2007). Werning (2007) studies optimal fiscal policy in a

model with heterogeneous agents, complete markets, a linear tax schedule, and uniform lump-

sum transfers (or taxes). He focuses primarily on the question of optimal taxation in the face

of government spending and aggregate technology shocks when a key motive for distortionary

taxation is redistribution.

We build directly on the Werning (2007) model. Relative to Werning (2007), we study opti-

mal monetary policy and focus specifically on how monetary policy should respond to short-

run movements in the distribution of labor productivity.5 In order to do so, we incorporate

monopolistically-competitive firms, nominal rigidities, and state-contingent monetary policy.

As a natural consequence our model features equilibrium firm profits; we therefore consider the

effects of heterogeneous firm ownership. Despite these key differences, we rely heavily on the

results, insights, and intuition provided in Werning (2007).

Second, Correia, Nicolini, and Teles (2008), Correia, Farhi, Nicolini, and Teles (2013) and

Angeletos and La’O (2020) use the primal approach to characterize optimal policy in economies

with nominal rigidities. We follow the same approach and build on these contributions. Relative

to this work, our paper makes a methodological contribution—to the best of our knowledge,

ours is the first to show how the primal approach can be used to characterize optimal monetary

policy when the Ramsey optimum does not coincide with a flexible-price allocation.6

Third, we show how state-contingent monetary policy can be useful in the absence of state-

contingent fiscal policy. In this sense our results are reminiscent of insights found in Chari,

Christiano, and Kehoe (1991) and Chari and Kehoe (1999). These papers show, among other

things, that when the only asset available to the government is non-state-contingent nominal

debt, inflation can be used to make real returns state-contingent. State-contingent monetary

policy therefore enables the government to use nominal debt as a shock absorber.

Aside from the aforementioned Ramsey literature, the recent heterogeneous agent New

Keynesian (HANK) literature incorporates heterogeneity into the New Keynesian framework

5In Section 5 of Werning (2007) the author considers shocks to the labor productivity distribution and
studies the optimal response of state-contingent tax rates. This section of Werning (2007) is the closest
antecedent to our paper.

6Dávila and Schaab (2023) use a modified version of the traditional primal approach to characterize
optimal monetary policy in a HANK model. In their primal form, allocations and prices are explicit
control variables for the planner.
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via incomplete markets; see e.g. Kaplan, Moll, and Violante (2018), McKay, Nakamura, and

Steinsson (2016), and Auclert, Rognlie, and Straub (2020), among many others. In these models,

of the Bewley-Imrohoroglu-Huggett-Aiyagari variety, uninsurable idiosyncratic income risk and

precautionary savings give rise to an endogenous wealth distribution featuring heterogeneous

marginal propensities to consume. This changes not only the primary transmission channel for

monetary policy, but it moreover implies that monetary policy can play a novel role of provid-

ing insurance or facilitating greater self-insurance. A number of papers have studied optimal

monetary policy in this framework, including: Bhandari, Evans, Golosov, and Sargent (2021);

Acharya, Challe, and Dogra (2023); Nuño and Thomas (2022); Dávila and Schaab (2023); McKay

and Wolf (2022); Le Grand, Martin-Baillon, and Ragot (2024).

In contrast to the canonical HANK model, we assume markets are complete. We thus ab-

stract entirely from the insurance motive for monetary policy and focus solely on the redis-

tributive motive. As noted above, empirical evidence suggest that systematic, forecastable,

between-group variation accounts for a large share of the total variation in earnings growth

over the business cycle (Guvenen, Ozkan, and Song, 2014; Guvenen, Schulhofer-Wohl, Song,

and Yogo, 2017).7 While no consensus exists on the exact share of variation in lifetime earnings

accounted for by systematic heterogeneity—as well as by the “insurable” component of labor

income shocks—a number of structural estimations place it above 50 percent and some as high

as 90 percent.8 This evidence motivates the focus of our paper.

Layout. This paper is organized as follows. In Section 2 we describe the economic environ-

ment and in Section 3 we characterize equilibrium allocations. In Section 4 we solve a relaxed

planning problem and provide sufficient conditions under which implementing flexible-price

allocations is optimal. In Section 5 we solve the Ramsey problem and characterize optimal

monetary policy. In Section 6 we analyze an extension of the model in which profits are not fully

taxed. In Section 7 we explore a calibrated version of the baseline model. Section 8 concludes.

All proofs, except for those explicitly provided in the text, are found in the Appendix.

7Both of these studies use a large, panel data set on individual earnings from the US Social Security
Administration in which the same individuals can be tracked over time. Guvenen, Ozkan, and Song
(2014) find that “between-group differences are large and systematic,” and that the factor structures they
estimate “are consistent with countercyclical earnings inequality without needing within-group (idiosyn-
cratic) shocks that have countercyclical variances.”

8See, e.g., Keane and Wolpin (1997), Storesletten, Telmer, and Yaron (2004), Huggett, Ventura, and
Yaron (2011), Guvenen and Smith (2014), and Heathcote, Storesletten, and Violante (2014). Keane and
Wolpin (1997) find that between-type variation accounts for 90 percent of the total variance in lifetime
utility. Storesletten, Telmer, and Yaron (2004) conclude that roughly half of the variance of lifetime
earnings is attributable to initial heterogeneity, while Huggett, Ventura, and Yaron (2011) and Heath-
cote, Storesletten, and Violante (2014) instead estimate that fraction at 62 and 63 percent, respectively.
Heathcote, Storesletten, and Violante (2014) furthermore find that around half of all shocks to wages are
insurable and that the most important source of lifetime consumption inequality is initial heterogeneity.
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2 The Environment

We study a general equilibrium model with heterogeneous agents and a form of nominal rigid-

ity. Time is discrete, indexed by t = 0, 1, . . . ,∞. We denote the aggregate state at time t by st ∈ S

where S is a finite set. We let st = {s0, ..., st} ∈ St denote a history of states up to and including

st. We let µ(st|st−1) denote the probability of history st conditional on st−1, and with slight abuse

of notation we let µ(st) denote the unconditional probability of history st.

Households. There is a measure one continuum of households. Households have identical

preferences; in each period, a household receives flow utility U(c, h) from consumption c and

work effort h. We assume throughout that preferences are additively-separable and iso-elastic:

U(c, h) =
c1−γ

1− γ
− h1+η

1 + η
, with η > 0, γ > 1. (1)

The parameters γ and η denote the inverse elasticity of intertemporal substitution and the in-

verse Frisch elasticity of labor supply, respectively.

Households are divided into a finite number of types i ∈ I of relative size πi, with
∑

i∈I π
i =

1. Households are born a type and remain that type throughout their (infinite) lifetime. The

worker of a type-i household has “skill” level θi(st) in time t, state st. If the worker puts in hi(st)

units of effort, then its labor in efficiency units are given by: ℓi(st) = θi(st)h
i(st). The household

maximizes its lifetime expected utility given by:∑
t

∑
st

βtµ(st)U(ci(st), ℓi(st)/θi(st)). (2)

The household’s budget constraint at time t, history st is written in nominal terms as follows:

(1 + τc)P (st)ci(st) + bi(st) +
∑

st+1|st
Q(st+1|st)zi(st+1|st) + V (st)[σi(st)− σi(st−1)] (3)

≤ (1− τℓ)W (st)ℓi(st) + (1− τΠ)(1 + σi(st−1))Π(st) + zi(st|st−1) + (1 + i(st−1))bi(st−1) + P (st)T (st).

where P (st) is the nominal price of the final good at time t and W (st) is the nominal wage per

efficiency unit. The household faces constant consumption and labor income tax rates, τc and

τℓ, respectively.

The household can borrow and save via three separate instruments. The first is a one-period,

non-state-contingent nominal bond, bi(st), which the household can buy or sell at time t, his-

tory st, and which pays (1+i(st))bi(st) units of money one period later. The second is a complete

set of state-contingent Arrow securities, indexed by st+1|st. We let Q(st+1|st) denote the price at

time t, history st, of an Arrow security that pays 1 unit of money in period t+ 1 if st+1 is realized

and 0 otherwise. We denote the corresponding quantities purchased of this Arrow security by
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zi(st+1|st). Note that the nominal bond is a redundant asset but it allows us to represent the

one-period interest rate, i(st). We assume that initial wealth from bond holdings is zero: bi0 = 0

for all i ∈ I.

The third instrument is equity: the household can buy and sell shares of a fully diversified

portfolio of firms. Equity ownership is a claim to aggregate firm profits, denoted in nominal

terms by Π(st) and taxed at a constant rate of τΠ ∈ [0, 1]. If the household enters time t, history

st, with 1+ σi(st−1) shares, it receives dividend (1− τΠ)Π(s
t) per share and it can trade shares at

ex-dividend price V (st). We assume that the type-i household is endowed with 1 + σi
0 shares at

time 0, with
∑

i∈I π
iσi

0 = 0.

Finally, T (st) is a real, uniform lump-sum transfer and is unrestricted; it can be either posi-

tive (a transfer) or negative (a tax) and it can depend on the realized history of states st. We state

the household’s problem as follows.

Household’s Problem. Given initial bond holdings and initial equity shares,

the type-i household chooses a complete contingent plan for consumption, effi-

ciency units of labor, bond holdings, equity holdings, and Arrow security holdings:

{ci(st), ℓi(st), bi(st), σi(st), (zi(st+1|st))st+1}t≥0,st∈St , in order to maximize its lifetime expected

utility (2) subject to its per-period budget constraint (3) for all st ∈ St and no-Ponzi conditions.

Intermediate good production. There is a unit mass continuum of intermediate-good

firms, indexed by j ∈ J ≡ [0, 1], with identical technologies. The production function of

intermediate-good firm j is given by the constant returns-to-scale production function:

yj(st) = A(st)n
j(st), (4)

where A(st) is an exogenous, aggregate productivity shock and nj(st) is firm j’s input of effi-

ciency units of labor.

Intermediate-good firms are monopolistically-competitive: they produce differentiated

goods and set nominal prices. The nominal profits of firm j in history st are given by f j(st) =

(1 − τr)p
j
t (·)yj(st) − W (st)nj(st) where τr is a constant tax on firm revenue. We postpone for a

moment our discussion of the nominal rigidity and the firms’ optimization problem—that is,

how the price pjt (·) is set.

Final good production. A representative firm produces the final good with a constant elas-

ticity of substitution (CES) production technology over intermediate-good varieties:

Y (st) =

[∫
j∈J

yj(st)
ρ−1

ρ dj

] ρ

ρ−1

,
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with elasticity of substitution ρ > 1 . Nominal profits are given by P (st)Y (st)−
∫
j∈J pjt (·)yj(st)dj

where pjt (·) is the price of variety j and P (st) is the price of the final good.

The final good producer is perfectly competitive and takes prices as given. Profit maximiza-

tion implies the standard CES demand function for intermediate good j:

yj(st) =

(
pjt (·)
P (st)

)−ρ

Y (st), ∀st ∈ St. (5)

At its optimum, the representative final good producer makes zero profits.

The government. The government consists of a consolidated monetary and fiscal authority

with commitment. We let:

T (st) ≡ τcP (st)C(st) + τℓW (st)L(st) + τrP (st)Y (st) + τΠΠ(s
t),

denote nominal tax revenue collected at time t, history st, where

C(st) ≡
∑
i∈I

πici(st), L(st) ≡
∑
i∈I

πiℓi(st), and Π(st) ≡
∫
j∈J

f j(st)dj

denote aggregate consumption, aggregate labor in efficiency units, and aggregate profits, re-

spectively. The government can issue both state-contingent and non-state-contingent debt.

The government’s period-t nominal budget constraint is given by:

(1 + i(st−1))B(st−1) + Z(st|st−1) + P (st)T (st) = B(st) +
∑

st+1|st
Q(st+1|st)Z(st+1|st) + T (st), (6)

where B(st) is aggregate bond issuance and Z(st+1|st) denotes aggregate Arrow security is-

suance for each st+1|st.9

Finally, for monetary policy we assume that the monetary authority directly controls nomi-

nal aggregate demand according to the following ad hoc, cash-in-advance constraint: M(st) =

P (st)C(st). We therefore avoid well-known issues of indeterminacy. Monetary policy is state-

contingent: the monetary authority can freely choose M(st) > 0 in every history.

Market Clearing. Market clearing in the goods and labor markets imply: C(st) = Y (st) and

L(st) =
∫
j∈J n

j(st)dj. Market clearing in the financial markets imply: B(st) =
∑

i∈I π
ibi(st),

Z(st+1|st) =
∑

i∈I π
izi(st+1|st) for all st+1|st, and

∑
i∈I π

iσi(st) = 0.

9Throughout, we abstract from the zero lower bound on the nominal interest rate.
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2.1 The Nominal Rigidity

At each date t, Nature draws the state st ∈ S according to probability distribution µ. The aggre-

gate state determines period t total factor productivity and the relative skills for each type i ∈ I.

Formally, we define functions A : S → R+ and θi : S → R+, for all i ∈ I, as exogenous mappings

from the state space to aggregate productivity and type-specific labor productivities.

Intermediate good firms are price-setters. We equate the nominal rigidity in our model with

an informational friction, following in the tradition of Mankiw and Reis (2002) and Woodford

(2003). For tractability we assume a particular specification employed by Correia, Nicolini, and

Teles (2008): all firms set prices in every period, but only a subset of firms are attentive to the

realized, current state.10

Formally, we assume that in every period a mass κ ∈ [0, 1) of randomly-selected firms are

inattentive, or “sticky.” All other firms, of mass 1 − κ, are attentive, or “flexible.” We let J s ⊂ J
denote the set of “sticky-price” firms and J f ⊂ J denote the set of “flexible-price” firms, with

J f = (J s)′.

Sticky-price firms at time t are inattentive to the current state, st, and hence set their price

based solely on their knowledge of the history of past states, st−1. We denote the price they set by

pst (s
t−1). The subscript t indicates that this is the nominal price set at time t by the sticky-price

firm, even though the price function itself is measurable in st−1.

Flexible-price firms at time t are attentive to the current state, st, as well as the history of

past states, st−1. It follows that these firms can set their price based on knowledge of the entire

history, st. We denote the price they set by pft (s
t). The subscript t similarly indicates that this

is the nominal price set at time t by the flexible-price firm. However, unlike the sticky-price

function, the flexible-price function is measurable in st.

Implicit Timing Assumption. Implicit in these measurability constraints is the following

within-period timing assumption. Nature draws the aggregate state st ∈ S at the beginning of

the period and randomly selects which firms are sticky, j ∈ J s, and which firms are flexible,

j ∈ J f . Intermediate good firms make their nominal pricing decisions given their information

sets: st−1if sticky, st if flexible. Once nominal prices are set, the aggregate state becomes com-

mon knowledge. Given intermediate good prices, the representative final good firm purchases

inputs and produces the final good, and households make their consumption, savings, and

effort choices. All allocations adjust so that supply equals demand and markets clear.11

10Furthermore, by assuming the exact same nominal rigidity present in Correia, Nicolini, and Teles
(2008), our equilibrium analysis becomes directly comparable.

11We make the simplifying assumption that all firms learn the state by the end of each period. This
assumption is compatible with the notion that all firms, including sticky-price firms, can observe end-of-
period equilibrium outcomes and from these endogenous objects infer the realized state at time t.
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Firm problems. Given the above description of the nominal rigidity, we now state the prob-

lems of the two types of firms. We start with the flexible-price firms.

Flexible-Price Firm’s Problem. At time t, history st, a flexible-price firm j ∈ J f solves:

pft (s
t) ∈ argmax

pj
t

{
(1− τr)p

j
ty

j(st)− W (st)

A(st)
yj(st)

}
subject to (5).

The flexible-price firm sets its nominal price so as to maximize firm profits, and it does so

state-by-state. We state the problem of the sticky-price firms in a similar fashion.

Sticky-Price Firm’s Problem. At time t, given history st−1, a sticky-price firm j ∈ J s solves:

pst (s
t−1) ∈ argmax

pj
t

∑
st|st−1

Q(st|st−1)

{
(1− τr)p

j
ty

j(st)− W (st)

A(st)
yj(st)

}

subject to (5).

The sticky-price firm sets its nominal price so as to maximize its expectation, conditional on

st−1, of the investors’ valuation of firm profits.

The firm is owned by its investors. For this reason it weighs profits across states not only

by the true conditional probabilities, µ(st|st−1), but also by the stochastic discount factor of

the marginal investor. Given that markets are complete, it will not matter which household’s

stochastic discount factor we use—in equilibrium, marginal rates of substitution between con-

sumption across states will be equated across all households.

That said, complete markets gives us an even simpler way of stating the firm’s problem: by

no arbitrage we can equivalently value firm profits using the Arrow prices Q(st|st−1). While this

may appear obvious, later on in our analysis we verify that the equilibrium Arrow prices indeed

reflect the true conditional probabilites and the appropriate pricing kernel.

Finally, note that all firms—sticky and flexible—solve a static problem. This is because every

firm is free to adjust its price in every period; it follows that no firm need take into account future

periods or states when setting its current price.

2.2 Equilibrium Definition

We denote an allocation in this economy by:

x ≡ {(ci(st), ℓi(st))i∈I , (yj(st), nj(st))j∈J , C(st), Y (st), L(st)}t≥0,st∈St

Formally, we say that an allocation x is feasible if it satisfies the economy’s technology and

resource constraints.

11



Definition 1. An allocation x is feasible if yj(st) = A(st)n
j(st) for all j ∈ J ;

∑
i∈I

πici(st) = C(st) = Y (st) =

[∫
j∈J

yj(st)
ρ−1

ρ dj

] ρ

ρ−1

; and (7)

∑
i∈I

πiℓi(st) = L(st) =

∫
j∈J

nj(st)dj (8)

for all st ∈ St.

Let X denote the set of feasible allocations. We are interested in feasible allocations that

can be supported as equilibrium allocations in this economy. Prior to defining our equilibrium

concept(s), we introduce some organizational notation. We denote a policy by:

P ≡ {τc, τℓ, τr, τΠ, {T (st),M(st), i(st)}t≥0,st∈St},

a price system by:

R ≡ {pft (st), pst (st−1);P (st),W (st), V (st), (Q(st+1|st))st+1|st}t≥0,st∈St ,

and a set of financial market positions by:

A ≡ {{bi(st), σi(st), (zi(st+1|st))st+1|st}i∈I ;B(st), (Z(st+1|st))st+1|st}t≥0,st∈St .

We define an equilibrium in this economy as follows.

Definition 2. A sticky-price equilibrium is an allocation x, a price system R, a policy P , and a set

of financial market positions A such that: (i) in every t, st: pst (s
t−1) solves the sticky-price firm’s

problem, for all j ∈ J s; the price pft (s
t) solves the flexible-price firm’s problem, for all j ∈ J f ; (ii)

the aggregate price level is given by:

P (st) =
[
κpst (s

t−1)1−ρ + (1− κ)pft (s
t)1−ρ

] 1

1−ρ

; (9)

(iii) for all t, st: prices and allocations satisfy (5) for all j ∈ J ; (iv) given the price system and

the policy, {ci(st), ℓi(st), bi(st), σi(st), (zi(st+1|st))st+1}t≥0,st∈St solves the household’s problem of

type i, for every i ∈ I; (v) for all t, st: the government budget constraint is satisfied and M(st) =

P (st)C(st); and (vi) markets clear.

In addition to sticky-price equilibria, we will also consider a hypothetical benchmark econ-

omy in which we abstract from nominal rigidities. To construct this benchmark we relax the

measurability constraints on firms so that all firms have complete information about current

fundamentals st when making their respective decisions. Formally we call this the “flexible-

price” environment and define a competitive equilibrium in this environment accordingly.
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Definition 3. A flexible-price equilibrium is an allocation x, a price system R, a policy P , and a

set of financial market positions A such that: (i) in every t, st: pft (s
t) solves the flexible-price firm’s

problem, for all j ∈ J ; (ii) the aggregate price level given by: P (st) = pft (s
t), and parts (iii)-(vi) of

Definition 2 hold.

The flexible-price environment will serve as a natural benchmark for isolating the role of

fiscal policy in this environment.

2.3 Remarks on the model

We close this section with a few general remarks on modeling choices.

Heterogeneity with market completeness. Household types are fixed, however house-

hold labor productivity can vary over time and over states in a general and flexible manner

characterized by the arbitrary functions θi : S → R+. This formulation nests all exogenous labor

income processes, including those that feature a high degree of heterogeneity in the covariance

of individual labor earnings with aggregate shocks. In the proceeding analysis we show that the

completeness of markets implies that households fully insure themselves against idiosyncratic

income risk: equilibrium household consumption varies only with aggregate consumption. In

this sense there are no missing insurance markets; heterogeneity in lifetime consumption is

determined entirely “ex ante” rather than “ex post.”

Lump-sum taxes and transfers. In the standard, single-agent Ramsey framework, only dis-

torting taxes are available. Lump-sum taxes—or any combination of taxes that may replicate

them—are a priori ruled out; otherwise, the first best would be attainable. When instead house-

holds are heterogeneous, one can incorporate a lump-sum tax or transfer without sacrificing

the earlier lessons from the Ramsey literature on optimal taxation (Werning, 2007). We follow

Werning (2007) and assume the existence of a uniform lump-sum tax or transfer. It is the unifor-

mity of the lump-sum tax or transfer across types that ensures that the first best is unattainable.

One can think of the uniformity restriction as an informational constraint on the government:

the fiscal authority cannot distinguish household types.

The lack of fiscal state-contingency. The nature of optimal monetary policy depends on

the set of available fiscal instruments. We assume distortionary, linear taxation as in Ramsey.

In particular, we allow for taxes on consumption, labor income, firm sales, and firm profits; we

therefore do not artificially restrict what can be taxed in our model.

However, we constrain these tax rates to be fixed, i.e. non-state-contingent. The lack of

fiscal state-contingency is what opens the door to a potential distributive role for monetary
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policy. State-contingency of monetary policy but non-state-contingency of tax rates is a typical

assumption made in New Keynesian models; it is motivated by the notion that monetary policy

is better suited to respond at the business cycle frequency than fiscal policy.

At the same time, we allow the lump-sum tax or transfer to be state-contingent. It turns out

that the state-contingency of the lump-sum transfer is without loss of generality—markets are

complete, the government can issue state-contingent debt, and the infinitely-lived households

have rational expectations. It follows that all agents are Ricardian.

3 Equilibrium Characterization

In this section we characterize the set of equilibrium allocations and state the Ramsey problem.

3.1 Household optimality

Consider the individual household’s problem. Markets are complete and taxes are linear; this

implies that all households face the same after-tax prices. As a result, marginal rates of sub-

stitution are equated across households. The Negishi (1960) characterization of competitive

equilibria follows.

Lemma 1. (Negishi, 1960; Werning, 2007). For any equilibrium there exist “Negishi” or “market”

weights φ ≡ (φi)i∈I with φi ≥ 0 such that in every history st ∈ St, the individual assignments of

consumption and labor solve the following static sub-problem:

Um(C(st), L(st), st, φ) ≡ max
(ci(st),ℓi(st))i∈I

∑
i∈I

φiπiU(ci(st), ℓi(st)/θi(st)) (10)

subject to

C(st) =
∑
i∈I

πici(st), and L(st) =
∑
i∈I

πiℓi(st). (11)

Proof. See Appendix A.2.

In any equilibrium there is an efficient assignment of individual consumption and labor

(ci(st), ℓi(st))i∈I given aggregates (C(st), L(st)) and market weights φ. The economy thus be-

haves as if there exists a representative household with utility function Um(C,L;φ); we follow

the notation in Werning (2007) and let the superscript m stand for “market.” Relative prices

satisfy the representative household’s intratemporal and intertemporal conditions:12

−
Um
L (st)

Um
C (st)

=

[
1− τℓ
1 + τc

]
W (st)

P (st)
, (12)

Um
C (st)

P (st)
= β(1 + i(st))

∑
st+1|st

µ(st+1|st)
Um
C (st+1)

P (st+1)
, (13)

12See Appendix A.1 for the full derivation of the households’ optimality conditions.
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for all st ∈ St, where we let Um
C (st) ≡ ∂Um(·)/∂C(st) and Um

L (st) ≡ ∂Um(·)/∂L(st) denote the

representative household’s marginal utilities with respect to aggregate consumption and labor.

Condition (12) indicates that the marginal rate of substitution between aggregate consumption

and aggregate labor is equal to the after-tax real wage; condition (13) is the Euler equation

corresponding to the one-period nominal bond. Furthermore, the set of Arrow prices and the

ex-dividend share price satisfy, respectively:

Q(st+1|st) =
βUm

C (st+1)

Um
C (st)

P (st)

P (st+1)
µ(st+1|st), ∀st+1|st; (14)

V (st) =
∑

st+1|st
Q(st+1|st)[(1− τΠ)Π(s

t+1) + V (st+1)]. (15)

From the envelope condition of the static sub-problem, Um
C (st) = φiU i

c(s
t) and Um

L (st) =

φiU i
ℓ(s

t), where we let U i
c(s

t) ≡ ∂U(·)/∂ci(st) and U i
ℓ(s

t) ≡ ∂U(·)/∂ℓi(st) denote household i’s

marginal utilities with respect to individual consumption and labor.13 Therefore equations (12)-

(15) hold with U i in place of Um. This verifies our earlier claim that the Arrow prices appropri-

ately reflect the investors’ conditional probabilities and stochastic discount factor.

With general preferences, the unique solution to the static sub-problem in Lemma 1 implies

that individual household consumption and labor can be written as functions of aggregates

(C(st), L(st)), the Negishi weights φ, and the distribution (θi(st))i∈I alone. With the separable

and iso-elastic preferences assumed in (2), the solution can be written in closed form:

ci(st) = ωi
C(φ)C(st) and ℓi(st) = ωi

L(φ, st)L(s
t), (16)

with

ωi
C(φ) ≡

(φi)1/γ∑
k∈I π

k(φk)1/γ
and ωi

L(φ, st) ≡
(φi)−1/ηθi(st)

1+η

η∑
k∈I π

k(φk)−1/ηθk(st)
1+η

η

. (17)

Individual consumption and labor are thereby proportional to their aggregates.

Household i’s shares of aggregate consumption and aggregate labor are given by ωi
C(φ) and

ωi
L(φ, st), respectively. Its consumption share is fixed and depends only on the Negishi weights,

φ, and the coefficient of relative risk aversion. Markets are complete—as a result, households

insure all idiosyncratic risk and face only aggregate risk in consumption. In contrast, its share

of labor is a function of the Negishi weights, φ, the Frisch elasticity of labor supply, as well as the

entire distribution of worker productivities (θi(st))i∈I . The household’s share of labor supply is

thereby state-contingent—it depends on the household’s relative labor productivity—but it is

allocated efficiently given market weights.

At every household’s optimum, its lifetime budget constraint holds with equality. Using

equations (12)-(15) to substitute out after-tax prices, we obtain the following conditions cor-

13Note that ∂U(·)
∂ℓi(st) =

1
θi(st)

∂U(·)
∂hi(st) .
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responding to the time-0 lifetime budget constraint for each household type i ∈ I:14∑
t

∑
st

βtµ(st)
[
Um
C (st)ωi

C(φ)C(st) + Um
L (st)ωi

L(φ, st)L(s
t)
]

(18)

= Um
C (s0)T̄ + σi

0

1− τΠ
1 + τc

∑
t

∑
st

βtµ(st)Um
C (st)

Π(st)

P (st)
,

where

T̄ ≡ 1

1 + τc

∑
t

∑
st

µ(st)
βtUm

C (st)

Um
C (s0)

[
T (st) + (1− τΠ)

Π(st)

P (st)

]
. (19)

The conditions in (18) indicate that for any household, its lifetime expenditure on consumption

is equal to its lifetime wealth. These conditions are similar to the implementability conditions

in Werning (2007), themselves reminiscent of the standard constraint in the Ramsey literature

(Lucas and Stokey, 1983; Chari and Kehoe, 1999). However, in contrast to the standard imple-

mentability condition in a single-agent Ramsey economy with distortionary taxation, there are

a few key differences.

The first is that in an economy with a single household type, there is a single implementabil-

ity condition corresponding to the household’s budget constraint (the government’s budget

constraint holds by Walras’s law). In our economy with multiple household types, there is a

set of implementability conditions: one for each type i ∈ I.15

The second key difference with the standard Ramsey framework is the existence of lump-

sum taxes and transfers. As in Werning (2007), the combination of linear, distortionary taxes and

uniform lump-sum transfers give the planner some ability to redistribute. This power, however,

is limited: the planner cannot achieve any desired distribution of resources across households

because transfers are non-targeted. To see this, note that the T̄ on the right hand side of

equation (18) represents, in part, the time-0 value of lifetime transfers; this value is the same

across all types i ∈ I. It follows that the conditions in (18) are joint restrictions on equilibrium

allocations.16 Furthermore, is clear from these conditions that the assumed state-contingency

of the lump-sum transfer is without loss of generality: what matters for the household’s lifetime

budget constraint is the value of T̄ . Ricardian equivalence holds.

The final key difference differentiates our conditions in (18) from the corresponding

conditions in Werning (2007) and any model with perfect competition. In our economy,

14See Appendix A.3 for the full derivation of these conditions.
15This is true in Werning (2007) as well as in Niepelt (2004) and Bassetto (2014).
16In the standard single-household Ramsey framework with distortionary taxation, not only does one

typically rule out lump-taxes, but also any combination of taxes that may replicate them. When consump-
tion and labor income taxes are available, this applies to the initial period consumption tax—one can set
the initial period consumption tax arbitrarily high and achieve the undistorted optimum. Typically to
rule this out, one must treat the initial consumption tax as separate from all other period consumption
taxes and impose a binding upper bound; see Chari and Kehoe (1999). Here we have no such issue
because we assume lump sum taxes exist. It follows that we need no such restriction on the initial period
consumption tax; in fact, we subsume τc into our definition of T̄ .
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monopolistically-competitive intermediate-good firms can make equilibrium profits. Real prof-

its, Π(st)/P (st), enter the household’s budget constraints as dividend payouts. We subsume the

“common” component of dividend payouts into T̄ .

However, there is an “uncommon” component due to heterogeneity in initial endowments

of equity. The final term on the right-hand side of equation (18) represents the household’s

heterogeneous exposure, σi
0, to the time-0 value of lifetime after-tax real profits. Complete

markets imply that it is irrelevant whether the household holds on to its initial shares from

time-0 onward, or trades them away—it is only the initial claim on firm profits that matters

for its lifetime budget constraint.

The aforementioned term disappears when there is either no heterogeneity in initial equity

(σi
0 = 0 for all i ∈ I) or when profits are fully taxed (τΠ = 1). In order to isolate the role of labor

income heterogeneity in our model, we begin with a baseline that taxes all profits.

Assumption 1. Profits (dividends) are fully taxed: τΠ = 1.

Full profit taxation renders heterogeneity in initial firm ownership irrelevant. Herein, we

impose Assumption 1. Under this assumption, the final term in (18) disappears and the imple-

mentability conditions reduce to:

∑
t

∑
st

βtµ(st)
[
Um
C (st)ωi

C(φ)C(st) + Um
L (st)ωi

L(φ, st)L(s
t)
]
= Um

C (s0)T̄ , ∀i ∈ I, (20)

as in Werning (2007). We later discard Assumption 1 in Section 6 of the paper and study the role

of untaxed dividends and heterogeneous equity shares.

3.2 Firm optimality

We now turn to the firms. The unique solution to the flexible-price firm’s problem is given by:

pft (s
t) =

[
(1− τr)

(
ρ− 1

ρ

)]−1 W (st)

A(st)
, ∀st ∈ St. (21)

Firm optimality equates marginal cost with after-tax marginal revenue. The firm’s optimal price,

therefore, is a constant markup over its nominal marginal cost W (st)/A(st). The markup is a

function of the CES parameter ρ and the marginal tax (or subsidy) on revenue.

The unique solution to the sticky-price firm’s problem is similarly given by:

pst (s
t−1) =

[
(1− τr)

(
ρ− 1

ρ

)]−1 ∑
st|st−1

W (st)

A(st)
q(st|st−1) (22)

where we let q(st|st−1) denote the risk-adjusted conditional probabilities, conditional on history

st−1.17 These probabilities satisfy
∑

st|st−1 q(st|st−1) = 1, by construction. Equation (22) states

17We provide the definition of q(st|st−1) in Appendix A.4 along with the derivation of (22).
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that the sticky-price firm’s optimal price is equal to a markup over its risk-weighted expectation

of its nominal marginal cost, W (st)/A(st), conditional on information set st−1.

Comparing conditions (21) and (22), one can infer the following relationship:

pst (s
t−1) =

∑
st|st−1

q(st|st−1)pft (s
t).

That is, the optimal price of the sticky-price firm is equal to its risk-adjusted expectation of

the optimal price of the flexible-price firm, conditional on information set st−1, as in Correia,

Nicolini, and Teles (2008).

3.3 Flexible-Price Equilibrium Allocations

We next characterize the set of allocations that can be implemented as competitive equilibria

under flexible prices. In any such equilibrium, all firms set their price according to (21).

Proposition 1. A feasible allocation x ∈ X can be implemented as a flexible-price equilibrium

if and only if there exist market weights φ ≡ (φi), a scalar T̄ ∈ R, and a strictly positive scalar

χ ∈ R+, such that the following three sets of conditions are jointly satisfied: (i) for all st ∈ St,

yj(st) = Y (st) for all j ∈ J ; (ii) for all st ∈ St,

−
Um
L (st)

Um
C (st)

= χA(st); (23)

and (iii) condition (20) holds for every i ∈ I.

Proof. See Appendix A.5.

Proposition 1 characterizes the entire set of allocations that can be supported as a flexible-

price equilibrium; for shorthand we call such allocations “flexible-price allocations.” In addi-

tion to resource and technology constraints, any flexible-price allocation satisfies three sets of

constraints described in parts (i)-(iii) of the proposition.

Part (i) of Proposition 1 indicates that in any flexible-price equilibrium, there is no output

dispersion across firms. All firms share the same technology and face the same nominal wages;

as a result they set the same prices. It follows from the demand functions (5) that, in any flexible-

price equilibrium, all firms produce identical levels of output.

Part (ii) of Proposition 1 states that in any flexible-price equilibrium, condition (23) must

hold in every history. This condition follows from taking the optimal price of the flexible-price

firms, (21), noting that in equilibrium all firms set the same nominal price: pft (s
t) = P (st), and

combining this with the representative household’s intratemporal condition in (12).
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Therefore, in any flexible-price equilibrium, the marginal rate of substitution between ag-

gregate consumption and aggregate labor is equated with the marginal rate of transformation,

A(st), modulo a constant labor wedge, denoted by χ. This wedge is given by:

χ ≡
(
ρ− 1

ρ

)
(1− τℓ)(1− τr)

1 + τc
. (24)

The wedge is the product of multiple terms: the consumption, sales, and labor income taxes

levied by the government, and the markup that arises due to monopolistic-competition among

intermediate-good producers. It is important to note that χ is a time and state-invariant

constant—this follows from the assumption that the tax rates, as well as the elasticity of sub-

stitution parameter, ρ, are not contingent on the aggregate state.

Finally part (iii) states that in any flexible-price equilibrium, condition (20) must hold for

every i ∈ I. These implementability conditions ensure that every households’ lifetime budget

constraint is satisfied. The government’s budget constraint holds by Walras’s Law.

The power of fiscal policy. The flexible-price economy allows us to isolate the role of fiscal

policy in our environment. In particular, the power of the fiscal authority is parameterized

by the scalars χ and T̄ . Consider χ: the fiscal policy can control, via the linear taxes in (24),

this wedge. However, note that the fiscal authority’s power to influence allocations using this

instrument is limited: χ is a scalar, but condition (23) must hold in every history, st ∈ St.

The fiscal authority can furthermore use lump-sum transfers (or taxes) to control the level of

T̄ . However, the power of fiscal policy to influence allocations using this instrument is also

limited: condition (20) must hold for every household type i ∈ I, as we have assumed transfers

are non-targeted. Therefore, the non-state-contingency of tax rates and the uniformity of lump

sum transfers (or taxes) together imply that the set of allocations that can be implemented as

flexible-price equilibria is constrained relative to the feasible set.

3.4 Sticky-Price Equilibrium Allocations

We now turn to the set of allocations that can be implemented as competitive equilibria under

sticky prices. In any sticky-price equilibrium, all sticky-price firms set their prices according to

(22) and all flexible-price firms set their prices according to (21). It follows from the demand

functions (5) that all sticky-price firms produce the same level of output, hire the same amount

of labor, and earn the same level of profits; we henceforth denote these objects by ys(st), ns(st),

and πs(st), respectively. By the same logic, we denote the output, labor, and profits of the

flexible-price firms by yf (st), nf (st), and πf (st), respectively. This brings us to the following

characterization.
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Proposition 2. A feasible allocation x ∈ X can be implemented as a sticky-price equilibrium if

and only if there exist market weights φ ≡ (φi), a scalar T̄ ∈ R, and a strictly positive scalar

χ ∈ R+, such that the following three sets of conditions are jointly satisfied: (i) for all st ∈ St,

yj(st) = yf (st) for all j ∈ J f , and yj(st) = ys(st) for all j ∈ J s; (ii) for all st ∈ St,[
yf (st)

Y (st)

]−1/ρ

+
Um
L (st)

Um
C (st)

1

χA(st)
= 0; (25)

and for all st−1 ∈ St−1,

∑
st|st−1

Um
C (st)ys(st)

{[
ys(st)

Y (st)

]−1/ρ

+
Um
L (st)

Um
C (st)

1

χA(st)

}
µ(st|st−1) = 0; (26)

and (iii) condition (20) holds for every i ∈ I.

Proof. See Appendix A.6.

Proposition 2 characterizes the entire set of allocations that can be supported as a sticky-

price equilibrium; for shorthand we call such allocations “sticky-price allocations.” Similar to

Proposition 1, Proposition 2 states that, aside from satisfying resource and technology con-

straints, any sticky-price allocation satisfies three additional sets of constraints.

Part (i) indicates that in any sticky-price equilibrium, there is no output dispersion within

the set of sticky-price firms and similarly no output dispersion within the set of flexible-price

firms. However, there can be differences in production across the two sets of firms.

Part (ii) states that in any sticky-price equilibrium, condition (25) must hold in every history.

This condition follows from combining the optimality condition of the flexible-price firms with

the fictitious representative household’s intratemporal condition (12). The resulting condition

simply states that the marginal cost of producing an extra unit of output of the flexible-price

firm is equated with its marginal revenue. Note that this condition is similar to condition (23) in

Proposition 1, and in fact is identical when yf (st) = Y (st).

Condition (26) similarly follows from combining the optimality condition for the sticky-price

firms with the fictitious representative household’s intratemporal optimality condition. This

condition states that the marginal cost of producing an extra unit of output of the sticky-price

firm is equated with its marginal revenue “on average.” It is essentially the same as condition

(25) corresponding to flexible-price firm optimality, the only difference being that in (26), the

marginal cost and marginal revenue of the sticky-price firm are equated in risk-weighted expec-

tation, conditional on information set st−1.

Finally, part (iii) of Proposition 2 is identical to part (iii) of Proposition 1; these conditions

ensure that all budget constraints are satisfied in equilibrium.
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The power of monetary policy. To understand the power of monetary policy vis-à-vis fiscal

policy in this economy, it is instructive to rewrite our equilibrium conditions in the following

manner. First, we can rewrite the optimal price of the sticky-price firm in (22) as follows:

pst (s
t−1) = ϵ(st)

[
(1− τr)

(
ρ− 1

ρ

)]−1 W (st)

A(st)
, (27)

where ϵ(st) is defined by:

ϵ(st) ≡
∑

st|st−1 [q(st|st−1)W (st)/A(st)]

W (st)/A(st)
. (28)

Formally, ϵ(st) is defined as the firm’s optimal forecast error of W (st)/A(st), conditional on

information set st−1. Therefore, ϵ(st) acts as a stochastic wedge between the firm’s price and

its ex-post optimal price, i.e. the markup over nominal marginal cost. Because the sticky-price

firm has incomplete information, it cannot perfectly forecast its nominal marginal cost, and as a

result, a state-contingent wedge emerges that can be interpreted as the firm’s “pricing mistake.”

Next, aggregating over the sticky- and flexible-price firms’ prices according to (9) and com-

bining the aggregate price level with the representative household’s intratemporal optimality

condition (12), we obtain the following equilibrium condition in the sticky-price economy:

−
Um
L (st)

Um
C (st)

= χ
[
κϵ(st)1−ρ + (1− κ)

]− 1

1−ρ A(st).

This condition looks similar to condition (23) in the flexible-price economy. As in the flexible-

price economy, it indicates that the marginal rate of substitution between consumption and

labor is equated with the marginal rate of transformation, A(st), modulo a labor wedge. In

this case, though, the labor wedge is the product of two components. The first is the scalar χ

defined in (24) that corresponds to the markup and taxes. The second is a new, state-contingent

component that contains the state-contingent “pricing errors,” ϵ(st), made by the fraction κ of

inattentive firms.

Therefore, the nominal rigidity gives rise to a state-contingent component of the labor

wedge. While χ is a lever of fiscal policy, the state-contingent component represents an ad-

ditional lever of the government, one driven by monetary policy. By shifting ϵ(st), the monetary

authority can move around allocations in a manner that the fiscal authority cannot.

The power of monetary policy, however, is limited in two ways, corresponding to parts (i) and

(ii) of Proposition 2. First, ϵ(st) introduces a wedge between the prices of the sticky- and flexible-

price firms: pst (s
t−1) = ϵ(st)pft (s

t). This in turn drives a wedge between the sticky-price and

flexible-price firms’ output, implying misallocation—a loss in production efficiency. Second,

by construction, the forecast errors ϵ(st) must “average out” to 1. This is the meaning of the

implementability condition in (26): monetary policy cannot surprise firms “on average.” This
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constraint on equilibrium allocations follows directly from the optimal price-setting behavior

of sticky-price firms; it is therefore a natural consequence of rational expectations.

These limits on the power of monetary policy notwithstanding, the nominal rigidity enlarges

the set of implementable allocations.

Lemma 2. Let X fdenote the set of all flexible-price allocations and let X sdenote the set of all

sticky-price allocations.

X f ⊂ X s.

Proof. Take any x ∈ X f ; x satisfies the conditions in Proposition 1. This allocation satisfies all

conditions in Proposition 2 with ys(st)
Y (st) = yf (st)

Y (st) = 1 for all st ∈ St. Therefore, x ∈ X s.

Any allocation that can be implemented under flexible-prices can also be implemented un-

der sticky prices. It can be implemented with a monetary policy that targets price stability.18

3.5 Welfare function and Ramsey problem definition

The goal of this paper is to solve the Ramsey problem in this economy. We assume a utilitarian

social welfare function given by:

U ≡
∑
i∈I

λiπi
∑
t

∑
st

βtµ(st)U(ci(st), ℓi(st)/θi(st)) (29)

where λ ≡ (λi)i∈I denotes an arbitrary set of Pareto weights, with λi > 0 for all i ∈ I. We state

the Ramsey problem as follows.

Definition 4. A Ramsey optimum x∗ is an allocation x that maximizes (29) subject to x ∈ X s.

4 The Relaxed Ramsey Problem

The goal of our analysis is to characterize the social welfare-maximizing allocation among the

set of sticky-price allocations. However, the set of sticky-price allocations, X s, is fairly com-

plicated: there are a number of implementability constraints that must be satisfied. We thus

proceed in this section by first solving an easier problem, that of a “relaxed” Ramsey planner.

The relaxed Ramsey planning problem is one in which we maximize over a larger, relaxed set

of allocations relative to the set of sticky-price allocations; see Correia, Nicolini, and Teles (2008)

and Angeletos and La’O (2020) for similar analyses. We define the relaxed set of allocations and

an optimum within this set as follows.

18Equivalently, it sets ϵ(st) = 1 for all st ∈ St.
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Definition 5. The relaxed set of allocations XR is the set of all feasible allocations x ∈ X for which

there exists a set of market weights φ ≡ (φi) and a a scalar T̄ ∈ R such that condition (20) holds

for all i ∈ I. A relaxed Ramsey optimum xR∗ is an allocation x that maximizes social welfare (29)

subject to x ∈ XR.

Relative to the set of sticky-price allocations, the relaxed set is constructed by dropping all

implementability conditions stated in parts (i) and (ii) of Proposition 2, but maintaining those

stated in part (iii). Given this definition, the following observation is self-evident.

Observation 1. X f ⊂ X s ⊂ XR ⊂ X .

The relaxed set is a strict superset of X s, the set of sticky-price allocations, and by implica-

tion, X f , the set of flexible-price allocations. One can think of the relaxed Ramsey planner as

a planner that has access to a complete set of state-contingent and intermediate good-specific

linear tax instruments, and can thus freely choose the equilibrium price of any good in any state,

but does not have access to type-specific lump-sum transfers.

The relaxed Ramsey problem in our economy is equivalent to the Ramsey problem in Wern-

ing (2007). For our purposes, solving this problem is useful in the following sense. We will first

characterize a relaxed Ramsey optimum xR∗. We will then derive sufficient conditions under

which xR∗ ∈ X f , and by implication, xR∗ ∈ X s. Finally, because the relaxed set is a strict

superset of the set of sticky-price allocations, it follows that under these conditions, xR∗ is both

a relaxed Ramsey optimum and an unrelaxed Ramsey optimum!

Let πiνi denote the Lagrange multiplier on the implementability condition (20) of type i ∈ I;

let ν ≡ (νi)i∈I denote the set of multipliers. We incorporate these constraints into the planner’s

maximand and define the pseudo-welfare function W(·) as follows:

W(C(st), L(st), st;φ, ν, λ) ≡
∑
i∈I

πi
{
λiU(ωi

C(φ)C(st), ωi
L(φ, st)L(s

t)/θi(st)) (30)

+νi
[
Um
C (st)ωi

C(φ)C(st) + Um
L (st)ωi

L(φ, st)L(s
t)
]}

We then write the relaxed Ramsey planning problem as follows.

Relaxed Ramsey Planner’s Problem. The Relaxed Ramsey planner chooses an allocation x, mar-

ket weights φ ≡ (φi), and T̄ ∈ R, so as to maximize∑
t

∑
st

βtµ(st)W(C(st), L(st), st;φ, ν, λ)− Um
C (s0)T̄

∑
i∈I

πiνi (31)

subject to feasibility: x ∈ X .

The pseudo-welfare function is stated in terms of aggregates alone, making the relaxed

Ramsey planning problem surprisingly tractable. One can think of the pseudo-welfare function

as a social welfare function that not only reflects the distributional motives of society but also

incorporates the constraints imposed by the absence of type-specific transfers.
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4.1 Relaxed Ramsey Optimum

The following proposition characterizes a relaxed Ramsey optimum given an arbitrary set of

Pareto weights.19 For shorthand, we let WC(s
t) ≡ ∂W(·)/∂C(st) and WL(s

t) ≡ ∂W(·)/∂L(st).

Proposition 3. A feasible allocation is a relaxed Ramsey optimum xR∗ if (i) for all st ∈ St, yj(st) =

Y (st) for all j ∈ J ; and (ii)

−WL(s
t)

WC(st)
= A(st), ∀st ∈ St. (32)

Proof. See Appendix A.7.

Part (i) of Proposition 3 indicates that a relaxed Ramsey optimum features zero dispersion

in intermediate good output. Part (ii) provides the planner’s first-order conditions: it sets the

social marginal rate of substitution between labor and consumption, −WL(s
t)/WC(s

t), equal

to the marginal rate of transformation, A(st), state-by-state. Therefore, although the relaxed

Ramsey planner has the ability to tax (or subsidize) different margins in order to finance lump-

sum transfers, it is optimal to distort only the intratemporal margin. A relaxed Ramsey optimum

thereby preserves production efficiency in the sense of Diamond and Mirrlees (1971).

Preservation of production efficiency indicates that a relaxed Ramsey optimum could be

a flexible-price allocation—in any flexible-price equilibrium, there is zero cross-sectional dis-

persion in output—but it does not yet tell us when such an allocation is implementable under

flexible prices. The following result provides an answer.

Theorem 1. If there exist positive scalars (ϑ1, ϑ2, . . . ϑI) ∈ RI
+ and a positively-valued function

Θ : S → R+ such that the skill distribution satisfies:

θi(st) = ϑiΘ(st), ∀st ∈ S, (33)

then: (i) the relaxed Ramsey optimum is implementable as a flexible-price allocation, xR∗ ∈ X f ;

(ii) the relaxed Ramsey optimum is implementable as a sticky-price allocation, xR∗ ∈ X s; and

(iii) the relaxed Ramsey optimum xR∗ is an (unrelaxed) Ramsey optimum, x∗.

Proof. Suppose there exists positive scalars (ϑ1, ϑ2, . . . ϑI) ∈ RI
+ and a function Θ : S → R+ such

that (33) is satisfied. Then the individual household shares defined in (17) reduce to:

ωi
C(φ) ≡

(φi)1/γ∑
j∈I π

j(φj)1/γ
and ωi

L(φ) ≡
(φi)−1/η(ϑi)

1+η

η∑
k∈I π

k(φk)−1/η(ϑk)
1+η

η

.

Notably, ωi
L(φ) is non-state-contingent. The relaxed Ramsey optimality condition in (32) can be

written as follows:

−
Um
L (st)

Um
C (st)

[∑
i∈I π

iωi
L(φ)

(
λi/φi + νi(1 + η)

)∑
i∈I π

iωi
C(φ) (λ

i/φi + νi(1− γ))

]
= A(st) (34)

19See also Werning (2007).
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Comparing this to the flexible-price implementability condition (23), it is clear that (34) can be

replicated under flexible prices with an appropriate choice of scalar χ. This proves part (i) of the

theorem; part (ii) follows directly from Lemma 2. Finally, part (iii) follows from the fact that xR∗

is the welfare-maximizing allocation in XR, and xR∗ ∈ X s ⊂ XR.

Theorem 1 provides sufficient conditions under which a relaxed Ramsey optimum can be

implemented under flexible prices. These conditions are: separable and homothetic prefer-

ences and proportional shocks to the labor productivity distribution.20

To understand the intuition behind Theorem 1, consider the problem of the relaxed Ramsey

planner constrained only by the feasibility of allocations and the budget set implementability

conditions. Suppose society desires a more equal distribution of resources across households

than under laissez-faire (zero taxes and flexible prices). It is optimal, as discussed above, to

distort only the intratemporal margin—the wedge between the marginal rate of substitution,

−Um
L (st)/Um

C (st), and the marginal rate of transformation, A(st). The relaxed planner thereby

faces a trade-off between the benefit of intratemporal taxation and the cost.

The cost of intratemporal taxation is inefficiency: distorting the intratemporal margin moves

C(st) and L(st) away from their undistorted levels. The benefit of intratemporal taxation is

redistribution: the tax is used to finance lump-sum transfers, bringing about a more equal dis-

tribution of resources across households. To understand this last point, note that given a strictly

positive linear tax, all households face the same marginal tax rate, but high-skilled types face a

higher average tax rate than low-skilled types. This is because more tax revenue is collected from

high-skilled types than from low-skilled types, yet total tax revenue finances uniform, lump-sum

transfers. It follows that a greater tax rate coincides with greater redistribution.

The relaxed Ramsey planner’s optimum is the point at which, in every state, the marginal

benefit of intratemporal taxation is equated with the marginal cost; this state-by-state trade-off

is captured by the relaxed planner’s first-order conditions in (32).

Now consider whether this optimum can be achieved under flexible prices. When prefer-

ences are separable and homothetic, the marginal cost of intratemporal taxation is constant

across states (Lucas and Stokey, 1983).21 One can understand this as an application of the classic

uniform commodity taxation result: under homothetic and separable preferences, it is optimal

to tax goods at a uniform rate (Chari and Kehoe, 1999; Atkinson and Stiglitz, 1980).

Furthermore, with proportional shocks to the labor skill distribution, as in (33), the ratio of

20Note that in the proof of Theorem 1, we use the fact that the allocation of consumption and labor
across individual households take the form given in (16), which itself relies on the separable and iso-
elastic preference specification in 1.

21In a standard single-agent Ramsey framework without lump-sum taxes, linear taxation finances ex-
ogenous government spending, as in Lucas and Stokey (1983). It is a well known result that with separable
and iso-elastic preferences, the Ramsey optimum features “perfect tax smoothing.”

25



labor productivity across any two types, i, j ∈ I, is constant across states:

θi(st)

θj(st)
=

ϑi

ϑj
, ∀st ∈ S.

Homothetic preferences and no movement whatsoever in the relative skill distribution imply

that there are no states in which intratemporal taxation is more beneficial than others. More

specifically, although greater tax revenue is collected from high-skilled types than from low-

skilled types, the relative tax revenue collected across types is invariant. It follows that the

marginal redistributive benefit of taxation is constant across states.

If both the marginal benefit and the marginal cost of intratemporal taxation are constant

across states, then the optimum at which marginal benefit equals marginal cost is also con-

stant. It follows that the relaxed Ramsey optimum can be achieved with a uniform distortion χ,

implemented with fiscal tools, and a monetary policy that replicates flexible prices.

Finally, note that a key property that drives this result is the preservation of Diamond and

Mirrlees (1971) production efficiency at the relaxed Ramsey optimum. In this sense, Theorem

1 is similar to the key insight in Correia, Nicolini, and Teles (2008). Although the relaxed plan-

ner in our environment trades off distributional motives with inefficiency, it distorts only the

intratemporal margin—under no circumstances does it introduce misallocation across firms. It

follows that a relaxed Ramsey optimum is implementable under sticky prices if and only if it is

implementable under flexible prices.

Necessity. Theorem 1 provides sufficient conditions under which a relaxed Ramsey optimum

can be implemented under flexible prices. These conditions, however, are not necessary. To

see why, note that there exists a degenerate case in which the Pareto weights are exactly equal

to the Negishi weights under laissez-faire (zero taxes and flexible prices). Formally, if λi = φi

for all i ∈ I , then νi = 0 for all i ∈ I. In other words, given any stochastic process of the

skill distribution, there exists a knife edge case of Pareto weights such that the relaxed Ramsey

optimum can be implemented under flexible prices with χ = 1. Furthermore, this allocation is

on the Pareto frontier: all implementability conditions are slack at this optimum.

4.2 Proportional shocks but suboptimal fiscal policy

We can strengthen the result on monetary policy provided in Theorem 1. In our previous analy-

sis we have assumed that the planner controls both monetary and fiscal policy. We now consider

the special case in which labor productivity shocks are proportional, but the Ramsey planner

can no longer control fiscal policy and can only control monetary policy. Even if fiscal policy is

set suboptimally, i.e. χ ̸= χ∗, we show that optimal monetary policy remains unchanged.
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Theorem 2. Let there exist positive scalars (ϑ1, ϑ2, . . . ϑI) ∈ RI
+ and a positively-valued function

Θ : S → R+ such that the skill distribution satisfies (33), and taxes are set such that:

χ =

(
ρ− 1

ρ

)
(1− τℓ)(1− τr)

1 + τc
̸= χ∗.

It is optimal for monetary policy to replicate the flexible-price allocation.

Proof. See Appendix A.9.

If preferences are separable and homothetic and the labor skill distribution exhibits pro-

portional shocks, then it is optimal for monetary policy to implement flexible price allocations,

regardless of fiscal policy. This generalizes the result provided in Theorem 1 to all fiscal policies

(within the affine tax structure), including sub-optimal policies.

If the tax rate were set suboptimally, one might presume that monetary policy should try

to substitute for the missing tax (wedge). Theorem 2 states that any attempt to do so, or any

deviation from flexible prices for that matter, would be counterproductive.

To understand why, note that the missing tax wedge is constant across all states and histo-

ries. But recall that the only power monetary policy has over allocations is through the pricing

errors, ϵ(st), and these errors must, by construction, “average out” to 1 over all states imme-

diately following a given history. Therefore, if the monetary authority were to raise the labor

wedge in one state, it cannot do so unless it lowers it in another state. If the missing tax wedge

is constant across all states, then there is no reason why one state should be more distorted

than any other, and shifting distortions across states only worsens the allocation. As a result, it

remains optimal for monetary policy to do absolutely nothing at all and target price stability.

5 The Ramsey Problem and Optimal Monetary Policy

We return to our original problem of interest, that of the “unrelaxed” Ramsey planner (Defi-

nition 4). Given the pseudo-welfare function W(·) defined in (30), we can write the Ramsey

planning problem in the following way.

Ramsey Planner’s Problem. The Ramsey planner chooses an allocation x ≡
{ys(st), yf (st), C(st), Y (st), L(st)}t≥0,st∈St , market weights φ ≡ (φi), constants T̄ ∈ R and

χ ∈ R+, in order to maximize (31), subject to:

Y (st) =
[
κys(st)

ρ−1

ρ + (1− κ)yf (st)
ρ−1

ρ

] ρ

ρ−1

, L(st) = κ
ys(st)

A(st)
+ (1− κ)

yf (st)

A(st)
, (35)

C(st) ≤ Y (st), (25), and (26).
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Unlike the relaxed Ramsey planner, the unrelaxed Ramsey planner is subject to all imple-

mentability conditions, including conditions (25) and (26) of Proposition 2. In Appendix Section

A.8 we provide a complete characterization of the Ramsey optimum.22 While we do not provide

the full characterization here for exposition and conciseness, the essential necessary condition

of the planner’s optimum appears as follows:

−WL(s
t)

WC(st)

[
Ramsey wedge(st)

]
=

Y (st)

L(st)
. (36)

Condition (36) is the Ramsey planner’s intratemporal optimality condition; it is the coun-

terpart to condition (32) of the relaxed Ramsey optimum. The Ramsey planner sets the social

marginal rate of substitution between labor and consumption, −WL(s
t)/WC(s

t), equal to the

marginal rate of transformation, Y (st)/L(st), modulo a state-contingent wedge. Relative to the

relaxed planner, the Ramsey planner is subject to implementability conditions (25) and (26);

the wedge in condition (36) is a function of their state-contingent Lagrange multipliers. When

these conditions are slack, their corresponding multipliers are equal to zero and condition (36)

reduces to (32). When these conditions are binding, the ratio −WL(s
t)/WC(s

t) departs from the

marginal rate of transformation at the Ramsey optimum.

Furthermore, in contrast to the relaxed Ramsey optimum, note that the marginal rate of

transformation between labor and consumption at the Ramsey optimum is no longer A(st), but

instead is equal to Y (st)/L(st). As long as the planner finds it optimal to deviate from flexible-

price allocations, a wedge arises between sticky- and flexible-price firm output, resulting in a

loss in production efficiency.

We are interested in what the Ramsey optimum implies for optimal monetary policy. To that

extent, we follow the primal approach and characterize the implicit labor wedge that supports

the Ramsey optimum in equilibrium. Given a Ramsey optimum x∗, we define the “monetary

wedge,” 1− τ∗M (st), implicitly as follows:

−
Um
L (st)

Um
C (st)

= χ∗(1− τ∗M (st))
Y (st)

L(st)
, (37)

where χ∗ denotes the fiscal wedge at this allocation. The following theorem provides a charac-

terization of τ∗M (st), the optimal “monetary tax” at the Ramsey optimum x∗.

Theorem 3. Let I : S → R+ be a positively-valued function defined by:

I(st) ≡
∑

i∈I π̃
i(φi)−1/η(θi(st))

1+η

η∑
i∈I π

i(φi)−1/η(θi(st))
1+η

η

> 0, where π̃i ≡ πi

[
λi

φi
+ νi(1 + η)

]
. (38)

22See Proposition 6 in Appendix A.8 and its proof.
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There exists a threshold Ī(st−1) > 0, measurable in history st−1, such that the optimal monetary

tax τ∗M (st) satisfies:

τ∗M (st) > 0 if and only if I(st) > Ī(st−1),
τ∗M (st) = 0 if and only if I(st) = Ī(st−1),
τ∗M (st) < 0 if and only if I(st) < Ī(st−1).

Proof. See Appendix A.10.

The function I(st) can be interpreted as a sufficient statistic for the level of labor income

inequality in state st. Recall that λi are the Pareto weights, φi are the Negishi weights, and νi are

the planner’s multipliers on the implementability conditions in (20). Notably all are scalars—

they do not depend on the realized state or history. As a result, I(st) is history-independent and

in particular depends only on the current realization of the labor skill distribution, (θi(st))i∈I .

Furthermore, as we show in an example below, the term λi/φi + νi(1+ η) is increasing in the

household’s human wealth: households with high lifetime labor earnings have larger weights,

λi/φi + νi(1 + η), at the Ramsey optimum than households with low lifetime labor earnings.23

As the labor productivities θi(st) of the high-type households increase relative to those of lower-

types, the numerator of I(st) grows relative to its denominator. As a result, I(st) is high in states

in which high human wealth households are relatively more productive and low in states when

they are relatively less productive. Furthermore, the extent to which I(st) responds to relative

movements in the labor skill distribution depends on the Frisch elasticity of labor supply, 1/η.

Theorem 3 states that the optimal monetary tax varies with the state and depends on the

level of labor income inequality, as proxied for by I(st). There exists a threshold Ī(st−1) such

that when labor income inequality is strictly greater than this threshold, the implied optimal

monetary tax is positive. On the other hand, when labor income inequality is below this thresh-

old, the implied optimal monetary tax is negative (i.e. a subsidy). When I(st) is exactly equal to

the threshold, the optimal monetary tax is zero.

Recall from Theorem 1 that when preferences are separable and homothetic and shocks to

the labor skill distribution are proportional, the tax system is sufficient to achieve the optimal

level of redistribution. Theorem 3 nests this result as a special case: when the labor skill distri-

bution satisfies (33), the function I(st) reduces to a constant equal to the threshold in all states

and histories; in this case the optimal monetary tax is always zero.

Numerical Illustration. We illustrate Theorem 3 with a simple numerical example with two

household types—a high-type and a low-type—indexed by i ∈ {H,L}, of equal sizes (πH = πL =

1/2). We consider a labor skill distribution in which the high-type is always more productive

23While high-type households have high market weights, φi, at the Ramsey optimum, the multipliers
νi on their budget implementability conditions are also high and dominate the overall direction of this
term.
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Figure 1. Optimal τ∗M (st) as a function of θH(st)/θ
L(st) (left panel). I(st) as a function of

θH(st)/θ
L(st) (right panel).

than the low-type, but we let the ratio θH(st)/θ
L(st)fluctuate across 6possible states. We assume

states are uniformly distributed and i.i.d.: µ(s′|s) = 1/6 for all s, s′ ∈ S. Finally, we set β = .98,

η = 1, γ = 2, κ = .25, and ρ = 2.

We numerically solve for the Ramsey optimum with equal Pareto weights: λH = λL = 1. The

left panel of Figure 1 plots the optimal monetary tax for different values of θH(st)/θ
L(st). As this

ratio increases, i.e. as the high-type becomes more productive relative to the low-type, τ∗M (st)

increases. To check that this is in line with the predictions of our theory, in the right panel of

Figure 1 we plot I(st) as a function of θH(st)/θ
L(st).24

Intuition. Suppose society desires a more equal distribution of resources across households

than under laissez-faire (zero taxes and flexible prices). If the Ramsey planner had access to

type-specific lump-sum transfers, it would use those to redistribute; in fact, it would simply

implement the most desirable location on the Pareto frontier. In the absence of such transfers,

the Ramsey planner cannot achieve that allocation.

Recall that the relaxed Ramsey planner finds it optimal to distort, state-by-state, the in-

tratemporal margin in order to attain a more desirable distribution of wealth. If the Ramsey

planner had access to state-contingent tax rates, it would use those to implement the relaxed

Ramsey optimum. In particular, the state-contingent tax that implements (32) satisfies:

χ(st) ≡ 1− τ(st) ∝
1

I(st)
. (39)

Therefore, the optimal tax rate τ(st) is strictly increasing in I(st). But again: in the absence of

such state-contingent taxes, the Ramsey planner cannot achieve the relaxed optimum.

The Ramsey planner thereby uses the available instruments—a non-state-contingent fis-

cal wedge, and state-contingent monetary policy—to imperfectly mimic the missing state-

24In this example, the weight λi/φi + νi(1 + η) of the high-type is greater than that of the low-type.

30



contingent tax. Roughly speaking, while the constant fiscal wedge is chosen to achieve the

desired average level of the optimal distortion, monetary policy varies across states in a way

that mimics the desired state-contingency.

In fact, in order for monetary policy to be an effective policy tool, the benefit of intratempo-

ral distortion must vary across states. As we have emphasized with Theorem 2, monetary policy

can only raise the labor wedge in one state if it lowers it in another. In the case of proportional

shocks to the labor skill distribution, there is no such state-contingency in the benefit of in-

tratemporal distortion. Relative productivities across households are constant; it follows, under

appropriate preference conditions, that the optimal tax rate is also constant (Theorem 1).

But in the case in which relative labor productivities vary across states, the benefit of in-

tratemporal distortion also varies—rendering state-contingent monetary policy useful. The op-

timal monetary tax rises in states in which households with high lifetime labor earnings are rel-

atively more productive (than other households) and falls in states in which high wealth house-

holds are relatively less productive. Distorting the economy in this state-contingent manner—

contracting when labor income inequality is high and expanding when labor income inequality

is low—compresses the lifetime labor earnings distribution in the desired direction.

Monetary policy thus assumes the desired state-contingent pattern of the missing tax in

(39): the optimal monetary tax is positive when I(st) is high and negative when I(st) is low.

Monetary policy, however, is an imperfect substitute for this tax as abandoning the flexible-price

allocation results in a loss of production efficiency. Nevertheless, starting from the flexible-price

benchmark, any loss in production efficiency from abandonment is, to a first-order, zero. This

is because at the flexible-price allocation, production efficiency is maximized. It follows that

if there is any incentive to move monetary policy away from replicating flexible-prices—in this

case, when relative productivities across households fluctuate—the planner finds it optimal to

do so.

5.1 Implementation: Optimal Monetary Policy

We now turn to implementation of the Ramsey optimum. We begin with fiscal policy. Clearly

there is no unique implementation of the optimal fiscal wedge χ∗, and any implementation of

χ∗ results in the same behavior for optimal monetary policy. For the sake of exposition, we set

the sales subsidy such that it directly offsets the monopolistic markup and let the labor income

and consumption tax rates jointly implement the optimal fiscal wedge:

1− τr =
ρ

ρ− 1
, and

1− τℓ
1 + τc

= χ∗. (40)

We now turn to monetary policy. We define the aggregate markup M(st) in the economy as

the price level over the nominal marginal cost; in logs:

logM(st) ≡ logP (st)− log(W (st)/A(st)). (41)
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Note that if we shut down aggregate productivity shocks, i.e. A(st) = 1 for all st,then the aggre-

gate markup is equal to the inverse of the real wage, W (st)/P (st). We express optimal monetary

policy in terms of the aggregate markup as follows.

Proposition 4. With tax rates set according to (40), the optimal markup satisfies:

logM∗(st) > 0 if and only if I(st) > Ī(st−1),
logM∗(st) = 0 if and only if I(st) = Ī(st−1),
logM∗(st) < 0 if and only if I(st) < Ī(st−1).

Proof. See Appendix A.12.

Proposition 4 is simply a restatement of Theorem 3 but in terms of the optimal state-

contingent markup instead of the implicit monetary tax. In fact, the two are essentially equiva-

lent: if the final good price rises relative to marginal cost, it is as if households are paying a labor

income tax. Conversely, if the price falls relative to marginal cost, it is as if they are receiving a

subsidy.

As with the monetary tax, we find that when I(st) rises above the critical threshold, the op-

timal markup is positive; conversely when I(st) falls below the threshold, the optimal markup

is negative. When I(st) is exactly equal to the threshold, the optimal markup is zero. Again,

by distorting the economy in this state-contingent manner—contracting when labor income

inequality is high and expanding when labor income inequality is low—monetary policy com-

presses the lifetime labor earnings distribution in the desired direction.

The special case in which shocks to the labor distribution are proportional is nested in

Proposition 4. When the labor skill distribution satisfies (33), the function I(st) reduces to a

constant equal to the threshold in all states and histories. In this case, it is optimal for monetary

policy to implement flexible-price allocations—it can do so by targeting a constant markup,

logM(st) = 0, which can itself be achieved by targeting zero inflation (price stability).25 In

Appendix C we expand on our discussion of implementation and provide results on the behavior

of aggregate price levels and nominal interest rates consistent with the Ramsey optimum.

5.2 Optimal Monetary Policy with Partially State-Contingent Taxes

Thus far in our analysis we have made the stark assumption that monetary policy is state-

contingent while fiscal policy is not—a standard assumption found throughout the New Keyne-

sian literature. We now partially relax this restriction on fiscal tools and allow tax rates to be set

one period in advance; specifically, we let τc, τℓ, and τr at time t be contingent on st−1. While this

does not go all the way to full fiscal state-contingency, it provides the fiscal authority with the

25Here, the level of zero for the log markup under flexible prices is arbitrary: it is only equal to zero
because we have set the sales subsidy to exactly cancel out ρ

ρ−1 . Had we not made that choice, the markup
under flexible prices would be equal to a non-zero constant, specifically: M = (1− τr)

−1 ρ
ρ−1 .
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flexibility of responding to shocks with a one-period lag. To the extent that shocks are persistent,

fiscal policy can thus absorb some of the state-contingent pressure placed on monetary policy.

In this case we obtain a sharper characterization of the behavior of τ∗M (st) around zero.

Theorem 4. Let tax rates be set one period in advance. There exists a threshold Ī(st−1) > 0 such

that τ∗M (st) = 0 if and only if I(st) = Ī(st−1), τ∗M (st) > 0 if and only if I(st) > Ī(st−1), and

τ∗M (st) < 0 if and only if I(st) < Ī(st−1). To a first-order Taylor approximation around I(st) =

Ī(st−1),

τ∗M (st) ≈ δ0[I(st)/Ī(st−1)− 1] (42)

where

δ0 =
1

1 + ρ(η + γ)1−κ
κ

∈ (0, 1). (43)

Proof. See Appendix D.3.

When we allow tax rates to be set one-period in advance, our main result on the optimal

conduct of monetary policy remains intact. However, with this greater level of fiscal flexibility,

we obtain a sharper characterization of the optimal monetary tax near the benchmark of zero.

In particular, we show that to a first-order Taylor approximation around I(st) = Ī(st−1), the

optimal monetary tax is strictly increasing in I(st)/Ī(st−1), with a slope of δ0 ∈ (0, 1).

The slope δ0 characterizes the extent to which the optimal monetary tax responds to an

increase in I(st): a larger value for δ0 indicates a more aggressive response, whereas a lower

value indicates a less aggressive response. An explicit, closed-form expression for this derivative

is given in (43). In particular, δ0 is strictly positive, strictly less than 1, and a function of the

primitives ρ, γ, η, and κ.

First, note that δ0 is decreasing in ρ, the elasticity of substitution across goods. Deviations

of monetary policy away from the flexible-price allocation results in intermediate good price

dispersion. In response, the final good firm substitutes away from high-priced intermediates

towards low-priced intermediates. The greater the substitutability across goods, the greater the

misallocation and corresponding loss in production efficiency. It follows that when ρ is high,

monetary policy responds less aggressively to movements in I(st).
Second, δ0 is increasing in κ/(1 − κ), the mass of sticky-price firms relative to the mass of

flexible-price firms. Consider the limit in which κ → 1. In this case δ0 approaches one. When

nearly all firms in the economy are sticky, movements in monetary policy away from flexible-

rice allocations result in near zero losses in production efficiency; monetary policy therefore

approximates a labor income tax. In this limit, monetary policy perfectly mimics the optimal

state-contingent tax rate, which responds one-for-one with changes in I(st). In the opposite

limit in which κ → 0, δ0 approaches zero. When nearly all firms in the economy are flexible,

monetary policy has no power.
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6 Optimal Policy with Constrained Profit Taxation

In this section we extend the baseline model by discarding Assumption 1. We study how untaxed

profits and heterogeneous initial equity shares affect optimal monetary policy.

We return to our general characterization of the households’ lifetime budget constraints in

(18). We do not impose any restrictions on the cross-sectional covariance between labor skill

type and initial equity across households, but we will discuss the implications of this covariance

for optimal policy. In particular we will focus on the case in which initial equity shares covary

positively with lifetime labor earnings.

6.1 Equilibrium Characterization

We begin by characterizing the set of equilibrium allocations.

Proposition 5. A feasible allocation x ∈ X can be implemented as a sticky-price equilibrium if

and only if there exist φ ≡ (φi), T̄ ∈ R, χ ∈ R+, and a weakly-positive scalar ϑ̂ ∈ R≥0, such that

parts (i)-(ii) of Proposition 2 are satisfied, and∑
t

∑
st

βtµ(st)
[
Um
C (st)ωi

C(φ)C(st) + Um
L (st)ωi

L(φ, st)L(s
t)
]

(44)

= Um
C (s0)T̄ + σi

0ϑ̂
∑
t

∑
st

βtµ(st)

[
χ

ρ

ρ− 1
Um
C (st)C(st) + Um

L (st)L(st)

]
holds for all i ∈ I.

Proof. See Appendix E.1.

Proposition 5 is the analog of Proposition 2 in the baseline economy. Parts (i) and (ii) of

Proposition 2 remain intact; the only distinction is that we have replaced the implementability

conditions in (20) with those in (44). The latter correspond to the lifetime budget constraints in

(18) but with real profits, Π(st)/P (st), expressed in terms of the allocation.

The final term on the right-hand side of (44) represents type-i’s heterogeneous exposure,

σi
0, to the lifetime value of after-tax real profits. Note that this term includes a weakly-positive

scalar given by ϑ̂ ≡ (1 − τΠ)/(1 − τℓ). This scalar parameterizes an additional lever by which

fiscal policy can influence real allocations. If profits are fully taxed (τΠ = 1), as assumed in

our baseline model, then ϑ̂ = 0 and (44) reduces to the implementability conditions in (20).

Furthermore, to the extent that initial equity shares covary positively with lifetime labor earn-

ings, and the Ramsey planner wishes to redistribute from high wealth households to low wealth

households, it is optimal to fully tax profits. Therefore, in order to make our analysis in this

section interesting, we make the following ad hoc assumption on τΠ and τℓ.

Assumption 2. Let ϑ ≥ 0 be a weakly positive scalar. The tax rates τΠ and τℓ are such that ϑ̂ = ϑ.
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Assumption 2 is an ad hoc constraint on fiscal policy. If ϑ > 0, then the fiscal authority

cannot fully tax profits nor drive τℓ to negative infinity. For the remainder of our analysis, we

impose Assumption 2 and index economies by ϑ. We let X s(ϑ) denote the set of sticky-price

allocations in economy ϑ: those that satisfy Proposition 5 with ϑ̂ = ϑ. Our baseline economy is

nested in this more general formulation with ϑ = 0.

6.2 The Ramsey Problem and Optimal Monetary Policy

We return to the Ramsey problem. A Ramsey optimum x∗ is an allocation x that maximizes

social welfare (29) subject to x ∈ X s(ϑ). We solve this problem in Appendix E.2 and characterize

the Ramsey optimum. Here, we present our main result on the optimal implicit monetary tax.

Theorem 5. There exists a threshold Īϑ(st−1) > 0, such that the optimal implicit monetary tax

τ∗M (st) satisfies:
τ∗M (st) > 0 if and only if I(st) > Īϑ(st−1),
τ∗M (st) = 0 if and only if I(st) = Īϑ(st−1),
τ∗M (st) < 0 if and only if I(st) < Īϑ(st−1).

Proof. See Appendix E.3.

When profit taxation is constrained, the behavior of optimal monetary policy resembles that

in the baseline economy with full profit taxation. In particular, the optimal monetary tax is

state-contingent and depends on I(st), our sufficient statistic of labor income inequality. There

exists a threshold Īϑ(st−1) such that when I(st) is strictly greater than the threshold the optimal

monetary tax is positive, when I(st) is strictly below the threshold the optimal monetary tax is

negative, and when I(st) is equal to the threshold the optimal monetary tax is zero.

Therefore, our main qualitative result on the optimal conduct of monetary policy is robust to

the constraint on profit taxation. Initially this result may seem surprising. When monetary pol-

icy abandons flexible price allocations and increases the markup, firm profits increase; when it

lowers the markup, firm profits decrease. However, as emphasized previously, monetary policy

can only raise the markup in one state if it lowers it in another. On average, such movements in

profits may not fully cancel each other out. Therefore, when profits are only partially taxed,

the abandonment of flexible-price allocations by monetary policy leads to some amount of

redistribution of financial wealth.

Yet, it remains the case that when relative productivities vary over the business cycle, the

benefit of intratemporal distortion varies across states in the same pattern as when profits are

fully taxed. By distorting the economy in a state-contingent manner—by raising the markup

when labor income inequality is high and lowering the markup when labor income inequality

is low—monetary policy still compresses the lifetime labor earnings distribution in the desired

direction, regardless of who owns the firms. Fiscal policy (in the form of χ) can then be used to
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balance out all “average” costs and benefits of intratemporal distortion, including the redistri-

butional effect of monetary policy on financial wealth.26

6.3 Constrained Profit Taxation and Partially State-Contingent Taxes

While it is difficult to characterize the behavior of τ∗M (st) in general, we can again provide a

sharper characterization of the optimal monetary tax in the particular version of our economy

in which tax rates are set one period in advance.

Theorem 6. Let tax rates be set one period in advance. There exists a threshold Īϑ(st−1) > 0,

such that τ∗M (st) = 0 if and only if I(st) = Īϑ(st−1), τ∗M (st) > 0 if and only if I(st) > Īϑ(st−1),

and τ∗M (st) < 0 if and only if I(st) < Īϑ(st−1). To a first-order Taylor approximation around

I(st) = Īϑ(st−1),

τ∗M (st) ≈ δ0
1

Hϑ(st−1) + ρ
ρ−1(γ − 1)ϑ

∑
i∈I π

iνiσi
0

[I(st)− Īϑ(st−1)] (45)

where δ0 ∈ (0, 1) is given in (43) and Hϑ(s
t−1) is a positively-valued function measurable in st−1

defined by:

Hϑ(s
t−1) ≡ 1

χ∗(st−1)

∑
i∈I π̃

i(φi)1/γ∑
i∈I π

i(φi)1/γ
> 0. (46)

Proof. See Appendix E.5 and for the definition of Hϑ(s
t−1).

Theorem 6 provides a first-order approximation of τ∗M (st) near the benchmark of τ∗M (st) = 0.

When profit taxation is constrained, the behavior of optimal monetary policy resembles that in

our baseline economy with full profit taxation. In particular, the slope of τ∗M (st) with respect to

I(st) is strictly positive.

We compare this behavior to that in the baseline economy, ϑ = 0, with tax rates set one

period in advance. In this economy, to a first order around τ∗M (st) = 0,

τ∗M (st) ≈ δ0
1

H0(st−1)
[I(st)− Ī0(st−1)]. (47)

where H0(s
t−1) > 0 takes the same form as in (46), but evaluated at the Ramsey optimum for

economy-0. The above equation directly corresponds to equation (42) in Theorem 4, noting that

Ī0(st−1) = H0(s
t−1).

We will make the following heuristic argument comparing the slope in (45) to that in (47).

The terms Hϑ(s
t−1) and H0(s

t−1), although they take the same functional form, are difficult to

compute and compare. We therefore focus on the other term determining the difference in

26To see this new role for χ, note that it appears in the last term of equation (44), the term that corre-
sponds to after-tax real profits.
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Figure 2. Optimal τ∗M (st) as a function of θH(st)/θ
L(st) for different initial distributions of equity

(left panel) and for different levels of the profit tax (right panel).

slopes: ϑ
∑

i∈I π
iνiσi

0. This key term is the product of two components. The first is ϑ which

parameterizes the extent to which profits are left untaxed. The second is
∑

i∈I π
iνiσi

0, the cross-

sectional covariance between initial equity shares, σi
0, and the planner’s multipliers on the im-

plementability conditions in (44), νi.

Recall that households with high lifetime labor earnings have high values of νi, and house-

holds with low lifetime labor earnings have low values of νi. A positive value for
∑

i∈I π
iνiσi

0

thereby indicates a positive cross-sectional covariance between initial equity and lifetime labor

earnings: high human wealth households own greater shares of the firm.

When ϑ
∑

i∈I π
iνiσi

0 is strictly positive—when profits are not fully taxed and when initial

equity and lifetime labor earnings are positively correlated—this term contributes to a “lower”

slope in economy-ϑ than in economy-0. This is consistent with the intuition that when prof-

its are not fully taxed and high human wealth households own greater shares of the firm, an

increase in the markup in high-inequality states reduces overall labor income inequality but

increases profits in those states. As a result, optimal monetary policy responds less aggressively

to movements in I(st). While this is only a heuristic argument, we show that it holds in the

following numerical example.

Numerical Illustration. We return to the simple numerical example of two household types,

a high-type and a low-type, of equal sizes described in Section 5. We again let the the ratio

θH(st)/θ
L(st) fluctuate across 6 possible states and we fix all parameter values as in our previous

example.27 In this exercise we vary the distribution of initial equity and the profit tax itself.

In the left panel of Figure 2 we plot the optimal monetary tax τ∗M (st) as a function of

θH(st)/θ
L(st) for three different economies: one with equal initial firm ownership, one in which

the low-type owns 25% and the high-type owns 75%, and one in which the low-type owns zero

27We set τℓ = 0 so that ϑ = 1− τΠ.
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shares and the high-type owns 100% of the firm. We keep the profit tax constant, set at τΠ = 10%.

Our baseline (ϑ = 0) is nested by the economy with equal firm ownership. We find that in

all three economies, the optimal monetary tax is increasing in the ratio θH(st)/θ
L(st). As the

distribution of initial shares becomes more unequal, the slope of the optimal monetary tax with

respect to the ratio of productivities falls but remains positive.

In the right panel of Figure 2 we plot the optimal monetary tax τ∗M (st) as a function of

θH(st)/θ
L(st) for three different economies: one with τΠ = 100% as in our baseline, another with

τΠ = 60%, and a third with τΠ = 10%. We keep constant the initial distribution of equity: the

low-type owns 20% of the firm and the high type owns 80%. We find that in all three economies

the optimal monetary tax is increasing in the ratio θH(st)/θ
L(st). As the profit tax falls, the slope

of the optimal monetary tax schedule falls but remains positive.

7 Quantitative Illustration

In this final section we use a simple, calibrated version of the model to compute the model-

implied elasticity of the optimal markup with respect to aggregate output.

We use estimates of “worker betas”—the percent change in the growth rate of labor income

associated with a percent change in GDP growth—from Guvenen, Schulhofer-Wohl, Song, and

Yogo (2017) to construct the functions θi : S → R+. We assume 5 household types: the first

four types capture the bottom 90 percent of the labor income distribution, while the last type

captures the top decile. We partition the type space in this way to capture the non-monoticity

of worker betas over the income distribution observed in the data. Worker-betas are monoton-

ically falling in earnings levels throughout most of the income distribution then rise again at

the very top of the distribution. Our type partition is able to capture this U-shape of household

earnings exposure to GDP growth.28

Specifically, we use Treasury Department estimates of the labor income distribution in 2019

to construct the long-run labor productivity distribution.29 We interpret a period in our model

as a year and use annual data on real GDP from the Bureau of Economic Analysis from 1948 to

2023. We detrend the data and, using annual growth rates, we calculate unconditional proba-

bilities for 4 distinct economic states: a severe recession (growth lower than 4.5 percent below

trend), a mild recession (growth between 4.5 and 1.9 percent below trend), normal times (be-

tween 1.9 percent below trend and 1.7 percent above trend), and high growth (greater than 1.7

percent above trend). Equating the average labor income growth rate with the average growth

rate of GDP, we use the worker betas to translate the percent change in GDP growth in each

state into percent changes in labor income growth for each household. We then translate these

28See Figure 1 in Guvenen, Schulhofer-Wohl, Song, and Yogo (2017).
29We use the U.S. Department of the Treasury Table on the Distribution of Income by Source for 2019.
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Table 1. Model-implied optimal markups and elasticities

κ = .25 κ = .06

State d log Y µ d logM Elasticity d logM Elasticity

severe recession –5.23 .09 1.32 –.25 .22 –.04
mild recession –3.30 .09 1.30 –.39 .20 –.06
normal times 0 .49 0 — 0 —
high growth 3.21 .33 –.8 –.25 –.15 –.05

Notes. This table reports model-implied optimal markups and elasticities when price
change frequencies are calibrated to match Nakamura and Steinsson (2008) (κ = .25) and
Bils and Klenow (2004) (κ = .06), respectively.

changes in labor income into changes in labor productivity.

We set β = .98. We use an elasticity of intertemporal substitution of .5 (γ = 2), following Hall

(2009). We set the Frisch elasticity of labor supply to 2 (η = .5), in line with “macro” elasticities

(Hall, 2009; Rogerson and Wallenius, 2009). The elasticity of substitution across goods, ρ, is set

to 6, a value used commonly throughout the New Keynesian literature (McKay, Nakamura, and

Steinsson, 2016). For aggregate productivity, we use the annual series on total factor productiv-

ity (TFP) growth from Fernald (2014) to calculate average TFP growth in the years corresponding

to each state.

We calibrate the share of sticky-price firms, κ, by converting estimates of the monthly fre-

quency of price changes from Nakamura and Steinsson (2008) and Bils and Klenow (2004) into

annual probabilities of a price remaining unchanged. Nakamura and Steinsson (2008) report

that roughly 11 percent of prices change per month; the corresponding number from Bils and

Klenow (2004) is 21 percent. Assuming that price changes are i.i.d. across months, these esti-

mates imply κ =.25 and κ = .06, respectively.30

With these parameter values, we solve numerically for the Ramsey optimum with equal

Pareto weights: λi = 1 for all i ∈ I. In terms of fiscal policy, we assume profits are fully taxed and

follow the implementation in (40).

Results. The first two columns of Table 1 report percent deviations of real GDP from trend and

unconditional probabilities for each state. Model-implied optimal markups expressed in per-

cent deviations from normal times, and their elasticities with respect to real GDP, are reported

for the two specifications of κ.

We find that in either specification, the optimal markup is counter-cyclical. In our preferred

30For example, if 11 percent of prices change within a month, then 89 percent of prices do not change.
Assuming that price changes are i.i.d., the probability of a price remaining unchanged within a given year
is (.89)12 ≈ .247.
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specification of κ = .25, the optimal markup grows by 1.32 percent in severe recessions and falls

by .8 percent in periods of high growth. These numbers imply a range for the elasticity of the

optimal markup with respect to real GDP of –.25 to –.39. In the specification with more flexible

prices (κ = .06), the optimal markup grows by .22 percent in severe recessions and falls by .15

percent in high growth periods; implied elasticities range from –.04 to –.06.

The countercyclicality of the optimal markup is the natural consequence of two features:

countercyclical earnings inequality (in the data) and optimal monetary policy as prescribed

by the model. As noted above, estimates of worker betas feature a striking pattern: earnings

exposure to GDP growth is monotonically falling in income throughout the majority of the

distribution.31 As output falls in a recession, the labor income of low-skilled workers declines

disproportionately, resulting in an increase in earnings inequality. Countercyclical earnings

inequality, coupled with the positive covariance between earnings inequality and the optimal

markup, together imply countercyclical optimal markups.

The behavior of the optimal markup in our model is thereby consistent with work that doc-

uments countercyclical price markups and, more generally, a countercyclical labor wedge. It is

firmly established that the labor wedge, defined as the ratio of the marginal product of labor

to the marginal rate of substitution between consumption and leisure, is countercyclical (Hall,

1997; Chari, Kehoe, and McGrattan, 2007). While the labor wedge can arise from both prod-

uct and labor market distortions, a number of studies find evidence of countercyclical price

markups: Bils (1987); Rotemberg and Woodford (1999); Bils, Klenow, and Malin (2018).32 Given

the countercyclicality of earnings inequality in the data, optimal monetary policy in our model

is broadly consistent with these findings.

In terms of magnitudes, Bils, Klenow, and Malin (2018) show that, depending on the wage

measure used, the price markup elasticity with respect to real GDP can range from –.32 to –2.17.

When using the frequency of price changes estimated by Nakamura and Steinsson (2008), the

elasticities for the optimal markup implied by our model are consistent with the lower end (in

absolute value) of this range.

8 Conclusion

In this paper we study optimal monetary policy in a dynamic, general equilibrium economy

with heterogeneous agents and nominal rigidities. Markets are complete; fiscal and monetary

policy can be used for redistributional purposes. We find that when household labor produc-

tivities fluctuate disproportionately over the business cycle, it is optimal for monetary policy

31Although worker betas are large in the top income decile, these workers comprise only 10% of the
population and are therefore too small to overturn the counter-cyclicality of income inequality.

32See also Bils and Kahn (2000) and Kryvtsov and Midrigan (2013).
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to deviate from implementing flexible-price allocations and target a state-contingent markup.

The optimal markup co-varies positively with a sufficient statistic for labor income inequality.

In a quantitative illustration of the model, we calibrate the labor income distribution in order

to reflect the unequal incidence of GDP fluctuations documented in the data. We show that

countercyclical earnings inequality implies countercyclical optimal markups. In our baseline

calibration, the elasticity of the optimal markup with respect to real GDP ranges from –.25

to –.39. The behavior of the optimal markup is thereby consistent with work that documents

countercyclical price markups and, more broadly, a countercyclical labor wedge.
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A Proofs for the Baseline Economy

A.1 Household optimality

In this section of the appendix, we derive the optimality conditions for household i. We let

βtµ(st)Λi(st) denote the Lagrange multiplier on household i’s budget set at time t, history st.

The first-order conditions for household i with respect to consumption and labor are given by,

respectively:

µ(st)U i
c(s

t)− µ(st)Λi(st)(1 + τc)P (st) = 0, (48)

µ(st)
1

θi(st)
U i
ℓ(s

t) + µ(st)Λi(st)(1− τℓ)W (st) = 0, (49)

where U i
c(s

t) ≡ ∂U(·)/∂ci(st) and U i
ℓ(s

t) ≡ ∂U(·)/∂hi(st) denote the marginal utilities of the

household of type i with respect to individual consumption and work effort. The first-order

condition with respect to nominal bonds bi(st) is given by:

−βtµ(st)Λi(st) + βt+1
∑

st+1|st
µ(st+1)Λi(st+1)(1 + i(st)) = 0. (50)

The first-order condition with respect to Arrow security zi(st+1) is given by:

−βtµ(st)Λi(st)Q(st+1|st) + βt+1µ(st+1)Λi(st+1) = 0. (51)

The first-order condition with respect to equity shares σi(st) is given by:

−βtµ(st)Λi(st)V (st) + βt+1
∑

st+1|st
µ(st+1)Λi(st+1)[(1− τΠ)Π(s

t+1) + V (st+1)] = 0 (52)

The household’s transversality conditions are given by:

lim
t→∞

∑
st

µ(st)Λi(st)bi(st) = 0,

lim
t→∞

∑
st

µ(st)Λi(st)V (st)σi(st) = 0,

lim
t→∞

∑
st

µ(st)Λi(st)Q(st+1|st)zi(st+1) = 0.

Combining (48) and (49), we obtain the household’s intratemporal condition:

− 1

θi(st)

U i
ℓ(s

t)

U i
c(s

t)
=

(1− τℓ)W (st)

(1 + τc)P (st)
(53)

Using the fact that U i
c(s

t) = Λi(st)(1 + τc)P (st), we may write the Euler equation for bonds as:

U i
c(s

t)

P (st)
= β(1 + i(st))

∑
st+1|st

µ(st+1|st)U
i
c(s

t+1)

P (st+1)
, (54)
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where µ(st+1|st) ≡ µ(st+1)/µ(st) is the probability of st+1 conditional on st.

Furthermore, each Arrow security price satisfies:

Q(st+1|st) = βµ(st+1|st)U
i
c(s

t+1)

P (st+1)

P (st)

U i
c(s

t)
(55)

and the equity share price satisfies:

V (st) = β
∑

st+1|st
µ(st+1|st)U

i
c(s

t+1)

P (st+1)

P (st)

U i
c(s

t)
[(1− τΠ)Π(s

t+1) + V (st+1)]. (56)

A.2 Proof of Lemma 1

Markets are complete. The single, lifetime budget constraint of the household of type i can be

represented as:∑
t

∑
st

q̂(st)

[
(1 + τc)c

i(st)− (1− τℓ)
W (st)

P (st)
ℓi(st)

]
=
∑
t

∑
st

q̂(st)

[
T (st) + (1 + σi

0)(1− τΠ)
Π(st)

P (st)

]
where q̂(st) represents the Arrow-Debreu price of one unit of consumption in period t, history

st, normalized so that q̂(s0) = 1, W (st)/P (st) is the real wage, and Π(st)/P (st) are real profits.

Let 1/φi denote the Lagrange multiplier on this budget constraint. The household’s first-order

conditions with respect to ci(st) and ℓi(st) can be written as follows:

φiU i
c(s

t)− (1 + τc)
q̂(st)

βtµ(st)
= 0,

φi 1

θi(st)
U i
ℓ(s

t) + (1− τℓ)
q̂(st)

βtµ(st)

W (st)

P (st)
= 0,

These conditions hold for all t, st and for all types i ∈ I. These conditions imply that in equilib-

rium, for any period t, history st:

φiU i
c(s

t) = φjU j
c (s

t), ∀i, j ∈ I; (57)

φi 1

θi(st)
U i
ℓ(s

t) = φj 1

θj(st)
U j
ℓ (s

t), ∀i, j ∈ I; (58)

− 1

θi(st)

U i
ℓ(s

t)

U i
c(s

t)
= − 1

θj(st)

U j
ℓ (s

t)

U j
c (st)

, ∀i, j ∈ I. (59)

These conditions and the resource constraints in (11) pin down the equilibrium allocation.

Consider now the static subproblem described in Lemma 1. Take any t, st and let ρC(st) and

ρL(s
t) be the Lagrange multipliers on the constraints in (11). The first-order conditions to this

problem are given by

φiU i
c(s

t)− ρC(s
t) =0, ∀i ∈ I

φi 1

θi(st)
U i
ℓ(s

t) + ρL(s
t) =0, ∀i ∈ I
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These conditions imply (57)-(59). Again, these conditions, along with the resource constraints

(11), pin down the allocation. It follows that the solution to the sub-problem coincides with the

equilibrium allocation. The envelope conditions for the static sub-problem are given by:

Um
C (st) = φiU i

c(s
t) and Um

L (st) = φi 1

θi(st)
U i
ℓ(s

t), ∀i ∈ I.

Next, with the separable and iso-elastic preferences assumed in (2), conditions (57) and (58) can

be written as:

φici(st)−γ =φjcj(st)−γ , ∀i, j ∈ I;

φi 1

θi(st)

[
ℓi(st)

θi(st)

]η
=φj 1

θj(st)

[
ℓj(st)

θj(st)

]η
, ∀i, j ∈ I.

Combining these conditions with the resource constraints in (11), we obtain the linear expres-

sions in (16) for individual consumption and labor with shares given by (17).

A.3 Derivation of Budget Implementability Conditions

We derive condition (20). We take the household’s budget constraint in (3) for type i ∈ I,

multiply both sides by Λi(st), and use the household’s FOCs in (48) and (49) to substitute out

consumption and labor prices. Doing so, we obtain:

U i
c(s

t)ci(st) +
1

θi(st)
U i
ℓ(s

t)ℓi(st) =Λi(st)zi(st|st−1)− Λi(st)
∑

st+1|st
Q(st+1|st)zi(st+1|st)

+ Λi(st)(1 + i(st−1))bi(st−1)− Λi(st)bi(st) + Λi(st)P (st)T̄ (st)

− Λi(st)V (st)(σi(st)− σi(st−1)) + Λi(st)(1− τΠ)Π(s
t)σi(st−1)

where we let

T̄ (st) ≡ T (st) + (1− τΠ)
Π(st)

P (st)
.

Multiplying both sides by βtµ(st), summing over t and st, and using the household’s intertem-

poral optimality conditions (54)-(56) to cancel terms, we obtain:

∑
t

∑
st

βtµ(st)

[
U i
c(s

t)ci(st) +
1

θi(st)
U i
ℓ(s

t)ℓi(st)

]
=
∑
t

∑
st

βtµ(st)Λi(st)P (st)T̄ (st)

+ σi
0Λ

i(s0)[(1− τΠ)Π((s0) + V (s0)]

We can rewrite this as:∑
t

∑
st

βtµ(st)

[
U i
c(s

t)ci(st) +
1

θi(st)
U i
ℓ(s

t)ℓi(st)

]
=U i

c(s0)T̄i (60)

+ σi
0Λ

i(s0)[(1− τΠ)Π((s0) + V (s0)]
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where

T̄i ≡
1

U i
c(s0)

∑
t

∑
st

βtµ(st)
U i
c(s

t)

(1 + τc)
T̄ (st).

Next, we use the household optimality condition 52 to write the equity share price as follows:

V (st) = β
∑

st+1|st
µ(st+1|st)Λ

i(st+1)

Λi(st)
[(1− τΠ)Π(s

t+1) + V (st+1)].

Iterating this forward, we have that the share price satisfies:

V (st) =

∞∑
τ=t+1

∑
sτ |st

βτ−tµ(sτ |st)Λ
i(sτ )

Λi(st)
(1− τΠ)Π(s

τ )

Therefore at time 0, the price per share is given by:

V (s0) =

∞∑
t=1

∑
st

βtµ(st)
Λi(st)

Λi(s0)
(1− τΠ)Π(s

t)

Substituting this into 60 and using the fact that U i
c(s

t) = Λi(st)(1 + τc)P (st), we obtain:∑
t

∑
st

βtµ(st)

[
U i
c(s

t)ci(st) +
1

θi(st)
U i
ℓ(s

t)ℓi(st)

]

= U i
c(s0)T̄i + σi

0(1− τΠ)

∞∑
t=0

∑
st

βtµ(st)
U i
c(s

t)

(1 + τc)

Π(st)

P (st)

Finally, using the solution and the envelope conditions for the static sub-problem described

in Lemma 1, as well as the fact that individual allocations satisfy (16), we can rewrite the above

conditions as: ∑
t

∑
st

βtµ(st)
[
Um
C (st)ωi

C(φ)C(st) + Um
L (st)ωi

L(φ, st)L(s
t)
]

= Um
C (s0)T̄ + σi

0(1− τΠ)

∞∑
t=0

∑
st

βtµ(st)
Um
C (st)

(1 + τc)

Π(st)

P (st)

where

T̄i = T̄ ≡ 1

Um
C (s0)

∑
t

∑
st

βtµ(st)
Um
C (st)

(1 + τc)

[
T (st) + (1− τΠ)

Π(st)

P (st)

]
,

for all i ∈ I, as was to be shown.

A.4 Derivation of Sticky-Price Firm Optimality

The sticky-price firm solves the following problem:

max
p′

∑
st|st−1

Q(st|st−1)

{
(1− τr)p

′
(

p′

P (st)

)−ρ

Y (st)− W (st)

A(st)

(
p′

P (st)

)−ρ

Y (st)

}
.
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The first-order condition with respect to p′ is given by

∑
st|st−1

Q(st|st−1)

{
(1− τr)(ρ− 1)

(
pst (s

t−1)

P (st)

)−ρ

Y (st)− ρ
1

pst (s
t−1)

W (st)

A(st)

(
pst (s

t−1)

P (st)

)−ρ

Y (st)

}
= 0.

Rearranging gives us:

∑
st|st−1

Q(st|st−1)Y (st)

(
pst (s

t−1)

P (st)

)−ρ
{
pst (s

t−1)−
[
(1− τr)

(
ρ− 1

ρ

)]−1 W (st)

A(st)

}
= 0.

Substituting in the equilibrium Arrow prices from (14) yields:

∑
st|st−1

µ(st|st−1)
Um
C (st)

P (st)
Y (st)P (st)ρ

{
pst (s

t−1)−
[
(1− τr)

(
ρ− 1

ρ

)]−1 W (st)

A(st)

}
= 0.

Solving this for pst (s
t−1) gives us (22) with q(st|st−1) defined as follows:

q(st|st−1) ≡
µ(st|st−1)Um

C (st)C(st)P (st)ρ−1∑
st|st−1 µ(st|st−1)Um

C (st)C(st)P (st)ρ−1
. (61)

A.5 Proof of Proposition 1

Necessity. In any flexible-price equilibrium, all firms set the same nominal price. The de-

mand functions in (5) imply that all firms produce the same level of output, proving necessity

of yj(st) = Y (st) for all j ∈ J .

Aggregation over the optimal price (21) implies that the aggregate price level is given by:

P (st) =

[
(1− τr)

(
ρ− 1

ρ

)]−1 W (st)

A(st)
, ∀st ∈ St. (62)

Condition (23) follows from combining (62) with the household’s intratemporal optimality con-

dition (12), and letting χ denote the labor wedge as follows:

χ ≡
(
ρ− 1

ρ

)
(1− τℓ)(1− τr)

1 + τc
. (63)

Finally, the derivation of the set of necessary conditions (20) is provided in Appendix A.3.

Sufficiency. Take any feasible allocation x ∈ X , vector φ ≡ (φi), and scalars T̄ ∈ R and χ ∈ R+

that satisfy conditions (i)-(iii) of Proposition 1. We show that there exists a price system R, a

policy P , and a set of financial market positions A, that support x as a flexible-price equilibrium;

we construct these objects as follows.

First, for all st ∈ St, we normalize the aggregate price level to one and set intermediate-good

prices according to:

pjt (s
t) = pft (s

t) = P (st) = 1, ∀j ∈ J .
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These prices, combined with condition (i) of Proposition 1, ensure that the CES demand func-

tion (5) is satisfied for all goods, j ∈ J .

Second, we set the tax rates (τℓ, τc, τr) such that they jointly satisfy:

(1− τℓ)(1− τr)

1 + τc
=

(
ρ− 1

ρ

)−1

χ. (64)

For any strictly positive χ and ρ > 1, such tax rates exist. Combining this with condition (23), we

obtain the following:

−
Um
L (st)

Um
C (st)

(
1 + τc
1− τℓ

)
=

(
ρ− 1

ρ

)
(1− τr)A(st). (65)

Given tax rates (τℓ, τc, τr), we set the real wage W (st) as follows:

W (st) = −
Um
L (st)

Um
C (st)

(
1 + τc
1− τℓ

)
, (66)

and therefore satisfy the household’s intratemporal condition in (12). Substituting the above

expression for the real wage into (65) and re-arranging gives us:

pft (s
t) = 1 =

[
(1− τr)

(
ρ− 1

ρ

)]−1 W (st)

A(st)
. (67)

Therefore the flexible-price firm’s optimality condition (21) is satisfied.

Next, for all st ∈ St, we set the Arrow prices, the nominal interest rate, and the ex-dividend

share price as follows:

Q(st+1|st) = βµ(st+1|st)
Um
C (st+1)

Um
C (st)

, ∀st+1|st;

1 = β(1 + i(st))
∑

st+1|st
µ(st+1|st)

Um
C (st+1)

Um
C (st)

;

V (st) =

∞∑
τ=t+1

∑
sτ |st

βτ−tµ(sτ |st)
Um
C (sτ )

Um
C (st)

(1− τΠ)Π(s
τ ).

We therefore satisfy equilibrium conditions (13)-(15).

What remains to be shown is that we can construct financial asset holdings such that the

household’s budget constraints are satisfied at this allocation in every history. Given T̄ , we first

construct a sequence {T̄ (st)}t≥0,st∈St that satisfies the following condition:

T̄ =
1

Um
c (s0)(1 + τc)

∑
t

∑
st

βtµ(st)Um
c (st)T̄ (st). (68)

Given such a sequence {T̄ (st)}, we set transfers such that T (st) = T̄ (st) − (1 − τΠ)Π(s
t) for all

st ∈ St. Next, we take the household’s budget constraint in (3) for type i ∈ I for all periods
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and states following and including period r, history sr; we multiply these budget constraints by

βt−rµ(st|sr)Λi(st) and sum over all periods and states following and including period r, history

sr. Doing so, we get:

∞∑
t=r

∑
st|sr

βt−rµ(st|sr)Λi(st)

(1 + τc)c
i(st) + bi(st) +

∑
st+1|st

Q(st+1|st)zi(st+1|st) + σi(st)V (st)


=

∞∑
t=r

∑
st|sr

βt−rµ(st|sr)Λi(st)
[
(1− τℓ)W (st)ℓi(st) + T̄ (st)

]
+

∞∑
t=r

∑
st|sr

βt−rµ(st|sr)Λi(st)
{
(1 + i(st−1))bi(st−1) + zi(st|st−1) + σi(st−1)

[
(1− τΠ)Π(s

t) + V (st)
]}

Using the household’s FOCs for financial assets, (50)-(52), the above equation reduces to:

∞∑
t=r

∑
st|sr

βt−rµ(st|sr)Λi(st)
[
(1 + τc)c

i(st)
]
=

∞∑
t=r

∑
st|sr

βt−rµ(st|sr)Λi(st)
[
(1− τℓ)W (st)ℓi(st) + T̄ (st)

]
(69)

+ Λi(sr)
[
(1 + i(sr−1))bi(sr−1) + zi(sr|sr−1)

]
+ Λi(sr)σi(sr−1) [(1− τΠ)Π(s

r) + V (sr)]

Next, we define ai(sr) as:

ai(sr) ≡ (1 + i(sr−1))bi(sr−1) + zi(sr|sr−1) + σi(sr−1) [(1− τΠ)Π(s
r) + V (sr)] (70)

Therefore ai(sr) represents the total financial assets (cash-on-hand) that household i carries

into period r, history sr. Rearranging (69) gives us:

Λi(sr)ai(sr) =

∞∑
t=r

∑
st|sr

βt−rµ(st|sr)Λi(st)
[
(1 + τc)c

i(st)− (1− τℓ)W (st)ℓi(st)− T̄ (st)
]

Next, using the household’s FOCs for consumption and labor, (48) and (49), we obtain the

following expression for the total financial assets that household i carries into period r, history

sr:

ai(sr) =

(
U i
c(s

r)

1 + τc

)−1 ∞∑
t=r+1

∑
st

βt−rµ(st|sr)
[
U i
c(s

t)ci(st) +
1

θi(st)
U i
ℓ(s

t)ℓi(st)− U i
c(s

t)

(1 + τc)
T̄ (st)

]
This can equivalently be written as follows:

ai(sr) =

(
Um
C (sr)

1 + τc

)−1 ∞∑
t=r+1

∑
st

βt−rµ(st|sr)
[
Um
C (st)ωi

C(φ)C(st) + Um
L (st)ωi

L(φ, st)L(s
t)
]

−
∞∑

t=r+1

∑
st

βt−rµ(st|sr)
Um
C (st)

Um
C (sr)

T̄ (st).

Finally, the government’s budget constraint holds by Walras’s law.
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A.6 Proof of Proposition 2

Necessity. Condition (21) indicates that all flexible-price firms set the same nominal price;

similarly condition (22) indicates that all sticky-price firms set the same nominal price. Com-

bining this observation with the demand functions,

yf (st)

Y (st)
=

[
pft (s

t)

P (st)

]−ρ

and
ys(st)

Y (st)
=

[
pst (s

t−1)

P (st)

]−ρ

. (71)

we infer that all flexible-price firms produce the same level of output and all sticky-price firms

produce the same level of output, denoted by yf (st) and ys(st), respectively.

The flexible price firm sets its price according to (21). Rearranging and dividing through by

P (st) gives us:
pft (s

t)

P (st)
−
[
(1− τr)

(
ρ− 1

ρ

)]−1 W (st)

P (st)A(st)
= 0.

The flexible-price firm optimality condition can be written as follows:[
yf (st)

Y (st)

]−1/ρ

−
[
(1− τr)

(
ρ− 1

ρ

)]−1 W (st)

P (st)A(st)
= 0.

Combining the above condition with the household’s intratemporal optimality condition (12)

yields equilibrium necessary condition (25) with χ defined in (63).

As shown in Section A.4 of the Appendix, the sticky price firm sets its price according to

∑
st|st−1

µ(st|st−1)Um
C (st)Y (st)

(
pst (s

t−1)

P (st)

)−ρ
{
pst (s

t−1)

P (st)
−
[
(1− τr)

(
ρ− 1

ρ

)]−1 W (st)

P (st)A(st)

}
= 0.

Using the CES demand function (71), the previous condition can be written as:

∑
st|st−1

µ(st|st−1)Um
C (st)Y (st)

ys(st)

Y (st)

{[
ys(st)

Y (st)

]−1/ρ

−
[
(1− τr)

(
ρ− 1

ρ

)]−1 W (st)

P (st)A(st)

}
= 0

Combining the above condition with the household’s intratemporal optimality condition (12)

yields the equilibrium necessary condition (26) with χ defined in (63). Finally, the derivation of

the set of necessary conditions (20) is provided in Appendix A.3.

Sufficiency. Take any feasible allocation x ∈ X , vector φ ≡ (φi), and scalars T̄ ∈ R and χ ∈ R+

that satisfy conditions (i)-(iii) of Proposition 2. We show that there exists a price system R, a

policy P , and a set of financial market positions A, that support x as a sticky-price equilibrium;

we construct these as follows.

First, we construct nominal prices as follows. Let Bt(s
t−1) > 0 denote the common belief

of the aggregate price level at time t based on history st−1; aside from being strictly positive,
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Bt(s
t−1) > 0 is a free parameter in our model. We set pst (s

t−1) = Bt(s
t−1). Next, we can decom-

pose the sticky- and flexible-price firm output each into two components:

ys(st) = ϕs(st−1)Φ(st) and yf (st) = ϕf (st)Φ(st). (72)

where we set ϕs(st−1) ≡ Bt(s
t−1)−ρ. Therefore,

pst (s
t−1) = ϕs(st−1)−1/ρ.

The output decomposition in (72) implies Φ(st) = ys(st)/Bt(s
t−1)−ρ and ϕf (st) = yf (st)/Φ(st).

Finally, we set the price of the flexible-price firm as follows:

pft (s
t) = ϕf (st)−1/ρ.

Note that these prices, along with the feasibility constraint (7), imply that the aggregate price

level is given by:

P (st) =

[
Y (st)

Φ(st)

]−1/ρ

. (73)

These prices furthermore ensure that the CES demand curves in (71) are satisfied. We set the

money supply such that M(st) = P (st)Y (st).

Next, we set the tax rates (τℓ, τc, τr) such that they jointly satisfy (64). For any strictly positive

χ and ρ > 1, such tax rates exist. Combining this with conditions (25) and (26), we obtain the

following two conditions:[
yf (st)

Y (st)

]−1/ρ

+
Um
L (st)

Um
C (st)

1 + τc
1− τℓ

[
(1− τr)

(
ρ− 1

ρ

)]−1 1

A(st)
= 0, (74)

and

∑
st|st−1

µ(st|st−1)Um
C (st)ys(st)

{[
ys(st)

Y (st)

]−1/ρ

+
Um
L (st)

Um
C (st)

1 + τc
1− τℓ

[
(1− τr)

(
ρ− 1

ρ

)]−1 1

A(st)

}
= 0.

(75)

Given tax rates (τℓ, τc, τr), we set the nominal wage as follows:

W (st) = −
Um
L (st)

Um
C (st)

(
1 + τc
1− τℓ

)
P (st), (76)

and therefore satisfy the household’s intratemporal condition in (12). Substituting the above

expression for the real wage into (74) and (75) rearranging gives us:[
yf (st)

Y (st)

]−1/ρ

− W (st)

P (st)

[
(1− τr)

(
ρ− 1

ρ

)]−1 1

A(st)
= 0.
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and

∑
st|st−1

µ(st|st−1)Um
C (st)ys(st)

{[
ys(st)

Y (st)

]−1/ρ

− W (st)

P (st)

[
(1− τr)

(
ρ− 1

ρ

)]−1 1

A(st)

}
= 0.

Combining these with the CES demand functions in (71) we get the following two conditions:

pft (s
t)

P (st)
− W (st)

P (st)

[
(1− τr)

(
ρ− 1

ρ

)]−1 1

A(st)
= 0.

and

∑
st|st−1

µ(st|st−1)Um
C (st)Y (st)

(
pst (s

t−1)

P (st)

)−ρ
{
pst (s

t−1)

P (st)
− W (st)

P (st)

[
(1− τr)

(
ρ− 1

ρ

)]−1 1

A(st)

}
= 0.

Finally, with some rearrangement, these imply:

pft (s
t)−

[
(1− τr)

(
ρ− 1

ρ

)]−1 W (st)

A(st)
= 0.

and

∑
st|st−1

µ(st|st−1)
Um
C (st)

P (st)
Y (st)P (st)ρ

{
pst (s

t−1)−
[
(1− τr)

(
ρ− 1

ρ

)]−1 W (st)

A(st)

}
= 0.

Therefore both the flexible-price and the sticky-price firm’s optimality conditions, (21) and (22),

are satisfied.

Next, for all st ∈ St, we set the Arrow prices, the nominal interest rate, and the ex-dividend

share price as follows:

Q(st+1|st) = βµ(st+1|st)
Um
C (st+1)

Um
C (st)

P (st)

P (st+1)
, ∀st+1|st;

1 = β(1 + i(st))
∑

st+1|st
µ(st+1|st)

Um
C (st+1)

Um
C (st)

P (st)

P (st+1)
;

V (st) =

∞∑
τ=t+1

∑
sτ |st

βτ−tµ(sτ |st)
Um
C (sτ )

Um
C (st)

P (st)

P (sτ )
(1− τΠ)Π(s

τ ).

We therefore satisfy equilibrium conditions (13)-(15).

What remains to be shown is that we can construct financial asset holdings such that the

household’s budget constraints are satisfied at this allocation in every history. For this we follow

the same steps as in the sufficiency portion of the proof of Proposition 1. Given T̄ , we first

construct a sequence {T̄ (st)}t≥0,st∈St that satisfies (68). Given such a sequence {T̄ (st)}, we set

transfers such that T (st) = T̄ (st) − (1 − τΠ)Π(s
t)/P (st) for all st ∈ St. Next, we take the house-

hold’s budget constraint in (3) for type i ∈ I for all periods and states following and including
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period r, history sr; we multiply these budget constraints by βt−rµ(st|sr)Λi(st) and sum over all

periods and states following and including period r, history sr. Doing so, we get:

∞∑
t=r

∑
st|sr

βt−rµ(st|sr)Λi(st)

(1 + τc)P (st)ci(st) + bi(st) +
∑

st+1|st
Q(st+1|st)zi(st+1|st) + σi(st)V (st)


=

∞∑
t=r

∑
st|sr

βt−rµ(st|sr)Λi(st)
[
(1− τℓ)W (st)ℓi(st) + P (st)T̄ (st)

]
+

∞∑
t=r

∑
st|sr

βt−rµ(st|sr)Λi(st)
{
(1 + i(st−1))bi(st−1) + zi(st|st−1) + σi(st−1)

[
(1− τΠ)Π(s

t) + V (st)
]}

Using the household’s FOCs for financial assets, (50)-(52), the above equation reduces to:

∞∑
t=r

∑
st|sr

βt−rµ(st|sr)Λi(st)
[
(1 + τc)P (st)ci(st)− (1− τℓ)W (st)ℓi(st)− P (st)T̄ (st)

]
(77)

= Λi(sr)
[
(1 + i(sr−1))bi(sr−1) + zi(sr|sr−1)

]
+ Λi(sr)σi(sr−1) [(1− τΠ)Π(s

r) + V (sr)]

We define ai(sr) as the total nominal financial assets (cash-on-hand) that household i carries

into period r, history sr, given by (70). Rearranging (77) gives us:

Λi(sr)ai(sr) =

∞∑
t=r

∑
st|sr

βt−rµ(st|sr)Λi(st)
[
(1 + τc)P (st)ci(st)− (1− τℓ)W (st)ℓi(st)− P (st)T̄ (st)

]
Next, using conditions (48) and (49), we obtain the following expression for the total real finan-

cial assets that household i carries into period r, history sr:

ai(sr)

P (st)
=

(
U i
c(s

r)

1 + τc

)−1 ∞∑
t=r+1

∑
st

βt−rµ(st|sr)
[
U i
c(s

t)ci(st) +
1

θi(st)
U i
ℓ(s

t)ℓi(st)− U i
c(s

t)

(1 + τc)
T̄ (st)

]
This can equivalently be written as follows:

ai(sr)

P (st)
=

(
Um
C (sr)

1 + τc

)−1 ∞∑
t=r+1

∑
st

βt−rµ(st|sr)
[
Um
C (st)ωi

C(φ)C(st) + Um
L (st)ωi

L(φ, st)L(s
t)
]

−
∞∑

t=r+1

∑
st

βt−rµ(st|sr)
Um
C (st)

Um
C (sr)

T̄ (st).

Finally, the government’s budget constraint holds by Walras’s law.

A.7 Proof of Proposition 3

The Relaxed Ramsey planner’s problem is to choose an allocation x ∈ X , a vector φ ≡ (φi), and

scalar T̄ ∈ R, in order to maximize the pseudo-welfare function in (31) subject to technology
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and resource constraints (7)-(8). First, note that in any history st, the planner can solve a static

sub-problem: maximize final good output Y (st) given productivity A(st) and aggregate labor

supply, L(st). Specifically:

Y (st) = max
(nj(st))j∈J

[∫
j∈J

(A(st)n
j(st))

ρ−1

ρ dj

] ρ

ρ−1

subject to L(st) =

∫
j∈J

nj(st)dj.

The first-order conditions for this sub-problem yield: nj(st) = nj′(st) = L(st) for all j, j′ ∈ J ,

which implies that at the planner’s optimum yj(st) = Y (st) = A(st)L(s
t) for all j ∈ J . Using

this, we can rewrite the relaxed planner’s problem in terms of aggregates alone:

max
{C(st),L(st)},φ,T̄

∑
t

∑
st

βtµ(st)W(C(st), L(st);φ, ν, λ)− Um
C (s0)

∑
i∈I

πiνiT̄

subject to

C(st) = A(st)L(s
t), ∀st ∈ St. (78)

We let βtµ(st)ς̂(st) denote the Lagrange multiplier on the time t, history st resource constraint

(78). The first-order conditions of this problem are given by:

βtµ(st)WC(s
t)− βtµ(st)ς̂(st) = 0,

βtµ(st)WL(s
t) + βtµ(st)ς̂(st)A(st) = 0.

Combining, we obtain the relaxed planner’s optimality condition in (32).

A.8 The Ramsey Optimum

In this section of the appendix, we solve the Ramsey problem stated in Section 5. Recall that in

our statement of the Ramsey problem, we allow for the inequality constraint: C(st) ≤ Y (st); that

is, the planner has free disposal of the final good. We let βtµ(st)(1−κ)ξ(st) and βtµ(st−1)κυ(st−1)

denote the Lagrange multipliers on the implementability conditions (25) and (26), respectively.

We obtain the following Ramsey optimality condition.

Proposition 6. A Ramsey optimum x∗ satisfies, for all st ∈ St,

−
WL(s

t) + (Um
L (st) + Um

LL(s
t)L(st))

[
κυ(st−1) ys(st)

A(st)L(st)
+ (1− κ)ξ(st) yf (st)

A(st)L(st)

]
WC(st) + χ(Um

C (st) + Um
CC(s

t)C(st))

[
κυ(st−1)

[
ys(st)
Y (st)

]1−1/ρ
+ (1− κ)ξ(st)

[
yf (st)
Y (st)

]1−1/ρ
] =

Y (st)

L(st)
.

(79)

The proof of Proposition 6 is found below. Note first that we can rewrite condition (79) as it

is stated in the main text in equation (36), with

[
Ramsey wedge(st)

]
≡

1 +
(
Um

L (st)+Um
LL(s

t)L(st)
WL(st)

) [
κυ(st−1) ys(st)

A(st)L(st)
+ (1− κ)ξ(st) yf (st)

A(st)L(st)

]
1 + χ

(
Um

C (st)+Um
CC(st)C(st)

WC(st)

)[
κυ(st−1)

[
ys(st)
Y (st)

]1−1/ρ
+ (1− κ)ξ(st)

[
yf (st)
Y (st)

]1−1/ρ
] .
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Proof. We write the planner’s Lagrangian as follows:

L =
∑
t

∑
st

βtµ(st)W(C(st), L(st), st;φ, ν, λ)

+
∑
t

∑
st

βtµ(st)ςY (st)

{[
κys(st)

ρ−1

ρ + (1− κ)yf (st)
ρ−1

ρ

] ρ

ρ−1 − Y (st)

}
+
∑
t

∑
st

βtµ(st)ςL(st)

{
κ
ys(st)

A(st)
+ (1− κ)

yf (st)

A(st)
− L(st)

}
+
∑
t

∑
st

βtµ(st)ςC(st)
{
Y (st)− C(st)

}
+
∑
t

∑
st

βtµ(st−1)κυ(st−1)
∑

st|st−1

µ(st|st−1)ys(st)

{
χUm

C (st)

[
ys(st)

Y (st)

]−1/ρ

+ Um
L (st)

1

A(st)

}

+
∑
t

∑
st

βtµ(st)(1− κ)ξ(st)yf (st)

{
χUm

C (st)

(
yf (st)

Y (st)

)−1/ρ

+ Um
L (st)

1

A(st)

}

with Karush-Kuhn-Tucker conditions:

Y (st)− C(st) ≥ 0, ςC(st) ≥ 0, and ςC(st)[Y (st)− C(st)] = 0, ∀st ∈ St.

The FOC with respect to ys(st) is given by:

0 =κςY (st)
[
κys(st)

ρ−1

ρ + (1− κ)yf (st)
ρ−1

ρ

] ρ

ρ−1
−1

ys(st)
ρ−1

ρ
−1 + κςL(st)

1

A(st)
(80)

+ κυ(st−1)

{
χUm

C (st)

[
ys(st)

Y (st)

]−1/ρ

+ Um
L (st)

1

A(st)
− 1

ρ
χUm

C (st)

[
ys(st)

Y (st)

]−1/ρ
}

The FOC with respect to yf (st)

0 =(1− κ)ςY (st)
[
κys(st)

ρ−1

ρ + (1− κ)yf (st)
ρ−1

ρ

] ρ

ρ−1
−1

yf (st)
ρ−1

ρ
−1 + (1− κ)ςL(st)

1

A(st)
(81)

+ (1− κ)ξ(st)

{
χUm

C (st)

(
yf (st)

Y (st)

)−1/ρ

+ Um
L (st)

1

A(st)
− 1

ρ
χUm

C (st)

[
yf (st)

Y (st)

]−1/ρ
}

Note that (80) can equivalently be written as:

0 =κςY (st)
[
κys(st)

ρ−1

ρ + (1− κ)yf (st)
ρ−1

ρ

] ρ

ρ−1
−1

ys(st)
ρ−1

ρ + κςL(st)
ys(st)

A(st)
(82)

+ κυ(st−1)ys(st)

{
χUm

C (st)

[
ys(st)

Y (st)

]−1/ρ
ρ− 1

ρ
+ Um

L (st)
1

A(st)

}
or

0 = ςY (st)

[
ys(st)

Y (st)

]−1/ρ

+ ςL(st)
1

A(st)
+ υ(st−1)

{
χUm

C (st)

[
ys(st)

Y (st)

]−1/ρ
ρ− 1

ρ
+ Um

L (st)
1

A(st)

}
(83)
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Similarly, note that (81) can equivalently be written as:

0 =(1− κ)ςY (st)
[
κys(st)

ρ−1

ρ + (1− κ)yf (st)
ρ−1

ρ

] ρ

ρ−1
−1

yf (st)
ρ−1

ρ + (1− κ)ςL(st)
yf (st)

A(st)
(84)

+ (1− κ)ξ(st)yf (st)

{
χUm

C (st)

[
yf (st)

Y (st)

]−1/ρ
ρ− 1

ρ
+ Um

L (st)
1

A(st)

}
or

0 = ςY (st)

[
yf (st)

Y (st)

]−1/ρ

+ςL(st)
1

A(st)
+ξ(st)

{
χUm

C (st)

[
yf (st)

Y (st)

]−1/ρ
ρ− 1

ρ
+ Um

L (st)
1

A(st)

}
(85)

Adding (82) to (83) gives us:

0 =ςY (st)Y (st) + ςL(st)L(st) (86)

+ χ
ρ− 1

ρ
Um
C (st)Y (st)

[
κυ(st−1)

[
ys(st)

Y (st)

]1−1/ρ

+ (1− κ)ξ(st)

(
yf (st)

Y (st)

)1−1/ρ
]

+ Um
L (st)

1

A(st)

[
κυ(st−1)ys(st) + (1− κ)ξ(st)yf (st)

]
We can rewrite the above condition as follows:

−
ςL(st) + Um

L (st) 1
A(st)L(st)

[
κυ(st−1)ys(st) + (1− κ)ξ(st)yf (st)

]
ςY (st) + χ

(
1− 1

ρ

)
Um
C (st)

[
κυ(st−1)

[
ys(st)
Y (st)

]1−1/ρ
+ (1− κ)ξ(st)

(
yf (st)
Y (st)

)1−1/ρ
] =

Y (st)

L(st)
(87)

Next, the FOC with respect to C(st) is given by:

0 = WC(s
t)−ςC(st)+κυ(st−1)χys(st)Um

CC(s
t)

[
ys(st)

Y (st)

]−1/ρ

+(1−κ)ξ(st)χyf (st)Um
CC(s

t)

(
yf (st)

Y (st)

)−1/ρ

,

(88)

The FOC with respect to Y (st) is given by:

0 = −ςY (st)+ςC(st)+
1

ρ
κυ(st−1)χUm

C (st)

[
ys(st)

Y (st)

]−1/ρ
ys(st)

Y (st)
+
1

ρ
(1−κ)ξ(st)χUm

C (st)

(
yf (st)

Y (st)

)−1/ρ
yf (st)

Y (st)
(89)

The FOC with respect to L(st) is given by:

0 = WL(s
t)− ςL(st) + κυ(st−1)ys(st)Um

LL(s
t)

1

A(st)
+ (1− κ)ξ(st)yf (st)Um

LL(s
t)

1

A(st)
, (90)

Combining (88) and (89) we get:

ςY (st) =WC(s
t) + κυ(st−1)χys(st)Um

CC(s
t)

[
ys(st)

Y (st)

]−1/ρ

+ (1− κ)ξ(st)χyf (st)Um
CC(s

t)

(
yf (st)

Y (st)

)−1/ρ

+
1

ρ
κυ(st−1)χUm

C (st)

[
ys(st)

Y (st)

]−1/ρ
ys(st)

Y (st)
+

1

ρ
(1− κ)ξ(st)χUm

C (st)

(
yf (st)

Y (st)

)−1/ρ
yf (st)

Y (st)
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This reduces to:

ςY (st) = WC(s
t)+χ

{
Um
CC(s

t)Y (st) +
1

ρ
Um
C (st)

}[
κυ(st−1)

[
ys(st)

Y (st)

]1−1/ρ

+ (1− κ)ξ(st)

(
yf (st)

Y (st)

)1−1/ρ
]

(91)

and from (90) we have:

ςL(st) = WL(s
t) + Um

LL(s
t)

1

A(st)

[
κυ(st−1)ys(st) + (1− κ)ξ(st)yf (st)

]
(92)

Substituting these into (87) and noting that Y (st) = C(st), for all st ∈ St, we obtain:

−
WL(s

t) +
{
Um
LL(s

t) 1
A(st)

+ Um
L (st) 1

A(st)L(st)

} [
κυ(st−1)ys(st) + (1− κ)ξ(st)yf (st)

]
WC(st) + χ

{
Um
CC(s

t)C(st) + Um
C (st)

}[
κυ(st−1)

[
ys(st)
Y (st)

] ρ−1

ρ

+ (1− κ)ξ(st)
[
yf (st)
Y (st)

] ρ−1

ρ

] =
Y (st)

L(st)
,

and ςC(st) > 0 for all st ∈ St. The above equation coincides with (79).

A.9 Proof of Theorem 2

Iso-elastic preferences satisfy:

Um
CC(s

t)C(st)

Um
C (st)

= −γ and
Um
LL(s

t)L(st)

Um
L (st)

= η

This implies that (79) can be written as follows:

−
WL(s

t) + (1 + η)Um
L (st) Y (st)

A(st)L(st)

[
κυ(st−1)y

s(st)
Y (st) + (1− κ)ξ(st)y

f (st)
Y (st)

]
WC(st) + χ(1− γ)Um

C (st)

[
κυ(st−1)

[
ys(st)
Y (st)

] ρ−1

ρ

+ (1− κ)ξ(st)
[
yf (st)
Y (st)

] ρ−1

ρ

] =
Y (st)

L(st)
(93)

This holds for any arbitrary χ. We combine this with the implementability condition (25) and

obtain:

WL(st)
Um

L (st) + (1 + η) Y (st)
A(st)L(st)

[
κυ(st−1)y

s(st)
Y (st) + (1− κ)ξ(st)y

f (st)
Y (st)

]
χ−1WC(st)

Um
C (st) + (1− γ)

[
κυ(st−1)

[
ys(st)
Y (st)

] ρ−1

ρ

+ (1− κ)ξ(st)
[
yf (st)
Y (st)

] ρ−1

ρ

] =

(
yf (st)

Y (st)

)1/ρ
Y (st)

A(st)L(st)

(94)

With proportional shocks to the labor skill distribution, we have that:

WC(s
t) = Um

C (st)ΩC and WL(s
t) = Um

L (st)ΩL.

where

ΩC ≡
∑
i∈I

πiωi
C(φ)

[
λi

φi
+ νi(1− γ)

]
and ΩL ≡

∑
i∈I

πiωi
L(φ)

[
λi

φi
+ νi(1 + η)

]
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are constants. Substituting this into (94) gives us the following optimality condition:

ΩL + (1 + η) Y (st)
A(st)L(st)

[
κυ(st−1)y

s(st)
Y (st) + (1− κ)ξ(st)y

f (st)
Y (st)

]
χ−1ΩC + (1− γ)

[
κυ(st−1)

[
ys(st)
Y (st)

] ρ−1

ρ

+ (1− κ)ξ(st)
[
yf (st)
Y (st)

] ρ−1

ρ

] =

(
yf (st)

Y (st)

)1/ρ
Y (st)

A(st)L(st)

(95)

Next we combine FOCs (83) and (85) in order to obtain:

ςY (st) + υ(st−1)

{
χUm

C (st)ρ−1
ρ + Um

L (st) 1
A(st)

[
ys(st)
Y (st)

]1/ρ}
ςY (st) + ξ(st)

{
χUm

C (st)ρ−1
ρ + Um

L (st) 1
A(st)

[
yf (st)
Y (st)

]1/ρ} =

[
yf (st)
Y (st)

]−1/ρ

[
ys(st)
Y (st)

]−1/ρ
(96)

Furthermore, condition (91) can be written as:

ςY (st) = Um
C (st)ΩC(φ) + χUm

C (st)

{
1

ρ
− γ

}[
κυ(st−1)

[
ys(st)

Y (st)

] ρ−1

ρ

+ (1− κ)ξ(st)

[
yf (st)

Y (st)

] ρ−1

ρ

]
Substituting this into (96) we and using the implementability condition in (25) we obtain:

χ−1ΩC(φ) +
{

1
ρ − γ

}[
κυ(st−1)

[
ys(st)
Y (st)

] ρ−1

ρ

+ (1− κ)ξ(st)
[
yf (st)
Y (st)

] ρ−1

ρ

]
+ υ(st−1)

[
ρ−1
ρ −

[
yf (st)
Y (st)

]−1/ρ [
ys(st)
Y (st)

]1/ρ]
χ−1ΩC(φ) +

{
1
ρ − γ

}[
κυ(st−1)

[
ys(st)
Y (st)

] ρ−1

ρ

+ (1− κ)ξ(st)
[
yf (st)
Y (st)

] ρ−1

ρ

]
− 1

ρξ(s
t)

(97)

=

[
yf (st)
Y (st)

]−1/ρ

[
ys(st)
Y (st)

]−1/ρ

We thus have a system of four equations in four unknowns. The four equations are (95), (97),

along with the two resource constraints in (35). The four unknowns are:{
Y (st)

A(st)L(st)
,
ys(st)

Y (st)
,
yf (st)

Y (st)
, ξ(st)

}
We relabel these variables as follows:{

Ỹ (st), ỹs(st), ỹf (st), ξ(st)
}
≡
{

Y (st)

A(st)L(st)
,
ys(st)

Y (st)
,
yf (st)

Y (st)
, ξ(st)

}
(98)

We rewrite the four equations with the relabeled variables below:

ΩL(φ) + (1 + η)Ỹ (st)
[
κυ(st−1)ỹs(st) + (1− κ)ξ(st)ỹf (st)

]
(χ∗)−1ΩC(φ) + (1− γ)

[
κυ(st−1)ỹs(st)

ρ−1

ρ + (1− κ)ξ(st)ỹf (st)
ρ−1

ρ

] = ỹf (st)1/ρỸ (st)

H+
(
1
ρ − γ

) [
κυ(st−1)ỹs(st)

ρ−1

ρ + (1− κ)ξ(st)ỹf (st)
ρ−1

ρ

]
+ υ(st−1)

[
ρ−1
ρ −

[
ỹs(st)
ỹf (st)

] 1

ρ

]
H+

(
1
ρ − γ

) [
κυ(st−1)ỹs(st)

ρ−1

ρ + (1− κ)ξ(st)ỹf (st)
ρ−1

ρ

]
− 1

ρξ(s
t)

=

[
ỹs(st)

ỹf (st)

] 1

ρ
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1 = κỹs(st)
ρ−1

ρ + (1− κ)ỹf (st)
ρ−1

ρ ,

1 = κỹs(st)Ỹ (st) + (1− κ)ỹf (st)Ỹ (st).

whereH ≡ (χ∗)−1ΩC(φ). Note that these equations are identical across all states s, s′ conditional

on st−1. Therefore, the quadruplet in (98) satisfies:{
Ỹ (s), ỹs(s), ỹf (s), ξ(s)

∣∣∣ st−1
}
=
{
Ỹ (s′), ỹs(s′), ỹf (s′), ξ(s′)

∣∣∣ st−1
}
, ∀s, s′ ∈ S|st−1 (99)

In other words, conditional on history st−1, there is no variation in these endogenous variables

across realizations of states.

Finally we use the implementability condition (26). By combining it with (25) it can be

written as: ∑
st|st−1

µ(st|st−1)Um
C (st)ys(st)

{[
ys(st)

Y (st)

]−1/ρ

−
(
yf (st)

Y (st)

)−1/ρ
}

= 0

or, ∑
st|st−1

µ(st|st−1)Um
C (st)ys(st)

{
ỹs(st)−1/ρ − ỹf (st)−1/ρ

}
= 0

This is consistent with the property stated in (99) if and only if:

ỹs(st) = ỹf (st) = 1, ∀st|st−1.

It is therefore optimal for monetary policy to implement the flexible-price allocation given any

arbitrary χ.

A.10 Proof of Theorem 3

At the Ramsey optimum, we have:

−
WL(s

t) + (1 + η)Um
L (st) Y (st)

A(st)L(st)

[
κυ(st−1)y

s(st)
Y (st) + (1− κ)ξ(st)y

f (st)
Y (st)

]
WC(st) + χ(1− γ)Um

C (st)

[
κυ(st−1)

[
ys(st)
Y (st)

] ρ−1

ρ

+ (1− κ)ξ(st)
[
yf (st)
Y (st)

] ρ−1

ρ

] =
Y (st)

L(st)
. (100)

With separable and iso-elastic utility, WC(s
t) and WL(s

t) satisfy:

WC(s
t) = Um

C (st)
∑
i∈I

πiωi
C(φ)

[
λi

φi
+ νi(1− γ)

]
(101)

WL(s
t) = Um

L (st)
∑
i∈I

πiωi
L(φ, st)

[
λi

φi
+ νi(1 + η)

]
. (102)

Substituting these expressions for WC(s
t) and WL(s

t) into (100), and defining a function I(st)
and a scalar H as follows:

I(st) ≡
∑
i∈I

πiωi
L(φ, st)

[
λi

φi
+ νi(1 + η)

]
and H ≡ (χ∗)−1ΩC , (103)
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we infer that the optimal monetary wedge satisfies:

1− τ∗M (st) =

H+ (1− γ)

[
κυ(st−1)

[
ys(st)
Y (st)

] ρ−1

ρ

+ (1− κ)ξ(st)
[
yf (st)
Y (st)

] ρ−1

ρ

]
I(st) + (1 + η) Y (st)

A(st)L(st)

[
κυ(st−1)y

s(st)
Y (st) + (1− κ)ξ(st)y

f (st)
Y (st)

] . (104)

Threshold. We first consider the conditions under which τ∗M (st) = 0. In this state: ys(st) =

yf (st) = Y (st) = A(st)L(s
t). Condition (104) reduces to:

1 =
H+ (1− γ)

[
κυ(st−1) + (1− κ)ξ(st)

]
I(st) + (1 + η) [κυ(st−1) + (1− κ)ξ(st)]

Furthermore, by optimality conditions (83) and (85), ys(st) = yf (st) = Y (st) if and only if ξ(st) =

υ(st−1); we state and prove this formally in Lemma (3). Therefore:

1 =
H+ (1− γ)υ(st−1)

I(st) + (1 + η)υ(st−1)

Solving this for I(st) we obtain the following threshold:

Ī(st−1) = H− (η + γ)υ(st−1)

Therefore if I(st) = Ī(st−1), the optimal monetary tax is equal to zero: τ∗M (st) = 0.

A fictitious tax wedge. We next define a fictitious tax wedge:

1− τ̂(st) ≡ H+ (1− γ)υ(st−1)

I(st) + (1 + η)υ(st−1)
(105)

The wedge 1−τ̂(st) is continuous and strictly decreasing in I(st), as all other terms are constants

(conditional on st−1). Furthermore, note that τ̂(st) = 0 if and only if I(st) = Ī(st−1). As a result,

the fictitious tax τ̂(st) trivially satisfies:

τ̂(st) > 0 if and only if I(st) > Ī(st−1),
τ̂(st) = 0 if and only if I(st) = Ī(st−1),
τ̂(st) < 0 if and only if I(st) < Ī(st−1).

The optimal monetary wedge. The next step of our proof involves characterizing yf (st),

ys(st), and the multipliers ξ(st) and υ(st−1) at the optimal allocation.33

33Note that if υ(st−1) < 0, then ξ(st)/υ(st−1) < 1 implies:

υ(st−1) < ξ(st) < 0.
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Lemma 3. (i) At the optimal allocation:

yf (st) > ys(st) if and only if τ∗M (st) > 0;
yf (st) = ys(st) if and only if τ∗M (st) = 0;
yf (st) < ys(st) if and only if τ∗M (st) < 0.

(ii) At the optimal allocation:

ξ(st) < υ(st−1) if and only if τ∗M (st) > 0,
ξ(st) = υ(st−1) if and only if τ∗M (st) = 0,
ξ(st) > υ(st−1) if and only if τ∗M (st) < 0.

Proof. See Section A.11 of this appendix.

We will use this lemma in what follows. We consider the optimal monetary wedge (104),

which can be written as:

1− τ∗M (st) =

H+ (1− γ)υ(st−1)

[
κ
[
ys(st)
Y (st)

] ρ−1

ρ

+ (1− κ) ξ(st)
υ(st−1)

[
yf (st)
Y (st)

] ρ−1

ρ

]
I(st) + (1 + η)υ(st−1)

[
κ ys(st)
A(st)L(st)

+ (1− κ) ξ(st)
υ(st−1)

yf (st)
A(st)L(st)

]
From our resource constraints, note that aggregate labor and aggregate output satisfy:

1 = κ
ys(st)

A(st)L(st)
+ (1− κ)

yf (st)

A(st)L(st)
, and (106)

1 = κ

[
ys(st)

Y (st)

] ρ−1

ρ

+ (1− κ)

[
yf (st)

Y (st)

] ρ−1

ρ

. (107)

Substituting these into our previous expression for the optimal monetary wedge and rearrang-

ing, we obtain the following expression:

1− τ∗M (st) =
H+ (1− γ)υ(st−1) + (1− κ)(1− γ)

[
yf (st)
Y (st)

] ρ−1

ρ

(ξ(st)− υ(st−1))

I(st) + (1 + η)υ(st−1) + (1− κ)(1 + η)y
f (st)
Y (st)

Y (st)
A(st)L(st)

(ξ(st)− υ(st−1))
(108)

We want to compare this to the fictitious tax wedge defined in (105). In order to do so, we take

the inverse wedges from (108) and (105):

1

1− τ∗M (st)
=

I(st) + (1 + η)υ(st−1) + (1− κ)(1 + η)y
f (st)
Y (st)

Y (st)
A(st)L(st)

(ξ(st)− υ(st−1))

H+ (1− γ)υ(st−1) + (1− κ)(1− γ)
[
yf (st)
Y (st)

] ρ−1

ρ

(ξ(st)− υ(st−1))

,

1

1− τ̂(st)
=

I(st) + (1 + η)υ(st−1)

H+ (1− γ)υ(st−1)
.
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Combining these two, we get:

1

1− τ∗M (st)

{
1 +

(1− κ)(1− γ)

H+ (1− γ)υ(st−1)

[
yf (st)

Y (st)

] ρ−1

ρ

(ξ(st)− υ(st−1))

}

=
1

1− τ̂(st)
+

(1− κ)(1 + η)

H+ (1− γ)υ(st−1)

yf (st)

Y (st)

Y (st)

A(st)L(st)
(ξ(st)− υ(st−1))

which furthermore implies:

1

1− τ∗M (st)
=

1

1− τ̂(st)
+

(1− κ)(1 + η)

H+ (1− γ)υ(st−1)

[
yf (st)

Y (st)

Y (st)

A(st)L(st)

]
(ξ(st)− υ(st−1)) (109)

− (1− κ)(1− γ)

H+ (1− γ)υ(st−1)

[
yf (st)

Y (st)

] ρ−1

ρ 1

1− τ∗M (st)
(ξ(st)− υ(st−1))

Next, we combine the monetary wedge defined in (37) with the implementability condition (25).

Doing so yields the following equation:[
yf (st)

Y (st)

]−1/ρ

= (1− τ∗M (st))
Y (st)

A(st)L(st)
(110)

Substituting this into our expression in (109), we obtain the following condition:

1

1− τ∗M (st)
=

1

1− τ̂(st)
+

(1− κ)(η + γ)

H+ (1− γ)υ(st−1)

yf (st)

Y (st)

Y (st)

A(st)L(st)
(ξ(st)− υ(st−1)) (111)

It follows that
τ∗M (st) < τ̂(st) if and only if ξ(st) < υ(st−1),
τ∗M (st) = τ̂(st) if and only if ξ(st) = υ(st−1),
τ∗M (st) > τ̂(st) if and only if ξ(st) > υ(st−1).

Consider again the case in which:

ys(st) = yf (st) = Y (st) = A(st)L(s
t).

From Lemma (3) we have that in this state, τ∗M (st) = 0 and ξ(st) = υ(st−1). Therefore:

1− τ∗M (st) =
H+ (1− γ)υ(st−1)

I(st) + (1 + η)υ(st−1)
= 1− τ̂(st) = 1.

Therefore τ∗M (st) = 0 if and only if τ̂(st) = 0. This implies τ∗M (st) = 0 if and only if I(st) = Ī(st−1).

Consider second the case in which yf (st) > ys(st). From Lemma (3) we have that in this

state, τ∗M (st) > 0 and ξ(st) < υ(st−1). From the expression above, the latter implies τ∗M (st) <

τ̂(st). Therefore:

0 < τ∗M (st) < τ̂(st).

Finally, τ̂(st) > 0 implies I(st) > Ī(st−1).
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Consider third the case in which yf (st) < ys(st). From Lemma (3) we have that in this state,

τ∗M (st) < 0 and ξ(st) > υ(st−1). From the expression above, the latter implies τ∗M (st) > τ̂(st).

Therefore:

τ̂(st) < τ∗M (st) < 0.

Finally, τ̂(st) < 0 implies I(st) < Ī(st−1).

We now prove the converse statements by contradiction. Let I(st) > Ī(st−1) and suppose

that τ∗M (st) < 0. From Lemma (3), this implies ξ(st) > υ(st−1), which further implies τ∗M (st) >

τ̂(st). It follows that τ̂(st) < τ∗M (st) < 0. But τ̂(st) < 0 is a contradiction of I(st) > Ī(st−1).

Therefore τ∗M (st) > 0.

Similarly let I(st) < Ī(st−1) and suppose that τ∗M (st) > 0. From Lemma (3), this implies

ξ(st) < υ(st−1), which further implies τ∗M (st) < τ̂(st). It follows that 0 < τ∗M (st) < τ̂(st). But

τ̂(st) > 0 is a contradiction of I(st) < Ī(st−1). Therefore τ∗M (st) < 0.

We thus conclude that the optimal monetary tax rate τ∗M (st) satisfies:

τ∗M (st) > 0 if and only if I(st) > Ī(st−1),
τ∗M (st) = 0 if and only if I(st) = Ī(st−1),
τ∗M (st) < 0 if and only if I(st) < Ī(st−1).

A.11 Proof of Lemma 3

Part (i). Substituting in our expression for L(st) from (106) into (110) we obtain the following

expression:

κ
ys(st)

Y (st)

[
yf (st)

Y (st)

]−1/ρ

+ (1− κ)
yf (st)

Y (st)

[
yf (st)

Y (st)

]−1/ρ

= 1− τ∗M (st)

which we may rewrite as:

1− τ∗M (st) = κ

[
ys(st)

Y (st)

] ρ−1

ρ
[
ys(st)

yf (st)

]1/ρ
+ (1− κ)

[
yf (st)

Y (st)

] ρ−1

ρ

.

Next we combine this with (107) and obtain:

−τ∗M (st) = κ

[
ys(st)

Y (st)

] ρ−1

ρ
[
ys(st)

yf (st)

]1/ρ
− κ

[
ys(st)

Y (st)

] ρ−1

ρ

It follows that:

τ∗M (st) = κ

[
ys(st)

Y (st)

] ρ−1

ρ

{
1−

[
ys(st)

yf (st)

]1/ρ}
This implies:

sign(τ∗M (st)) = sign

{
1−

[
ys(st)

yf (st)

]1/ρ}
.

Therefore:
yf (st) > ys(st) if and only if τ∗M (st) > 0,
yf (st) = ys(st) if and only if τ∗M (st) = 0,
yf (st) < ys(st) if and only if τ∗M (st) < 0.

65



Part (ii). Combining the planner’s optimality conditions (83) and (85), we obtain the following

condition which must hold at the planner’s optimum:

ςY (st) + χUm
C (st)υ(st−1)

{
ρ−1
ρ + Um

L (st)
χUm

C (st)
1

A(st)

[
ys(st)
Y (st)

]1/ρ}
ςY (st) + χUm

C (st)ξ(st)

{
ρ−1
ρ + Um

L (st)
χUm

C (st)
1

A(st)

[
yf (st)
Y (st)

]1/ρ} =

[
ys(st)

yf (st)

]1/ρ

Next, using implementability condition (25), we rewrite the above equation as follows:

ςY (st) + χUm
C (st)υ(st−1)

{
ρ−1
ρ −

[
yf (st)
Y (st)

]−1/ρ [
ys(st)
Y (st)

]1/ρ}
ςY (st) + χUm

C (st)ξ(st)
{

ρ−1
ρ − 1

} =

[
ys(st)

yf (st)

]1/ρ
which reduces to:

ςY (st)
χUm

C (st) + υ(st−1)

{
ρ−1
ρ −

[
ys(st)
yf (st)

]1/ρ}
ςY (st)

χUm
C (st) + ξ(st)

{
ρ−1
ρ − 1

} =

[
ys(st)

yf (st)

]1/ρ
Rearranging, we obtain the following equilibrium condition:

υ(st−1)

(
ρ− 1

ρ
−
[
ys(st)

yf (st)

]1/ρ)
− ξ(st)

(
ρ− 1

ρ
− 1

)[
ys(st)

yf (st)

]1/ρ
=

ςY (st)

χUm
C (st)

([
ys(st)

yf (st)

]1/ρ
− 1

)
(112)

Consider the term ςY (st)/χUm
C (st) on the right-hand side of condition (112). The scalar χ is

strictly positive by definition. Next, because individual utility is strictly increasing in consump-

tion, it is clear that Um
C (st) is strictly positive for all st ∈ St. Finally, ςY (st) is strictly positive for

all st ∈ St; we verify this statement later on in the proof.

We first consider the case in which ys(st) = yf (st). In this case, condition (112) reduces to:

υ(st−1)

(
ρ− 1

ρ
− 1

)
− ξ(st)

(
ρ− 1

ρ
− 1

)
= 0,

which implies: ξ(st) = υ(st−1).

We now prove the converse. Consider the case in which ξ(st) = υ(st−1). In this case, condi-

tion (112) reduces to:

υ(st−1)
ρ− 1

ρ

(
1−

[
ys(st)

yf (st)

]1/ρ)
=

ςY (st)

χUm
C (st)

([
ys(st)

yf (st)

]1/ρ
− 1

)
,

which implies: ys(st) = yf (st).

Consider next the case in which ys(st) > yf (st). Then condition (112) implies

ξ(st)

(
ρ− 1

ρ
− 1

)[
ys(st)

yf (st)

]1/ρ
< υ(st−1)

(
ρ− 1

ρ
−
[
ys(st)

yf (st)

]1/ρ)
,
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which furthermore implies

ξ(st)

(
ρ− 1

ρ
− 1

)
< υ(st−1)

(
ρ− 1

ρ

[
ys(st)

yf (st)

]−1/ρ

− 1

)
. (113)

Furthermore note that

υ(st−1)

(
ρ− 1

ρ

[
ys(st)

yf (st)

]−1/ρ

− 1

)
< υ(st−1)

(
ρ− 1

ρ
− 1

)
. (114)

Combining (113) and (114), we infer:

ξ(st)

(
ρ− 1

ρ
− 1

)
< υ(st−1)

(
ρ− 1

ρ
− 1

)
which finally implies: ξ(st) > υ(st−1). We can prove the converse statement by contradiction.

Consider next the case in which ys(st) < yf (st). Then condition (112) implies

υ(st−1)

(
ρ− 1

ρ
−
[
ys(st)

yf (st)

]1/ρ)
< ξ(st)

(
ρ− 1

ρ
− 1

)[
ys(st)

yf (st)

]1/ρ
,

which furthermore implies

υ(st−1)

(
ρ− 1

ρ

[
yf (st)

ys(st)

]1/ρ
− 1

)
< ξ(st)

(
ρ− 1

ρ
− 1

)
. (115)

Furthermore note that

υ(st−1)

(
ρ− 1

ρ
− 1

)
< υ(st−1)

(
ρ− 1

ρ

[
yf (st)

ys(st)

]1/ρ
− 1

)
. (116)

Combining (115) and (116), we infer:

υ(st−1)

(
ρ− 1

ρ
− 1

)
< ξ(st)

(
ρ− 1

ρ
− 1

)
which finally implies: ξ(st) < υ(st−1). We can prove the converse statement by contradiction.

We have thus shown that:

ξ(st) < υ(st−1) if and only if yf (st) > ys(st),
ξ(st) = υ(st−1) if and only if yf (st) = ys(st),
ξ(st) > υ(st−1) if and only if yf (st) < ys(st).

Combining this with the result stated in part (i) of Lemma 3, we obtain the result stated in part

(ii).

What remains to be shown is that the multiplier ςY (st) is strictly positive for all st ∈ St. We

combine the planner’s optimality conditions (88) and (89) and obtain the following expression

for ςY (st):

ςY (st) = ςC(st) +
1

ρ

Um
C (st)

Um
CC(s

t)C(st)
(ςC(st)−WC(s

t))
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Next, iso-elastic utility implies:

ςY (st) =

[
1− 1

γρ

]
ςC(st) +

1

γρ
WC(s

t)

with ρ > 1 and γ > 1. It is clear from the definition of W(·) that its first derivative with respect

to aggregate consumption, denoted by WC(s
t), is strictly positive. Furthermore, recall that in

our proof of Proposition 6 [in Appendix A.8], we show that the Karush–Kuhn–Tucker multiplier

ςC(st) is strictly positive for all st ∈ St. Therefore ςY (st) is strictly positive for all st ∈ St.

A.12 Proof of Proposition 4

We combine (37) with the intratemporal condition in (12) and obtain the following condition:

W (st)

P (st)
= (1− τr)

(
ρ− 1

ρ

)
(1− τ∗M (st))

Y (st)

L(st)

To simplify, we consider the fiscal implementation that sets (1 − τr)
(
ρ−1
ρ

)
= 1. Using this

fiscal implementation, we combine the above expression with the implementability condition

in (110) and infer that the aggregate price level satisfies:

P (st) =

[
yf (st)

Y (st)

]1/ρ
W (st)

A(st)
.

Therefore the optimal markup satisfies:

logM(st) =
1

ρ
(log yf (st)− log Y (st))

with ρ > 1. It follows that:

logM(st) > 0 if and only if yf (st) > ys(st),
logM(st) = 0 if and only if yf (st) = ys(st),
logM(st) < 0 if and only if yf (st) < ys(st).

Combining this result with Lemma 3, we obtain:

logM(st) > 0 if and only if τ∗M (st) > 0,
logM(st) = 0 if and only if τ∗M (st) = 0,
logM(st) < 0 if and only if τ∗M (st) < 0.

The result stated in Proposition 4 follows by combining the above with Theorem 3.

B Equivalent Equilibrium Representation

In this section of the appendix we provide an equivalent characterization of the equilibrium in

our economy using the forecast errors ϵ(st) defined in (28). Such a representation gives rise to a

few auxiliary results, Lemmas (4), (5), and (6), that we find useful in later proofs.

68



First, note that equation (27) implies pst (s
t−1) = ϵ(st)pft (s

t). It follows from the CES demand

equation (5) that relative quantities across the two types of firms satisfy:

ys(st)

yf (st)
=

(
pst (s

t−1)

pft (s
t)

)−ρ

.

Therefore:

ys(st) = ϵ(st)−ρyf (st) (117)

Note that the flexible-price allocation coincides with ϵ(st) = 1 for all st ∈ St.

Lemma 4. For any st ∈ St, equilibrium aggregate output satisfies:

Y (st) = A(st)∆(ϵ(st))L(st) (118)

where ∆ : R+ → R+ is a function defined by:

∆(ϵ) ≡

{[
κϵ1−ρ + (1− κ)

]− 1

1−ρ

[κϵ−ρ + (1− κ)]1/ρ

}ρ

> 0. (119)

The function ∆ is continuous, differentiable, strictly concave, and satisfies maxϵ>0∆(ϵ) = 1. Fur-

thermore, it attains its unique maximum at ϵ = 1.

Proof. See Appendix B.1.

Lemma 4 provides a succinct characterization of the efficiency wedge in this economy.

When monetary policy implements flexible-price allocations—that is, when it sets ϵ(st) = 1

in all states—then ∆(ϵ) attains its unique maximum of 1. In this case, there is no misallocation

across firms and therefore no loss in production efficiency. On the other hand, when monetary

policy deviates from implementing flexible-price allocations—that is, when ϵ(st) deviates from

one in some or all states—then in those states, ∆(ϵ) is strictly below 1. In this case, the “active”

use of monetary policy leads to forecast errors of the sticky-price firms. Dispersion of prices

across sticky- and flexible-price firms leads to misallocation of inputs. This manifests as an

efficiency wedge, or TFP loss. The term ∆(ϵ) represents this efficiency wedge.

The following lemma provides a similar result for the equilibrium labor wedge in this econ-

omy.

Lemma 5. For any st ∈ St, aggregate output and labor joint satisfy:

−
Um
L (st)

Um
C (st)

= χΓ(ϵ(st))A(st) (120)

where Γ : R+ → R+ is a function defined by:

Γ(ϵ) ≡
[
κϵ1−ρ + (1− κ)

] 1

ρ−1 > 0. (121)

69



The function Γ is continuous, differentiable, and satisfies the following two properties (i) Γ(1) = 1

and (ii) Γ′(ϵ) < 0 for all ϵ > 0. It follows that:

Γ(ϵ) < 1 if and only if ϵ > 1,
Γ(ϵ) = 1 if and only if ϵ = 1,
Γ(ϵ) > 1 if and only if ϵ ∈ (0, 1).

Proof. See Appendix B.2.

Finally, we can relate implicit monetary tax τM (st) defined in 37 to the forecast error. In this

representation we can think of the monetary tax as a function of ϵ, that is, τM : R+ → (−∞, 1).

Lemma 6. The monetary tax satisfies:

τM (ϵ) = 1− Γ(ϵ)

∆(ϵ)
=

κϵ−ρ(ϵ− 1)

κϵ−(ρ−1) + (1− κ)
.

The function τM is continuous, differentiable, and satisfies: sign(τM (ϵ)) = sign(ϵ−1) for all ϵ > 0.

It follows that:
τM (ϵ) > 0 if and only if ϵ > 1,
τM (ϵ) = 0 if and only if ϵ = 1,
τM (ϵ) < 0 if and only if ϵ ∈ (0, 1).

Proof. See Appendix B.3.

B.1 Proof of Lemma 4

We combine (117) with (106) and (107) and obtain the following expressions for aggregate out-

put and labor:

Y (st) = yf (st)
[
κϵ(st)−(ρ−1) + (1− κ)

] ρ

ρ−1

and L(st) =
yf (st)

A(st)

[
κϵ(st)−ρ + (1− κ)

]
Taking the ratio of aggregate output to aggregate labor, we get:

Y (st)

L(st)
=

yf (st)
[
κϵ(st)−(ρ−1) + (1− κ)

] ρ

ρ−1

yf (st)
A(st)

[κϵ(st)−ρ + (1− κ)]
= A(st)

[
κϵ(st)−(ρ−1) + (1− κ)

] ρ

ρ−1

[κϵ(st)−ρ + (1− κ)]

It follows that the aggregate production function can be expressed as (118) with

∆(ϵ) =

[
κϵ−(ρ−1) + (1− κ)

] ρ

ρ−1

[κϵ−ρ + (1− κ)]
=

{[
κϵ1−ρ + (1− κ)

]− 1

1−ρ

[κϵ−ρ + (1− κ)]1/ρ

}ρ

.

Next, note that ∆(ϵ) is continuous and differentiable. The first derivative of ∆(ϵ) with respect

to ϵ is given by:

d∆(ϵ)

dϵ
= ρ∆(ϵ)1−

1

ρ
d

dϵ


[
κϵ−(ρ−1) + (1− κ)

] 1

ρ−1

[κϵ−ρ + (1− κ)]1/ρ

 ,
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where the last term satisfies:

d

dϵ


[
κϵ−(ρ−1) + (1− κ)

] 1

ρ−1

[κϵ−ρ + (1− κ)]1/ρ

 = κ∆(ϵ)
1

ρ ϵ−ρ−1
{[

κϵ−ρ + (1− κ)
]−1 −

[
κϵ−ρ+1 + (1− κ)

]−1
ϵ
}
.

Therefore:

d∆(ϵ)

dϵ
= κρ∆(ϵ)ϵ−ρ−1

{[
κϵ−ρ + (1− κ)

]−1 −
[
κϵ−ρ+1 + (1− κ)

]−1
ϵ
}

(122)

To obtain a maxima or minima, we set the first derivative equal to zero as follows:

∆(ϵ)ϵ−ρ−1
{[

κϵ−ρ + (1− κ)
]−1 −

[
κϵ−ρ+1 + (1− κ)

]−1
ϵ
}
= 0.

Noting that both ∆(ϵ) and ϵ−ρ−1 are strictly positive, this implies:[
κϵ−ρ + (1− κ)

]−1 −
[
κϵ−ρ+1 + (1− κ)

]−1
ϵ = 0.

Solving this for ϵ, we obtain a unique solution of ϵ = 1. Furthermore, note that from (122),

d∆(ϵ)/dϵ > 0 if and only if ϵ < 1. Finally, we evaluate the second derivative of ∆(ϵ) at ϵ = 1, and

find that it is unambiguously negative:

∆′′(1) = −ρκ(1− κ) < 0

We conclude that the function ∆(ϵ) attains a global maximum at ϵ = 1. The function ∆(ϵ) is

strictly increasing in ϵ when ϵ < 1 and is strictly decreasing in ϵ when ϵ > 1. Finally, the maximal

value of this function is given by:

max
ϵ>0

∆(ϵ) = ∆(1) ≡

{
[κ+ (1− κ)]

1

ρ−1

[κ+ (1− κ)]1/ρ

}ρ

= 1

as was to be shown.

B.2 Proof of Lemma 5

The aggregate price level satisfies:

P (st) =
[
κpst (s

t−1)1−ρ + (1− κ)pft (s
t)1−ρ

] 1

1−ρ

.

Substituting in the firms’ optimal prices, we obtain:

P (st) =
[
κϵ(st)1−ρ + (1− κ)

] 1

1−ρ

[
(1− τr)

(
ρ− 1

ρ

)]−1 W (st)

A(st)

Combining the above equation with the household’s intratemporal condition (12), we get:

−
Um
L (st)

Um
C (st)

[
κϵ(st)1−ρ + (1− κ)

] 1

1−ρ = χA(st)
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It follows that in equilibrium, aggregate output and aggregate labor jointly satisfy (120) with

Γ(ϵ) ≡
[
κϵ(st)1−ρ + (1− κ)

]− 1

1−ρ > 0.

Next, note that Γ(ϵ) is continuous and differentiable. Furthermore, Γ(1) = 1. Finally, the first

derivative of Γ(ϵ) is given by:

dΓ(ϵ)

dϵ
≡ −κ

[
κϵ−(ρ−1) + (1− κ)

] 1

ρ−1
−1

ϵ−ρ

Therefore dΓ(ϵ)/dϵ < 0 for all ϵ > 0.

B.3 Proof of Lemma 6

Combining the definition of the implicit monetary tax in 37 with (120) yields:

(1− τM (st))
Y (st)

L(st)
= Γ(ϵ(st))A(st)

Combining the above expression with (118) we infer that in equilibrium the monetary tax satis-

fies:

1− τM (st) =
Γ(ϵ(st))

∆(ϵ(st))

Substituting the functions Γ and ∆ from () and (), we find that the implicit monetary tax

satisfies:

1− τM (ϵ) =
κϵ−ρ + (1− κ)

κϵ−(ρ−1) + (1− κ)
. (123)

Solving this for τM (ϵ), we get:

τM (ϵ) =
κϵ−ρ(ϵ− 1)

κϵ−(ρ−1) + (1− κ)

Note that τM (ϵ) is continuous and differentiable on the domain ϵ > 0. With this expression we

can prove the last part of Lemma 6. Note that the denominator is strictly positive for all ϵ > 0.

Furthermore κϵ−ρ > 0 for all ϵ > 0. Therefore sign(τM (ϵ)) = sign(ϵ− 1) for all ϵ > 0.

C Implementation

In this section of the appendix, we expand on our discussion of implementation. In particular,

we consider the behavior of aggregate price levels and nominal interest rates consistent with

the Ramsey optimum. As in the sufficiency portion of our proof of Proposition 2 (in Appendix

A.6), we let Bt(s
t−1) > 0 denote the common belief of the aggregate price level at time t based on

history st−1. Aside from being strictly positive, Bt(s
t−1) > 0 is a free parameter in our model. For

a given Bt(s
t−1), when P (st) = Bt(s

t−1), the economy replicates the flexible price outcome. Let

ı̂(st) denote the nominal interest rate consistent with the flexible-price outcome; one can think

of ı̂(st) as the “natural” rate of interest.
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Proposition 7. Given a common beliefBt(s
t−1) > 0, the aggregate price level, P (st), at the Ramsey

optimum and the nominal interest rate, i(st), consistent with that price level satisfies:

P (st) < Bt(s
t−1) and i(st) > ı̂(st) if and only if I(st) > Ī(st−1),

P (st) = Bt(s
t−1) and i(st) = ı̂(st) if and only if I(st) = Ī(st−1),

P (st) > Bt(s
t−1) and i(st) < ı̂(st) if and only if I(st) < Ī(st−1).

Proof. See Appendix C.1.

The behavior of the aggregate price level and nominal interest rate described in Proposition

7 is consistent with the optimal markup described in Proposition 4. To understand this, recall

that prices are “sticky” in our model, while nominal wages are fully flexible. Specifically, given

a common belief Bt(s
t−1) for the aggregate price level, the prices of the sticky-price firms are

“stuck” at pst (s
t−1) = Bt(s

t−1), while the prices of the flexible-price firms and the nominal wage

respond to the realized state.

Therefore, in order to generate an increase in the aggregate markup, the nominal wage must

(unexpectedly) fall. In this case, the prices of the flexible-price firms fall, in line with the realized

nominal wage, while those of the sticky price firms remain at pst (s
t−1) = Bt(s

t−1). As a result, the

aggregate price level falls but not to the same extent as the nominal wage, and the aggregate

markup increases. Conversely, in order to generate a fall in the aggregate markup, the nominal

wage must (unexpectedly) rise. In this case, the aggregate price level also rises, but less so than

wages, so that the aggregate markup indeed falls.

Furthermore, there exists a nominal interest rate that satisfies the bond Euler equation in

(13) and is consistent with the movements of the aggregate price level and the optimal markup.

An increase in the aggregate markup in our model is consistent with a tightening of the nominal

interest rate relative to the natural rate; conversely a fall in the markup is consistent with a

loosening of the nominal interest rate.

Robustness. Finally, it is important to note that the price and interest rate movement con-

sistent with the Ramsey optimum depend on the relative stickiness of prices versus wages.

More specifically, our characterization of the aggregate price level (and nominal interest rate)

in Proposition 7 relies on our assumption of sticky prices but flexible wages. If instead wages

were sticky and prices were flexible, an increase in the aggregate markup would require an

unexpected increase in the aggregate price level rather than a fall.

For this reason, in terms of monetary implementation we wish to put less emphasis on

Proposition 7 and more emphasis on Proposition 4—what is robust to the relative stickiness

of prices versus wages is the movement in the optimal markup. Furthermore, although mon-

etary policy typically centers on changes in nominal interest rates, the emphasis of the primal

approach on characterizing allocations proves highly useful in our analysis. In particular, the
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economics behind (and robustness of) optimal monetary policy in our environment can best

be understood by studying the state-contingent wedge at the Ramsey optimum (Section 5).

C.1 Proof of Proposition 7

Recall from the sufficiency argument of Proposition 2 (Appendix A.6) that for any sticky-price

allocation, we can construct nominal prices as follows. Given Bt(s
t−1) > 0, we set:

pst (s
t−1) = Bt(s

t−1).

This implies, in terms of our output decomposition in 72, that ϕs(st−1)−1/ρ = Bt(s
t−1). There-

fore:

ϕs(st−1) = Bt(s
t−1)−ρ and ys(st) = Bt(s

t−1)−ρΦ(st).

which implies that Φ(st) = ys(st)/Bt(s
t−1)−ρ. The aggregate price level thereby satisfies:

P (st) =

[
Y (st)

Φ(st)

]−1/ρ

=

[
Y (st)

ys(st)
Bt(s

t−1)−ρ

]−1/ρ

=

[
Y (st)

ys(st)

]−1/ρ

Bt(s
t−1).

Therefore the deviation of the price level from the expected price satisfies:

logP (st)− logBt(s
t−1) = −1

ρ
(log Y (st)− log ys(st)) (124)

with ρ > 1. Therefore

P (st) < Bt(s
t−1) if and only if yf (st) > ys(st),

P (st) = Bt(s
t−1) if and only if yf (st) = ys(st),

P (st) > Bt(s
t−1) if and only if yf (st) < ys(st).

Combining this with our characterization of the optimal monetary tax in Lemma 3, we find:

P (st) < Bt(s
t−1) if and only if τ∗M (st) > 0,

P (st) = Bt(s
t−1) if and only if τ∗M (st) = 0,

P (st) > Bt(s
t−1) if and only if τ∗M (st) < 0.

Combining this with our result in Theorem 3, the result about the aggregate price level stated in

Proposition 4 then follows.

Next we turn to the nominal interest rate. The nominal interest rate satisfies the Euler equa-

tion in 13:

C(st)−γ

P (st)
= β(1 + i(st))

∑
st+1|st

µ(st+1|st)
Um
C (st+1)

P (st+1)
.

Let Ĉ(st) = Ŷ (st) denote the flexible-price level of output. The natural, flexible-price, interest

rate satisfies:
Ĉ(st)−γ

Bt(st−1)
= β(1 + ı̂(st))

∑
st+1|st

µ(st+1|st)
Um
C (st+1)

P (st+1)
.
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Therefore
1 + i(st)

1 + ı̂(st)
=

C(st)−γ/P (st)

Ĉ(st)−γ/Bt(st−1)

In logs:

log

[
1 + i(st)

1 + ı̂(st)

]
= −γ[log Y (st)− log Ŷ (st)]− [logP (st)− logBt(s

t−1)]

Next we substitute the price level from 124 into the above expression. Doing so, we obtain the

following expression:

log(1 + i(st))− log(1 + ı̂(st)) =
1

ρ
(log Y (st)− log ys(st))− γ(log Y (st)− log Ŷ (st)).

First, from our characterization of the optimal monetary tax in Lemma 3, we have that:

log Y (st) > log ys(st) if and only if τ∗M (st) > 0,
log Y (st) = log ys(st) if and only if τ∗M (st) = 0,
log Y (st) < log ys(st) if and only if τ∗M (st) < 0.

The next step in our proof requires the following lemma:

Lemma 7. Let Ŷ (st) denote the level of output in history st under flexible prices. Then

log Y (st) < log Ŷ (st) if and only if τ∗M (st) > 0,
log Y (st) = log Ŷ (st) if and only if τ∗M (st) = 0,
log Y (st) > log Ŷ (st) if and only if τ∗M (st) < 0.

Proof. See Section C.2 of this appendix.

Therefore, using Lemmas 3 and 7, it follows that:

i(st) > ı̂(st) if and only if τ∗M (st) > 0,
i(st) = ı̂(st) if and only if τ∗M (st) = 0,
i(st) < ı̂(st) if and only if τ∗M (st) < 0.

The result stated in Proposition 7 follows by combining the above with Theorem 3.

C.2 Proof of Lemma 7

First, we solve for the natural level of output. Let Ŷ (st) and L̂(st) denote the flexible-price level

of output and employment, respectively. These jointly satisfy:

L̂(st)η

Ŷ (st)−γ
= χA(st) and

Ŷ (st)

L̂(st)
= A(st)

This is two equations in two unknowns. Solving for Ŷ (st), we obtain the following expression

for the flex-price level of output:

Ŷ (st)η+γ = χA(st)
1+η.
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Next, we solve for the realized level of output. Using the equivalent equilibrium representa-

tion articulated in Appendix B, realized output Y (st) and employment L(st) jointly satisfy:

L(st)η

Y (st)−γ
= χΓ(ϵ(st))A(st) and Y (st) = A(st)∆(ϵ(st))L(st).

This is a system of two equations in two unknowns. Solving for Y (st), we obtain the following

expression for realized output:

Y (st)η+γ = χA(st)
1+ηΓ(ϵ(st))∆(ϵ(st))η.

Combining this with the flexible-price level of output we get:

Y (st)η+γ

Ŷ (st)η+γ
= Γ(ϵ(st))∆(ϵ(st))η.

In logs:

log Y (st)− log Ŷ (st) =
1

η + γ
log Γ(ϵ(st)) +

η

η + γ
log∆(ϵ(st)).

First, recall from Lemmas (4) and (5) that Γ(1) = 1 and ∆(1) = 1. It follows that if ϵ(st) = 1, then

Y (st) = Ŷ (st).

Second, note that, to a first order around ϵ(st) = 1,

log∆(ϵ(st)) ≈ 0.

To see this, note that:

log∆(ϵ(st)) ≈ log∆(ϵ(st))
∣∣
ϵ=1

+
d log∆(ϵ)

dϵ

∣∣∣∣
ϵ=1

ϵ(st) = 0

since:

∆(1) = 1,
d log∆(ϵ)

dϵ
=

1

∆(ϵ)

d∆(ϵ)

dϵ
, and

d∆(ϵ)

dϵ

∣∣∣∣
ϵ=1

= 0.

This implies that for small shocks around ϵ(st) = 1,

log Y (st)− log Ŷ (st) ≈ 1

η + γ
log Γ(ϵ(st)) (125)

From Lemma (5), we have that the function Γ : R+ → R+ satisfies the following:

log Γ(ϵ) < 0 if and only if ϵ > 1,
log Γ(ϵ) = 0 if and only if ϵ = 1,
log Γ(ϵ) > 0 if and only if ϵ ∈ (0, 1).

Finally, using this in equation (125) and the result of Lemma (6), it follows that:

log Y (st) < log Y n(st) if and only if τ∗M (st) > 0,
log Y (st) = log Y n(st) if and only if τ∗M (st) = 0,
log Y (st) > log Y n(st) if and only if τ∗M (st) < 0.
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D One-Period-Ahead Tax Rates

In this section of the appendix, we characterize the economy with one-period-ahead tax rates.

We first state some auxiliary results, followed by their proofs. We begin with our characterization

of the set of sticky price allocations, X s.

Proposition 8. A feasible allocation x ∈ X can be implemented as a sticky-price equilibrium with

one-period-ahead taxes if and only if there exist market weights φ ≡ (φi) and a scalar T̄ ∈ R,

such that the following three sets of conditions are satisfied: (i) yj(st) = yf (st) for all j ∈ J f , and

yj(st) = ys(st) for all j ∈ J s, for all st ∈ St; (ii) for all st−1 ∈ St−1,[
yf (s|st−1)

Y (s|st−1)

]−1/ρ
A(s)Um

C (s|st−1)

−Um
L (s|st−1)

=

[
yf (s′|st−1)

Y (s′|st−1)

]−1/ρ
A(s′)Um

C (s′|st−1)

−Um
L (s′|st−1)

, ∀s, s′|st−1; (126)

and (iii) condition (20) holds for every i ∈ I.

Proof. See Appendix D.1.

Proposition 8 characterizes the set X s when tax rates can be set one period in advance.

Note that the conditions stated in part (ii) of the proposition are equivalent to the following

statement: for all st−1 ∈ St−1, there exists a positive scalar χ(st−1) ∈ R+ such that:[
yf (st)

Y (st)

]−1/ρ
A(st)U

m
C (st)

−Um
L (st)

=
1

χ(st−1)
, ∀st|st−1. (127)

This allows us to state the Ramsey planner’s problem as follows.

Ramsey Planner’s Problem. The Ramsey planner chooses an allocation,

x ≡ {ys(st), yf (st), C(st), Y (st), L(st)}t≥0,st∈St ,

market weights φ ≡ (φi), and scalar T̄ ∈ R, in order to maximize (31), subject to

C(st) = Y (st) =
[
κys(st)

ρ−1

ρ + (1− κ)yf (st)
ρ−1

ρ

] ρ

ρ−1

, L(st) = κ
ys(st)

A(st)
+ (1− κ)

yf (st)

A(st)
, (128)

and (127).

We let βtµ(st)(1− κ)ξ(st) denote the Lagrange multiplier on the implementability condition

(127). The Ramsey optimum can be characterized as follows.

Proposition 9. A Ramsey optimum x∗ satisfies

−
WL(s

t) + ξ(st)Um
LL(s

t) 1
A(st)

WC(st) + ξ(st)χ(st−1)Um
CC(s

t)
(
yf (st)
Y (st)

)−1/ρ
=

Y (st)

L(st)
, ∀st ∈ St. (129)

Proof. See Appendix D.2.

This result is the counterpart to Proposition 6 for the economy with one-period ahead tax

rates. Finally, we use this result to characterize the optimal monetary wedge in this economy;

this characterization is presented in Theorem 4 in the main text and its proof is in Appendix D.3.
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D.1 Proof of Proposition 8

Necessity. The necessity argument follows similar steps as the proof of Proposition 2 [see

Appendix A.6]. In particular, we combine the flexible-price firm’s optimality condition (21) with

the CES demand function (71) and the household’s intratemporal optimality condition (12) and

obtain the following equilibrium condition:

[
yf (st)

Y (st)

]−1/ρ

+

(
ρ− 1

ρ

)−1 [ 1 + τc(s
t−1)

(1− τr(st−1))(1− τℓ(st−1))

]
Um
L (st)

Um
C (st)

1

A(st)
= 0.

We let

χ(st−1) ≡
(
ρ− 1

ρ

)
(1− τℓ(s

t−1))(1− τr(s
t−1))

1 + τc(st−1)
.

denote the wedge due to the markup and taxes, and rewrite the previous condition as follows:[
yf (st)

Y (st)

]−1/ρ

+
1

χ(st−1)

Um
L (st)

Um
C (st)

1

A(st)
= 0.

This is a necessary condition for an allocation to be supported in equilibrium. Note that the

above is equivalent to the conditions stated in (126).

We can similarly combine the sticky-price firm optimality condition with the CES demand

function (71) and the household’s intratemporal optimality condition (12) and obtain the fol-

lowing equilibrium condition:

∑
st|st−1

Um
C (st)ys(st)

{[
ys(st)

Y (st)

]−1/ρ

+
Um
L (st)

Um
C (st)

1

χ(st−1)A(st)

}
µ(st|st−1) = 0; (130)

for all st−1 ∈ St−1. Therefore (130) is a necessary condition for an allocation to be supported in

equilibrium. The remainder of the proof of necessity follows the same steps as in the proof of

Proposition 2.

Sufficiency. Take any feasible allocation x ∈ X , vector φ ≡ (φi), and scalar T̄ ∈ R that satisfy

conditions (i)-(iii) of Proposition 8. We show that there exists a price system R, a policy P , and

a set of financial market positions A, that support x as a sticky-price equilibrium; we construct

these as follows.

First, we construct nominal prices as in the sufficiency portion of the proof of Proposition

2 [Appendix A.6]. We decompose output as in (72). Given Bt(s
t−1) > 0, we set ϕs(st−1) ≡

Bt(s
t−1)−ρ and prices as follows:

pst (s
t−1) = ϕs(st−1)−1/ρ and pft (s

t) = ϕf (st)−1/ρ
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This implies Φ(st) = ys(st)/Bt(s
t−1)−ρ and ϕf (st) = yf (st)/Φ(st). These prices, along with the

feasibility constraint (7), imply that the aggregate price level is given by (73). These prices fur-

thermore ensure that the CES demand curves in (71) are satisfied. We set the money supply

such that M(st) = P (st)Y (st).

Next, note that the conditions stated in (126) are equivalent to the following statement: for

all st−1 ∈ St−1, there exists a positive scalar χ(st−1) ∈ R+ such that:[
yf (st)

Y (st)

]−1/ρ

+
1

χ(st−1)

Um
L (st)

Um
C (st)

1

A(st)
= 0. (131)

These conditions imply that such a constant exists but is not unique. In fact, for any st−1 ∈ St−1,

we can choose χ(st−1) freely, provided it remain strictly positive. In particular, we set χ(st−1) as

follows:

χ(st−1) = −
∑

st|st−1 ys(st)Um
L (st) 1

A(st)
µ(st|st−1)∑

st|st−1 ys(st)Um
C (st)

[
ys(st)
Y (st)

]−1/ρ
µ(st|st−1)

> 0. (132)

Next, we set tax rates {τℓ(st−1), τc(s
t−1), τr(s

t−1)} such that they jointly satisfy:

(1− τℓ(s
t−1))(1− τr(s

t−1))

1 + τc(st−1)
=

(
ρ− 1

ρ

)−1

χ(st−1). (133)

For any strictly positive χ(st−1) and ρ > 1, such tax rates exist.

Combining (133) with condition (131), we obtain:

0 =

[
yf (st)

Y (st)

]−1/ρ

+

(
ρ− 1

ρ

)−1 [ 1 + τc(s
t−1)

(1− τr(st−1))(1− τℓ(st−1))

]
Um
L (st)

Um
C (st)

1

A(st)
. (134)

Furthermore, combining (133) with condition (132) and rearranging, we obtain:

0 =
∑

st|st−1

µ(st|st−1)Um
C (st)ys(st)

{[
ys(st)

Y (st)

]−1/ρ

(135)

+

(
ρ− 1

ρ

)−1 [ 1 + τc(s
t−1)

(1− τr(st−1))(1− τℓ(st−1))

]
Um
L (st)

Um
C (st)

1

A(st)

}
.

Next, we set the real wage as follows:

W (st)

P (st)
= −

Um
L (st)

Um
C (st)

(
1 + τc(s

t−1)

1− τℓ(st−1)

)
,

and therefore satisfy the household’s intratemporal condition in (12). Substituting the above

expression for the real wage into (134) and (135), we obtain:

0 =

[
yf (st)

Y (st)

]−1/ρ

− W (st)

P (st)

[
(1− τr(s

t−1))

(
ρ− 1

ρ

)]−1 1

A(st)
.

0 =
∑

st|st−1

µ(st|st−1)Um
C (st)ys(st)

{[
ys(st)

Y (st)

]−1/ρ

− W (st)

P (st)

[
(1− τr(s

t−1))

(
ρ− 1

ρ

)]−1 1

A(st)

}
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Combining these with the CES demand functions in (71), and with some rearrangement, we

derive the following two conditions:

pft (s
t)−

[
(1− τr(s

t−1))

(
ρ− 1

ρ

)]−1 W (st)

A(st)
= 0.

and ∑
st|st−1

µ(st|st−1)
Um
C (st)

P (st)
Y (st)P (st)ρ

{
pst (s

t−1)−
[
(1− τr(s

t−1))

(
ρ− 1

ρ

)]−1 W (st)

A(st)

}
= 0.

Therefore both the flexible-price and the sticky-price firm’s optimality conditions are satisfied.

The remainder of the proof of sufficiency follows the same steps as in the proof of Proposition 2

[Appendix A.6].

D.2 Proof of Proposition 9

We write the planner’s Lagrangian as follows:

L =
∑
t

∑
st

βtµ(st)W(C(st), L(st);φ, ν, λ)

+
∑
t

∑
st

βtµ(st)ςY (st)

{[
κys(st)

ρ−1

ρ + (1− κ)yf (st)
ρ−1

ρ

] ρ

ρ−1 − Y (st)

}
+
∑
t

∑
st

βtµ(st)ςL(st)

{
κ
ys(st)

A(st)
+ (1− κ)

yf (st)

A(st)
− L(st)

}
+
∑
t

∑
st

βtµ(st)ςC(st)
{
Y (st)− C(st)

}
+
∑
t

∑
st

βtµ(st)ξ(st)

{
χ(st−1)Um

C (st)

(
yf (st)

Y (st)

)−1/ρ

+ Um
L (st)

1

A(st)

}

The FOC with respect to ys(st) is given by:

0 = κςY (st)
[
κys(st)

ρ−1

ρ + (1− κ)yf (st)
ρ−1

ρ

] ρ

ρ−1
−1

ys(st)
ρ−1

ρ
−1 + κςL(st)

1

A(st)
, (136)

and the FOC with respect to yf (st) is given by:

0 =(1− κ)ςY (st)
[
κys(st)

ρ−1

ρ + (1− κ)yf (st)
ρ−1

ρ

] ρ

ρ−1
−1

yf (st)
ρ−1

ρ
−1 + (1− κ)ςL(st)

1

A(st)
(137)

− 1

ρ
ξ(st)χ(st−1)Um

C (st)

[
yf (st)

Y (st)

]−1/ρ
1

yf (st)
.

Note that we can rewrite (136) as

0 = κςY (st)Y (st)1/ρys(st)
ρ−1

ρ + κςL(st)
ys(st)

A(st)
(138)
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We can also rewrite (137) as:

0 = (1−κ)ςY (st)Y (st)1/ρyf (st)
ρ−1

ρ +(1−κ)ςL(st)
yf (st)

A(st)
− 1

ρ
ξ(st)χ(st−1)Um

C (st)

[
yf (st)

Y (st)

]−1/ρ

(139)

Summing (138) and (139) yields:

0 = ςY (st)Y (st) + ςL(st)L(st)− 1

ρ
ξ(st)χ(st−1)Um

C (st)

[
yf (st)

Y (st)

]−1/ρ

, (140)

which can be rewritten as follows:

− ςL(st)

ςY (st)− 1
ρξ(s

t)χ(st−1)Um
C (st)

[
yf (st)
Y (st)

]−1/ρ
1

Y (st)

=
Y (st)

L(st)
. (141)

Next, the FOC with respect to C(st) is given by:

0 = WC(s
t)− ςC(st) + ξ(st)χ(st−1)Um

CC(s
t)

(
yf (st)

Y (st)

)−1/ρ

, (142)

and the FOC with respect to Y (st) is given by:

0 = −ςY (st) + ςC(st) +
1

ρ
ξ(st)χ(st−1)Um

C (st)

(
yf (st)

Y (st)

)−1/ρ
1

Y (st)
. (143)

Combining (142) and (143) yields:

ςY (st) = WC(s
t) + ξ(st)χ(st−1)

(
yf (st)

Y (st)

)−1/ρ [
Um
CC(s

t) +
1

ρ
Um
C (st)

1

Y (st)

]
(144)

The FOC with respect to L(st) implies:

ςL(st) = WL(s
t) + ξ(st)Um

LL(s
t)

1

A(st)
. (145)

Finally, we use (144) and (145) to substitute for ςY (st) and ςL(st) in (141) and obtain:

−
WL(s

t) + ξ(st)Um
LL(s

t) 1
A(st)

WC(st) + ξ(st)χ(st−1)Um
CC(s

t)
(
yf (st)
Y (st)

)−1/ρ
=

Y (st)

L(st)

as in (129).
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D.3 Proof of Theorem 4

We substitute the expressions for WC(s
t) and WL(s

t) from (101) and (102) into (129) and obtain

the following Ramsey optimality condition:

−
Um
L (st)

Um
C (st)


∑

i∈I π
iωi

L(φ, st)
[
λi

φi + νi(1 + η)
]
+ ξ(st)U

m
LL(s

t)
Um

L (st)
1

A(st)∑
i∈I π

iωi
C(φ)

[
λi

φi + νi(1− γ)
]
+ ξ(st)χ(st−1)U

m
CC(st)
Um

C (st)

(
yf (st)
Y (st)

)−1/ρ

 =
Y (st)

L(st)
.

Therefore the optimal monetary wedge, as defined in (37), satisfies:

1− τ∗M (st) =
H(st−1) + ξ(st)U

m
CC(st)
Um

C (st)

[
yf (st)
Y (st)

]−1/ρ

I(st) + ξ(st)U
m
LL(s

t)
Um

L (st)
1

A(st)

. (146)

where I(st) is defined in (103) and we let H(st−1) ≡ χ(st−1)−1ΩC > 0.

First, note that when ξ(st) = 0, the constraint is slack. Therefore, it is clear that τ∗M (st) = 0 if

and only if

I(st) = Ī(st−1) ≡ H(st−1).

Next we use the representation of the monetary tax in (110) and repeated here:

A(st)

[
yf (st)

Y (st)

]−1/ρ

= (1− τ∗M (st))
Y (st)

L(st)
(147)

Substituting the optimal monetary wedge from (146) into (147) we obtain:

A(st)

[
yf (st)

Y (st)

]−1/ρ

=


H(st−1) + ξ(st)U

m
CC(st)
Um

C (st)

[
yf (st)
Y (st)

]−1/ρ

I(st) + ξ(st)U
m
LL(s

t)
Um

L (st)
1

A(st)

 Y (st)

L(st)
.

Rearrangement, yields:

1 =
H(st−1)Y (st)

[
yf (st)
Y (st)

]1/ρ
+ ξ(st)U

m
CC(st)C(st)
Um

C (st)

I(st)A(st)L(st) + ξ(st)U
m
LL(s

t)L(st)
Um

L (st)

,

which reduces to:

I(st) + (η + γ)
ξ(st)

A(st)L(st)
−H(st−1)

Y (st)

A(st)L(st)

[
yf (st)

Y (st)

]1/ρ
= 0

We define

ξ̂(st) ≡ ξ(st)

A(st)L(st)
H(st−1)−1 (148)

We have that:
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I(st) + (η + γ)H(st−1)ξ̂(st)−H(st−1)
Y (st)

A(st)L(st)

[
yf (st)

Y (st)

]1/ρ
= 0

Next, using condition (147) we have the following optimality condition:

I(st) + (η + γ)H(st−1)ξ̂(st)−H(st−1)(1− τM (st))−1 = 0

We let g be the function defined by:

g(I(st), τM (st)) ≡ I(st) +H(st−1)
[
(η + γ)ξ̂(st)− (1− τM (st))−1

]
.

The optimal monetary tax satisfies: g(I(st), τ∗M (st)) = 0. By the implicit function theorem:

dτ∗M (st)

dI(st)
= − dg/dI(st)

dg/dτ∗M (st)
= − 1

H(st−1)
{
(η + γ) dξ̂(st)

dτM (st) − (1− τ∗M (st))−2
}

Therefore derivative of the optimal monetary tax satisfies:

dτ∗M (st)

dI(st)
=

1

H(st−1)

{
(1− τ∗M (st))−2 − (η + γ)

dξ̂(st)

dτ∗M (st)

}−1

(149)

An expression for ξ̂(st). The planner’s optimality condition in (138) implies:

ςL(st) = −ςY (st)A(st)

[
ys(st)

Y (st)

]−1/ρ

Substituting this into (140) we obtain:

0 = ςY (st)Y (st)− ςY (st)

[
ys(st)

Y (st)

]−1/ρ

A(st)L(s
t)− 1

ρ
ξ(st)χ(st−1)Um

C (st)

[
yf (st)

Y (st)

]−1/ρ

,

which can be rewritten as:

0 =
ςY (st)

χ(st−1)Um
C (st)

[
Y (st)

A(st)L(st)
−
[
ys(st)

Y (st)

]−1/ρ
]
− 1

ρ

ξ(st)

A(st)L(st)

[
yf (st)

Y (st)

]−1/ρ

Rearranging, we get that:

ξ(st)

A(st)L(st)
= ρ

ςY (st)

χ(st−1)Um
C (st)

[
Y (st)

A(st)L(st)

[
yf (st)

Y (st)

]1/ρ
−
[
ys(st)

Y (st)

]−1/ρ [
yf (st)

Y (st)

]1/ρ]
(150)

Therefore

ξ̂(st) = ρ
H(st−1)−1

χ(st−1)Um
C (st)

ςY (st)

[
Y (st)

A(st)L(st)

[
yf (st)

Y (st)

]1/ρ
−
[
ys(st)

Y (st)

]−1/ρ [
yf (st)

Y (st)

]1/ρ]
(151)
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In what follows, we turn back to the equivalent equilibrium representation used in Section

(B) of the Appendix. Recall the forecast errors ϵ(st) defined in (28). From equation (123) we have

that the monetary tax satisfies:

1− τM (st) =
κϵ(st)−ρ + (1− κ)

κϵ(st)1−ρ + (1− κ)
.

Combining this with (147), we obtain:

Y (st)

A(st)L(st)

[
yf (st)

Y (st)

]1/ρ
=

κϵ(st)1−ρ + (1− κ)

κϵ(st)−ρ + (1− κ)

Furthermore, using (117), the following is also true:[
ysst)

Y (st)

]−1/ρ [
yf (st)

Y (st)

]1/ρ
=

[
ϵ(st)−ρ y

f (st)

Y (st)

]−1/ρ [
yf (st)

Y (st)

]1/ρ
= ϵ(st)

Therefore, we may rewrite (151) as follows:

ξ̂(st) = ρ
H(st−1)−1

χ(st−1)Um
C (st)

ςY (st)

[
(1− κ)(1− ϵ(st))

κϵ(st)−ρ + (1− κ)

]
(152)

Next we use the planner’s optimality condition in (144). Substituting in for ξ(st) from (150)

into (144) we have that:

ςY (st) = WC(s
t) + ςY (st)(1− γρ)

[
1−

[
ys(st)

Y (st)

]−1/ρ
A(st)L(s

t)

Y (st)

]

Therefore

ςY (st) = WC(s
t)

[
1− (1− γρ)

[
1−

[
ys(st)

Y (st)

]−1/ρ
A(st)L(s

t)

Y (st)

]]−1

We have that:[
ys(st)

Y (st)

]−1/ρ
A(st)L(s

t)

Y (st)
= ϵ(st)

[
yf (st)

Y (st)

]−1/ρ
A(st)L(s

t)

Y (st)
= ϵ(st)

κϵ(st)−ρ + (1− κ)

κϵ(st)1−ρ + (1− κ)

Therefore

ςY (st) = WC(s
t)

[
1− (1− γρ)

[
1− ϵ(st)

κϵ(st)−ρ + (1− κ)

κϵ(st)1−ρ + (1− κ)

]]−1

which reduces to

ςY (st) = WC(s
t)

[
1− (1− γρ)(1− κ)

[
1− ϵ(st)

κϵ(st)1−ρ + (1− κ)

]]−1

Therefore

ςY (st) = WC(s
t)

κϵ(st)1−ρ + (1− κ)

κϵ(st)1−ρ + (1− γρ)(1− κ)ϵ(st) + γρ(1− κ)
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Substituting this expression for ςY (st) into (152), we obtain the following expression for ξ̂(st) as

a function of ϵ(st):

ξ̂(st) = ρ

[
(1− κ)(1− ϵ(st))

κϵ(st)1−ρ + (1− γρ)(1− κ)ϵ(st) + γρ(1− κ)

] [
κϵ(st)1−ρ + (1− κ)

κϵ(st)−ρ + (1− κ)

]
.

Next, for shorthand we let

Σ(ϵ) ≡ (1− κ)(1− ϵ)

κϵ1−ρ + (1− γρ)(1− κ)ϵ+ γρ(1− κ)
(153)

Therefore:

ξ̂(st) = ρΣ(ϵ(st))(1− τM (st))−1 (154)

Derivative of τM(st). The derivative of the optimal monetary “tax” satisfies (149). Evaluating

this derivative at the benchmark in which τM (st) = 0, we have:

dτM (st)

dI(st)

∣∣∣∣
τM (st)=0

=
1

H(st−1)

1− (η + γ)
dξ̂(st)

dτM (st)

∣∣∣∣∣
τM (st)=0


−1

(155)

where ξ̂(st) satisfies (154). Taking the first derivative of the expression in (154), we get:

dξ̂

dτM
= ρ

{
Σ(ϵ)(1− τM )−2 + (1− τM )−1dΣ

dϵ

dϵ

dτM

}
. (156)

The derivative dΣ/dϵ satisfies:

dΣ(ϵ)

dϵ
= −(1− κ)

κϵ1−ρ + (1− ρ)κϵ−ρ(1− ϵ) + (1− κ)

(κϵ1−ρ + (1− γρ)(1− κ)ϵ+ γρ(1− κ))2

Next, we obtain dϵ/dτM as follows. The monetary tax satisfies equation (123):

1− τM (ϵ) =
κϵ−ρ + (1− κ)

κϵ1−ρ + (1− κ)

Rearranging, we obtain the following expression:

κϵ1−ρ − κϵ−ρ − τMκϵ1−ρ − τM (1− κ) = 0

We let ϱ be the function defined by:

ϱ(τM , ϵ) ≡ (1− τM )κϵ1−ρ − κϵ−ρ − τM (1− κ),

with ϱ(τM , ϵ) = 0. By the implicit function theorem:

dϵ

dτM
= −dϱ/dτM

dϱ/dϵ
=

κϵ1−ρ + (1− κ)

(1− ρ)(1− τM )κϵ−ρ + ρκϵ−ρ−1
.
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Therefore the last term in (156) satisfies:

Σ(ϵ)(1− τM )−2 + (1− τM )−1dΣ

dϵ

dϵ

dτM
=

(1− κ)(1− ϵ)

κϵ1−ρ + (1− γρ)(1− κ)ϵ+ γρ(1− κ)
(1− τM )−2 (157)

−
{

1− κ

1− τM

[
κϵ1−ρ + (1− ρ)κϵ−ρ(1− ϵ) + (1− κ)

(κϵ1−ρ + (1− γρ)(1− κ)ϵ+ γρ(1− κ))2

]
×
[

κϵ1−ρ + (1− κ)

(1− ρ)(1− τM )κϵ−ρ + ρκϵ−ρ−1

]}
Evaluating this term at τM = 0, or equivalently at ϵ = 1, we have:[

Σ(ϵ)(1− τM )−2 + (1− τM )−1dΣ

dϵ

dϵ

dτM

]
τM=0

= −
(
1− κ

κ

)
And furthermore evaluating (156) at τM = 0, we get:

dξ̂

dτM

∣∣∣∣∣
τM=0

= −ρ
1− κ

κ

Substituting this into (155), we obtain:

dτM (st)

dI(st)

∣∣∣∣
τM (st)=0

=
1

Ī(st−1)
{
1 + ρ(η + γ)1−κ

κ

} > 0.

where Ī(st−1) ≡ H(st−1). Therefore, taking a first-order Taylor approximation of τ∗M (st) around

the point I(st) = Ī(st−1), we have:

τ∗M (st) ≈ 0 +
1

Ī(st−1)
{
1 + ρ(η + γ)1−κ

κ

} [I(st)− Ī(st−1)],

which coincides with the expression in (42).

E Constrained Profit Taxation

In this section of the appendix we provide the proofs for the economy with constrained profit

taxation presented in Section 6.

E.1 Proof of Proposition 5

Necessity. Necessity of parts (i) and (ii) of the proposition follow from the same steps as

those used to prove Proposition 2. What remains to be shown is necessity of the budget im-

plementability conditions in (44).

First, we derive an expression for real profits, Π(st)/P (st), in terms of allocations alone. We

can write aggregate profits in the following way:

Π(st) = (1− κ)Πf (st) + κΠs(st),
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where Πf (st) denotes profits of the flexible-price firms and Πs(st) denotes profits of the sticky

price firms in history st. Profits of these firms are given by:

Πf (st) =

[
(1− τr)p

f
t (s

t)− W (st)

A(st)

]
yf (st) and Πs(st) =

[
(1− τr)p

s
t (s

t−1)− W (st)

A(st)

]
ys(st).

Combining these expressions with the demand functions,[
yf (st)

Y (st)

]−1/ρ

=
pft (s

t)

P (st)
and

[
ys(st)

Y (st)

]−1/ρ

=
pst (s

t−1)

P (st)
, (158)

we find that real profits of these firms are given by:

Πf (st)

P (st)
=

[
(1− τr)

[
yf (st)

Y (st)

]−1/ρ

− W (st)

P (st)A(st)

]
yf (st),

Πs(st)

P (st)
=

[
(1− τr)

[
ys(st)

Y (st)

]−1/ρ

− W (st)

P (st)A(st)

]
ys(st).

Together, these imply that aggregate real profits can be written as:

Π(st)

P (st)
= (1−τr)

[
κ

[
ys(st)

Y (st)

]1−1/ρ

+ (1− κ)

[
yf (st)

Y (st)

]1−1/ρ
]
Y (st)−W (st)

P (st)

[
(1− κ)

yf (st)

A(st)
+ κ

ys(st)

A(st)

]
Finally, the resource constraints in (35) imply that real profits are given by:

Π(st)

P (st)
= (1− τr)Y (st)− W (st)

P (st)
L(st).

Next, we replace the real wage W (st)/P (st) in the above expression using the representative

household’s intratemporal condition, (12). This gives us the following expression for real profits:

Π(st)

P (st)
= (1− τr)C(st) +

1 + τc
1− τℓ

Um
L (st)

Um
C (st)

L(st) (159)

Multiplying both sides of this by Um
C (st)/1 + τc, we get:

Um
C (st)

1 + τc

Π(st)

P (st)
= (1− τr)

Um
C (st)

1 + τc
C(st) +

Um
L (st)

1− τℓ
L(st),

Substituting this expression into the implementability conditions in (18), we obtain:∑
t

∑
st

βtµ(st)
[
Um
C (st)ωi

C(φ)C(st) + Um
L (st)ωi

L(φ, st)L(s
t)
]

= Um
C (s0)T̄ + σi

0

1− τΠ
1− τℓ

∑
t

∑
st

βtµ(st)

[
(1− τℓ)(1− τr)

1 + τc
Um
C (st)C(st) + Um

L (st)L(st)

]
.

Using the definition of χ in (24), these conditions can be written as:∑
t

∑
st

βtµ(st)
[
Um
C (st)ωi

C(φ)C(st) + Um
L (st)ωi

L(φ, st)L(s
t)
]

= Um
C (s0)T̄ + σi

0

1− τΠ
1− τℓ

∑
t

∑
st

βtµ(st)

[
χ

ρ

ρ− 1
Um
C (st)C(st) + Um

L (st)L(st)

]
Finally, we define ϑ ≡ 1−τΠ

1−τℓ
and obtain the condition in (44).
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Sufficiency. Follows the same argument as in the sufficiency proof of Proposition 2.

E.2 The Ramsey Problem

In this section of the appendix, we state and solve the Ramsey problem. We assume the same

utilitarian social welfare function (29) as before. Again we let πiνi denote the Lagrange multiplier

on the implementability condition (44) of type i ∈ I and subsume these into the maximand.

Given ϑ, we can define a new pseudo-welfare function Ŵ(·) as follows:

Ŵ(C(st), L(st), st;φ, ν, λ, σ, χ, ϑ) ≡ W(C(st), L(st), st;φ, ν, λ) (160)

−

(
ϑ
∑
i∈I

πiνiσi
0

)[
χ

ρ

ρ− 1
Um
C (st)C(st) + Um

L (st)L(st)

]
where W(·) is defined in (30). With this, we recast the Ramsey planning problem as follows.

Ramsey Planner’s Problem. The Ramsey planner chooses an allocation x ≡
{ys(st), yf (st), C(st), Y (st), L(st)}t≥0,st∈St , market weights φ ≡ (φi), and constants T̄ ∈ R
and χ ∈ R+, in order to maximize:∑

t

∑
st

βtµ(st)Ŵ(C(st), L(st), st;φ, ν, λ, σ, χ, ϑ)− Um
C (s0)T̄

∑
i∈I

πiνi (161)

subject to (35), (25), and (26).

We let βtµ(st)(1 − κ)ξ(st) and βtµ(st−1)κυ(st−1) denote the Lagrange multipliers on the im-

plementability conditions (25) and (26), respectively. We obtain the following Ramsey optimal-

ity condition.

Proposition 10. A Ramsey optimum x∗ satisfies, for all st ∈ St,

−
ŴL(s

t) + (Um
L (st) + Um

LL(s
t)L(st))

[
κυ(st−1) ys(st)

A(st)L(st)
+ (1− κ)ξ(st) yf (st)

A(st)L(st)

]
ŴC(st) + χ(Um

C (st) + Um
CC(s

t)C(st))

[
κυ(st−1)

[
ys(st)
Y (st)

]1−1/ρ
+ (1− κ)ξ(st)

[
yf (st)
Y (st)

]1−1/ρ
] =

Y (st)

L(st)
.

(162)

where

ŴC(s
t) =WC(s

t)−

(
ϑ
∑
i∈I

πiνiσi
0

)
χ

ρ

ρ− 1
[Um

C (st) + Um
CC(s

t)C(st)] (163)

ŴL(s
t) =WL(s

t)−

(
ϑ
∑
i∈I

πiνiσi
0

)
[Um

L (st) + Um
LL(s

t)L(st)] (164)

Proof. The planner’s problem is exactly the same as in the proof of Proposition 6, with the excep-

tion of maximizing Ŵ(st) instead ofW(st). Therefore, following the same procedure as the proof

of Proposition 6, we obtain the expression in (162). Furthermore, taking the first derivatives of

Ŵ(·), as defined in (160), with respect to C(st) and L(st), we obtain the expressions in stated in

(163) and (164).
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E.3 Proof of Theorem 5

The Ramsey optimum satisfies (162). Substituting into (162) our expressions for ŴC(s
t) and

ŴL(s
t) from (163) and (164), as well as our expressions for WC(s

t) and WL(s
t) from (101) and

(102), and solving for the implicit optimal monetary wedge, we get:

1− τ∗M (st) =

{
(χ∗)−1

∑
i∈I

πiωi
C(φ)

[
λi

φi
+ νi(1− γ)

]

+(1− γ)

[
κυ(st−1)

[
ys(st)

Y (st)

]1−1/ρ

+ (1− κ)ξ(st)

[
yf (st)

Y (st)

]1−1/ρ

− ρ

ρ− 1
ϑ
∑
i∈I

πiνiσi

]}

×

{∑
i∈I

πiωi
L(φ, st)

[
λi

φi
+ νi(1 + η)

]

+(1 + η)

[
κυ(st−1)

ys(st)

A(st)L(st)
+ (1− κ)ξ(st)

yf (st)

A(st)L(st)
− ϑ

∑
i∈I

πiνiσi

]}−1

Therefore the optimal monetary wedge satisfies:

1− τ∗M (st) =

H+ (1− γ)

[
κυ(st−1)

[
ys(st)
Y (st)

]1−1/ρ
+ (1− κ)ξ(st)

[
yf (st)
Y (st)

]1−1/ρ
− ρ

ρ−1ϑ
∑

i∈I π
iνiσi

0

]
I(st) + (1 + η)

[
κυ(st−1) ys(st)

A(st)L(st)
+ (1− κ)ξ(st) yf (st)

A(st)L(st)
− ϑ

∑
i∈I π

iνiσi
0

] .

(165)

where I(st) and H are defined in (103).

Threshold. We first consider the conditions under which τ∗M (st) = 0. In this state: ys(st) =

yf (st) = Y (st) = A(st)L(s
t). Condition (165) reduces to:

1 =
H+ (1− γ)

[
κυ(st−1) + (1− κ)ξ(st)− ρ

ρ−1ϑ
∑

i∈I π
iνiσi

0

]
I(st) + (1 + η)

[
κυ(st−1) + (1− κ)ξ(st)− ϑ

∑
i∈I π

iνiσi
0

]
Furthermore, conditions (83) and (85) imply that ξ(st) = υ(st−1) in this state. Therefore:

1 =
H+ (1− γ)υ(st−1)− (1− γ) ρ

ρ−1ϑ
∑

i∈I π
iνiσi

0

I(st) + (1 + η)υ(st−1)− (1 + η)ϑ
∑

i∈I π
iνiσi

0

Solving this for I(st) we obtain the following threshold:

Īϑ(st−1) = H− (η + γ)υ(st−1) +

[
(1 + η)− (1− γ)

ρ

ρ− 1

]
ϑ
∑
i∈I

πiνiσi
0.

Therefore if I(st) = Īϑ(st−1), the optimal monetary tax is equal to zero: τ∗M (st) = 0. Finally,

lettingĪ0(st−1) = H− (η + γ)υ(st−1), we obtain the following expression:

Īϑ(st−1) = Ī0(st−1) +

[
(1 + η) +

ρ

ρ− 1
(γ − 1)

]
ϑ
∑
i∈I

πiνiσi
0. (166)
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The fictitious tax wedge. We next define a fictitious tax wedge as follows:

1− τ̂ϑ(s
t) ≡

H+ (1− γ)υ(st−1)− (1− γ) ρ
ρ−1ϑ

∑
i∈I π

iνiσi
0

I(st) + (1 + η)υ(st−1)− (1 + η)ϑ
∑

i∈I π
iνiσi

0

(167)

The wedge 1−τ̂(st) is continuous and strictly decreasing in I(st), as all other terms are constants

(conditional on st−1). Furthermore, note that τ̂(st) = 0 if and only if I(st) = Īϑ(st−1). As a result,

the fictitious tax τ̂(st) trivially satisfies:

τ̂ϑ(s
t) > 0 if and only if I(st) > Īϑ(st−1),

τ̂ϑ(s
t) = 0 if and only if I(st) = Īϑ(st−1),

τ̂ϑ(s
t) < 0 if and only if I(st) < Īϑ(st−1).

The remainder of the proof follows the exact same steps as in the proof of Theorem 3.

E.4 One-Period-Ahead Tax Rates

In this section of the appendix, we consider the economy with constrained profit taxation and

one-period-ahead tax rates. Specifically, we let τc and τr at time t be contingent on st−1. We

begin with our characterization of the set of sticky price allocations.

Lemma 8. A feasible allocation x ∈ X can be implemented as a sticky-price equilibrium with

one-period-ahead taxes if and only if there exist market weights φ ≡ (φi), a scalar T̄ ∈ R, and a

weakly positive scalar ϑ ∈ R≥0, such that parts (i)-(ii) of Proposition 8 are satisfied, and condition

(44) holds for every i ∈ I.

Proof. The proof is analogous to the proof of Proposition 8.

Next, we can state the planner’s problem as follows.

Ramsey Planner’s Problem. The Ramsey planner chooses an allocation, x ≡
{ys(st), yf (st), C(st), Y (st), L(st)}t≥0,st∈St , market weights φ ≡ (φi), and scalar T̄ ∈ R, in

order to maximize (161) subject to (128) and (127).

We let βtµ(st)(1− κ)ξ(st) denote the Lagrange multiplier on the implementability condition

(127). The Ramsey optimum can be characterized as follows.

Lemma 9. A Ramsey optimum x∗ satisfies

−
ŴL(s

t) + ξ(st)Um
LL(s

t) 1
A(st)

ŴC(st) + ξ(st)χ(st−1)Um
CC(s

t)
(
yf (st)
Y (st)

)−1/ρ
=

Y (st)

L(st)
, ∀st ∈ St. (168)

Proof. The planner’s problem is the same as in the proof of Proposition 9, with the exception of

maximizing Ŵ(st) instead of W(st). Therefore, we follow the same procedure as in the proof of

Proposition 9, and we obtain the expression in (168). This is identical to the Ramsey optimality

condition (129) but with WC(s
t) and WL(s

t) replaced by ŴC(s
t) and ŴL(s

t).
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E.5 Proof of Theorem 6

The Ramsey optimum satisfies (168). Substituting in our expressions for ŴC(s
t) and ŴL(s

t)

from (163) and (164):

−
WL(s

t)−
(
ϑ
∑

i∈I π
iνiσi

)
[Um

L (st) + Um
LL(s

t)L(st)] + ξ(st)Um
LL(s

t) 1
A(st)

WC(st)− χ(st−1) ρ
ρ−1

(
ϑ
∑

i∈I π
iνiσi

)
[Um

C (st) + Um
CC(s

t)C(st)] + ξ(st)χ(st−1)Um
CC(s

t)
(
yf (st)
Y (st)

)−1/ρ

=
Y (st)

L(st)

This optimality condition, along with our expressions for WC(s
t) and WL(s

t) in (101) and (102),

imply that the optimal monetary wedge, defined in (37), satisfies:

1− τ∗M (st) =
Hϑ(s

t−1) + ξ(st)U
m
CC(st)
Um

C (st)

[
yf (st)
Y (st)

]−1/ρ
− (1− γ) ρ

ρ−1ϑ
∑

i∈I π
iνiσi

0

I(st) + ξ(st)U
m
LL(s

t)
Um

L (st)
1

A(st)
− (1 + η)ϑ

∑
i∈I π

iνiσi
0

. (169)

where I(st) is defined in (103) and we let Hϑ(s
t−1) ≡ χ(st−1)−1ΩC(φ) > 0.

First, note that when ξ(st) = 0, the constraint is slack. Therefore, τ∗M (st) = 0 if and only if

I(st) = Īϑ(st−1) ≡ Hϑ(s
t−1) +

[
(1 + η)− (1− γ)

ρ

ρ− 1

]
ϑ
∑
i∈I

πiνiσi
0

Note that Ī0(st−1) ≡ H0(s
t−1). Substituting the optimal monetary wedge from (169) into (147)

we obtain:

A(st)

[
yf (st)

Y (st)

]−1/ρ

=


Hϑ(s

t−1) + ξ(st)U
m
CC(st)
Um

C (st)

[
yf (st)
Y (st)

]−1/ρ
− (1− γ) ρ

ρ−1ϑ
∑

i∈I π
iνiσi

I(st) + ξ(st)U
m
LL(s

t)
Um

L (st)
1

A(st)
− (1 + η)ϑ

∑
i∈I π

iνiσi

 Y (st)

L(st)
.

Rearrangement, yields:

1 =
Hϑ(s

t−1)Y (st)
[
yf (st)
Y (st)

]1/ρ
+ ξ(st)U

m
CC(st)C(st)
Um

C (st) − (1− γ) ρ
ρ−1

(
ϑ
∑

i∈I π
iνiσi

0

)
Y (st)

[
yf (st)
Y (st)

]1/ρ
I(st)A(st)L(st) + ξ(st)U

m
LL(s

t)L(st)
Um

L (st) − (1 + η)
(
ϑ
∑

i∈I π
iνiσi

0

)
A(st)L(st)

.

which reduces to:

0 =I(st) + (η + γ)
ξ(st)

A(st)L(st)
−Hϑ(s

t−1)
Y (st)

A(st)L(st)

[
yf (st)

Y (st)

]1/ρ
−

{
(1 + η)− (1− γ)

ρ

ρ− 1

Y (st)

A(st)L(st)

[
yf (st)

Y (st)

]1/ρ}(
ϑ
∑
i∈I

πiνiσi
0

)
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As before we define ξ̂(st) as in (148), and using condition (147) we obtain the following opti-

mality condition:

0 =I(st) + (η + γ)Hϑ(s
t−1)ξ̂(st)−Hϑ(s

t−1)(1− τM (st))−1

−
[
(1 + η)− (1− γ)

ρ

ρ− 1
(1− τM (st))−1

](
ϑ
∑
i∈I

πiνiσi
0

)

We let ĝ be the function defined by:

ĝ(I(st), τM (st)) ≡I(st) +Hϑ(s
t−1)

[
(η + γ)ξ̂(st)− (1− τM (st))−1

]
− (1 + η)

(
ϑ
∑
i∈I

πiνiσi
0

)
+ (1− γ)

ρ

ρ− 1

(
ϑ
∑
i∈I

πiνiσi
0

)
(1− τM (st))−1.

The optimal monetary tax satisfies: ĝ(I(st), τ∗M (st)) = 0. By the implicit function theorem:

dτ∗M (st)

dI(st)
= − dĝ/dI(st)

dĝ/dτ∗M (st)

where

dĝ/dI(st)
dĝ/dτ∗M (st)

=
1

Hϑ(st−1)
{
(η + γ) dξ̂(st)

dτM (st) − (1− τ∗M (st))−2
}
+ (1− γ) ρ

ρ−1ϑ
∑

i∈I π
iνiσi(1− τ∗M (st))−2

Therefore the derivative of the optimal monetary tax satisfies:

dτ∗M (st)

dI(st)
=

Hϑ(s
t−1)−1[

1− (1− γ) ρ
ρ−1

(
ϑ
∑

i∈I π
iνiσi

0

)
Hϑ(st−1)−1

]
(1− τ∗M (st))−2 − (η + γ) dξ̂(st)

dτM (st)

(170)

An expression for ξ̂(st). Following the same steps as in the proof of Theorem 4, we get the

following expression for ξ̂(st):

ξ̂(st) = ρ
Hϑ(s

t−1)−1

χ(st−1)Um
C (st)

ςY (st)

[
(1− κ)(1− ϵ(st))

κϵ(st)−ρ + (1− κ)

]
(171)

Next we use the planner’s optimality condition in (144) but with ŴC(s
t) in place of of WC(s

t).

Following the same steps as in the proof of Theorem 4, we find that ςY (st) satisfies:

ςY (st) = ŴC(s
t)

κϵ(st)1−ρ + (1− κ)

κϵ(st)1−ρ + (1− γρ)(1− κ)ϵ(st) + γρ(1− κ)
.

Substituting this expression for ςY (st) into (171), we obtain the following expression for ξ̂(st) as

a function of ϵ(st):

ξ̂(st) = ρ
Hϑ(s

t−1)−1

χ(st−1)Um
C (st)

ŴC(s
t)Σ(ϵ)(1− τM (st))−1.
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where Σ(ϵ) is defined in (153) and τM (st) satisfies equation (123). Furthermore, substituting in

our expression for ŴC(s
t) from (163), we obtain:

ξ̂(st) = ρ
Hϑ(s

t−1)−1

χ(st−1)

[
WC(s

t)

Um
C (st)

− χ(st−1)(1− γ)
ρ

ρ− 1

(
ϑ
∑
i∈I

πiνiσi
0

)]
Σ(ϵ)(1− τM (st))−1

Using the fact that WC(s
t) = Um

C (st)ΩC(φ), the above reduces to:

ξ̂(st) = ρ

[
1− (1− γ)

ρ

ρ− 1

(
ϑ
∑
i∈I

πiνiσi
0

)
Hϑ(s

t−1)−1

]
Σ(ϵ)(1− τM (st))−1. (172)

Derivative of τM(st). The derivative of the optimal monetary tax satisfies (170). Evaluating

this derivative at the benchmark in which τM (st) = 0, we have:

dτ∗M (st)

dI(st)

∣∣∣∣
τM (st)=0

=
Hϑ(s

t−1)−1[
1− (1− γ) ρ

ρ−1

(
ϑ
∑

i∈I π
iνiσi

0

)
Hϑ(st−1)−1

]
− (η + γ) dξ̂(st)

dτM (st)

∣∣∣
τM (st)=0

(173)

where ξ̂(st) satisfies (172). Taking the first derivative of the expression in (172), we get:

dξ̂

dτM
= ρ

[
1− (1− γ)

ρ

ρ− 1

(
ϑ
∑
i∈I

πiνiσi
0

)
Hϑ(s

t−1)−1

][
Σ(ϵ)(1− τM )−2 + (1− τM )−1dΣ

dϵ

dϵ

dτM

]
(174)

Note that the last term in (174) coincides with the last term in (156). Therefore, as in the proof

of Theorem 4, we have that the last term in (174) satisfies (157). Evaluating this term at τM = 0,

or equivalently at ϵ = 1, we have:[
Σ(ϵ)(1− τM )−2 + (1− τM )−1dΣ

dϵ

dϵ

dτM

]
τM=0

= −
(
1− κ

κ

)
And furthermore evaluating (174) at τM = 0, we get:

dξ̂

dτM

∣∣∣∣∣
τM=0

= −ρ
1− κ

κ

[
1− (1− γ)

ρ

ρ− 1

(
ϑ
∑
i∈I

πiνiσi
0

)
H(st−1)−1

]

Substituting this expression into (173), we obtain:

dτ∗M (st)

dI(st)

∣∣∣∣
τM (st)=0

=
1

(1 + ρ(η + γ)1−κ
κ )

[
Hϑ(st−1) + (γ − 1) ρ

ρ−1ϑ
∑

i∈I π
iνiσi

0

]
Therefore, taking a first-order Taylor approximation of τ∗M (st) around I(st) = Î(st−1), we have:

τ∗M (st) ≈ 0 +
1

(1 + ρ(η + γ)1−κ
κ )

[
Hϑ(st−1) + (γ − 1) ρ

ρ−1ϑ
∑

i∈I π
iνiσi

0

] [I(st)− Īϑ(st−1)],

as was to be shown.
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