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ABSTRACT

What are the most effective ways to address climate change? This paper extends and applies the 
marginal value of public funds (MVPF) framework to help answer this question. We examine 96 
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externalities. We also provide a new method for incorporating learning-by-doing spillovers. The 
analysis yields three main results: First, subsidies for investments that directly displace the dirty 
production of electricity, such as production tax credits for wind power and subsidies for residential 
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with those derived from more traditional cost-per-ton metrics used in previous literature.
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1 Introduction

What are the most e↵ective ways to address climate change? There is a robust and growing

literature examining the causal e↵ects of climate-related policy changes. These papers often

assess the e↵ectiveness of policies by measuring the cost per ton of carbon dioxide (CO2)

abated. Yet, comparisons of these costs per ton across studies face several challenges. First,

the input assumptions in these calculations vary across papers. Second, there are at least three

distinct (and often conflated) definitions of the cost per ton of CO2 found in the literature:

(1) resource costs expended per ton of CO2 abated (Grubb et al. 1993, Enkvist et al. 2007,

Mullainathan & Allcott 2010, Greenstone et al. 2022), (2) government expenditures per ton of

CO2 abated (Gillingham & Tsvetanov 2019, Knittel 2009), and (3) social costs per ton of CO2

abated (Hughes & Podolefsky 2015, Fournel 2024). Third, even if researchers were to align on

a single approach to measuring cost per ton, each of these metrics have inherent limitations

when assessing the welfare e↵ects of spending and revenue-raising policies. Resource cost per

ton of CO2 abstracts from the causal e↵ects of policy changes, ignoring the cost and benefits

of transfers to inframarginal individuals who do not change their behavior in response to those

policy changes. Government expenditures per ton of CO2 accounts for the cost of transfers to

inframarginal individuals but ignores the benefit of those transfers to their recipients. Social

cost per ton seeks to capture a comprehensive set of non-resource benefits but ignores the

opportunity cost of transfers to inframarginal individuals.

It is with these concerns in mind that we extend and apply the marginal value of public funds

(MVPF) framework to examine the welfare consequences of historical US spending and revenue

raising policies addressing climate change. The MVPF approach quantifies the net benefits to

individuals in society relative to the policy’s net government cost. These benefits and costs

incorporate behavioral responses to the policy and include inframarginal transfers, overcoming

the primary limitations of the cost per ton approach.1 As an added benefit, the MVPF facilitates

policy comparisons both within and across policy categories, such as comparing climate policies

to public investments in education or healthcare.

We apply our MVPF-based framework to a comprehensive set of climate policy interventions

in the U.S. that a↵ect greenhouse gas emissions and have been rigorously evaluated in the past

25 years using experimental or quasi-experimental methods. This yields a sample of 96 policy

changes in three primary categories – subsidies, nudges and marketing, and revenue raisers.

Within the category of subsidies, we examine policies targeting wind production, residential

solar, electric and hybrid vehicle purchases, vehicle retirement, appliance rebates, and home

weatherization. Within the category of nudges and marketing, we examine energy conservation

policies such as home energy reports as well as marketing policies designed to encourage the

1To the best of our knowledge, Berkouwer & Dean (2019) and Christensen, Francisco & Myers (2023) were
the first to apply the MVPF framework in a climate setting. See also more recent work on peak energy usage
incentives and water audits (Jacob et al. 2023, Akesson et al. 2023), and the work of Kotchen (2022) and Prest
& Stock (2023) in using the MVPF framework as a lens to understand optimal environmental policy.
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take-up of clean technologies. Within the category of revenue raisers, we examine gasoline taxes,

taxes on other fuels such as jet fuel and diesel, and cap-and-trade policies. Lastly, we consider

an illustrative set of international policies, including subsidies for energy-e�cient cookstoves

and deforestation-focused payments for ecosystem services.

Across all policies, we use a consistent method to translate a policy’s causal e↵ect on be-

havior into a valuation of that change in behavior. We proceed in two steps. First, we use a

harmonized method to translate changes in behavior (e.g., changes in car purchases or electric-

ity usage) into changes in emissions and other damaging outcomes (e.g., car accidents). For

example, in the case of changes in electricity production or electricity usage, we use estimates

from the EPA’s AVERT model to measure associated changes in emissions resulting from com-

positional changes in the grid (EPA 2024b). In the case of changes to vehicle purchases (e.g.,

EVs versus internal combustion), we estimate the change in gallons of gasoline used relative to

a counterfactual vehicle. We measure the total CO2 emissions associated with the upstream

production of gasoline and its combustion. We combine that with measures of local pollutants

released such as particulate matter. Second, we apply a consistent dollar value for each exter-

nality measured. For the social cost of carbon (SCC), we draw from recent work by the US

Environmental Protection Agency (EPA) (EPA 2023c) that places the social cost of carbon at

$193 in 2020 (and rising in the years to follow). We also explore the robustness of our results

to alternate measures of the social cost of carbon, ranging from $76 to $337 in 2020. For local

pollutants, we use estimates of the social cost of NH3, HC, NOX , PM2.5 and SO2 from the

AP3 integrated assessment model, which monetizes health impacts from air pollution exposure

using estimates on mortality and an associated value of a statistical life (VSL).

Our primary methodological contribution is the introduction of a new su�cient statistics

approach to quantify the benefits of “learning-by-doing” e↵ects, which can then be directly

incorporated into the MVPF framework. There is a large literature that shows the prices of

new technologies such as solar cells, wind turbines, and batteries have declined with cumulative

global production (Way et al. 2022). These patterns often serve as a proposed justification for

subsidizing particular low-carbon technologies: subsidizing specific technologies with relatively

high abatement costs today may generate learning-by-doing spillovers that lower the future cost

of these technologies and generate future environmental benefits (Romer 1986, van Benthem

et al. 2008).

We show how these learning-by-doing e↵ects can be incorporated directly into the MVPF

framework. In particular, we show that when the marginal cost of production is an isoelastic

function of cumulative production and when demand is an isoelastic function of price, the time

path of production follows a second-order ordinary di↵erential equation that can be solved to

estimate the willingness-to-pay for the resulting learning-by-doing e↵ects.

Learning by doing generates two types of benefits: first, reductions in the future cost of

low-carbon technologies increase consumer welfare due to lower future prices, and second, these
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price reductions serve to increase future take-up and, consequently, reduce future emissions.2

We apply our framework to study the potential implications of learning by doing for policies

that increase the current production of solar cells, wind turbines, and batteries. While we focus

here on learning-by-doing in the context of climate change, our framework can be used in other

industrial policy settings where there may be learning-by-doing externalities.

1.1 Findings

We have three main findings. First, we find that subsidies for investments that directly dis-

place the dirty production of electricity have higher MVPFs than all other subsidies in our

sample. Policies providing production tax credits for wind power and subsidies for residential

solar have MVPFs that generally exceed 2. In contrast, subsidies providing appliance rebates,

home weatherization, vehicle retirement, or subsidies for hybrid vehicle purchases have MVPFs

around 1. Electric vehicle subsidies have MVPFs around 1.5. The high MVPF values for wind

production tax credits and residential solar subsidies are robust to a wide range of values of the

social cost of carbon (e.g., $76 or $337). These conclusions are also robust to a wide range of

additional assumptions regarding the construction of the MVPF. This includes the valuation of

firm profits, the treatment of private energy savings, and the evaluation of non-marginal policy

changes. The inclusion of learning-by-doing e↵ects amplifies the MVPFs of these subsidies. In

the case of wind, the MVPF rises from 3.85 to 5.87 with learning by doing. In the case of

residential solar, the MVPF rises from a relatively low value of 1.45 to 3.86.3

Second, we find that behavioral nudges designed to reduce energy consumption can produce

large welfare gains when administered in regions with relatively dirty electric grids (with MVPFs

exceeding 5) but have lower MVPFs (below 1) in regions with cleaner grids.4 This finding also

suggests that the e↵ectiveness of these nudges will decrease over time as more electricity comes

from low- or zero-carbon sources.

Third, we find that implementing taxes on polluting goods can serve as an e�cient means

of raising revenue. In the context of revenue raisers, the MVPF measures the welfare burden

imposed on individuals per dollar of revenue raised. This means that, all else equal, better

revenue raisers have lower MVPFs. We analyze taxes on gasoline, diesel, and jet fuel, along

with changes to the number of auctioned permits in cap-and-trade systems. We find that nearly

all of these revenue-raising policies have MVPFs below 1, with most having MVPFs below 0.7.

2Comparative statics of the model in Appendix B show that learning-by-doing externalities are generally
decreasing over time, providing a theoretical rationale for subsidizing early adoption.

3While the MVPFs of subsidies for new technologies are higher than other climate-focused subsidies, they
are not necessarily larger than non-environmental spending policies. For example, in previous work, Hendren &
Sprung-Keyser (2020) found that policies providing direct investment in health and education for low-income
children had MVPFs often in excess of 5.

4This echoes the conclusions in Borenstein & Bushnell (2022), who suggest the returns to reducing energy
consumption are lowest in areas with clean grids. We find support for this conclusion in the context of energy
conservation nudges, despite the fact that previous work has found treatment e↵ects of nudges are larger in
more environmentalist areas (Allcott 2015).
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This means that taxes on polluting goods impose a welfare cost of only $0.70 on society for

every $1 of revenue raised. This finding reflects the logic of Pigouvian taxation, quantifying

the e�ciency of raising rates when current tax rates fall below the associated environmental

externalities.

While our primary focus is on US environmental policy, we also consider the welfare conse-

quences of US spending abroad on policies that address climate change. We find such subsidies

have the potential to produce high MVPFs, even when only considering the impact on US

beneficiaries and US taxpayers. For example, we consider the case of subsidies for the take-up

of e�cient charcoal cookstoves in Kenya (Berkouwer & Dean 2022). Ignoring any benefits of

these stoves to local residents and ignoring any non-US benefits of CO2 reductions, the US-

specific gains from reduced CO2 emissions are 37 times larger than the net cost of the subsidy,

generating a higher MVPF than any domestic subsidy in our sample. (When considering the

full set of global benefits, the MVPF rises from 37 to 323). That said, there is substantial un-

certainty associated with these international subsidy estimates. The estimated impacts of these

policies often vary quite extensively, even within policy categories. As we discuss in Section 7,

the magnitude of the US-specific MVPF depends heavily on the incidence of the social cost of

carbon. In particular, it depends on the extent to which CO2 damages have incidence on US

residents and US government tax revenue.5

1.2 Relationship to Existing Literature

Our paper relates to an extensive literature in climate and environmental economics. It draws

upon a large body of estimates examining the causal e↵ects of individual policy changes and

builds upon a body of work conducting comparative analyses of climate policies.

This kind of comparative analysis was popularized in work by McKinsey & Company

(Enkvist et al. 2007), who calculated the resource cost per ton of CO2 abated for a wide

range of technologies. In recent years, alternative versions of this analysis have been performed

by groups such as the International Energy Agency (IEA 2020) and the Environmental Defense

Fund (Environmental Defense Fund 2021).

This line of work has been subject to criticism, both for the use of engineering estimates

relied upon to construct these measures of resource costs per ton (Fowlie et al. 2018, Brandon

et al. 2022) and for the focus on abatement cost of products rather than the abatement cost of

policies (e.g., a solar panel rather than a subsidy for a solar panel) (Kesicki & Ekins 2012). In

response, recent work has focused on the e↵ects of specific policy changes when constructing

estimates of cost per ton (see Gillingham & Stock (2018) for a broad compilation of such

estimates).

5Many models that agree on the level of the social cost of carbon still di↵er in the geographic incidence
of those damages and the split between market and non-market damages (e.g., productivity declines versus
mortality impacts.) The impact on US tax revenue is determined by the fraction of damages that reflects
US-specific productivity changes, as the US Treasury has an equity stake in those changes.
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While the recent focus on policies rather than products speaks to an important criticism

of early abatement cost estimates, the definition of “cost per ton of CO2” still varies within

and across papers.6 In order to compare across cost-per-ton definitions and assess the relative

merits of the MVPF versus cost-per-ton metrics, we construct all three measures of cost per

ton for each of the 96 policies in our sample. Our analysis in Section 8 reveals substantial

variation in the cost per ton of each policy depending on the definition employed. For example,

the cost per ton of appliance subsidies ranges from -$2 to $474 across the three measures. The

resource cost per ton is -$2 because the long-run energy savings are estimated to o↵set the

higher upfront cost of the energy e�cient appliance. By contrast, the government cost per ton

is $474 because subsidies lead to a large number of inframarginal transfers – money provided

to individuals who would have purchased the energy-e�cient appliances anyway.

Even if one were to consistently apply a single definition of cost per ton when comparing

policies, the conclusions reached when using these metrics are not generally consistent with the

primary findings from our MVPF analysis. We can see this when examining each definition

of cost per ton in turn. From a resource cost perspective, appliance rebates have negative

costs, -$2, indicating they are far more cost-e↵ective than vehicle retirement or hybrid vehicle

subsidies, which have very high resource costs per ton at $1,007 and $577 respectively. When

comparing their MVPFs, however, their values are essentially indistinguishable: 1.16 versus

1.05 and 1.01.7 From a government cost perspective, the relative ordering of policies is broadly

consistent with the ordering generated by the MVPF. However, we find high MVPFs even when

the government cost per ton exceeds the SCC. In the case of electric vehicle (EV) subsidies, for

example, at an SCC of $193 per ton, we find an MVPF of 1.45 but a government cost per ton

of $1,356. This is driven by the omission of substantial benefits in the government cost-per-ton

calculation, including inframarginal transfer benefits and consumer surplus from learning by

doing. From a social cost perspective, we again find divergences from the MVPF ordering of

policies. For example, a core finding of our work is that the MVPF of wind subsidies and

residential solar subsidies exceed that of EV subsidies (5.87 and 3.86 versus 1.45). This is the

exact opposite of the ordering we find when using the social cost per ton. EVs have the lowest

social cost per ton (-$415) followed by residential solar (-$67) and wind PTCs (-$32).

In short, each of the various cost-per-ton metrics do not easily capture the insights of the

MVPF approach. In Section 8, we show that this is primarily because of their treatment

(or omission) of key factors such as inframarginal benefits, inframarginal costs, and non-CO2

6For example, Table 2 of Gillingham & Stock (2018) compiles a set of cost-per-ton estimates from the existing
literature. The best policy listed is a behavioral nudge for reducing energy where the net resource cost of the
policy is reported. By contrast, residential solar panels appear to be one of the highest cost policies in their
sample, but the reported cost per ton measures the government cost of the policy.

7Patterns of this sort emerge repeatedly when comparing individual policies. For example, we construct a
resource cost per ton for energy-e�cient refrigerators studied in Datta & Gulati (2014) and find a value of -$512.
We do the same for wind PTCs in Hitaj (2013) and find a resource cost per ton of -$96. This relative ordering
is consistent with previous estimates from McKinsey & Company (Enkvist et al. 2007). Despite this, we find
the wind PTC has an MVPF that is much higher (4.63 versus 1.01).
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benefits.8

Our approach also relates to a large literature on benefit cost analysis and its applications.

A traditional approach would compare the benefits of a spending policy to the distortionary

cost of raising revenue through a change in a linear income tax rate (Stiglitz & Dasgupta 1971,

Atkinson & Stern 1974). The MVPF approach extends this approach by allowing researchers

to choose from a menu of policies to close the budget constraint.9 For example, if one treats

individuals paying the gas tax and wind PTC beneficiaries as having similar social welfare

weights, the comparison of an MVPF of 5.87 for wind PTCs to an MVPF of 0.67 for gas

taxes suggests every $1 of government revenue raised from a gas tax and spent on wind PTCs

generates $5.20 (=5.87-0.67) in net benefits to individuals in society.10,11

Finally, our paper also builds on a literature discussing the role of policy in areas where

learning by doing is present (Bollinger & Gillingham 2019, Way et al. 2022, Bistline et al.

2023). Our approach relates most closely to work by van Benthem et al. (2008), who develop

a dynamic model of learning by doing and use it to simulate the desirability of solar subsidies

in California. Section 2.3 below shares many of the same features as their model. Our primary

methodological contribution is to provide a su�cient statistics quantification of these learning-

by-doing e↵ects that can be directly incorporated into the MVPF framework. Moreover, we

provide conditions under which one can obtain a closed-form solution to the model, providing

a clear picture of how the results are determined by demand elasticities and the elasticity of

marginal costs with respect to cumulative production.

1.3 Roadmap

The rest of this paper proceeds as follows. Section 2 discusses the MVPF framework and

outlines how it can be used to examine the welfare e↵ects of policies impacting climate change.

Section 3 discusses our sample of policies and methods for harmonizing the measurement of

externalities and the valuation of those externalities. Sections 4, 5, and 6 discuss our results

8A modified version of the social cost per ton implemented by Fournel (2024) adjusts for the opportunity cost
of inframarginal transfers using a “marginal cost of public funds” adjustment. This approach, however, yields
measures that vary significantly even within the set of common assumptions about the e�ciency of income tax
policy. For example, we find a social cost per ton for EVs of -$259 when using a 10% adjustment and a positive
$260 when using a 50% adjustment. In contrast, the MVPF does not require researchers analyzing particular
environmental policies to take a stand on the e�ciency of the income tax system.

9The MVPF is a form of benefit-cost ratio in which all benefits to individuals are incorporated in the
numerator of the MVPF while all government costs are incorporated in the denominator. As shown in Section
2, the MVPF measures an implicit Lagrange multiplier on a government budget constraint when choosing
policies to maximize social welfare.

10When policies a↵ect di↵erent groups of beneficiaries, one can use the MVPF framework to transparently
express concerns over equity. Given two policies, policy 1 and policy 2, a decision-maker prefers a budget neutral
policy that spends more on policy 1 financed by raising revenue from policy 2 if and only if that decision-maker
prefers giving $MV PF1 to policy 1 beneficiaries rather than $MV PF2 to policy 2 beneficiaries.

11In this literature, papers also measure welfare e↵ects by constructing total surplus or net benefits. The
MVPF approach is closely connected, but by measuring the per-dollar e↵ect of spending, it facilitates compar-
isons across policies when the scale of such policies di↵er.
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for subsidy policies, nudge and marketing policies, and revenue-raising policies, respectively.12

Section 7 discusses our findings for a limited set of international subsidies. Section 8 contrasts

the MVPF with cost per ton measures, explaining how our main conclusions would di↵er had

we used those alternative welfare measures. Section 9 concludes.

2 Using the MVPF Approach for Policies A↵ecting Cli-

mate Change

We use the Marginal Value of Public Funds (MVPF) framework to examine the welfare impact

of a range of policies a↵ecting climate change. This section presents a formal modeling of

the MVPF framework, tailored to the context of environmental policy. We begin by using the

theory to illustrate how measures of willingness-to-pay and net cost to the government of policies

feed into normative statements about the desirability of policy changes. After presenting the

framework, we then consider an illustrative policy of a subsidy for a good that has a positive

environmental externality. We show how we measure the willingness-to-pay and net cost.

Relative to existing literature, the key methodological contribution of this section is the

derivation of a new su�cient statistics approach to incorporate learning-by-doing e↵ects when

examining the welfare consequences of subsidies. Section 2.3 below provides an overview of our

approach, and Appendix A provides proofs within a generalized model that is rich enough to

nest all of our policy applications.

2.1 Normative Framework

We consider a set of individuals indexed by i. This population contains all individuals globally,

including both current and future generations. We consider a decision-maker for a particular

country, which we refer to as the “government”, that seeks to maximize a social welfare function,

W =
X

i

 iui, (1)

which is a weighted sum of individual utilities with Pareto weights  i. Increasing individual i’s

utility by 1 “util” leads to a  i increase in social welfare, W . We allow (but do not require) the

government to place positive weight on individuals outside its jurisdiction. We do not specify

particular weights in our analysis, but rather, we construct statistics that help a decision-maker

apply their own weights when deciding whether to make a given policy change.

We wish to measure the welfare gain (or loss) from modifications to government policy using

the causal e↵ect of policy changes that have been rigorously evaluated using quasi-experimental

12The Online Appendix provides a detailed description of the MVPF construction for each policy in our
sample.

7

https://policyimpacts.org/mvpf-climate-policy-appendix/


or experimental methods. These methods measure the causal e↵ects of policy changes by clearly

articulating an ‘orthogonality’ condition that isolates the causal e↵ect of a policy change holding

all else equal (e.g., the e↵ect of a tax or subsidy on behavior). To capture this, let p 2 R index

a policy change where p = 0 corresponds to the status quo world. For example, ⌧gas(p) = ⌧0+p

could correspond to a change in the tax rate on gasoline relative to the status quo, ⌧0.

To first order, individual i is willing to pay WTPi =
dui
dp

�i
for the policy change, where �i is

the Lagrange multiplier on their budget constraint.13 The total e↵ect of the policy change on

social welfare, W , can be expressed as
P

i ⌘iWTPi where ⌘i = �i i is the social marginal utility

of income of individual i (providing individual i with $1 at time t = 0 leads to an ⌘i increase

in W ).

Next we consider the impact of the policy on the government’s budget. We can then write

the welfare impact per dollar spent on the policy in a manner that separates the normative

and positive aspects of the decision. Every dollar of net spending on the policy increases social

welfare by
dW
dp
dB
dp

= ⌘̄MV PF, (2)

where

MV PF =

P
i WTPi

dB/dp
(3)

is the marginal value of public funds of the policy, which is the ratio of the sum of each

individual’s willingness-to-pay relative to the net cost to the government, and

⌘̄ =

P
i WTPi⌘iP
i WTPi

(4)

is the incidence-weighted average social marginal utility of income of the policy beneficiaries,

which depends on one’s social preferences and the incidence of the policy.14

One of the key advantages of the MVPF is that constructing an MVPF does not require

assumptions about how the budget constraint is closed for any given policy.15 Instead, the

MVPF framework can be used to construct budget-neutral policy experiments for the decision-

maker by comparing any two MVPFs. Let us consider, for example, two policies, 1 and 2. The

13Note that this measure represents the net benefits to individual i (i.e., monetized benefits minus the cost
of the policy to them). We discount the WTP for each person back to the time of policy implementation.

14To see this, note that

dW
dp
dB
dp

|p=0=

P
i ⌘iWTPi

dB
dp

=

P
i ⌘iWTPiP
i WTPi

P
i WTPi
dB
dp

which equals ⌘̄MV PF .
15In contrast, the marginal excess burden (MEB) approach closes the budget constraint through individual-

specific lump-sum transfers, thus requiring researchers to measure compensated as opposed to causal e↵ects of
a policy. The marginal cost of public funds (MCPF) approach envisions closing the budget constraint through
changes in the linear income tax and incorporating the resulting deadweight loss from this tax change (e.g.,
Stiglitz & Dasgupta (1971), Atkinson & Stern (1974), Feldstein (1999)).
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MVPF framework tells us that increased spending on policy 1 financed by raising revenue from

2 increases social welfare if and only if

⌘̄1MV PF 1 > ⌘̄2MV PF 2 (5)

where MV PF 1 =
P

i WTP 1
i

dB/dp1 is the marginal value of public funds of policy 1 (and similarly for

2). For example, if policy 1 has an MVPF of 1 and policy 2 has an MVPF of 2, then raising

revenue from reductions in spending on policy 1 to finance increased spending on policy 2 will

increase social welfare if and only if the government prefers $2 going to policy 1 beneficiaries

to $1 going to policy 2 beneficiaries. While reasonable people may disagree about the relative

value of giving benefits to policy 1 versus policy 2 beneficiaries, such disagreements do not lead

to di↵erences in the value of the MVPFs. Instead, the MVPF simply serves to characterize the

trade-o↵s induced across policies. In cases when welfare weights are the same for policy 1 and

policy 2 beneficiaries, the di↵erence between MV PF 1 and MV PF 2 reveals the welfare gain to

individuals in the economy per dollar spent on policy 1 using net revenue raised from policy 2.

While there is value in reporting a single MVPF estimate, it is important to note that

policies may have multiple groups of distinct beneficiaries. Measuring the incidence of the

policy on di↵erent groups helps to capture distributional concerns that may be of importance.

In these cases, it can be helpful to decompose the MVPF and report the WTP as a sum across

sub-groups with their own WTP and social welfare weights. We can write:

⌘̄MV PF =
X

g

⌘̄g
WTPg

dB/dp
(6)

where ⌘g =
P

i2g WTPi⌘iP
i2g WTPi

is the incidence-weighted average welfare weight of those in group g

and WTPg =
P

i2g WTPi is the willingness-to-pay for the policy by those in group g. Here,

MV PF =
P

g WTPg

dB/dp . The task of the researcher is to estimate the WTPg for these groups along

with the net cost to the government, dB/dp. The policy maker must choose the weights they

place on di↵erent members of society, ⌘g.

In the context of our analysis, we focus our e↵orts on a comprehensive and accurate char-

acterization of the net cost to the government of the policy, dG
dp , and the willingness-to-pay for

the various sub-groups impacted by each policy in our sample. In our empirical analysis below,

we often discuss the orderings of policies using their aggregate MVPF, but we emphasize that

di↵erent policies may have di↵erent distributional incidences that should be incorporated into

an ultimate decision (i.e., decision-makers should apply their desired weights). The aim of our

analysis is to provide as detailed a breakdown as possible to facilitate these decisions.
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2.2 Measuring WTP and Net Cost

Given a policy change that has been evaluated using experimental or quasi-experimental meth-

ods, how do we measure the net cost to the government and the willingness-to-pay for each

group of beneficiaries? We illustrate our approach with a simple example. Consider some good

x with an environmental externality. For example, x may be an electric vehicle or a gallon of

gasoline. Let V denote the monetized value of the environmental externality (or any external-

ity) resulting from additional consumption of x. Let p denote the price of x paid by consumers

and let ⌧ denote the current subsidy (or tax) on good x such that producers receive q = p+ ⌧ .

Now, consider a policy change that alters the tax or subsidy on good x. For some infinitesimal

increase in the subsidy d⌧ , the willingness-to-pay for the policy change is given by

WTP = xd⌧ + V dx (7)

Here, the first term is the monetary value of the subsidy (holding behavior fixed due to the

envelope theorem), and the second term is the WTP from the change in the environmental

externality.

Implicit in equation (7) are assumptions of perfect competition and full pass-through. We

relax both of these assumptions in our implementation. In the presence of market power, the

change in ⌧ may not equal the change in price experienced by the consumer. Some of the price

increase might be borne by the producer. Moreover, the change in consumption generated by

the policy, dx, can generate a first-order benefit to firms. If consumers switch between goods

with di↵erent levels of mark-ups, firms may have a willingness-to-pay for the consumption

change due the di↵erential mark-up they receive. We incorporate these e↵ects in our empirical

analysis but omit them from the notation here for simplicity.

The dx in equation (7) is the causal e↵ect of the policy change. Upon first inspection, it

might appear as though the value of dx can be calculated directly using “reduced form” evidence

on the e↵ect of the policy. A proper measure of dx, however, includes any “rebound” or broader

general equilibrium e↵ects that arise from the policy. These are not generally captured by most

reduced-form empirical designs and can increase or decrease the welfare impact of the policy.

For example, an EV subsidy may increase electricity demand. This can lead to slightly higher

energy prices and, thus, lower energy consumption even by those not receiving the subsidy.

This rebound e↵ect on energy demand needs to be included in order to accurately measure the

e↵ect of the policy. In Appendix D, we show how we are able to incorporate these rebound

e↵ects using estimates of the market supply and demand curves and discuss how we apply this

to account for the rebound created by upward-sloping local supply curves in the US electricity

markets.

Turning next to the cost to the government, the cost of the subsidy has two terms:

Cost = xd⌧ + ⌧dx (8)
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where the first term is the cost to the government of the subsidy change holding behavior, and

consequently x, fixed. The second term is the fiscal impact of the behavioral response to the

policy, ⌧dx. This is paid by the government but not valued by individuals due to the envelope

theorem.

The ratio of WTP to government costs yields the MVPF for a change in ⌧ :

MV PF =
xd⌧ + V dx

xd⌧ + ⌧dx
(9)

=
1 + V

p (�✏)
1 + ⌧

p (�✏)
(10)

where �✏ = dx
�d⌧

p
x = dx

dp
p
x is the percentage change in consumption of x in response to a 1%

increase in consumer price (i.e., ✏ is the price elasticity of demand). Here, the environmental

impact of the policy change is given by the elasticity, ✏, times the environmental externality of

the good relative to the price of the good, V
p . The fiscal externality is given by the elasticity, ✏,

times the tax rate relative to the price of the good ⌧
p .

16 A natural benchmark is the case where

⌧ = V . In this case, the government fully internalizes the externality with a Pigouvian tax or

subsidy, generating an MVPF of 1. When, as we often observe, the tax or subsidy diverges from

its Pigouvian level, that moves the MVPF away from 1. For example, the MVPF on a subsidy

can be very high if the per-dollar subsidy is well below the per-dollar externality benefit of the

good. In this sense, the MVPF measures the extent to which status quo policy deviates from

the optimal policy and quantifies the welfare gains of moving toward that optimum.

2.3 Learning by Doing

A common rationale for clean energy subsidies is that society can lower the future marginal cost

of new technologies by subsidizing their demand today (Acemoglu et al. 2012, Bistline et al.

2023). Industries, particularly those characterized by rapidly changing technologies, may learn

as the result of experience with production. These learning-by-doing gains mean that the cost

of production falls with the total production of a good. Subsidies that encourage production

today serve to bring down future costs by increasing total production. If the firms developing

these new technologies do not internalize these future benefits, then subsidies can be welfare

enhancing.

Existing evidence suggests that learning-by-doing e↵ects may be present in the production

of solar cells, wind turbines, and batteries. Appendix Figure 1 reproduces evidence from Way

et al. (2022) showing the relationship between the marginal cost per kW for wind and solar (and

per kWh of battery storage) plotted against cumulative production. Their analysis shows that

16In the presence of firm markups (e.g., due to market power), there are additional terms in this expression.
In the numerator, dx is multiplied by the firm markup net of taxes, and, in the denominator, dx is multiplied
by the corporate tax revenue from firm profits.
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a 1% increase in cumulative solar production is associated with a 0.319% reduction in price. For

wind and EV batteries, the associated price reductions are 0.194% and 0.421%, respectively.

If one believes that these patterns reflect causal learning-by-doing spillovers,17 to what extent

should that change their views about the welfare e↵ects of subsidies for those goods?

The contribution of this section is to provide a new su�cient statistics result that incorpo-

rates learning-by-doing e↵ects into the MVPF framework. Our approach relates to work by van

Benthem et al. (2008), who develop a dynamic model of learning by doing, and Bistline et al.

(2023), who incorporate learning by doing into their assessment of taxes and subsidies. We show

that when the marginal cost of production is an isoelastic function of cumulative production and

when demand is an isoelastic function of price, this leads to a second-order ordinary di↵erential

equation that can be solved to estimate society’s willingness-to-pay for the learning-by-doing

e↵ects. Theorem 1 derives a closed-form expression for this willingness-to-pay. It includes both

the benefits society gets from lower prices paid by consumers and the benefits society gets from

reducing future emissions due to earlier future purchases of the good. Appendix B provides a

formal derivation of these results along with a generalization to include imperfect competition

and firm markups, time-varying externalities, and cases where the learning curve only applies

to a subset of a product (e.g., batteries in EVs). Here, we present a simplified analysis that

highlights the core insights of the framework.

We return to our example of a subsidy for a good, x. In order to think about learning by

doing, we now bring the model into a continuous time environment, where time is indexed by

t � 0. We imagine the subsidy of interest is a short-term subsidy enacted at time t⇤. We wish to

incorporate the welfare benefits accruing in future periods, t > t⇤. Let x(t) denote consumption

of x at each time t and let X(t) =
R t

0 x(s)ds+X(0) denote cumulative production through time

t. Motivated by the historical evidence in Appendix Figure 1, suppose that the marginal cost

of production at each point in time is an isoelastic function of cumulative demand,

c(X(t)) = X(t)✓ (11)

where ✓ < 0 is the elasticity of marginal cost with respect to cumulative production. Suppose

also that the choice of x(t) at each point in time depends on the price with a constant price

elasticity of demand, ✏ < 018

x(t) = ap(t)✏ (12)

17The extent to which the curve represents learning spillovers has been debated (Nemet 2006, Nordhaus
2014b, Rubin et al. 2015). See Lafond et al. (2022) for an estimate of the causal impact of learning by doing
on military production. In the context of this paper, we take these learning-by-doing e↵ects as given and then
show the robustness of our results to the omission of learning-by-doing e↵ects. There is quasi-experimental work
that has found evidence of potential spillovers in solar production (Banares-Sanchez et al. 2023) and in wind
installations in California (Gillingham & Stock 2018). We supplement this in Appendix Table 1 with additional
descriptive evidence on this point. We show that the learning curves continue to hold even after controlling
for potentially confounding variables such as linear time trends and current production. This helps to rule out
contemporaneous supply shocks or historical trends unrelated to learning.

18In practice, our value of ✏ will come from our existing estimates on the causal e↵ect of a subsidy for x.
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Finally, we assume that there is perfect static competition at all points in time and no future

subsidies so that prices are set equal to marginal cost, p(t) = c(X(t)).

Learning by doing generates two types of externalities: a price externality and an environ-

mental externality. The price externality arises because an increase in production of x(t) today

(e.g., at time t = t⇤) will generate consumer surplus via a reduction in prices faced by future

customers (at time t > t⇤). Let dp(t) denote this impact on prices at each time t. The envelope

theorem implies that the WTP for the price decline at each time t is given by �dp(t)x(t), where

x(t) is the planned consumption at time t. In other words, the welfare gain is given by the

price reduction times the counterfactual path of consumption in the absence of the subsidy.19

The environmental externality arises because the price reduction caused by the subsidy will

increase future consumption of the good, dx(t), and, consequently, generate a positive environ-

mental externality. This externality is given by Vtdx(t), where we now introduce a t subscript

to allow the environmental externality to vary over time. For example, this allows the SCC to

increase or the cleanliness of the electrical grid to improve over time. The key to measuring

our two externality terms is that we need to know how much prices decline, dp(t), and how

much consumption increases, dx(t), in response to an increase in consumption of x today (e.g.,

at time t⇤). With those terms in hand, we can then integrate over all the future price benefits,

�dp(t)x(t), and environmental benefits, Vtdx(t), over time t > t⇤.

How can we use this setup to measure the future price and quantity impacts of a policy

that increases demand today? Our analysis relies on two key insights. First, we know that the

impact of a subsidy x(t) at some time, t⇤, will a↵ect future prices proportional to the amount

that it increases cumulative production. While this e↵ect can be mathematically complicated,

the use of an autonomous supply and demand system allows us to re-frame the problem: we

can think of the subsidy as moving us forward in time by some amount, dt. That shift in time

is proportional to the size of the subsidy and the magnitude of the demand response when the

subsidy is operating at time t⇤.

Moving forward in time lowers marginal costs at each point in time (and thus prices) by

19We assume learning by doing provides knowledge externalities to the entire market. It could be that learning
by doing occurs within firms and is fully internalized. In that latter case, a subsidy might have no learning-
by-doing price benefits for consumers. Moreover, learning-by-doing externalities are di↵erent from economies
of scale, which are about reducing the fixed costs of production. As Borenstein (2012) notes, this di↵erence
might have important implications for public policy. In our modeling, we provide an optimistic interpretation
of current subsidies lowering future costs through learning-by-doing externalities. In particular, we assume no
internal capture of learning-by-doing benefits and no economies of scale, although this assumption has been
questioned in the solar and wind industries (Nemet 2006, Söderholm & Sundqvist 2007). Such concerns would
dampen the magnitude of the true learning-by-doing benefits we estimate using our approach, but as we discuss
below, this would not a↵ect our core empirical lessons.
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dp(t), given by

dp(t) = c0(X(t))X 0(t)dt (13)

= c0(X(t))x(t)dt (14)

= ✓X(t)✓�1x(t)dt (15)

Also, moving forward in time leads to a change in consumption of the good given by dx(t) =

X 0(t)dt.

Our second insight is that our demand and cost equations imply that the future time path

of x(t) is the solution to a second-order autonomous ordinary di↵erential equation. To see

this, note that log(x(t)) = log(a) + ✏ log(p(t)) and log(c(t)) = log() + ✓ log(X(t)). Totally

di↵erentiating yields

d log(x(t)) = ✏d log(p(t)) (16)

= ✏d log(c(t)) (17)

= ✏✓d log(X(t)) (18)

(19)

Noting that X 0(t) = x(t) and the formula for the derivative of logs yields

X 00(t)

X 0(t)
= ✏✓

X 0(t)

X(t)
(20)

which is a second order autonomous ODE that we show has a closed-form solution. Combining

these two insights leads to the core result in Theorem 1.

Theorem 1. (Learning by Doing). Let the marginal cost be given by equation 11 and

demand be given by equation 12. Suppose prices are set at marginal cost in all periods. Then,

the MVPF of a subsidy at time t⇤ is given by

MV PF =
1 + V

p (�✏) +DP +DE

1 + ⌧
p (�✏)

(21)

where the price externality, DP, is given by

DP = ✓✏ (t⇤)�✓ (1+✏)
1�✏✓

Z 1

t⇤
e�⇢(t�t⇤)t�1+✓ 1+✏

1�✏✓ dt (22)

where

t⇤ =
Xinit

xinit(1� ✏✓)
(23)

is the normalized ratio of cumulative to flow production at the time the subsidy is enacted, and
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the environmental externality is given by

DE = � ✏2✓

(1� ✏✓)c(X (t⇤))
t⇤�

✏✓
1�✏✓

Z 1

t⇤
e�⇢(t�t⇤)t

2✏✓�1
1�✏✓ Vtdt (24)

Proof: See Appendix B.

This theorem provides an MVPF formula that allows for the explicit incorporation of

learning-by-doing externalities.20 This di↵ers from our static expression for the MVPF via

the inclusion of dynamic externalities (DE) and dynamic price e↵ects (DP). Calculating these

dynamic terms requires four inputs: (1) the elasticity of demand with respect to price, ✏, (2) the

elasticity of marginal cost with respect to cumulative production, ✓, (3) cumulative production

at the time of the subsidy X(t⇤), and (4) product cost at the time the subsidy, c(X(t⇤)). ✏ and

c(X(t⇤)) are generally necessary for the construction of the static MVPF, indicating that only

two new terms, ✓ and X(t⇤), are needed to construct these learning-by-doing welfare estimates.

We use estimates of historical sales numbers to construct X(t⇤) and use estimates from Way

et al. (2022) of the relationship between cumulative production and price to construct our cost

curve parameter ✓. The price elasticities, ✏, come directly from each paper in our sample.

In our analysis below, we incorporate these learning-by-doing e↵ects into our estimates for

the MVPFs of subsidies for wind, solar, and electric and hybrid vehicles (and the indirect e↵ects

of gasoline taxes on EVs).

3 Data and Sample

3.1 Sample

We analyze the welfare impact of 96 US spending and revenue-raising policies that a↵ect

greenhouse gas emissions and have been rigorously evaluated in the last 25 years using quasi-

experimental or experimental methods. These policies span subsidies, revenue raisers, and

nudges. We form our sample from the full set of articles in 18 major journals in economics

from January 1999 through December 2023,21 and supplement that with a “snowball” sam-

20Appendix B provides the suitable generalization of the learning-by-doing analysis to the case when firms
have markups over marginal cost.

21Our sample of journals includes (in alphabetic order) the American Economic Journals (Applied, Economic
Policy, Micro, and Macro), the American Economic Review, the American Journal of Agricultural Economics,
Econometrica, the Economic Journal, the Journal of Agricultural Economics, the Journal of Association of En-
vironmental and Resource Economists, the Journal of Environmental Economics and Management, the Journal
of European Economic Association, the Journal of Political Economy, the Journal of Public Economics, the
Quarterly Journal of Economics, the Review of Economic Studies, the Review of Economic Statistics, and the
Review of Environmental Economics and Policy. We also include any National Bureau of Economic Research
Working Papers from the “Environment and Energy Economics” and “Public Economics” programs published
since 2018.
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ple of articles cited within these papers.22 Within the category of subsidies, we analyze seven

sub-categories: wind production tax credits, rooftop solar subsidies, electric vehicle subsidies,

hybrid vehicle subsidies, vehicle buyback rebates, energy e�ciency subsidies, and weatheriza-

tion subsidies. Within the category of revenue raisers, we analyze four sub-categories: gasoline

taxes, other fuel taxes (such as jet fuel and diesel taxes), other revenue raisers (including the

California Alternative Rates for Energy), and cap-and-trade policies. We also supplement this

sample with a selected set of international policies that have been evaluated in the past ten

years.23

Table 1 presents a list of all of our policies. For each policy, we list the category, sub-

category, year(s) of implementation, location of implementation, and the paper(s) estimating its

causal e↵ects. In certain cases, we observe some, but not all, of the relevant inputs necessary to

construct an MVPF. In those instances, we provide an MVPF for the policy (under assumptions

outlined in each policy’s appendix) but only include it in our “extended” sample (denoted by

“*” in Table 1). Extended sample policies are excluded from any category averages reported in

the paper.

Publication Bias While we attempted to construct a comprehensive sample of the literature,

we are subject to potential biases arising from the fact that statistically significant studies are

more likely to be published. In Appendix F, we present evidence of modest publication bias

in the environmental economics literature: We find that estimates are roughly two times more

likely to be published if they cross a t-stat of around 2. In order to assess how this could impact

our broad conclusions, we use the methods of Andrews & Kasy (2019) to correct for publication

bias. We show this leaves our estimates largely unchanged and our conclusions una↵ected.

In-Context versus Baseline MVPFs For each policy change in our sample, we form two

conceptually distinct MVPF estimates. First, we construct a measure of the MVPF in the

context (year and location) in which the policy change occurred. For example, if we have

estimates from an EV subsidy program in California in 2014, we use measures of the CA electric

grid in 2014 to quantify the externalities due to reductions in gasoline usage o↵set by increased

electricity use. We use the CA gasoline tax rate in 2014 to quantify the lost state government

revenue from reduced gas purchases. These “in-context” MVPFs measure the welfare impact

of the policy as it was enacted.

Second, we construct an MVPF for each policy assuming it was implemented nationally in

the US in 2020. We do so by assuming the original elasticity estimated in each paper would also

determine the behavioral response to the federal policy in 2020. We then use those estimated

elasticities along with 2020 measures of the tax rates and values of externalities to measure

22We also form an ”extended sample” of MVPF estimates for policies where we are unable to construct key
components of the MVPF, and we exclude these policies from each category average measure discussed below.

23We also include several analyses of regulatory policies (CAFE standards and renewable portfolio standards)
and show how to nest these into our framework. See Appendix G.
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the environmental and fiscal externalities from the policy. This approach harmonizes welfare

comparisons across policies holding the contextual environment fixed. We refer to this as our

“baseline” MVPF.

In Section 4, we discuss how the harmonization of our estimates a↵ects our results. Our

high-level findings do not vary between our baseline and in-context MVPFs. That said, there

are some cases where the distinction matters. For example, vehicle emissions were higher in

previous decades, increasing the in-context MVPF for vehicle retirement policies implemented

in the earliest years in our sample.

3.2 Valuing Environmental Externalities

We seek to apply a consistent and comprehensive method for valuing the range of externali-

ties generated from each policy. We discuss these valuations briefly here and refer readers to

Appendix C for a detailed discussion of our approach.

Greenhouse Gas Emissions CO2 is a key greenhouse gas contributing to climate change.

Our baseline estimates place a monetary cost on CO2 emissions following the Environmental

Protection Agency’s 2023 guidance regarding the social cost of carbon at a 2% discount rate

(EPA 2023c).24 This model implies a social cost of carbon (SCC) of $193 per ton for emissions

in 2020 and is increasing over time.25 We also show the robustness of our results to models

with 2020 SCCs of $76 and $337.26

We use the time path of the SCC to measure the environmental externality from each

policy. For example, a subsidy that leads to the installation of a wind turbine in 2020 will

reduce emissions from 2020 through 2045. We use the year-specific SCC to value the associated

externalities. For consistency, we apply the 2% discount rate to translate costs and benefits

into 2020 present-value dollars.

In addition to CO2, we also incorporate costs from other greenhouse gases where available,

including methane (CH4), nitrous oxide (N2O), carbon monoxide (CO), and hydrocarbons

(HC). For the baseline scenario corresponding to the $193 SCC in 2020, the social costs of

methane and nitrous oxide in 2020 are $1,648 and $54,139 in 2020, respectively (EPA 2023c).

For carbon monoxide and hydrocarbons, we use global warming potential (GWP) factors from

Masnadi et al. (2018) of 2.65 and 4.5 to convert these into CO2 equivalent units, CO2e, and

then apply our baseline social cost of carbon.

There are three key things to note about our approach to quantifying the value of reducing

24This is the typical discount rate used by environmental economists (Nesje et al. 2023).
25This SCC of $193 in 2020 aligns closely with several other estimates from integrated assessment models

(IAMs), such as the GIVE model in Rennert et al. (2022).
26The $76 (calculated with a 2.5% discount rate) SCC comes from Interagency Working Group (2021) and

represents the largest SCC estimate for 2020 presented in earlier guidelines. The $337 (calculated with a 1.5%
discount rate) represents the largest SCC for 2020 reported in the EPA’s most recent guidelines (EPA 2023c).

17



greenhouse gas emissions. First, we require the SCC to be the sum of individuals’ private

willingnesses to pay for reduced CO2 emissions. This is consistent with approach taken in typical

Integrated Assessment Models (IAMs). RICE and DICE focus on GDP or GDP-equivalent

damages, which correspond to private measures of damages. Other IAMs, such as the GIVE

model, infer an SCC from VSL estimates and use private VSLs that are not adjusted with

welfare weights. Again, these models generate an SCC that corresponds to a private willingness

to pay. By contrast, some have proposed equity-weighted social costs of carbon that adjust for

welfare weights when forming the SCC (Prest et al. 2024). While the MVPF framework allows

for equity weights, such weights are most appropriately excluded from the MVPF and instead

applied ex-post when making policy comparisons, as in equation (5).

Second, the SCC embeds within it a real discount rate (2% in our baseline case) that

captures the real cost to society of moving resources across periods. The application of this

discount rate normalizes the willingness to pay in units of 2020 dollars for all comparisons, even

across future generations. This discount rate does not, however, make any claims about the

decision-maker’s preferences across time. If a decision-maker places greater (or lower) weight

on future generations, they will simply place a higher (lower) social welfare weight on those

future beneficiaries. In the context of equation (5), this represents a modification of ⌘̄ to reflect

weights on future generations.

Third, our MVPF calculations rely on estimates of the incidence of the social cost of carbon.

In particular, the MVPF approach separates the willingness to pay for a policy from its net cost

to the government (the US government, in our case). Calculating these components, therefore,

requires identifying the incidence of the SCC on the US government’s budget. To account for

this in our baseline specification, we assume an incidence that follows the US share of GDP in

the global economy of 15%, which corresponds to the assumption made in many models such

as DICE (Nordhaus 1993).27 Within this 15%, we assume in our baseline specification that

50% of this valuation is the result of changes in productivity that have direct e↵ects on tax

revenue (e.g., due to changes in agricultural productivity).28 We assume a tax rate of 25.54%

as this is the 2020 tax-to-GDP ratio for the US (OECD 2021), which captures both corporate

and individual (labor income) taxes. These numbers imply that 13% of the incidence from

changes in carbon emissions falls directly on US residents while just under 2% falls on the US

government as changes in tax revenue. As it turns out, accounting for this fiscal externality

has no bearing on any of our results for domestic subsidies, nudges, or revenue raisers.29 It

27Other IAMs explicitly measure the distributional incidence of global damages. For example, Nordhaus
(2014a, 2017) notes that the three models from the Interagency Working Group (Interagency Working Group
2021) on the social cost of carbon report US incidences of 10% for RICE2010 (Nordhaus 2010), 17% for
FUND2013 (Antho↵ & Tol 2010, 2013b,a), and 7% for PAGE2011 (Hope 2006, 2008).

28We note that many models that agree on the level of the social cost of carbon arrive at their headline
number with di↵erent underlying components in their calculations. They di↵er in their split between market
and non-market damages (i.e., impacts on productivity as measured via change in GDP versus valuations of
mortality using a VSL.)

29The share of the incidence falling on the US Treasury is su�ciently small that modifications in our incidence
assumptions do not impact our findings. Using alternate values for the geographic incidence of the SCC or the
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does, however, significantly a↵ect some conclusions regarding international policies where the

US-specific fiscal externality can get quite large. In that section, we analyze the robustness of

our conclusions to those incidence assumptions.

Local Pollutants While greenhouse gases yield global externalities, other pollutants primar-

ily a↵ect individuals residing near the source of emissions. These local pollutants generally

produce negative e↵ects via their impact on individual health. In order to value these exter-

nalities, we use the AP3 integrated assessment model (Tschofen et al. 2019), which measures

the marginal health impacts of additional emission of NH3, HC, NOX , PM2.5, and SO2 in

each county in the US.30 We monetize those health impacts using a VSL of $9.5 million (EPA

2010).31

From Causal E↵ects to Externalities For each policy in our analysis, we translate its

causal e↵ect (e.g., purchases of EVs in response to subsidies) into the externalities it generates

(e.g., the various pollutants discussed above) using a consistent approach across all policies.

For example, consider policies that alter electricity usage. Some of these policies, such as

residential solar subsidies, might generate new sources of electricity. Other policies, such as

rebates for energy-e�cient appliances, might reduce existing electricity usage. In order to

identify the change in emissions from changes in electricity generation, we use estimates from

EPA’s Avoided Emissions and Generation Tool (AVERT) (EPA 2024b). This provides year-

and location-specific estimates of marginal emissions rates per kWh of electricity generated.

We also consider a class of policies that a↵ect vehicle usage and gasoline consumption. In those

cases, we estimate the change in gallons of gasoline used relative to a counterfactual vehicle. We

measure the total CO2 associated both with the upstream production of gasoline and with its

combustion. We draw upon estimates from National Emissions Inventory, the Inventory of U.S.

Greenhouse Gas Emissions and Sinks, as well as the EIA’s reported CO2 emissions coe�cients.

We describe these estimates in detail in Appendix C.

Appendix Figure 2 presents the environmental damages from driving and using electricity

over time. Panel A presents the dollar value of the local and global externalities generated

per gallon of gasoline used by the average light-duty, gasoline-powered vehicle. It shows that

average non-CO2 emissions have declined over the last several decades, and there has been a

shift in the share of total pollution externalities driven by CO2 emissions.32 Panel B reports

split between market and non-market damages does not impact any of our primary findings.
30To measure the local pollution externality from increased electricity usage, we take county-level damages

estimated in AP3 and weight by fuel consumed for electricity generation. To measure the local pollution
externality from increased gasoline vehicle usage we weight by county-level total vehicle miles traveled.

31Unlike our estimates for the damages of global pollutants, we do not vary these marginal damages over
time. This is because the damage function associated with marginal carbon emissions is time-varying, but the
health impacts of local pollutants do not follow a clear time path.

32The graph also includes the impact of other vehicle externalities – congestion and accidents. For vehicle
accidents, we use results from Jacobsen 2013b, who estimates that a 1% reduction in vehicle miles traveled leads
to 263 fewer fatalities in the US. We again apply a VSL of $9.5 million to yield a $0.08 per-mile externality. For
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average emissions from the electric grid over time. It shows a gradual reduction in emissions

as more clean energy (and lower-carbon energy) has come online. This is supplemented by

evidence in Appendix Figure 3, which shows the geographic variation across the US in emission

externalities, as measured in 2020. The Northeast and California have the cleanest grids (lowest

environmental externality per mWh) relative to the Midwest, which has the dirtiest electric grid.

We discuss below how this leads to heterogeneity in the welfare impacts of policies that are

targeted to di↵erent regions of the US.

4 Subsidies

The next four sections of the paper present our results for the MVPFs of subsidies, marketing

and nudges, revenue raisers, and international policies. We begin with subsidies and a detailed

description of the way in which we construct MVPF estimates for EV subsidies. We choose this

example because it utilizes nearly all of the machinery we develop to construct environmental

MVPFs. We then provide shorter descriptions for each of the remaining subsidy policies across

each of our sub-categories. (See the Online Appendix for a detailed construction of each MVPF

in our sample.) Finally, we compare MVPFs across sub-categories, identifying the types of

policies that produce the highest MVPFs.

Subsidies for Electric Vehicles Over the past 15 years, many US states and the federal

government have o↵ered a range of subsidies to encourage the purchase of electric vehicles. We

draw upon three papers measuring the response of EV purchases to federal or state subsidies,

beginning with an analysis of the California Enhanced Fleet Modernization Program (EFMP)

studied by Muehlegger & Rapson (2022). The EFMP subsidized EV purchases, varying the

availability and the size of the subsidy based on each household’s income and the zip code in

which they resided. Muehlegger & Rapson (2022) use this variation to estimate that roughly

85 percent of the subsidy was passed through to consumers while 15% was captured by dealers

via higher prices. They also estimate that a one percent decrease in the price of EVs led to a

2.1 percent increase in EV purchases.

We use these estimates to construct baseline and in-context MVPFs for the subsidy. We

focus our discussion here on the baseline MVPF, which takes the estimated elasticity of -2.1

and considers the welfare e↵ect of a national subsidy change implemented in 2020.33

Figure 1 presents the components of the WTP and net cost estimates used in the construc-

tion of the MVPF. All components are normalized by the mechanical cost of the subsidy change

(i.e., the cost if individuals did not change their behavior). By construction, individuals are

willing to pay $1 per $1 in mechanical subsidy cost. The pass-through rate on the subsidy

congestion due to light-duty vehicles, we take an average of externality measures from Parry & Small (2005),
Parry et al. (2014), and Couture et al. (2018) to yield an externality of $0.03 per mile.

33Appendix Table 2 presents the results for the in-context MVPF.
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means $0.85 flows to those purchasing vehicles and $0.15 flows to the owners of CA dealerships

that sell EVs.

The next bars in Figure 1 report the environmental externalities associated with marginal

EV purchases. We begin by estimating the change in externalities from reducing the usage of

internal combustion engine (ICE) vehicles as individuals purchase EVs. We use estimates from

Holland et al. (2016) to calculate the fuel economy of the counterfactual car that a marginal EV

customer would have purchased. We find that EVs displace a cleaner-than-average new light-

duty car.34 We then combine this counterfactual fuel economy (41.2 MPG) with an estimate

of the per-gallon externalities associated with gasoline. This includes both the global damages

from CO2 emitted as well as the local damages from NOX , PM2.5, HC, CO, SO2, and NH3.

We measure these damages over an average 17-year lifespan of the vehicle (Greene & Leard

2023). We also use estimates from Zhao et al. (2023) to account for the fact that EV purchasers

tend to drive their cars fewer miles than the average purchaser of a gas powered vehicle.35 Taken

together, the local and global pieces provide the lifetime environmental benefits from not driving

the counterfactual gas-powered vehicle. This calculation leads to a WTP of $0.17 from global

pollutants and $0.02 from local pollutants, for a total benefit of $0.19 from the reduced gasoline

consumption induced by the subsidy.

While the decrease in gasoline consumption yields environmental benefits, these e↵ects are

partially o↵set by the environmental damages from increased use of electricity. We incorporate

the emissions from additional electricity usage over the lifespan of the EV using emissions

estimates from the EPA’s Avoided Emissions and Generation Tool, AVERT (EPA 2024b).36

Combining the change in emissions with our valuations of those externalities, we find that the

$1 subsidy results in $0.10 in global damages stemming from electricity usage and $0.02 in

local damages. This yields a total welfare cost of $0.12. When combined with the damages

avoided from gas-powered cars, society is willing to pay $0.07 for the net global benefit and

approximately $0 for the net local benefit.

Some of the estimated increases in electricity usage from EVs could be o↵set through in-

creases in the prices of electricity that drive down usage – i.e. a “rebound e↵ect”. To account

for this, we use estimates of the demand and supply elasticity for electricity. Following the De-

partment of Interior’s approach in their MarketSim model, we use a demand elasticity of -0.19

and a supply elasticity of 0.78 (DOI 2021). Combining these estimates implies that roughly

20% of the electricity demand is o↵set by reduced demand due to higher electricity prices.37

34Holland et al. (2016) estimate the counterfactual ICE vehicle purchased by EV buyers in 2013–2015. We
take the percentage increase in MPG relative to the MPG of new cars in 2014 and apply that to the new car
MPG figure in 2020. Below, we explore the robustness of our results to this particular MPG assumption and
show it does not meaningfully impact our results.

35Zhao et al. (2023) show that the average EVs’ vehicle miles traveled is roughly 61% of the average gas-
powered car. This estimate is very similar to those in Davis (2019) and Burlig et al. (2021).

36We project future grid emissions using the mid-range 2023-2050 forecast from the Princeton REPEAT
Project (Jenkins & Mayfield 2023) in combination with estimates from the AVERT model that translate com-
bustion shares into externalities.

37We do not incorporate a rebound e↵ect for gasoline because we assume that the gasoline price does not
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This suggests that society is willing to pay an additional $0.02 for the global benefits (and less

than $0.01 for the local benefits) created by the rebound e↵ect. Summing the environmental

benefits yields a total of $0.09.38

In addition to environmental externalities from charging the EV, we also account for the

fact that the upstream production of EVs is more carbon-intensive than the production of ICE

vehicles. This is due to the nature of the battery production process. We incorporate estimates

from Winjobi et al. (2022) that suggest that battery production releases 0.06 tons of CO2 per

kWh. This suggests the average EV imposes a global externality from battery production of

$838.34 per EV, leading to an externality of -$0.03 per dollar of EV subsidy. This rounds to a

total environmental externality of $0.07 per dollar of EV subsidy.

In the case of EVs, there could also be learning-by-doing externalities in battery production.

Way et al. (2022) estimate that a 1% increase in battery production leads to a reduction

in battery costs of 0.42% (✓ = �0.42). Following the approach outlined in Section 2.3, we

incorporate the impact of learning by doing into the MVPF of EV subsidies. Using the demand

elasticity of ✏ = �2.1 and discounting future benefits at a 2% discount rate, the increased

future demand for EVs yields environmental benefits of $0.04 per dollar of the mechanical

subsidy (DE in Theorem 1). In addition to the environmental benefits, the e↵ect of learning

by doing on future prices creates a benefit of $0.31 to future purchasers (DP in Theorem 1).39

Taken together, the learning-by-doing e↵ects increase the value of the subsidy by $0.35 per

dollar of EV subsidy.

It is worth noting that the inclusion of these $0.35 in learning-by-doing benefits relies on

the assumptions that i) the relationship between cumulative production and price is causal

and ii) that these benefits are not internalized by firms through the patent system or other

means. If the price declines were not causal and/or the e↵ects are internalized by firms, the

$0.35 should not be included in the MVPF. Throughout, we present results with and without

learning-by-doing e↵ects so that readers can view the results for their preferred specification,

based on their judgment of the learning by doing evidence.

The last benefit we consider is the impact of the policy change on the profits of gasoline

and electricity producers. Our estimates suggest a marginal EV purchase in 2020 would reduce

gasoline consumption by 2,857 gallons over the lifetime of the vehicle. We account for producer

profits using an average markup per gallon of gas of $0.61 per gallon, or 27% of the 2020 retail

meaningfully change in response to the demand shock induced by EV purchases.
38Due to the envelope theorem, the change in electricity consumption from the rebound e↵ect does not

generate private welfare costs. Only the externalities that are not internalized matter for the total willingness
to pay in the economy. In addition to the environmental externalities, the markup in the electricity market also
generates a small additional externality on firm profits, which is incorporated into the firm profit numbers that
we report.

39These learning by doing e↵ects only apply to battery production, rather than than the production of the
entire vehicle. Batteries made up only roughly 25% of the cost of EVs in 2020, muting the net impact of learning
by doing on future EV prices. Appendix B discusses how we account for this dynamic in learning by doing. We
also show that when only a fraction of the costs are subject to learning by doing, the value of these externalities
falls more rapidly over time.
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price. This lies above the economy-wide average markup of 8% (De Loecker et al. 2020), leading

to a decline in overall producer profits as consumers shift away from gasoline consumption to

other goods.40 Applying a 21% e↵ective corporate tax rate, we calculate post-tax lost producer

profits are equal to $0.04 per dollar of the subsidy.41 By contrast, electricity suppliers benefit

from increased electricity consumption. Electric utilities are a regulated industry with natural

monopolies that sell electricity at a markup. We estimate this markup to be 12.9% in excess

of the 8% economy-wide markup. While some of these profits flow directly to the government

as 28% of utilities are publicly owned, private utilities also have a willingness to pay for their

increase in after-tax profits. We estimate this WTP to be $0.01 per $1 of subsidy.

The numerator of the MVPF is the sum of these components. Figure 1 shows these yield

a total WTP of $1.38 in benefits per mechanical dollar of spending. The figure also illustrates

the incidence of the subsidy: Roughly 95% of the benefits of EV subsidies flow to those buy-

ing and selling EVs, while 5% flow to current and future generations through reductions in

environmental externalities.

Next, we calculate the denominator of the MVPF, which is net cost of the subsidy to the

government. Each of these components is reported in Figure 1. We begin with the mechan-

ical cost of the subsidy, which is $1 by construction. We then consider the fiscal externality

induced by pre-existing subsidies. When the subsidy causes an EV purchase, this generates an

additional government cost equal to the pre-existing subsidy level. In 2020, federal credits for

EVs had expired for most companies, such as Tesla, and so the average federal subsidy was just

$42.98. Meanwhile, the average state subsidy was $604.27. The existence of these pre-existing

subsidies means that the increase in EV purchases cost state governments $0.02 and the federal

government $0.001 per each dollar of mechanical subsidy. (We obtain these numbers using

equation 9 and multiplying the change in EV demand by the size of the pre-existing subsidy as

a fraction of the total price of the vehicle).

In the next step, we consider the impact of the policy on tax revenue collected. The reduced

gasoline consumption leads to a loss in gas tax revenue for the government of $0.04 for every $1
in subsidy. It also causes a reduction in corporate tax revenue of $0.01 per dollar of subsidy.42

Finally, we incorporate a positive impact on the US government’s budget due to reductions

in climate damages. According to a wide class of IAMs, the SCC is driven by a combination

of health and productivity e↵ects. These productivity e↵ects can have a direct e↵ect on US

government revenue. In our baseline specification, we assume that half of the SCC is due to

productivity e↵ects and that 15% falls on the US economy (proportional to its share of global

40Appendix C.4.5 relates these gasoline producers’ markups to the producer profit rates reported in
(De Loecker et al. 2020).

41We obtain the corporate tax rate from Watson (2022). We also use that foregone tax rate estimate to adjust
the net cost of the policy. This tax rate does not vary over time. In 2020, the pre-tax markup on gasoline was
$0.27 per dollar spent on gas, or $0.21 per dollar spent on gas after adjusting for corporate taxes.

42While the policy increases utility profits, it also generate losses for gasoline producers. The sum of these
two is a net decrease in government revenue.
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GDP). Applying a 25.5% tax rate to these productivity gains yields a fiscal externality equal

to $0.003 for every $1 in subsidies. These “climate fiscal externality” e↵ects are quite small for

all domestic policies in our sample, but we return to them in Section 7 when we analyze the

MVPFs of international policies.

Adding these costs together, we estimate a net cost of $1.07 for every $1 in mechanical

subsidy costs. When we take the ratio of the willingness-to-pay and the net cost, we arrive at

a baseline MVPF of 1.30. The MVPF of 1.30 means that a $1 increase in a 2020 subsidy for

EVs would have led to $1.30 in benefits for members of society.

This baseline MVPF considers the welfare impact of a marginal change in EV subsidies

relative to their 2020 levels. We can also use the framework to assess larger (non-marginal)

policy changes. In 2022, for example, federal credits were increased to $7,500 as part of the 2022
Inflation Reduction Act. Appendix Figure 4 illustrates the MVPF of a non-marginal policy

that increases the total subsidy level from $647 to $8,104 in 2020. The first dollar of the subsidy

has an MVPF of 1.30. We can similarly construct the MVPF of each marginal dollar of subsidy

expansion.43 As the subsidy increases, the MVPFs fall slightly. This is because the fiscal

externalities are increasing in the size of the pre-existing subsidy. The MVPF on the 7500th

dollar is 1.02.44 Integrating over all the marginal policy changes for subsidy levels between $647
and $8,104 yields an average (non-marginal) MVPF of 1.15. The non-marginal value of 1.15

looks relatively similar to our baseline first dollar MVPF estimate of 1.30, a pattern we see

consistently in our evaluation of non-marginal subsidy changes.

In estimating the welfare e↵ects of EV subsidies, we consider two other policy changes

studied in the literature. Clinton & Steinberg (2019) study variation in subsidy generosity over

states across time, finding an elasticity of demand with respect to price of -2.93. Li et al. (2017)

use variation in the federal credit over time to measure EV demand, yielding a price elasticity

of demand of -2.61. The estimated elasticities from these two papers lead to MVPFs of 1.56

and 1.47 in our baseline specification (with the larger MVPF driven by the stronger elasticity).

In order to draw lessons from these MVPF estimates, it is helpful to pool them together

and form a category average. Following Hendren & Sprung-Keyser (2020), we imagine the

government spends $1 in initial program costs, splitting the programmatic expenditures evenly

across the three EV policies. We construct an average WTP and average net cost across these

policies and take the ratio to form a category average MVPF. This leads to an estimated

baseline MVPF of 1.45 for EV subsidies.

The MVPF is not much above 1 because the cost of inframarginal transfers is large. Inducing

a new EV purchase costs the government roughly $30,00045, much larger than the environmental

43In this calculation, we assume the price elasticity of demand remains constant as the subsidy increases. We
find similar results under alternative assumptions such as a constant semi-elasticity of demand.

44In principle, it is possible for the MVPF to increase with subsidy size. This occurs if V/p rises faster than
the fiscal externality (e.g., ⌧/p). This is possible because p is inclusive of the subsidy.

45EV prices in 2020 were approximately $54,000. The product of the price elasticity and pass-through rate
from Muehlegger & Rapson (2022) is -1.78, implying a payment of approximately $30,000 per induced purchase.
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and learning-by-doing benefits of the subsidy.

One of the key advantages of our harmonized approach to measuring MVPFs is that we can

explore the e↵ect of varying input assumptions. For example, we can adjust our assumptions

regarding the MPG of counterfactual ICE vehicles or the VMT of EVs. If we assume that EVs

replace an average new car, rather than a more-e�cient-than-average new car, the category

average MVPF rises from 1.45 to 1.61. If we assume that the VMT of an EV is equal to that of

an average car, rather than the lower VMT figures estimated in the literature, the MVPF rises

from 1.49 to 1.62. The MVPF also rises from our baseline 1.45 to 1.53 if one assumes the EVs

are charged using a grid as clean as California’s. Switching to an SCC of $76 and associated

discount rate of 2.5% yields a baseline MVPF of 1.33. Increasing the SCC to $337 with a

discount rate of 1.5% yields a baseline MVPF of 1.57. As noted above, the learning-by-doing

benefits play a key role in driving the MVPF estimates above 1. The MVPF falls to 0.96 if

learning-by-doing e↵ects are excluded. Ultimately, across our various alternative specifications,

the MVPFs of EV subsidies fall in a range between 1 and 1.7.

Wind Subsidies We next examine the welfare consequences of production tax credits (PTCs)

that encourage the production of wind energy. These subsidies pay producers a fixed payment

per kilowatt hour of production of clean energy, typically for ten years after installation. We

draw upon three papers estimating the elasticity of wind turbine investment with respect to

these production tax credits in the US: Hitaj (2013), Metcalf (2010), and Shrimali et al. (2015).

We also supplement these results with six elasticity estimates from papers studying the impact

of variation in feed-in-tari↵ rates in Europe.46

We begin by using the results in Hitaj (2013), which uses local variation in wind production

incentives between 1998 and 2007 to estimate impacts on wind installation. The estimates

indicate that a one percent decrease in the cost of wind electricity generation leads to a 1.13

percent increase in wind turbine installations.

Figure 2 Panel A presents the components of WTP and net government cost using the

elasticity from Hitaj (2013). Producers are willing to pay $1 for a dollar’s worth of mechanical

subsidy. Next, we measure the environmental benefits of the PTC. We measure the environ-

mental benefits of wind turbine installations using the EPA’s AVERT model to measure the

grid displacement from an additional unit of clean energy. We find that a $1 mechanical subsidy

leads to a large reduction in both global and local environmental externalities, valued at $3.93
and $0.52, respectively.47 These benefits are larger than the per-dollar benefits for EVs despite

a smaller price elasticity (the elasticity is -1.13 as opposed to -2.1 for EFMP above). This is

Allcott et al. (2024) examine the MVPF of recent EV subsidies and find a very similar figure.
46We do not provide in-context estimates for non-US studies, but instead focus on the implications of their

price elasticity estimates for the US 2020 MVPF of wind subsidies.
47In translating the PTC into a change in wind turbine prices, we discount the flow of benefits using a firm-

specific measure of the cost of capital. This allows us to use firm-specific time preferences, a topic of substantial
importance in current debates over the ITC versus the PTC.
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because $1 of induced spending on a wind turbine delivers significantly more than $3 of global

environmental benefits while $1 of induced spending on an EV generates less than $0.04 in

global environmental benefits.

As with EVs, we incorporate potential rebound e↵ects in the electricity markets. In contrast

to EVs, the rebound e↵ect leads to an increase in overall electricity use as opposed to a decline.

Market supply and demand curves imply a 20% rebound e↵ect due to lower prices, which

means that environmental benefits are $0.87 lower. We also account for life cycle greenhouse

gas emissions (11 g of CO2e per KWh) from activities such as turbine manufacturing and

construction, which decrease environmental benefits by $0.13 (Dolan & Heath 2012). Summing

together, this implies a net initial environmental benefit of $3.45.48

Next, we incorporate the potential benefits from learning-by-doing externalities. Way et al.

(2022) estimate that a 1% increase in cumulative production leads to a reduction in wind

turbine costs of 0.19% (✓ = �0.19). This leads to $1 in future environmental benefits and $0.46
in benefits from lower future prices of wind turbines. Combining together all our willingness to

pay components produces a net WTP of $5.90 per dollar of mechanical wind PTC.

In order to estimate net government costs, we begin with the $1 mechanical cost of the policy

and add the fiscal externality associated with the baseline PTC subsidy. In 2020 there was a

PTC subsidy equal to 1.5 cents per kWh, which leads to a fiscal externality of $0.35 per dollar

in mechanical subsidy. Long-run climate benefits also generate a negative fiscal externality of

$0.08. Taken together we estimate a net cost of $1.28. Dividing the WTP of $5.90 by this net

cost yields an MVPF of 4.63.

Figure 2 Panel B plots the MVPF estimates for wind subsidies and shows how they vary with

the magnitude of the price elasticity. The other two studies we consider have elasticities of -1.3

(Metcalf 2010) and -1.75 (Shrimali et al. 2015), yielding MVPFs of 5.30 and 7.55, respectively.49

We draw upon three quasi-experimental estimates of the impact of PTCs in the US. In

order to ensure that our results are not being driven by the small sample of available quasi-

experimental estimates, we compare our results to studies of wind subsidies outside the US. In

particular, we consider six elasticities estimated in Europe. These estimates primarily focus on

the e↵ects of “feed in tari↵” policies that guarantee producers elevated prices for their clean

energy generation. Figure 2 Panel B places the US-based MVPF estimates alongside six MVPF

estimates that use elasticity estimates derived from variation in “feed in tari↵s” in European

contexts. These European subsidy elasticities range from -0.60 to -1.97 and yield MVPFs

48We do not include any aesthetic costs associated with the installation of wind turbines. One could, in
principle, estimate the associated individual WTP and incorporate that into the MVPF.

49We translate the elasticities to the 2020 baseline setting by assuming the elasticity of turbines installed with
respect to price is constant over time. As turbine costs fall, a constant elasticity implies a rising semi-elasticity
and larger environmental benefits per dollar of subsidy. If we adopt a more conservative assumption that the
semi-elasticity is constant over time (despite prices falling more than half between the mid-2000s and 2020) we
obtain a category average MVPF of 2.86. This continues to lie above all other subsidy categories in the sample
except residential solar subsidies.
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ranging from 1.50 to 9.15. The category average MVPF using only US policies is 5.87. If we

were to include European subsidy estimates the value is very similar, rising slightly to 5.93.50

These results using European elasticity estimates further reinforce the conclusion that subsidies

for wind PTCs produce substantial returns per dollar of government expenditure.

Residential Solar Subsidies The US federal government and many US states have enacted

large subsidies to encourage residential solar installation. We analyze estimates from five sub-

sidies for residential solar that are studied in four papers (Pless & van Benthem 2019, Hughes

& Podolefsky 2015, Gillingham & Tsvetanov 2019, Crago & Chernyakhovskiy 2017). We begin

with Pless & van Benthem (2019) who use geographic variation in the California Solar Initia-

tive to estimate the e↵ect of the program. They find that a one percent reduction in the price

of solar installations leads to a 1.14% increase in installations among residential homeowners.

This elasticity of -1.14 is roughly at the mean of the solar elasticities in our sample.

Figure 3 Panel A presents the components of the WTP and net cost of the MVPF. Pless

& van Benthem (2019) find that the subsidy has roughly 81% pass through, so that a $1
mechanical subsidy leads to an $0.81 benefit to consumers and a $0.19 benefit to installers.

For environmental benefits, the $1 mechanical subsidy leads to $0.73 in global environmental

benefits through the displacement of other sources of electricity production. This is the sum of

$1.03 in benefits via direct displacement of energy production minus $0.20 from the rebound

e↵ect and $0.10 from life cycle greenhouse gas emissions in the production of the solar panels.

We also find $0.11 in local environmental benefits, which is the sum of the direct ($0.14) and
rebound e↵ects (-$0.03). These environmental benefits are larger than the benefits from EVs,

but they are smaller than the benefits for wind PTCs. The lower environmental benefits relative

to wind PTCs is not primarily due to di↵erences in the price elasticities but rather the fact that

$1 of private spending on residential solar panels delivers fewer environmental benefits than $1
spent on utility-scale wind production. As we discuss below, this is driven by the di↵erence

between residential and utility scale, as opposed to wind versus solar.

While the initial environmental benefits from residential solar subsidies are smaller than

those associated with the wind PTCs, the learning-by-doing benefits are larger. We find the

solar subsidies induce $1.08 in environmental benefits and $0.86 in price benefits. These higher

learning-by-doing e↵ects are driven by the fact that: (i) the historical learning rate for solar,

50There has been recent attention on regulatory costs for renewable energies such as wind power (Jarvis 2021,
Davis et al. 2023, Huang & Kahn 2024). It is important to note that the existing causal estimates should already
embed within them the regulatory costs in place at the time of estimation. We are not aware of any causal work
in the US that quantifies the extent to which changing regulatory costs a↵ect the LCOE of wind production. As
noted above, however, if we assume that that the cost of wind generation is actually 50% higher than reported
estimates, we find that our category average MVPF in the U.S. is still 4.51. Along similar lines, we can assume
that increased permitting costs o↵set all the observed cost decline of wind turbines between 2014 and 2020. In
that case, we would still get MVPF estimates for wind near 5. In fact, the superiority of wind subsidies relative
to EVs and other energy e�ciency subsidies continues to hold even if the LCOE were to double relative to
current measures.
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✓ = �0.32, is well above the historical learning rate for wind; and (ii) the demand elasticity for

residential solar is higher in absolute value than for wind.

Lastly, we consider the impact of reductions in purchase of electricity on the profits of the

utility companies. Subtracting this value, $0.12, from the other components of willingness to

pay, we arrive at a total value of $3.67 per dollar of mechanical subsidy.

To estimate net government costs, we begin with the $1 mechanical cost of the policy.

Existing subsidies for solar were 26% in 2020. Multiplying the increase in solar purchases by

this subsidy yields a fiscal externality of $0.32 for every $1 of mechanical subsidy.51 We also

estimate a reduction in tax revenue of $0.06 from falling utility company profits and a climate

fiscal externality of -$0.03 from increased future tax revenue due to reduced climate change

damages. Taken together, this means that $1 of mechanical subsidy costs the government

$1.35. Comparing this value to the willingness to pay yields an MVPF of 2.71.

Figure 3 Panel B compares across our solar estimates and presents the MVPFs as a function

of the price elasticity in each study. We present two curves to illustrate the MVPF with and

without including the learning-by-doing e↵ects. The MVPFs are quite large when learning-by-

doing e↵ects are present. We find MVPFs ranging from 1.63 to 5.06 for the elasticities in our

main sample, with a category average of 3.86. By contrast, when learning-by-doing e↵ects are

excluded the MVPFs fall substantially, with MVPFs ranging from 1.17 to 1.69 and a category

average of 1.45.

Even with learning by doing e↵ects, residential solar subsidy MVPF estimates are sub-

stantially lower than our estimates for wind PTCs (3.86 versus 5.87). This di↵erence may be

driven by the distinction between utility-scale and residential energy production, rather than

the distinction between wind and solar. With falling solar prices, the 2020 (levelized) cost of

energy via utility-scale solar was roughly on par with the costs of utility-scale onshore wind.

By contrast, the costs of residential solar remained more than two times higher than utility

scale solar. While there are no quasi-experimental estimates of the impact of utility-scale solar,

we can return to our wind PTC setting and imagine a similar subsidy for solar installations.

Assuming the elasticity of solar installations is similar to historical wind PTC elasticities (-1.3),

we can use the utility-scale solar costs per kWh to estimate an MVPF. Here, one motivation

for assuming the -1.3 elasticity is similar for utility-scale wind and solar is that it captures a

structural user cost elasticity that is plausibly constant across investment types. Under that

assumptions, we find the MVPF of utility-scale solar subsidies would be 10.97, well above our

estimates for the wind PTC. Given this, a natural conclusion from our analysis is that subsidies

to utilities for either wind or solar have higher MVPFs than residential solar subsidies.

Hybrid Electric Vehicles (HEVs) We next consider subsidies for hybrid electric vehicles

(HEVs). We use three estimates from two papers that evaluate the response of HEV purchases

51If the preexisting subsidy were 0%, there would be no such fiscal externality. If the preexisting subsidy were
the 30% rate implemented in the IRA, the fiscal externality would be $0.40.
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to state and federal HEV subsidies (Beresteanu & Li 2011, Gallagher & Muehlegger 2011).52

We focus our discussion here on the Federal Income Tax Credit for Hybrid Vehicles evaluated

in Beresteanu & Li (2011), whose findings imply a price elasticity of -1.98.

As in the case of EV subsidies, we measure the environmental externalities from HEV

purchases by comparing HEVs to the counterfactual vehicles that subsidy recipients would

have purchased in the absence of the subsidy. We draw upon estimates from Muehlegger &

Rapson (2023), who show that the MPG of counterfactual vehicles is very close to the MPG

of HEVs: the implied fuel-economy gap was just 1.9 MPG in 2020. As a result, we estimate

that environmental damage reduction is less than $0.01 per dollar of mechanical subsidy. The

remaining components of the MVPF are also small, yielding an MVPF of 1.01. We find similar

results across the other two HEV studies we analyze, leading to a category average MVPF of

1.01.53 The small environmental benefits and MVPF values near 1 imply that HEV subsidies

are primarily transfers to consumers already intending to purchase an HEV.

Vehicle Retirement Next, we consider subsidies encouraging the retirement of old vehicles.

So-called “cash for clunkers” policies provide subsidies to those retiring old cars conditional

on purchasing new cars that satisfy certain standards (e.g., fuel economy requirements). We

consider three evaluations of such policies (Li et al. 2013, Hoekstra et al. 2017, Sandler 2012).

We focus here on Li et al. (2013), who evaluate the federal cash for clunkers program in 2009.

They find that the subsidy caused individuals to accelerate their purchase by several months

and switch to a slightly more fuel-e�cient vehicle.

By construction, a $1 larger subsidy generates $1 in benefits to those who were going

to retire their vehicle anyway. We estimate that the re-timing of vehicle purchases and the

increase in fuel e�ciency of the new cars leads to a social willingness to pay of $0.27 for global

environmental benefits and $0.02 for local environmental benefits. That calculation, however,

holds driving behavior constant. So, next, we account for the fact that shifting to a more fuel

e�cient vehicle reduces the marginal cost of driving, potentially increasing total vehicle miles

traveled. We use estimates from Small & Van Dender (2007) and show that this rebound e↵ect

reduces the net environmental benefits by $0.02. On the cost side, the shift toward more fuel

e�cient vehicles generates a fiscal externality of $0.06 from lost gas tax revenue and corporate

tax revenue from gasoline producers. Combining these results yields an MVPF of 1.04.

52We draw two estimates from (Gallagher & Muehlegger 2011) because they distinguish between upfront sales
tax waivers and ex-post income tax credits.

53Here, the small MPG di↵erence between the induced hybrid and the counterfactual vehicle means that the
MVPF is not very responsive to changes in the elasticity. This is particularly relevant as our estimates from
(Gallagher & Muehlegger 2011) have very large elasticities. They find an upfront subsidy has an elasticity of
-6.92 and an ex-post tax credit has an elasticity of -0.43. These papers yield baseline MVPF estimates of 1.03
and 1.00, respectively. If we deviate from the counterfactual estimates in the literature and assume that HEVs
displace an average new car sold in 2020, the MVPF estimates for HEVs still fall in a relatively limited range.
Our category average assuming hybrids replace an average new car is 1.20. An elasticity of -1.98 yields 1.12
and our -6.92 elasticity from (Gallagher & Muehlegger 2011) still only yields an MVPF of 1.42.

29



The two other vehicle retirement policies in our sample have similar baseline MVPFs. We

find MVPFs of 1.07 using the behavioral response to the 2009 cash for clunkers program esti-

mated among consumers in Texas (Hoekstra et al. 2017) and 1.03 for the Bay Area Air Quality

Management District’s (BAAQMD) Vehicle Buy Back Program (Sandler 2012). Consequently,

the category average MVPF for vehicle retirement is 1.05, with individual policies ranging from

1.03 to 1.07. The MVPF near 1 means that, like HEV subsidies, vehicle retirement subsidies

are primarily transfers to people who would have retired their vehicle anyway.

While most of our analysis focuses on harmonized 2020 MVPF estimates, vehicle retirement

is a unique case where the distinction between in-context and 2020 estimates has a meaningful

impact on the results. In particular, the BAAQMD Vehicle Buy Back Program implemented in

1996 was designed to encourage the retirement of vehicles that were 26+ years old at the time. A

26-year-old vehicle in 1996 (one produced in 1970) produced far more emissions than a 26-year-

old vehicle did in 2020. Using historical estimates of vehicle fleet emissions, we estimate that

each $1 in subsidy spending in 1996 produced $2.85 in local environmental benefits and $0.91
in global environmental benefits, leading to an in-context MVPF for BAAQMD of 2.38. Put

simply, paying people to retire their 1970 Chevy had much higher returns in 1996 than paying

people to retire their 1994 Toyota in 2020. Aside from this interesting case, the in-context and

2020 MVPF estimates are quite similar.

Weatherization We next consider weatherization assistance subsidies to improve home en-

ergy e�ciency through better insulation, windows, lighting, and other energy-intensive aspects

of the home. Our sample includes five di↵erent weatherization policies (Christensen, Francisco

& Myers 2023, Fowlie et al. 2018, Hancevic & Sandoval 2022, Liang et al. 2018, Allcott &

Greenstone 2024). We focus our discussion here on the Weatherization Assistance Program

in Michigan studied by Fowlie et al. (2018). The program used an encouragement design to

increase take-up of home weatherization and studied the impact of weatherization on home

energy costs.

Measuring WTP of weatherization is more di�cult than for price subsidies because the pa-

pers studying their e↵ects generally focus on measuring the energy use impacts of the subsidies

without measuring the fraction of inframarginal beneficiaries – those who would have weather-

ized anyway. Consequently, when constructing our measure of WTP, we explore the robustness

of our estimates to variations in this fraction. By definition, this fraction must be between

0 and 100%. We make a baseline assumption that 50% of those receiving the weatherization

benefits are inframarginal.

Those inframarginal individuals value the weatherization subsidy dollar-for-dollar while

marginal individuals also have a valuation for the subsidy which must fall between 0 and

$1. When examining a discrete bundle of weatherization services, we do not know whether it

was the first or last dollar of the policy that induced their response. If it was the first dollar,

then they would value roughly the entirety of the transfer at its cost. If it were the last dol-
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lar, then they would have a near-zero valuation of the subsidy. Following the classic triangle

approximation to measuring deadweight loss in Harberger (1964) (and the approach taken in

Hendren & Sprung-Keyser (2020)), we assume that this latent value of the subsidy varies uni-

formly in the population (i.e., a linear demand curve). This suggests these marginal individuals

value the subsidy at 50% of its value.54 Putting together the valuations among marginal and

non-marginal individuals, every $1 in initial spending on weatherization generates a benefit of

$0.75 to those who take up the benefits.

In addition to the transfer benefits of weatherization our WTP also includes environmental

benefits to society. The estimates of reduced energy consumption in Fowlie et al. (2018) imply a

local environmental benefit of $0.01 and a global environmental benefit of $0.30. The reduction
in electricity demand caused by the program also induces a rebound e↵ect which we estimate

to be -$0.05, so that the total environmental benefit is $0.27. Overall, our analysis suggests an

MVPF of 0.92.

As noted above, this MVPF calculation requires taking stances on the fraction of benefi-

ciaries that are marginal and the valuation of benefits among those marginal individuals. An

attractive alternative approach is taken by Allcott & Greenstone (2024), who study a weather-

ization policy in Wisconsin. They combine experimental and observational variation to estimate

a demand model that yields valuations of the weatherization program that imply an in-context

MVPF of 0.93. Using our damage models to harmonize with our other estimates replicates the

0.93 in-context and produces an MVPF of 0.92 in the baseline 2020 specification.

Taking an average across all of the weatherization policies, we obtain a category average

MVPF of 0.98.55 These estimates assumes individuals are aware of the energy benefits of

weatherization so they do not incorporate private energy savings as an additional benefit in

the willingness to pay. The idea is that these individuals may value the energy savings, but

the benefit of these savings are weighed against other considerations, such as the hassle cost of

a construction project in their home. The logic of optimization tells us that the value of the

policy to individuals is bounded by the size of the transfer, and it would be double counting

to incorporate energy savings as a benefit on top of the transfer benefit of the program. It is,

of course, possible that individuals were not aware of the cost savings they would receive from

weatherization. If this were the case, then these benefits might reflect an “internality.”56 It

would then be natural for the marginal individuals to value the energy savings as an additional

benefit. Including the energy savings as an additional component of the benefits of the policy

54We note that one could take alternative demand parameterizations to think about bounds on these magni-
tudes, as in Kang & Vasserman (2022).

55While most of these underlying estimates require assumptions about the fraction of recipients that are
inframarginal, we find the estimate is robust to reasonable variations in this assumption. This is because the
externality benefits are relatively similar to the transfer benefits of the policy. With an assumed marginal
fraction of 0% the MVPF is 1 by construction and with an assumed marginal fraction of 100% the category
average MVPF is 0.97.

56We note that Allcott & Greenstone (2024) find that only 68% of the projected energy savings are actually
realized. As they explain, this may lead individuals to experience a welfare loss if their expenditures yield
lower-than-expected benefits.
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yields a category average MVPF of 1.37. Regardless of whether individuals were aware of the

energy savings provided by weatherization, these subsidies do not generate large environmental

benefits. They are instead best thought of primarily as a transfer to those weatherizing their

homes.

Appliance Rebates We next consider subsidies designed to encourage the purchase of energy-

e�cient appliances, such as dishwashers, refrigerators, and stoves. We discuss here estimates

from Houde & Aldy (2017), which studies energy e�ciency rebates for clothes washers, dish-

washers, and refrigerators as implemented in 2009. For subsidies for clothes washers, they

estimate that roughly 90.5% of those receiving the subsidy are inframarginal – they would have

purchased the energy-e�cient product in the absence of the subsidy. These individuals value

their subsidy dollar for dollar. For the remaining 9.5%, we once again invoke the Harberger

approximation, assuming a linear demand curve so that 50% of the transfer is valued. Summing

across marginal and inframarginal beneficiaries yields a total of $0.95 in transfer benefits per

dollar of subsidy. Turning to environmental benefits, the induced purchases of more e�cient

clothes washers generate a global environmental benefit of $0.55 and a local benefit of $0.08.
This is partially o↵set by global and local rebound e↵ects of -$0.11 and -$0.02, respectively.
The reduction in electricity usage also leads to lost profits for utility companies of $0.04 per

dollar of subsidy. Combining these results leads to an MVPF of clothes washer subsidies of

1.41.57 This MVPF is the highest of the three types of subsidies studied in Houde & Aldy

(2017). We find MVPFs of 1.13 and 1.04 for dishwasher and refrigerator subsidies, respectively.

When we combine these estimates with those of the five other appliance rebates estimates in

our sample, we find a category average MVPF of 1.16. As is the case with many of the subsidies

in our sample, the environmental benefits of appliance rebates are limited and these policies

are primarily transfers to those who would have purchased these appliances anyway.

Other Subsidies Finally, we consider two other subsidy policies that do not neatly fit into

our categorization above. The first is the CA electricity rebate, which provided consumers with

a 20% discount on their electricity bill if they reduced consumption by 20% relative to their

energy consumption the previous summer. Ito (2015) finds that many consumers who received

the transfer would have lowered their consumption anyway in the absence of the transfer. Using

those estimates, we value the transfer at $0.88 per dollar of subsidy.58 That said, the policy

does lead to a large energy reduction, resulting in global environmental benefits of $2.09 and

local benefits of $0.30 when evaluated in our 2020 baseline context. These e↵ects are partially

o↵set by global and local rebound e↵ects of $0.41 and $0.06. The reduction in electricity usage

57If we were to assume that marginal individuals were not ex-ante aware of the energy savings benefits of the
policy, we would want to add those benefits into the willingness to pay. That would increase the MVPF to 1.97.

58The paper does not directly report the fraction of individuals in the control group who lowered their energy
usage by 20%. It does, however, report that there was no meaningful reduction in energy usage in the coastal
region where 88% of the payments were made. The MVPF estimates reported here are not sensitive to variation
in this assumption because the paper reports the total energy reduction among all treated individuals.
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leads to lost profits of $0.13, so that the net WTP is $2.67. Accounting for the program’s cost,

administrative costs, and lost revenue from utilities ($0.07) leads to an MVPF of 2.57.59 While

this MVPF is quite large as compared to the others in our sample, we caution that a policy like

this one might not be easily implementable because it conditions future prices on past behavior.

If consumers knew that future prices would be reduced if they consume more energy today, they

might increase their energy consumption today in order to qualify for greater discounts in the

future. That anticipatory response would reduce the policy’s e↵ectiveness.

The second policy in this category is a US-based Payments for Ecosystem services policy

studied by Aspelund & Russo (2024). The authors use a regression discontinuity design to

estimate the e↵ect of the policy on land conservation. They find that 79% of land receiving

conservation payments would have been conserved in the absence of the policy. That yields a

transfer value of $0.89, when applying a Harberger approximation to the marginal recipients.

Following the authors and using estimates from the USDA on the carbon abated by the program,

we estimate global environmental benefits of $0.92. The accompanying local benefits, including

reduced nitrous oxide released from decreasing fertilizer use, are $0.55. This yields an MVPF

of 2.41.

Summary of MVPFs for Subsidies Figure 4 presents the baseline MVPF estimates for

each of the subsidies in our sample. Following Hendren & Sprung-Keyser (2020), we also report

“category average” MVPFs. These are constructed by considering $1 in initial program costs

and splitting those costs evenly over all the policies in a category. This means the category

average MVPF equals the ratio of the average WTP and the average net cost of each policy in

the category. The shaded blue regions report 95% confidence intervals for the category average

MVPF derived from a parametric bootstrap of the underlying causal estimates from each pol-

icy.60 The main lesson from this analysis is that subsidies for investments that directly displace

the dirty production of electricity—namely, wind PTCs and residential solar subsidies—have

the highest MVPFs. In particular, production tax credits for firms that produce wind energy

have the highest MVPFs, generally exceeding 5. Subsidies to individuals who install residential

solar panels also have high MVPFs exceeding 3. By contrast, EV subsidies have MVPFs around

1.45. All other subsidies tend to have smaller MVPFs, with values around 1 ± 0.2.

These results suggests the potential for meaningful welfare gains if climate spending is

focused on policies that displace the production of dirty electricity. For example, every dollar

of expanded spending on wind PTCs (with MVPFs above 5) financed by less spending on EV

59Interestingly, the magnitude of this MVPF is heavily determined by the context in which it is analyzed. We
report this MVPF using the national grid from 2020. If we re-analyze the policy using California’s grid from
2005, the MVPF falls to 1.00. This is because producers’ WTP rises in-context and because the CA grid in
2005 was cleaner than the national grid today.

60Appendix Table 3 provides measures of the confidence intervals for each policy in our sample. For a small
number of policies, we are not able to obtain estimates of the underlying sampling uncertainty. We report the
category average both for the full sample and the subset of policies for which we obtain sampling uncertainty
estimates, and we broadly find similar results.

33



subsidies (with MVPFs around 1.5) would deliver $3.50 in net benefits to society. Applying

equation (5), this reallocation of spending would increase social welfare as long as social welfare

weights on the beneficiaries of the EV subsidy (mostly EV buyers themselves) is no more than

three times larger (5/1.5) than the social welfare weight on wind PTC beneficiaries (e.g., utility

companies and future environmental beneficiaries).

This relative ordering of subsidies (i.e., the higher MVPFs for wind PTCs and residential

solar) remains true under a wide range of specifications. For example, Figure 5 repeats our

analysis from Figure 4 using a lower social cost of carbon of $76 (with a 2.5% discount rate)

and higher social cost of carbon of $337 (with a 1.5% discount rate). The relative ordering of

categories is similar, although a higher (lower) SCC accentuates (attenuates) the MVPF values

for the policies that substantially reduce greenhouse gas emissions.61

We also consider a number of other sensitivity tests to explore robustness of our main

conclusions. Appendix Table 6 shows the results when omitting any e↵ects on firm profits.

Appendix Table 7 shows the results when including measures of private energy savings in will-

ingness to pay. Appendix Table 8 shows the results without learning-by-doing e↵ects. In each of

these cases, the relative ordering of policies remains largely una↵ected. We note, however, that

the MVPFs of EVs and residential solar are buoyed by learning-by-doing e↵ects.62 Without

learning-by-doing, the values for EVs fall from 1.45 to 0.96, and the values for residential solar

fall from 3.86 to 1.45. By contrast, even without learning by doing, subsidies for utility-scale

wind produce relatively high MVPFs, with a category average of 3.85. Appendix Figure 5

shows, in blue bars, how the MVPF changes when only considering benefits to US residents

and ignoring the benefits to the rest of the world. While the relative ordering again remains un-

changed, the MVPF values decrease substantially. The wind and solar categories have MVPFs

of 1.89 and 1.18 while other categories are often below 1. This is because only 13.1% of the

global externality benefits are estimated to flow to US citizens and so the numerator of the

MVPF falls in cases where the are meaningful global environmental benefits.

Our primary estimates report the MVPF for a marginal change in subsidies relative to 2020

subsidy levels. We also explore the robustness of our results to non-marginal changes in subsidy

levels. For example, in the case of residential solar subsidies, our baseline analysis examines a

marginal change relative to 26% subsidy in place in 2020. We can consider instead the policy

change equal in magnitude to the change induced by Inflation Reduction Act (IRA), which

prevented the expiration of residential solar subsidies and set the subsidy rate to 30%. If we

examine the MVPF of a subsidy increase from 0% to 30%, we get an MVPF of 4.43, relatively

close but slightly above our marginal category average of 3.86. We can repeat the same exercise

for the wind PTC, examining the e↵ect of increasing the PTC from 0 to 2.6 cents per kWh.

That policy change results in an MVPF of 5.80 as compared to our baseline marginal MVPF

estimate of 5.87. This once again contrasts with lower MVPFs for EV subsidies. A $7500
61Appendix Tables 4 and 5 report the estimates for all individual policies for the SCC of $76 and $337.
62Recall that it would be appropriate to omit these e↵ects if one does not believe the empirical observed

relationship between prices and historical quantities does not reflect spillover externalities.
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EV subsidy has an average MVPF of 1.23, slightly lower than the MVPF of 1.45 for a $1
subsidy.63 This analysis of non-marginal policy changes once again reinforces our conclusion

about climate subsidies: those that directly displace the dirty production of electricity have the

highest MVPFs.

5 Nudges and Marketing

We next consider policies that employ nudges or marketing strategies to lower carbon emissions

by reducing residential energy consumption. Unlike subsidies, which provide direct financial

incentives, these policies disseminate information or change choice architecture to encourage

individuals to change energy usage or product purchases.

The Home Energy Report (HER) designed by Opower (now Oracle) is perhaps the most

well-studied environmental nudge. The HER provides information on how to be more energy

e�cient in the home and often includes an element of social pressure (e.g., comparisons of a

household’s energy use with 100 similar neighbors). There have been over 200 rigorous RCTs

showing the causal impact of such nudges on energy demand in the United States and around

the world (Allcott 2011). Here, we show how to translate these estimates into the MVPF of

these nudges using estimates from Allcott (2011) of the national average treatment e↵ect of

HERs aimed at reducing electricity use. We then consider the e↵ects of nudges in di↵erent

regions using 166 treatment e↵ect estimates obtained from Opower.

We begin with the WTP for the Opower nudge. In our baseline specification, we assume

people were close to indi↵erent about their change in energy usage, which implies that the value

of the nudge to individuals is roughly zero. In particular, they do not place any additional valu-

ation on private energy savings. They also don’t have any value of shame or pride (independent

on any change on demand) or value of information from the nudges. We acknowledge these

sources of WTP may be important and so assess the robustness to including such estimates

below (Allcott & Kessler 2019, Butera et al. 2022, List et al. 2023).64

HERs targeting electricity usage cause a reduction in consumption, which has an impact on

environmental damages and utility company profits. Combining these treatment e↵ects with

the externality from electricity production in the US, we estimate that every $1 invested in

these nudges leads to $3.87 in global environmental benefits and $0.44 in local environmental

benefits. These benefits are partially o↵set by rebound e↵ects of $0.76 and $0.09 due to the

increased energy prices that result from reduced demand. We also estimate that utility com-

panies experience a decrease in profits of $0.24 for each $1 spent on the Home Energy Report

63This category average non-marginal MVPF is slightly higher than the 1.15 we discuss above that uses
estimates from Muehlegger & Rapson (2022).

64For example, Allcott & Kessler (2019) suggest that individuals would be willing to pay on average about
half (49%) of the energy savings that they experience from the nudge. As a conservative approach, Appendix
Table 7 presents the results when we add in 100% of the energy savings, and shows that our conclusions remain
broadly similar.
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(HER) nudge.

On the government cost side, we assume the government pays for the electricity HER and

thus include those administrative and logistical costs as a government cost.65 Government

revenue collected from utilities decreases by $0.13, but the long-run climate fiscal externality

saves the government $0.06. Combining the willingness to pay and government costs, we obtain

an MVPF of 3.01.

While this 3.01 estimate corresponds to an average electricity HER, it is important to note

that the MVPF varies considerably across regions of the US due to the di↵erences in the clean-

liness of the electricity grid. Figure 6 illustrates the MVPF for HER nudges across five US

regions where field experiments have been conducted and evaluated. The Mid-Atlantic, North-

west, and Midwest have high MVPFs with average values of 5.68, 5.50, and 3.76, respectively.

By contrast, in California and New England, the MVPFs are 0.52 and 0.24, respectively.66 In

New England and California the grid is su�ciently clean such that the environmental benefits

are smaller and are roughly o↵set by the loss of profits to the utility companies.67,68 We also

note the value of nudges depends heavily on the global externalities from the grid, but the

regional patterns we observe are robust to those SCC variables. At an SCC of $76 rather than

$193, the category average MVPF falls from 3.01 to 1.34. In that case, regions with dirty grids

have MVPFs in the 1.92 to 2.76 range while regions cleaner grids have MVPFs near 0.

While we find large MVPFs for nudges to reduce electricity consumption, we find much

smaller MVPFs for nudges to reduce natural gas consumption. On average HERs targeted at

natural gas usage have an MVPF of 0.45. This lower MVPF is partially driven by the fact

that nudges to reduce natural gas consumption have smaller treatment e↵ects: the average

natural gas nudge reduces consumption by 0.14% while the average electricity nudge reduces

consumption by 0.26%. In addition, the environmental benefits are smaller than the associated

benefits of reducing electricity consumption in areas with dirty grids.

In addition to examining nudges aimed at reducing overall energy consumption, we also

evaluate the MVPF of nudges targeting energy usage reduction during peak load times. As the

65This appears to be a reasonable approximation of what happens in practice, but it is also true that energy
companies pay for nudges. This means that we measure the MVPF of the nudge as if the government were to
enact the policy or pay utilities to enact the policy.

66It is possible that the e↵ects of the nudge persist beyond the measured time periods in these studies.
However, the MVPFs for CA and New England remain at 0.72 and 0.36 even if we assume that half of the
treatment e↵ects persist for two years after the nudge (Brandon et al. 2017, Allcott & Rogers 2014).

67Excluding the loss in firm profits, the MVPF for CA and New England increase to 2.02 and 0.96, respectively.
They continue, however, to be substantially smaller than the MVPFs in the three regions with dirtier grids:
5.81 (Mid-Atlantic), 5.50 (Northwest), 3.86 (Midwest). We note that this dependence of the welfare e↵ects on
firm profits is similar to the argument in Buchanan (1969), who considers welfare with corrective taxes under
competition and monopoly.

68Here, the Northwest is categorized as a dirty electric grid despite the substantial levels of hydroelectric
power in the region. This is due to both (i) the high level of marginal emissions estimated in the AVERT model
(as distinct from average emissions) and (ii) the nature of the regional aggregation used in the AVERT model
of marginal emissions. The northwest region includes states with very high levels of grid emissions, such as
Utah. Omitting the Northwest from our analysis does not change the broad trajectory of our findings regarding
regional variation in nudge MVPFs.
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grid increasingly relies on wind and solar power, reducing energy demand during periods when

it is not sunny or windy becomes more valuable. The primary benefit of interventions focused

on demand flexibility is not merely CO2 reduction, but the ability to avoid costly blackouts or

expensive marginal generation caused by the intermittency of renewable energy sources. An

example of such nudges is the peak energy report, which informs consumers of their energy

consumption during peak periods compared to their neighbors (Brandon et al. 2019). The

field experiment showed the treatment led to a 4% reduction in energy use during peak hours.

Constructing the MVPF requires placing a social value on this reduction in peak energy use.

Here, we focus on the extent to which the marginal cost of peak production exceeds the price.

We consider marginal costs ranging from ranging from 500/MWh to 1000/MWh and find

associated MVPFs from 0.70 to 1.60.69 If the demand reduction also decreased the frequency

and/or duration of blackouts, these MVPF estimates could rise as high as 5.30.70

In addition to energy reports, we study marketing strategies and information treatments

designed to encourage adoption of clean technologies and reduce electricity usage. For example,

the Solarize program sought to increase residential solar installations by providing municipalities

with a designated solar installer, group pricing, and an informational campaign led by volunteer

ambassadors over the course of 20 weeks. Translating estimates of the impact of this program

from Gillingham & Bollinger (2021), we estimate an MVPF of 1.81.71

By contrast, we find lower MVPFs when considering producer side marketing policies fo-

cused on weatherization. Christensen, Francisco & Myers 2023 study the provision of bonus

incentives that provide payments to installers based on the energy savings that result from

their installations. Encouraging installers to improve weatherization techniques modestly el-

evates the MVPF of existing weatherization subsidies. The MVPF rises from 0.98 without a

bonus to 1.06-1.07 with a bonus, depending on the magnitude of the incentive. This policy has

a relatively low MVPF not because the bonuses are ine↵ective per se but rather because the

baseline weatherization subsidy results in small energy reductions relative to its baseline cost.

This helps to explain the divergence with the larger MVPF for the Solarize program discussed

above. Both policies encouraged take-up, but, in the context of residential solar, the induced

take-up generates meaningful environmental benefits per dollar of government costs.

Summary of MVPFs for Nudges and Marketing We find that nudges to reduce elec-

tricity consumption can yield high MVPFs — on average exceeding 1.5 in our 2020 baseline

69These values are consistent with peak electricity production costs in (CAISO 2021).
70For this calculation, we assume that the causal reduction in energy use from the treatment would be utilized

by households that would otherwise experience a blackout in the counterfactual scenario. In order to estimate the
value of avoiding a blackout, we use the value of lost load (VOLL) of $4,300 per MWh (Brown & Muehlenbachs
2024). We recognize that the VOLL may vary across di↵erent populations, times, and locations (Borenstein
et al. 2023).

71Solarize uses a fairly unique peer marketing strategy in order to achieve its strong results. The general-
izability of those findings depends heavily on the generalizability of the peer e↵ects observed in the Solarize
context.
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specification. Crucially, we find that these MVPFs vary significantly across regions of the US.

Regions characterized by a less clean energy grid have higher MVPFs. By contrast, in regions

with cleaner grids such as California and New England, the MVPF values of HER nudges are

below 1. This highlights the importance of the environmental context in space and time when

evaluating the welfare impact of a nudge. We also find that nudges aimed at reducing natural

gas consumption have lower MVPFs than those targeting electricity consumption due to the

smaller treatment e↵ects and lower environmental damages relative to electricity production.

Finally, marketing strategies can also increase the MVPF, but only when targeting interventions

that generate large environmental benefits.

6 Revenue Raisers

An alternative approach to address greenhouse gas (GHG) emissions is to tax the sources of

those emissions. Such policies can reduce GHG emissions while also raising government revenue.

For revenue-raising policies, the MVPF measures the welfare burden imposed on individuals per

dollar of government revenue raised. This means that, all else equal, lower MVPFs correspond

to better methods of raising revenue. For a point of reference, lump-sum taxes have an MVPF

of 1 because they impose $1 in welfare cost per each dollar of revenue raised. They are a transfer

from individuals to the government. If a revenue-raising policy generates some form of societal

benefit (e.g., from reducing CO2), these can o↵set some of the burden and generate an MVPF

below 1. In contrast, behavioral changes induced by taxes can lead to behavioral responses

that reduce the revenue raised, which can increase the MVPF above 1. The key advantage of

the MVPF framework is that we can use equation (5) to compare these taxes to other methods

of raising revenue, such as reductions in spending on subsidies or increases in income taxes.

Here, we estimate MVPFs for two types of revenue-raising policies: taxes and cap-and-trade

policies. We also show how to place our MVPF estimates in the context of welfare estimates

of regulation such as CAFE standards.

6.1 Taxes

A positive tax is just a negative subsidy. So, returning to equation 9 and replacing ⌧ with �⌧
yields the MVPF for a change in a tax, ⌧ , under perfect competition:

MV PF =
1� ✏Vp
1 + ✏ ⌧p

(25)

where ✏ is once again the price elasticity of demand and V is the externality per unit of the

good consumed. Taxes are often applied to goods (e.g., gasoline) that yield environmental

harms, V < 0. In the case of taxes on polluting goods, the numerator of the MVPF reflects two

countervailing forces. On the one hand, each dollar of tax imposes a $1 of burden on the taxed
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individuals. On the other hand, the behavioral response to the tax changes consumption of the

taxed good, x, generating environmental gains that partially o↵set the burden of the tax, ✏Vp .

That change in consumption is also reflected in the denominator of the MVPF because changes

in consumption impact tax revenue and diminish the net revenue raised from the tax, ✏ ⌧p . In

the case of a Pigouvian tax, where ⌧ = �V , the MVPF is 1. If the tax is below (above) the

Pigouvian level, the MVPF of the tax will fall below (above) 1. While equation (25) provides

a stylized example of the MVPF for a gasoline tax, we use an extended version below that

includes externalities from imperfect competition and learning-by-doing e↵ects (e.g., gas taxes

induce the adoption of EVs, generating learning-by-doing).

We construct 12 MVPFs for gasoline taxes using estimates of the response of gasoline

consumption to price and tax changes. These estimates imply price elasticities that range from

-0.04 (Hughes et al. 2008) to -0.46 (Davis & Kilian 2011). We begin with an illustration of the

construction of these MVPFs using the elasticity estimate from Small & Van Dender (2007)

who find a price elasticity of -0.33. Figure 7 presents the components of WTP and net cost

for this specification. We report these components for the gas tax using our baseline (2020)

externalities and prices. Consistent with most existing literature, we assume that the gas tax is

fully passed through to consumers. A $1 increase in the gas tax leads to a WTP of consumers

of $1 to avoid the tax increase (Marion & Muehlegger 2011). We estimate that the reduced

driving due to the tax leads to global benefits of $0.27, local pollution benefits of $0.03, and
local benefits from reduced accidents and congestion of $0.21.

Recent work suggests that gasoline prices can have a causal e↵ect on EV adoption (Bushnell

et al. 2022). Motivated by this, we use Slutsky symmetry to assess the potential impact of this

substitution on our MVPF estimates. We translate the own-price elasticity of EV purchases

of -2.1 (Muehlegger & Rapson 2022) into a cross-price elasticity between the price of gasoline

and EV demand of 0.22.72 These EV purchases generate $0.0008 in combined global and local

damages from electricity generation. They also generate learning-by-doing benefits of $0.002
from reduced future EV prices and $0.0002 from future environmental benefits.73

Lastly, we incorporate the profit impacts from reduced gasoline demand. We estimate this

leads to a $0.07 WTP by firms to avoid the tax. Gasoline producers have a positive WTP to

avoid the tax, whereas utility companies benefit from the substitution toward EVs. On the

cost side, the reduction in demand also leads to lost corporate and gas tax revenue of $0.09.74

The US government also raises $0.01 in future revenue by abating greenhouse gases today.

Combining our WTPs and cost implies an MVPF of 0.60. A dollar of government revenue

72Under Slutksy symmetry, in combination with the assumption of no change in overall car demand (just
shifting between EVs and ICE vehicles), the cross-price elasticity is given by the own-price elasticity multiplied
by the ratio of the present discounted value of operating costs of a gasoline powered car relative to the price of
an EV. See Appendix E.10 for our derivation.

73We also account for utilities’ WTP for increased electricity usage by EVs as well as accompanying fiscal
externalities associated with EV adoption. These e↵ects are negligible.

74Consistent with the findings in West & Williams (2007) that gasoline is a relative complement to leisure
rather than labor, we exclude any labor income related fiscal externality.
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raised leads to a welfare cost of $0.60 on individuals.

Figure 8 presents the MVPF estimates for the full set of gasoline studies in our main

sample. We find MVPFs ranging from 0.44 to 0.95, with a category average of 0.67.75 We also

construct MVPF estimates for taxes on diesel and jet fuel and find similarly low MVPFs with

values around 0.8. A full description of those calculations can be found in Appendix E.11.76 In

each of these cases, the MVPF falls below 1 because the externalities avoided (environmental,

congestion, or accidents) are larger than the fiscal externality induced by the policy.

On the whole, the results suggest fuel taxes raise revenue at a relatively low welfare cost.

The MVPFs of these revenue raisers are well below the MVPF of changes to the income tax,

which range from 1 to 2 depending on the income level of the taxed individuals (Hendren 2020,

Hendren & Sprung-Keyser 2020). The MVPFs of fuel taxes are even below 1, the MVPF of a

non-distortionary lump sum tax. Returning to equation (5), we can use the MVPFs to make

statements about the welfare e↵ects of budget neutral policy experiments. For example, we can

directly compare an MVPF of .6 for gasoline taxes with an MVPF of 1.1 for income taxes on

low-income earners. If society places equal weight on the individuals impacted by each policy,

then every dollar of revenue shifted from income taxes to gasoline taxes generates 50 cents in

additional welfare.77 If, by contrast, a decision-maker would prefer the status quo, it implies

they must place a higher welfare weight on drivers relative to an average low-income individual.

While the analysis here has focused on the impact of tax instruments, it is important to

acknowledge that governments may also use regulatory policy to achieve the same ends. For

example, Corporate Average Fuel Economy (CAFE) standards require automakers to meet

certain mile per gallon standards for the fleet of vehicles they sell in the US. The MVPF

approach is designed to examine the welfare consequences of government spending or tax policies

where the primary tradeo↵ is between the government budget and individuals in the economy.

In contrast, for regulatory policies such CAFE the primary tradeo↵ is between di↵erent groups

of individuals (e.g., consumers paying higher prices versus other individuals benefiting from

a cleaner environment). The incidence of on the government budget is non-existent or small.

Therefore, an in-depth exploration of regulatory policies is beyond the scope of our analysis.

That said, Appendix G shows that one can use the MVPF framework to compare the welfare

consequences of regulations to typical tax and spend instruments. In particular, we ask whether

the welfare consequences of a regulation can be replicated using a combination of taxes and

transfers. Appendix Figure 6, for example, seeks to replicate the benefits o↵ered by CAFE with

a mix of gas taxes and income tax changes. We show that gasoline taxes combined with feasible

75Even when omitting externality benefits that flow to residents outside the US, the MVPF still falls below
1 with a category average of 0.89.

76Diesel taxes have a higher MVPF than gas taxes because diesel demand is less elastic than gasoline demand.
This increases the MVPF, despite the fact that diesel vehicles impose a larger per-gallon externality than gas-
powered vehicles. The jet fuel tax has a higher MVPF than gas taxes due to fewer local externalities.

77Even ignoring environmental benefits and focusing solely on accidents and congestion, gas taxes have an
MVPF of 0.95, which continues to be lower than the MVPFs identified for tax changes at any point across the
income distribution (Hendren 2020).
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income tax modifications can replicate CAFE’s impact on the environment, producers, and

consumers while also generating roughly $1 in additional government revenue.78 The key reason

for the relative superiority of the tax instruments is that they generate reductions in driving,

inducing additional benefits from reduced accidents and congestion. We conduct a similar

exercise in Appendix G showing that wind subsidies combined with income tax modifications

deliver welfare gains that are superior to Renewable Portfolio Standards (RPS) regulations.

6.2 Cap and Trade

Cap and trade systems are a common policy tool used to limit emissions. They impose quantity

limits on emissions and let firms trade the rights to such emissions. We evaluate two cases where

cap and trade has been used in the US: the Regional Greenhouse Gas Initiative (RGGI) in the

Northeast and mid-Atlantic, and the California Cap-and-Trade Program. We also briefly discuss

the European Emissions Trading System (ETS) to provide an additional point of comparison.

We can interpret changes in the number of permits in a cap and trade system in a manner

similar to a change in the tax rate on polluting goods. The key distinction is that taxes change

prices while cap and trade uses permits to directly change quantities. This means that there

is a close analogy between the MVPF formula for changes in the number of permits in a cap

and trade system and the MVPF formula for taxes on a polluting good, such as the gasoline

tax outlined in equation (25).79

Formally, we construct the MVPF of cap and trade by considering a change in the number

of permits sold at auction. Let q denote the number of permits issued. Assume that one fewer

permit leads to (1�L) reductions in emissions, where L is the “leakage” of emissions into areas

not captured by the cap and trade program. Following equation (25), and multiplying through

by qdp/dq, we can write the MVPF of changing the number of auctioned permits as

MV PF =
�q dp

dq + V (1� L)

�q dp
dq � p

. (28)

78Here, we focus on replicating the incidence across broad groups within society such as consumers or pro-
ducers. We focus, for example, on o↵setting producer losses with high income tax cuts, acknowledging that the
beneficiaries of those tax cuts may not be the same firms that bore the burden of lost profits due to the CAFE
standards.

79To see this, note that

MV PF =
�q dp

dq + V (1� L)

�q dp
dq + p

(26)

=
1� dq

dp
p
qV (1� L)

1� dq
dp

p
q

(27)

which is equivalent to equation (25) noting that ✏ = (dq/dp)(p/q) and that the “tax” on permits applied in the
denominator is 100% since they are owned by the government.
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The first term is the firms’ willingness to pay to avoid the increase in permit prices, which stem

from the reduction in permit supply. This is o↵set by the environmental damages avoided,

V (1� L), due to a one-unit change in the number of permits auctioned. On the cost side, the

government receives the mechanical revenue from the higher prices, �qdp/dq > 0, but also loses

p in revenue from the forgone permit no longer auctioned.80

We begin with the in-context estimates of the e↵ect of RGGI on greenhouse gas emissions

using results from Chan & Morrow (2019). Between 2009 and 2016, there were 816.2 million

permits auctioned (per short ton of CO2), at an average clearing price of $3.19 (in 2016 dollars).

The authors estimate that RGGI reduced 22 million short tons of CO2 during this period. This

implies that a one unit reduction in the quantity of permits sold led to a $1.45 ⇥ 10�7 dollar

increase in the permit price, or dp/dq = �1.45⇥10�7. This suggests that if RGGI had auctioned

one fewer permit between 2009 and 2016, it would have lost $3.19 from the price of the permit

but gained approximately �dp/dq⇤q = 1.45⇤81.62 = $118.48 in additional revenue from higher

permit prices.81

Higher prices impose a cost on firms purchasing permits, which totals to $118.48. These

higher prices will cause some firms to opt not to purchase permits and instead reduce their

emissions. While the envelope theorem suggests these profit maximizing firms are indi↵erent

between buying a permit and reducing emissions, the emissions reductions generate environ-

mental externalities. The environmental benefit of releasing 1 � L = 0.49 fewer short tons

of CO2 in 2016 is $65.20. Adding the reduction in local pollutants SO2 and NOX yields an

additional gain of $117.21.82 On net, these environmental benefits o↵set the cost to firms for a

net positive willingness to pay of $63.93. Raising revenue via a reduction in auctioned permits

as part of RGGI led to a net win for individuals and taxpayers.83

While our in-context estimates suggest RGGI led to significant benefits to taxpayers and

individuals in society, we caution that it is potentially di�cult to extrapolate our in-context

estimates to a 2020 policy reform. This is because one needs to know the marginal abatement

cost curve in 2020 to understand how the number of permits would a↵ect its price. One

potential assumption is that it is stable over time – i.e., a 1 unit reduction in permits has the

same marginal impact on price as it did in the sample context over which it was estimated in

2009-2016. This is arguably a more aggressive assumption than the constant price elasticity

assumptions used in other MVPF calculations. That said, if we make such an assumption

80p does not enter the numerator because we assume we assume that firms are optimizing: the marginal firm
holding a permit has a marginal abatement cost equal to the permit price.

81We estimate a fiscal externality on the government budget to be $1.27, which suggests a net government
revenue of $116.56 from issuing one fewer permit. Motivated by the evidence in Colmer et al. (2024) and Metcalf
& Stock (2023), we assume that cap and trade induces no reduction in the productive capacity of firms, and so
there is no additional corporate tax fiscal externality.

82Excluding local damages, society’s WTP for pollution reductions is only $65.20, implying an MVPF of 0.46.
83The positive net willingness to pay among individuals is the di↵erence between the environmental benefits

and the permit costs to firms. This corresponds to an increase in social welfare as long as one prefers $1.54
flowing to the beneficiaries of an improved environment over $1 in the hands of the firms paying the additional
permit costs.
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regarding the marginal abatement curve, we can analyze the policy in 2020 and find that

reductions in cap and trade permits under RGGI produce net welfare gains for individuals

alongside an increase in government revenue. Greater restrictions in auctioned permits would

continue to increase government revenue ($123.01) while also delivering a net gain to individuals

in society, as the WTP for environmental damages ($210.33) outweighs each dollar firms pay

in permits ($127.78). It is, of course, not certain whether the marginal abatement cost curve

has been constant over time. The primary channel through which RGGI a↵ected emissions

was by inducing a switch from coal to natural gas. It is less clear whether the same set of

low cost substitution options continue to exist today after many coal plants have been retired.

Consequently, it may be that dp/dq is larger in 2020 than in the early 2010’s, leading to fewer

environmental benefits per dollar of cost imposed on those buying permits.

In addition to our analysis of RGGI, we also consider the MVPF of permits in the Cali-

fornia Cap-and-Trade Program using estimates from Hernandez-Cortes & Meng (2023). They

estimate the impact of the introduction of the cap and trade system on small and medium sized

manufacturing firms. A key challenge for our analysis is that existing data only track outcomes

for a sub-sample of firms subject to the cap and trade system. These firms make up just 5% of

GHG emissions subject to that system. As a conservative approach, we conduct our analysis

assuming the other 95% of the market does not generate any reductions in emissions. In this

case, it is straightforward to show that the MVPF would be around 0.95. In other words, a

decrease in auctioned permits would raise $1 in revenue at a welfare cost of $0.95 on society. If

we instead assumed that the other 95% of the regulated market had a similar response to the

observed 5%, this generates a much larger environmental benefit. The associated benefits are

su�cient to o↵set the costs imposed on firms paying higher permit costs. This would suggest

that, like RGGI, the California Cap and Trade auctions raise revenue while also generating net

welfare gains to society.

While our primary focus here is on US climate policy, we also consider the largest cap and

trade system for CO2 in the world – the European Union’s Emissions Trading System (ETS).

Colmer et al. (2024) find that the introduction of ETS led to permit prices that stabilized

around $20 between 2005 and 2012 and ultimately generated a 15% reduction in emissions.

(They find no evidence of leakage.) Assuming a linear response to prices, the price of $19.90
generating a 15% reduction in emissions suggests firms are willing to pay $131.32 (q ⇤dp/dq) to
avoid a one ton reduction in the number of allocated permits. Comparing this to a historical

average SCC of $134.79 in this period, it suggests a net welfare gain of $3.47 ($134.79-$131.32).
On the cost side, we find that selling one fewer permit leads to a net revenue gain of $114.06.
Selling one fewer permit generates $114.06 in revenue and delivers $3.47 in net benefits to

individuals.84 This means that the evidence from ETS is consistent with the US evidence on

cap and trade: Reductions in permits have the potential to raise revenue while also providing

84We find a qualitatively similar conclusion when examining estimates on the impact of the ETS from Bayer
& Aklin (2020). Fewer ETS permits lead to $134.68 in net benefits to society while also generating $14.41 in
government revenue.
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positive benefits to society.

Summary of Revenue-Raiser MVPFs The key lesson of this section is that taxes and

other restrictions on pollution-emitting activities o↵er paths to raising revenues at low welfare

costs. The MVPFs of these policies fall consistently below 1, suggesting they impose less than

$1 in burden for each dollar of revenue raised. This lies in contrast with other traditional

revenue raisers, such as increases in income tax rates, which consistently have MVPFs above 1.

Returning to equation (5), the results suggest a decision-maker setting tax policy would need to

have high implicit social welfare weights on individuals engaged in pollution-emitting activities

in order to justify status quo policies as optimal.85 For cap and trade, the results show that

there appear to be large quantities of emissions that can be reduced at relatively low cost - at

least in settings where these markets have been established. The presence of this low hanging

fruit means that small prices on carbon can lead to large reductions in emissions, generating a

win for taxpayers and a net win for individuals a↵ected by the policy. More broadly, our results

suggest that the presence of these large environmental externalities creates opportunities for

raising revenue at a low welfare cost relative to typical methods of raising revenue.

7 International Policies

Climate policies have international spillovers. The impacts of greenhouse gas emissions are felt

worldwide, regardless of the source of the emissions. This means that many of the beneficiaries

of US policies addressing climate change reside outside of the US, and that US residents are

the beneficiaries of climate policies enacted in other countries.

In this section, we draw upon an illustrative set of climate-focused policies implemented

in developing countries, largely by NGOs. We consider: to what extent is it beneficial to US

residents to pay for policies implemented in other countries? For each policy, we imagine that

the US government enacts the policy as a form of international aid. We consider 14 policies

spanning five categories: cookstoves, deforestation payments for ecosystem services, payments

to prevent rice field burning, wind subsidy o↵sets, and appliance and weatherization rebates.

We begin with subsidies for improved cookstoves in Kenya. Berkouwer & Dean (2022) find

that small subsidies for these cookstoves help to overcome individual credit constraints and

encourage the purchase of these appliances. When o↵ered a $30.37 subsidy (in 2020 dollars),

54.5% of individuals take up the cookstove. Nearly all of those beneficiaries are marginal, as

only 0.6% would have taken up the cookstove in the absence of the policy. The paper also

85Even ignoring environmental benefits and focusing solely on accidents and congestion, gas taxes have an
MVPF of 0.95, which is 14 percent lower than the MVPF around 1.1 typically observed for income tax changes
on low income individuals (Hendren 2020). This suggests an implicit welfare weight on drivers must be higher
than the weight on the earnings of a typical low-income individual in order to rationalize current tax rates as
optimal.
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finds that each new cookstove reduces CO2e by about 7 tons.86 This translates into $43.16
in global environmental benefits for each mechanical dollar of the subsidy. We combine those

global externality benefits with the transfer benefits of the subsidy and the value of private

energy savings. This yields a total willingness to pay of $50.82 for each mechanical dollar of

the subsidy.

Next, we consider the net cost of the policy. In our previous MVPF estimates, we considered

the impact of climate damages on the US government’s budget and noted such e↵ects were

minimal. Here, the impact of the policy on carbon emissions is su�ciently large such that the

climate fiscal externality is quantitatively important. The precise value of that fiscal externality

depends on the model underlying the social cost of carbon. In our baseline specification, we

assume the US experiences 15% of the benefits of carbon abatement in proportion to its share of

global GDP. Across SCC models these benefits are typically a mix of mortality reductions and

productivity increases. We therefore assume 50% of the benefits are changes in productivity

and therefore taxed by the US government at a rate of 25.5% (the US tax to GDP ratio in

2020). Taking these estimates as given, implies that the the US government recoups $3.70 per

ton of CO2 and so for each mechanical dollar of subsidy, the net cost to the US government

would be just $0.157. When combined with the WTP for the policy, this yields an MVPF of 37

when only considering benefits to US residents and an MVPF of 323 when considering benefits

to individuals globally.

A key factor in this calculation is the extent to which reductions in global warming have

a positive impact on future US tax revenue (e.g., due. to higher future productivity). Models

that report the same social cost of carbon can generate di↵erent MVPFs because they di↵er in

the incidence on the US federal budget. For example, we could have assumed that the entirety

of the SCC was driven by changes in market productivity. This approach is motivated by a

literature estimating damages functions that relate carbon to GDP (Nath et al. 2024).87 In

this case, we find that the subsidy pays for itself. The net cost of policy is -$11.31 for each

dollar of mechanical subsidy (and the US-only MVPF is infinite). By contrast, other models

suggest that the incidence of emissions damages on the US taxpayer could be quite small. For

example, estimates from PAGE (Nordhaus 2017) suggest the US-incidence of carbon damages is

just 7%. Similarly, estimates from the GIVE model (Rennert et al. 2022) suggest that changes

in productivity are concentrated outside the US. If we drop the US-specific fiscal externality

to zero, the US-only MVPF falls to 4.91 and the MVPF including global benefits falls to

49.97. This highlights the importance of articulating incidence when constructing measures of

the social cost of carbon. While total damages estimates can be reported in GDP-equivalent

terms, the distinction between the sources of damages can meaningfully impact the welfare

86We note that these calculations assume that charcoal is derived entirely from non-renewable biomass. If
we were to use a fraction non-rewewable biomass of 45% estimated by the United Nations (2023), the carbon
reduction would be 1.67 tons.

87Some recent work has argued that carbon-driven GDP e↵ects imply a SCC in excess of $1,000 (Bilal &
Känzig 2024), but this fiscal externality is still important for far more modest estimates of the SCC when
greenhouse gas reductions are large.
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consequences of a policy.

Figure 9 presents the MVPFs for the other international policies in our baseline sample.88

MVPFs using only US benefits are shown in blue and those including global benefits is shown

in orange. These estimates show the substantial variation in MVPF estimates both within

and across program categories. For example, the evidence from Berkouwer & Dean (2022)

di↵ers from the findings in prior work on cookstove subsidies. Hanna et al. (2016) found that

recipients simply did not use the cookstoves, which translates to an MVPF near zero. Similarly,

we find large variation in the returns to policies designed to prevent deforestation. We find that

payments to farmers in Sierra Leone to prevent deforestation yields an MVPF of 15.9 even when

only considering benefits to US residents. This is one of the largest MVPFs in our sample. For

deforestation prevention payments evaluated in Uganda, we find global MVPFs of 5.44 and

a US-only MVPF of around 0.66. That said, not all deforestation programs appear to be as

e↵ective. We find a smaller MVPF for a program in Mexico evaluated in Izquierdo-Tort et al.

(2024), with a global MVPF of 1.71 and a US-only MVPF of 0.1.

We also find large MVPFs for policies that use unique incentive contracts to discourage

rice field burning. We find MVPFs between 10-15 when including global benefits and in the

1.3-1.8 range when only including US benefits. Additionally, we find potentially high returns to

policies encouraging the adoption of wind turbines in India, with a global MVPF of 7.64 and a

US-only MVPF of 0.9.89 As is the case with our primary estimates, we find the lowest MVPFs

for other policies that use rebates to encourage the purchase of other e�cient appliances.

In sum, we find potentially high returns - even from a US-only perspective - from policies

that invest in reducing greenhouse gas emissions in developing countries. Indeed, subsidies for

cookstoves and deforestation subsidies in Sierra Leone have higher MVPFs than any domestic

subsidy in our sample, even when only considering the benefits accruing to US residents. That

said, we reiterate three notes of caution. First, our exact MVPF estimates depend on the

incidence of the social costs of carbon and, in particular, whether the benefits accrue in the

form of increased US productivity. Such productivity benefits have US tax revenue implications

that meaningfully impact the net cost of the subsidies to the US government. Second, we find

high variance in our international MVPFs estimates, even within policy categories. Even when

spending within a promising category, high returns are certainly not guaranteed. Finally, our

analysis assumes the US government could implement these policies with the same cost structure

as the NGO conducting the evaluation. The US government may face di↵erent administrative

88Table 2 discusses results for additional policies in our extended sample, which includes some policies which
are not a natural fit when considering hypothetical US-based funding. This includes, for example, nudges for
energy reduction in foreign countries.

89We draw upon estimates from Calel et al. (Forthcoming) examining the impact of a wind subsidy in India
on greenhouse gas emissions. The authors argue that at least 52% of installations are inframarginal, suggesting
that the carbon o↵sets are not fully o↵setting carbon emissions. We take that implied inframarginal fraction as
given, rather than a bound, and show that it results in an implied elasticity of -2.2 and an implied MVPF of
7.64. We note that the 52% inframarginal share is a lower bound so the ultimate MVPF could be lower if the
leakage is higher.
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costs when scaling these programs, meaningfully changing that MVPF. All of that said, the

key lesson from our analysis mirrors the conclusions of Glennerster & Jayachandran (2023):

International aid policies can be a valuable part of the toolkit for addressing climate change.

8 MVPF Versus Cost per Ton

The preceding analysis applies the MVPF framework to analyze the welfare consequences of

US climate change policies. This represents a departure from the typical approach in the

environmental economics literature, which constructs a measure of the cost per ton of CO2

abated (“cost per ton”). And while existing work tends to refer to “cost per ton” as a singular

object of interest, there are multiple conceptually distinct (and often conflated) definitions

used in the literature. We that find three broad definitions serve to capture the conceptual

distinctions in prior work. We refer to these measures as the (A) resource cost per ton of CO2

abated, (B) government cost per ton of CO2 abated, and (C) net social cost per ton of CO2

abated.

In this section, we compare the MVPF with these cost per ton measures. We begin by

discussing the conceptual di↵erences between cost per ton measures and the MVPF. We then

construct an estimate of each cost per ton measure for each of the policies in our sample. We

highlight the ways in which these cost per ton measures fail to fully capture the lessons of the

MVPF approach, often leading to di↵erent rankings across policies.

8.1 Definitions of Cost per Ton

Here, we outline the three common measures of the cost per ton of CO2 abated and discuss

their conceptual drawbacks relative to the MVPF.

Resource Cost per Ton The “resource cost per ton” approach has a long history in envi-

ronmental economics (Grubb et al. 1993). It was popularized in influential work by McKinsey

& Company (Enkvist et al. 2007), which ordered a wide range of abatement technologies using

this measure.90 The resource cost per ton evaluates the desirability of a product (or activity)

by measuring the dollar value of the resources entailed in the production and use of the prod-

uct, divided by the tons of carbon abated. For example, the resource cost of an EV is the

di↵erence in production cost for an EV versus a similar internal combustion engine (ICE) car

minus the lifetime di↵erence in gasoline costs versus electricity costs associated with operating

the car. Similarly, the resource cost of an energy e�cient appliance is the di↵erence in cost

of the appliance relative to its less e�cient alternative minus the net energy savings from the

more e�cient appliance.

90See also the discussion in Gillingham & Stock (2018).
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There are two conceptual concerns associated with this measure. First, it focuses on a

product or activity (e.g., the purchase of an EV) rather than a policy (e.g., a subsidy for an EV

purchase). In practice, subsidies generate meaningful transfers to inframarginal beneficiaries

– people who would obtain the subsidy without changing their behavior. With its focus on

products rather than policies, the resource cost per ton approach ignores both the benefits and

the costs of those inframarginal transfers. We suggest below that accounting for these transfers

can substantially a↵ect our welfare assessments. Policies with large quantities of inframarginal

transfers may appear to be e↵ective using a resource cost approach, but may be far less e↵ective

using other measures.

Second, when constructing the resource cost of an expenditure, this approach generally

ignores any non-resource costs or benefits. For example, an individual’s valuation of an EV

may be influenced by the disutility from having to find charging stations or the utility from

being able to go 0 to 60 in less than 3 seconds. These considerations are generally excluded

when calculating the resource cost of an expenditure. This omission of non-CO2 benefits is

seen most starkly when considering revenue-raising policies. Applying the resource cost per ton

approach to gasoline taxes suggests negative costs per ton. Society saves the resource costs of

producing gasoline while also reducing emissions. The trouble here is that individuals derive

utility from their resource expenditures and such benefits are generally ignored by the resource

cost per ton.91

Government Cost per Ton The “government cost per ton” of carbon abated measures the

reduction in tons of CO2 emitted per dollar of net government outlay (Knittel 2009, Gillingham

& Tsvetanov 2019).92 Relative to the MVPF approach, this definition uses the denominator of

the MVPF in its numerator (the net government cost of the policy), and compares this to the

tons of carbon abated from the policy. The government cost per ton approach addresses one

of the key criticisms of the resource cost per ton method, accounting for the cost of transfers

to inframarginal beneficiaries. It does not, however, consider the benefits to those individuals.

In other words, inframarginal transfers are treated as a cost but not a benefit. This omission

can create concerns when comparing the government cost per ton to values of the social cost

of carbon.93 A comparison to the SCC often serves as a threshold by which to judge whether

a policy is welfare enhancing. The omissions of inframarginal benefits, however, means that

policies can have costs per ton that exceed the SCC while still delivering large welfare gains.94

91Put another way, simply counting resource costs ignores crucial information revealed by individual purchase
decisions.

92This measure is also sometimes referred to as the “program cost per ton” (Gillingham & Tsvetanov 2019,
Davis et al. 2014).

93The government cost per ton of CO2 also generally omits other non-resource benefits such as local pollutants
avoided or congestion externalities.

94This particular criticism has been expressed in previous literature. For example, Davis (2023) provides a
discussion of the cost e↵ectiveness of heat pumps and notes “[i]t is tempting to compare the [cost per ton of
CO2 estimates] to estimates in the literature for the social cost of carbon. For example, the U.S. government
currently uses a social cost of carbon of $51 per ton (U.S. Interagency Working Group, 2021) and one recent
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As with the resource cost per ton, the government cost per ton cannot be readily applied to

revenue raising policies. Taxes typically have a negative government cost while abating carbon.

A negative value of government cost per ton does not mean these taxes are a ‘free lunch’ when

it comes to addressing climate change. Rather, taxes impose a welfare loss on the individuals

who pay for the tax, and government cost per ton ignores those costs.

Social Cost per Ton A third measure found in the literature seeks to incorporate a com-

prehensive set of non-CO2 costs and benefits into its calculation of cost per ton (Christensen,

Francisco, Myers & Souza 2023, Hughes & Podolefsky 2015). We refer to this measure as the

“social cost per ton,” or SCPT. The numerator of this ratio is the net government cost minus

all of the non-CO2-related benefits of the policy. The denominator is equal to the tons of CO2

abated.95

The SCPT approach is similar to the resource cost per ton approach. It is, therefore, subject

to many of the same criticisms regarding its ability to reflect the causal e↵ect of policy changes.

The key di↵erence, however, is that instead of measuring costs as resource outlays, the social

cost per ton measures the change in social welfare (excluding CO2 impacts on welfare) required

to abate CO2. This means it includes a wider range of costs and benefits omitted from the

resource cost approach. For example, the social cost approach also allows vehicle driving to

produce non-CO2 damages such as accident, congestion, and local pollutant externalities.

Just like the MVPF, the SCPT approach often invokes assumptions of optimization to

estimate non-CO2 benefits.96 For example, a $1 subsidy for an energy e�cient appliance is

valued at $1 for those who would have purchased it anyway, but not valued to first order by

those induced to purchase due to the subsidy. In practice, this diverges from the resource cost

per ton approach where there can be strictly positive (or negative) resource cost changes from

the induced purchases (e.g., from their energy savings).

We can write out the formula for the SCPT using the subsidy example in Section 2.2. We

delineate between the carbon externality and other externalities, V = SCC ⇤ Tons + Other,

and write the SCPT as:

SCPT =
(⌧ �Other) ✏p

Tons ✏
p

=
⌧ �Other

Tons
(29)

Every induced purchase of the good imposes a social cost equal to the size of the subsidy, ⌧ ,

study finds a preferred social cost of carbon of $185 per ton (Rennert et al. 2022). However, this is not an
apples-to-apples comparison. Subsidies are transfers, not economic costs, and many households value subsidies
at close to $1-for-$1.” A similar criticism can be found in Knittel (2009).

95If there are no non-resource costs or benefits associated with the policy change, the social cost per ton ratio
equals the resource cost per ton.

96In invoking optimization, the SCPT approach shares a similarity to the “top down” approach discussed in
Grubb et al. (1993). This top-down approach uses economic models with optimization to measure the marginal
cost of abatement whereas the logic of SCPT invokes optimization to aid in the individual valuation of policy
changes via the envelope theorem.
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minus any non-CO2 benefits, Other.97 This highlights the primary drawback associated with

the SCPT approach. Just like the resource cost per ton approach, the SCPT of the subsidy is

independent of the magnitude of the behavioral response to the subsidy. In other words, if two

policies both induce one more person to purchase a new good, the policies would have the same

SCPT, regardless of how many inframarginal beneficiaries receive the transfer. This means that

the assessment of welfare is independent of the causal e↵ect of the policy on take-up.

It is worth noting that there is an alternate formulation of the SCPT used in work by Fournel

(2024) that includes the opportunity costs of inframarginal transfers. While this approach is

not in widespread use, it is worthy of discussion because it includes a social cost of inframarginal

transfers. This approach assumes a given marginal cost of funds from a change in the income

tax, �, and adds it to the numerator to capture a distortionary cost of raising revenue. The

resulting formula for the social cost per ton is given by:

SCPT� =
(⌧ �Other) ✏p + �(1 + ✏

p⌧)

Tons ✏
p

. (30)

In this case, the elasticity does not drop out of the expression and the social cost of the

policy is determined, in part, by the marginal cost of raising revenue from an increase in

income taxes, �. As we discuss below, welfare comparisons using this approach are sensitive to

the assumptions made regarding the nature of the income tax changes used to close the budget

constraint (e.g., changes in taxes at the bottom vs. top of the income distribution). We focus

our primary comparisons on the standard SCPT measure that does not incorporate any cost of

raising revenue and report in Appendix Table 9 how the SCPT varies with di↵erent values of

�.

8.2 Results

Having highlighted the theoretical distinctions between the various cost per ton definitions, we

now explore how those distinctions matter in practice. Table 3 reports all three measures of cost

per ton for each policy sub-category alongside the associated MVPF (see Appendix Table 10 for

each individual policy in our sample).98 These results make clear that there is wide variation

in reported “cost per ton” depending on the definition employed. For example, the cost per

ton of appliance subsidies ranges from -$2 to $474 across the three measures. From a resource

cost perspective, energy e�cient appliances save enough energy to overcome the di↵erence in

upfront price as compared to counterfactual appliances. This leads to a net resource cost per

ton of -$2. The government cost per ton, however, is $474, as many subsidies go to people who

would have purchased those appliances even in the absence of the subsidy. The social cost per

97Equivalently, the SCPT gives the level of the SCC such that benefits are equal to costs, or MVPF = 1.
98The estimates in Table 3 include learning-by-doing benefits; Appendix Table 11 shows the equivalent table

if we exclude these e↵ects.
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ton is far lower than the government cost per ton at $111 due to the addition of the non-CO2

benefits and transfer benefits of the subsidy.

The wide variation in cost per ton across definitions within a policy category highlights the

need to be consistent when constructing a measure of cost per ton. For example, Gillingham

& Stock (2018) provide a ranking of policies according to their cost per ton of carbon abated.

The lowest cost per ton policy in their list is the nudges studied in Mullainathan & Allcott

(2010), who use a resource cost per ton measure — a measure that tends to be lower because

it includes energy savings and omits inframarginal costs.99 By contrast, solar subsidies are

reported to have higher costs per ton, but some of these measure government cost per ton (e.g.,

(Gillingham & Tsvetanov 2019)). This approach generates a higher cost per ton relative to

other measures because it includes inframarginal costs but not their benefits.

This comparison highlights the drawbacks of conflating di↵erent definitions of cost per ton

when conducting welfare comparisons. That problem could potentially be solved, however, if

researchers were to align on a single definition of cost per ton. It is therefore natural to ask:

if one definition of cost per ton were used, would that measure capture the broad conclusions

identified by the MVPF approach? In the section below, we show how the MVPF compares to

each di↵erent cost per ton metric.

Resource Cost per Ton Our estimates of resource cost per ton lead to conclusions that di-

verge substantially from our conclusions using the MVPF approach. We can see this divergence

in several ways. Consider, for example, a comparison between appliance rebate subsidies, vehi-

cle retirement subsidies, and hybrid subsidies. Appliance rebates have negative resource costs

(-$2), far below the values for vehicle retirement and hybrid policies ($987 and $577). Despite
that divergence, the policy categories have nearly indistinguishable MVPFs (1.16 versus 1.05

and 1.01).

We also see this pattern when examining individual policies, rather than policy categories.

For example, rebates for energy e�cient fridges as studied in Datta & Gulati (2014) have a

resource cost per ton of -$512. This is far below the resource costs for wind PTCs studied

in Hitaj (2013), which have a value of -$96.100 This pattern of lower resource costs per ton

for energy e�cient appliances as opposed to wind turbines is consistent with previous resource

cost calculations, such as the influential estimates constructed by McKinsey & Company. In

contrast, the MVPF approach shows that spending $1 on this e�cient fridge subsidy delivers

$1.01 in benefits to individuals, far smaller than the $4.63 in benefits per dollar spent on

subsidies for wind turbines.
99The paper describes its measure of costs as capturing the “long-run marginal cost of electricity minus the

program cost to the utility.”
100Here, the resource cost per ton estimates rely on inputs that are not required for the MVPF calculation.

They include, for example, the relative price of the energy e�cient versus counterfactual appliance.
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Government Cost per Ton Our estimates of government cost per ton produce an ordering

of policies that loosely aligns with our core MVPF findings: wind PTCs and residential solar

have government costs per ton below that of any other subsidy or nudge category in our sample.

That said, the omission of non-CO2 benefits still produces a reordering relative to the MVPF

across certain policy categories. For example, EVs have a government cost per ton of $1,356,
substantially higher than the $474 cost for appliance rebates. The MVPF of EVs, however, is

1.45 as compared to the 1.16 for appliance rebates. This di↵erence arises because government

cost per ton does not include inframarginal benefits or the benefits from lower prices generated

from learning-by-doing. As noted above, 95% of the benefits of EV subsidies flow to individuals

who are buying or selling EVs. Those benefits are all omitted from the government cost per

ton approach. This omission of benefits also influences the interpretation of the government

cost per ton. At first glance, it might seem as though an EV subsidy with a government cost

$1,356 per ton is not a worthwhile expenditure if the social cost of carbon is $193 per ton. The

omission of transfer and non-CO2 benefits, however, means that a comparison with the social

cost of carbon does not provide a welfare-relevant benchmark.

Social Cost per Ton The final column of Table 3 reports the social cost per ton of each

policy category. Across all of our policy categories, electric vehicles have the lowest SCPT at

-$415. That is followed by residential solar at -$67 and wind PTCs at -$32. That ordering

is the exact opposite of the ordering of our MVPFs, where the values are 1.45, 3.86 and 5.87

respectively.101

We see similar reversals when excluding learning-by-doing e↵ects and comparing across

policy categories. For example, hybrid vehicle subsidies have a SCPT of $43, half of the SCPT
for residential solar at $83. This is true despite the fact that hybrid vehicle subsidies have an

MVPF that is lower (1.00 versus 1.45).

A key source of divergence between SCPT and the MVPF is the fact that the canonical

SCPT approach does not account for the opportunity cost of inframarginal transfers. As we

noted above, a potential way to address this concern within the SCPT approach is to account

for the marginal cost of funds (MCF) associated with inframarginal transfers. Appendix Table

9 reports the SCPT using three common values of the MCF: 10%, 30%, and 50%. The key

takeaway here is that the cost per ton estimates are highly sensitive to one’s views on the MCF.

The SCPT for EV subsidies moves from -$415 with no MCF to -$259 with 10% a MCF and to

$260 with a 50% MCF. The SCPT for appliance rebates changes from $111 without an MCF

to $349 with a 50% MCF.

An advantage of the MVPF approach is that the MVPFs of our climate policies are de-

termined by the causal e↵ects of the policies being evaluated rather than assumptions about

101An additional complication with the social cost per ton approach is that it is di�cult to draw conclusions
when comparing negative values. For a fixed quantity of CO2 abated, high levels of non-carbon benefits reduce
the value of the social cost per ton. By contrast, for a fixed quantity of non-carbon benefits, greater CO2

abatement increases the social cost per ton.
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the distortionary costs of additional policies used to close the budget constraint. Instead, one

can conduct welfare analysis of budget neutral policy experiments by comparing MVPFs, as in

equation (5). For example, if one believes there is a 30% MCF for income taxes and the policy

is financed through an income tax, one can compare the MVPF of the policy to an MVPF of 1.3

for an income tax change. One can also think more broadly about other ways to raise revenue

that do not change income tax policy. For example, if one treats individuals paying the gas

tax and wind PTC beneficiaries as having similar social welfare weights, the comparison of the

5.87 for wind PTCs to the 0.67 for gas taxes suggests every $1 of government revenue raised

from a gas tax and spent on wind PTCs generates $5.20 (=5.87-0.67) in benefits to individuals

in society. Such a calculation avoids making any assumption about the MCF of changes in

the income tax code.102 When choosing between a wide menu of spending and revenue rais-

ing policies, MVPFs can be used to compare the welfare consequences of those various policy

options.

9 Conclusion

What policies are most e↵ective in addressing climate change? We conduct a comprehen-

sive assessment of policies that have been rigorously evaluated using experimental and quasi-

experimental methods. We draw three main lessons: First, subsidies for investments that

directly displace the dirty production of electricity, such as production tax credits for wind

power and subsidies for residential solar panels, have higher MVPFs (generally exceeding 3),

than all other subsidies in our sample (with MVPFs generally around 1). Second, nudges to

reduce energy consumption have large MVPFs, with values above 5, when targeted to regions of

the US with a dirty electric grid. By contrast, nudges targeted toward areas with cleaner grids

such as California and the Northeast have substantially smaller MVPFs (often below 1). Third,

fuel taxes and cap-and-trade policies are highly e�cient means of raising revenue (with MVPFs

below 0.7) due to the presence of large environmental externalities. In addition to these lessons,

we also note that some of the highest MVPFs in our sample are international subsidies. These

policies can produce high returns, even when only considering benefits to US residents and the

incidence on US taxpayers. We note that such policies appear to have highly variable returns

and the incidence on climate damages on the US government remains uncertain. Nonetheless,

the math suggests these types of policies have the potential to unlock large welfare gains to the

residents of those countries, US residents, and US taxpayers.

Methodologically, our approach integrates learning-by-doing externalities directly into our

welfare analysis, allowing us to quantify the potential size of those e↵ects. This allows us to

go beyond the typical qualitative treatment of learning-by-doing e↵ects in welfare analysis. We

102This is potentially useful in practice because a key conclusion of recent work in public economics is that the
MCF varies depending on where in the income distribution revenue is raised (Kleven & Kreiner 2006, Hendren
2020).
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find, for example, that the desirability of wind subsidies is modestly amplified by learning-by-

doing e↵ects, while the desirability of residential solar policies (and to some extent EV subsides)

depends heavily on the potential for learning-by-doing spillovers. It is worth noting that our

framework and new su�cient statistics result could also be applied to think about subsidies for

relatively newer technologies such as carbon capture.

We use the MVPF approach to assess the desirability of policy changes and contrast our

method with the more common cost per ton of CO2 measures used in the literature. We

argue that our key lessons would have been di�cult to glean from an approach that relied

on a cost per ton metric. This is not merely due to the fact that di↵erent papers tend to

use di↵erent definitions of “cost” when reporting this metric. Even when using a harmonized

measure – either resource, government, or social costs – these cost per ton approaches fall short

of delivering the welfare conclusions provided by the MVPF framework. This is because these

definitions fail to fully account for inframarginal benefits, the opportunity cost of inframarginal

transfers, non-CO2 benefits, or the relationship between products and policies.

We can also use the MVPF framework to examine whether historical environmental policy

in the US has prioritized spending in areas with high returns. Here, we examine changes in

policy focus over time by comparing the allocation of funds under the American Recovery and

Reinvestment Act (ARRA) of 2009 with the allocation of funds under the Inflation Reduction

Act (IRA) of 2022. The ARRA spent 3 times more on clean energy than on energy e�ciency. By

contrast, the IRA spent 9.4 times more on clean energy than energy e�ciency. This represents

a substantial relative reallocation, with far greater focus on spending in categories with higher

MVPFs.103 It is important to note, however, we also see a reallocation over time toward greater

relative spending on EV subsidies, an area with comparatively lower returns. IRA funding on

EVs exceeded its direct funding for clean energy while the ARRA spending on EVs was less

than half its spending on clean energy.

We also believe the MVPF approach is valuable because it facilitates comparisons across

policy domains. We can compare, for example, the MVPFs constructed herein to MVPFs for

other major areas of spending and other common revenue raisers. The high MVPF values we

find for spending on renewable energy generation exceeds the MVPFs found for many areas

of spending on US adults documented in (Hendren & Sprung-Keyser 2020) and the Policy

Impacts Library104. The values rival, but are slightly less than, the MVPFs for spending on

health and education for low income children. By comparison, the MVPFs of climate-focused

revenue raisers are far below the MVPFs of other common revenue raisers such as increasing

tax rates or increasing tax enforcement (Boning et al. 2023). This suggests that climate policy

103Details of this calculation can be found in Appendix J. We draw our estimates of ARRA spending from
CEA (2016) and our estimates of the IRA from Della Vigna et al. (2023) and PWBM (2023). We show how
these estimates vary using ex-ante versus ex-post budget scores. We also show how they vary with assumptions
such as allocation of advanced manufacturing funds. Our basic conclusions regarding the relative allocation of
clean energy and energy e�ciency are not impacted by this allocation. 2022 projections regarding IRA budget
expenditures on EVs were far below current estimates.
104www.policyimpacts.org/policy-impacts-library/
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may be a particularly e�cient means of raising revenue.

We believe that that the MVPF framework and the valuation methods used herein can

serve as a useful tool for the analysis of climate policy. All of our code is available on GitHub.

We hope this serves as an aid to researchers constructing their own MVPFs in future policy

analysis.
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FIGURE 1: Electric Vehicle Subsidy

Baseline Estimates from Muehlegger and Rapson (2022)
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Notes: This figure presents the components of willingness to pay and net government cost for the EV subsi-
dies in the California Enhanced Modernization Program (CEFMP) using the -2.1 price elasticity estimated in
Muehlegger & Rapson (2022). We present estimates for our baseline specification that envisions a change to the
federal 2020 subsidy. Each component is normalized relative to $1 of mechanical cost of the policy change. The
first two bars show how this transfer is passed through to consumers and car dealers. The next three bars report
the environmental externalities, including the global (GHG) externalities, local (e.g. PM2.5) externalities, and
rebound e↵ects from higher prices in the electricity market. The next two bars report learning-by-doing exter-
nalities from both future environmental benefits (DE) and lower prices (DP ) using the approach in Theorem 1
and Appendix B. The last two columns report impacts on producer profits due to markups in the oil/gasoline
and utility sectors. The Cost components start with the mechanical cost of the $1 subsidy, then add the impact
of the behavioral response on the cost of state and federal subsidies using national average subsidies in 2020,
followed by the impact on changes in revenue from the gas tax and corporate profits taxes on oil/gasoline
producers and utilities. Lastly, the climate FE term captures future tax revenue due to the impact of lower
emissions today on future productivity. All numbers are calculated using our baseline path for the social cost
of carbon ($193 in 2020) and a 2% discount rate.
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FIGURE 2: Utility-Scale Wind Subsidies & Production Tax Credits

A. Baseline Estimates from Hitaj (2013)
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Notes: This figure illustrates the MVPF measurement for wind subsidies. Panel A shows the WTP and Cost
components for the baseline specification for the wind production tax credit using a supply elasticity of 1.4
estimated in Hitaj (2013). The WTP components consist of the transfer (yellow), environmental externality
(light blue), and learning by doing e↵ects (dark blue). The subsidy cost is calculated using the wind PTC in
2020 of $0.015 per KWh. Panel B shows how the MVPF varies with the elasticity of wind turbine installation
with respect to the price paid to suppliers for wind energy. We place solid vertical lines at the US estimates of
the elasticities in our main sample and dotted vertical lines for international estimates in our extended sample.
All numbers are calculated using our baseline path for the social cost of carbon ($193 in 2020) and a 2% discount
rate.
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FIGURE 3: Residential Solar Subsidies

A. Baseline Estimates from Pless and Van Bentham (2019)
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Notes: This figure illustrates the MVPF measurement for residential solar subsidies. Panel A shows the WTP
and Cost components for our baseline specification for the California Solar Initiative using a demand elasticity
of -1.14 estimated in Pless & van Benthem (2019). The WTP components consists of the transfer (yellow),
environmental externality (light blue), learning by doing e↵ects (dark blue), and utility profit loss (orange).
The subsidy cost is calculated using the 26% investment tax credit for residential solar installations. Panel B
shows how the MVPF varies with the elasticity of demand for residential solar panel capacity with respect to
the price of residential solar panels. The MVPF with learning by doing is not shown above 7.5 for illustrative
purposes. The solid lines represent the estimates of the elasticity in our sample. All numbers are calculated
using our baseline path for the social cost of carbon ($193 in 2020) and a 2% discount rate.

70



FIGURE 4: Baseline MVPFs for Subsidies
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Notes: This figure shows the 2020 baseline MVPF estimates for all categorized subsidy policies in our main
sample. We cap estimates at 5 with + signs indicating MVPFs above 5. The category average (shown by the
black vertical lines) reports the MVPF associated with a conceptual experiment where $1 in initial program
cost is split equally across each policy in the category, so that we take the average willingness to pay relative to
the average net government cost within each category. The blue shading presents bootstrapped 95% confidence
intervals for each category average MVPF, restricting to underlying estimates for which we have sampling
uncertainty. See Appendix Table 3 for comparisons of the category averages on this subsample. All numbers
are calculated using our baseline path for the social cost of carbon ($193 in 2020) and a 2% discount rate.
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FIGURE 5: Baseline MVPFs of Subsides using Alternative Social Costs of

Carbon
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Notes: Panel A and B repeat Figure 4 using an alternative time path for the SCC corresponding to values of
$76 and $337 in 2020 along with discount rates of 2.5% and 1.5%, respectively. Estimates are censored at 5.
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FIGURE 6: Baseline MVPF of Home Energy Reports
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Notes: This figure illustrates the MVPF estimates for Opower Home Energy Reports split across the 5 AVERT
model’s electricity regions for which the experiments have been conducted. The benefits per dollar of government
cost equal the environmental benefits minus the loss in utility profits. MVPFs above five are censored and the
category averages are written to the right of each category. All numbers are calculated using our baseline path
for the social cost of carbon ($193 in 2020) and a 2% discount rate.
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FIGURE 7: MVPF of a Gasoline Tax
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Notes: This figure presents the components of the baseline MVPF for the gasoline tax using a gasoline price
elasticity of -0.334 from Small & Van Dender (2007). The WTP components include the transfer cost (yellow),
global greenhouse gas benefits and local environmental externalities arising from accidents, congestion, and
local pollutants (light blue), learning by doing benefits from increased EV purchases (bars not visible), and
gasoline/electricity producer profits (orange). The tax cost arises from the impact of the response to the tax on
gas tax revenue using the 2020 tax of $0.46 per gallon. All numbers are calculated using our baseline path for
the social cost of carbon ($193 in 2020) and a 2% discount rate.
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FIGURE 8: Baseline MVPFs of Revenue Raisers
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Notes: This figure illustrates the MVPF for revenue raisers in our sample. Note that the MVPF measures
the welfare cost per dollar of revenue raised (or, equivalently, the welfare gain per dollar of net expenditures
on tax cuts). We illustrate each MVPF relative to the MVPF of a non-distortionary lump sum tax of 1. The
black lines are the category averages and the blue regions indicate the 95% confidence intervals computed via
bootstrap. All numbers are calculated using our baseline path for the social cost of carbon ($193 in 2020) and
a 2% discount rate.
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FIGURE 9: Baseline MVPFs of International Policies
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Notes: This figure illustrates the 2020 baseline MVPF estimates for US spending on international policies. The
denominator is net cost to the US government and the numerator is the sum of US and non-US WTP for the
subsidy. We cap estimates at 5 with + signs indicating MVPFs above 5. The blue bars represent the MVPF
only including US beneficiaries and the orange bars illustrate how the MVPF increases if one includes benefits
to non-US residents. All numbers are calculated using our baseline path for the social cost of carbon ($193 in
2020) and a 2% discount rate.
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Table 1: All Policies in Our Sample

Panel A. Subsidies Short Label Year Geography Source

Wind Production Credits
Renewable Electricity PTC (Shrimali, Lynes, and Indvik 2015) PTC (Shrimali) 2011  Shrimali, Lynes, and Indvik (2015)
Renewable Electricity PTC (Metcalf 2010) PTC (Metcalf) 2007  Metcalf (2010)
Renewable Electricity PTC (Hitaj 2013) PTC (Hitaj) 2007  Hitaj (2013)
Feed-in Tariff - Germany (Bolkesjø, Eltvig, and Nygaard 2014) * FIT (Germany - BEN)  Germany Bolkesjø, Eltvig, and Nygaard (2014)
Feed-in Tariff - Spain * FIT (Spain)  Spain Bolkesjø, Eltvig, and Nygaard (2014)
Feed-in Tariff - Germany (Hitaj and Löschel 2019) * FIT (Germany - HL)  Germany Hitaj and Löschel (2019)
Feed-in Tariff - France * FIT (France)  France Bolkesjø, Eltvig, and Nygaard (2014)
Feed-in Tariff - United Kingdom * FIT (UK)  United Kingdom Bolkesjø, Eltvig, and Nygaard (2014)
Feed-in Tariff - European Union * FIT (EU)  European Union Nicolini and Tavoni (2017)

Residential Solar
California Solar Initiative (Hughes and Podolefsky 2015) CSI 2012 CA Hughes and Podolefsky (2015)
Northeast State-level Solar Rebate Programs NE Solar 2012 Multiple States Crago and Chernyakhovskiy (2017)
California Solar Initiative - Third-Party (Pless and van Benthem 2019) CSI (TPO) 2013 CA Pless and van Benthem (2019)
California Solar Initiative - Host (Pless and van Benthem 2019) CSI (HO) 2013 CA Pless and van Benthem (2019)
Connecticut Residential Solar Investment Program CT Solar 2014 CT Gillingham and Tsvetanov (2019)
Solar Investment Tax Credit * ITC 2014  Dorsey (2022)

Electric Vehicles
State-level Rebates for Battery Electric Vehicles BEV (State - Rebate) 2011–2014 Multiple States Clinton and Steinberg (2019)
Federal Income Tax Credit for Electric Vehicles ITC (EV) 2011–2013  Li et al. (2017)
California Enhanced Fleet Modernization Program EFMP 2015–2018 CA Muehlegger and Rapson (2022)
State-level Income Tax Credits for Battery Electric Vehicles * BEV (State - ITC) 2011–2014 Multiple States Clinton and Steinberg (2019)

Appliance Rebates
Cash for Appliances - Clothes Washers C4A (CW) 2010  Houde and Aldy (2017)
ENERGY STAR Rebate - Water Heaters ES (WH) 2012  Allcott and Sweeney (2017)
State-level ENERGY STAR Rebate - Clothes Washers ES (CW) 2006  Datta and Gulati (2014)
Cash for Appliances - Dishwashers C4A (DW) 2010  Houde and Aldy (2017)
State-level ENERGY STAR Rebate - Dishwashers ES (DW) 2006  Datta and Gulati (2014)
Cash for Appliances - Refrigerators C4A (Fridge) 2010  Houde and Aldy (2017)
State-level ENERGY STAR Rebate - Refrigerators ES (Fridge) 2006  Datta and Gulati (2014)
California Energy Savings Assistance Program - Refrigerators CA ESA 2009 CA Blonz (2023)

Vehicle Retirement
Cash for Clunkers (Hoekstra, Puller, and West 2017) C4C (TX) 2009  Hoekstra, Puller, and West (2017)
Cash for Clunkers (Li, Linn, and Spiller 2013) C4C (US) 2009  Li, Linn, and Spiller (2013)
BAAQMD Vehicle Buyback Program BAAQMD 2010 CA Sandler (2012)

Hybrid Vehicles
State-level Hybrid Vehicles Financial Incentive - Sales Tax Waivers HY (S-STW) 2001–2006 Multiple States Gallagher and Muehlegger (2011)
Federal Income Tax Credit for Hybrid Vehicles HY (F-ITC) 2006 Multiple States Beresteanu and Li (2011)
State-level Hybrid Vehicles Financial Incentive - Income Tax Credit HY (S-ITC) 2000–2006 Multiple States Gallagher and Muehlegger (2011)



Weatherization
Energize Phoenix Program - Residential Buildings EPP 2010 AZ Liang et al. (2018)
Illinois Home Weatherization Assistance Program IHWAP 2018 IL Christensen, Francisco, and Myers (2023)
Wisconsin Energy Efficiency Retrofit Program WI RF 2013 WI Allcott and Greenstone (2024)
Michigan Weatherization Assistance Program WAP 2011 MI Fowlie, Greenstone, and Wolfram (2018)
Gainesville Regional Utility LEEP Plus Program LEEP+ 2012 FL Hancevic and Sandoval (2022)

Other Subsidies
California 20/20 Electricity Rebate Program CA 20/20 2005 CA Ito (2015)
USDA Conservation Reserve Program CRP 2020  Aspelund and Russo (2024)

Panel B. Nudges and Marketing

Home Energy Reports
Home Energy Reports (17 RCTs) HER (17 RCTs) 2009  Allcott (2011)
Opower Electricity Program Evaluations (166 RCTs) Opower Elec. (166 RCTs) 2012   
Peak Energy Reports PER 2014 CA Brandon, List, and Metcalfe 2018
Opower Natural Gas Program Evaluations (52 RCTs) Opower Nat. Gas (52 RCTs) 2012   

Other Nudges
Energize CT Home Energy Solutions Program Energy Audit Audit Nudge 2013  Gillingham and Tsvetanov (2018)
Solarize Connecticut Solarize 2012 CT Gillingham and Bollinger (2021)
ENERGY STAR Rebate - Water Heaters (w/ Sales Agent Incentive) ES (WH) + Nudge 2012  Allcott and Sweeney (2017)
Illinois Home Weatherization Assistance Program (High Bonus) IHWAP + Nudge (H) 2018 IL Christensen, Francisco, and Myers (2023)
Illinois Home Weatherization Assistance Program (Low Bonus) IHWAP + Nudge (L) 2018 IL Christensen, Francisco, and Myers (2023)
Michigan Weatherization Assistance Program (Marketing) WAP + Nudge 2011 MI Fowlie, Greenstone, and Wolfram (2018)
Carbon Footprint Food Label Field Experiment * Food Labels 2020 United Kingdom Lohmann et al. (2022)

Panel C. Revenue Raisers

Gasoline Taxes
State-level Gas Tax Variation (Davis and Kilian 2011) Gas (DK) 2008  Davis and Kilian (2011)
Urban Area-level Gas Price Variation (Su 2011) Gas (Su) 2001  Su (2011)
State-level Gas Tax Variation (Coglianese et al. 2017) Gas (Coglianese) 2008  Coglianese et al. (2017)
Regional Gas Price Variation (Manzan and Zerom 2010) Gas (Manzan) 1994  Manzan and Zerom (2010)
State-level Gas Price Variation (Small and Van Dender 2007) Gas (Small) 2001  Small and Van Dender (2007)
National Crude Price Variation (Li, Linn, and Muehlegger 2014) Gas (Li) 2008  Li, Linn, and Muehlegger (2014)
City-level Gas Price Variation (Levin, Lewis, and Wolak 2017) Gas (Levin) 2009  Levin, Lewis, and Wolak (2017)
National Gas Price Variation (Sentenac-Chemin 2012) Gas (Sentenac-Chemin) 2005  Sentenac-Chemin (2012)
State-level Crude Price Pass-through Variation (Kilian and Zhou 2023) Gas (Kilian) 2022  Kilian and Zhou (2023)
National Crude Price Shock Variation (Gelman et al. 2023) Gas (Gelman) 2016  Gelman et al. (2023)
National Gas Price Variation (Park and Zhao 2010) Gas (Park) 2008  Park and Zhao (2010)
National Gas Price Variation (Hughes, Knittel, and Sperling 2008) Gas (Hughes) 2006  Hughes, Knittel, and Sperling (2008)
Almost Ideal Demand System (West and Williams 2007) * Gas (West) 1998  West and Williams (2007)
Quadratic Almost Ideal Demand System (Tiezzi and Verde 2016) * Gas (Tiezzi) 2010  Tiezzi and Verde (2016)
Multimarket Simulation Model (Bento et al. 2009) * Gas (Bento) 2002  Bento et al. (2009)
National Gas Price Variation (Hughes, Knittel, and Sperling 2008) * Gas (Hughes - Ext) 1990  Hughes, Knittel, and Sperling (2008)
State-level Crude Price Pass-through Variation (Kilian and Zhou 2023) * Gas (Kilian - Ext) 2014  Kilian and Zhou (2023)
State-level Gas Price Variation (Small and Van Dender 2007) * Gas (Small - Ext) 2001  Small and Van Dender (2007)



Other Fuel Taxes
Tax on Jet Fuel Jet Fuel 2013  Fukui and Miyoshi (2017)
Tax on Diesel Fuel Diesel 2006  Dahl (2012)
Tax on Heavy Fuel Oil * Heavy Fuel 2004  Mundaca, Strand, and Young (2021)
Windfall Profit Tax on Crude Oil * Crude (WPT) 1985  Rao (2018)
State-level Crude Oil Taxes * Crude (State) 2015  Brown, Maniloff, and Manning (2020)
Tax on E85 (Flex Fuel) * E85 2006  Anderson (2012)

Other Revenue Raisers
Critical Peak Pricing - Active Joiners CPP (AJ) 2020  Fowlie et al. (2021)
California Alternate Rates for Energy CARE 2014 CA Hahn and Metcalfe (2021)
Critical Peak Pricing - Passive Joiners CPP (PJ) 2020  Fowlie et al. (2021)

Cap and Trade
Regional Greenhouse Gas Initiative RGGI 2008–2018 Multiple States Chan and Morrow (2019)
California Cap-and-Trade Program CA CT 2012–2017 CA Hernandez-Cortes and Meng (2023)
EU Emissions Trading System (Bayer and Aklin) * ETS (BA) 2008–2016 European Union Bayer and Aklin (2020)
EU Emissions Trading System (Colmer et al. 2024) * ETS (CMMW) 2005–2012 European Union Colmer et al. (2024)

Panel D. International

Cookstoves
Energy Efficient Cookstove Subsidy (Kenya) Cookstove (Kenya) 2019 Kenya Berkouwer and Dean (2022)
Energy Efficient Cookstove Subsidy (India) Cookstove (India) 2020 India Hanna, Duflo, and Greenstone (2016)

Deforestation
REDD+ Carbon Offsets (Sierra Leone) REDD+ (SL) 2014 Sierra Leone Malan et al. (2024)
Deforestation PES (Uganda) Deforest (Uganda) 2012 Uganda Jayachandran et al. (2017)
REDD+ Carbon Offsets (Mix) REDD+ 2020 Multiple Countries West et al. (2023)
Deforestation PES (Mexico) * Deforest (Mexico) 2021 Mexico Izquierdo-Tort, Jayachandran, and Saavedra (2024)

Rice Burning
Rice Burning PES (Upfront Payment) India PES (Upfront) 2020 India Jack et al. (2023)
Rice Burning PES (Standard Payment) India PES (Standard) 2020 India Jack et al. (2023)

Wind Offset
Wind Projects Carbon Offsets (India) Offset (India) 2010 India Calel et al. (2021)

International Rebates
Cash for Coolers Appliance Rebate - Air Conditioners Fridge (Mexico) 2009 Mexico Davis, Fuchs, and Gertler (2014)
Cash for Coolers Appliance Rebate - Refrigerators AC (Mexico) 2009 Mexico Davis, Fuchs, and Gertler (2014)
Weatherization Field Experiment (Mexico) WAP (Mexico) 2016 Mexico Davis, Martinez, and Taboada (2020)

International Nudges
Home Energy Reports - Qatar * Nudge (Qatar) 2018 Qatar Al-Ubaydli et al. (2023)
Home Energy Reports - Germany * Nudge (Germany) 2014 Germany Andor et al. (2020)

Panel E. Regulation

CAFE Standards
CAFE Standards (Leard and McConnell 2017) CAFE (LM)   Leard and McConnell (2017)
CAFE (Anderson and Sallee 2011) CAFE (AS)   Anderson and Sallee (2011)
CAFE (Jacobsen 2013) CAFE (J)   Jacobsen (2013)

Renewable Portfolio Standards
Renewable Portfolio Standards RPS   Greenstone and Nath (2020)

Notes: This table lists each policy included in our sample. We provide the name of the policy, its short label name used in the subsequent tables, the year(s) the
policy was implemented (corresponding to our “in-context” year(s)), the location where the policy was implemented, and the academic paper(s) used to construct
the causal e↵ect of the policy. We denote policies excluded from our primary sample by “*”, which we refer to as our “extended sample.”



Table 2: Baseline MVPF Components

Panel A. Subsidies Transfer Global Local Rebound Env. Price Profits WTP Program Initial Climate Total MVPF

Wind Production Credits 1.000 4.678 0.643 -1.074 1.900 0.645 0.000 7.793 1.000 0.435 -0.108 1.328 5.870
PTC (Shrimali) 1.000 5.865 0.806 -1.346 3.277 0.920 0.000 10.522 1.000 0.546 -0.152 1.394 7.547
PTC (Metcalf) 1.000 4.368 0.601 -1.002 1.427 0.560 0.000 6.953 1.000 0.407 -0.094 1.312 5.298
PTC (Hitaj) 1.000 3.801 0.523 -0.872 0.998 0.455 0.000 5.904 1.000 0.354 -0.078 1.276 4.626
FIT (Germany - BEN) * 1.000 6.629 0.911 -1.521 4.841 1.170 0.000 13.030 1.000 0.617 -0.193 1.424 9.148
FIT (Spain) * 1.000 5.866 0.806 -1.346 3.277 0.920 0.000 10.522 1.000 0.546 -0.152 1.394 7.547
FIT (Germany - HL) * 1.000 5.596 0.769 -1.284 2.844 0.844 0.000 9.768 1.000 0.521 -0.140 1.381 7.072
FIT (France) * 1.000 4.837 0.665 -1.110 1.877 0.658 0.000 7.926 1.000 0.450 -0.110 1.340 5.913
FIT (UK) * 1.000 2.006 0.276 -0.460 0.223 0.199 0.000 3.243 1.000 0.187 -0.035 1.151 2.817
FIT (EU) * 1.000 0.546 0.075 -0.125 0.016 0.050 0.000 1.561 1.000 0.051 -0.009 1.042 1.498

Residential Solar 1.106 1.718 0.252 -0.421 2.280 1.636 -0.214 6.356 1.000 0.714 -0.068 1.646 3.862
CSI 1.000 4.299 0.631 -1.054 4.988 3.987 -0.535 13.316 1.000 1.787 -0.157 2.630 5.063
NE Solar 1.000 1.220 0.179 -0.299 3.132 1.610 -0.152 6.690 1.000 0.507 -0.076 1.431 4.676
CSI (TPO) 1.528 1.604 0.235 -0.393 1.982 1.371 -0.200 6.128 1.000 0.667 -0.061 1.606 3.815
CSI (HO) 1.000 0.932 0.137 -0.228 1.081 0.864 -0.116 3.670 1.000 0.387 -0.034 1.353 2.712
CT Solar 1.000 0.533 0.078 -0.131 0.216 0.346 -0.066 1.976 1.000 0.222 -0.012 1.209 1.634
ITC * 1.000 1.152 0.169 -0.282 3.825 1.944 -0.143 7.664 1.000 0.531 -0.088 1.443 5.312

Electric Vehicles 1.000 0.057 0.000 0.032 0.073 0.452 -0.043 1.571 1.000 0.092 -0.004 1.087 1.445
BEV (State - Rebate) 1.000 0.068 0.000 0.038 0.103 0.564 -0.051 1.722 1.000 0.108 -0.006 1.103 1.561
ITC (EV) 1.000 0.061 0.000 0.034 0.078 0.482 -0.046 1.609 1.000 0.097 -0.005 1.092 1.474
EFMP 1.000 0.042 0.000 0.023 0.040 0.309 -0.031 1.383 1.000 0.070 -0.003 1.067 1.296
BEV (State - ITC) * 1.000 -0.048 0.000 -0.027 0.000 0.000 0.036 0.961 1.000 -0.076 0.003 0.927 1.037

Appliance Rebates 0.867 0.497 0.043 -0.089 0.000 0.000 -0.103 1.215 1.000 0.052 -0.009 1.044 1.164
C4A (CW) 0.952 0.550 0.083 -0.124 0.000 0.000 -0.039 1.423 1.000 0.021 -0.009 1.012 1.405
ES (WH) 0.598 1.707 0.000 -0.201 0.000 0.000 -0.659 1.445 1.000 0.112 -0.033 1.078 1.340
ES (CW) 1.000 0.861 0.126 -0.193 0.000 0.000 -0.072 1.722 1.000 0.328 -0.014 1.315 1.310
C4A (DW) 0.929 0.243 0.037 -0.055 0.000 0.000 -0.017 1.138 1.000 0.009 -0.004 1.005 1.132
ES (DW) 1.000 -0.223 -0.033 0.050 0.000 0.000 0.019 0.813 1.000 -0.231 0.003 0.772 1.053
C4A (Fridge) 0.960 0.099 0.015 -0.022 0.000 0.000 -0.007 1.044 1.000 0.004 -0.002 1.002 1.042
ES (Fridge) 1.000 0.199 0.029 -0.045 0.000 0.000 -0.017 1.167 1.000 0.157 -0.003 1.154 1.011
CA ESA 0.500 0.541 0.083 -0.122 0.000 0.000 -0.034 0.968 1.000 0.018 -0.008 1.010 0.958

Vehicle Retirement 0.910 0.280 0.102 -0.137 0.000 0.000 -0.049 1.106 1.000 0.060 -0.004 1.056 1.047
C4C (TX) 1.000 0.410 0.030 -0.208 0.000 0.000 -0.074 1.157 1.000 0.091 -0.006 1.084 1.067
C4C (US) 1.000 0.271 0.020 -0.140 0.000 0.000 -0.049 1.102 1.000 0.060 -0.004 1.055 1.044
BAAQMD 0.730 0.161 0.255 -0.062 0.000 0.000 -0.025 1.059 1.000 0.031 -0.003 1.028 1.030

Willingness to Pay Cost

Environmental Benefits Learning by Doing Fiscal Externalities



Hybrid Vehicles 1.000 0.031 0.003 -0.026 0.000 0.014 -0.006 1.016 1.000 0.005 -0.001 1.004 1.012
HY (S-STW) 1.000 0.070 0.007 -0.059 0.001 0.031 -0.014 1.036 1.000 0.010 -0.002 1.008 1.028
HY (F-ITC) 1.000 0.020 0.002 -0.017 0.000 0.009 -0.004 1.010 1.000 0.003 0.000 1.002 1.008
HY (S-ITC) 1.000 0.004 0.000 -0.004 0.000 0.002 -0.001 1.002 1.000 0.001 0.000 1.001 1.002

Weatherization 0.774 0.297 0.029 -0.057 0.000 0.000 -0.054 0.989 1.000 0.017 -0.005 1.012 0.978
EPP 0.750 0.593 0.083 -0.133 0.000 0.000 -0.057 1.237 1.000 0.031 -0.009 1.022 1.210
IHWAP 0.750 0.404 0.019 -0.064 0.000 0.000 -0.111 0.999 1.000 0.025 -0.007 1.019 0.980
WI RF 0.870 0.052 0.011 -0.012 0.000 0.000 -0.001 0.920 1.000 0.001 -0.001 1.000 0.920
WAP 0.750 0.297 0.013 -0.045 0.000 0.000 -0.088 0.927 1.000 0.018 -0.005 1.013 0.915
LEEP+ 0.750 0.138 0.019 -0.031 0.000 0.000 -0.013 0.864 1.000 0.007 -0.002 1.005 0.859

Other Subsidies 0.887 1.504 0.424 -0.234 0.000 0.000 -0.065 2.517 1.000 0.036 -0.025 1.010 2.492
CA 20/20 0.882 2.090 0.297 -0.468 0.000 0.000 -0.131 2.671 1.000 0.071 -0.033 1.038 2.572
CRP 0.893 0.919 0.552 0.000 0.000 0.000 0.000 2.363 1.000 0.000 -0.018 0.982 2.407

Panel B. Nudges and Marketing

Home Energy Reports 0.000 2.074 0.218 -0.416 0.000 0.000 -0.030 1.846 1.000 -0.018 -0.033 0.949 1.945
HER (17 RCTs) 0.000 3.872 0.439 -0.844 0.000 0.000 -0.244 3.222 1.000 0.133 -0.061 1.072 3.006
Opower Elec. (166 RCTs) 0.000 3.246 0.368 -0.708 0.000 0.000 -0.205 2.701 1.000 0.111 -0.051 1.060 2.548
PER 0.000 0.230 0.064 0.000 0.000 0.000 0.695 0.989 1.000 -0.378 -0.004 0.618 1.600
Opower Nat. Gas (52 RCTs) 0.000 0.950 0.000 -0.112 0.000 0.000 -0.367 0.472 1.000 0.062 -0.016 1.046 0.451

Other Nudges 0.507 4.799 0.613 -1.061 0.000 0.000 -0.659 4.199 1.000 2.243 -0.076 3.167 1.326
Audit Nudge 0.000 8.678 1.333 -1.961 0.000 0.000 -0.542 7.507 1.000 2.683 -0.136 3.547 2.117
Solarize 1.145 15.001 2.200 -3.678 0.000 0.000 -1.844 12.824 1.000 6.320 -0.230 7.091 1.809
ES (WH) + Nudge 0.416 1.630 0.000 -0.192 0.000 0.000 -0.629 1.225 1.000 0.107 -0.032 1.075 1.140
IHWAP + Nudge (H) 0.739 0.517 0.019 -0.085 0.000 0.000 -0.105 1.085 1.000 0.023 -0.008 1.015 1.069
IHWAP + Nudge (L) 0.743 0.500 0.018 -0.082 0.000 0.000 -0.101 1.078 1.000 0.022 -0.008 1.014 1.062
WAP + Nudge 0.000 2.467 0.107 -0.371 0.000 0.000 -0.732 1.471 1.000 4.300 -0.041 5.259 0.280
Food Labels * 0.000 6.170 0.000 0.000 0.000 0.000 0.000 6.170 1.000 0.000 -0.120 0.880 7.015

Panel C. Revenue Raisers

Gasoline Taxes 1.000 -0.167 -0.149 0.000 0.000 -0.001 0.044 0.726 1.000 -0.054 0.003 0.950 0.765
Gas (DK) 1.000 -0.274 -0.244 0.000 0.000 -0.001 0.071 0.553 1.000 -0.088 0.005 0.918 0.602
Gas (Su) 1.000 -0.236 -0.210 0.000 0.000 -0.001 0.062 0.614 1.000 -0.076 0.005 0.929 0.661
Gas (Coglianese) 1.000 -0.219 -0.195 0.000 0.000 -0.001 0.057 0.642 1.000 -0.070 0.004 0.934 0.687
Gas (Manzan) 1.000 -0.211 -0.188 0.000 0.000 -0.001 0.055 0.655 1.000 -0.068 0.004 0.936 0.699
Gas (Small) 1.000 -0.199 -0.177 0.000 0.000 -0.001 0.052 0.675 1.000 -0.064 0.004 0.940 0.718
Gas (Li) 1.000 -0.192 -0.171 0.000 0.000 -0.001 0.050 0.686 1.000 -0.062 0.004 0.942 0.728
Gas (Levin) 1.000 -0.175 -0.156 0.000 0.000 -0.001 0.046 0.713 1.000 -0.056 0.003 0.947 0.753
Gas (Sentenac-Chemin) 1.000 -0.166 -0.148 0.000 0.000 -0.001 0.044 0.727 1.000 -0.053 0.003 0.950 0.766
Gas (Kilian) 1.000 -0.117 -0.105 0.000 0.000 -0.001 0.031 0.807 1.000 -0.038 0.002 0.964 0.837
Gas (Gelman) 1.000 -0.097 -0.087 0.000 0.000 -0.001 0.025 0.840 1.000 -0.031 0.002 0.971 0.865
Gas (Park) 1.000 -0.095 -0.085 0.000 0.000 -0.001 0.025 0.843 1.000 -0.031 0.002 0.971 0.868
Gas (Hughes) 1.000 -0.025 -0.022 0.000 0.000 -0.001 0.006 0.958 1.000 -0.008 0.000 0.992 0.966



Gas (West) * 1.000 -0.272 -0.242 0.000 0.000 -0.001 0.071 0.555 1.000 -0.087 0.005 0.918 0.604
Gas (Tiezzi) * 1.000 -0.259 -0.230 0.000 0.000 -0.001 0.068 0.577 1.000 -0.083 0.005 0.922 0.626
Gas (Bento) * 1.000 -0.208 -0.185 0.000 0.000 -0.001 0.054 0.659 1.000 -0.067 0.004 0.937 0.704
Gas (Hughes - Ext) * 1.000 -0.199 -0.177 0.000 0.000 -0.001 0.052 0.674 1.000 -0.064 0.004 0.940 0.717
Gas (Kilian - Ext) * 1.000 -0.187 -0.166 0.000 0.000 -0.001 0.049 0.694 1.000 -0.060 0.004 0.944 0.736
Gas (Small - Ext) * 1.000 -0.039 -0.035 0.000 0.000 -0.001 0.010 0.934 1.000 -0.013 0.001 0.988 0.946

Other Fuel Taxes 1.000 -0.185 -0.066 0.000 0.000 0.000 0.025 0.774 1.000 -0.033 0.004 0.970 0.798
Jet Fuel 1.000 -0.310 -0.003 0.000 0.000 0.000 0.036 0.722 1.000 -0.048 0.006 0.958 0.754
Diesel 1.000 -0.059 -0.129 0.000 0.000 0.000 0.015 0.827 1.000 -0.019 0.001 0.982 0.842
Heavy Fuel * 1.000 -0.075 -0.001 0.000 0.000 0.000 0.007 0.931 1.000 -0.002 0.001 1.000 0.931
Crude (WPT) * 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 -0.002 0.000 0.998 1.002
Crude (State) * 1.000 -0.075 0.000 0.000 0.000 0.000 0.000 0.925 1.000 -0.364 0.001 0.637 1.451
E85 * 1.000 0.562 0.009 0.000 0.000 0.000 0.411 1.982 1.000 -0.361 0.011 0.650 3.051

Other Revenue Raisers 0.979 -0.150 -0.014 0.012 0.000 0.000 -0.108 0.719 1.000 0.109 0.003 1.112 0.647
CPP (AJ) 1.000 -0.107 -0.030 0.000 0.000 0.000 -0.323 0.540 1.000 0.176 0.002 1.178 0.459
CARE 0.936 -0.303 0.000 0.036 0.000 0.000 0.117 0.785 1.000 0.086 0.006 1.092 0.719
CPP (PJ) 1.000 -0.039 -0.011 0.000 0.000 0.000 -0.119 0.831 1.000 0.065 0.001 1.065 0.780

Cap and Trade 1.000 -0.359 -0.495 0.000 0.000 0.000 0.000 0.146 1.000 -0.028 0.007 0.979 0.149
RGGI 1.000 -0.657 -0.989 0.000 0.000 0.000 0.000 -0.646 1.000 -0.050 0.013 0.963 -0.671
CA CT 1.000 -0.061 -0.002 0.000 0.000 0.000 0.000 0.937 1.000 -0.006 0.001 0.996 0.941
ETS (BA) * 1.000 -9.192 0.000 0.000 0.000 0.000 0.000 -8.192 1.000 -0.900 0.180 0.280 -29.287
ETS (CMMW) * 1.000 -1.279 0.000 0.000 0.000 0.000 0.000 -0.279 1.000 -0.125 0.025 0.900 -0.310

Panel D. International

Cookstoves 4.101 20.103 0.000 0.000 0.000 0.000 0.000 24.203 1.000 0.000 -0.393 0.607 39.846
Cookstove (Kenya) 7.656 43.161 0.000 0.000 0.000 0.000 0.000 50.817 1.000 0.000 -0.843 0.157 323.453
Cookstove (India) 0.545 -2.956 0.000 0.000 0.000 0.000 0.000 -2.410 1.000 0.000 0.058 1.058 -2.279

Deforestation 0.462 14.443 0.000 0.000 0.000 0.000 0.000 14.905 1.000 0.000 -0.282 0.718 20.761
REDD+ (SL) 0.000 35.840 0.000 0.000 0.000 0.000 0.000 35.840 1.000 0.000 -0.700 0.300 119.438
Deforest (Uganda) 0.421 4.538 0.000 0.000 0.000 0.000 0.000 4.959 1.000 0.000 -0.089 0.911 5.441
REDD+ 0.965 2.951 0.000 0.000 0.000 0.000 0.000 3.916 1.000 0.000 -0.058 0.942 4.156
Deforest (Mexico) * 0.944 0.740 0.000 0.000 0.000 0.000 0.000 1.684 1.000 0.000 -0.014 0.986 1.709

Rice Burning 0.944 9.385 0.000 0.000 0.000 0.000 0.000 10.329 1.000 0.000 -0.183 0.817 12.646
India PES (Upfront) 0.972 10.642 0.000 0.000 0.000 0.000 0.000 11.614 1.000 0.000 -0.208 0.792 14.661
India PES (Standard) 0.915 8.128 0.000 0.000 0.000 0.000 0.000 9.043 1.000 0.000 -0.159 0.841 10.749

Wind Offset 1.000 9.355 0.000 -1.861 0.000 0.000 0.000 8.495 1.000 0.258 -0.146 1.112 7.641
Offset (India) 1.000 9.355 0.000 -1.861 0.000 0.000 0.000 8.495 1.000 0.258 -0.146 1.112 7.641

International Rebates 0.667 -0.022 0.000 0.004 0.000 0.000 0.000 0.649 1.000 0.000 0.000 1.000 0.649
Fridge (Mexico) 0.750 0.125 0.000 -0.024 0.000 0.000 0.000 0.850 1.000 0.000 -0.002 0.998 0.852
AC (Mexico) 0.750 -0.094 0.000 0.018 0.000 0.000 0.000 0.675 1.000 0.000 0.001 1.001 0.674
WAP (Mexico) 0.500 -0.096 0.000 0.019 0.000 0.000 0.000 0.422 1.000 0.000 0.002 1.002 0.422



International Nudges 0.000 3.801 0.000 -0.745 0.000 0.000 0.000 3.057 1.000 0.000 -0.060 0.940 3.251
Nudge (Qatar) * 0.000 7.201 0.000 -1.410 0.000 0.000 0.000 5.791 1.000 0.000 -0.113 0.887 6.529
Nudge (Germany) * 0.000 0.401 0.000 -0.079 0.000 0.000 0.000 0.323 1.000 0.000 -0.006 0.994 0.325

Notes: This table presents the WTP and cost components for each policy in our sample using the baseline specification. Each component is normalized per dollar
of mechanical spending on the policy. The first column reports the size of the transfer. The next three columns report the environmental externality including
local externalities, global greenhouse gas externalities, and rebound e↵ects (both global and local). The next two columns report learning by doing components
for both the environmental benefits and future price reductions. The next column reports impact on profits of oil/gas and utility sectors. The cost components
report the mechanical cost, followed by the fiscal externalities (state and federal tax and subsidy impacts), and the climate fiscal externality from the impact of
changes in climate on future GDP and thus future tax revenue. We report estimates for each policy in our sample along with category averages for each type
of policy. We denote policies excluded from our primary sample by “*”, and these policies are not included in our category average measures. All numbers are
calculated using our baseline path for the social cost of carbon ($193 in 2020) and a 2% discount rate.



Table 3: MVPF Versus Cost Per Ton

Panel A. With Learning by Doing MVPF Resource Government Social

Subsidies
Wind Production Credits 5.870 -103 46 -32
Residential Solar 3.862 -77 90 -67
Electric Vehicles 1.445 -458 1,356 -415
Appliance Rebates 1.164 -2 474 111
Vehicle Retirement 1.047 1,008 876 148
Hybrid Vehicles 1.012 577 5,892 -38
Weatherization 0.978 194 779 207

Nudges and Marketing
Opower Elec. (166 RCTs) 2.548 -41 77 70

Revenue Raisers
Gasoline Taxes 0.671 -104 -770 -64

Panel B. Without Learning by Doing

Subsidies
Wind Production Credits 3.851 -42 69 -8
Residential Solar 1.446 4 237 83
Electric Vehicles 0.961 963 2,422 283
Appliance Rebates 1.164 -2 474 111
Vehicle Retirement 1.047 1,008 876 148
Hybrid Vehicles 0.998 659 6,041 43
Weatherization 0.978 194 779 207

Nudges and Marketing
Opower Elec. (166 RCTs) 2.548 -41 77 70

Revenue Raisers
Gasoline Taxes 0.673 -104 -768 -62

Cost Per Ton

Notes: This table presents estimates of the MVPF and cost per ton measures using our three definitions:
resource cost per ton, government cost per ton and social cost per ton. See text for precise definitions of each
measure. We present estimates here for each policy category average; the Appendix provides estimates for each
policy. All numbers are calculated using our baseline path for the social cost of carbon ($193 in 2020) and a
2% discount rate.

84



Appendix Figure 1: Learning by Doing From Way et al. (2022)

A. Wind

101

102

103

104

LC
O

E
, $

/M
W

h

100 101 102 103 104

Cumulative Electricity Generated, TWh

θ = -0.194

B. Solar

101

102

103

104

LC
O

E
, $

/M
W

h

10-3 10-2 10-1 100 102 103 104

Cumulative Electricity Generated, TWh

θ = -0.319

C. Electric Vehicle Batteries

101

102

103

104

C
os

t, 
$/

kW
h

100 101 102 103

Cumulative Production, GWh

θ = -0.421

Notes: This figure reproduces estimates from Way et al. (2022) of the price of solar cells, wind energy, and
battery storage as a function of cumulative global production. Panel A and B report the levelized cost per
MWh of electricty (LCOE) from wind and solar, respectively. Panel C reports the electric vehicle battery cell
cost per KWh. We report on each panel the value ✓ corresponding to the learning elasticity forecast from Way
et al. (2022) in each setting, which we feed into our calculations of the benefits generated by learning by doing
(DP and DE in Theorem 1).
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Appendix Figure 2: Vehicle & Grid Externalities Over Time

A. Vehicle Externalities

Local Emissions

Driving Externalities

Global Emissions

Actual Gas Tax

B. Electricity Grid Externalities

Global Emissions

Local Emissions

Forecasted

Notes: This figure illustrates the components of the vehicle and grid externalities over time. Panel A reports the
dollar value of the vehicle externalities per gallon of gasoline. We split these into local emissions (e.g., NOX),
driving externalities (accidents and congestion), and global emissions (e.g., CO2). The top line represents the
total dollar externality per gallon of gasoline. Panel B shows the change in the externality from 1 KWh of
marginal emissions. The environmental externality prior to 2022 is calculated using the US average emissions
factors from the EPA’s AVERT model combined with our valuations of those pollutants discussed in Section 3.
Values after 2022 use emissions information from (Jenkins & Mayfield 2023). All numbers are in 2020 dollars
using a our baseline path of the social cost of carbon ($193 SCC in 2020) and a 2% discount rate.
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Appendix Figure 3: Environmental Externality per MWh of Electricity
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Notes: This figure illustrates the dollar value of the environmental externality per MWh of electricity in 2020
using emissions rates from EPA’s AVERT model separately for each AVERT model region in the US.
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Appendix Figure 4: Electric Vehicles: Non-Marginal (Average) MVPF
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Notes: This figure shows how the MVPF varies with the size of electric vehicle subsidies, holding the price
elasticity of demand constant at -2.1 from Muehlegger & Rapson (2022). In 2020, the average subsidy value per
vehicle, including state and federal subsidies, was $647.25, state subsidies were $604.27, and federal subsidies
were $42.98. The IRA raised the federal subsidy amount to $7,500, yielding a combined total subsidy of
$8,104.27. Taking an average of the MVPFs between the 2020 subsidy level ($647) and a post-IRA subsidy level
($8,104) yields a ”non-marginal” MVPF of 1.15. On average, the additional $7.5K in spending induced by the
IRA generated $1.15 in benefits to individuals in the economy per dollar of net government spending.
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Appendix Figure 5: Baseline MVPFs

US and Rest of World Split
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Connecticut Residential Solar Investment Program
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Notes: This figure repeats Figure 4 with blue bars showing the WTP for US beneficiaries and the orange bars
show the non-US benefits. We cap estimates at 5 with + signs indicating MVPFs above 5. The category average
(shown by the black vertical lines) represents the average WTP for a mechanical $1 transfer and is calculated
by averaging the WTP and cost components for each category. All numbers are calculated using our baseline
path for the social cost of carbon ($193 in 2020) and a 2% discount rate.
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Appendix Figure 6: CAFE vs. Gasoline + Income Tax

A. CAFE Comparison with Gasoline Tax (Leard & McConnell 2017)
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Notes: This figure presents a comparison of the welfare impact of changes to the stringency of CAFE regulation
to a gasoline tax, using our category average gasoline tax MVPF. Panel A presents the impact of CAFE and
a gas tax, each normalized to deliver $1 of environmental benefits using our baseline SCC of $193. We present
the WTP of producers, consumers and the government for CAFE (in blue) and the gas tax (in orange). In
panel B, we consider the government revenue raised from the conceptual experiment of implementing the gas
tax and using an income tax to compensate producers and consumers so that they obtain the same net WTP as
CAFE. The first column shows the (negative) net cost of the gas tax. The second and third columns consider
the cost of compensating producers and consumers (drivers). We use an MVPF for income taxes on producers
of 1.8 and an MVPF for income taxes on consumers (drivers) of 1.2. The fourth column presents the net cost to
the government of providing the gas and income tax combination that o↵ers similar incidence to CAFE (which
is replicated for comparison in the far right bar of Panel A). The fifth column provides the net cost to the
government of CAFE.
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Appendix Figure 7: Additional Regulation Comparisons

A. CAFE Comparison with Gasoline
Tax (Anderson & Sallee 2011)

1.00

0.39

1.00

-0.34

-0.06-0.14

-2.31
-2.15

-0.39

-3.0

-2.0

-1.0

0.0

1.0

C
om

po
ne

nt
 V

al
ue

Env Benefits Producers Consumers Govt Cost

CAFE Standards
Gas Tax

Gas + Income Tax

B. CAFE Comparison with Gasoline
Tax (Jacobsen 2013a)
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C. RPS Comparison with Wind PTC (Greenstone & Nath 2024)
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Notes: This figure presents a comparison of the welfare impact of changes in regulation versus taxes. Panel A
uses estimates of the impact of CAFE from (Anderson & Sallee 2011); Panel B uses estimates of the impact of
CAFE from (Jacobsen 2013a); Panel C uses estimates of the impact of Renewable Portfolio Standards (RPS)
from (Greenstone & Nath 2024). Panels A and B also present our baseline category average MVPF for gasoline
taxes; Panel C presents the baseline category average MVPF for wind PTCs. For both gasoline taxes and wind
PTCs, we exclude local benefits and learning by doing e↵ects to align with the type of externalities estimated
in the comparison papers studying regulation. The bars present the WTP of producers, consumers and the
government for CAFE (in blue) and the gas tax (in orange), normalized to be per $1 of environmental benefits
using our baseline $193 SCC model. The far right bar presents the net government cost from the conceptual
experiment of replicating the distributional incidence of the regulation using the combination of gas taxes and
income taxes (Panels A and B) and wind PTCs and income taxes (Panel C).

91



Appendix Figure 8: Electricity Rebound
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Notes: This figure shows how the electricity rebound e↵ect varies as a function of the demand and supply
elasticity. The y-axis represents the absolute value of the price elasticity of demand for electricity and the x-axis
is the supply elasticity for electricity. Our baseline estimate of the demand elasticity (-0.19) and supply elasticity
(0.78) corresponds to an electricity rebound rate of 19.6%. The baseline demand elasticity is a weighted average
of the residential, commercial, and industrial price elasticities and the supply elasticity is a weighted average of
the elasticities of each electricity generation source compiled by the Department of Interior for use in their 2021
MarketSim model.
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Appendix Figure 9: Evidence of Publication Bias

A. Funnel Plot
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Notes: These figures present tests for publication bias in our baseline sample. Figure A shows a “funnel plot”
of the standard errors in our sample against the point estimates in our sample. For ease of visualization, we
restrict to point estimates between -5 and 5; this drops 5 estimates, all of which have t-statistics above 1.96.
Panel B provides evidence in the form of a histogram of the t-statistics (in absolute value), with bins of width
.98 to highlight the threshold around 1.96. We form our estimate of the implied publication bias as the ratio of
the number of studies in the first bin above the threshold to that in the first bin below the threshold, which is
2.2. For ease of visualization, we drop t-statistics above 5, of which there are 44 in our sample.
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Appendix Figure 10: Model Fits for Estimates of Publication Bias

A. Our Approach
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B. Andrews & Kasy (2019) Approach
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Notes: These figures present the implied CDF from our estimates of publication bias and estimates using the
method in Andrews & Kasy (2019), compared to the empirical CDF of the t-stats in our sample. In each panel,
the blue line indicates the empirical CDF. In panel A, the gray line superimposes our estimate, a piecewise linear
fit obtained by counting the number of observations in each bin of .98. In panel B, the orange line indicates
the implied CDF using the estimates from Andrews & Kasy (2019). In particular, we apply their procedure,
yielding estimates for the degree of publication bias, and the mean and standard deviation of the (assumed
Gaussian) true distribution of t-stats. We then take 15 times the number of observations in our sample draws
from a normal with that mean and standard deviation. For each draw, we further draw from a normal with
mean at that draw’s value and standard deviation of 1 (this reflect a hypothetical study’s estimate of the true
e↵ect, where here e↵ects are studentized so the variance is 1). This yields a vector of hypothetical estimates.
We then keep 1

p% of the observations that are below 1.96, where p is the estimated publication bias (probability

of a significant study being published relative to an insignificant one). As noted in the text, the key conclusion
is the superior fit of the method we implement in panel A.

94



Appendix Figure 11: MVPFs with Publication Bias–Corrected Estimates
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Connecticut Residential Solar Investment Program
California Solar Initiative - Host (Pless and van Benthem 2019)

California Solar Initiative - Third-Party (Pless and van Benthem 2019)
Northeast State-level Solar Rebate Programs

California Solar Initiative (Hughes and Podolefsky 2015)

Renewable Electricity PTC (Hitaj 2013)
Renewable Electricity PTC (Metcalf 2010)

Renewable Electricity PTC (Shrimali, Lynes, and Indvik 2015)

0 1 2 3 4 5+
MVPF

Weatherization

Hybrid Vehicles

Vehicle Retirement

Appliance Rebates

Electric Vehicles

Residential Solar

Wind Production Credits
+
+ 5.13

Notes: This figure shows the 2020 baseline MVPF estimates for all subsidy policies in our main sample, using
publication bias–corrected estimating following the procedure in Andrews & Kasy (2019). We cap estimates at
5 with + signs indicating MVPFs above 5. The category average (shown by the black vertical lines) show the
MVPF associated with a conceptual experiment where $1 in initial program cost is spent on each policy in the
category. The category average MVPF is the constructed using the average WTP and cost components for each
category. All numbers are calculated using our baseline path for the social cost of carbon ($193 in 2020) and a
2% discount rate.
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Appendix Table 1: Evidence of Learning By Doing, Using Data from Way et al. (2022)

Wind Solar Batteries

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log Cum. Sales -0.208 -0.131 0.096 -0.306 -0.853 -2.018 -0.498 -0.445 -0.461
(0.007) (0.054) (0.084) (0.024) (0.237) (0.287) (0.008) (0.077) (0.073)

Log Marg. Sales -0.083 0.070 0.558 0.478 -0.062 -0.215
(0.059) (0.069) (0.241) (0.163) (0.090) (0.120)

Year -0.086 0.468 0.041
(0.026) (0.096) (0.023)

Observations 36 36 36 22 22 22 23 23 23

Notes: This table uses data from Way et al. (2022) (displayed in Appendix Figure 1) to provide estimates of
the relationship between cumulative production and prices for three technologies: wind, solar, and batteries.
The first column regresses log prices on log cumulative global generation. The second column adds controls for
yearly flow of sales. The third column further adds controls for a linear time trend. The next three columns
repeat this exercise for solar cell production and prices. The last three columns repeat this for battery storage.
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Appendix Table 2: In-Context MVPF Components

Panel A. Subsidies Transfer Global Local Rebound Env. Price Profits WTP Program Initial Climate Total MVPF

Wind Production Credits 1.000 2.378 0.971 -0.665 2.775 0.823 0.000 7.282 1.000 0.191 -0.088 1.103 6.601
PTC (Shrimali) 1.000 2.359 0.714 -0.612 4.080 1.116 0.000 8.657 1.000 0.189 -0.112 1.077 8.040
PTC (Metcalf) 1.000 2.476 1.141 -0.717 2.517 0.751 0.000 7.168 1.000 0.200 -0.085 1.115 6.429
PTC (Hitaj) 1.000 2.298 1.059 -0.665 1.727 0.602 0.000 6.020 1.000 0.185 -0.068 1.118 5.386
FIT (Germany - BEN) * 1.000 7.662 2.558 -2.032 4.841 1.170 0.000 15.200 1.000 0.617 -0.209 1.408 10.796
FIT (Spain) * 1.000 6.779 2.263 -1.798 3.277 0.920 0.000 12.442 1.000 0.546 -0.166 1.380 9.018
FIT (Germany - HL) * 1.000 6.467 2.159 -1.715 2.844 0.844 0.000 11.599 1.000 0.521 -0.153 1.367 8.483
FIT (France) * 1.000 5.590 1.866 -1.482 1.877 0.658 0.000 9.508 1.000 0.450 -0.122 1.328 7.158
FIT (UK) * 1.000 2.319 0.774 -0.615 0.223 0.199 0.000 3.900 1.000 0.187 -0.040 1.146 3.402
FIT (EU) * 1.000 0.631 0.211 -0.167 0.016 0.050 0.000 1.740 1.000 0.051 -0.010 1.041 1.672

Residential Solar 1.106 0.740 0.094 -0.180 2.459 2.191 -0.479 5.931 1.000 1.680 -0.052 2.627 2.257
CSI 1.000 1.059 0.081 -0.247 2.315 5.001 -0.734 8.476 1.000 3.585 -0.058 4.527 1.872
NE Solar 1.000 0.700 0.232 -0.194 4.906 2.365 -0.157 8.852 1.000 1.226 -0.082 2.144 4.129
CSI (TPO) 1.528 1.053 0.077 -0.247 3.878 2.200 -0.795 7.694 1.000 1.436 -0.086 2.349 3.275
CSI (HO) 1.000 0.514 0.038 -0.121 1.036 1.011 -0.388 3.090 1.000 0.752 -0.027 1.725 1.791
CT Solar 1.000 0.372 0.043 -0.090 0.160 0.381 -0.321 1.545 1.000 1.400 -0.008 2.392 0.646
ITC * 1.000 1.096 0.253 -0.280 10.854 2.827 -0.113 15.638 1.000 0.614 -0.189 1.426 10.968

Electric Vehicles 1.000 0.090 -0.016 0.041 0.139 0.340 -0.069 1.525 1.000 0.730 -0.006 1.723 0.885
BEV (State - Rebate) 1.000 0.119 -0.024 0.052 0.138 0.403 -0.097 1.591 1.000 0.831 -0.007 1.824 0.873
ITC (EV) 1.000 0.068 -0.034 0.053 0.050 0.356 -0.110 1.383 1.000 0.641 -0.004 1.637 0.844
EFMP 1.000 0.083 0.010 0.017 0.229 0.261 0.000 1.600 1.000 0.717 -0.007 1.710 0.936
BEV (State - ITC) * 1.000 -0.039 0.043 -0.051 0.000 0.000 0.099 1.052 1.000 -0.611 0.002 0.391 2.689

Appliance Rebates 0.867 0.488 0.166 -0.114 0.000 0.000 -0.134 1.273 1.000 0.064 -0.008 1.056 1.206
C4A (CW) 0.953 0.462 0.232 -0.136 0.000 0.000 -0.034 1.477 1.000 0.018 -0.007 1.011 1.460
ES (WH) 0.598 1.429 0.000 -0.168 0.000 0.000 -0.760 1.099 1.000 0.129 -0.028 1.101 0.998
ES (CW) 1.000 1.458 0.935 -0.469 0.000 0.000 -0.108 2.816 1.000 0.348 -0.023 1.325 2.126
C4A (DW) 0.930 0.196 0.106 -0.059 0.000 0.000 -0.014 1.158 1.000 0.008 -0.003 1.005 1.153
ES (DW) 1.000 -0.255 -0.164 0.082 0.000 0.000 0.019 0.682 1.000 -0.232 0.004 0.772 0.883
C4A (Fridge) 0.960 0.086 0.040 -0.025 0.000 0.000 -0.006 1.055 1.000 0.003 -0.001 1.002 1.053
ES (Fridge) 1.000 0.228 0.146 -0.073 0.000 0.000 -0.017 1.284 1.000 0.157 -0.004 1.153 1.113
CA ESA 0.500 0.299 0.029 -0.064 0.000 0.000 -0.148 0.616 1.000 0.080 -0.005 1.076 0.572

Vehicle Retirement 0.892 0.510 0.981 -0.235 0.000 0.000 -0.210 1.938 1.000 0.236 -0.009 1.228 1.579
C4C (TX) 1.000 0.373 0.055 -0.199 0.000 0.000 -0.105 1.124 1.000 0.107 -0.006 1.101 1.021
C4C (US) 1.000 0.244 0.041 -0.133 0.000 0.000 -0.068 1.085 1.000 0.069 -0.004 1.065 1.018
BAAQMD 0.676 0.912 2.848 -0.373 0.000 0.000 -0.457 3.606 1.000 0.533 -0.016 1.517 2.377

Willingness to Pay Cost

Environmental Benefits Learning by Doing Fiscal Externalities



Hybrid Vehicles 1.000 0.024 0.005 -0.031 0.001 0.069 0.013 1.081 1.000 0.413 -0.001 1.413 0.765
HY (S-STW) 1.000 0.052 0.012 -0.072 0.002 0.167 0.028 1.188 1.000 0.810 -0.002 1.809 0.657
HY (F-ITC) 1.000 0.017 0.002 -0.017 0.000 0.031 0.009 1.043 1.000 0.355 0.000 1.354 0.770
HY (S-ITC) 1.000 0.003 0.001 -0.005 0.000 0.009 0.002 1.011 1.000 0.075 0.000 1.075 0.940

Weatherization 0.774 0.312 0.056 -0.063 0.000 0.000 -0.045 1.034 1.000 0.012 -0.005 1.007 1.027
EPP 0.750 0.674 0.106 -0.153 0.000 0.000 -0.036 1.341 1.000 0.020 -0.011 1.009 1.329
IHWAP 0.750 0.398 0.048 -0.069 0.000 0.000 -0.073 1.053 1.000 0.012 -0.007 1.006 1.047
WI RF 0.870 0.046 0.030 0.000 0.000 0.000 -0.019 0.929 1.000 0.000 0.000 1.000 0.929
WAP 0.750 0.306 0.057 -0.058 0.000 0.000 -0.084 0.971 1.000 0.022 -0.005 1.017 0.955
LEEP+ 0.750 0.139 0.039 -0.035 0.000 0.000 -0.014 0.878 1.000 0.008 -0.002 1.006 0.874

Other Subsidies 0.887 0.991 0.316 -0.112 0.000 0.000 -0.266 1.817 1.000 0.144 -0.017 1.127 1.612
CA 20/20 0.882 1.063 0.081 -0.224 0.000 0.000 -0.531 1.270 1.000 0.289 -0.017 1.272 0.999
CRP 0.893 0.919 0.552 0.000 0.000 0.000 0.000 2.363 1.000 0.000 -0.018 0.982 2.407

Panel B. Nudges and Marketing

Home Energy Reports 0.000 1.743 1.216 -0.552 0.000 0.000 -0.049 2.359 1.000 -0.013 -0.028 0.959 2.460
HER (17 RCTs) 0.000 3.165 3.116 -1.230 0.000 0.000 -0.258 4.793 1.000 0.140 -0.050 1.090 4.395
Opower Elec. (166 RCTs) 0.000 2.828 1.691 -0.885 0.000 0.000 -0.209 3.425 1.000 0.113 -0.044 1.069 3.205
PER 0.000 0.184 0.058 0.000 0.000 0.000 0.695 0.938 1.000 -0.378 -0.004 0.619 1.515
Opower Nat. Gas (52 RCTs) 0.000 0.796 0.000 -0.094 0.000 0.000 -0.423 0.279 1.000 0.072 -0.014 1.058 0.264

Other Nudges 0.617 3.343 0.526 -0.753 0.000 0.000 -1.845 1.888 1.000 5.290 -0.053 6.237 0.303
Audit Nudge 0.000 4.226 0.990 -1.022 0.000 0.000 -1.887 2.307 1.000 3.450 -0.066 4.384 0.526
Solarize 1.805 10.876 1.613 -2.672 0.000 0.000 -7.621 4.001 1.000 23.813 -0.166 24.647 0.162
ES (WH) + Nudge 0.416 1.365 0.000 -0.161 0.000 0.000 -0.726 0.895 1.000 0.123 -0.027 1.096 0.816
IHWAP + Nudge (H) 0.739 0.534 0.044 -0.094 0.000 0.000 -0.071 1.151 1.000 0.012 -0.009 1.003 1.147
IHWAP + Nudge (L) 0.743 0.515 0.042 -0.090 0.000 0.000 -0.069 1.140 1.000 0.012 -0.008 1.003 1.136
WAP + Nudge 0.000 2.539 0.470 -0.480 0.000 0.000 -0.693 1.836 1.000 4.328 -0.042 5.286 0.347
Food Labels * 0.000 6.170 0.000 0.000 0.000 0.000 0.000 6.170 1.000 0.000 -0.120 0.880 7.015

Panel C. Revenue Raisers

Gasoline Taxes 1.000 -0.131 -0.190 0.000 0.000 0.000 0.070 0.749 1.000 -0.070 0.003 0.933 0.803
Gas (DK) 1.000 -0.166 -0.194 0.000 0.000 0.000 0.099 0.739 1.000 -0.080 0.003 0.923 0.801
Gas (Su) 1.000 -0.222 -0.380 0.000 0.000 0.000 0.122 0.519 1.000 -0.134 0.004 0.870 0.596
Gas (Coglianese) 1.000 -0.133 -0.155 0.000 0.000 0.000 0.079 0.792 1.000 -0.064 0.003 0.938 0.844
Gas (Manzan) 1.000 -0.179 -0.473 0.000 0.000 0.000 0.118 0.466 1.000 -0.153 0.004 0.851 0.548
Gas (Small) 1.000 -0.187 -0.320 0.000 0.000 0.000 0.102 0.595 1.000 -0.113 0.004 0.891 0.668
Gas (Li) 1.000 -0.116 -0.136 0.000 0.000 0.000 0.069 0.817 1.000 -0.056 0.002 0.946 0.864
Gas (Levin) 1.000 -0.149 -0.168 0.000 0.000 0.000 0.064 0.746 1.000 -0.065 0.003 0.938 0.796
Gas (Sentenac-Chemin) 1.000 -0.122 -0.164 0.000 0.000 0.000 0.067 0.781 1.000 -0.063 0.002 0.939 0.831
Gas (Kilian) 1.000 -0.104 -0.092 0.000 -0.001 -0.005 0.033 0.832 1.000 -0.032 0.002 0.970 0.858
Gas (Gelman) 1.000 -0.114 -0.109 0.000 0.000 -0.001 0.040 0.816 1.000 -0.043 0.002 0.960 0.850
Gas (Park) 1.000 -0.058 -0.068 0.000 0.000 0.000 0.035 0.909 1.000 -0.028 0.001 0.973 0.934
Gas (Hughes) 1.000 -0.017 -0.022 0.000 0.000 0.000 0.009 0.970 1.000 -0.009 0.000 0.992 0.978



Gas (West) * 1.000 -0.295 -0.606 0.000 0.000 0.000 0.170 0.270 1.000 -0.205 0.006 0.800 0.337
Gas (Tiezzi) * 1.000 -0.193 -0.211 0.000 0.000 0.000 0.092 0.687 1.000 -0.086 0.004 0.918 0.749
Gas (Bento) * 1.000 -0.216 -0.350 0.000 0.000 0.000 0.109 0.542 1.000 -0.124 0.004 0.881 0.616
Gas (Hughes - Ext) * 1.000 -0.141 -0.472 0.000 0.000 0.000 0.115 0.503 1.000 -0.117 0.003 0.886 0.567
Gas (Kilian - Ext) * 1.000 -0.136 -0.134 0.000 0.000 -0.001 0.072 0.801 1.000 -0.057 0.003 0.946 0.847
Gas (Small - Ext) * 1.000 -0.037 -0.064 0.000 0.000 0.000 0.020 0.919 1.000 -0.022 0.001 0.978 0.940

Other Fuel Taxes 1.000 -0.061 -0.063 0.000 0.000 0.000 0.026 0.902 1.000 -0.020 0.001 0.981 0.920
Jet Fuel 1.000 -0.090 -0.001 0.000 0.000 0.000 0.036 0.945 1.000 -0.024 0.002 0.978 0.967
Diesel 1.000 -0.032 -0.125 0.000 0.000 0.000 0.015 0.859 1.000 -0.016 0.001 0.984 0.872
Heavy Fuel * 1.000 -0.062 -0.001 0.000 0.000 0.000 0.008 0.944 1.000 -0.002 0.001 0.999 0.945
Crude (WPT) * 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 -0.020 0.000 0.980 1.020
Crude (State) * 1.000 -0.065 0.000 0.000 0.000 0.000 0.000 0.935 1.000 -0.374 0.001 0.628 1.489
E85 * 1.000 0.153 0.069 0.000 0.000 0.000 0.393 1.614 1.000 -0.294 0.003 0.709 2.276

Other Revenue Raisers 0.979 -0.146 -0.014 0.011 0.000 0.000 -0.093 0.737 1.000 0.112 0.003 1.115 0.661
CPP (AJ) 1.000 -0.107 -0.030 0.000 0.000 0.000 -0.323 0.540 1.000 0.176 0.002 1.178 0.459
CARE 0.936 -0.292 0.000 0.034 0.000 0.000 0.162 0.840 1.000 0.095 0.006 1.101 0.763
CPP (PJ) 1.000 -0.039 -0.011 0.000 0.000 0.000 -0.119 0.831 1.000 0.065 0.001 1.065 0.780

Cap and Trade 1.000 -0.303 -0.495 0.000 0.000 0.000 0.000 0.202 1.000 -0.016 0.006 0.990 0.204
RGGI 1.000 -0.550 -0.989 0.000 0.000 0.000 0.000 -0.540 1.000 -0.027 0.011 0.984 -0.549
CA CT 1.000 -0.055 -0.002 0.000 0.000 0.000 0.000 0.943 1.000 -0.005 0.001 0.997 0.946
ETS (BA) * 1.000 -8.053 0.000 0.000 0.000 0.000 0.000 -7.053 1.000 -0.402 0.157 0.755 -9.345
ETS (CMMW) * 1.000 -1.026 0.000 0.000 0.000 0.000 0.000 -0.026 1.000 -0.152 0.020 0.869 -0.030

Notes: This table presents the MVPF components as displayed in Table 2 but using our in-context specification for each policy. We do not construct in-context
estimates for non-US policies. We denote policies excluded from our primary sample by “*”, and these policies are not included in our category average measures.
All numbers are calculated using our baseline path for the social cost of carbon ($193 in 2020, but we align the time path of emissions with the SCC in the
corresponding year for each policy’s context) and a 2% discount rate.



Appendix Table 3: Baseline MVPF Components with Confidence Intervals

Panel A. Subsidies Pt. Est Lower Upper Pt. Est Lower Upper Pt. Est Lower Upper

Wind Production Credits 5.870 0.000 0.000 3.533 0.000 0.000 9.548 0.000 0.000
(Sub)sample with SEs 5.870 2.733 ∞ 3.533 1.878 28.468 9.548 3.894 ∞
PTC (Shrimali) 7.547 1.744 ∞ 4.479 1.353 127.072 12.889 2.213 ∞
PTC (Metcalf) 5.298 2.649 9.275 3.196 1.796 5.491 8.429 3.722 16.676
PTC (Hitaj) 4.626 1.281 11.633 2.826 1.133 6.875 7.186 1.456 22.425

Residential Solar 3.862 0.000 0.000 2.865 0.000 0.000 5.852 0.000 0.000
(Sub)sample with SEs 3.282 1.966 33.888 2.543 1.567 21.953 5.006 2.657 ∞
CSI 5.063 0.000 0.000 3.565 0.000 0.000 7.956 0.000 0.000
NE Solar 4.676 2.159 91.720 3.544 1.664 48.571 7.611 3.056 ∞
CSI (TPO) 3.815 0.000 0.000 2.886 0.000 0.000 5.544 0.000 0.000
CSI (HO) 2.712 0.000 0.000 2.092 0.000 0.000 3.861 0.000 0.000
CT Solar 1.634 1.101 3.545 1.346 1.048 2.718 2.040 1.166 5.264

Electric Vehicles 1.445 0.000 0.000 1.327 0.000 0.000 1.566 0.000 0.000
(Sub)sample with SEs 1.431 1.884 1.178 1.316 1.641 1.135 1.548 2.093 1.242
BEV (State - Rebate) 1.561 1.110 2.434 1.411 1.082 2.027 1.711 1.163 2.766
ITC (EV) 1.474 0.000 0.000 1.348 0.000 0.000 1.602 0.000 0.000
EFMP 1.296 1.084 1.487 1.218 1.061 1.367 1.379 1.133 1.606

Appliance Rebates 1.164 0.000 0.000 0.922 0.000 0.000 1.472 0.000 0.000
(Sub)sample with SEs 1.148 1.099 1.173 0.849 0.809 0.923 1.531 1.333 1.637
C4A (CW) 1.405 0.000 0.000 1.142 0.000 0.000 1.729 0.000 0.000
ES (WH) 1.340 1.250 1.367 0.491 0.451 0.624 2.496 2.094 2.617
ES (CW) 1.310 1.134 1.440 0.990 0.987 0.996 1.700 1.302 1.999
C4A (DW) 1.132 0.000 0.000 1.015 0.000 0.000 1.276 0.000 0.000
ES (DW) 1.053 0.988 1.200 1.194 0.955 1.734 0.884 0.566 1.027
C4A (Fridge) 1.042 0.000 0.000 0.994 0.000 0.000 1.100 0.000 0.000
ES (Fridge) 1.011 1.000 1.020 0.928 0.871 1.001 1.113 0.999 1.202
CA ESA 0.958 0.930 0.990 0.701 0.689 0.715 1.276 1.227 1.329

Vehicle Retirement 1.047 0.000 0.000 0.919 0.000 0.000 1.204 0.000 0.000
(Sub)sample with SEs 1.047 0.968 1.002 0.919 0.903 0.935 1.204 1.117 1.132
C4C (TX) 1.067 0.924 0.974 0.885 0.862 0.910 1.286 1.125 1.148

95% CI

MVPF, $193 SCC MVPF, $76 SCC

95% CI

MVPF, $337 SCC

95% CI



C4C (US) 1.044 0.955 1.003 0.922 0.900 0.946 1.192 1.099 1.119
BAAQMD 1.030 1.025 1.036 0.951 0.947 0.955 1.128 1.121 1.136

Hybrid Vehicles 1.012 0.000 0.000 0.997 0.000 0.000 1.031 0.000 0.000
(Sub)sample with SEs 1.012 1.006 1.025 0.997 0.995 0.999 1.031 1.012 1.054
HY (S-STW) 1.028 1.010 1.058 0.993 0.989 0.998 1.070 1.022 1.127
HY (F-ITC) 1.008 1.008 1.010 0.998 0.998 0.998 1.020 1.018 1.021
HY (S-ITC) 1.002 0.998 1.006 1.000 0.999 1.000 1.004 0.996 1.013

Weatherization 0.978 0.000 0.000 0.831 0.000 0.000 1.162 0.000 0.000
(Sub)sample with SEs 0.992 0.933 1.047 0.815 0.793 0.837 1.214 1.108 1.310
EPP 1.210 0.928 1.434 0.929 0.819 1.015 1.554 1.060 1.948
IHWAP 0.980 0.961 1.001 0.776 0.771 0.783 1.243 1.207 1.294
WI RF 0.920 0.000 0.000 0.894 0.000 0.000 0.951 0.000 0.000
WAP 0.915 0.817 1.045 0.762 0.734 0.812 1.115 0.907 1.364
LEEP+ 0.859 0.801 0.918 0.792 0.770 0.815 0.940 0.839 1.042

Other Subsidies 2.492 0.000 0.000 1.710 0.000 0.000 3.484 0.000 0.000
(Sub)sample with SEs 2.492 2.130 2.858 1.710 1.551 1.869 3.484 2.863 4.143
CA 20/20 2.572 1.902 3.262 1.606 1.323 1.896 3.805 2.632 5.026
CRP 2.407 2.152 2.660 1.821 1.674 1.968 3.148 2.754 3.541

Panel B. Nudges and Marketing

Home Energy Reports 1.945 0.000 0.000 0.000 0.000 0.000 0.000
HER (17 RCTs) 3.006 2.354 3.658 1.341 1.057 1.621 5.216 4.049 6.405
Opower Elec. (166 RCTs) 2.548 0.000 0.000 1.142 0.000 0.000 4.393 0.000 0.000
PER 1.600 0.043 7.495 1.369 0.037 6.314 1.887 0.050 9.024
Opower Nat. Gas (52 RCTs) 0.451 0.000 0.000 -0.033 0.000 0.000 1.061 0.000 0.000

Other Nudges 1.326 0.000 0.000 0.599 0.000 0.000 2.233 0.000 0.000
(Sub)sample with SEs 1.326 2.130 2.858 0.599 1.551 1.869 2.233 2.863 4.143
Audit Nudge 2.117 1.638 2.337 0.939 0.730 1.034 3.628 2.790 4.016
Solarize 1.809 1.703 1.927 0.821 0.742 0.913 3.011 2.872 3.165
ES (WH) + Nudge 1.140 1.080 1.148 0.328 0.318 0.410 2.243 1.985 2.277
IHWAP + Nudge (H) 1.069 0.903 1.237 0.809 0.764 0.855 1.404 1.084 1.726
IHWAP + Nudge (L) 1.062 0.991 1.138 0.810 0.794 0.825 1.386 1.240 1.537
WAP + Nudge 0.280 0.103 0.508 0.038 -0.010 0.129 0.597 0.222 1.020

Panel C. Revenue Raisers

Gasoline Taxes 0.671 0.000 0.000 0.820 0.000 0.000 0.488 0.000 0.000
(Sub)sample with SEs 0.671 0.465 0.880 0.820 0.705 0.933 0.488 0.166 0.814
Gas (DK) 0.437 -0.208 0.997 0.691 0.333 0.997 0.124 -0.870 0.996
Gas (Su) 0.523 0.113 0.907 0.738 0.511 0.948 0.256 -0.378 0.855
Gas (Coglianese) 0.561 -0.079 1.113 0.759 0.405 1.060 0.315 -0.671 1.178
Gas (Manzan) 0.578 0.287 0.863 0.768 0.607 0.923 0.342 -0.109 0.786
Gas (Small) 0.605 0.498 0.717 0.783 0.723 0.844 0.384 0.218 0.559



Gas (Li) 0.619 0.420 0.821 0.791 0.681 0.901 0.406 0.097 0.720
Gas (Levin) 0.654 0.583 0.731 0.810 0.770 0.851 0.461 0.350 0.580
Gas (Sentenac-Chemin) 0.673 0.550 0.801 0.821 0.752 0.890 0.490 0.299 0.690
Gas (Kilian) 0.773 0.656 0.896 0.875 0.810 0.942 0.646 0.463 0.838
Gas (Gelman) 0.814 0.762 0.869 0.897 0.869 0.927 0.709 0.629 0.796
Gas (Park) 0.818 0.786 0.852 0.900 0.882 0.918 0.716 0.666 0.769
Gas (Hughes) 0.953 0.939 0.968 0.973 0.965 0.981 0.927 0.905 0.951

Other Fuel Taxes 0.798 0.000 0.000 0.913 0.000 0.000 0.656 0.000 0.000
(Sub)sample with SEs 0.754 0.706 0.888 0.950 0.893 0.932 0.511 0.474 0.834
Jet Fuel 0.754 0.563 0.936 0.950 0.911 0.987 0.511 0.135 0.872
Diesel 0.842 0.878 0.797

Other Revenue Raisers 0.647 0.000 0.000 0.723 0.000 0.000 0.553 0.000 0.000
(Sub)sample with SEs 0.647 0.645 0.652 0.723 0.690 0.756 0.553 0.509 0.606
CPP (AJ) 0.459 0.393 0.529 0.514 0.455 0.577 0.391 0.317 0.469
CARE 0.719 0.562 0.914 0.870 0.822 0.929 0.534 0.244 0.895
CPP (PJ) 0.780 0.697 0.869 0.803 0.728 0.882 0.752 0.658 0.852

Cap and Trade
RGGI -0.671 -1.357 0.389 -0.261 -0.758 0.627 -1.168 -2.091 0.093
CA CT 0.941 0.000 0.000 0.979 0.000 0.000 0.895 0.000 0.000

Notes: This table reports the MVPFs and their confidence intervals for specifications using our baseline ($193 in 2020) SCC, along with specifications using a
$76 and $337 SCC. Confidence intervals are produced using a parametric bootstrap procedure from each causal estimate and its standard error. We restrict
to the subset of our baseline sample for which we are able to ascertain the sampling uncertainty in the primary input(s) into the MVPF. We ascertain this
sampling uncertainty either from reported t-stats or SEs from each relevant paper. Because we do not obtain sampling uncertainty estimates for every policy, the
confidence interval for the category average corresponds to the confidence interval of the average over the policies in our sample (i.e. the conceptual experiment
of spending $1/n in upfront expenditures on each of n policies for which we ascertain sampling uncertainty). We therefore report a separate row for each category
that displays the category average components when restricting to this subsample.



Appendix Table 4: Baseline MVPF Components Using an SCC of $76 in 2020

Panel A. Subsidies Transfer Global Local Rebound Env. Price Profits WTP Program Initial Climate Total MVPF

Wind Production Credits 1.000 1.932 0.639 -0.516 1.261 0.573 0.000 4.888 1.000 0.437 -0.053 1.384 3.533
PTC (Shrimali) 1.000 2.422 0.801 -0.647 2.199 0.809 0.000 6.583 1.000 0.547 -0.077 1.470 4.479
PTC (Metcalf) 1.000 1.804 0.597 -0.482 0.936 0.500 0.000 4.355 1.000 0.408 -0.045 1.363 3.196
PTC (Hitaj) 1.000 1.569 0.519 -0.419 0.649 0.409 0.000 3.727 1.000 0.355 -0.036 1.319 2.826
FIT (Germany - BEN) * 1.000 2.737 0.906 -0.731 3.282 1.019 0.000 8.213 1.000 0.619 -0.102 1.516 5.416
FIT (Spain) * 1.000 2.422 0.801 -0.647 2.199 0.809 0.000 6.584 1.000 0.547 -0.077 1.470 4.479
FIT (Germany - HL) * 1.000 2.310 0.764 -0.617 1.901 0.745 0.000 6.103 1.000 0.522 -0.070 1.452 4.204
FIT (France) * 1.000 1.997 0.661 -0.534 1.240 0.585 0.000 4.949 1.000 0.451 -0.053 1.398 3.541
FIT (UK) * 1.000 0.828 0.274 -0.221 0.141 0.181 0.000 2.203 1.000 0.187 -0.015 1.172 1.880
FIT (EU) * 1.000 0.225 0.075 -0.060 0.010 0.046 0.000 1.295 1.000 0.051 -0.004 1.047 1.237

Residential Solar 1.106 0.697 0.244 -0.198 1.663 1.467 -0.203 4.777 1.000 0.708 -0.041 1.667 2.865
CSI 1.000 1.746 0.612 -0.495 3.612 3.589 -0.508 9.556 1.000 1.772 -0.092 2.680 3.565
NE Solar 1.000 0.495 0.174 -0.140 2.351 1.411 -0.144 5.147 1.000 0.503 -0.050 1.452 3.544
CSI (TPO) 1.528 0.651 0.228 -0.185 1.419 1.241 -0.189 4.693 1.000 0.661 -0.035 1.626 2.886
CSI (HO) 1.000 0.378 0.133 -0.107 0.783 0.778 -0.110 2.855 1.000 0.384 -0.020 1.364 2.092
CT Solar 1.000 0.216 0.076 -0.061 0.147 0.318 -0.063 1.633 1.000 0.220 -0.006 1.214 1.346
ITC * 1.000 0.468 0.164 -0.133 2.889 1.687 -0.136 5.939 1.000 0.527 -0.060 1.467 4.049

Electric Vehicles 1.000 0.020 0.000 0.015 0.028 0.423 -0.041 1.443 1.000 0.090 -0.002 1.088 1.327
BEV (State - Rebate) 1.000 0.024 0.000 0.018 0.039 0.527 -0.050 1.557 1.000 0.106 -0.002 1.104 1.411
ITC (EV) 1.000 0.021 0.000 0.016 0.029 0.451 -0.044 1.473 1.000 0.095 -0.002 1.093 1.348
EFMP 1.000 0.014 0.000 0.011 0.015 0.290 -0.030 1.300 1.000 0.068 -0.001 1.067 1.218
BEV (State - ITC) * 1.000 -0.017 0.000 -0.013 0.000 0.000 0.035 1.006 1.000 -0.072 0.001 0.927 1.085

Appliance Rebates 0.867 0.198 0.042 -0.040 0.000 0.000 -0.100 0.966 1.000 0.052 -0.003 1.048 0.922
C4A (CW) 0.953 0.225 0.082 -0.060 0.000 0.000 -0.038 1.161 1.000 0.021 -0.004 1.017 1.142
ES (WH) 0.598 0.655 0.000 -0.077 0.000 0.000 -0.638 0.538 1.000 0.108 -0.013 1.095 0.491
ES (CW) 1.000 0.348 0.123 -0.092 0.000 0.000 -0.070 1.309 1.000 0.327 -0.005 1.322 0.990
C4A (DW) 0.930 0.100 0.036 -0.027 0.000 0.000 -0.016 1.023 1.000 0.009 -0.002 1.007 1.015
ES (DW) 1.000 -0.090 -0.032 0.024 0.000 0.000 0.018 0.920 1.000 -0.231 0.001 0.770 1.194
C4A (Fridge) 0.960 0.040 0.015 -0.011 0.000 0.000 -0.007 0.997 1.000 0.004 -0.001 1.003 0.994
ES (Fridge) 1.000 0.080 0.028 -0.021 0.000 0.000 -0.016 1.071 1.000 0.156 -0.001 1.155 0.928
CA ESA 0.500 0.223 0.082 -0.060 0.000 0.000 -0.034 0.712 1.000 0.018 -0.003 1.015 0.701

Vehicle Retirement 0.910 0.110 0.100 -0.102 0.000 0.000 -0.048 0.971 1.000 0.059 -0.002 1.057 0.919
C4C (TX) 1.000 0.158 0.029 -0.155 0.000 0.000 -0.071 0.960 1.000 0.088 -0.002 1.085 0.885
C4C (US) 1.000 0.105 0.019 -0.104 0.000 0.000 -0.047 0.973 1.000 0.057 -0.002 1.056 0.922
BAAQMD 0.730 0.068 0.253 -0.047 0.000 0.000 -0.025 0.979 1.000 0.031 -0.001 1.029 0.951

Willingness to Pay Cost

Environmental Benefits Learning by Doing Fiscal Externalities



Hybrid Vehicles 1.000 0.012 0.003 -0.021 0.000 0.013 -0.006 1.001 1.000 0.004 0.000 1.004 0.997
HY (S-STW) 1.000 0.027 0.007 -0.047 0.000 0.030 -0.014 1.002 1.000 0.010 -0.001 1.009 0.993
HY (F-ITC) 1.000 0.008 0.002 -0.013 0.000 0.008 -0.004 1.001 1.000 0.003 0.000 1.003 0.998
HY (S-ITC) 1.000 0.002 0.000 -0.003 0.000 0.002 -0.001 1.000 1.000 0.001 0.000 1.001 1.000

Weatherization 0.774 0.117 0.028 -0.026 0.000 0.000 -0.051 0.842 1.000 0.016 -0.002 1.014 0.831
EPP 0.750 0.240 0.081 -0.063 0.000 0.000 -0.055 0.953 1.000 0.030 -0.004 1.026 0.929
IHWAP 0.750 0.154 0.019 -0.027 0.000 0.000 -0.103 0.793 1.000 0.024 -0.003 1.021 0.776
WI RF 0.870 0.021 0.011 -0.006 0.000 0.000 -0.001 0.895 1.000 0.001 0.000 1.000 0.894
WAP 0.750 0.115 0.013 -0.019 0.000 0.000 -0.084 0.774 1.000 0.018 -0.002 1.016 0.762
LEEP+ 0.750 0.056 0.019 -0.015 0.000 0.000 -0.013 0.797 1.000 0.007 -0.001 1.006 0.792

Other Subsidies 0.887 0.622 0.423 -0.115 0.000 0.000 -0.065 1.753 1.000 0.035 -0.010 1.025 1.710
CA 20/20 0.882 0.880 0.295 -0.230 0.000 0.000 -0.130 1.697 1.000 0.071 -0.014 1.057 1.606
CRP 0.893 0.364 0.552 0.000 0.000 0.000 0.000 1.808 1.000 0.000 -0.007 0.993 1.821

Panel B. Nudges and Marketing

Home Energy Reports 0.000 0.902 0.218 -0.204 0.000 0.000 -0.030 0.885 1.000 -0.018 -0.014 0.968 0.915
HER (17 RCTs) 0.000 1.708 0.439 -0.421 0.000 0.000 -0.244 1.483 1.000 0.133 -0.027 1.106 1.341
Opower Elec. (166 RCTs) 0.000 1.432 0.368 -0.353 0.000 0.000 -0.205 1.243 1.000 0.111 -0.022 1.089 1.142
PER 0.000 0.091 0.064 0.000 0.000 0.000 0.695 0.850 1.000 -0.378 -0.002 0.621 1.369
Opower Nat. Gas (52 RCTs) 0.000 0.376 0.000 -0.044 0.000 0.000 -0.367 -0.035 1.000 0.062 -0.006 1.056 -0.033

Other Nudges 0.507 1.942 0.599 -0.498 0.000 0.000 -0.632 1.918 1.000 2.232 -0.031 3.201 0.599
Audit Nudge 0.000 3.582 1.319 -0.960 0.000 0.000 -0.537 3.403 1.000 2.680 -0.056 3.624 0.939
Solarize 1.145 6.091 2.135 -1.727 0.000 0.000 -1.749 5.894 1.000 6.269 -0.093 7.175 0.821
ES (WH) + Nudge 0.416 0.625 0.000 -0.074 0.000 0.000 -0.609 0.358 1.000 0.103 -0.012 1.091 0.328
IHWAP + Nudge (H) 0.739 0.203 0.019 -0.036 0.000 0.000 -0.100 0.824 1.000 0.022 -0.003 1.019 0.809
IHWAP + Nudge (L) 0.743 0.196 0.018 -0.034 0.000 0.000 -0.097 0.825 1.000 0.021 -0.003 1.018 0.810
WAP + Nudge 0.000 0.955 0.104 -0.157 0.000 0.000 -0.701 0.201 1.000 4.294 -0.016 5.278 0.038
Food Labels * 0.000 2.443 0.000 0.000 0.000 0.000 0.000 2.443 1.000 0.000 -0.048 0.952 2.566

Panel C. Revenue Raisers

Gasoline Taxes 1.000 -0.093 -0.204 0.000 0.000 -0.002 0.060 0.761 1.000 -0.074 0.002 0.928 0.820
Gas (DK) 1.000 -0.153 -0.333 0.000 0.000 -0.002 0.098 0.610 1.000 -0.120 0.003 0.883 0.691
Gas (Su) 1.000 -0.132 -0.288 0.000 0.000 -0.002 0.084 0.663 1.000 -0.104 0.003 0.899 0.738
Gas (Coglianese) 1.000 -0.122 -0.267 0.000 0.000 -0.002 0.078 0.688 1.000 -0.096 0.002 0.906 0.759
Gas (Manzan) 1.000 -0.118 -0.257 0.000 0.000 -0.002 0.075 0.699 1.000 -0.093 0.002 0.910 0.768
Gas (Small) 1.000 -0.111 -0.242 0.000 0.000 -0.002 0.071 0.716 1.000 -0.087 0.002 0.915 0.783
Gas (Li) 1.000 -0.107 -0.234 0.000 0.000 -0.002 0.069 0.726 1.000 -0.084 0.002 0.918 0.791
Gas (Levin) 1.000 -0.098 -0.214 0.000 0.000 -0.002 0.063 0.749 1.000 -0.077 0.002 0.925 0.810
Gas (Sentenac-Chemin) 1.000 -0.093 -0.203 0.000 0.000 -0.002 0.060 0.762 1.000 -0.073 0.002 0.929 0.821
Gas (Kilian) 1.000 -0.066 -0.143 0.000 0.000 -0.002 0.042 0.831 1.000 -0.052 0.001 0.950 0.875
Gas (Gelman) 1.000 -0.054 -0.119 0.000 0.000 -0.002 0.035 0.860 1.000 -0.043 0.001 0.958 0.897
Gas (Park) 1.000 -0.053 -0.116 0.000 0.000 -0.002 0.034 0.863 1.000 -0.042 0.001 0.959 0.900
Gas (Hughes) 1.000 -0.014 -0.030 0.000 0.000 -0.002 0.009 0.963 1.000 -0.011 0.000 0.989 0.973



Gas (West) * 1.000 -0.152 -0.332 0.000 0.000 -0.002 0.097 0.612 1.000 -0.120 0.003 0.883 0.693
Gas (Tiezzi) * 1.000 -0.144 -0.315 0.000 0.000 -0.002 0.093 0.631 1.000 -0.114 0.003 0.889 0.710
Gas (Bento) * 1.000 -0.116 -0.254 0.000 0.000 -0.002 0.074 0.703 1.000 -0.091 0.002 0.911 0.772
Gas (Hughes - Ext) * 1.000 -0.111 -0.243 0.000 0.000 -0.002 0.071 0.716 1.000 -0.088 0.002 0.915 0.782
Gas (Kilian - Ext) * 1.000 -0.104 -0.227 0.000 0.000 -0.002 0.067 0.733 1.000 -0.082 0.002 0.920 0.797
Gas (Small - Ext) * 1.000 -0.022 -0.048 0.000 0.000 -0.002 0.014 0.942 1.000 -0.018 0.000 0.983 0.958

Other Fuel Taxes 1.000 -0.075 -0.067 0.000 0.000 0.000 0.025 0.884 1.000 -0.033 0.001 0.968 0.913
Jet Fuel 1.000 -0.126 -0.003 0.000 0.000 0.000 0.036 0.907 1.000 -0.048 0.002 0.955 0.950
Diesel 1.000 -0.024 -0.129 0.000 0.000 0.000 0.015 0.862 1.000 -0.019 0.000 0.982 0.878
Heavy Fuel * 1.000 -0.030 -0.001 0.000 0.000 0.000 0.007 0.976 1.000 -0.002 0.001 0.999 0.977
Crude (WPT) * 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 -0.002 0.000 0.998 1.002
Crude (State) * 1.000 -0.037 0.000 0.000 0.000 0.000 0.000 0.963 1.000 -0.364 0.001 0.637 1.512
E85 * 1.000 0.246 0.009 0.000 0.000 0.000 0.411 1.666 1.000 -0.361 0.005 0.643 2.590

Other Revenue Raisers 0.979 -0.059 -0.014 0.005 0.000 0.000 -0.108 0.802 1.000 0.109 0.001 1.110 0.723
CPP (AJ) 1.000 -0.042 -0.030 0.000 0.000 0.000 -0.323 0.605 1.000 0.176 0.001 1.176 0.514
CARE 0.936 -0.120 0.000 0.014 0.000 0.000 0.117 0.947 1.000 0.086 0.002 1.089 0.870
CPP (PJ) 1.000 -0.016 -0.011 0.000 0.000 0.000 -0.119 0.855 1.000 0.065 0.000 1.065 0.803

Cap and Trade 1.000 -0.142 -0.495 0.000 0.000 0.000 0.000 0.362 1.000 -0.028 0.003 0.975 0.372
RGGI 1.000 -0.260 -0.989 0.000 0.000 0.000 0.000 -0.249 1.000 -0.050 0.005 0.955 -0.261
CA CT 1.000 -0.024 -0.002 0.000 0.000 0.000 0.000 0.974 1.000 -0.006 0.000 0.995 0.979
ETS (BA) * 1.000 -3.640 0.000 0.000 0.000 0.000 0.000 -2.640 1.000 -0.900 0.071 0.171 -15.411
ETS (CMMW) * 1.000 -0.506 0.000 0.000 0.000 0.000 0.000 0.494 1.000 -0.125 0.010 0.885 0.558

Panel D. International

Cookstoves 4.091 7.925 0.000 0.000 0.000 0.000 0.000 12.017 1.000 0.000 -0.155 0.845 14.217
Cookstove (Kenya) 7.637 17.018 0.000 0.000 0.000 0.000 0.000 24.656 1.000 0.000 -0.332 0.668 36.929
Cookstove (India) 0.545 -1.167 0.000 0.000 0.000 0.000 0.000 -0.622 1.000 0.000 0.023 1.023 -0.608

Deforestation 0.462 6.407 0.000 0.000 0.000 0.000 0.000 6.869 1.000 0.000 -0.125 0.875 7.852
REDD+ (SL) 0.000 14.191 0.000 0.000 0.000 0.000 0.000 14.191 1.000 0.000 -0.277 0.723 19.632
Deforest (Uganda) 0.421 3.862 0.000 0.000 0.000 0.000 0.000 4.283 1.000 0.000 -0.075 0.925 4.632
REDD+ 0.965 1.169 0.000 0.000 0.000 0.000 0.000 2.134 1.000 0.000 -0.023 0.977 2.183
Deforest (Mexico) * 0.944 4.548 0.000 0.000 0.000 0.000 0.000 5.492 1.000 0.000 -0.089 0.911 6.028

Rice Burning 0.944 3.716 0.000 0.000 0.000 0.000 0.000 4.660 1.000 0.000 -0.073 0.927 5.024
India PES (Upfront) 0.972 4.214 0.000 0.000 0.000 0.000 0.000 5.186 1.000 0.000 -0.082 0.918 5.651
India PES (Standard) 0.915 3.218 0.000 0.000 0.000 0.000 0.000 4.134 1.000 0.000 -0.063 0.937 4.411

Wind Offset 1.000 3.694 0.000 -0.735 0.000 0.000 0.000 3.959 1.000 0.258 -0.058 1.200 3.298
Offset (India) 1.000 3.694 0.000 -0.735 0.000 0.000 0.000 3.959 1.000 0.258 -0.058 1.200 3.298

International Rebates 0.667 -0.008 0.000 0.002 0.000 0.000 0.000 0.660 1.000 0.000 0.000 1.000 0.660
Fridge (Mexico) 0.750 0.049 0.000 -0.010 0.000 0.000 0.000 0.789 1.000 0.000 -0.001 0.999 0.790
AC (Mexico) 0.750 -0.037 0.000 0.007 0.000 0.000 0.000 0.720 1.000 0.000 0.001 1.001 0.720
WAP (Mexico) 0.500 -0.037 0.000 0.007 0.000 0.000 0.000 0.470 1.000 0.000 0.001 1.001 0.470



International Nudges 0.000 1.505 0.000 -0.295 0.000 0.000 0.000 1.210 1.000 0.000 -0.024 0.976 1.240
Nudge (Qatar) * 0.000 2.851 0.000 -0.558 0.000 0.000 0.000 2.293 1.000 0.000 -0.045 0.955 2.400
Nudge (Germany) * 0.000 0.159 0.000 -0.031 0.000 0.000 0.000 0.128 1.000 0.000 -0.002 0.998 0.128

Notes: This table presents the MVPF components as displayed in Table 2 but using our baseline specification with a modified time path for the social cost of
carbon that yields an SCC of $76 in 2020 and a real discount rate of 2.5% per year. We denote policies excluded from our primary sample by “*”, and these
policies are not included in our category average measures.



Appendix Table 5: Baseline MVPF Components Using an SCC of $337 in 2020

Panel A. Subsidies Transfer Global Local Rebound Env. Price Profits WTP Program Initial Climate Total MVPF

Wind Production Credits 1.000 7.852 0.648 -1.718 3.393 0.746 0.000 11.920 1.000 0.434 -0.186 1.248 9.548
PTC (Shrimali) 1.000 9.844 0.812 -2.154 5.919 1.077 0.000 16.498 1.000 0.545 -0.265 1.280 12.889
PTC (Metcalf) 1.000 7.332 0.605 -1.604 2.514 0.642 0.000 10.488 1.000 0.406 -0.161 1.244 8.429
PTC (Hitaj) 1.000 6.380 0.526 -1.396 1.745 0.519 0.000 8.774 1.000 0.353 -0.132 1.221 7.186
FIT (Germany - BEN) * 1.000 11.126 0.918 -2.435 8.891 1.389 0.000 20.889 1.000 0.616 -0.341 1.275 16.385
FIT (Spain) * 1.000 9.845 0.812 -2.154 5.920 1.077 0.000 16.499 1.000 0.545 -0.265 1.280 12.890
FIT (Germany - HL) * 1.000 9.392 0.775 -2.055 5.111 0.984 0.000 15.206 1.000 0.520 -0.242 1.277 11.906
FIT (France) * 1.000 8.118 0.669 -1.776 3.330 0.759 0.000 12.099 1.000 0.449 -0.189 1.260 9.601
FIT (UK) * 1.000 3.367 0.278 -0.737 0.383 0.223 0.000 4.514 1.000 0.186 -0.060 1.127 4.006
FIT (EU) * 1.000 0.916 0.076 -0.201 0.027 0.055 0.000 1.873 1.000 0.051 -0.015 1.036 1.808

Residential Solar 1.106 2.931 0.260 -0.690 4.108 1.868 -0.226 9.356 1.000 0.720 -0.122 1.599 5.852
CSI 1.000 7.335 0.651 -1.727 8.862 4.533 -0.565 20.089 1.000 1.803 -0.278 2.525 7.956
NE Solar 1.000 2.081 0.185 -0.490 5.908 1.895 -0.160 10.419 1.000 0.512 -0.143 1.369 7.611
CSI (TPO) 1.528 2.738 0.243 -0.645 3.481 1.548 -0.211 8.681 1.000 0.673 -0.107 1.566 5.544
CSI (HO) 1.000 1.590 0.141 -0.374 1.921 0.983 -0.122 5.138 1.000 0.391 -0.060 1.331 3.861
CT Solar 1.000 0.910 0.081 -0.214 0.367 0.382 -0.070 2.454 1.000 0.224 -0.021 1.203 2.040
ITC * 1.000 1.965 0.174 -0.463 7.392 2.319 -0.151 12.236 1.000 0.535 -0.169 1.366 8.956

Electric Vehicles 1.000 0.103 0.000 0.052 0.102 0.488 -0.044 1.701 1.000 0.094 -0.007 1.086 1.566
BEV (State - Rebate) 1.000 0.124 0.000 0.063 0.142 0.610 -0.053 1.885 1.000 0.111 -0.009 1.102 1.711
ITC (EV) 1.000 0.110 0.000 0.056 0.108 0.521 -0.047 1.748 1.000 0.099 -0.008 1.091 1.602
EFMP 1.000 0.075 0.000 0.038 0.055 0.333 -0.032 1.470 1.000 0.071 -0.005 1.066 1.379
BEV (State - ITC) * 1.000 -0.087 0.000 -0.044 0.000 0.000 0.037 0.906 1.000 -0.075 0.005 0.927 0.978

Appliance Rebates 0.867 0.873 0.043 -0.149 0.000 0.000 -0.106 1.528 1.000 0.053 -0.015 1.038 1.472
C4A (CW) 0.953 0.945 0.084 -0.202 0.000 0.000 -0.040 1.741 1.000 0.021 -0.015 1.007 1.729
ES (WH) 0.598 3.079 0.000 -0.362 0.000 0.000 -0.681 2.634 1.000 0.115 -0.060 1.055 2.496
ES (CW) 1.000 1.482 0.129 -0.316 0.000 0.000 -0.074 2.221 1.000 0.330 -0.023 1.306 1.700
C4A (DW) 0.930 0.418 0.037 -0.089 0.000 0.000 -0.017 1.279 1.000 0.009 -0.007 1.003 1.276
ES (DW) 1.000 -0.383 -0.033 0.082 0.000 0.000 0.019 0.684 1.000 -0.232 0.006 0.774 0.884
C4A (Fridge) 0.960 0.170 0.015 -0.036 0.000 0.000 -0.007 1.102 1.000 0.004 -0.003 1.001 1.100
ES (Fridge) 1.000 0.342 0.030 -0.073 0.000 0.000 -0.017 1.282 1.000 0.157 -0.005 1.152 1.113
CA ESA 0.500 0.929 0.084 -0.199 0.000 0.000 -0.034 1.281 1.000 0.019 -0.015 1.004 1.276

Vehicle Retirement 0.910 0.486 0.103 -0.178 0.000 0.000 -0.051 1.269 1.000 0.062 -0.008 1.055 1.204
C4C (TX) 1.000 0.710 0.031 -0.271 0.000 0.000 -0.077 1.394 1.000 0.094 -0.011 1.083 1.286
C4C (US) 1.000 0.470 0.021 -0.184 0.000 0.000 -0.050 1.257 1.000 0.062 -0.007 1.055 1.192
BAAQMD 0.730 0.276 0.257 -0.080 0.000 0.000 -0.025 1.158 1.000 0.031 -0.005 1.026 1.128

Willingness to Pay Cost

Environmental Benefits Learning by Doing Fiscal Externalities



Hybrid Vehicles 1.000 0.055 0.003 -0.033 0.001 0.015 -0.007 1.035 1.000 0.005 -0.001 1.003 1.031
HY (S-STW) 1.000 0.122 0.007 -0.073 0.003 0.034 -0.015 1.078 1.000 0.010 -0.003 1.007 1.070
HY (F-ITC) 1.000 0.035 0.002 -0.021 0.000 0.009 -0.004 1.022 1.000 0.003 -0.001 1.002 1.020
HY (S-ITC) 1.000 0.008 0.000 -0.005 0.000 0.002 -0.001 1.005 1.000 0.001 0.000 1.000 1.004

Weatherization 0.774 0.521 0.030 -0.095 0.000 0.000 -0.057 1.172 1.000 0.017 -0.008 1.009 1.162
EPP 0.750 1.021 0.086 -0.217 0.000 0.000 -0.060 1.580 1.000 0.033 -0.016 1.017 1.554
IHWAP 0.750 0.721 0.020 -0.110 0.000 0.000 -0.119 1.262 1.000 0.027 -0.012 1.015 1.243
WI RF 0.870 0.090 0.011 -0.020 0.000 0.000 -0.001 0.951 1.000 0.001 -0.001 0.999 0.951
WAP 0.750 0.533 0.013 -0.078 0.000 0.000 -0.092 1.126 1.000 0.019 -0.009 1.010 1.115
LEEP+ 0.750 0.238 0.020 -0.051 0.000 0.000 -0.014 0.944 1.000 0.008 -0.004 1.004 0.940

Other Subsidies 0.887 2.589 0.426 -0.379 0.000 0.000 -0.066 3.457 1.000 0.036 -0.044 0.992 3.484
CA 20/20 0.882 3.573 0.300 -0.758 0.000 0.000 -0.132 3.864 1.000 0.072 -0.056 1.015 3.805
CRP 0.893 1.605 0.552 0.000 0.000 0.000 0.000 3.049 1.000 0.000 -0.031 0.969 3.148

Panel B. Nudges and Marketing

Home Energy Reports 0.000 3.523 0.218 -0.677 0.000 0.000 -0.030 3.033 1.000 -0.018 -0.056 0.926 3.276
HER (17 RCTs) 0.000 6.545 0.439 -1.368 0.000 0.000 -0.244 5.372 1.000 0.133 -0.103 1.030 5.216
Opower Elec. (166 RCTs) 0.000 5.487 0.368 -1.147 0.000 0.000 -0.205 4.504 1.000 0.111 -0.086 1.025 4.393
PER 0.000 0.401 0.064 0.000 0.000 0.000 0.695 1.160 1.000 -0.378 -0.008 0.615 1.887
Opower Nat. Gas (52 RCTs) 0.000 1.659 0.000 -0.195 0.000 0.000 -0.367 1.097 1.000 0.062 -0.029 1.034 1.061

Other Nudges 0.507 8.277 0.628 -1.748 0.000 0.000 -0.688 6.976 1.000 2.255 -0.131 3.124 2.233
Audit Nudge 0.000 14.907 1.348 -3.184 0.000 0.000 -0.548 12.523 1.000 2.686 -0.234 3.452 3.628
Solarize 1.145 25.595 2.270 -6.027 0.000 0.000 -1.948 21.035 1.000 6.377 -0.391 6.986 3.011
ES (WH) + Nudge 0.416 2.942 0.000 -0.346 0.000 0.000 -0.650 2.361 1.000 0.110 -0.057 1.053 2.243
IHWAP + Nudge (H) 0.739 0.914 0.020 -0.146 0.000 0.000 -0.109 1.417 1.000 0.024 -0.015 1.010 1.404
IHWAP + Nudge (L) 0.743 0.883 0.019 -0.141 0.000 0.000 -0.106 1.398 1.000 0.023 -0.014 1.009 1.386
WAP + Nudge 0.000 4.420 0.110 -0.644 0.000 0.000 -0.764 3.122 1.000 4.307 -0.074 5.233 0.597
Food Labels * 0.000 10.774 0.000 0.000 0.000 0.000 0.000 10.774 1.000 0.000 -0.210 0.790 13.645

Panel C. Revenue Raisers

Gasoline Taxes 1.000 -0.398 -0.204 0.000 0.000 -0.002 0.060 0.456 1.000 -0.074 0.008 0.934 0.488
Gas (DK) 1.000 -0.652 -0.333 0.000 0.000 -0.002 0.098 0.111 1.000 -0.120 0.013 0.893 0.124
Gas (Su) 1.000 -0.562 -0.288 0.000 0.000 -0.002 0.084 0.232 1.000 -0.104 0.011 0.907 0.256
Gas (Coglianese) 1.000 -0.521 -0.267 0.000 0.000 -0.002 0.078 0.288 1.000 -0.096 0.010 0.914 0.315
Gas (Manzan) 1.000 -0.503 -0.257 0.000 0.000 -0.002 0.075 0.313 1.000 -0.093 0.010 0.917 0.342
Gas (Small) 1.000 -0.473 -0.242 0.000 0.000 -0.002 0.071 0.354 1.000 -0.087 0.009 0.922 0.384
Gas (Li) 1.000 -0.457 -0.234 0.000 0.000 -0.002 0.069 0.375 1.000 -0.084 0.009 0.925 0.406
Gas (Levin) 1.000 -0.417 -0.214 0.000 0.000 -0.002 0.063 0.429 1.000 -0.077 0.008 0.931 0.461
Gas (Sentenac-Chemin) 1.000 -0.396 -0.203 0.000 0.000 -0.002 0.060 0.458 1.000 -0.073 0.008 0.935 0.490
Gas (Kilian) 1.000 -0.280 -0.143 0.000 0.000 -0.002 0.042 0.617 1.000 -0.052 0.005 0.954 0.646
Gas (Gelman) 1.000 -0.232 -0.119 0.000 0.000 -0.002 0.035 0.682 1.000 -0.043 0.005 0.962 0.709
Gas (Park) 1.000 -0.227 -0.116 0.000 0.000 -0.002 0.034 0.689 1.000 -0.042 0.004 0.962 0.716
Gas (Hughes) 1.000 -0.058 -0.030 0.000 0.000 -0.002 0.009 0.918 1.000 -0.011 0.001 0.990 0.927



Gas (West) * 1.000 -0.649 -0.332 0.000 0.000 -0.002 0.097 0.115 1.000 -0.120 0.013 0.893 0.128
Gas (Tiezzi) * 1.000 -0.616 -0.315 0.000 0.000 -0.002 0.092 0.159 1.000 -0.114 0.012 0.898 0.177
Gas (Bento) * 1.000 -0.495 -0.253 0.000 0.000 -0.002 0.074 0.323 1.000 -0.091 0.010 0.918 0.352
Gas (Hughes - Ext) * 1.000 -0.474 -0.243 0.000 0.000 -0.002 0.071 0.352 1.000 -0.088 0.009 0.922 0.382
Gas (Kilian - Ext) * 1.000 -0.444 -0.227 0.000 0.000 -0.002 0.067 0.393 1.000 -0.082 0.009 0.927 0.424
Gas (Small - Ext) * 1.000 -0.093 -0.048 0.000 0.000 -0.002 0.014 0.870 1.000 -0.018 0.002 0.984 0.884

Other Fuel Taxes 1.000 -0.321 -0.067 0.000 0.000 0.000 0.025 0.637 1.000 -0.033 0.006 0.973 0.655
Jet Fuel 1.000 -0.540 -0.003 0.000 0.000 0.000 0.036 0.492 1.000 -0.048 0.011 0.963 0.511
Diesel 1.000 -0.102 -0.129 0.000 0.000 0.000 0.015 0.783 1.000 -0.019 0.002 0.983 0.797
Heavy Fuel * 1.000 -0.131 -0.001 0.000 0.000 0.000 0.007 0.875 1.000 -0.002 0.003 1.001 0.875
Crude (WPT) * 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 -0.002 0.000 0.998 1.002
Crude (State) * 1.000 -0.128 0.000 0.000 0.000 0.000 0.000 0.872 1.000 -0.364 0.002 0.638 1.367
E85 * 1.000 0.970 0.009 0.000 0.000 0.000 0.411 2.390 1.000 -0.361 0.019 0.658 3.635

Other Revenue Raisers 0.979 -0.262 -0.014 0.021 0.000 0.000 -0.108 0.616 1.000 0.109 0.005 1.114 0.553
CPP (AJ) 1.000 -0.187 -0.030 0.000 0.000 0.000 -0.323 0.461 1.000 0.176 0.004 1.179 0.391
CARE 0.936 -0.530 0.000 0.062 0.000 0.000 0.117 0.585 1.000 0.086 0.010 1.097 0.534
CPP (PJ) 1.000 -0.069 -0.011 0.000 0.000 0.000 -0.119 0.802 1.000 0.065 0.001 1.066 0.752

Cap and Trade 1.000 -0.627 -0.495 0.000 0.000 0.000 0.000 -0.122 1.000 -0.028 0.012 0.984 -0.124
RGGI 1.000 -1.147 -0.989 0.000 0.000 0.000 0.000 -1.136 1.000 -0.050 0.022 0.972 -1.168
CA CT 1.000 -0.107 -0.002 0.000 0.000 0.000 0.000 0.892 1.000 -0.006 0.002 0.997 0.895
ETS (BA) * 1.000 -16.051 0.000 0.000 0.000 0.000 0.000 -15.051 1.000 -0.900 0.313 0.414 -36.384
ETS (CMMW) * 1.000 -2.233 0.000 0.000 0.000 0.000 0.000 -1.233 1.000 -0.125 0.044 0.918 -1.342

Panel D. International

Cookstoves 4.110 35.024 0.000 0.000 0.000 0.000 0.000 39.133 1.000 0.000 -0.684 0.316 123.831
Cookstove (Kenya) 7.675 75.221 0.000 0.000 0.000 0.000 0.000 82.895 1.000 0.000 -1.469 -0.469 ∞
Cookstove (India) 0.545 -5.174 0.000 0.000 0.000 0.000 0.000 -4.629 1.000 0.000 0.101 1.101 -4.204

Deforestation 0.462 24.433 0.000 0.000 0.000 0.000 0.000 24.895 1.000 0.000 -0.477 0.523 47.614
REDD+ (SL) 0.000 62.581 0.000 0.000 0.000 0.000 0.000 62.581 1.000 0.000 -1.222 -0.222 ∞
Deforest (Uganda) 0.421 5.564 0.000 0.000 0.000 0.000 0.000 5.985 1.000 0.000 -0.109 0.891 6.715
REDD+ 0.965 5.154 0.000 0.000 0.000 0.000 0.000 6.119 1.000 0.000 -0.101 0.899 6.803
Deforest (Mexico) * 0.944 1.649 0.000 0.000 0.000 0.000 0.000 2.593 1.000 0.000 -0.032 0.968 2.679

Rice Burning 0.944 16.387 0.000 0.000 0.000 0.000 0.000 17.331 1.000 0.000 -0.320 0.680 25.487
India PES (Upfront) 0.972 18.582 0.000 0.000 0.000 0.000 0.000 19.555 1.000 0.000 -0.363 0.637 30.693
India PES (Standard) 0.915 14.192 0.000 0.000 0.000 0.000 0.000 15.107 1.000 0.000 -0.277 0.723 20.899

Wind Offset 1.000 16.384 0.000 -3.256 0.000 0.000 0.000 14.128 1.000 0.258 -0.256 1.002 14.104
Offset (India) 1.000 16.384 0.000 -3.256 0.000 0.000 0.000 14.128 1.000 0.258 -0.256 1.002 14.104

International Rebates 0.667 -0.039 0.000 0.008 0.000 0.000 0.000 0.635 1.000 0.000 0.001 1.001 0.635
Fridge (Mexico) 0.750 0.220 0.000 -0.043 0.000 0.000 0.000 0.927 1.000 0.000 -0.003 0.997 0.930
AC (Mexico) 0.750 -0.166 0.000 0.032 0.000 0.000 0.000 0.617 1.000 0.000 0.003 1.003 0.615
WAP (Mexico) 0.500 -0.172 0.000 0.034 0.000 0.000 0.000 0.362 1.000 0.000 0.003 1.003 0.361



International Nudges 0.000 6.638 0.000 -1.300 0.000 0.000 0.000 5.337 1.000 0.000 -0.104 0.896 5.959
Nudge (Qatar) * 0.000 12.574 0.000 -2.463 0.000 0.000 0.000 10.111 1.000 0.000 -0.197 0.803 12.599
Nudge (Germany) * 0.000 0.701 0.000 -0.137 0.000 0.000 0.000 0.564 1.000 0.000 -0.011 0.989 0.570

Notes: This table presents the MVPF components as displayed in Table 2 but using our baseline 2020 specification with a modified time path for the social cost
of carbon that yields an SCC of $337 in 2020 and a real discount rate of 1.5% per year. We denote policies excluded from our primary sample by “*”, and these
policies are not included in our category average measures.



Appendix Table 6: Baseline MVPF Components Excluding Profits

Panel A. Subsidies Transfer Global Local Rebound Env. Price Profits WTP Program Initial Climate Total MVPF

Wind Production Credits 1.000 4.678 0.643 -1.074 1.900 0.645 0.000 7.793 1.000 0.435 -0.108 1.328 5.870
PTC (Shrimali) 1.000 5.865 0.806 -1.346 3.277 0.920 0.000 10.522 1.000 0.546 -0.152 1.394 7.547
PTC (Metcalf) 1.000 4.368 0.601 -1.002 1.427 0.560 0.000 6.953 1.000 0.407 -0.094 1.312 5.298
PTC (Hitaj) 1.000 3.801 0.523 -0.872 0.998 0.455 0.000 5.904 1.000 0.354 -0.078 1.276 4.626
FIT (Germany - BEN) * 1.000 6.629 0.911 -1.521 4.841 1.170 0.000 13.030 1.000 0.617 -0.193 1.424 9.148
FIT (Spain) * 1.000 5.866 0.806 -1.346 3.277 0.920 0.000 10.522 1.000 0.546 -0.152 1.394 7.547
FIT (Germany - HL) * 1.000 5.596 0.769 -1.284 2.844 0.844 0.000 9.768 1.000 0.521 -0.140 1.381 7.072
FIT (France) * 1.000 4.837 0.665 -1.110 1.877 0.658 0.000 7.926 1.000 0.450 -0.110 1.340 5.913
FIT (UK) * 1.000 2.006 0.276 -0.460 0.223 0.199 0.000 3.243 1.000 0.187 -0.035 1.151 2.817
FIT (EU) * 1.000 0.546 0.075 -0.125 0.016 0.050 0.000 1.561 1.000 0.051 -0.009 1.042 1.498

Residential Solar 1.106 1.718 0.252 -0.421 2.280 1.636 0.000 6.570 1.000 0.598 -0.068 1.530 4.295
CSI 1.000 4.299 0.631 -1.054 4.988 3.987 0.000 13.851 1.000 1.496 -0.157 2.339 5.921
NE Solar 1.000 1.220 0.179 -0.299 3.132 1.610 0.000 6.842 1.000 0.424 -0.076 1.348 5.075
CSI (TPO) 1.528 1.604 0.235 -0.393 1.982 1.371 0.000 6.328 1.000 0.558 -0.061 1.498 4.225
CSI (HO) 1.000 0.932 0.137 -0.228 1.081 0.864 0.000 3.786 1.000 0.324 -0.034 1.290 2.934
CT Solar 1.000 0.533 0.078 -0.131 0.216 0.346 0.000 2.042 1.000 0.185 -0.012 1.173 1.740
ITC * 1.000 1.152 0.169 -0.282 3.825 1.944 0.000 7.807 1.000 0.453 -0.088 1.365 5.720

Electric Vehicles 1.000 0.057 0.000 0.032 0.073 0.452 0.000 1.614 1.000 0.077 -0.004 1.073 1.505
BEV (State - Rebate) 1.000 0.068 0.000 0.038 0.103 0.564 0.000 1.773 1.000 0.091 -0.006 1.085 1.634
ITC (EV) 1.000 0.061 0.000 0.034 0.078 0.482 0.000 1.655 1.000 0.081 -0.005 1.076 1.538
EFMP 1.000 0.042 0.000 0.023 0.040 0.309 0.000 1.414 1.000 0.059 -0.003 1.056 1.339
BEV (State - ITC) * 1.000 -0.048 0.000 -0.027 0.000 0.000 0.000 0.925 1.000 -0.061 0.003 0.939 0.985

Appliance Rebates 0.867 0.497 0.043 -0.089 0.000 0.000 0.000 1.318 1.000 0.027 -0.009 1.018 1.294
C4A (CW) 0.953 0.550 0.083 -0.124 0.000 0.000 0.000 1.461 1.000 0.000 -0.009 0.991 1.474
ES (WH) 0.598 1.707 0.000 -0.201 0.000 0.000 0.000 2.104 1.000 0.000 -0.033 0.967 2.176
ES (CW) 1.000 0.861 0.126 -0.193 0.000 0.000 0.000 1.794 1.000 0.289 -0.014 1.276 1.406
C4A (DW) 0.930 0.243 0.037 -0.055 0.000 0.000 0.000 1.155 1.000 0.000 -0.004 0.996 1.159
ES (DW) 1.000 -0.223 -0.033 0.050 0.000 0.000 0.000 0.795 1.000 -0.221 0.003 0.782 1.016
C4A (Fridge) 0.960 0.099 0.015 -0.022 0.000 0.000 0.000 1.051 1.000 0.000 -0.002 0.998 1.053
ES (Fridge) 1.000 0.199 0.029 -0.045 0.000 0.000 0.000 1.183 1.000 0.148 -0.003 1.144 1.034
CA ESA 0.500 0.541 0.083 -0.122 0.000 0.000 0.000 1.002 1.000 0.000 -0.008 0.992 1.010

Vehicle Retirement 0.910 0.280 0.102 -0.137 0.000 0.000 0.000 1.155 1.000 0.050 -0.004 1.045 1.105
C4C (TX) 1.000 0.410 0.030 -0.208 0.000 0.000 0.000 1.231 1.000 0.071 -0.006 1.065 1.156
C4C (US) 1.000 0.271 0.020 -0.140 0.000 0.000 0.000 1.151 1.000 0.047 -0.004 1.042 1.104
BAAQMD 0.730 0.161 0.255 -0.062 0.000 0.000 0.000 1.084 1.000 0.031 -0.003 1.028 1.054

Willingness to Pay Cost

Environmental Benefits Learning by Doing Fiscal Externalities



Hybrid Vehicles 1.000 0.031 0.003 -0.026 0.000 0.014 0.000 1.023 1.000 0.006 -0.001 1.005 1.017
HY (S-STW) 1.000 0.070 0.007 -0.059 0.001 0.031 0.000 1.051 1.000 0.014 -0.002 1.012 1.038
HY (F-ITC) 1.000 0.020 0.002 -0.017 0.000 0.009 0.000 1.014 1.000 0.004 0.000 1.003 1.011
HY (S-ITC) 1.000 0.004 0.000 -0.004 0.000 0.002 0.000 1.003 1.000 0.001 0.000 1.001 1.002

Weatherization 0.774 0.297 0.029 -0.057 0.000 0.000 0.000 1.043 1.000 0.000 -0.005 0.995 1.048
EPP 0.750 0.593 0.083 -0.133 0.000 0.000 0.000 1.294 1.000 0.000 -0.009 0.991 1.306
IHWAP 0.750 0.404 0.019 -0.064 0.000 0.000 0.000 1.109 1.000 0.000 -0.007 0.993 1.117
WI RF 0.870 0.052 0.011 -0.012 0.000 0.000 0.000 0.921 1.000 0.000 -0.001 0.999 0.921
WAP 0.750 0.297 0.013 -0.045 0.000 0.000 0.000 1.015 1.000 0.000 -0.005 0.995 1.021
LEEP+ 0.750 0.138 0.019 -0.031 0.000 0.000 0.000 0.877 1.000 0.000 -0.002 0.998 0.879

Other Subsidies 0.887 1.504 0.424 -0.234 0.000 0.000 0.000 2.582 1.000 0.000 -0.025 0.975 2.650
CA 20/20 0.882 2.090 0.297 -0.468 0.000 0.000 0.000 2.802 1.000 0.000 -0.033 0.967 2.897
CRP 0.893 0.919 0.552 0.000 0.000 0.000 0.000 2.363 1.000 0.000 -0.018 0.982 2.407

Panel B. Nudges and Marketing

Home Energy Reports 0.000 2.074 0.218 -0.416 0.000 0.000 0.174 2.050 1.000 -0.094 -0.033 0.872 2.350
HER (17 RCTs) 0.000 3.872 0.439 -0.844 0.000 0.000 0.000 3.466 1.000 0.000 -0.061 0.939 3.691
Opower Elec. (166 RCTs) 0.000 3.246 0.368 -0.708 0.000 0.000 0.000 2.906 1.000 0.000 -0.051 0.949 3.062
PER 0.000 0.230 0.064 0.000 0.000 0.000 0.695 0.989 1.000 -0.378 -0.004 0.618 1.600
Opower Nat. Gas (52 RCTs) 0.000 0.950 0.000 -0.112 0.000 0.000 0.000 0.838 1.000 0.000 -0.016 0.984 0.852

Other Nudges 0.507 4.799 0.613 -1.061 0.000 0.000 0.000 4.857 1.000 1.979 -0.076 2.903 1.673
Audit Nudge 0.000 8.678 1.333 -1.961 0.000 0.000 0.000 8.050 1.000 2.373 -0.136 3.237 2.487
Solarize 1.145 15.001 2.200 -3.678 0.000 0.000 0.000 14.669 1.000 5.306 -0.230 6.077 2.414
ES (WH) + Nudge 0.416 1.630 0.000 -0.192 0.000 0.000 0.000 1.854 1.000 0.000 -0.032 0.968 1.915
IHWAP + Nudge (H) 0.739 0.517 0.019 -0.085 0.000 0.000 0.000 1.190 1.000 0.023 -0.008 1.015 1.173
IHWAP + Nudge (L) 0.743 0.500 0.018 -0.082 0.000 0.000 0.000 1.179 1.000 0.022 -0.008 1.014 1.162
WAP + Nudge 0.000 2.467 0.107 -0.371 0.000 0.000 0.000 2.203 1.000 4.149 -0.041 5.107 0.431
Food Labels * 0.000 6.170 0.000 0.000 0.000 0.000 0.000 6.170 1.000 0.000 -0.120 0.880 7.015

Panel C. Revenue Raisers

Gasoline Taxes 1.000 -0.229 -0.204 0.000 0.000 -0.002 0.000 0.565 1.000 -0.058 0.004 0.947 0.597
Gas (DK) 1.000 -0.374 -0.333 0.000 0.000 -0.002 0.000 0.290 1.000 -0.094 0.007 0.913 0.318
Gas (Su) 1.000 -0.323 -0.288 0.000 0.000 -0.002 0.000 0.387 1.000 -0.081 0.006 0.925 0.419
Gas (Coglianese) 1.000 -0.299 -0.267 0.000 0.000 -0.002 0.000 0.432 1.000 -0.075 0.006 0.931 0.464
Gas (Manzan) 1.000 -0.289 -0.257 0.000 0.000 -0.002 0.000 0.452 1.000 -0.073 0.006 0.933 0.484
Gas (Small) 1.000 -0.272 -0.242 0.000 0.000 -0.002 0.000 0.484 1.000 -0.068 0.005 0.937 0.517
Gas (Li) 1.000 -0.263 -0.234 0.000 0.000 -0.002 0.000 0.501 1.000 -0.066 0.005 0.939 0.534
Gas (Levin) 1.000 -0.240 -0.214 0.000 0.000 -0.002 0.000 0.544 1.000 -0.060 0.005 0.944 0.576
Gas (Sentenac-Chemin) 1.000 -0.228 -0.203 0.000 0.000 -0.002 0.000 0.567 1.000 -0.057 0.004 0.947 0.599
Gas (Kilian) 1.000 -0.161 -0.143 0.000 0.000 -0.002 0.000 0.694 1.000 -0.041 0.003 0.963 0.721
Gas (Gelman) 1.000 -0.133 -0.119 0.000 0.000 -0.002 0.000 0.746 1.000 -0.034 0.003 0.969 0.770
Gas (Park) 1.000 -0.130 -0.116 0.000 0.000 -0.002 0.000 0.751 1.000 -0.033 0.003 0.970 0.775
Gas (Hughes) 1.000 -0.034 -0.030 0.000 0.000 -0.002 0.000 0.934 1.000 -0.009 0.001 0.992 0.941



Gas (West) * 1.000 -0.373 -0.332 0.000 0.000 -0.002 0.000 0.293 1.000 -0.094 0.007 0.914 0.321
Gas (Tiezzi) * 1.000 -0.354 -0.315 0.000 0.000 -0.002 0.000 0.329 1.000 -0.089 0.007 0.918 0.358
Gas (Bento) * 1.000 -0.285 -0.254 0.000 0.000 -0.002 0.000 0.460 1.000 -0.072 0.006 0.934 0.492
Gas (Hughes - Ext) * 1.000 -0.272 -0.243 0.000 0.000 -0.002 0.000 0.483 1.000 -0.069 0.005 0.937 0.515
Gas (Kilian - Ext) * 1.000 -0.255 -0.227 0.000 0.000 -0.002 0.000 0.515 1.000 -0.064 0.005 0.941 0.548
Gas (Small - Ext) * 1.000 -0.054 -0.048 0.000 0.000 -0.002 0.000 0.896 1.000 -0.014 0.001 0.987 0.907

Other Fuel Taxes 1.000 -0.185 -0.067 0.000 0.000 0.000 0.000 0.749 1.000 -0.027 0.004 0.977 0.767
Jet Fuel 1.000 -0.310 -0.003 0.000 0.000 0.000 0.000 0.687 1.000 -0.038 0.006 0.968 0.710
Diesel 1.000 -0.059 -0.129 0.000 0.000 0.000 0.000 0.812 1.000 -0.015 0.001 0.986 0.823
Heavy Fuel * 1.000 -0.075 -0.001 0.000 0.000 0.000 0.000 0.924 1.000 0.000 0.001 1.001 0.923
Crude (WPT) * 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 -0.002 0.000 0.998 1.002
Crude (State) * 1.000 -0.075 0.000 0.000 0.000 0.000 0.000 0.925 1.000 -0.364 0.001 0.637 1.451
E85 * 1.000 0.562 0.009 0.000 0.000 0.000 0.000 1.572 1.000 -0.252 0.011 0.759 2.071

Other Revenue Raisers 0.979 -0.150 -0.014 0.012 0.000 0.000 0.000 0.827 1.000 0.021 0.003 1.024 0.808
CPP (AJ) 1.000 -0.107 -0.030 0.000 0.000 0.000 0.000 0.864 1.000 0.000 0.002 1.002 0.862
CARE 0.936 -0.303 0.000 0.036 0.000 0.000 0.000 0.668 1.000 0.064 0.006 1.070 0.624
CPP (PJ) 1.000 -0.039 -0.011 0.000 0.000 0.000 0.000 0.950 1.000 0.000 0.001 1.001 0.949

Cap and Trade 1.000 -0.359 -0.495 0.000 0.000 0.000 0.000 0.146 1.000 -0.028 0.007 0.979 0.149
RGGI 1.000 -0.657 -0.989 0.000 0.000 0.000 0.000 -0.646 1.000 -0.050 0.013 0.963 -0.671
CA CT 1.000 -0.061 -0.002 0.000 0.000 0.000 0.000 0.937 1.000 -0.006 0.001 0.996 0.941
ETS (BA) * 1.000 -9.192 0.000 0.000 0.000 0.000 0.000 -8.192 1.000 -0.900 0.180 0.280 -29.287
ETS (CMMW) * 1.000 -1.279 0.000 0.000 0.000 0.000 0.000 -0.279 1.000 -0.125 0.025 0.900 -0.310

Notes: This table presents the baseline MVPF components as displayed in Table 2 but excludes firm profits from the MVPF components. We denote policies
excluded from our primary sample by “*”, and these policies are not included in our category average measures. All numbers are calculated using our baseline
path for the social cost of carbon ($193 in 2020) and a 2% discount rate.



Appendix Table 7: Baseline MVPF Components Including Energy Savings Additional Benefits

Panel A. Subsidies Transfer Global Local Rebound Env. Price Profits Savings WTP Program Initial Climate Total MVPF

Wind Production Credits 1.000 4.678 0.643 -1.074 1.900 0.645 s 0.000 7.793 1.000 0.435 -0.108 1.328 5.870
PTC (Shrimali) 1.000 5.865 0.806 -1.346 3.277 0.920 0.000 0.000 10.522 1.000 0.546 -0.152 1.394 7.547
PTC (Metcalf) 1.000 4.368 0.601 -1.002 1.427 0.560 0.000 0.000 6.953 1.000 0.407 -0.094 1.312 5.298
PTC (Hitaj) 1.000 3.801 0.523 -0.872 0.998 0.455 0.000 0.000 5.904 1.000 0.354 -0.078 1.276 4.626
FIT (Germany - BEN) * 1.000 6.629 0.911 -1.521 4.841 1.170 0.000 0.000 13.030 1.000 0.617 -0.193 1.424 9.148
FIT (Spain) * 1.000 5.866 0.806 -1.346 3.277 0.920 0.000 0.000 10.522 1.000 0.546 -0.152 1.394 7.547
FIT (Germany - HL) * 1.000 5.596 0.769 -1.284 2.844 0.844 0.000 0.000 9.768 1.000 0.521 -0.140 1.381 7.072
FIT (France) * 1.000 4.837 0.665 -1.110 1.877 0.658 0.000 0.000 7.926 1.000 0.450 -0.110 1.340 5.913
FIT (UK) * 1.000 2.006 0.276 -0.460 0.223 0.199 0.000 0.000 3.243 1.000 0.187 -0.035 1.151 2.817
FIT (EU) * 1.000 0.546 0.075 -0.125 0.016 0.050 0.000 0.000 1.561 1.000 0.051 -0.009 1.042 1.498

Residential Solar 1.106 1.718 0.252 -0.421 2.280 1.636 -0.214 3.131 9.487 1.000 0.714 -0.068 1.646 5.764
CSI 1.000 4.299 0.631 -1.054 4.988 3.987 -0.535 7.837 21.153 1.000 1.787 -0.157 2.630 8.043
NE Solar 1.000 1.220 0.179 -0.299 3.132 1.610 -0.152 2.224 8.914 1.000 0.507 -0.076 1.431 6.230
CSI (TPO) 1.528 1.604 0.235 -0.393 1.982 1.371 -0.200 2.925 9.053 1.000 0.667 -0.061 1.606 5.636
CSI (HO) 1.000 0.932 0.137 -0.228 1.081 0.864 -0.116 1.699 5.368 1.000 0.387 -0.034 1.353 3.967
CT Solar 1.000 0.533 0.078 -0.131 0.216 0.346 -0.066 0.972 2.948 1.000 0.222 -0.012 1.209 2.437
ITC * 1.000 1.152 0.169 -0.282 3.825 1.944 -0.143 2.099 9.763 1.000 0.531 -0.088 1.443 6.767

Electric Vehicles 1.000 0.057 0.000 0.032 0.073 0.452 -0.043 0.078 1.649 1.000 0.092 -0.004 1.087 1.517
BEV (State - Rebate) 1.000 0.068 0.000 0.038 0.103 0.564 -0.051 0.094 1.816 1.000 0.108 -0.006 1.103 1.646
ITC (EV) 1.000 0.061 0.000 0.034 0.078 0.482 -0.046 0.083 1.693 1.000 0.097 -0.005 1.092 1.550
EFMP 1.000 0.042 0.000 0.023 0.040 0.309 -0.031 0.057 1.440 1.000 0.070 -0.003 1.067 1.350
BEV (State - ITC) * 1.000 -0.048 0.000 -0.027 0.000 0.000 0.036 -0.066 0.895 1.000 -0.073 0.003 0.927 0.966

Appliance Rebates 0.867 0.497 0.043 -0.089 0.000 0.000 -0.103 0.565 1.780 1.000 0.052 -0.009 1.044 1.705
C4A (CW) 0.953 0.550 0.083 -0.124 0.000 0.000 -0.039 0.575 1.997 1.000 0.021 -0.009 1.012 1.973
ES (WH) 0.598 1.707 0.000 -0.201 0.000 0.000 -0.659 2.051 3.496 1.000 0.112 -0.033 1.078 3.242
ES (CW) 1.000 0.861 0.126 -0.193 0.000 0.000 -0.072 1.066 2.787 1.000 0.328 -0.014 1.315 2.120
C4A (DW) 0.930 0.243 0.037 -0.055 0.000 0.000 -0.017 0.246 1.385 1.000 0.009 -0.004 1.005 1.377
ES (DW) 1.000 -0.223 -0.033 0.050 0.000 0.000 0.019 -0.276 0.538 1.000 -0.231 0.003 0.772 0.696
C4A (Fridge) 0.960 0.099 0.015 -0.022 0.000 0.000 -0.007 0.106 1.151 1.000 0.004 -0.002 1.002 1.148
ES (Fridge) 1.000 0.199 0.029 -0.045 0.000 0.000 -0.017 0.246 1.413 1.000 0.157 -0.003 1.154 1.225
CA ESA 0.500 0.541 0.083 -0.122 0.000 0.000 -0.034 0.504 1.471 1.000 0.018 -0.008 1.010 1.457

Vehicle Retirement 0.910 0.280 0.102 -0.137 0.000 0.000 -0.049 0.232 1.338 1.000 0.060 -0.004 1.056 1.267
C4C (TX) 1.000 0.410 0.030 -0.208 0.000 0.000 -0.074 0.348 1.505 1.000 0.091 -0.006 1.084 1.388
C4C (US) 1.000 0.271 0.020 -0.140 0.000 0.000 -0.049 0.228 1.331 1.000 0.060 -0.004 1.055 1.261
BAAQMD 0.730 0.161 0.255 -0.062 0.000 0.000 -0.025 0.118 1.177 1.000 0.031 -0.003 1.028 1.145

Willingness to Pay Cost

Environmental Benefits Learning by Doing Fiscal Externalities



Hybrid Vehicles 1.000 0.031 0.003 -0.026 0.000 0.014 -0.006 0.030 1.047 1.000 0.005 -0.001 1.004 1.043
HY (S-STW) 1.000 0.070 0.007 -0.059 0.001 0.031 -0.014 0.068 1.104 1.000 0.010 -0.002 1.008 1.095
HY (F-ITC) 1.000 0.020 0.002 -0.017 0.000 0.009 -0.004 0.019 1.029 1.000 0.003 0.000 1.002 1.027
HY (S-ITC) 1.000 0.004 0.000 -0.004 0.000 0.002 -0.001 0.004 1.006 1.000 0.001 0.000 1.001 1.006

Weatherization 0.774 0.297 0.029 -0.057 0.000 0.000 -0.054 0.397 1.386 1.000 0.017 -0.005 1.012 1.370
EPP 0.750 0.593 0.083 -0.133 0.000 0.000 -0.057 0.852 2.089 1.000 0.031 -0.009 1.022 2.044
IHWAP 0.750 0.404 0.019 -0.064 0.000 0.000 -0.111 0.555 1.554 1.000 0.025 -0.007 1.019 1.525
WI RF 0.870 0.052 0.011 -0.012 0.000 0.000 -0.001 0.000 0.920 1.000 0.001 -0.001 1.000 0.920
WAP 0.750 0.297 0.013 -0.045 0.000 0.000 -0.088 0.379 1.306 1.000 0.018 -0.005 1.013 1.289
LEEP+ 0.750 0.138 0.019 -0.031 0.000 0.000 -0.013 0.199 1.062 1.000 0.007 -0.002 1.005 1.057

Other Subsidies 0.887 1.504 0.424 -0.234 0.000 0.000 -0.065 0.969 3.486 1.000 0.036 -0.025 1.010 3.451
CA 20/20 0.882 2.090 0.297 -0.468 0.000 0.000 -0.131 1.939 4.609 1.000 0.071 -0.033 1.038 4.440
CRP 0.893 0.919 0.552 0.000 0.000 0.000 0.000 0.000 2.363 1.000 0.000 -0.018 0.982 2.407

Panel B. Nudges and Marketing

Home Energy Reports 0.000 2.074 0.218 -0.416 0.000 0.000 -0.030 1.950 3.796 1.000 -0.018 -0.033 0.949 4.000
HER (17 RCTs) 0.000 3.872 0.439 -0.844 0.000 0.000 -0.244 3.622 6.844 1.000 0.133 -0.061 1.072 6.385
Opower Elec. (166 RCTs) 0.000 3.246 0.368 -0.708 0.000 0.000 -0.205 3.036 5.738 1.000 0.111 -0.051 1.060 5.411
PER 0.000 0.230 0.064 0.000 0.000 0.000 0.695 0.000 0.989 1.000 -0.378 -0.004 0.618 1.600
Opower Nat. Gas (52 RCTs) 0.000 0.950 0.000 -0.112 0.000 0.000 -0.367 1.142 1.613 1.000 0.062 -0.016 1.046 1.543

Other Nudges 0.507 4.799 0.613 -1.061 0.000 0.000 -0.659 6.911 11.109 1.000 2.243 -0.076 3.167 3.508
Audit Nudge 0.000 8.678 1.333 -1.961 0.000 0.000 -0.542 8.042 15.550 1.000 2.683 -0.136 3.547 4.384
Solarize 1.145 15.001 2.200 -3.678 0.000 0.000 -1.844 27.346 40.170 1.000 6.320 -0.230 7.091 5.665
ES (WH) + Nudge 0.416 1.630 0.000 -0.192 0.000 0.000 -0.629 1.959 3.184 1.000 0.107 -0.032 1.075 2.963
IHWAP + Nudge (H) 0.739 0.517 0.019 -0.085 0.000 0.000 -0.105 0.501 1.586 1.000 0.023 -0.008 1.015 1.563
IHWAP + Nudge (L) 0.743 0.500 0.018 -0.082 0.000 0.000 -0.101 0.474 1.552 1.000 0.022 -0.008 1.014 1.530
WAP + Nudge 0.000 2.467 0.107 -0.371 0.000 0.000 -0.732 3.142 4.614 1.000 4.300 -0.041 5.259 0.877
Food Labels * 0.000 6.170 0.000 0.000 0.000 0.000 0.000 0.000 6.170 1.000 0.000 -0.120 0.880 7.015

Notes: This table presents the MVPF components as displayed in Table 2 but using our baseline 2020 specification and includes energy savings as an additional
component of WTP for vehicle replacement, appliance subsidies, weatherization, and nudges/marketing policies (displayed in Column 9). We denote policies
excluded from our primary sample by “*”, and these policies are not included in our category average measures. All numbers are calculated using our baseline
path for the social cost of carbon ($193 in 2020) and a 2% discount rate.



Appendix Table 8: Baseline MVPF Components Excluding Learning by Doing

Panel A. Subsidies Transfer Global Local Rebound Env. Price Profits WTP Program Initial Climate Total MVPF

Wind Production Credits 1.000 4.678 0.643 -1.074 0.000 0.000 0.000 5.248 1.000 0.435 -0.073 1.363 3.851
PTC (Shrimali) 1.000 5.865 0.806 -1.346 0.000 0.000 0.000 6.326 1.000 0.546 -0.091 1.455 4.349
PTC (Metcalf) 1.000 4.368 0.601 -1.002 0.000 0.000 0.000 4.966 1.000 0.407 -0.068 1.339 3.710
PTC (Hitaj) 1.000 3.801 0.523 -0.872 0.000 0.000 0.000 4.451 1.000 0.354 -0.059 1.295 3.438
FIT (Germany - BEN) * 1.000 6.629 0.911 -1.521 0.000 0.000 0.000 7.019 1.000 0.617 -0.103 1.514 4.637
FIT (Spain) * 1.000 5.866 0.806 -1.346 0.000 0.000 0.000 6.326 1.000 0.546 -0.091 1.455 4.349
FIT (Germany - HL) * 1.000 5.596 0.769 -1.284 0.000 0.000 0.000 6.081 1.000 0.521 -0.087 1.434 4.241
FIT (France) * 1.000 4.837 0.665 -1.110 0.000 0.000 0.000 5.391 1.000 0.450 -0.075 1.375 3.921
FIT (UK) * 1.000 2.006 0.276 -0.460 0.000 0.000 0.000 2.822 1.000 0.187 -0.031 1.156 2.442
FIT (EU) * 1.000 0.546 0.075 -0.125 0.000 0.000 0.000 1.496 1.000 0.051 -0.009 1.042 1.435

Residential Solar 1.106 1.718 0.252 -0.421 0.000 0.000 -0.214 2.440 1.000 0.714 -0.026 1.688 1.446
CSI 1.000 4.299 0.631 -1.054 0.000 0.000 -0.535 4.341 1.000 1.787 -0.066 2.721 1.595
NE Solar 1.000 1.220 0.179 -0.299 0.000 0.000 -0.152 1.948 1.000 0.507 -0.019 1.488 1.309
CSI (TPO) 1.528 1.604 0.235 -0.393 0.000 0.000 -0.200 2.775 1.000 0.667 -0.025 1.642 1.690
CSI (HO) 1.000 0.932 0.137 -0.228 0.000 0.000 -0.116 1.724 1.000 0.387 -0.014 1.373 1.256
CT Solar 1.000 0.533 0.078 -0.131 0.000 0.000 -0.066 1.414 1.000 0.222 -0.008 1.213 1.166
ITC * 1.000 1.152 0.169 -0.282 0.000 0.000 -0.143 1.895 1.000 0.531 -0.018 1.513 1.252

Electric Vehicles 1.000 0.057 0.000 0.032 0.000 0.000 -0.043 1.046 1.000 0.092 -0.003 1.088 0.961
BEV (State - Rebate) 1.000 0.068 0.000 0.038 0.000 0.000 -0.051 1.055 1.000 0.108 -0.004 1.105 0.955
ITC (EV) 1.000 0.061 0.000 0.034 0.000 0.000 -0.046 1.049 1.000 0.097 -0.003 1.093 0.960
EFMP 1.000 0.042 0.000 0.023 0.000 0.000 -0.031 1.034 1.000 0.070 -0.002 1.067 0.969
BEV (State - ITC) * 1.000 -0.048 0.000 -0.027 0.000 0.000 0.036 0.961 1.000 -0.073 0.003 0.927 1.037

Appliance Rebates 0.867 0.497 0.043 -0.089 0.000 0.000 -0.103 1.215 1.000 0.052 -0.009 1.044 1.164
C4A (CW) 0.953 0.550 0.083 -0.124 0.000 0.000 -0.039 1.423 1.000 0.021 -0.009 1.012 1.405
ES (WH) 0.598 1.707 0.000 -0.201 0.000 0.000 -0.659 1.445 1.000 0.112 -0.033 1.078 1.340
ES (CW) 1.000 0.861 0.126 -0.193 0.000 0.000 -0.072 1.722 1.000 0.328 -0.014 1.315 1.310
C4A (DW) 0.930 0.243 0.037 -0.055 0.000 0.000 -0.017 1.138 1.000 0.009 -0.004 1.005 1.132
ES (DW) 1.000 -0.223 -0.033 0.050 0.000 0.000 0.019 0.813 1.000 -0.231 0.003 0.772 1.053
C4A (Fridge) 0.960 0.099 0.015 -0.022 0.000 0.000 -0.007 1.044 1.000 0.004 -0.002 1.002 1.042
ES (Fridge) 1.000 0.199 0.029 -0.045 0.000 0.000 -0.017 1.167 1.000 0.157 -0.003 1.154 1.011
CA ESA 0.500 0.541 0.083 -0.122 0.000 0.000 -0.034 0.968 1.000 0.018 -0.008 1.010 0.958

Vehicle Retirement 0.910 0.280 0.102 -0.137 0.000 0.000 -0.049 1.106 1.000 0.060 -0.004 1.056 1.047
C4C (TX) 1.000 0.410 0.030 -0.208 0.000 0.000 -0.074 1.157 1.000 0.091 -0.006 1.084 1.067
C4C (US) 1.000 0.271 0.020 -0.140 0.000 0.000 -0.049 1.102 1.000 0.060 -0.004 1.055 1.044
BAAQMD 0.730 0.161 0.255 -0.062 0.000 0.000 -0.025 1.059 1.000 0.031 -0.003 1.028 1.030

Willingness to Pay Cost

Environmental Benefits Learning by Doing Fiscal Externalities



Hybrid Vehicles 1.000 0.031 0.003 -0.026 0.000 0.000 -0.006 1.002 1.000 0.005 -0.001 1.004 0.998
HY (S-STW) 1.000 0.070 0.007 -0.059 0.000 0.000 -0.014 1.004 1.000 0.010 -0.002 1.008 0.996
HY (F-ITC) 1.000 0.020 0.002 -0.017 0.000 0.000 -0.004 1.001 1.000 0.003 0.000 1.002 0.999
HY (S-ITC) 1.000 0.004 0.000 -0.004 0.000 0.000 -0.001 1.000 1.000 0.001 0.000 1.001 1.000

Weatherization 0.774 0.297 0.029 -0.057 0.000 0.000 -0.054 0.989 1.000 0.017 -0.005 1.012 0.978
EPP 0.750 0.593 0.083 -0.133 0.000 0.000 -0.057 1.237 1.000 0.031 -0.009 1.022 1.210
IHWAP 0.750 0.404 0.019 -0.064 0.000 0.000 -0.111 0.999 1.000 0.025 -0.007 1.019 0.980
WI RF 0.870 0.052 0.011 -0.012 0.000 0.000 -0.001 0.920 1.000 0.001 -0.001 1.000 0.920
WAP 0.750 0.297 0.013 -0.045 0.000 0.000 -0.088 0.927 1.000 0.018 -0.005 1.013 0.915
LEEP+ 0.750 0.138 0.019 -0.031 0.000 0.000 -0.013 0.864 1.000 0.007 -0.002 1.005 0.859

Other Subsidies 0.887 1.504 0.424 -0.234 0.000 0.000 -0.065 2.517 1.000 0.036 -0.025 1.010 2.492
CA 20/20 0.882 2.090 0.297 -0.468 0.000 0.000 -0.131 2.671 1.000 0.071 -0.033 1.038 2.572
CRP 0.893 0.919 0.552 0.000 0.000 0.000 0.000 2.363 1.000 0.000 -0.018 0.982 2.407

Panel B. Nudges and Marketing

Home Energy Reports 0.000 2.074 0.218 -0.416 0.000 0.000 -0.030 1.846 1.000 -0.018 -0.033 0.949 1.945
HER (17 RCTs) 0.000 3.872 0.439 -0.844 0.000 0.000 -0.244 3.222 1.000 0.133 -0.061 1.072 3.006
Opower Elec. (166 RCTs) 0.000 3.246 0.368 -0.708 0.000 0.000 -0.205 2.701 1.000 0.111 -0.051 1.060 2.548
PER 0.000 0.230 0.064 0.000 0.000 0.000 0.695 0.989 1.000 -0.378 -0.004 0.618 1.600
Opower Nat. Gas (52 RCTs) 0.000 0.950 0.000 -0.112 0.000 0.000 -0.367 0.472 1.000 0.062 -0.016 1.046 0.451

Other Nudges 0.507 4.799 0.613 -1.061 0.000 0.000 -0.659 4.199 1.000 2.243 -0.076 3.167 1.326
Audit Nudge 0.000 8.678 1.333 -1.961 0.000 0.000 -0.542 7.507 1.000 2.683 -0.136 3.547 2.117
Solarize 1.145 15.001 2.200 -3.678 0.000 0.000 -1.844 12.824 1.000 6.320 -0.230 7.091 1.809
ES (WH) + Nudge 0.416 1.630 0.000 -0.192 0.000 0.000 -0.629 1.225 1.000 0.107 -0.032 1.075 1.140
IHWAP + Nudge (H) 0.739 0.517 0.019 -0.085 0.000 0.000 -0.105 1.085 1.000 0.023 -0.008 1.015 1.069
IHWAP + Nudge (L) 0.743 0.500 0.018 -0.082 0.000 0.000 -0.101 1.078 1.000 0.022 -0.008 1.014 1.062
WAP + Nudge 0.000 2.467 0.107 -0.371 0.000 0.000 -0.732 1.471 1.000 4.300 -0.041 5.259 0.280
Food Labels * 0.000 6.170 0.000 0.000 0.000 0.000 0.000 6.170 1.000 0.000 -0.120 0.880 7.015

Panel C. Revenue Raisers

Gasoline Taxes 1.000 -0.229 -0.204 0.000 0.000 0.000 0.060 0.627 1.000 -0.073 0.004 0.931 0.673
Gas (DK) 1.000 -0.375 -0.333 0.000 0.000 0.000 0.098 0.390 1.000 -0.120 0.007 0.887 0.439
Gas (Su) 1.000 -0.324 -0.288 0.000 0.000 0.000 0.084 0.473 1.000 -0.104 0.006 0.903 0.524
Gas (Coglianese) 1.000 -0.300 -0.267 0.000 0.000 0.000 0.078 0.512 1.000 -0.096 0.006 0.910 0.562
Gas (Manzan) 1.000 -0.289 -0.257 0.000 0.000 0.000 0.076 0.529 1.000 -0.093 0.006 0.913 0.579
Gas (Small) 1.000 -0.272 -0.242 0.000 0.000 0.000 0.071 0.557 1.000 -0.087 0.005 0.918 0.606
Gas (Li) 1.000 -0.263 -0.234 0.000 0.000 0.000 0.069 0.571 1.000 -0.084 0.005 0.921 0.620
Gas (Levin) 1.000 -0.241 -0.214 0.000 0.000 0.000 0.063 0.609 1.000 -0.077 0.005 0.928 0.656
Gas (Sentenac-Chemin) 1.000 -0.228 -0.203 0.000 0.000 0.000 0.060 0.628 1.000 -0.073 0.004 0.931 0.675
Gas (Kilian) 1.000 -0.161 -0.143 0.000 0.000 0.000 0.042 0.737 1.000 -0.052 0.003 0.951 0.775
Gas (Gelman) 1.000 -0.134 -0.119 0.000 0.000 0.000 0.035 0.782 1.000 -0.043 0.003 0.960 0.815
Gas (Park) 1.000 -0.131 -0.116 0.000 0.000 0.000 0.034 0.787 1.000 -0.042 0.003 0.961 0.819
Gas (Hughes) 1.000 -0.034 -0.030 0.000 0.000 0.000 0.009 0.944 1.000 -0.011 0.001 0.990 0.954



Gas (West) * 1.000 -0.373 -0.332 0.000 0.000 0.000 0.097 0.392 1.000 -0.119 0.007 0.888 0.442
Gas (Tiezzi) * 1.000 -0.355 -0.315 0.000 0.000 0.000 0.093 0.423 1.000 -0.114 0.007 0.893 0.473
Gas (Bento) * 1.000 -0.285 -0.254 0.000 0.000 0.000 0.074 0.536 1.000 -0.091 0.006 0.914 0.586
Gas (Hughes - Ext) * 1.000 -0.273 -0.243 0.000 0.000 0.000 0.071 0.555 1.000 -0.087 0.005 0.918 0.605
Gas (Kilian - Ext) * 1.000 -0.256 -0.227 0.000 0.000 0.000 0.067 0.583 1.000 -0.082 0.005 0.923 0.632
Gas (Small - Ext) * 1.000 -0.054 -0.048 0.000 0.000 0.000 0.014 0.911 1.000 -0.017 0.001 0.984 0.927

Other Fuel Taxes 1.000 -0.185 -0.067 0.000 0.000 0.000 0.025 0.774 1.000 -0.033 0.004 0.970 0.798
Jet Fuel 1.000 -0.310 -0.003 0.000 0.000 0.000 0.036 0.722 1.000 -0.048 0.006 0.958 0.754
Diesel 1.000 -0.059 -0.129 0.000 0.000 0.000 0.015 0.827 1.000 -0.019 0.001 0.982 0.842
Heavy Fuel * 1.000 -0.075 -0.001 0.000 0.000 0.000 0.007 0.931 1.000 -0.002 0.001 1.000 0.931
Crude (WPT) * 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 1.000 -0.002 0.000 0.998 1.002
Crude (State) * 1.000 -0.075 0.000 0.000 0.000 0.000 0.000 0.925 1.000 -0.364 0.001 0.637 1.451
E85 * 1.000 0.562 0.009 0.000 0.000 0.000 0.411 1.982 1.000 -0.361 0.011 0.650 3.051

Other Revenue Raisers 0.979 -0.150 -0.014 0.012 0.000 0.000 -0.108 0.719 1.000 0.109 0.003 1.112 0.647
CPP (AJ) 1.000 -0.107 -0.030 0.000 0.000 0.000 -0.323 0.540 1.000 0.176 0.002 1.178 0.459
CARE 0.936 -0.303 0.000 0.036 0.000 0.000 0.117 0.785 1.000 0.086 0.006 1.092 0.719
CPP (PJ) 1.000 -0.039 -0.011 0.000 0.000 0.000 -0.119 0.831 1.000 0.065 0.001 1.065 0.780

Cap and Trade 1.000 -0.359 -0.495 0.000 0.000 0.000 0.000 0.146 1.000 -0.028 0.007 0.979 0.149
RGGI 1.000 -0.657 -0.989 0.000 0.000 0.000 0.000 -0.646 1.000 -0.050 0.013 0.963 -0.671
CA CT 1.000 -0.061 -0.002 0.000 0.000 0.000 0.000 0.937 1.000 -0.006 0.001 0.996 0.941
ETS (BA) * 1.000 -9.192 0.000 0.000 0.000 0.000 0.000 -8.192 1.000 -0.900 0.180 0.280 -29.287
ETS (CMMW) * 1.000 -1.279 0.000 0.000 0.000 0.000 0.000 -0.279 1.000 -0.125 0.025 0.900 -0.310

Notes: This table presents the baseline MVPF components as displayed in Table 2 but excludes learning by doing e↵ects from the MVPF components. We
denote policies excluded from our primary sample by “*”, and these policies are not included in our category average measures. All numbers are calculated using
our baseline path for the social cost of carbon ($193 in 2020) and a 2% discount rate.



Appendix Table 9: MVPF Versus Social Cost Per Ton with MCF Adjustment

Panel A. With Learning by Doing MVPF 0% DWL 10% DWL 30% DWL 50% DWL

Subsidies
Wind Production Credits 5.870 -32 -24 -15 -6
Residential Solar 3.862 -67 -48 -31 -14
Electric Vehicles 1.445 -415 -259 1 260
Appliance Rebates 1.164 111 159 254 349
Vehicle Retirement 1.047 148 235 411 586
Hybrid Vehicles 1.012 -38 555 1,749 2,942
Weatherization 0.978 207 285 441 596

Nudges and Marketing
Opower Elec. (166 RCTs) 2.548 70 78 93 109

Revenue Raisers
Gasoline Taxes 0.671 -64 -140 -294 -448

Net Social Cost Per Ton

Notes: This Table presents estimates of the net social cost per ton using di↵erent adjustments for the marginal
cost of funds of raising revenue (a.k.a. the deadweight loss (DWL) of taxation). As noted in the text, the net
social cost is augmented with an additional � multiplied by the net government cost of the policy. The table
shows the results for � = 10%, 30% and 50%, along with a comparison to the net social cost per ton for � = 0
and the MVPF.
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Appendix Table 10: MVPF Versus Cost Per Ton Measures for All Policies

Panel A. Subsidies MVPF Resource Government Social

Wind Production Credits 5.870 -103 46 -32
PTC (Shrimali) 7.547 -113 34 -28
PTC (Metcalf) 5.298 -100 51 -28
PTC (Hitaj) 4.626 -96 61 -28

Residential Solar 3.862 -77 90 -67
CSI 5.063 -77 62 -53
NE Solar 4.676 -111 69 -54
CSI (TPO) 3.815 -70 98 -75
CSI (HO) 2.712 -77 147 -53
CT Solar 1.634 -52 370 -40

Electric Vehicles 1.445 -458 1,356 -415
BEV (State - Rebate) 1.561 -527 1,069 -383
ITC (EV) 1.474 -467 1,279 -391
EFMP 1.296 -379 2,056 -398

Appliance Rebates 1.164 -2 474 111
C4A (CW) 1.405 4 433 14
ES (WH) 1.340 209 136 143
ES (CW) 1.310 170 359 78
C4A (DW) 1.132 69 972 61
ES (DW) 1.053 507 -816 233
C4A (Fridge) 1.042 -298 2,385 89
ES (Fridge) 1.011 -512 1,365 174
CA ESA 0.958 -162 440 208

Vehicle Retirement 1.047 1,008 876 148
C4C (TX) 1.067 -1 620 148
C4C (US) 1.044 14 922 148
BAAQMD 1.030 3,010 1,426 147

Hybrid Vehicles 1.012 577 5,892 -38
HY (S-STW) 1.028 576 2,646 -41
HY (F-ITC) 1.008 577 9,371 -40
HY (S-ITC) 1.002 577 43,443 -40

Weatherization 0.978 194 779 207
EPP 1.210 111 405 104
IHWAP 0.980 101 561 200
WI RF 0.920 39 4,559 555
WAP 0.915 197 752 253
LEEP+ 0.859 523 1,709 430

Cost Per Ton
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Panel B. Nudges and Marketing

Home Energy Reports 1.945 -38 106 89
HER (17 RCTs) 3.006 -51 65 59
Opower Elec. (166 RCTs) 2.548 -41 77 70
PER 1.600 -194 509 -116
Opower Nat. Gas (52 RCTs) 0.451 132 236 319

Panel C. Revenue Raisers

Gasoline Taxes 0.671 -104 -770 -64
Gas (DK) 0.437 -104 -449 -63
Gas (Su) 0.523 -104 -529 -63
Gas (Coglianese) 0.561 -104 -575 -63
Gas (Manzan) 0.578 -104 -598 -63
Gas (Small) 0.605 -104 -640 -63
Gas (Li) 0.619 -104 -664 -63
Gas (Levin) 0.654 -104 -732 -63
Gas (Sentenac-Chemin) 0.673 -104 -775 -64
Gas (Kilian) 0.773 -104 -1,120 -64
Gas (Gelman) 0.814 -104 -1,366 -65
Gas (Park) 0.818 -104 -1,397 -65
Gas (Hughes) 0.953 -104 -5,581 -73

Other Fuel Taxes 0.798 -70 -995 -12
Jet Fuel 0.754 -42 -585 45
Diesel 0.841 -99 -3,160 -313

Other Revenue Raisers 0.647 -701 -1,525 -350
CPP (AJ) 0.459 -1,018 -2,086 -940
CARE 0.719 -67 -772 -28
CPP (PJ) 0.780 -1,018 -5,131 -940

Notes: This table presents estimates of the MVPF and cost per ton measures using our baseline specification
(including learning by doing e↵ects). We denote policies excluded from our primary sample by “*”, and these
policies are not included in our category average measures. All numbers are calculated using our baseline path
for the social cost of carbon ($193 in 2020) and a 2% discount rate.
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Appendix Table 11: MVPF Versus Cost Per Ton, Excluding Learning By

Doing

Panel A. Subsidies MVPF Resource Government Social

Wind Production Credits 3.851 -42 69 -8
PTC (Shrimali) 4.349 -42 59 -8
PTC (Metcalf) 3.710 -42 73 -8
PTC (Hitaj) 3.438 -42 81 -8

Residential Solar 1.446 4 237 83
CSI 1.595 4 153 98
NE Solar 1.309 4 295 98
CSI (TPO) 1.690 4 247 19
CSI (HO) 1.256 4 356 98
CT Solar 1.166 4 550 98

Electric Vehicles 0.961 963 2,422 283
BEV (State - Rebate) 0.955 963 2,049 281
ITC (EV) 0.960 963 2,276 281
EFMP 0.969 963 3,250 292

Appliance Rebates 1.164 -2 474 111
C4A (CW) 1.405 4 433 14
ES (WH) 1.340 209 136 143
ES (CW) 1.310 170 359 78
C4A (DW) 1.132 69 972 61
ES (DW) 1.053 507 -816 233
C4A (Fridge) 1.042 -298 2,385 89
ES (Fridge) 1.011 -512 1,365 174
CA ESA 0.958 -162 440 208

Vehicle Retirement 1.047 1,008 876 148
C4C (TX) 1.067 -1 620 148
C4C (US) 1.044 14 922 148
BAAQMD 1.030 3,010 1,426 147

Hybrid Vehicles 0.998 659 6,041 43
HY (S-STW) 0.996 659 2,729 43
HY (F-ITC) 0.999 659 9,455 43
HY (S-ITC) 1.000 659 43,526 43

Weatherization 0.978 194 779 207
EPP 1.210 111 405 104
IHWAP 0.980 101 561 200
WI RF 0.920 39 4,559 555
WAP 0.915 197 752 253
LEEP+ 0.859 523 1,709 430

Cost Per Ton
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Panel B. Nudges and Marketing

Home Energy Reports 1.945 -38 106 89
HER (17 RCTs) 3.006 -51 65 59
Opower Elec. (166 RCTs) 2.548 -41 77 70
PER 1.600 -194 509 -116
Opower Nat. Gas (52 RCTs) 0.451 132 236 319

Panel C. Revenue Raisers

Gasoline Taxes 0.673 -104 -768 -62
Gas (DK) 0.439 -104 -448 -62
Gas (Su) 0.524 -104 -528 -62
Gas (Coglianese) 0.562 -104 -574 -62
Gas (Manzan) 0.579 -104 -597 -62
Gas (Small) 0.606 -104 -638 -62
Gas (Li) 0.620 -104 -662 -62
Gas (Levin) 0.656 -104 -730 -62
Gas (Sentenac-Chemin) 0.675 -104 -772 -62
Gas (Kilian) 0.775 -104 -1,116 -62
Gas (Gelman) 0.815 -104 -1,359 -62
Gas (Park) 0.819 -104 -1,390 -62
Gas (Hughes) 0.954 -104 -5,471 -62

Other Fuel Taxes 0.798 -70 -995 -12
Jet Fuel 0.754 -42 -585 45
Diesel 0.841 -99 -3,160 -313

Other Revenue Raisers 0.647 -701 -1,525 -350
CPP (AJ) 0.459 -1,018 -2,086 -940
CARE 0.719 -67 -772 -28
CPP (PJ) 0.780 -1,018 -5,131 -940

Notes: This table presents estimates of the MVPF and cost per ton measures using our baseline specification
but excluding learning by doing externalities. We denote policies excluded from our primary sample by “*”, and
these policies are not included in our category average measures. All numbers are calculated using our baseline
path for the social cost of carbon ($193 in 2020) and a 2% discount rate.

123



Appendix Table 12: Average Light-duty, Gasoline-powered Vehicle

Externalities

Externality Upstream On-Road Total

Pollution Externalities
Ammonia (NH3) 0.000 0.000

Carbon Dioxide (CO2) 0.218 1.612 1.830
Carbon Monoxide (CO) 0.000 0.052 0.052

Hydrocarbons (HC) 0.004 0.036 0.040
Methane (CH4) 0.025 0.001 0.026

Nitrous Oxide (N2O) 0.001 0.012 0.013
Oxides of Nitrogen (NOX) 0.003 0.071 0.074

Particulate Matter (PM2.5) 0.005 0.084 0.089
Sulfur Dioxide (SO2) 0.007 0.003 0.010

0.264 1.871 2.135

Driving Externalities
Accidents 0.992 0.992

Congestion 0.412 0.412

1.404 1.404

Total Vehicle Externality 0.264 3.274 3.538

Externality Value ($/Gallon)

Notes: This table reports estimates of the per-gallon externalities from pollution and driving externalities
separately for each component. On-road PM2.5 emissions include PM2.5 from vehicle exhaust ($0.066) and
from tires and brakes ($0.018). HC and CO include global and local damages. Accidents, congestion, and
PM2.5 from tires and brakes have been scaled by our preferred estimate of the share of the price elasticity of
gasoline that arises from changes in VMT (0.52) (Small & Van Dender 2007). We do not observe on-road NH3.
All values are expressed in 2020 dollars. This table applies only when considering a change in gasoline usage by
the average vehicle in the fleet in 2020.
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