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1 Introduction

The use of dynamic pricing permeates markets with limited capacity and perishable goods. Exam-

ples include seats on airplanes and trains, tickets for entertainment events, reservations for cruises

and hotels, inventory in retailing, and units in housing rental. In the absence of competition, two

main forces drive price dynamics. First, prices reflect changing opportunity costs. This is because

the value a firm places on selling a unit of capacity today depends on that firm’s ability to sell it in

the future. Second, demand may change over time in predictable ways. For example, if consumers

with high willingness to pay tend to arrive later on, a firm has an incentive to save capacity for fu-

ture consumers. These forces have been extensively studied for a monopolist in the theoretical and

empirical literature. With competition, a third force emerges that is less well understood: Firms

also have an incentive to adjust prices to affect their rivals’ remaining capacities and, hence, future

competition.

In this paper, we provide a theoretical analysis of dynamic pricing that incorporates all three

forces simultaneously.1 We make three contributions. First, we develop a theory of dynamic

pricing with competition for differentiated products in perishable goods markets. We start with

an analysis of stage games and establish how general forms of scarcity affect equilibrium prices.

Using these results, we provide sufficient conditions for the existence and uniqueness of pure-

strategy Markov perfect equilibria in discrete time. Second, we use the continuous-time limit of

the equilibrium to derive properties of equilibrium dynamics and to illustrate key economic forces.

We show that much of the intuition from monopoly dynamic pricing models does not apply to

the oligopoly case. For example, competing firms’ strategies are aligned with encouraging the firm

with the lowest capacity to sell out first, whereas a monopolist attempts to preserve product variety.

Third, we study the welfare effects of dynamic price competition. We find that while competition

reduces prices, it can also exacerbate misallocation by causing firms to sell capacity too quickly.

This can be harmful to both consumers and firms. We formalize this new economic force, which

we call the Bertrand scarcity trap, and contrast the outcomes with those of alternative pricing

mechanisms, including the social planner’s solution, monopoly pricing, and algorithmic pricing.

In our model, firms are exogenously endowed with limited initial capacity and face a common

1We use the term dynamic pricing throughout the paper for consistency. The term revenue management is also
appropriate.
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sales deadline. Capacity could represent seats on an airplane or capacity in one of the other afore-

mentioned examples.2 We consider an arbitrary number of firms, each offering an arbitrary number

of differentiated products. Consumers arrive randomly according to a time-varying Poisson pro-

cess with preferences that depend on the consumers’ arrival time. Upon arrival, each short-lived

consumer makes a discrete-choice decision, electing to purchase an available product or to exit the

market forever. We consider regularity conditions on demand that can accommodate models fre-

quently studied in theoretical and empirical work, including logit and nested logit demand. Firms

are forward-looking and maximize expected payoffs. They internalize the uncertainty in aggre-

gate demand, the presence of heterogeneous consumers, and the effects of competition. Within

a period, after observing all remaining capacities, firms simultaneously choose prices.3 Then, an

arriving customer decides which product to purchase, and remaining capacities are updated. This

process repeats until the deadline or until all products are sold out. Unsold capacity is scrapped

after the deadline.

As our first contribution, we characterize Markov-perfect equilibria (MPE) in pure strategies,

where the payoff-relevant state is the vector of remaining capacities and time. The Markovian

structure allows us to summarize the impact of today’s prices on the continuation game in a scarcity

matrix that depends on the current state. We call the marginal impact on a firm’s continuation

profit of selling its own product an own-scarcity effect. Similarly, we define the impact on a

firm’s continuation payoff of a competitor selling a competitor-scarcity effect. Together, all scarcity

effects define the scarcity matrix, which has dimensions equal to the number of firms and the

number of products in the game. Matrix entries dictate how firms price their products in the stage

game.

Analyzing stage games for a given scarcity matrix and demand system is challenging because

each firm’s payoff is affected not only by the firm’s residual demands but also by its competitors’

demands through the competitor-scarcity effects. Stage-game payoffs are generally not (log) su-

permodular (Milgrom and Roberts, 1990), nor are they of the form in Caplin and Nalebuff (1991)

2We use the word capacity throughout the paper in lieu of the word inventory. Sometimes we add the word
remaining before capacity to improve readability. The meaning is the same regardless. Capacity is treated as a state
variable in our setting unlike in Kreps and Scheinkman (1983), who incorporate capacity choice.

3For example, airlines can observe their rival remaining capacities. If capacity is hidden, firms can infer about the
capacity distribution from observed prices, their own demand realizations, and elapsed time. While this complicates
the analysis, we conjecture that the forces identified under perfect information still apply in a private information
context.
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and Nocke and Schutz (2018). To make progress, we employ a fixed-point theorem in Kellogg

(1976). We derive sufficient conditions for both the existence and uniqueness of stage-game equi-

libria in pure strategies. These conditions essentially bound the absolute size of competitor-scarcity

effects.4 We then discuss strategic properties of the stage game. An equilibrium exists for arbitrary

scarcity matrices if demand satisfies the independence of irrelevant alternatives (IIA) condition.

This is because with IIA, the stage game admits a markup formula. This Lerner index, while of

the familiar form, is more complex, because other product prices enter the marginal cost of selling.

For non-IIA demand, there is no Lerner representation, because the product’s price itself enters the

marginal cost of selling.

We provide sufficient conditions for the uniqueness of the dynamic equilibrium. We first show

that if discrete-time equilibria are unique for sufficiently small periods, their continuous-time limit

solves a system of first-order ordinary differential equations (ODEs).5 Solutions to this ODE sys-

tem exist when the limiting scarcity matrices remain within a bounded open set where unique stage

game equilibria exist. Discrete-time games with sufficiently small periods must have a unique equi-

librium whenever all ODE solutions remain in this set. This allows us to study the discrete game

via the limiting ODE system. Since the bounded open set contains the zero scarcity matrix at the

deadline, uniqueness holds close to the deadline.

As our second contribution, we establish a number of qualitative properties of the game using

our ODE characterization, including formalizing links between scarcity and pricing dynamics. We

show that if the firm with the lowest capacity sells, for a given level of product differentiation, this

softens competition the most. That is, rival firms’ strategies are aligned with encouraging the firm

with the lowest capacity to sell out first. Rivals charge relatively high prices, and the firm with the

lowest capacity relatively low prices, in an attempt to raise future prices. Intuitively, the firm with

the lowest capacity is closest to selling out, so this firm selling out first is the most efficient way

to soften competition. This result generalizes Dudey (1992), who considers deterministic, single-

valued demand for undifferentiated products, and Martínez-de Albéniz and Talluri (2011), who in

addition allow for stochastic arrivals. These papers involve a deterministic order of sale, whereas

4We provide some guidance on when multiplicity of equilibria in the stage game may arise. Multiplicity does not
require extreme assumptions on demand. For example, it can arise under simple logit demand, unlike in standard
oligopoly games (Nocke and Schutz, 2018).

5If the discrete games admit multiple equilibria, then price policies can contain jumps as we illustrate in an example.
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in our model, it is possible and probable that the firm with the lowest capacity does not sell. When

this occurs, the firm that sells may lower its prices, and its rivals increase their prices.

Firms generally benefit from asymmetries because competition is fiercest when firms have the

same capacities.If firms reach these competitive states, firms may offer fire sales (offer low prices)

in order to return to an asymmetric state. Hence, when competing firms use dynamic pricing, they

attempt to soften price competition by promoting scarcity through reducing product variety. In

contrast, a monopolist price discriminates while trying to preserve product variety. This strategic

difference can have important consequences for welfare.

Most intuition from monopoly dynamic pricing models (e.g., Gallego and Van Ryzin, 1994;

Zhao and Zheng, 2000) does not generalize to the oligopoly case. We show that price policy func-

tions are non-monotonic in time and capacity, value functions are non-monotonic in capacity, and

scarcity effects can be positive or negative and non-monotonic in time and capacity. These results

are economically significant for our understanding of competition in perishable goods markets.

For example, markets can be more competitive if firms have lower, not greater, initial capacities.

In addition to allowing us to establish theoretical results, our characterization serves as a pow-

erful tool for conducting empirical research and complements frameworks used to study industry

dynamics (e.g., Ericson and Pakes, 1995). Although (Doraszelski and Judd, 2012) caution against

applying continuous-time methods in settings where observations (data) are naturally discrete,

we exactly address these concerns by showing when the continuous-time solution approximates

discrete-time equilibria. To address the curse of dimensionality, it is common in empirical work

to impose sequential-move (Maskin and Tirole, 1988) or random–sequential-move assumptions

(e.g., Baron and Ferejohn, 1989; Doraszelski and Judd, 2019). However, the possibility that a

firm’s action can affect other firms’ states (i.e., a firm’s pricing decision can cause a competitor

to sell) precludes the ability to use this approach: It is not possible to decompose the game into

independent separate problems for each firm. Our approach can trace out equilibrium prices with-

out explicitly solving all stage-game equilibria. We only need to solve stage games at the deadline

where all scarcity effects are zero. From there, the system of ODEs can be solved using standard

numerical methods. For large-dimensional problems, we discuss how our ODE structure can be

coupled with reinforcement learning.

As our third contribution, we explore the welfare implications of dynamic price competition.
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We show that the incentive to promote scarcity can be so strong that both firms and consumers

could be made better off if firms could commit to restricting their pricing strategies to higher

prices. We call this new welfare effect the Bertrand scarcity trap (BST). Using examples, we

show that competition can worsen misallocation due to two forces. First, firms capture only a

fraction of total surplus and do not internalize the social option value of holding capacity for the

future. Second, competitive pressure causes prices to drop to inefficiently low levels, leading to

early sellouts. The consequence is over-provision of capacity early on and under-provision (due

to sellouts) close to the deadline. In one example, we show that a monopolist could increase

consumer surplus relative to the competitive equilibrium outcome with dynamic pricing. We also

demonstrate that the use of algorithmic pricing can increase consumer surplus and revenues relative

to the competitive equilibrium outcome. Lastly, we show that uncertain demand is critical for the

existence of the BST.

1.1 Related Literature

Although there is a large literature on dynamic pricing, much of it focuses on monopolies. As in

the classic revenue management literature (e.g., Gallego and Van Ryzin, 1994), we consider short-

lived consumers for tractability reasons and based on recent empirical evidence (Hortaçsu et al.,

2024), but our work also relates to models with long-lived buyers.6 In Board and Skrzypacz (2016),

Gershkov et al. (2018) and Dilme and Li (2019), a key tension with forward-looking buyers is that

the monopolist is essentially competing with its future self. While Board and Skrzypacz (2016) and

Gershkov et al. (2018) assume the firm can fully commit to a selling mechanism and hence resist

the temptation to fire-sale,7 Dilme and Li (2019) find that a firm has fire sales in order to create

future scarcity. Fire sales are possible in our model, but they stem from competitive interactions.

We assume consumers know their preferences, which is another restriction that has been re-

laxed in work studying monopolist pricing. For example, Akan et al. (2015) demonstrates that

if consumers learn their demand over time, a monopolist increases profits by offering advance-

6Hortaçsu et al. (2024) find little evidence of consumers delaying airline ticket purchases, using two years of
clickstream data for a large international airline company based in the US. This does not imply that consumers are not
forward-looking. If demand becomes increasing inelastic, the incentives to delay purchase decrease.

7Hörner and Samuelson (2011) consider the corresponding setting without commitment when the seller has only
one unit of capacity to sell.
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purchase contracts with varying return policies. Ely et al. (2017) show that a firm can benefit from

overbooking, i.e., selling more than its capacity constraint. Garrett (2016) finds that a monopolist

without capacity constraints may offer discounts if consumer preferences change over time.8

It is known from the literature that in the presence of demand uncertainty, competing firms may

want to offer a menu of prices and restrict the number of units to be sold at any given price (Dana,

1999a,b). In our model, firms adjust prices continuously as demand uncertainty is resolved. Our

relatively mild demand assumptions can cause firms to implement advance purchase discounts, as

studied in other settings (e.g., Gale and Holmes, 1993; Nocke et al., 2011).

Another key force in our model is that firms may want to shift sales to rivals. Dana and Williams

(2022) consider a related sequential capacity-price model absent demand uncertainty. They show

that when products are undifferentiated, the unique pricing equilibrium typically involves a uni-

form price over time, unless one firm has more capacity than all other firms and sells part of its

capacity first. In contrast, Dudey (1992) and Martínez-de Albéniz and Talluri (2011) show that

firms offering undifferentiated products to homogeneous consumers sell their inventory in a de-

terministic order.9 We reconcile these forces by contrasting our rich dynamic model with one in

which demand uncertainty and product differentiation are not present.10

Technically, our work leverages continuous-time techniques as common in dynamic pricing

work (Deb, 2014; Bergemann and Strack, 2015; Board and Skrzypacz, 2016; Dilme and Li, 2019;

Bonatti et al., 2017). Unlike most work in this field, we use the continuous-time structure to

derive not only the dynamic properties of equilibria but also the conditions for the existence and

uniqueness of Markov equilibria of the discrete-time game.

Finally, our work connects to an emerging literature on algorithmic pricing (e.g., Calvano et

al., 2020; Banchio and Mantegazza, 2022; Lamba and Zhuk, 2022). These papers explore how

algorithms can significantly soften price competition. Our findings show that the opposite can also

be true—the competitive equilibrium outcome of our dynamic game can result in lower welfare

than allocation rules involving algorithmic pricing. The key driver of this result is that algorithmic

pricing reduces over-provision early on and shifts sales to later periods.

8Other examples analyzing sequential screening include Courty and Li (2000) and Deb and Said (2015).
9In both papers, if demand increases over time, all equilibria must be in mixed strategies, whereas in our model,

we can show both the existence and uniqueness of equilibria in pure strategies.
10Bergemann and Välimäki (2006) also study a competitive model with a single long-lived buyer and unit capacity.
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2 Model

Firms, products, and timing. We consider a setF := {1, . . . , F } of firms and a setJ := {1, . . . , J }

of products. Products in J f are owned by firm f , where
�

J f

�

f ∈F is a partition of J so that each

product is sold by exactly one firm.11 Each firm f is endowed with discrete initial capacities

K j ,0 ∈ N, j ∈ J f . Any remaining capacity at the deadline T > 0 is scrapped with zero value. We

study a discrete-time environment with periods t ∈ {0,∆, . . . , T −∆}, ∆ > 0, and later consider

the continuous-time limit as ∆ → 0. In every period t , firms simultaneously set the prices of

their products p f ,t := (pj ,t ) j∈J f
. Then, a single consumer arrives with probability ∆λt , where λt

is analytic in t . We index each consumer by her arrival time t . Consumer t makes a discrete

choice by either buying a single unit of an available product upon arrival or leaving the market by

choosing her outside option. We denote the outside option by j = 0. Because capacity is scarce, it

may be that consumer t can purchase only from a subset of J . We denote the capacity vector in

period t by Kt := (K j ,t ) j∈J and the set of available products byA (K) = { j ∈J | K j > 0} ⊆J .

Demand. In order to focus on the dynamic game between firms, we introduce consumer demand

functions as primitives. We discuss micro-foundations for these demand functions and welfare

results in Section 6. If all products are available, then consumer t , facing a price vector p :=
�

pj

�

j∈J , buys product j with probability s j (p;θ t ,J ), where θ t ∈ T ⊂ Rn is a vector of n ≥ 1

demand parameters that are analytic in t , T is compact, and s j is smooth in p and θ . Importantly, θ

can capture changes in preferences over time, as documented in the airline context (e.g., Williams,

2022; Hortaçsu et al., 2024). We impose the following regularity conditions on demand, s j .

Assumption 1. For all θ ∈T and p ∈RJ , the following hold:

i) For all j ∈J , limpj→∞ s j (p;θ ,J )pj = 0. For any subsetA ⊂J and j ∈A , the limit12

s j (p
A ;θ ,A ) := lim

pj ′→∞
j ′ ̸∈A

s j (p;θ ,J ) ∈ [0, 1]

exists and is smooth in θ and pA ∈RA , where pAj ′ = pj ′ for all j ′ ∈A ;

11That is, J =
⋃

f ∈F
J f and J f ∩J f ′ = ; for f ̸= f ′.

12The limit takes all prices of products j ′ ̸∈A to infinity. The order of limits does not matter.
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ii) ∂ s j

∂ pj
< 0, i.e., s j (p;θ ,J ) is strictly decreasing in pj , and ∂ s j

∂ pj ′
< 0, i.e., s j (p;θ ,J ) is strictly

increasing in pj ′ , for all j ′ ̸= j ;

iii) letting s0(pA ;θ ,A ) := 1−
∑

j ′∈A
s j ′(pA ;θ ,A ) be the probability of choosing the outside good,

∂ s0
∂ pj
> 0, and lim

pj→−∞
s0(pA ;θ ,A ) = 0, for all j ∈A ;

iv) for allA ⊂J , j ∈A and p ∈RA , there exists a p j so that

inf
pAj ≥p j ,

pA≥p

∂ s0
∂ pj
(pA ;θ ,A )

s j (pA ;θ ,A )
pj > 1.

Assumption 1 puts relatively mild assumptions on demand. Condition (i) ensures that demand

is well-defined when products sell out, i.e., when these products’ prices are equal to infinity. Con-

dition (ii) states that all products are substitutes. Condition (iii) states that the outside option is also

a substitute to all other products. Finally, condition (iv) ensures that the profit-maximizing prices

of available products are never infinite (see the Online Appendix). This condition is reminiscent of

Assumption 1 in Nocke and Schutz (2018). In the single-product monopoly setting, the expression

inside the infimum corresponds to the negative elasticity of demand; thus, condition (iv) simply

states that demand remains strictly elastic for large prices.

Because profit-maximizing prices are interior, by condition (iv), they solve a system of first-

order conditions (FOCs). To write these FOCs in matrix form, denote the vector of choice prob-

abilities for firm f ’s available products by s f (·;θ ,A ) :=
�

s j (·;θ ,A )
�

j∈A∩J f
. Condition (iii) in

Assumption 1 implies that Dps f is diagonally dominant and, hence, non-singular. Then, the vector

of inverse quasi own-price elasticities for a firm f withA ∩J f ̸= ; is given by

ε̂ f (p;θ ,A ) :=
��

Dp f s f (p;θ ,A )
�⊺�−1

s f (p;θ ,A ) ∈RA∩J f .

Therefore, if firms solve a static profit-maximization problem of the form

max
p f ∈RA∩J f

s f (p;θ ,A )⊺(p f − c f ), (1)

for an arbitrary marginal cost vector c f ∈ RA∩J f , then the solution to the system of FOCs can be
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written as a markup formula equal to p f −c f =−ε̂ f (p;θ ,A ). We denote the vector of all own-price

elasticities by ε̂(p;θ ,A ) :=
�

ε̂ f (p;θ ,A ) : f ∈F such thatA ∪J f ̸= ;
�

∈RA .

In Section 6 we show that Assumption 1 is satisfied by a rich set of discrete-choice models

where firms sell differentiated products. Our demand assumptions cover products that are imper-

fect substitutes and products that are nearly perfect substitutes. Note that with completely undif-

ferentiated products, Bertrand competition is the strongest and the demand functions s j are not

continuous. Nonetheless, such demand functions can be approximated by demand functions sat-

isfying Assumption 1. An important class of functions that satisfies Assumption 1 is multinomial

logit and nested logit demand. We demonstrate some of our theoretical results using these demand

systems, which we define formally later on.

We additionally impose Assumption 2, which allows us to invoke Konovalov and Sándor

(2010) to establish that there exists a unique pure-strategy equilibrium given marginal costs.

Assumption 2. The vector of inverse quasi own-price elasticities ε̂(p;θ ,A ) satisfies the following

two conditions:

i) det
�

−Dp f ε̂ f (p;θ ,A )− IA∩J f

�

̸= 0 for all p ∈RA , θ ∈T , andA ⊂J , f ∈F ;

ii) det

�

−Dpε̂(p;θ ,A )− IA

�

̸= 0 for all p ∈RA , θ ∈T , andA ⊂J .

Here, IS ∈RS ×S denotes an identity matrix.

Condition (i) in Assumption 2 is reminiscent of the commonly made assumption of quasi-

concavity or log-concavity in a single-product setting. However, quasi-concavity is not sufficient

when considering multi-product demand (see Hanson and Martin, 1996). Condition (i) is exactly

the assumption required in Kellogg (1976) guaranteeing that each firm’s optimization problem of

the form in equation (1) admits a unique solution p f ,BR(c f ,θ ,A ). Condition (ii) is exactly the

assumption required in Kellogg (1976) guaranteeing that there is a unique solution to the system

of FOCs of all firms. The solution of this system p∗((c f : f ∈ F ),θ ,A ) corresponds to profit-

maximizing prices and hence a competitive pricing equilibrium given marginal costs (c f : f ∈F ).

To streamline our exposition, we omit the conditioning arguments θ ,A , or both in all expres-

sions whenever the meaning is unambiguous. We sometimes also write s j ,t (p, K) := s j (p;θ t ,A (K))

and st (p, K) := (s j ,t (p, K)) j∈A (K).
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Markov perfect equilibrium. The payoff-relevant state in this pricing game is given by the vector

of capacities K := (K j ) j∈J and time t . We study Markov perfect equilibria (MPE) in pure strategies

in which each firm’s strategy is measurable with respect to (K, t ). We denote a Markov pricing

strategy of firm f by p f ,t (K) =
�

pj ,t (K)
�

j∈A (K)∩J f
.

3 The Monopoly Benchmark

Before analyzing the dynamic game, we first consider the special case where a single firm owns

all products. We show that the monopoly solution exhibits several desirable properties, which we

contrast with those of the oligopoly case. We also introduce notation relevant in the oligopoly case.

Consider the monopolist M that offers J products for sale. The firm maximizes expected

revenues E
�

∑T−∆
t=0 ∆λt pt · st (pt , Kt )

�

subject to Kt ≥ 0 by choosing a price process {pt }T−∆t=0 that is

adapted with respect to the arrival and demand process.13 If we express this as an optimal control

problem, the monopolist at time t ≤ T −∆, given capacity vector K, solves

ΠM ,t (K;∆) =

max
p
∆λt

∑

j∈J

s j ,t (p, K)
�

pj +ΠM ,t+∆(K−e j ;∆)
�

︸ ︷︷ ︸

payoff from selling product j
+ continuation value with

one fewer unit of j

+
�

1−∆λt

∑

j∈J

s j ,t (p, K)
�

︸ ︷︷ ︸

probability of
no purchase

ΠM ,t+∆(K;∆)
︸ ︷︷ ︸

continuation value
with same
capacities

,

where e j ∈NJ is the unit vector with 1 in the j th position and 0 everywhere else. The firm receives

a revenue of pj and a continuation value in period t +∆ with one fewer unit of j if it sells j . If

the firm does not sell at all, the capacity vector remains unchanged, and time moves forward by ∆.

The key tension is obtaining revenue versus the option value of holding capacity for the future.

The firm faces two boundary conditions: (i) ΠM ,T (K;∆) = 0 for all K and (ii) ΠM ,t (K;∆) = 0 if

K j = 0 for all j ∈ J . The boundary conditions ensure that capacity is scrapped with zero value

after the deadline T and that the firm cannot oversell.

Critically, the optimal price vector at each state (K, t ) can be found by considering a static maxi-

mization problem parameterized by θ andω= (ω j ) j∈A (K), whereω j =ΠM ,t (K;∆)−ΠM ,t (K−e j ;∆)

13By adapted, we mean that it is measurable with respect to the filtration generated by demand.
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is commonly referred to as the opportunity cost of selling product j .14 The static maximization

problem is

max
p

∑

j∈A

s j (p;θ ,A )
�

pj −ω j

�

,

which is simply demand times a markup. We denote the profit-maximizing prices by

pM (ω,θ ; K) := (p M
j (ω,θ ; K)) j∈A (K). This expression is key because it conveys how scarcity, via

opportunity costs, affects a firm’s pricing decision. We will derive an analogous expression for the

oligopoly game in order to characterize equilibrium prices that encompass all firms’ scarcity.

By Kellogg (1976), Assumption 2 implies that there is a unique optimal price vector for any

time period t , which is continuous in ω and θ . As ∆ → 0, the solution of the optimal control

problem converges to the solution of a system of ODEs. We state this result in Lemma 1.

Lemma 1. ΠM ,t (K) := lim∆→0ΠM ,t (K;∆) solves a system of ordinary differential equations

Π̇M ,t (K) =−λt

∑

j∈A (K)

s j ,t

�

pM (ωt (K),θ t ; K), K
�

�

p M
j (ωt (K),θ t ; K)−ω j ,t (K)

�

, ∀K≤K0, (2)

where ωt (K) :=
�

ΠM ,t (K)−ΠM ,t (K−e j )
�

j∈A (K) with boundary conditions (i) ΠM ,T (K) = 0 for all

K≤K0, and (ii) ΠM ,t (K) = 0 if K j = 0 for all j ∈J .

Lemma 1, which generalizes Gallego and Van Ryzin (1994) to an arbitrary number of prod-

ucts and richer demand functions, provides a convenient characterization of the monopoly pricing

problem for each state (K, t ). Here ωt (K) :=
�

ΠM ,t (K)−ΠM ,t (K−e j )
�

j∈A (K) defines the vector of

opportunity costs. The profit-maximizing pricing policy pM
t (K) ∈R

A (K) solves

p= ωt (K)
︸ ︷︷ ︸

opportunity costs

− ε̂ (p;θ t ,A (K))
︸ ︷︷ ︸

inverse quasi
own-price elasticities

. (3)

Hence, the optimal pricing strategy pM
t (K) is continuous in time, and its dynamics are governed by

the evolution of quasi own-price elasticities and opportunity costs. The opportunity costs in turn

14Strictly speaking, the opportunity cost of selling product j is represented by ω j −
∑

j ′ ̸= j
s j ′ (p)

1−s j (p)
ω j ′ . This formula

indicates that by choosing to sell product j ∈A (K), the firm forgoes the opportunity to sell any other product j ′ in a
given period.
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depend on the stochastic process of remaining capacity Kt .15

Proposition 1 (Properties of Monopoly Dynamic Pricing). The solution to the monopoly revenue

maximization problem in Lemma 1 satisfies the following:

(i) ΠM ,t (K) is decreasing in t for K ̸= 0 and increasing in K j , for all j ∈J and t < T ;

(ii) ω j ,t (K) is decreasing in t for K ̸= 0 and decreasing in K j , for all j ∈J and t < T ;

(iii) the stochastic process ω j ,t∧τ(Kt ), τ := inf{t ≥ 0|K j ,t ≤ 1}, is a submartingale.

Proposition 1 summarizes the properties of the solution to the monopolist’s dynamic pricing

problem. Statements (i) and (ii) of Proposition 1 generalize the findings in Gallego and Van Ryzin

(1994). The properties imply that more capacity and more time remaining increase continuation

profits, continuation profits are concave in capacity, and opportunity costs are decreasing toward

the deadline if K is held fixed. Note thatω j ,t (K) captures the marginal cost in the period-t problem

of the monopolist. Hence, (ii) implies that if demand is constant over time (θ̇ t = 0), then the opti-

mal price policy pM
t (K) is decreasing in t . However, if demand becomes more inelastic over time,

then the optimal price policy may be increasing or decreasing over time, depending on whether the

cost or demand effect dominates.

Statement (iii) asserts that, on average, opportunity costs are increasing. This implies that if

demand is weakly increasing over time, demand uncertainty alone can cause price paths to increase

on average. This result can rationalize the inverted U-shape in prices documented in the literature

(e.g., for airlines in McAfee and Te Velde, 2006). The average observed prices decline closer to

the deadline because once a product sells out, its price is excluded from the average.

Remark 1. The analysis generalizes to firms that have material marginal costs for each unit of

their products. The marginal cost is simply added to the corresponding opportunity costs.

4 Dynamic Pricing with Competition

With the additional notation provided in the previous section, we now turn to the dynamic oligopoly

game. With more than one firm, there are additional strategic forces. First, each firm’s residual de-
15We abuse notation slightly by denoting the optimal pricing strategy pM

t (K), while also denoting the static optimal
price parameterized by (ω,θ ) by pM (ω,θ ; K).
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mands increase with competitors’ prices, as in static oligopoly settings. Second, a firm cares about

whether a competitor sells or not because competitor capacity affects future competition. As a

result, the existence and uniqueness of pure-strategy equilibria are not straightforward, because we

cannot appeal to the insights from previous oligopoly frameworks, including Caplin and Nalebuff

(1991) and Nocke and Schutz (2018).

A pure-strategy Markov perfect equilibrium in the dynamic game, if it exists, can be con-

structed recursively. At the deadline T , the payoffs of all firms are zero for all capacity vectors. In

earlier periods, we can write firm f ’s value function given pricing policies pt (K) :=
�

pj ,t (K)
�

j∈A (K)

recursively as16

Π f ,t (K;∆) =∆λt

�

∑

j∈A (K)∩J f

s j ,t (pt (K), K) (pj ,t (K) +Π f ,t+∆(K−e j ;∆))

︸ ︷︷ ︸

payoff from own sale

+

∑

j ′∈A (K)∩(J \J f )

s j ′,t (pt (K), K)Π f ,t+∆(K−e j ′ ;∆)

︸ ︷︷ ︸

payoff if competitor sells j ′

�

+
�

1−∆λt

∑

j ′∈A (K)

s j ′,t (pt (K), K)
�

Π f ,t+∆(K;∆)

︸ ︷︷ ︸

payoff if no firm sells

.

Similar to the monopoly problem, subtracting Π f ,t+∆(K;∆) does not change pricing incentives in

state (K, t ). Hence, letting

ω
f
j ,t (K;∆) :=Π f ,t+∆(K;∆)−Π f ,t+∆(K−e j ;∆),

each firm f chooses its prices p f
t (K) to maximize

Π f ,t (K;∆)−Π f ,t+∆(K;∆) =

∆λt

�

∑

j∈A (K)∩J f

s j ,t (pt (K), K)
�

pj ,t (K)−ω
f
j ,t (K;∆)

�

−
∑

j ′∈A (K)∩(J \J f )
s j ′,t (pt (K), K)ω f

j ′,t (K;∆)
�

.
(4)

The first part of equation (4) is analogous to the monopoly setting—expected demand times a

markup. The second part of the equation measures how a firm is affected by competitor scarcity,

weighted by competitor residual demand. The ωs in equation (4) are critical to studying dynamic

pricing with competition and are defined as follows.

16We omit ∆ in the pricing policies, for readability.
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Definition 1. For j ∈ A (K)∩J f , we call ω f
j ,t (K;∆) an own-scarcity effect, and for j ∈ A (K)∩

(J \J f ), we call ω f
j ,t (K;∆) a competitor-scarcity effect.

The own-scarcity effects capture the impact of a sale of a firm’s own product on own continua-

tion profits. The competitor-scarcity effects capture the impact of a sale of a competitor’s product

on own continuation profits.

Importantly, prices in state (K, t ) do not affect these scarcity effects but rather the probabil-

ity that they are realized. Therefore, for any pure-strategy equilibrium Markov pricing policy

(p∗t (·))t=0,...T−∆ of the dynamic game, p∗t (K) is an equilibrium of a stage game where each firm

f maximizes equation (4) given these scarcity effects. To make progress, we start by analyzing

generic stage games parameterized by a scarcity matrix defined as

Ωt (K;∆) =
�

ω
f
j ,t (K;∆)

�

f , j
.

Example 1 contains a scarcity matrix.

Example 1. Suppose

Ωt (K;∆) =





3 4 −1

−.3 −.2 1



 .

In this example, there are two firms and three products. Products one and two are owned by firm 1;

product three is owned by firm 2. In this example, ω1
1 = 3 and ω1

2 = 4 are the own-scarcity effects

for firm 1. The entry in the first row and third column, ω1
3 = −1, is the competitor-scarcity effect.

The second row can be similarly read from the perspective of firm 2. ◊

A challenge arises because the signs of the scarcity effects are unknown, and a pure-strategy

Markov equilibrium can only exist if all stage games attain a pure-strategy equilibrium. Therefore,

in the next section, we analyze the stage game before returning to the dynamic game.

4.1 Analysis of the Stage Game

Consider a static game with a set F of players and a set J of products with ownership structure

(J f ) f ∈F that is parameterized by a matrix Ω=
�

ω
f
j

�

f , j
∈RF×J . When we analyze the stage game,
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we omit the parameters θ and assume that all products are available, without loss of generality.

All players f simultaneously choose their prices p f = (pj ) j∈J f
to maximize

∑

j∈J f

s j (p)
�

pj −ω
f
j

�

−
∑

j ′ ̸∈J f

s j ′ (p)ω
f
j ′ .

We are interested in the pure-strategy equilibria of this game and proceed as follows. We first show

that equilibrium prices must be interior, using Assumption 1. Thus, in a pure-strategy equilibrium,

each firm f ’s best-response prices p f must solve

p f =
� �

Dp f s f (p)
�⊺ �−1

Dp f

�

s(p)⊺ω f
�⊺

︸ ︷︷ ︸

net opportunity costs
of selling

−
� �

Dp f s f (p)
�⊺ �−1

s f (p)
︸ ︷︷ ︸

inverse quasi
own-price elasticities

=: g f (p;ω f ), (5)

where ω f :=
�

ω
f
j

�

j
are firm f ’s own- and competitor-scarcity effects. To show the existence and

uniqueness of equilibria of this game, we impose conditions such that each firm’s systems of FOCs

have a unique solution p f and that all firms’ FOCs also jointly has a unique solution.

In the absence of competitor-scarcity effects (i.e., ω f
j = 0 for j ̸∈ J f ), the game corresponds

to a classic oligopoly price competition game. In that case, Assumptions 1 and 2(i) guarantee

that all players have a unique best response. It follows from Brouwer’s fixed-point theorem that

there exists an equilibrium.17 If there are multiple best-response prices, the best-response set is not

convex anymore and pure-strategy equilibria may not exist. In the presence of competitor-scarcity

effects, such multiplicities of best responses can arise unless we impose additional conditions.

4.1.1 Stage-game Equilibria for IIA Demand Systems

The key complexity in studying a model with competitor-scarcity effects is that there may be

multiple best-response price vectors for each firm that do not form a convex set. Hence, we cannot

apply classic fixed point theorems, such as by Brouwer or Kakutani, to establish the existence of

pure-strategy equilibria. We offer two paths forward. First, we show the existence of equilibria,

regardless of Ω, if demand satisfies the independence of irrelevant alternatives property. Second, in

Section 4.1.2, we add restrictions on Ω to establish the existence (and uniqueness) of pure-strategy

17As pointed out by Vives (2018) and Nocke and Schutz (2018), this game is generally not supermodular.
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equilibria for general demand systems.

Assumption 3 (Independence of Irrelevant Alternatives). A demand system s = (s j ) j∈J satisfies

the independence of irrelevant alternatives property (IIA) if ∂
∂ pj

s j1 (p)
s j2 (p)

= 0 for j ̸= j1, j2 ∈J ∪{0}.

Assumption 3 states that the relative market share of two products does not change if the price

of a third product changes.18 We use this assumption to derive a markup formula in Proposition 2,

which allows us to establish the existence of equilibria in the stage game.

Proposition 2 (Markup Formula Under IIA). Let Assumptions 1, 2, and 3 hold. Then, there exists

an equilibrium of the stage game for any scarcity matrix Ω. All equilibrium prices p∗(Ω) coincide

with the equilibrium prices of a game with a set J of players who each simultaneously choose a

price pj maximizing s j (p)
�

pj − c j

�

p− j ;Ω
��

, with a cost function equal to

c j

�

p− j ;Ω
�

:=ω f
j −

∑

j ′∈J f \{ j }

s̃ j , j ′(p− j )(pj ′ −ω
f
j ) +

∑

j ′ ̸∈J f

s̃ j , j ′(p− j )ω
f
j ′ , and s̃ j , j ′(p− j ) :=

s j ′(p)

1− s j (p)
. (6)

Proposition 2 implies that even with multiple firms and products, the FOC that implicitly define

firms’ best-response functions can be written in a markup formulation for each product, where

ε j (p) =
∂ s j (p)
∂ pj

pj

s j (p)
is the elasticity of demand for product j . This provides us a Lerner expression,

p ∗j (Ω)− c j (p− j ;Ω)

p ∗j (Ω)
=−

1

ε j (p∗(Ω))
.

The marginal cost c j is independent of firm j ’s price. This marginal cost property, along with

Assumptions 1 and 2(i), guarantees that best-response prices are unique, holding other products’

prices fixed. Hence, pure-strategy equilibria exist by Brouwer’s fixed-point theorem.

Other demand systems satisfying our demand assumptions but not the IIA assumption cannot

be solved in this way because the own-product price can enter the marginal cost term.

4.1.2 Stage-game Equilibria for General Demand Systems

With general demand functions satisfying Assumptions 1 and 2, we can immediately establish

uniqueness using the fixed-point theorem in Kellogg (1976) if there are no competitor-scarcity
18A special case of such a demand system is multinomial logit demand analyzed in Lin and Sibdari (2009), where

each firm owns only a single product.
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effects (Lemma 2).19 When there are competitor scarcity effects, we impose Assumption 4 in

order to invoke the fixed-point theorem in Kellogg (1976) and Konovalov and Sándor (2010) to

ensure uniqueness of best-response price vectors and uniqueness of equilibria.

Lemma 2. Given Assumptions 1 and 2, any stage game without competitor scarcity effects (i.e.,

ω
f
j = 0 for all j ̸∈ J f ) admits a unique pure-strategy equilibrium.

Assumption 4. We assume the following two conditions hold for a fixed Ω:

i) det
�

Dp f
g f (p,ω f )− IJ f

�

̸= 0 for all p and f ;

ii) det
�

Dpg(p,Ω)− IJ
�

̸= 0 for all p, where g(p,Ω) :=
�

g f (p,ω f ) : f ∈F
�

∈RJ .

Assumption 4(i) ensures that best-response price vectors are unique everywhere. In the single-

dimensional case, this assumption is akin to requiring that the second-order condition never

changes sign. Assumption 4(ii) guarantees that the system of all firms’ FOCs admits a unique

solution. We can then prove existence and uniqueness for general demands, in Proposition 3.

Proposition 3 (Stage-game Equilibrium Uniqueness). Consider a stage game parameterized by Ω.

It follows that

i) there exists a pure-strategy equilibrium if Assumptions 1 and 4(i) are satisfied;

ii) there exists a unique pure-strategy equilibrium if Assumptions 1 and 4 are satisfied.

Not all scarcity matrices Ω satisfy Assumption 4. Indeed, it is possible that extreme competitor

scarcity effects may either cause non-existence in pure strategies or multiplicity of equilibria in the

stage game. Although we have not encountered non-existence in simulations, we have encountered

multiplicity of equilibria. Multiplicity of equilibria does not require extreme assumptions on de-

mand. In Example 2, we demonstrate that multiplicities can arise even with a demand system that

satisfies the IIA assumption.20 Essentially, when both competitor-scarcity effects are very negative,

Assumption 4(ii) can be violated, and we obtain a region with multiple pure-strategy equilibria.

When we analyze the dynamic game in Section 5, we construct Markov perfect equilibria where Ω

stays within the set of Ωs that satisfy Assumption 4.
19When all competitor-scarcity effects are zero, Assumption 4 coincides with Assumption 2. Nocke and Schutz

(2018) show that the pricing game without competitor scarcity effects and IIA demand admits a unique pure-strategy
equilibrium. Indeed, absent competitor scarcity effects, IIA implies Assumption 4.

20Note that if all competitor-effects were zero, uniqueness follows from Nocke and Schutz (2018) or Lemma 2.
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Example 2. Consider a duopoly example with two products and logit demand of the form s f (p) =
exp(1−pf )

1+
∑

f ′∈{1,2}
exp(1−pf ′) for f ∈ {1, 2}. Logit demand systems belong to the class of IIA demand systems.

For logit demand, Assumption 4(i) is equivalent to

−
s f (p)

1− s f (p)
−1 ̸= 0 for all p and f ̸= f ′,

which is satisfied for all Ω, and Assumption 4(ii) is equivalent to

�

s1(p) +ω
1
2s0(p)

��

s2(p) +ω
2
1s0(p)

�

̸= 1+
1− s1(p)− s2(p)

s1(p)s2(p)
for all p.

We can find ω1
2 and ω2

1 such that this condition is violated. Figure 1(a) shows a particular pa-

rameterization of competitor-scarcity effects. Figure 1(b) depicts prices of both firms where their

systems of FOCs are satisfied given the competitor-scarcity effects in panel (a). For example, if

ω1
2 =ω

2
1 =−

15
p

2
2 , corresponding to x = 1

2 in the parameterized curve, then there are three equilib-

ria: two equilibria where one firm sets a low price (≈ 1.8) and the other sets a high price (≈ 4.3),

and one equilibrium where both firms set the same price (≈ 2.7). It is easy to verify that both firms

play global best-responses at all fixed points. ◊

Figure 1: Multiplicity in Stage-Game Equilibria

(a) Parametrization of (ω1
2(x ),ω

2
1(x ))
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(b) Multiplicity of Equilibrium Prices
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Note: In these graphics we parameterize (ω2
1,ω1

2) with a curve (ω1
2(x ),ω

2
1(x )) =

�

−15 cos
�

π
2 x

�

,−15 sin
�

π
2 x

��

, x ∈ [0, 1], where we set (ω1
1,ω2

2) =
(0, 0). Panel (a) depicts the parameterized curve, and panel (b), the prices of firm 1 and 2, where both firms’ FOCs are satisfied given (ω2

1,ω1
2) at

varying values of x .
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4.1.3 Strategic Forces in the Stage Game

One of the reasons why our model yields such rich predictions is that the stage game can be one

of either strategic complements or strategic substitutes (Bulow et al., 1985), depending on the

direction and magnitude of competitor-scarcity effects. That is, the model yields both Bertrand-

like and Cournot-like strategic interactions. We show in Section 5 that equilibrium dynamics are

shaped by switching between these different incentives.

We illustrate these effects using the same setup as in Example 2. With two firms, the FOC in

equation (5) is given by

pf =
∂ s f ′

∂ pf
(p)

�

∂ s f

∂ pf
(p)

�−1

ω
f
f ′ +ω

f
f − s f (p)

�

∂ s f (p)

∂ pf

�−1

=: g f (p;ω f ).

The competitor’s price is a strategic complement of firm f ’s price if an increase in the competitor

price increases firm f ’s best-response price, i.e., ∂ g f

∂ pf ′
> 0. If ∂ g f

∂ pf ′
< 0, then the competitor’s price is

a strategic substitute. Now, consider the cross derivative of a firm’s FOC,

∂

∂ pf ′
g f (p) =

∂

∂ pf ′

�∂ s f ′

∂ pf
(p)

�

∂ s f

∂ pf
(p)

�−1�

ω
f
f ′ −

∂

∂ pf ′

�

s f (p)

�

∂ s f (p)

∂ pf

�−1�

. (7)

The inverse-quasi own-price elasticity under logit demand is defined as s f (p)
�

∂ s f (p)
∂ pf

�−1
= −(1−

s f (p))−1, which is decreasing in the competitor’s price pf ′ . Hence, if the competitor-scarcity effect

ω
f
f ′ is zero, then the competitor price is a strategic complement, as in Caplin and Nalebuff (1991)

and Nocke and Schutz (2018). If the competitor-scarcity effect ω f
f ′ is positive, the competitor

price remains a strategic complement because ∂ s f ′

∂ pf
(p)

�

∂ s f

∂ pf
(p)
�−1
=− exp(1−pf ′ )

1+exp(1−pf ′ )
is increasing in pf ′ .

However, when ω f
f ′ is large and negative, the competitor price is a strategic substitute.

Recall that in the dynamic game, the competitor-scarcity effect ω f
f ′ measures the impact on a

firm’s profit if a rival sells. The classic intuition is that scarcity increases future prices. This is

consistent with ω f
f ′ being negative because it implies that a firm benefits in the future when a rival

sells. Large, negative competitor-scarcity effects dissuade a firm from selling today and can flip the

incentives in the stage game. We demonstrate these incentives in Figure 8 in the Online Appendix,

and in Section 5.1 we investigate which sources of scarcity dominate.
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4.2 Continuous-Time Approximation of Dynamic Markov Equilibria

To study equilibrium pricing dynamics, we appeal to continuous-time approximations so that we

can work with time-derivatives and a system of ODEs that describe continuation profits and pricing

dynamics. We proceed by first showing that Markov equilibria of the discrete game, if they are

unique, converge to a solution of the ODE system. We then show that one of the solutions of the

ODE system must correspond to the limit of discrete-time Markov equilibria as ∆→ 0, provided

the scarcity matrices Ω remain within a bounded open set where Assumption 4 holds. Finally, we

show that all solutions of the system of ODEs always stay in this set close to the deadline. We thus

establish both existence and uniqueness.

Assume that there exists a time interval length ∆̄ and initial capacity vector K0 such that for

all ∆ < ∆̄, a unique Markov equilibrium exists. Under this premise, we show in Theorem 1 that

a sequence of unique equilibria of the dynamic game converges as ∆→ 0 to a system of ODEs.

The argument follows analogously to the monopoly optimal control problem in Lemma 1.21 Let

p∗(Ω,θ ; K) be the vector of stage-game equilibrium prices given Ω andA (K).

Theorem 1 (Continuous-Time Limit). Assume that there exists a ∆̄ > 0 so that for all ∆ < ∆̄,

there is a unique pure-strategy equilibrium of the dynamic game, and for all t , K ≤ K0, ∆ <

∆̄, (Ωt (K;∆),θ t ) ∈ M for an open bounded M such that any stage game with A (K) available

products and parameterized by (Ω,θ ) ∈M admits a unique equilibrium. Then, each equilibrium

value function Π∗f ,t (K;∆) converges as ∆→ 0 to a limit Π∗f ,t (K) that solves the following system of

ordinary differential equations:

Π̇ f ,t (K) =

−λt

�

∑

j∈A (K)∩J f

s j

�

p∗(Ωt (K),θ t ; K);θ t ,A (K)
�

·
�

p ∗j (Ωt (K),θ t ; K)− (Π f ,t (K)−Π f ,t (K−e j ))
�

−
∑

j ′∈A (K)∩(J \J f )
s j ′
�

p∗(Ωt (K),θ t ; K);θ t ,A (K)
�

·
�

Π f ,t (K)−Π f ,t (K−e j ′)
�

�

,

for K ≤ K0 and f such that A (K) ∩ J f ̸= ;, where Ωt (K) = (Π f ,t (K) − Π f ,t (K −

21Gallego and Hu (2014) state that for any solution to these Hamilton-Jacobi-Bellman equations, the corresponding
optimal prices are a Markov equilibrium of the continuous-time, stochastic game. They do not, however, show equi-
librium existence. We establish (i) conditions that guarantee that equilibria of the continuous-time game are the limit
of equilibria of the discrete-time game, (ii) that a unique solution of the ODE system exists close to the deadline, and
(iii) that a Markov equilibrium exists for the discrete-time game if ∆ is sufficiently small.
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e j )) j∈A (K), f ∈{ f |A (K)∩J f ̸=;}, with boundary conditions (i) Π f ,T (K) = 0 for all K, (ii) Π f ,t (K) = 0 if

K j = 0 for all j ∈J f .

Although Theorem 1 shows that a continuous-time approximation is possible if Markov equi-

libria are unique, the price dynamics are described implicitly only through the equilibrium prices

p∗ of the stage games. Moreover, these equilibrium prices are the result of rich strategic interac-

tions, as we discussed in Section 4.1. To overcome the challenge of calculating equilibrium prices

p∗ for all Ω and θ , we derive a differential equation that characterizes equilibrium price paths.

Together, Theorem 1 and the differential equation for p∗ define a system of first-order differential

equations that can be solved with standard techniques.

To derive this system of equations, note that if a unique equilibrium exists for all ∆ < ∆,

then all equilibrium prices p∗t (K;∆) must satisfy the system of FOCs, g(p∗t (K;∆),Ωt (K,∆),θ t ; K) =

0.22 By continuity, the limit price policy p∗t (K) := lim∆→0 p∗t (K;∆) must satisfy the system of

FOCs g(p∗t (K),Ωt (K),θ t ; K) = 0 for all t ∈ [0, T ]. This allows us to derive differential equations

for any capacity vector K ≤ K0 that must be satisfied if p∗t (K) is differentiable in t . As long as

det
�

Dpg(p∗t (K),Ω
∗
t (K),θ t ; K)− IA (K)

�

̸= 0 for all K ≤ K0 so that the matrix entering ṗt is invertible,

((Π∗f ,t (K)) f , p∗t (K))K≤K0
must be a solution to the following system of ODEs:

Π̇ f ,t (K) = −λt

�

∑

j∈A (K)∩J f

s j

�

pt (K);θ t ,A (K)
�

·
�

pj ,t (K)− (Π f ,t (K)−Π f ,t (K−e j ))
�

−
∑

j ′∈A (K)∩(J \J f )
s j ′
�

pt (K);θ t ,A (K)
�

·
�

Π f ,t (K)−Π f ,t (K−e j ′)
�

�

,

ṗt (K) = −
�

Dpg(pt (K),Ωt (K),θ t ; K)− IA (K)
�−1

�

∑

j , f
D
ω

f
j
g(pt (K),Ωt (K),θ t ; K)ω̇ f

j ,t (K) +Dθg(pt (K),Ωt (K),θ t ; K)θ̇ t

�

,











































(8)

with two boundary conditions, namely (i) and (ii) from Theorem 1, and equilibrium prices at the

deadline defined as pT (K) = p∗(OA (K),θ T ; K), OS ∈RF×S being a matrix of zeros.

We next prove the existence of solutions of this system of first-order ODEs.23 First, note that

22Note that g and g f are as defined in Section 4.1, but with additional parameters θ and K, which were omitted in
the analysis of the stage game.

23This system has a unique solution by the Picard-Lindelöf theorem (Lindelöf (1894)) if the right-hand sides of the
equations are Lipschitz-continuous in Ωt (K) and pt . With (nested) logit demand, this property is satisfied in an open
bounded set where Γ f (·) > ε (ε > 0), with Γ f as defined next, because the first three demand derivatives are bounded
uniformly in θ .
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Peano’s existence theorem implies that there exists a solution on an interval (ι, T ], ι < T , as long

as det
�

Dpg(pt (K),Ωt (K),θ t ; K)− IA (K)
�

̸= 0 for all K≤K0. However, in order to derive conclusions

about the discrete-time game, we need to ensure that each price vector indeed corresponds to an

equilibrium of the stage game. To this end, we construct open bounded sets containing Ω=OA (K)

such that Assumption 4 is satisfied.

Consider for every K ≤ K0 an arbitrary bounded open set O K containing Ω = OA (K). In the

proof of stage-game uniqueness in Proposition 3, we show that in any equilibrium of a stage game

parameterized by (Ω,θ ), prices must lie in a compact box such that p < pj+ω
f
j < p , where p , p can

depend on θ . Consequently, there must be an open box PK(θ ) of price vectors that must contain

all equilibrium stage-game prices given θ as long as Ω ∈O K.

It is useful to define the following expressions from Assumption 4:

Γ f (p,ω f ,θ ; K) := det
�

Dp f
g f (p,ω f ,θ ; K)− IA (K)∩J f

�

,

Γ (p,Ω,θ ; K) := det
�

Dpg(p,Ω,θ ; K)− IA (K)
�

.

Then, for any ε < minK≤K0
|Γ (pT (K), OA (K),θ T ; K)|, there exist bounded open sets O K

t containing

Ω=OA (K) such that24

O K
t ⊂

�

Ω ∈O K
�

� |Γ (p,Ω,θ t ; K)|>ε for all f and Γ f (p,ω f ,θ t ; K) ̸= 0 for all p ∈P (θ t )
	

and {(t ,Ω)|Ω ∈ O K
t } is open. Fix an arbitrarily small 0 < ε <minK≤K0

|Γ (pT (K), O,θ T ; K)| to define

this set. Note that all Ω ∈ O K
t satisfy Assumption 4. The following lemma shows that a global

solution to the system of ODEs exists on an interval away from the deadline such that Ωt (K)

remains in this bounded open neighborhood O K
t .

Lemma 3. There exists a τ ∈ [0, T ) such that the system of ODEs in equation (8) admits a solution

on (τ,T ], where τ := inf{t ≥ 0 |Ωt (K) ∈O K
t for all K≤K0}. There also exists a τ̄ ∈ [τ,T ) such that

for all solutions evolving from T , Ωt (K) ∈O K
t for all K≤K0, t ∈ (τ̄, T ].

Importantly, Lemma 3 also shows that there is an open interval of time away from the deadline

(τ̄, T ] where all solutions of the ODEs remain in the sets O K
t . In addition, τ̄ can also be 0, which

24This follows by continuity of Γ in all parameters.
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would imply that all solutions of the ODEs on (0, T ] remain in the sets O K
t .25

To complete the argument for why we can analyze the system of ODEs in equation (8) to derive

properties of the discrete-time game, we show for sufficiently small ∆ that there exists a unique

continuation equilibrium of the discrete game on t ∈ (τ̄, T ] for all K ≤ K0. Recall that for a given

time horizon T and initial capacity vector K0, we can construct any pure-strategy equilibrium by

backward induction in t .26 In the last period, ΩT (K;∆) =OA (K), so the stage game admits a unique

solution by Lemma 2. Going backwards in time, there exists a unique continuation equilibrium in

period t as long as stage games corresponding to Ωt (K;∆) satisfy Assumption 4. Analogously to

τ in Lemma 3, define for any ∆,

τ∆ :=min
�

t ∈T∆
�

�Ωs (K;∆) ∈O K
s for all t ≤ s ≤ T and K≤K0

	

,

where T∆ := {0,∆, . . . , T −∆} and let τ∗ := lim sup∆→0τ
∆. We show that τ∗ ≤ τ̄, so by Theorem 1,

the solution of the discrete-time game must remain close to the continuous-time limit on (τ̄, T ].

Theorem 2 (Uniqueness of Dynamic Equilibrium). Consider a set of parameters T , K0, and de-

terministic parameter processes (θ t )t ∈[0,T ], (λt )t ∈[0,T ]. Then, τ∗ ≤ τ̄. In particular, on (τ̄, T ] there

exists a unique Markov equilibrium in the discrete-time game with sufficiently small ∆. If the

Markov equilibrium is unique, it is also the unique subgame perfect equilibrium.

All in all, we have established that close to the deadline (i.e., for t ∈ (τ̄, T ]), there is always

a unique equilibrium for sufficiently small ∆. Therefore, we can use equation (8) to study the

dynamics of the equilibrium by Theorem 1. One caveat is that it is difficult to explicitly calculate τ̄,

because Assumption 4 is a global condition on all p that is oftentimes difficult to check. However,

as we argue in the following remark, we can easily check whether all firms are playing local best

responses at the candidate price path derived from the ODEs.

Remark 2. Assumption 4 is a global condition that is difficult to check for all p. However, as long

as the condition is satisfied locally around the price vector that solves the ODEs, we know that

25Generally, we can construct solutions of the system of ODEs backwards in time until Γ f (pt (K),ω
f
t (K),θ t ; K) ̸= 0

for all K≤K0. Once Ω hits this singularity, price policy functions may jump.
26Unlike Bonatti et al. (2017) who study a dynamic Cournot game where firms signal their costs, our game has a

simple boundary condition at T that only depends on the capacity vector at the deadline. Capacity vectors K are in a
finite ordered set which allows us to proceed recursively. Their game is one of imperfect information where the end
game depends non-trivially on the states.
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all firms’ FOCs are satisfied simultaneously. To ensure that we have a local (but not necessarily

global) best response of all firms, we can check that ∂
∂ pj

�

g f (p,Ωt (K),θ t ; K)−pj

�

|p=p∗t (K) < 0 ∀ j .

4.3 Implementing Our Model as an Empirical Framework

Our equilibrium characterization offers a powerful tool for calculating market outcomes. It entails

significant computational benefits over full-solution, backward induction approaches and com-

plements existing approaches that characterize MPE for infinite-horizon, stationary games (e.g.,

Ericson and Pakes, 1995) with different actions (e.g., investment choice). To simulate equilibrium

outcomes, we do not need to calculate stage-game equilibria in every state (K, t ) but only at the

deadline where Ω = OA (K). Once the stage game is solved at T , standard methods to compute

solutions to first-order ODEs can be employed. The following examples use this approach.

There are two key issues to address. The first is that data are always available in discrete

time, and Doraszelski and Judd (2012) caution against using estimates from a discrete-time model

to simulate continuous-time equilibria because “the fact that the continuous-time Bellman equa-

tion...is the limit of [a discrete-time] equation...does not imply the equilibria of a sequence of

discrete-time games converge to the equilibria of the continuous-time game.” Our theory addresses

this issue; therefore, our model can be applied to discrete data. Note that we consider a single ar-

rival per period, but we can approximate the same Poisson arrival process as ∆→ 0 with a discrete

arrival distribution that allows for multiple arrivals in every period that are Poisson distributed with

intensity ∆λt . As we let ∆→ 0, the arrival process converges to the one in our model.

The second issue is that our characterization does not immediately address the curse of dimen-

sionality of the state space, which has dimension equal to T × 1
∆×F × J ×

∏J
j=1(1+K j ,0). For a few

products with initial capacities in the hundreds, solving for the equilibrium exactly is trivial.27 For

larger problems, such as three firms, each offering three products with 150 units of capacity over

1000 periods, there are over a septillion (1024) states. Of course, the curse of dimensionality is a

common problem, and one solution to addressing it is to assume random sequential moves. The

reason that this is beneficial is that it can allow for separating the computation of each firm’s value

function, yielding significant speed boosts and potentially similar outcomes to the simultaneous-

move game (Doraszelski and Judd, 2019). However, this alternative timing approach cannot be
27It can be done on a 2022 MacBook Air using numba in Python in just a few minutes.
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used in our setting because a firm’s pricing decision impacts any of its rivals’ remaining capacities.

That is, it is not possible to separate the computation of each firm’s value functions.

For large problems, our characterization can be combined with reinforcement learning. As

before, stage games at t = T are solved exactly. For t < T , the ODEs can be solved over a subset

of capacities, and the value functions can be approximated as Π f ,t (K) ≈
∑

i wi , f ,tφi , f ,t (K), where

φ(·) are basis functions and wi , f ,t are estimable parameters. By storing pricing policies as lower-

dimensional functions, our model can be used to study policy-relevant questions in a wide range

of perishable goods markets, such as hospitality, services, and retailing.

5 Properties of Dynamic Pricing Equilibria

5.1 Strategic Equilibrium Forces

In the previous section, we provided the conditions under which the dynamic equilibrium outcome

is unique. The continuous-time approximation allows us to study equilibrium pricing dynamics

for small ∆. Essentially, from a firm’s perspective, firms trade off selling today against shifting

demand to competitors, to obtain future market power. Although these two forces oppose one

another, we show that the equilibrium structure reconciles them through a particular order of sale.

Pricing policies are aligned to promote the sale of the product that yields the largest price increase.

We formalize this idea by comparing the evolution of equilibrium prices p∗t (K) over time across

different capacity vectors K near the deadline T . At the deadline, price levels correspond to the

equilibrium price vector in a static Bertrand game with zero marginal cost given available products.

Hence, we compare the order of change of p∗t (K) for different K with the same available products

near the deadline. We show that the order of change of prices over time for all products is deter-

mined by the smallest remaining capacity. Specifically, price changes are largest if the capacity of

this product changes. We formally state the proposition as follows.

Proposition 4 (Order of Sale). For any solution of the system of ODEs in equation (8), the follow-

ing holds close to the deadline T :

pj ,t (K) = p ∗j (OA (K),θ t ; K) +O (|T − t |
min

j
K j
), t → T for all j ;
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i.e., price deviations from the static benchmark close to the deadline are at most of order min
j

K j .

If lim
t→T
(Π f ,t )

(min
j

K j )
(K−e j ′) ̸= 0 for all f and j ′ with K j ′ ∈ arg min

j
K j , then

pj ,t (K) = p ∗j (OA (K),θ t ; K) +Θ(|T − t |
min

j
K j
), t → T for all j ;

i.e., price changes are exactly of order min
j

K j .

Proposition 4 is a generalization of the equilibrium property in Dudey (1992), who consid-

ers two undifferentiated products and single-valued demand, and Martínez-de Albéniz and Talluri

(2011), who additionally consider stochastic arrivals.28 In both cases, the firm with the least capac-

ity deterministically sells out first before the second product is offered at an acceptable price. We

show that this order of sale is preserved stochastically, regardless of the number of firms, products,

and level of differentiation. Firms still agree that, holding all else equal, promoting the sale by the

firm with the lowest capacity will result in the largest price jump.

When products are differentiated, the firm with the lowest capacity remaining will not neces-

sarily sell. It is possible and probable that a different firm sells instead. Our second new insight

is that firms adjust their prices in response to sales realizations. For example, if a firm with more

capacity sells, it may then drop its prices because it is closer to being the firm with the lowest level

of capacity. The fact that firms cannot guarantee that the order of sale will be preserved implies

that if a firm could dispose of capacity for free, there are times in which it would do so. It also

suggests that prices can in fact become negative, a possibility we verify in simulations. This is the

opposite of Proposition 1 in which a monopolist has no incentive to reduce its own capacity.

To illustrate the core economic forces behind Proposition 4, in Figure 2 we plot a sample

equilibrium price path using simple logit demand. The horizontal lines mark the competitive and

monopoly prices when all scarcity effects are set equal to zero. We consider certain sales realiza-

tions for each firm over time. At t = 0.40, the firm with initially higher capacity (K1 = 3) sells.

The result is that Firm 1 decreases its price while Firm 2 increases its price (the gray dashed lines

show what prices would have been absent the sale). This realization cannot happen in equilibrium

in both Dudey (1992) and Martínez-de Albéniz and Talluri (2011), but is possible in our model.
28In both papers, the dynamic equilibrium may involve mixed pricing strategies and multiplicities if demand is

not constant over time due to assuming single-valued demand. By adding heterogeneous consumers and product
differentiation, we can establish uniqueness of the dynamic equilibrium (close to the deadline).
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Figure 2: Example Equilibrium Path
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Notes: This plot shows an example equilibrium realization assuming two firms, each offering one product. The time horizon is defined as t ∈ [0, 1]
such that ∆ = .01, and the arrival rate is constant per period equal to ∆λ = .03. We assume a logit demand system such that the probability of

purchase of product f , conditional on arrival, is equal to s f =
exp

�

20−20·pf
�

1+
∑

f ′=1,2 exp
�

20−20·pf ′
� . The horizontal (red) lines denote the static competitive and

monopoly price. The vertical dashed lines denote the sale of a unit as marked. The blue and orange lines denote equilibrium prices. Finally, the
gray dashed lines denote what prices would have been absent the sale.

Prices equalize when firms have the same remaining capacity because the firms offer symmetri-

cally differentiated products. Prices again decrease when no firm sells. At t = 0.55, Firm 1 sells

an additional unit. Both firms’ prices increase substantially, reflecting the insight of Proposition 4

that competition is fiercest when firms are in symmetric states and firms benefit from being in

asymmetric states. Finally, beyond t = 0.70, Firm 2 becomes a monopolist. Just as before, selling

units of capacity results in price jumps—in this case, always in the positive direction. Monopolist

prices stay at or above the static monopoly price, reflecting strictly positive own-scarcity effects.29

Note that the order of sale in the competitive equilibrium outcome is the opposite of what

occurs in the monopoly problem. Because firms benefit the most from getting the firm with the

lowest capacity to sell out, this coincides with competition being softened the most through firms’

aligned incentives to reduce product variety.30 A monopolist instead attempts to preserve variety,

29In Figure 9 in the Online Appendix, we demonstrate these forces when consumer willingness to pay increases
over time. The same demand realizations shown in Figure 2 are depicted.

30In Figure 11 in the Online Appendix, we show that total revenues are increasing in the number of sales that go to
the firm with the lowest capacity remaining, i.e., correctly follow the order of sale. For example, if 10 units are sold in
total, and the lowest initial capacity is 10, total revenues are highest if all 10 units are sold by the firm with the lowest
initial capacity. If all 10 units are sold by the firm with the highest initial capacity, total revenues are lowest.
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as this can be a tool to increase all product prices.

5.2 Additional Properties of the Dynamic Game

Although the previous section established that equilibrium dynamics involve firms attempting to

soften competition by coordinating on the order of sales, the example used to illustrate this result

also highlighted that prices may go up or down as scarcity increases. What else can be said about

properties of the dynamic game? Proposition 5 establishes a number of qualitative properties of

the equilibrium pricing policies, scarcity effect dynamics, and value functions.

Proposition 5. There exist parameters of the game and sufficiently small ∆ such that the Markov

equilibrium of the dynamic game has the following properties:

(a) price policy functions are non-monotonic in time and capacity;

(b) own-scarcity effects are non-monotonic in time and capacity;

(c) cross-scarcity effects are non-monotonic in time and capacity;

(d) value functions are non-monotonic in capacity.

Proposition 5 states that most of the general properties of the monopoly dynamic pricing solu-

tion (Proposition 1) do not extend to oligopoly. We establish each claim in Proposition 5 using sim-

ple examples, i.e., each sub-plot in Figure 3 corresponds to each claim in Proposition 5. The prop-

erties in Proposition 5 are economically important. For example, typically, capacity constraints are

viewed as a force that inflates market prices; however, when competing firms use dynamic pric-

ing, having less capacity can lead to more competitive outcomes and lower market prices. This is

shown in panel (a). Firm 1 charges substantially lower prices under (4,4) than under (5,4). Panels

(b) and (c) highlight that all scarcity effects can be positive or negative and non-monotonic in time

and capacity. In panel (d), we similarly show that value functions are non-monotonic in capacity.

Firm 1 prefers to have only two units instead of four units early on.

We also investigate how equilibrium prices are affected by product differentiation. In Figure 10

in the Online Appendix, we plot equilibrium prices for Firm 1 (panel a) and Firm 2 (panel b) as

a function of Firm 2’s remaining capacity at a single point in time. We find that Firm 1’s price

is usually higher when Firm 2’s product quality is lower. This is the opposite of what occurs in

pricing games with upward-sloping reaction functions where Firm 1 would benefit (charge higher
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Figure 3: Simulated Prices, Scarcity Effects, and Value Functions
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Notes: This figure shows an example equilibrium realization assuming two firms, each offering one product. The time horizon is defined as t ∈ [0, 1]
such that ∆= .01, and the arrival rate is constant per period equal to ∆λ= .1 in figure (a) and ∆λ= .05 in the remaining figures. We assume a logit

demand system such that the probability of purchase of product f , conditional on arrival, is equal to s f =
exp

�

20−20·pf
�

1+
∑

f ′=1,2 exp
�

20−20·pf ′
� .

prices) if Firm 2’s product quality increased. Here, the opposite occurs because Firm 1 finds it

increasingly beneficial to shift demand to its rival when its rival has low product quality.
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6 Welfare and the Bertrand Scarcity Trap

In this section, we discuss welfare consequences of dynamic price competition. To this end, we

formulate a discrete-choice micro-foundation of demand, as follows. A period-t consumer’s utility

of consuming product j is v j ,t = v̄ j ,t +ε j ,t , v̄ j ,t ∈R, and the utility of consuming the outside option

is normalized to v0,t = ε0,t , where εt = (ε j ,t ) j∈J ∪{0} are drawn from a distribution µt , and εt are

independent across time. Products are substitutes, and each consumer can at most consume one

product. Utilities are quasi-linear, and the utility from buying product j at price pj ,t is u j ,t =

v j ,t − pj ,t , j ∈ J . Thus, a consumer buys the product that maximizes max j u j ,t . For example,

if ε j ,t are independently type-1 extreme value distributed, then the probability s j ,t (p; K) of buying

product j corresponds to a logit demand system. Nested logit demand (see Definition 2) also

satisfies the demand assumptions made in Section 2. We use this demand system for simulations.

Definition 2 (Nested Logit Demand). Consider a nested logit demand system such that the proba-

bility of purchase of product f in time t , conditional on arrival, is equal to

s f ,t =

�

D 1−σ

1+D 1−σ

�

 

exp
�

δ f −αt ·pf

1−σ

�

D

!

, where D =
∑

f ′=1,2

exp

�

δ f ′ −αt ·pf ′

1−σ

�

.

The nesting parameter σ ∈ [0, 1] affects substitution patterns. As σ→ 0, the model collapses to a

logit demand system. As σ→ 1, there is little substitution to the outside good.

If ε j ,t = ε j ′,t and v̄ j ,t = v̄ j ′,t for all j , j ′ ∈J , products are undifferentiated. In that case,

s j ,t (p; K) = 1
�

pj ,t >max
j ′ ̸= j

pj ′,t

�

Dt (pj ,t ) +1
�

pj ,t =max
j ′ ̸= j

pj ′,t

�

α j Dt (pj ,t )

for some α j ∈ [0, 1] and a period-t demand function Dt . This demand function is not differentiable

everywhere and fails to satisfy the assumptions in Section 2. As a result, our equilibrium analysis in

Sections 4 and 5.1 does not apply, and pure-strategy equilibria generally do not exist. Dudey (1992)

and Martínez-de Albéniz and Talluri (2011) examine a scenario where all consumers have the same

fixed known valuation for the product. They note that if valuations increase towards the deadline,

only mixed-strategy equilibria prevail. However, note that one can approximate undifferentiated

demand systems with differentiated demand systems that satisfy our demand assumptions.
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6.1 Welfare-Maximizing Prices

A natural benchmark for our analysis is the social planner’s solution subject to capacity constraints.

For any discrete-choice model that also satisfies our demand assumptions, we can define a per-

period welfare function in period t given prices p as

wt (p; K) =E
�

∑

j∈A (K)∪{0}

v j ,t1
�

v j ,t −pj =max
j ′

v j ′,t −pj ′
�

�

.

setting the “price” of the outside option p0 = 0. The cumulative continuation welfare is then

W ∗
t (K;∆) =−λt max

p

�

wt (p; K)−
∑

j∈A (K)

s j (p;θ t ,A (K)) (W ∗
t+∆(K;∆)−W ∗

t+∆(K−e j ;∆))
�

,

where ν∗j ,t (K;∆) :=W ∗
t+∆(K;∆)−W ∗

t+∆(K−e j ;∆) is the scarcity effect on welfare of a unit of good

j . Next, note that for arbitrary vectors ν= (ν j ) j∈J ,

ν ∈ arg max
p

wt (p)−
∑

j∈A (K)

s j (p;θ ,A (K))ν j

= arg max
p
E
�

∑

j∈A (K)∪{0}

(v j ,t −ν j )1
�

v j ,t −pj =max
j ′

v j ′,t −pj ′
�

�

.

Thus, we can show an analogous result to Lemma 1 for the optimal welfare function, as follows.

Proposition 6. W ∗
t (K) := lim∆→0 W ∗

t (K;∆) solves the ordinary differential equation

Ẇ ∗
t (K) =−λt

�

wt (ν
∗
t (K); K)−

∑

j∈J

s j (ν
∗
t (K);θ ,A (K)) ν∗j ,t (K)

�

, (9)

with boundary conditions (i) WT (K) = 0 ∀K and (ii) Wt (K) = 0 if K j = 0 for all j ∈ J , where

ν∗t (K) = (ν
∗
j ,t (K)) j∈J with ν∗j ,t (K) :=W ∗

t (K)−W ∗
t (K−e j ).

The proof mirrors Lemma 1. This formulation highlights two types of distortions that occur if

firms maximize payoffs, by comparing it with the ODEs in Theorem 1 and Lemma 1. The first is

that firms do not internalize today’s welfare benefits of selling a unit, wt . The second is that firms

do not fully internalize the social opportunity cost of selling, which is the value of keeping the unit

for the future, ν∗j ,t . As a result, prices can be higher or lower than the welfare-optimal price.
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Lemma 6 also allows us to simulate socially optimal prices. Figure 4 shows average prices over

time for a monopolist, in a competitive market, and for a social planner. Panel (a) considers a nested

logit demand specification where demand is constant over time. The figure validates the classic

intuition of price competition with differentiated products. Consider prices at the deadline. Since

the value of capacity is zero after the deadline, the socially optimal price is zero. The competitive

equilibrium price is higher due to market power from product differentiation. The monopoly price

is the highest. This order is on average maintained for t < T . The order is not necessarily preserved

state-by-state, as we will soon discuss. Conversely, panel (b) shows a reversal of the order of prices

far from the deadline when demand becomes more inelastic over time. Here, the monopolist sets

on average lower prices than socially optimal. Prices are even lower than the average competitive

price. The reason for the reversal is that firms do not internalize the social opportunity cost of

selling. Essentially, firms offer relatively low prices early on to create scarcity and avoid unsold

capacity. This notion will be critical for our welfare analysis that follows.

Figure 4: Equilibrium, Monopolist, and Welfare-Optimal Prices
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(b) Nested Logit Demand with Decreasing αt
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Notes: We assume that initial capacity is K = (20, 20), and that the per-period arrival rate is constant, equal to ∆λt = 1. In panel (a), we use the
nested logit demand system described in Definition 2, and assign δ1 =δ2 = 1, σ= .5, and α= 1. In panel (b), we use the same model but assign αt
to decrease over time at a constant rate such that α0 = 2 and αT = 1.

6.2 Definition of Bertrand Scarcity Trap

The rich equilibrium dynamics discussed in Section 2 and the distortions discussed in Section 6.1

suggest that firms may promote scarcity inefficiently. We call this new welfare effect the Bertrand

scarcity trap (BST).
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Definition 3. A dynamic pricing game is subject to the Bertrand scarcity trap if a price floor in

some states increases both consumer surplus and all firms’ profits.

Note that a single firm is never subject to the BST because a firm is always worse off if it

faces a price floor restriction. The following are the main forces affecting whether a competitive

game is subject to the BST. Consider a state (K, t ). Slightly increasing all prices excludes some

lower-valuation consumers from buying today, potentially reallocating capacity to higher-valuation

consumers in the future. This strategy can improve welfare if the product is likely to sell out,

preventing high-valuation customers from remaining empty-handed. However, this strategy may

also reduce welfare if the product does not sell out, causing firms to lose revenue.

To understand the economics of BST, we define a state-(K, t ) outcome as a tuple ( j , v j ,t ), where

j is an available product and v j ,t is the realized utility level.31 An allocation rule a maps each

state (K, t ) and utility vector (v j ,t ) j to a probability distribution on available products A ⊂ J ,

where a j (t , K, (v j ,t ) j ) is the probability with which a period-t consumer with utility vector (v j ,t ) j

is allocated a unit of product j . An allocation rule can be induced by Bertrand price competition,

a monopolist’s pricing decision, a social planner, or alternative pricing mechanisms. We formalize

how an allocation rule can add inefficiencies over time. We denote the continuation welfare in state

(K, t ), given an allocation rule a , by W a (K, t ). This continuation welfare is the expected sum (over

t ) of utility outcomes v j ,t from purchased available products given the allocation rule a . Then,

selling a unit of product j in state (K, t ) results in a future cost on welfare of W a
t+∆(K)−W a

t+∆(K−e j )

and a gain in total welfare of E[
∑

j a j (K, t , (vi ,t )i )v j ,t ]. Holding fixed the allocation rule in period

t +∆ and onwards, it is efficient to allocate product j in period t if and only if

v j ,t − (W a
t+∆(K)−W a

t+∆(K−ei ))≥max
�

v0,t , max
i

vi ,t − (W a
t+∆(K)−W a

t+∆(K−ei ))
	

.

This leads us to define the notion of a constrained-efficient price.

Definition 4. We call

p̄ a
j ,t (K) =W a

t+∆(K)−W a
t+∆(K−e j )

the constrained-efficient price of product j at time t , given allocation rule a .
31An allocation is feasible if the product is available given K and a period-t consumer (if she arrives) has the

corresponding valuation with positive probability.
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A social planner imposing constrained-efficient prices in period t can induce a constrained-

efficient allocation in period t given that the future allocation rule remains a . With this notion, we

can distinguish between two types of inefficiencies that are possible in each stage game.

Definition 5. We say j is over-provided if pj ,t < p̄ a
j ,t (K) and is under-provided if pj ,t > p̄ a

j ,t (K).

Under static Bertrand price competition with differentiated products, we expect under-

provision of products given that firms maintain some market power, and any restriction on com-

petition typically exacerbates this inefficiency. However, in dynamic settings subject to scarcity,

inefficient rationing can naturally occur due to over-provision of a product early on. Bertrand com-

petition tends to exacerbate over-provision, and restricting competition can be welfare improving,

as we will demonstrate next. The following example illustrates these effects.

Example 3. Consider two symmetric firms, each offering one product, with initial capacities (1, 1).

In Figure 5(a), we plot equilibrium (solid curves) and constrained-efficient (dashed curves) prices

over time for capacity vectors (1,1) and (1,0) using a nested logit demand system. The figure

depicts under-provision as p̄ B
t < p ∗t in all states. In panel (b), we plot the same policy functions

assuming logit demand with increasing willingness to pay over time. There is over-provision early

on (p̄ B
t > p ∗t ) and under-provision (p̄ B

t < p ∗t ) closer to the deadline. ◊

Figure 5: Equilibrium and Constrained-Efficient Prices

(a) Constant Nested Logit Demand
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(b) Nested Logit Demand with Decreasing αt

0.00 0.25 0.50 0.75 1.00
t

0

1

2

3

4

Pr
ic

e

T

Notes: We assume that initial capacity is K = (1, 1), and that the per-period arrival rate is constant, equal to ∆λt = 1. In panel (a), we use a nested
logit demand system described in Definition 2, and assign δ1 = δ2 = 1, σ = .5, and α = 1. In panel (b), we use the same model but assign αt to
decrease over time at a constant rate such that α0 = 2 and αT = 1.
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Dilme and Li (2019) highlight that flash sales early on can result in inefficiently low prices

early on. Indeed, if a firm faces forward-looking buyers and is therefore competing with its future

self, then it may benefit form committing to higher prices early on, and consumer surplus may also

be higher because capacity is allocated to higher-valuation buyers.32

6.3 An Analytic Example of the Bertrand Scarcity Trap

We present an analytic example of the BST with undifferentiated products, uncertain demand, and

discrete time. In this example, the BST is so severe that a monopolist prices more efficiently than

what is achieved under dynamic price competition.

Consider two undifferentiated products that are available for sale over three sequential markets,

t = 1, 2, 3. In every period t , a single short-lived consumer with i.i.d. unit demand arrives. If p

is the lowest available price, a consumer in period t buys with probability st (p ) = 2(1−p )1(p >

0.5) + 1(p ≤ 0.5), as illustrated in Figure 6. We compare two market structures. In one market

structure, each product is sold by competing firms; in the other, a single firm sells both products.

We denote per-period welfare given a price p by wt (p ), continuation welfare for a single merged

firm with remaining capacity K by W M
t (K ), and continuation welfare for two firms with capacity

vector (1, 1), by W c
t (1, 1). Prices are denoted by p M

t (K ) and p c
t (1, 1), analogously. In Figure 6, the

per-period welfare is illustrated by the filled regions under the demand curves.

In the last period (t = 3), the monopoly price is p M
3 (1) =

1
2 , and monopoly profits are 1

2 . The

equilibrium price and profits with Bertrand competition are 0. Total welfare is 0.75 in both settings.

Thus, welfare in the last period is unaffected by market structure and maximized. If two firms

compete, a firm can gain 1
2 in profits if the other firm sells in period 1 or 2.

Period-2 demand is identical to period-3 demand. However, if a single firm has only one unit

remaining, the firm sets a higher price equal to p M
2 (1) = 0.75 because it knows that there is another

chance to sell this unit in period 3, yielding expected profits of 1
2 . The constrained-optimal price

is also 0.75, so the single firm is pricing efficiently.33 With K = 2, the price is p M
2 (2) =

1
2 , which

is also constrained optimal, because only one unit can be sold in period 3. With competition,

32In a similar vein, in a quantity choice game, Bonatti et al. (2017) show that firms may engage in excess production
to encourage rivals to scale back. However, this leads to a stronger signaling effect that improves allocative efficiency.

33This is because p = 0.75 maximizes 2p (1−p ) + (1−p )2+ (1−2(1−p ))0.75.
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Figure 6: Illustrative Example of the Bertrand Scarcity Trap
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Notes: The graph depicts demand curves, single-firm optimal prices, and competitive prices in the three periods. The orange and blue regions
represent per-period welfare given a single firm with two and one unit left, respectively. The gray region represents per-period welfare if two
competing firms are active.

prices are the same, i.e., p c
2 (1, 1) = 1

2 .34 Finally, continuation welfare is given by W M
2 (1) = 0.8125,

W M
2 (2) = 1.5, and W c

2 (1, 1) = 1.5, respectively.

Moving to the first period, one can show that p M
1 (2) = 0.6875> p c

1 (1, 1) = 0.625. The welfare-

maximizing price is 0.6875. Hence, the single firm is exactly solving a social planner’s problem

as all prices are constrained-efficient, while a competitive market is over-providing the product at

t = 1. Therefore, the equilibrium is subject to the Bertrand scarcity trap.

Intuitively, competing firms do not internalize the entire option value of keeping a seat because

their continuation payoffs are half of the social planner’s. Hence, while in a static Bertrand pricing

game, firms can never set prices that are lower than efficient, in a dynamic pricing game with

scarcity, competitive prices can be so low that firms sell out inefficiently early. As a result, both

consumers and firms are worse off relative to pricing regimes that restrict competition.

6.4 Alleviating the Bertrand Scarcity Trap with Algorithmic Pricing

Our second example of the BST uses a nested logit demand system (see Definition 2). We choose

this specification because it showcases that BST can occur in flexible demand systems. This is in

contrast with our first example, which relied on very stylized consumer preferences. The nested

logit demand system is widely used in empirical work (e.g., Berry, 1994). A promising area for

future research is to quantify the extent to which the BST occurs in data.

34Firms do not have an incentive to deviate to higher or lower prices. In general, competition with undifferentiated
products can lead to multiplicities and non-existence of symmetric pure-strategy equilibria, as also shown in Talluri
and Van Ryzin (2004) and Dudey (1992).
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We compute the equilibrium of the dynamic game using our ODE characterization and compare

its market outcomes with those under a pricing algorithm. We design the pricing algorithm based

on key features of revenue management systems used in several markets with perishable inventory

(Hortaçsu et al., 2024). The two most important features are the use of discrete prices and a

simplified objective function. We formally define the algorithm as follows.

Definition 6 (Algorithmic Pricing). Firms operate in discrete time, such that t ∈ 0,∆, ..., T −∆.

Prices are discrete. The set of potential prices of firm f at time t is given by P f ,t = (p n
f ,t )

N
n=1,

such that p m
j ,t < p n

j ,t if m < n . The parameter N controls how many prices there are. The price

corresponding to the n-th entry in the menu can vary over time (as observed in car rentals, airlines,

etc.). Therefore, the pricing behavior of firm f is characterized by the index in the pricing menu

that it chooses over time. This is defined as (n f ,t )T−∆t=0 .

As is typical for algorithms, we assume each firm does not internalize its competitor as a

strategic player. At time t , each firm f , having observed its competitor’s last-period index choice

n f ′,t−∆, assumes that this price will also be charged in the current and all future periods. Therefore,

firm f ’s beliefs on all future prices of firm f ′ is a Dirac distribution, positioned at p
n f ′ ,t−∆
f ′,τ for all

τ ∈ {t , . . . , T −∆}. With this simplification, each firm simply calculates its residual demand curves

in all remaining periods and solves the monopoly problem as defined in Section 3, i.e.,

Π f ,t (K ;∆) = max
p∈P f ,t

∆λt s f ,t (p )
�

pf +ΠM ,t+∆(K −1;∆)
�

+
�

1−∆λt s f ,t (p )
�

ΠM ,t+∆(K ;∆).

Using the equilibrium outcome and firms’ pricing algorithm solutions, we simulate market out-

comes 10,000 times. The exact specification used appears in the notes of Figure 7, which shows

average prices (panel a) and quantity sold (panel b) over time. Average prices increase as our spec-

ification assumes a slight decrease in consumer price sensitivity over time. Average equilibrium

prices fall close to the deadline due to decreasing opportunity costs and the exclusion of sold-out

products. In contrast, algorithmic prices steadily increase, starting higher than competitive equi-

librium prices early on. Average quantities sold remain relatively stable over time with algorithmic

pricing, while they drop faster in the competitive equilibrium as products sell out.

Table 1 summarizes revenues, consumer surplus, and social welfare for the two allocation

mechanisms. Both firms’ revenues and consumer surplus are about one percent higher with algo-
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Figure 7: Price and Quantity Paths for Full Information Benchmark and Algorithmic Pricing

(a) Average Prices Over Time
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Notes: These plots show average prices and quantities sold across firms under dynamic pricing versus algorithmic pricing. We assume that initial
capacity is K = (10, 20). The time horizon is defined as t ∈ [0, 1], such that ∆ = .01, and the arrival rate is constant per period, equal to ∆λ = 0.58.
We assume the demand system described in Definition 2 and assign δ1 = 0.28, δ2 = 0.18, and σ = 0.65, and αt decreases at a constant rate over
time, starting at 1 in period t = 0 and ending at 0.8022 in period t = T .

rithmic pricing relative to the competitive equilibrium outcome. As indicated in Figure 7, products

sell out more quickly in a competitive equilibrium. The welfare numbers indicate that products

would be allocated more efficiently if a price floor was imposed at the beginning of the game. That

is, this example is subject to the BST, which is alleviated by algorithmic pricing. These competing

algorithms result in higher prices early on and less steep price increases over time.

Table 1: Example of Bertrand Scarcity Trap Using Nested Logit Demand

Firm 1 Revenue Firm 2 Revenue Consumer Surplus Welfare

Dynamic Pricing 995.72 1095.12 2711.26 4802.11
Algorithmic Pricing 1004.83 1106.91 2743.45 4855.20

Difference 0.91% 1.08% 1.19% 1.11%
Test Statistic 10.13 6.89 19.69 18.15

Notes: This table shows market outcomes for 10,000 simulations using our ODE characterization and comparing it with algorithmic pricing. The
time horizon is defined as t ∈ [0, 1], such that ∆= .01, and the arrival rate is constant per period, equal to ∆λ= 0.58. We assume the demand system
described in Example 3. The test statistic reported is a t−test for equal means.

6.5 Demand Uncertainty Is Necessary for the BST to Exist

We examine two alternative models of dynamic price competition with capacity constraints where

uncertainty in demand is shut down. The first example considers two periods and homogeneous

38



demands. The second example corresponds to our baseline model without demand uncertainty.

In both cases, the inefficiency of not accounting for the social option value of a sale today is not

present. As a result, we establish that the BST cannot occur absent demand uncertainty.

6.5.1 A Two-period Example Without Uncertainty

We begin with a two-period environment with undifferentiated products based on the model of

Dana and Williams (2022), who focus on quantity-price choices but solve for pricing equilibria as

part of their analysis. In every period, a unit mass of consumers arrives, with valuations governed

by a demand function Dt (p ). We allow firms to sell infinitesimal quantities and assume that the

demand functions are such that the inverse demand functions Pt (q ) satisfy P ′′t (q )q + 2P ′t (q ) < 0,

i.e., revenues are concave in quantities. The analysis allows for an arbitrary number of firms.

First, note that welfare-maximizing prices are constant across periods; otherwise, consumption

from a lower-valuation customer in a period with a low price could be shifted to a higher-valuation

customer in a period with a high price. The efficient price p w must ensure that the entire initial

capacity is sold, i.e.,

D1(p ) +D2(p ) =
∑

f

K f ,0. (10)

This is because demand is predictable and deterministic. Wasting capacity reduces welfare. Then,

the following proposition follows from the analysis in Dana and Williams (2022).

Proposition 7. The following properties hold:

i) The welfare-optimal price is constant over time and given by equation (10).

ii) It can be optimal for a single firm to set a higher or lower price in the first period, and it

may optimally not sell out its capacity. The profit-maximizing price is constant over time if

demand is constant over time but may be higher than p w .

iii) With competition, the capacity constraint is always binding, i.e., equation (10) holds, and

(a) if firms are symmetric, i.e., K f = 1 for all f , and demand is constant over time (D1 =

D2), then p1 = p2 = p w in equilibrium;
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(b) if the welfare-optimal price is not an equilibrium, then only one firm sells in the first

period in equilibrium and at a higher price than in the second period.

The proposition highlights several economic forces. First, with a single-firm, prices can be

higher or lower in the first period, and the capacity constraint may or may not bind. Hence, there

are two types of inefficiencies. The firm may waste capacity to extract more surplus, or the firm

may misallocate capacity by not charging the same price across periods. Second, in a competitive

equilibrium, the market must always clear in the last period because there is no demand uncertainty.

However, the prices in the first period may be higher than in the second period if one firm has

sufficient market power. The reason is that a firm can unilaterally control scarcity in the second

period and, therefore, increase prices. Finally, if demand is constant over time, equilibrium prices

coincide with the socially efficient price.

All in all, this analysis establishes that competition reduces inefficiencies relative to a monop-

olist. However, products may still be misallocated if a dominant firm creates scarcity in the last

competitive period. This can only occur if demand becomes more inelastic over time. Importantly,

lowering or increasing the price in the first period always harms the dominant firm. Therefore, the

game is not subject to inefficiencies stemming from the BST.

6.5.2 Differentiated Products Without Uncertainty

We extend the insights of the two-period example with undifferentiated products to a fully dy-

namic model with differentiated products, as studied in Gallego and Hu (2014). Using the same

notation and demand assumptions as in our baseline model, we assume that θ t is constant over

time, for tractability, omitting the time index in the demand function henceforth. Instead of as-

suming Poisson arrivals, we assume that consumers flow in continuously at a constant rate of 1.

Capacity is arbitrarily divisible. We use the same discrete-choice micro-foundation to calculate

consumer surplus and welfare as before. However, unlike in the baseline model, uncertainty is ab-

sent, as consumers aggregate continuously over time, and capacity is divisible. We work directly

in continuous time and assume that K0 < T s(0) to ensure the capacity constraint meaningful.

A social planner, monopolist, and each firm in an oligopoly solve the following maximization
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problems, respectively:

Social planner: max
pt measurable

∫ T

0

w (pt )d t subject to

T
∫

0

s(pt )d t ≤K0;

Monopolist: max
pt measurable

∫ T

0

s(pt ) ·pt d t subject to

T
∫

0

s(pt )d t ≤K0;

Oligopoly firm: max
p f

t measurable

∫ T

0

s f (pt ) ·p f
t d t subject to

T
∫

0

s f (pt )d t ≤K f
0 .

Given that demand does not change over time and there is no uncertainty, a natural solution to any

of these problems is a constant price path.35 Proposition 8 shows that such solutions exist for all

three problems and characterizes the corresponding price level.

Proposition 8. The following properties hold:

i) The unique welfare-maximizing price path is constant. The price pw is given by s(pw ) = 1
T K0.

ii) The unique profit-maximizing price path of a monopolist is constant. The price pM is the

unique solution to the static problem maxp s(p)p subject to s(p)≤ 1
T K0.

iii) All competitive equilibrium prices paths are constant, where the equilibrium price vector pO

is the unique equilibrium p∗(λSP ) of a game where firms faces costs given by λSP
f ≥ 0 ∈RJ ,

where

λSP ∈ arg min
¦

λ≥ 0
�

� s(p∗(λ))≤
1

T
K0

©

.

Note that s(p) = 1
T K0 has a unique solution p for any K0 because s is a bijection (see Online

Appendix). Proposition 8 shows that firms deviate from efficient pricing only to exercise market

power, raising prices even if doing so leaves some capacity unsold. Increasing the price further in

those instances makes consumers strictly worse off by leaving even more capacity unsold. Hence,

just as in the two-period example, the competitive constant equilibrium is not subject to the BST.
35We showed in Proposition 1 that with uncertainty, the average price paths of a monopolist are non-monotonic

exactly because of the option value of waiting for high-valuation consumers to arrive in the future. A similar result
holds for the social planner and an equilibrium of the dynamic pricing game.
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7 Conclusion

We introduce a framework to study dynamic price competition in complete information. We pro-

vide conditions for the existence and uniqueness of pure-strategy Markov perfect equilibria and

show that in the continuous-time limit, prices solve a system of ordinary differential equations.

This convenient structure allows us to explore new strategic interactions that arise in this setting,

with relevant applications to hospitality, transportation, retailing, and housing.

We provide three sets of theoretical findings. The first set illustrates how intuition from

monopoly dynamic pricing models does not carry over to the oligopoly case. For example, prices

can be lower if firms had fewer units of capacity to sell. Our second set of findings concerns the

drivers of dynamic prices. We show that firms’ strategies are aligned with softening future price

competition through a particular order of sale. Prices jump the most if the firm with the most scarce

capacity sells. As a result, price increases are driven primarily by reducing product variety. Our

last set of theoretical insights concerns welfare. We show that while competition lowers prices, as

in most static models with competition, in the dynamic setting, this can also facilitate misallocation

of capacity. Early prices can be too low, leading to over-provision early on and under-provision

close to the perishability date, and harming both consumers and firms. We call this phenomenon

the Bertrand scarcity trap. It can occur because firms pricing in perishable goods markets do not

internalize the social option value of keeping capacity for the future. Hence, uncertain demand

is critical to the occurrence of the Bertrand scarcity trap. We find that the Bertrand scarcity trap

can be alleviated when firms commit to limiting competitive interactions; for example, through

algorithmic pricing, it is possible that both firms and consumers are made better off.

We see several promising directions for future research. Our framework provides a compu-

tationally tractable tool to characterize equilibrium outcomes under dynamic pricing and alter-

native allocation rules, including the social planner’s problem. We believe it can be used for

policy-relevant research to quantify market power and conduct counterfactuals in perishable goods

markets broadly. In addition, our simulations using algorithmic pricing suggest that examining

dynamic price competition with commitment, such as through algorithms, holds great potential

because it may alleviate the Bertrand scarcity trap more broadly. Finally, note that a key driver of

all our results is scarcity. Further research should explore endogenizing capacity decisions.
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Online Appendix

Dynamic Price Competition with Capacity Constraints
Jose M. Betancourt, Ali Hortaçsu, Aniko Öry, Kevin R. Williams

A Proofs

A.1 Technical results

A.1.1 s f
A (·;θ ,A ) is bijective

We show, using the Implicit Function Theorem in Chapter 6 in Krantz and Parks (2002), that the

demand function s f
A (·;θ ,A ) is a bijection. We omit θ ,A in this proof. According to the theorem,

a continuously differentiable function s : RA →
�

s ∈ (0, 1)A
�

�

∑

j∈A s j < 1
	

is a homeomorphism,

if the following hold:

i) For any compact set K ⊂
�

s ∈ (0, 1)A
�

�

∑

j∈A s j < 1
	

, s−1(K ) is compact, i.e., s is proper;

ii) the matrix Dp f s f
A is invertible

First, recall that by Assumption 1-i) and iii), s0(p) = 0 if pj = −∞ for some j ∈ A , and

s j (p) = 0 if pj =∞. Furthermore, each s j is continuous. Thus, for a compact set K as in i), s−1(K )

is compact. Furthermore,Dp f s f
A is invertable for all pA ∈RA by the Levy-Desplanques Theorem

(see, e.g., Theorem 6.1.10. in Horn and Johnson (2012)) because it is diagonally dominant by

Assumption 1-ii) and iii): ∂ s0
∂ pj
(p) =

�

�

∂ s j

∂ pj
(p)
�

�−
∑

j ′∈A\{ j }

∂ s j ′

∂ pj
(p)> 0.36 This concludes the proof.

A.1.2 Continuous time limit

We use the following result for the proofs of Lemma 1 and Theorem 2. We denote the set of active

firms given capacity vector K by

F (K) :=
�

f ∈F
�

�∃ j ∈J f such that K j > 0
	

.
36Consistent with the common convention, the Jacobi matrix of a vector-valued function f (x) ∈ Rn , x ∈ Rn is

Dx f (x) :=
�

∂ fi
∂ x j

�

i , j
, i denoting rows and j columns, and bold vectors x are column vectors.

1



Lemma 4. For each K ≤ K0 consider continuous price functions (Ω,θ ) 7→ p∗(Ω,θ ; K) =

(p ∗j (Ω,θ ; K)) j∈A (K), and bounded and continuous functions AK : RA (K) ×RF (K)×A (K) ×T → RF (K).

Let (Π f ,t (K;∆)) f ∈F ,K≤K0
, be a solution to the system of difference equations

�

Π f ,t+∆(K;∆)−Π f ,t (K;∆)

∆

�

f

=−λt AK

�

p∗
�

Ωt (K;∆)),θ t ; K
�

, Ωt (K;∆), θ t

�

for all K≤K0,

where Ωt (K;∆) = (ω f
j ,t (K;∆)) f , j , ω

f
j ,t (K;∆) := Π f ,t+∆(K;∆) − Π f ,t+∆(K − e j ;∆), with boundary

conditions (i) Π f ,T (K;∆) = 0, (ii) Π f ,t (K;∆) = 0 if K j = 0 for all j ∈ J f . Then, (Π f ,t (K;∆)) f ,K

converges and any limit (Π f ,t (K)) f ,K satisfies

�

Π̇ f ,t (K)
�

f
=−λt AK

�

p∗
�

Ωt (K),θ t ; K
�

, Ωt (K), θ t

�

for all K≤K0,

where Ωt (K) = (ω
f
j ,t (K)) f , j ,ω

f
j ,t (K) :=Π f ,t (K)−Π f ,t (K−e j ), with boundary conditions (i) Π f ,T (K) =

0, (ii) Π f ,t (K) = 0 for all j ∈J f .

Proof. Since AK is bounded for all K ≤ K0, the difference equations show that (Π f (K;∆)) f ∈F ,K≤K0

is equicontinuous and equibounded in t as ∆→ 0. Hence, by the Arzela-Ascoli Theorem, there

exist limit points (Π f (K)) f ∈F ,K≤K0
. We claim that

�

Π f ,t (K)
�

f
=

T
∫

t

λu AK

�

p∗
�

Ωu (K),θ u ; K
�

, Ωu (K), θ u

�

d u . (11)

To this end, we note that if we let ⌈u ⌉∆ to be the smallest number that is divisible by ∆ and larger

or equal than u

�

Π f ,t (K;∆)
�

f
=

T
∫

t

λ⌈u ⌉∆ AK

�

p∗
�

Ω⌈u ⌉∆(K;∆),θ ⌈u ⌉∆ ; K
�

, Ω⌈u ⌉∆(K;∆), θ ⌈u ⌉∆
�

d u . (12)

We take the limit ∆→ 0 on both sides. The left-hand side of (12) converges to the left-hand side of

(11). On the right-hand side, Ω⌈u ⌉∆(K;∆) converges to Ωu (K). Hence, by continuity of p∗ and AK the

integrand in (12) converges to the integrand in (11). By the dominated convergence theorem the

right-hand side of (12) converges to the right-hand side of (11). Thus, any limiting value function

2



exists and must satisfy (11). ■

A.1.3 Continuity of stage game prices

Consider the stage game introduced in Subsection 4.1. In the following we fix the vector of re-

maining capacity K, and therefore the set of available productsA , and omit it in the notation.

Lemma 5. Let P ⊂ RJ be compact andM a compact set of (Ω,θ ). Further, let g : P ×M →

P , (q;Ω,θ ) 7→ p be (i) continuous in q, (ii) continuous in Ω and θ , (iii) such that it implicitly

defines a unique p∗(Ω,θ ) satisfying g(p∗(Ω,θ );Ω,θ ) = p∗(Ω,θ ) for all (Ω,θ ) ∈M . Then, p∗(Ω,θ )

depends continuously on Ω and θ .

Proof. Consider the graph of p∗(Ω,θ ): G = {(p,Ω,θ ) : g (p;Ω,θ ) = p}. By continuity of g, G is

closed in P ×M . Since p∗(Ω,θ ) stays in the compact set P and is single-valued, it is upper

hemicontinuous as a correspondence. Hence, p∗ is continuous as a function.37 ■

A.2 Proofs for Monopoly Benchmark

A.2.1 Proof of Lemma 1

In steps 1 and 2 of this proof we omit the conditioning argumentA and θ .

Step 1: All profit-maximizing prices pM are interior. First, we show that given ω,

pM ∈ arg max
q

∑

j∈A

s j (q)(q j −ω j )

is bounded from below by a vector p = (p +ω1, . . . , p +ωJ ), p ∈ R. We proceed with a proof by

contradiction. Suppose such a p did not exist. Then, for any p ∈ R there exists an optimal price

vector pM and a j such that p M
j −ω j =min j ′(p M

j ′ −ω j ′)< p . At this optimal price pM (which can

include (minus) infinite prices), the derivative of the stage game profit with respect to any price

dimension has to be smaller than or equal to zero by optimality. Otherwise, the firm would have

37We thank Satoru Takahashi for helping us to simplify this proof.
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an incentive to increase that price. The derivative of the profit with respect to pj is

∑

k ̸= j

∂ sk

∂ pj
(p)

︸ ︷︷ ︸

>0

(pk −ωk )
︸ ︷︷ ︸

≥pj−ω j

+s j (p) +
∂ s j

∂ pj
(p)(pj −ω j ) ≥

(pj −ω j )
︸ ︷︷ ︸

<p

∑

k

∂ sk

∂ pj
(p)

︸ ︷︷ ︸

=− ∂ s0
∂ pj
(p)<0 by Assumption 1-iii)

+s j (p)

This expression is stirctly positive if we choose p < 0 sufficiently negative. This yields a contra-

diction.

So, any optimal price vector is bounded by a vector p from below. Take such a lower bound p

and let for each j ∈A , p̃j be such that

C := inf
p≥p,pj≥p̃j

∂ s0
∂ pj
(p)

s j (p)
pj > 1.

Such a p̃j exists by Assumption 1-iv).

Next, we show that given ω and θ , any profit maximizing price vector pM is bounded from

above by a vector p= (p +ω1, . . . , p +ωJ ), p ∈R. We again proceed with a proof by contradiction.

Suppose such a p did not exist. Then, for any p ∈R, there exists an optimal price vector pM and j

such that p M
j −ω j =max j ′

�

p M
j ′ −ω j ′

�

> p . At the optimal price pM (which could include infinite

prices), the derivative of the profit with respect to any price dimension has to be greater than or

equal to zero by optimality. The derivative of the firm’s profit with respect to pj at pj > p̄j > p̃j ,

p≥ p is

∑

k ̸= j

∂ sk

∂ pj
(p)

︸ ︷︷ ︸

≥0

(pk −ωk ) + s j (p) +
∂ s j

∂ pj
(p) (pj −ω j ) ≤

∑

k

∂ sk

∂ pj
(p)

︸ ︷︷ ︸

=− ∂ s0
∂ pj

(pj −ω j ) +C −1 ∂ s0

∂ pj
(p)pj ≤

∂ s0

∂ pj
(p)((C −1−1)

︸ ︷︷ ︸

<0

(pj −ω j )
︸ ︷︷ ︸

≥p

+C −1ω j ).
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This expression is negative if pj −ω j ≥ p > C −1ω̄
1−C −1 , where ω̄ :=max j ω j is the maximum opportu-

nity cost. This yields a contradiction. Hence, any optimal price vector pM is bounded by a vector

p from above.

Step 2: Uniqueness of profit-maximizing price pM . It follows from Step 1 that any profit-

maximizing price pM of the stage game must satisfy the FOCs of the firm. Dps(p) is non-singular

by Section A.1.1. Hence, the FOCs can be written as equation (3). Because of Assumption 2 there

is a unique solution to this system of equations by Lemma 2 (Kellogg (1976)) in Konovalov and

Sándor (2010).

Step 3: Convergence. We can apply the Implicit Function Theorem to equation (3) by As-

sumption 2 and it follows that the unique optimal price pM (ω,θ ; K) is continuous in ω and θ .

Convergence to equation (2) follows by Lemma 4.

A.2.2 Proof of Proposition 1

Proof. i) To see that ΠM ,t (K) is decreasing in t , note that in equation (2), setting pj > ΠM ,t (K)−

ΠM ,t (K−e j ) results in a positive stage-game payoff, so Π̇M ,t (K)< 0.

Next, we show that ΠM ,t (K)>ΠM ,t (K−e j ) for all j by induction in
∑

j
K j .

Induction start: It is immediate that ΠM ,t (e j )≥ΠM ,t (0) = 0 for all j and t ≤ T .

Induction hypothesis: Assume that ΠM ,t (K)>ΠM ,t (K−e j ) for all K with
∑

j
K j = K̄ and j ∈J .

Induction step: Now, consider a capacity vector K with
∑

j
K j = K̄ + 1. The solution of the

differential equation for the profits is

ΠM ,t (K) =

T
∫

t

λz

∑

j

s j ,z (pM ,z (K)) (pM , j ,z (K) +ΠM ,z (K−e j )) · e
−

z
∫

t
λu

∑

j ′
s j ′ (pM ,u (K))d u

d z .
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By sub-optimality of the prices pM ,t (K−ek ) given capacity vector K, we have for all k

ΠM ,t

�

K
�

≥
T
∫

t

λz

∑

j

s j ,z

�

pM ,z (K−ek )
� �

pM , j ,z (K−ek ) + ΠM ,z (K−e j )
︸ ︷︷ ︸

>ΠM ,z

�

K−ek −e j

�

by induction hypothesis

�

· e
−

z
∫

t
λu

∑

j ′
s j ′ (pM ,u (K−ek ))d u

d z

>ΠM ,t

�

K−ek

�

.

ii) Next, we show that ΠM ,t (K)−ΠM ,t (K− e j )≤ΠM ,t (K− e j )−ΠM ,t (K−2e j ) for all j . To this

end, let

H (x;θ ) =−max
p

∑

j

s j (p;θ )(pj − x j ).

Note that H is concave as a minimum of affine functions, strictly increasing in x. Since H is

concave and continuous, by the Fenchel-Moreau Theorem, it admits the representation

H (x;θ ) = inf
s
(s ·x−H ∗(s;θ ))

where H ∗(s;θ ) = inf
x
(x · s−H (x;θ )) is the concave conjugate of H . Moreover,

Π̇M ,t (K) =λt H (∇Πt (K);θ t )

where ∇ΠM ,t (K) =
�

ΠM ,t (K)−ΠM ,t (K− e j )
�

j
. Thus, ΠM ,t (K) is the value function for the optimal

control problem

ΠM ,t (K) = sup
s∈A
E
�

T
∫

t

λu H ∗(su ;θ u )d u

�

�

�

�

Xs
t =K

�

=: sup
s

Jt (K, s)

where Xa
t is the process which jumps by −e j at rate λt s j ,t and s ∈A are processes adapted with

respect to the filtration on the probability space supporting Xs, with the property s j ,t = 0 if X s
j ,t = 0

(Theorem 8.1 in Fleming and Soner (2006)). Let s∗K be the optimal control in the previous equation

and s∗K −2 be the optimal control when K is replaced by K−2e j . Then, note that since s∗K, s∗K−2e j
∈A ,

6



s∗K+s∗K−2e j

2 ∈A because the process
�

X
s∗K+s∗K−2e f

2
s

�

s
can be chosen as

�

X
s∗K
s +X

s∗K−2e f
s

2

�

s
(“coupling argument”).

Hence,

ΠM ,t (K) +ΠM ,t (K−2e j )−2ΠM ,t

�

K−e j

�

≤

Jt (K, s ∗K) + Jt (K−2e j , s ∗K−2e j
)−2 Jt

�

K−e j ,
s∗K+ s∗K−2e j

2

�

≤

E
�

T
∫

t

λu

�

H ∗(s∗K,u ) +H ∗(s∗K−2e j ,u )−2H ∗
�s∗K,u + s∗K−2e f ,u

2

�

�

d u

�

�

�

�

X
s∗K
t =K, X

s∗K−2e j

t =K−2e j ,

�

≤0.

iii) To show that ωM
j ,t∧τ(Kt ) is a submartingale, we show that for any capacity vector K̄ with

K̄ j ≥ 2:

lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )
�

�Kt = K̄
�

∆
≥ 0.

To this end, first, note that Kt is right-continuous in t . Consider K̄ with K̄ j ≥ 2. Then, we have that

lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )|Kt = K̄]

∆
=

lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt+∆)|Kt = K̄]

∆
+ lim
∆→0

E0

�

ωM
j ,t (Kt+∆)−ωM

j ,t (Kt )|Kt = K̄]

∆
=

ω̇M
j ,t (K̄) +λt

∑

j ′

s j ′,t (p
M
t (K̄))

�

ωM
j ,t (K̄−e j ′)−ωM

j ,t (K̄)
�

by right-continuity of the process Kt . By (2), we can write

ω̇M
j ,t (K̄) =

−λt

�

∑

j ′

s j ′,t (pM ,t (K̄))
�

pM , j ′,t (K̄)−ωM
j ′,t (K̄)

�

− s j ′,t (p
M
t (K̄−e j ))

�

pM , j ′,t (K̄−e j )−ωM
j ′,t (K̄−e j )

�

�

.

and we know that

−ωM
j ′,t (K̄) +ω

M
j ,t (K̄)−ω

M
j ,t (K̄−e j ′) = ΠM ,t (K̄−e j ′)−ΠM ,t (K̄−e j )−ΠM ,t (K̄−e j ′) +ΠM ,t (K̄−e j ′ −e j )

= −ωM
j ′,t (K̄−e j )
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Hence, lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )|Kt=K̄
�

∆ is equal to

−λt

�

∑

j ′

s j ′,t

�

pM ,t (K̄)
��

pM , j ′,t (K̄)−ωM
j ′,t (K̄−e j )

�

− s j ′,t

�

pM ,t (K̄−e j )
��

pM , j ′,t (K̄−e j )−ωM
j ′,t (K̄−e j )

��

Then, note that by optimality of pM
t (K̄−e j ),

∑

j ′

s j ′,t

�

pM ,t (K̄)
��

pM , j ′,t (K̄)−ωM
j ′,t (K̄−e j )

�

≤
∑

j ′

s j ′,t

�

pM ,t (K̄−e j )
��

pM , j ′,t (K̄−e j ))−ωM
j ′,t (K̄−e j ′)

�

.

Hence, lim
∆→0

E0

�

ωM
j ,t+∆(Kt+∆)−ωM

j ,t (Kt )|Kt=K̄
�

∆ ≥ 0. ■

A.3 Proofs of Dyanamic Pricing Model with Competition

A.3.1 Proof of Proposition 2

Recall that we omit the parameters θ andA for the analysis of the stage game.

Proof. Let Assumptions 1, 2 and 3 hold. First, note that Assumption 3 implies that for j1, j2 ̸= k

s j1
(p)

s j2
(p)
=

∂ s j1
∂ pk
(p)

∂ s j2
∂ pk
(p)

.

By Step 1 in the proof of Proposition 3, any equilibrium price vector p∗(Ω) of the stage game must

satisfy the FOCs of firm f ’s payoff for all j ∈J f given by:

pj −ω
f
j +

∑

j ′∈J f \{ j }

∂ s j ′ (p)
∂ pj

∂ s j (p)
∂ pj

(pj ′ −ω
f
j ′)−

∑

j ′ ̸∈J f

s j ′ (p)
∂ pj

∂ s j (p)
∂ pj

ω
f
j ′ =−

s j (p)
∂ s j (p)
∂ pj

.

8



Since ∂ s j

∂ pj
(p) =−

∑

k∈J \{ j }

∂ sk
∂ pj
(p)− ∂ s0

∂ pj
, this can be rewritten as

pj −ω
f
j −

∑

j ′∈J f \{ j }

1
∑

k∈J \{ j }

sk (p)
s j ′ (p)
+ s0(p)

s j ′ (p)

(pj ′ −ω
f
j ′) +

∑

j ′ ̸∈J f

1
∑

k∈J \{ j }

sk (p)
s j ′ (p)
+ s0(p)

s j ′ (p)

ω
f
j ′ =−

s j (p)
∂ s j (p)
∂ pj

⇔pj −ω
f
j −

∑

j ′∈J f \{ j }

s j ′(p)

1− s j (p)
(pj ′ −ω

f
j ′) +

∑

j ′ ̸∈J f

s j ′(p)

1− s j (p)
ω

f
j ′ =−

s j (p)
∂ s j (p)
∂ pj

.

By Assumption 3, for j ′ ̸= j , ∂
∂ pj

s j ′ (p)
1−s j (p)

= 0, we can define s̃ j , j ′((pj ′) j ′ ̸= j ) :=
s j ′ (p)

1−s j (p)
and

c ((pj ′) j ′ ̸= j ;Ω) :=ω f
j +

∑

j ′∈J f \{ j }

s̃ j , j ′((pj ′) j ′ ̸= j )(pj ′ −ω
f
j )−

∑

j ′ ̸∈J f

s̃ j , j ′((pj ′) j ′ ̸= j )ω
f
j ′ .

Thus, the FOCs of the stage game are equivalent to the first order conditions of a game with J

players where each player j ’s payoff is given by

s j (p)
�

pj − c ((pj ′) j ′ ̸= j ;Ω)
�

.

We call this game the “auxiliary game with J players.” Note that the derivative of player j ’s payoff

is greater or equal than zero if and only if

∂ s j (p)

∂ pj

�

pj − c
�

(pj ′) j ′ ̸= j ;Ω
��

+ s j (p)≥ 0.

Hence any equilibrium of the stage game is an equilibrium of a game with J players with the above

payoffs and vice versa.

Given Assumption 2 i), the first-order condition of each player in the auxiliary game has a

unique solution which must be a maximizer of player j ’s payoff function. Hence, the best response

function of player j ,R j , maps a compact convex set of prices q into a compact convex set of prices

p. For ε> 0, consider the mapping

Φ : (p, q) 7→
�

pj −ε
�

pj − c j (q− j ;Ω) +
s j (q− j , pj )
∂ s j (q− j ,pj )
∂ pj

�

�

j∈J

9



Then DpΦ is a diagonal matrix with diagonal entries

φ j := 1−ε
�

1+
∂

∂ pj

s j (q− j , pj )
∂ s j (q− j ,pj )
∂ pj

︸ ︷︷ ︸

>0 by Assumption 2i )

�

Let ε > 0 be so that φ j > 0 for all j . Then all diagonal entries are in (0, 1− ε) and Φ is Lipschitz

continuous with Lipschitz constant max
j
φ j . Further DqΦ is bounded because it is continuous.

Then, the implicit function theorem in the form of Theorem 1.A.4 in Dontchev and Rockafellar

(2009) implies continuity of R = ((R j ) j ). Hence, by Brouwer’s fixed-point theorem R = ((R j ) j )

has a fixed point. ■

A.3.2 Proof of Lemma 2

Follows directly from Kellogg (1976) and Konovalov and Sándor (2010), and by Step 1 in the proof

of Proposition 3 that shows that any equilibrium price vector p∗(Ω) does not lie in the boundaries,

i.e., is bounded in any component.

A.3.3 Proof of Proposition 3

Recall that we omit the parameters θ andA for the analysis of the stage game.

Proof. Step 1: All equilibrium prices p∗ are interior.

First, we show that for fixed Ω, any equilibrium price vector p∗ is bounded from below by a

vector p= ((p +ω f
j ) j∈J f

: f ∈F ), p ∈R. Let ω̄c :=max f ,k ̸∈Jc
ω

f
k be the larges competitor scarcity

effect inΩ. We proceed with a proof by contradiction. Suppose such a p did not exist. Then, for any

p there exists an equilibrium price vector p∗ and a j such that p ∗j −ω
f
j =min f ′mink∈J f ′

p ∗k −ω
f ′

k <

p , where j ∈ J f . At this equilibrium price vector p∗ (which can include (minus) infinite prices),

the derivative of firm f ’s stage game profit with respect to all its prices has to be smaller or equal

10



to zero by optimality. The derivative of firm f ’s profits with respect to pj is

∂ s j

∂ pj
(p)(pj −ω

f
j ) +

∑

k∈J f \{ j }

∂ sk

∂ pj
(p) (pk −ω

f
k )

︸ ︷︷ ︸

≥pj−ω
f
j

−
∑

k ̸∈J f

∂ sk

∂ pj
(p)ω f

k + s j (p) ≥

−
∂ s0

∂ pj
(p)

︸ ︷︷ ︸

>0

(pj −ω
f
j )−

∑

k ̸∈J f

∂ sk

∂ pj
(p)

︸ ︷︷ ︸

>0

(ω̄c +pj −ω
f
j ) + s j (p)

which is strictly positive if p <min{−ω̄c , 0} by Assumption 1-iii) and because pj −ω
f
j < p . This

yields a contradiction.

So, any equilibrium price vector p∗ is bounded by a vector p from below. Take such a lower

bound p and elt for each j ∈J , p̃j be such that

C := inf
p≥p̄,pj≥p̃j

∂ s0
∂ pj
(p)

s j (p)
pj > 1.

Such a p̃j exists by Assumption 1-iv).

Next, we show that for fixed Ω, any equilibrium price vector p∗ is bounded from above by a

vector p= ((p +ω f
j ) j∈J f

: f ∈F ), p ∈R, by contradiction. Let ωc :=min f ,k ̸∈Jc
ω

f
k be the smallest

competitor scarcity effect in Ω. Suppose such a p did not exist. Then, for any p , there exists an

equilibrium price vector p∗ and a j such that p ∗j −ω
f
j =max f ′maxk∈J f ′

p ∗k −ω
f ′

k > p , j ∈ J f . At

the equilibrium price p∗ (which can include infinite prices), the derivative of firm f ’s stage game

profit with respect to all its prices has to be greater or equal to zero by optimality.

The derivative of firm f ’s payoff with respect to pj at pj > p̄j is

∂ s j

∂ pj
(p)(pj −ω

f
j ) +

∑

k∈J f \{ j }

∂ sk

∂ pj
(p)(pk −ω

f
k )−

∑

k ̸∈J f

∂ sk

∂ pj
(p)ω f

k + s j (p) ≤

−
∂ s0

∂ pj
(p)(pj −ω

f
j )−

∑

k ̸∈J f

∂ sk

∂ pj
(p)(ωc +pj −ω

f
j ) +C −1 ∂ s0

∂ pj
(p)pj =

−
∂ s0

∂ pj
(p)
�

(1−C −1)(pj −ω
f
j )−C −1ω

f
j

�

−
∑

k ̸∈J f

∂ sk

∂ pj
(p)(pj −ω

f
j +ωc ).

This expression is strictly negative if pj − ω
f
j > p > max

�

C −1ω̄o
1−C −1 , −ωc

	

, where ω̄o :=

11



max f max j∈J f
ω

f
j is the maximum own-scarcity effect. This yields a contradiction. Hence, any

equilibrium price vector p∗ is bounded by a vector p= ((p +ω f
j ) j∈J f

: f ∈F ) from above.

All in all, it follows that the best response of each firm must be within a box with extreme

points p and p.

Step 2: Uniqueness of equilibrium price p∗(Ω).

It follows from Step 1 that any equilibrium price p∗(Ω) of the stage game is a solution to the

system of FOCs. Dp f s (p f ) is non-singular by Section A.1.1. Hence, the FOCs can be written

as g(p,Ω) = p where g is as defined in Assumption 4. There is a unique solution to this system

of equations by Lemma 2 (Kellogg (1976)) in Konovalov and Sándor (2010) and Assumption 4-

ii). Further, by Assumption 4-i) and Kellogg (1976), there is a unique solution of the first order

condition of each firm’s optimization problem, given by gf(p,ω f ) = p f . Thus, for any competitor

prices, there exists a unique best response of each firm f , which solves g f (p,ω f ) = p f , and the

unique solution to g(p,Ω) = p must be an equilibrium. ■

A.3.4 Proof of Theorem 1

Let us assume that for all ∆< ∆̄, there is a unique pure-strategy equilibrium of the dynamic game

and (Ωt (K,∆),θt ) ∈M for an open bounded setM such stage games parameterized by (Ω,θ ) ∈M

admit a unique equilibrium. For every ∆ < ∆̄ the discrete-time game can be written as in Lemma

4 in Appendix A.1 where AK :RJ ×M →RF is given by

AK(p,Ω,θ ) :=

�

∑

j∈A (K)∩J f

s j (p, K)
�

pj −ω
f
j

�

−
∑

j ′∈A (K)\(J \J f )
s j ′ (p, K)ω f

j ′

�

f

.

AK is bounded because demand functions s j are bounded, ω-s are bounded and s j (p)pj is bounded

by Assumption 1-i). Thus, the discrete time derivatives Π f ,t+∆(K;∆)−Π f ,t (K;∆)
∆ are uniformly bounded

for ∆ < ∆̄, K ≤ K0, f ∈ F , and value functions are equicontinuous in t and equibounded as

∆ → 0. As a result, ω f
j ,t (K;∆) is equicontinuous and equibounded. Furthermore, equilibrium

prices p∗(Ω,θ ) of the stage game parameterized by (Ω,θ ) in Section 2 are continuous in (Ω,θ ) by

Lemma 5. Then, convergence follows by Lemma 4 in Appendix A.1.
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A.3.5 Proof of Lemma 3

Consider the system of first-order ODEs in equation (8). In order to show that this system of

ODEs has a unique solution while given a capacity vector K Ω stays in a compact set O K in which

Assumption 4 is satisfied, we use the Peano existence theorem (see for example Teschl (2012)).

Theorem 3 (Peano existence theorem). Consider a system of first-order ODEs:

ẋ(t ) = f(t , x(t )), x(T ) = xT (13)

where f : [0, T ]×Rn →Rn is a vector-valued function in t , x. Consider subsetsAt ⊂Rn , t ∈ [0, T ]

such that A = {(t , x)|x ∈ At } is open and xT ∈ AT . If f is continuous on A , then there exist a

τ> 0 and a continuous function x(t ) that satisfies equation (13) on (τ,T ], with

τ= inf{t ∈ [0, T ]|x (t ) ∈At }.

To apply this theorem, for every K ≤ K0 we define the set C := {(t ,Ω, p)|Ω ∈ O K
t , p ∈ P (θ t )},

containing an open neighborhood of (T , O, pT (K)), and consider the functions A f ,K : C → R and

BK :C →R given by

A f ,K(t ,Ω, p) =
∑

j∈J f

s j (p;θ t ,A (K))
�

pj −ω
f
j

�

−
∑

j ′ ̸∈J f

s j ′ (p;θ t ,A (K))ω f
j ′ , f ∈F (K),

BK(t ,Ω, p) =
�

Dpg(p,Ω,θ t ; K)− I
�−1 ·

�

∑

j , f

D
ω

f
j
g(p,Ω,θ t ; K)(−λt )

�

A f ,K(t ,Ω, p)−A f ,K−e j
(t ,Ω, p)

�

+Dθg(p,Ω,θ t ; K)θ̇ t

�

.

First, note that A f ,K and BK are continuous in t ,Ω, p on C because s j are smooth in all parameters

and Dpg(p,Ω;θ t ,A (K))− I is non-singular and uniformly bounded on C by assumption. In par-

ticular, A f ,K and BK are also bounded on C . Then, by the Peano existence theorem, a solution of

the ODEs exists on (τ,T ], for a τ< T as described therein.

13



A.3.6 Proof of Theorem 2

We have established in Lemma 3 that there exists a solution to the system of ODEs given by

equation (8) on (τ̄, T ] and that all solutions of the ODEs are such that Ωt (K) ∈ O K
t for all K ≤ K0,

∈ (τ̄, T ], i.e., all solutions remain for all K≤K0 in the set O K in which Ωt (K) satisfy Assumption 4.

Since the function AK as defined in the proof of Theorem 1 is uniformly bounded for Ω ∈ O K

by some vector ĀK and

�

Π f ,t+∆(K;∆)−Π f ,t (K;∆)
�

f
=−λt AK

�

p∗
�

Ω(K;∆)),θ t

�

, Ω(K;∆), θ t

�

∆< λ̄ · |Ā| ·∆.

where λ̄ :=maxt ∈[0,T ]λt and |ĀK| is a vector of absolute values of all entries in the vector ĀK. Let

∥ · ∥ be the infinity norm on RF (K)×A (K), i.e., the maximum of the absolute values of entries in the

matrix. Then, for C := ∥
�

maxt ∈[0,T ]λt

�

·2 · (|ĀK|, . . . , |ĀK|)∥:

∥Ωt+∆(K;∆)−Ωt (K;∆)∥<C∆.

We show by contradiction that τ∗ = lim supτ∆ ≤ τ̄.

Assume that τ∗ > τ̄. Take τ∗ >δ>δ′ > 0 such that

• δ′ < T −τ∗ and

• for all t ′ ∈ [0,δ] and all V ∈RA (K)×A (K) with ∥V ∥= 1 and all Ω̃ such that ∥Ω̃−Ωτ∗+δ′(K)∥<δ′:

Ω̃+C ·V · t ′ ∈O K
τ∗+δ′−t ′ .

Next, consider a decreasing sequence ∆n such that limn→∞∆n = 0 and τ∆n
<τ∗+δ′ for all n . By

Theorem 1, limn→∞Ωτ∗+δ′(K;∆n ) =Ωτ∗+δ′(K). Hence, by removing finitely many first terms of the

sequence (∆n ), we can ensure ∥Ωτ∗+δ′(K;∆n )−Ωτ∗+δ′(K)∥ < δ′ for all n . Thus, for all t ′ ∈ [0,δ]

and all V ∈RF (K)×A (K) with ∥V ∥ = 1, it must be that Ωτ∗+δ′(K;∆n ) +C ·V · t ′ ∈ O K
τ∗+δ′−t ′ for all n ,

implying Ωt (K;∆n ) ∈O K
t for all t ∈ [τ∗+δ′−δ,τ∗+δ′] and all n . Thus, τ∆n

≤τ∗+δ′−δ <τ∗ for

all n , a contradiction.

14



A.3.7 Proof of Proposition 4

First, recall that we know from Theorem 2 that for sufficiently small ∆, a unique Markov contin-

uation equilibrium exists close to the deadline T , on an interval (τ̄, T ], τ̄ < T , and it converges to

the solution of a system of ODEs as ∆→ 0. Furthermore, period-t equilibrium prices given Ωt (K),

and remaining capacityA (K) are given by p∗(Ωt (K);θt ,A (K)) where p∗ is continuous is Ω and θ .

Letting

π f (Ω,θ ,A ) :=
∑

j∈J

s j (p
∗(Ω;θ ,A );θ ,A )

�

p ∗j (Ω;θ ,A )−ω f
j

�

,

we can write

Π̇ f ,t (K)≡−λtπ f (Ωt (K),θ t ,A (K)).

This yields the following differential equation for the scarcity effects:

ω̇
f
j ,t (K) = Π̇ f ,t (K)− Π̇ f ,t (K−e j )

=−λt [π f (Ωt (K),θ tA (K))−π f (Ωt (K−e j ),θ t ,A (K))].

Finally, let us denote the minimum capacity in a capacity vector K by min(K) := min j K j . We

proceed to prove that for any capacity vector K, the n-th time derivatives Ω(n )T (K) = limt→T
∂
∂ t Ωt (K)

vanish for all n <min(K), by doing induction on n .

Lemma 6. For any K, Ω(n )T (K) = 0 for all n <min(K).

Proof. Induction start: Consider a K with min(K) > 0. For n = 0, we have that Ω(n )t (K) = Ωt (K).

It is immediate that ΩT (K) =O for all K such that min(K)> 0.

Induction assumption: For a given n and all K with n <min(K), we assume that Ω(m )T (K) = 0

for all m ≤ n .

Induction step: Let min(K)> n +1 and suppose the induction assumption holds for n . Using

the differential equation for Π and differentiating it n times, we can write the (n + 1)-th time
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derivative Π(n+1)
f ,t (K) as

Π(n+1)
f ,t (K) =G Ω

n

�

�

Ωt (K)
(m )
�n−1

m=0
,
�

λ(m )t

�n−1

m=0
,
�

θ (m )t

�n−1

m=0

�

+G θn
�

Ωt (K),
�

λ(m )t

�n

m=0
,
�

θ (m )t

�n

m=0

�

−λt

∑

f ′∈F

∑

j ′∈J

∂ nπ f (Ωt (K),θ t ,A (K)))
�

∂ ω
f ′

j ′

�(n )

�

ω
f ′

j ′,t (K)
�(n )

.

where G Ω
n is defined to incorporate all the terms that depend on at least one derivative of Ωt (K) of

order less than n , G θn captures the terms with derivatives only on parameters and the third term is

the only one that depends on Ω(n )t (K).

Since min(K) > n + 1, we have that min(K− e j ) > n for all j ∈ J . This implies that Ω(m )T (K−

e j ) = 0 for all m ≤ n and all j ∈ J by the induction assumption. Additionally, we have that

Ω(m )T (K) = O for all m ≤ n by the induction assumption. Since the Ω derivatives in G Ω
n enter

multiplicatively, these terms vanish as t → T . Additionally, the n-th order derivatives also vanish.

This yields

Π(n+1)
f ,T (K) =G θn

�

O,
�

λ(m )T

�n

m=0
,
�

θ (m )T

�n

m=0

�

,

Π(n+1)
f ,T (K−e j ) =G θn

�

O,
�

λ(m )T

�n

m=0
,
�

θ (m )T

�n

m=0

�

,

for all j ∈J . Therefore, we obtain

�

ω
f
j ,T (K)

�(n+1)
=Π(n+1)

f ,T (K)−Π
(n+1)
f ,T (K−e j ) = 0.

This concludes the proof that the derivatives Ω(n )T (K) vanish for all n <min(K). ■

For t close to T , we have established in Theorem 2 that the equilibrium of the stage game

is unique. Recall that p∗t (K) := p∗(Ωt (K),θ t ; K) and let pO
t (K) := p∗(O;θ t ,A (K)) denote the price

vectors of the benchmark if there are no scarcity effects. We omit K for readability since we hold

K fixed in the following analysis.

ṗ∗t =−
�

Dpg(p∗t ,Ωt ,θ t )− I
�−1

 

∑

j , f

D
ω

f
j
g(p∗t ,Ωt ,θ t )ω̇

f
j ,t +Dθg(p∗t ,Ωt ,θ t )θ̇ t

!

,

ṗO
t =−

�

Dpg(pO
t , O,θ t )− I

�−1 �
Dθg(pO

t , O,θ t )θ̇ t

�

.
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To simplify notation, we write these equations as

ṗ∗t =
∑

j , f

QΩ
j , f (p

∗
t ,Ωt ,θ t )ω̇

f
j ,t +Q θ (p∗t ,Ωt ,θ t )θ̇ t ,

ṗO
t =Q θ (pO

t , O,θ t )θ̇ t .

Define p̃t ≡ p∗t −pO
t . This measures the deviation of prices from the benchmark without scarcity

effects. Let

n :=min{n |∃ j : (ω f
j ,T )

(n ) ̸= 0}.

We will prove that p̃(n )T = 0 for all n < n by induction on n .

Lemma 7. p̃(n )T = 0 for all n < n .

Proof. Induction start: Let n > 1 and take n = 1. This means that we have ω̇ f
j ,T = 0. Additionally,

since ΩT = 0, we have that, at t = T , the first derivatives of prices satisfy

ṗ∗T =Q θ
�

p∗T , O,θ t

�

θ̇ T ,

ṗO
T =Q θ

�

pO
T , O,θ t

�

θ̇ T .

Since the equations that define p∗T and pO
T are identical (because ΩT = 0), we have that pT = p∗T ,

which implies ṗT = ṗ∗T from the equation above. This implies ˙̃pT = 0.

Induction assumption: For a given n , we assume that for all m ≤ n the following holds:

(pO
T )
(m ) = (p∗T )

(m ).

Induction step: Let n +1< n and suppose the induction assumption holds for n . By differen-

tiating the equations for ṗ ∗t and ṗ O
t n times, we obtain equations of the form

(p∗t )
(n+1) =QΩ

n

�

((p∗t )
(m ))nm=0, (Ω(m )t )

n+1
m=0, (θ (m )t )

n
m=0

�

+Q θn
�

((p∗t )
(m ))nm=0,Ωt , (θ (m )t )

n+1
m=0

�

,

(pO
t )
(n+1) =Q θn

�

((pO
t )
(m ))nm=0,Ωt , (θ (m )t )

n+1
m=0

�

,

where QΩ
n is defined to incorporate all the terms that depend on at least one derivative of Ωt .

Intuitively, these functions are isolating the effects from the derivatives of Ωt from the effects of
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derivatives of prices and θ t , which is why Q θn is the same in both equations. It is also important

to note that these functions depend on derivatives of the prices of at most order n . Now, since the

derivatives of Ωt enter QΩ
n multiplicatively and, since n+1< n , all these derivatives are 0 at t = T ,

we have that

QΩ
n

�

((p∗T )
(m ))nm=0, (Ω(m )T )

n+1
m=0, (θ (m )T )

n
m=0

�

= 0.

Therefore, at t = T , the price derivatives satisfy

(p∗t )
(n+1) =Q θn

�

((p∗T )
(m ))nm=0, O, (θ (m )T )

n+1
m=0

�

= (pO
T )
(n+1) =Q θn

�

((pO
T )
(m ))nm=0, O, (θ (m )T )

n+1
m=0

�

.

■

Using Taylor’s Theorem, Lemmas 6 and 7 imply the first statement of Proposition 4. Addi-

tionally, if lim
t→T
(Π f ,t )

(min
j

K j )
(K− e j ′) ̸= 0 for all f and j ′ with K j ′ ∈ arg min

j
K j , we see by following

the proof of Lemma 6 that lim
t→T
Ω
(min

j
K j )

t (K) ̸= O. Following the argument in the proof of Lemma

7, this implies that, generally, p̃
(min

j
K j )

T ̸= 0. Again using Taylor’s Theorem, we obtain the second

statement of Proposition 4.

A.3.8 Proof of Proposition 5

We prove Proposition 5 using examples. Figure 3 plots price paths, value functions and scarcity

effects over time for a logit demand system and various capacity vectors in the continuous-time

limit. Each sub-plot corresponds to a statement in the proposition. We know from Theorem 2 that

these price paths and value funcitons are close to the solutions of a discrete-time game with suffi-

ciently small∆ as long as the scarcity matrix remains in an open bounded set in which Assumption

4 is satisfied. For the specific logit demand example where demand remains constant over time,

the ODEs have a unique solution and we can verify that competitor scarcity effects are such that

Assumption 4 is satisfied everywhere. This also implies that there is a unique equilibrium for the

discrete-time game for sufficiently small ∆.
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A.3.9 Proof of Proposition 6

The proof follows analogously to the proof of Lemma 1 from Lemma 4. The proof is even easier

because the the welfare-maximizing price in each state is simply ν∗j ,t (K) =W ∗
t (K)−W ∗

t (K−e j ), so

AK(ν,θ ) =wt (ν; K)−
∑

j

s j (ν;θ ,A (K))ν

which is continuous and bounded.

A.3.10 Proof of Proposition 7

i) Claim: The welfare-optimal price is constant over time and given by equation (10).

We first argue by contradiction that a social planner always sells exactly the available capac-

ity K0 (without rationing). If not, the planner can lower the price in the last period to sell to

more customers and increase welfare—a contradiction.

We next argue by contradiction that the welfare-optimal price is constant over time. Assume

there are prices p > p ′ that are offered at different points in time while selling out exactly

(without rationing). Then, a social planner can increase p ′ and decrease p such that equation

10 remains satisfied. Then, the capacity is allocated to higher-valuation customers than with

the initial prices, so total welfare is higher—a contradiction.

ii) Claim: It can be optimal for a single firm to set a higher or lower price in the first period,

and it may optimally not sell out its capacity. The profit-maximizing price is constant over

time if demand is constant over time but may be higher than p w .

The first part of the claim is straight-forward to see with the following examples:

Consider D1(p ) = 0.2− p and D2(p ) = 1− p , K0 = 1. Then the profit maximizing prices

are the static profit-maximizing prices p1 = 0.1 < p2 = 0.5. Total quantity sold is 0.6, so the

capacity constraint is not binding.

Analogously, we can consider D1(p ) = 1 − p and D2(p ) = 0.1 − p and K0 = 1 to obtain

p1 = 0.5> p2 = 0.1.
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Finally, assume D1(p ) ≡ D2(p ) = D (p ). It is useful to write the problem in terms of inverse

demand functions P (q ). The monopolist solves maxq1,q2
P (q1)q1+P (q2)q2 subject to q1+q2 ≤

K0. The FOCs of the Lagrangian for this problem are

P ′(q1)q1+P (q1) =λ

P ′(q2)q2+P (q2) =λ,

so q1 = q2.

iii) Claim: With competition, the capacity constraint is always binding, i.e., equation (10) holds,

and

(a) if firms are symmetric, i.e., K f = 1 for all f , and demand is constant over time (D1 =

D2), then p1 = p2 = p w in equilibrium;

(b) if the welfare-optimal price is not an equilibrium, then only one firm sells in the first

period in equilibrium and at a higher price than in the second period.

This follows directly from Dana and Williams (2022).

A.3.11 Proof of Proposition 8

Let us consider the point-wise FOCs of the Lagrangian for all three optimization problems at time

t , where λx = (λx
j ) j∈J , x ∈ {SP, M , O }, are the vectors of Lagrange multipliers:

Social planner: Dps(pt ) ·pt + s(pt ) +∇E[max
j
(v j ,t −pj ,t )] =Dp s(pt ) ·λSP

Monopolist: Dps(pt ) ·pt + s(pt ) =Dps(pt ) ·λM

Oligopoly: Dp f s f (pt ) ·p f
t + s f (pt ) =Dp f s f (pt ) ·λO

f
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We start with the social planner’s problem and note that

∂

∂ pj
E[max

j ′
(v j ′ −pj ′)] =

∂

∂ pj
E
�

max{v j −pj , max
j ′ ̸= j
(v j ′ −pj ′)}

�

=
1

2

∂

∂ pj
E
�

v j −pj +max
j ′ ̸= j
(v j ′ −pj ′) +

�

�max
j ′ ̸= j
(v j ′ −pj ′)− (v j −pj )

�

�

=
1

2
E
�

−1+ sgn
�

max
j ′ ̸= j
(v j ′ −pj ′)− (v j −pj )

�

�

= −
1

2
+

1− s j (p)

2
−

s j (p)

2
=−s j (p)

Hence, we can write the social planner’s FOC as:

pt =λ
SP ,

so the social planner’s price must be constant. Next, note that

Dsw = (Dps)−1Dpw = (Dps)−1Dp

�

s ·p+E[max
j
(v j ,t −pj ,t )]

�

= (Dps)−1((Dps)p+ s− s) = p≥ 0.

Thus, the constraint
∫ T

0
st d t ≤K0 is binding and the constant welfare-maximizing price must solve

s(pw ) = 1
T K0.

Next, consider the monopolist and oligopoly problem. Given a vector λ, the monopolist’s

problem has a unique fixed point by Assumption 2 and Kellogg’s fixed point theorem. Similarly,

the oligopoly game has a unique equilibrium by Assumption 2 and Konovalov and Sándor (2010).

Hence, the unique price paths must involve constant prices.

Having established that the price path must be constant, the monopoly and oligopoly problem

boil down to a static optimization and game, respectively. Hence, it is immediate that a monopolist

optimally sets a price pM solving maxp s(p)p subject to s(pM )≤ 1
T K0. The competitive equilibrium

price vector pO is the unique equilibrium p∗((λSP
f ) f ) of a game where each firm faces a cost vector

λSP
f ≥ 0, where

λSP ∈ arg min
¦

λ≥ 0
�

� s(p∗(λ))≤
1

T
K0

©

.
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B Nested Logit Calculations

Since our examples use a nested logit specification, we verify in the following that Assumptions 1

and 2 are satisfied for a nested logit demand model given by

s j (p;θ ,J ) =
e
δ j −αpj

1−σ

∑

j∈J
e
δ j −αpj

1−σ

︸ ︷︷ ︸

=:s j |J (p)

�

∑

i∈J
e
δi −αpi

1−σ

�1−σ

1+

�

∑

i∈J
e
δi −αpi

1−σ

�1−σ s0(p;θ ,J ) =
1

1+

�

∑

i∈J
e
δi −αpi

1−σ

�1−σ ,

where θ = (α,σ, (δ j ) j∈J ). We omit J for readability. Note that the same properties follow for

regular logit by setting σ= 0. To simplify notation, let DJ :=
∑

i∈J
e
δi −αpi

1−σ and G :=σ
1+D 1−σ

J

D 1−σ
J
+1−σ.

Then,

∂ s j

∂ pj
=−

α

1−σ
s j

�

1−
�

σs j |J + (1−σ)s j

��

=
α

1−σ
(G s 2

j − s j )

∂ s j

∂ pj ′
=
α

1−σ
s j ′
�

σs j |J + (1−σ)s j

�

=
α

1−σ
G s j ′s j .

It is easy to check that Assumptions 1-i) and ii) are satisfied. We show that Assumption 1-iii) is

satisfied. Letting s 0 ≡ s0

�

p;θ
�

, we can set C =αs 0 > 0 since then

∂ s0

∂ pj
=αs j s0 >C s j .

Then,

(Dps(p;θ ))−1 =−
1

αs0
·















1+σDσ−1
J + (1−σ) s0

s1
1+σDσ−1

J . . . 1+σDσ−1
J

1+σDσ−1
J

... 1+σDσ−1
J

... ... ...

1+σDσ−1
J . . . . . . 1+σDσ−1

J + (1−σ) s0
sJ
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(Dps(p;θ ))−1 =−
1−σ
α
·















G+σ+D 1−σ
J

1−σ + 1
s1

G+σ+D 1−σ
J

1−σ . . .
G+σ+D 1−σ

J
1−σ

G+σ+D 1−σ
J

1−σ
... G+σ+D 1−σ

J
1−σ

... ... ...
G+σ+D 1−σ

J
1−σ . . . . . .

G+σ+D 1−σ
J

1−σ + 1
sJ















Hence, ε̂= ((Dp s(p;θ ))⊺)−1s(p;θ ) =− 1
αs0

1 and noting that ∂
∂ pj

�

1
s0

�

=−α s j

s0
,

Dpε̂=









s1
s0

. . . sJ

s0

...
s1
s0

. . . sJ

s0









.

It follows that Assumption 2 is satisfied:

det
�

−Dpε̂− I
�

= (−1)J
1

s0
̸= 0.

For our welfare analysis, we can separate the contributions form consumer surplus and firm rev-

enues. To this end, note that we can write the static consumer surplus for our demand specification

as

C S =
1

αt
log

�

1+D 1−σ
J

�

=
1

αt
log

 

1+

 

∑

j∈J

exp

�

δ j −αt pj

1−σ

�

!1−σ!

.

We can, then, write the per-period welfare as

wt (p) =C S +
∑

j∈J

s j (p;θ )pj .

It follows immediately that all properties are satisfied for all subsetsA ⊂J .
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C Additional Figures

Figure 8: Strategic complements and substitutes in the stage game

(a) Strategic Complements
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(b) Strategic Substitutes

0 2 4 6 8
Firm 1 price

0

2

4

6

8

Fi
rm

 2
 p

ric
e

Firm 1 BR
Firm 2 BR

Notes: The simulations assume the logit demand system in Example 2 where ω1
1 =ω

2
2 = 4. Panel (a) shows both firms’ best response functions for

ω1
2 =ω

2
1 = 4. Panel (b) shows both firms’ best response functions for ω1

2 =ω
2
1 =−4.

Figure 9: Example Equilibrium Path with Decreasing Price Sensitivity
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Notes: This plot shows an example equilibrium realization assuming two firms, each offering one product each. The time horizon is defined as
t ∈ [0, 1], such that ∆= .01, and the arrival rate is constant per period equal to ∆λ= .03. We assume a logit demand system such that the probability

of purchase of product j , conditional on arrival, is equal to s f =
exp

�

20−20·pf
�

1+
∑

f ′=1,2 exp
�

20−20·p ′f
� . The horizontal (red) lines denote the static competitive and

monopoly price. The vertical dashed lines denote the sale of a unit as marked. The blue and orange lines denote equilibrium prices. Finally, the
grey dashed lines denote what prices would have been absent the sale.
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Figure 10: Prices Across Firm 2 Capacity Levels

(a) Firm 1 Price Policy
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(b) Firm 2 Price Policy
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Notes: In this figure, we fix K1 = 5, t = .05 and consider prices as K2 varies. We assume αt ∈ [0, 1] is decreasing in time, and T = 1 with a step
size of ∆ = .01 and a per-period arrival rate of ∆λ = .1. Panel (a) shows Firm 1’s prices for different values of δ2, while panel (b) shows Firm 2’s
prices for the same δ2 values. We assume a logit demand system such that the probability of purchase of product j , conditional on arrival, is equal

to s f =
exp

�

20−20·pf
�

1+
∑

f ′=1,2 exp
�

20−20·p ′f
� .

Figure 11: Revenues According to Order of Sale
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Notes: This plot illustrates the average revenues from 100,000 simulations grouped by the number of sales by the firm with the lowest capacity
(x-axis) when a total of 10 sales are made. The vertical axis depicts firm-specific and total revenues. When x = 10, all sales are made by the firm
with the lowest initial capacity. When x = 0, all sales are made by the firm with the highest initial capacity. For the simulations, we set initial
capacity to K= (10, 20). We define the time horizon as t ∈ [0, 1], such that ∆= .01, with a constant per period arrival rate of ∆λ= 0.58. Finally, the
simulations assume the demand system described in Definition 2 and assign δ1 = 0.28, δ2 = 0.18, σ= 0.65, and αt decreases at a constant rate over
time, starting at 1 in period t = 0 and ending at 0.8022 in period t = T .
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