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1 Introduction

Figure 1 depicts the dominant conventional wisdom about the curvature of the short-run

Phillips curve1, drawn as a positive relationship with a measure of real economic activity on

the x-axis and inflation on the y-axis. The curve is globally convex - the inflation costs of

generating a given increase in economic activity are higher in booms than in recessions. The

curve becomes extremely steep for high levels of economic activity, capturing a basic intuition

that, even in the short run, there are limits to what monetary policy can accomplish in terms

of real stimulus. The curve is flatter for low levels of economic activity, which corresponds

to the idea that nominal or real wages are costly to adjust downward.

This paper studies the curvature of the short-run Phillips curve through the lens of modern

macroeconomic theory. I derive a closed-form representation for the fully nonlinear Phillips

curve that is valid for a highly flexible specification of time-dependent pricing frictions (as

in Auclert et al. (2024)). I use this representation to show that if the households’ common

intraperiod elasticity of substitution2 between goods is larger than 3, then the implied Phillips

curve is globally concave in a wide class of models (including ones in which the marginal cost

of production increases without bound with economic activity). As illustrated in Figure 2,

the concavity is in some sense extreme: The curve is asymptotically horizontal for high levels

of economic activity and asymptotically vertical for low levels of economic activity.

The intuition behind these results is quite simple. The model-implied Phillips curve uses

a measure of inflation that is based on the rate of growth of the true (or Konüs (1924)) price

index that fully incorporates substitution effects. When economic activity and inflation are

high, consumers allocate almost all of their expenditures to (the cheaper) goods with fixed

prices. The Phillips curve looks like one from a world in which prices are constant over time -

1By “short-run Phillips curve”, I mean to refer, as did Samuelson and Solow (1960), to the locus of
possible real economic activity and inflation outcomes achievable by a central bank through different choices
of monetary policy.

2As in the textbook New Keynesian model (Gali (2015, Chapter 3)), I assume that the elasticity between
any two goods is the same. In reality, goods differ in their substitutability. For models with time-dependent
pricing frictions, the relevant margin is between goods with prices that changed in a given period and goods
with prices that did not change.
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that is, horizontal. When economic activity and inflation are low, consumers allocate almost

all of their expenditures to (the cheaper) goods being sold by firms that can adjust their

prices. The Phillips curve looks like one from a world without price-setting frictions - that

is, vertical.

What do the data say about Figure 1 versus Figure 2? The conventional Phillips curve

in Figure 1 does have some empirical support. Phillips’ (1958) original estimates of the

relationship between British nominal wage inflation and unemployment imply that it has

the characteristics described in the opening paragraph. (Indeed, my Figure 1 was motivated

in large part by Phillips’ Figure 1.) Samuelson and Solow’s seminal (1960) piece on the

relationship between US price inflation and unemployment also describe a convex curve that

is near-vertical at high levels of economic activity. More recently, Forbes et al. (2022) have

argued that the Phillips curve in the US and other countries does indeed become flatter at

low levels of inflation.3 In a similar vein, Babb and Detmeister (2017) find using data from

US cities that the Phillips curve is steeper when the unemployment rate is low.

The concavity in Figure 2 may seem to contravene this statistical evidence. However,

there is a critical measurement issue. The estimates in the above paragraph are based

on data in which inflation is primarily4 based on the rate of growth of a Laspeyres price

index. In contrast, the theoretical characterizations described above apply to what I will

call the true Phillips curve, since it is based on the true price index. I also derive the

models’ implications for the Laspeyres-Phillips curve, in which inflation is measured (like the

(unchained) Consumer Price Index in the US) using the rate of increase of a Laspeyres price

index. I find that the Laspeyres-Phillips curve is typically concavo-convex. Like the true

3In a (very funny) satirical piece, Smith (2006) highlights this kind of convexity in the Phillips curve for
Japan.

4Chained inflation is not literally based on a Laspeyres price index. But, given the costs of collect-
ing item-specific expenditure data, the chaining in US data is at a relatively high level. It does not seem
well-designed to capture substitution patterns between goods/services produced by firms which have re-
cently changed prices and goods produced by firms which have not recently changed prices. (For details,
see https://www.bls.gov/cpi/additional-resources/chained-cpi-questions-and-answers.htm#Question 4. It is
worth emphasizing that chaining at a more disaggregated level may be more prone to the well-known of
problem of chain drift (see, for example, Diewert (2021)).)
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Phillips curve, it is asymptotically vertical (and hence concave) for low levels of economic

activity and low levels of inflation. But, as depicted in Figure 3, it is also asymptotically

vertical (and hence convex) for high levels of economic activity and high levels of inflation.

Intuitively, when real economic activity is high, firms which can adjust their prices respond

to high marginal costs by choosing high prices. That translates directly into high overall

(Laspeyres) price inflation. This effect is not present with the true inflation rate, because

households respond to the adjusting firms’ high prices by substituting toward the firms with

fixed prices. The paper reports a plausible numerical example in which the Laspeyres-Phillips

curve is convex for any non-negative level of inflation.5

Thus, the substitution bias in standard measures of inflation mean that estimated Phillips

curves may display convexity that is not present in the true Phillips curves. This error in

estimation could lead to errors in policy. I consider a central bank without commitment

responding optimally to markup shocks. I show that if average inflation is at the central

bank’s target and the Phillips curve is convex, then average economic activity is high com-

pared to what would prevail in the absence of the markup shocks. But the opposite is true

if the Phillips curve is concave. Thus, the sign of the curvature of the Phillips curve affects

whether an effective inflation-targeting central bank should run the economy “hot” or “cold”

on average.

The rest of the paper is organized as follows. In the next section, I describe the models

under study and derive the short-run marginal cost Phillips curve, which maps the current

real marginal cost of production into the current true inflation rate. In Section 3, I analyze

the curvature properties of the marginal cost Phillips curve. When the households’ common

intraperiod elasticity of substitution is larger than 2, the marginal cost Phillips curve is

5To be clear, I do not see the estimates of the curvature of the Laspeyres-Phillips curve reported in the
prior paragraph as definitive. Indeed, it could well be argued that the dominant message from the past forty
years of research is that even the first derivative of the Phillips curve cannot be estimated with precision.
See, for example, Mavroedis et al. (2014). Relatedly, McLeay and Tenreyro (2020) have highlighted the
challenges associated with estimating the slope of the Phillips curve in the presence of an inflation-targeting
central bank. Hazell et al. (2022) use state-level data to sidestep this problem but do not report estimates
on the curvature of the Phillips curve.

6



globally concave, with a slope that nears infinity for low marginal costs and nears zero for

high marginal costs. In Section 4, I add an abstract activity cost function that maps the

level of economic activity into a corresponding real marginal cost. By combining this function

with the marginal cost Phillips curve, I obtain the real activity Phillips curve, which maps

the level of economic activity into the true inflation rate. The key result of the paper is that,

if the elasticity of substitution is larger than 3 and under relatively weak conditions on the

activity cost function, the real activity Phillips curve inherits the global concavity properties

of the marginal cost Phillips curve.6 In Section 5, I explore the properties of the Laspeyres-

Phillips curve and show that, unlike the true Phillips curve, it is asymptotically vertical for

sufficiently high levels of economic activity. Section 6 discusses policy considerations. Section

7 concludes.

All proofs are in the Appendix.7

2 The Marginal Cost Phillips Curve

This section defines the short-run marginal cost Phillips curve. The idea is that a policymaker

can vary the real marginal cost of production mt through different policy choices at date t.

As long as this choice does not affect firms’ beliefs about future monetary policy, there is a

policy-invariant function that maps mt into the realized inflation rate. It is this relationship

that will be termed the marginal cost Phillips curve.

6One of these “relatively weak” conditions is differentiability. Benigno and Eggertsson (2023) present a
New Keynesian model in which the Phillips curve is nonlinear in a first-order approximation around the
steady-state. The non-differentiability emerges because of a kink in the aggregate labor supply curve driven
by what they term “wage norms” that prevent wages from adjusting upward in response to excess labor
demand (or under-supply). Importantly, these norms apply to all workers in all occupations. Hence, there is
no way for the economy to substitute to “non-kinked” forms of labor (such as, for example, so-called travel
nurses). Benigno and Eggertsson do not study the curvature properties of the Phillips curve in their model
away from the steady-state.

7The proofs have some similarity to the analysis of Dew-Becker (2023) in a distinct context.
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2.1 Households and the True Price Index

This subsection describes household preferences and the implied true price index. These

elements are similar to those in Gali (2015, Chapter 3).

Time is indexed by the natural numbers. There is a large number of identical households

that live forever. The households consume a unit measure of goods at each date and sell

labor to firms. Their objective functions over consumption and labor processes are given by

the expectation of:

(
∞∑
t=1

βt−1(ln(Ct)− v(Nt)), 0 < β < 1. (1)

where v is a strictly increasing and convex function. Households have Dixit-Stiglitz (1977)

preferences, so that:

Ct ≡ (

∫ 1

0

c
1−1/η
jt dj)

η
η−1 , η > 1

where cjt is the consumption of good j in period t.

The household preferences imply that the true (or Konüs (1924)) price index in any period

t ∈ N is defined to be:

Pt ≡ (

∫ ∞
0

p1−ηdFt(p))
1

1−η

Here, Ft is the cross-firm distribution of period t prices. As above, the parameter η represents

the typical household’s elasticity of substitution across the various goods in the economy. The

incorporation of substitution effects in the definition of Pt is critical in what follows.

2.2 Time-Dependent Firm Pricing

At each date t, each good j is produced by a monopolistically competitive firm. All firms

have an output subsidy given by:

(
1

η − 1
)

which serves to correct the distortion created by monopolistic competition. The firms have

identical CRS production functions that include labor as an input (but may include other

8



factors).

In a time-dependent pricing model,8 at any date t, each firm has a state that lies in the

set {0, 1}. A firm in state 0 is sticky : it is required to keep its price the same as in the prior

period (t − 1). A firm in state 1 is flexible: it is allowed to choose its price optimally. The

states are determined by draws that are stochastically independent across firms, and are also

stochastically independent of all macroeconomic variables. In words, the probability of being

flexible at a given date only depends on how much time has passed since the firm was last

able to change its price. Mathematically, the probability structure is fully determined by a

vector {qτ}∞τ=0 ∈ (0, q̄]∞, where q̄ < 1. Regardless of its history, a firm that is in state 1 in

period t transits to state 0 in period (t + 1) with probability q0. A firm that is in state 0 in

period t and was last in state 1 in period (t− τ), τ ≥ 1, transits to state 0 in period (t + 1)

with probability qτ . The most familiar example of this general structure, of course, is the

Calvo (1983) model in which qτ = q0 for all τ ≥ 0.

This specification of pricing frictions implies that at any date t, some fraction θt > 0 of

the firms are sticky and are required to keep their prices the same as in period (t− 1). The

remaining measure (1 − θt) of firms are free to adjust their prices as they wish. In doing

so, they take into account the impact of their decisions on future profits when they cannot

change their prices. At any date (t + s), s ≥ 0, a firm which charges price pt has nominal

profit given by:

(
η

η − 1
pt −Mt+s)× (

pt
Pt+s

)−ηCt+s (2)

Here, Mt+s is the nominal marginal cost in period (t+s) and Ct+s is per capita consumption.

(Since firms’ production is constant returns to scale, they have identical nominal marginal

costs.) A firm at date t discounts these future profits using the nominal stochastic discount

8The frameworks described in this paragraph are essentially discrete-time versions of the time-dependent
(TD) models in Auclert et al. (2024).

9



factor, which (from the logarithmic utility function (1)) takes the form:

(
βsCtPt
Ct+sPt+s

)∞s=1

Hence, at date t, a firm that can choose its price does so by solving the problem (Gali

(2015, p. 56)):

max
pt

Et

(
∞∑
s=0

λs(β
s CtPt
Ct+sPt+s

)(
pt
Pt+s

)−ηCt+s(
η

η − 1
pt −Mt+s)

)

In this problem, the terms (λs)
∞
s=0 are defined as:

λs ≡
s∏

τ=1

qτ−1, s ≥ 1

λ0 = 1

and so λs represents the probability that the firm is required to charge price pt through period

(t+ s). The firm’s solution to this problem is given by the first order condition:

(η − 1)
η

η − 1
(p∗t )

−η
∞∑
s=0

λs(β
s CtPt
Ct+sPt+s

)(
1

Pt+s
)−ηCt+s

= η(p∗t )
−η−1

∞∑
s=0

λs(β
s CtPt
Ct+sPt+s

)(
1

Pt+s
)−ηCt+sMt+s

which implies in turn that:

p∗t =
Et
∑∞

s=0 β
sλs(

1
Pt+s

)−η Mt+s

Pt+s

Et
∑∞

s=0 β
sλs(

1
Pt+s

)−η 1
Pt+s

. (3)

Note the cancellation of consumptions implied by log utility.

All firms that can adjust their prices in period t choose the same price p∗t defined in (3).

Define:

mt+s =
Mt+s

Pt+s
, s ≥ 0

10



to be the real marginal cost in the current date and all future dates. Multiplying the numer-

ator and denominator by P 1−η
t , we can rewrite (3) as:

p∗t =
mtPt + PtEt

∑∞
s=1 λsβ

s( Pt
Pt+s

)−ηmt+s

Et
∑∞

s=0 λsβ
s( Pt
Pt+s

)−η Pt
Pt+s

(4)

I make the following assumption that serves to create a well-defined notion of a short-run

Phillips curve in period t. .

Assumption 1: The central bank can vary mt without affecting the period t price-setting

firms’ identical beliefs about the future joint evolution of real marginal costs and inflation:

(mt+s,
Pt+s
Pt

)∞s=1

The premise of Assumption 1 is that the joint process (mt+s,
Pt+s
Pt

)∞s=1 is determined by

the central bank’s future monetary policy strategy in conjunction with a variety of exogenous

shocks. With that in mind, Assumption 1 asserts that the firms’ beliefs about the central

bank’s future reaction function are not affected by its current setting of mt.

Given Assumption 1, we can rewrite (4) as:

p∗t = Pt(αtmt + χt)

where:

αt =
1

Et
∑∞

s=0 λsβ
s( Pt
Pt+s

)−η Pt
Pt+s

χt =
Et
∑∞

s=1 λsβ
s( Pt
Pt+s

)−ηmt+s

Et
∑∞

s=0 λsβ
s( Pt
Pt+s

)−η Pt
Pt+s

.

Note that (αt, χt) are potentially state-dependent, as they may depend on any information

11



that help firms predict future inflation and real marginal cost.

2.3 Deriving the Marginal Cost Phillips Curve

In this subsection, we use the price index to derive a relationship, called the marginal cost

Phillips curve, between mt and inflation in period t. The price index in any period t was

defined as:

Pt = (

∫ ∞
0

p1−ηdFt(p))
1

1−η .

where Ft is the distribution of prices across firms in period t. We can split the integral into

two pieces:

P 1−η
t = θt

∫ ∞
0

p1−ηdF sticky
t (p) + (1− θt)

∫ ∞
0

p1−ηdF flex
t (p).

Here, F sticky
t is the distribution of prices across the firms which cannot change their prices

and F flex
t is the distribution of prices across firms that can change their prices. It is helpful

to define the (gross) inflation rate for sticky firms as:

π̄t ≡
(
∫∞
0
p1−ηdF sticky

t (p))1/(1−η)

Pt−1
.

In the Calvo model, F sticky
t = Ft−1 and π̄t = 1. More generally, though, π̄t may be larger

(smaller) than one if the firms that are sticky in period t were ones that charged high (low)

prices in period (t− 1).

Assumption 1 implies that F flex
t is a point mass on Pt(αtmt + χt) and that:

∫ ∞
0

p1−ηdF flex
t (p)

= P 1−η
t (αtmt + χt)

1−η.

where mt is defined as in the prior subsection to be the real marginal cost in period t. It

12



follows that we can rewrite the price index as:

P 1−η
t = θtπ̄

1−η
t P 1−η

t−1 + (1− θt)P 1−η
t (αtmt + χt)

1−η (5)

Let the gross inflation rate be defined as:

πt ≡ (
Pt
Pt−1

)

Dividing through (5) by P 1−η
t−1 , we get:

π1−η
t = θtπ̄

1−η
t + (1− θ)π1−η

t (αtmt + χt)
1−η

We can then re-arrange to obtain the marginal cost Phillips curve.

πt = (
1− (1− θt)(αtmt + χt)

1−η

θt
)1/(η−1)π̄t (6)

The marginal cost Phillips curve (9) is shaped by firm beliefs about future real marginal

cost and inflation, as encoded in the variables (αt, χt). The expression for the curve can be

simplified under the following natural specification of firm beliefs. Suppose that firms believe

that, after date t, the central bank will pursue a monetary policy under which both gross

inflation and real marginal costs are equal to one:

Pt+s/Pt+s−1 = 1, s ≥ 1

mt+s = 1, s ≥ 1.

Given these optimal monetary policy beliefs, then the marginal cost Phillips curve is time-

13



invariant. The variables (αt, χt) are constants given by:

αt = ᾱ =
1∑∞

s=0 β
sλs

χt = (1− ᾱ)

and the curve9 is:

πt = (
1− (1− θt)(ᾱmt + (1− ᾱ))1−η

θt
)1/(η−1)π̄t (7)

Note that under optimal monetary policy beliefs, πt = 1 if and only if mt = 1.

2.4 Why the Log Utility Assumption Matters

This subsection discusses the impact of assuming logarithmic intertemporal preferences.

Suppose the nominal stochastic discount factor process took the the more general form:

PtC
σ
t

Pt+sCσ
t+s

, σ > 0.

Then, a firm that can choose its price at date t will set p∗t so as to satisfy:

p∗t =
mtPtC

1−σ
t + PtEt

∑∞
s=1 λsβ

s( Pt
Pt+s

)−ηC1−σ
t+s mt+s

C1−σ
t + Et

∑∞
s=1 λsβ

s( Pt
Pt+s

)−η Pt
Pt+s

C1−σ
t+s

. (8)

Here, we could extend Assumption 1 by assuming that the central bank can vary mt without

affecting the firms’ beliefs about the joint process (Ct+s,mt+s,
Pt+s
Pt

)∞s=1. This assumption

9In the Calvo model, λs = θs and ᾱ = (1− βθ). The curve (7) becomes:

π = (
1− (1− θ)((1− βθ)m+ βθ)1−η

θ
)1/(η−1).

Define π̂ = ln(π) and m̂ = ln(m). In logs, we can rewrite as:

π̂ =
1

η − 1
ln(

1− (1− θ)((1− βθ)exp(m̂) + βθ)1−η

θ
).

The derivative dπ̂/dm̂ = (1 − βθ)(1 − θ)/θ, which (not surprisingly) is the same as the slope coefficient on
current real marginal cost in the textbook version of the log-linearized New Keynesian Phillips Curve (Gali
(2015, Chapter 3)).

14



would imply that the terms:

Et

∞∑
s=1

βsλs(
Pt
Pt+s

)−ηC1−σ
t+s mt+s

Et

∞∑
s=1

βsλs(
Pt
Pt+s

)−η
Pt
Pt+s

C1−σ
t+s

in (8) are independent of mt. However, different choices of mt by the central bank will

necessarily impact the level of current economic activity and so change Cσ−1
t if σ 6= 1.

What is the intuition behind the term C1−σ
t ? Suppose the central bank lowers interest

rates to raise mt. Then the firm’s price choice will:

• put less weight on current mt because future profits are discounted less (through higher

C−σt ).

• put more weight on current mt because overall period t demand is lower (through lower

Ct).

The term C1−σ
t combines these two effects. They are exactly offsetting when σ = 1 (the log

utility case).

3 Curvature of the Marginal Cost Phillips Curve

This section develops the curvature properties of the marginal cost Phillips curve derived in

the prior section:

Γ(m) ≡ (
1− (1− θ)(αm+ χ)1−η

θ
)

1
η−1 π̄ (9)

Note that there are no time subscripts in (9). I drop these in the remainder of this section

as the past and future plays no (further) role in the analysis.

Throughout, I impose the following restriction on (θ, η, χ) :

(1− θ)χ1−η > 1. (10)

15



This restriction in turn implies that the marginal cost Phillips curve is only well-defined if

m is bounded from below by mLB :

mLB ≡
(1− θ)

1
η−1 − χ
α

.

The condition (10) requires that prices are sufficiently flexible (as that translates into lower

θ and lower χ). By creating a positive lower bound on m, it simplifies the analysis of the left

tail of the Phillips curve. But the condition plays no role in the results for high values of m.

3.1 High and Low Levels of Real Marginal Cost

The first two propositions concern the properties of the marginal cost Phillips curve when

real marginal cost is near its lowest possible level and when real marginal cost is very high.

They establish that, in these contexts, the marginal cost Phillips curve is “very” concave,

in the sense that its slope is infinite when (gross) inflation is zero and its slope is near zero

when inflation is near its maximal level.

Proposition 1. If η > 2, the slope of the marginal cost Phillips curve approaches infinity as

m nears mLB.

If the real marginal cost is low, then the firms which are flexible in period t set relatively

low prices compared to the firms that cannot adjust in period (t − 1). In the extreme,

consumers buy goods only from the firms that are adjusting their prices. The economy acts

as if prices are fully flexible and so the marginal cost Phillips curve is vertical.

The next proposition shows that the marginal cost Phillips curve has a finite horizontal

asymptote for large values of m. Unlike Proposition 1, it does not require η to be larger than

2.

Proposition 2. As m nears infinity, then Γ(m) approaches an upper bound:

πmax ≡ (
1

θ
)1/(η−1)π̄.
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and its slope nears zero:

limm→∞Γ′(m) = 0

When real marginal costs are high, the adjusting firms’ prices are high relative to those of

the firms with fixed prices. The consumers switch to buying from the latter, and the economy

behaves as if all prices are fixed. As a result, inflation is independent of cost conditions, and

the Phillips curve becomes horizontal.

3.2 Global Properties

We have seen that the marginal cost Phillips curve is increasing and concave when the real

marginal cost is near its lowest level and when it is near infinity. The following proposition

proves that, if η ≥ 2, these properties are valid for the entire domain of the curve.

Proposition 3. The marginal cost Phillips curve is strictly increasing and, if η ≥ 2, strictly

concave over its domain (mLB,∞).

As m rises, the firms with the ability to adjust their prices make higher choices and so

inflation rises. But this effect is dampened by their loss of market share to the monopolists

with fixed prices. If η ≥ 2, the loss of market share is sufficiently large to ensure that the

curve is globally concave.

4 Curvature of the Real Activity Phillips Curve

The previous section describes the curvature properties of the marginal cost Phillips curve.

However, it is more typical to think of the Phillips curve as describing a relationship between

measures of real economic activity and inflation. This section uses the notion of a policy-

invariant activity cost function to translate the results about the real marginal cost Phillips

curve into characterizations of the real activity Phillips curve.
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4.1 Building Up the Real Activity Phillips Curve

Let xt be a measure of real activity in period t that (like an employment gap) takes on values

over the entire real line. There is an activity cost function:

Φt : R→ (0,∞)

that maps real activity xt into real marginal cost mt. I make the following exogeneity

assumption about Φt :

Assumption 2: It is possible for policymakers to make choices that vary xt without

affecting the activity cost function Φt, or firm beliefs about the joint behavior of future real

marginal costs and inflation.

Mathematically, I assume the activity cost function Φt is twice differentiable over its

domain and that its derivative is everywhere positive (although it can become vanishingly

small for low or high values of xt). I assume too that Φt is onto, meaning that for any

mt ∈ (0,∞), there exists xt ∈ R such that mt = Φt(xt). There are no restrictions on the

second derivative of Φt - the activity cost function can be convex or concave.

Here’s one example of how Φt works. Consider an economy in which labor markets are

competitive. Suppose each firm has a single-input production function that translates nt

units of labor into nt units of output, for any nt ≥ 0. Suppose too that households’ disutility

of labor takes the form:

v(N) =
Nγ+1

1 + γ
, γ > 0

Then household optimality implies that:

Wt/Pt = Nγ
t Ct.
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Given this condition, real marginal cost satisfies:

mt =
Wt/Pt
Yt/Nt

= N1+γ
t

Ct
Yt

= N1+γ
t .

where the last step makes use of market-clearing and the assumption that labor is the sole

input. If we let nt = ln(Nt), then:

mt = Φ̄(nt), where Φ̄(nt) ≡ exp((γ + 1)nt).

The function Φ̄ satisfies the conditions on Φt described above. Note that its slope is un-

bounded from above and is arbitrarily near zero for large negative values of n.

I next define the real activity Phillips curve PC. (As in Section 3, I suppress the time

subscripts in the remainder of this section as inessential.) Recall that the real marginal cost

cannot fall below:

mLB ≡
(1− θ)1/(η−1) − χ

α
> 0.

Define:

xLB ≡ Φ−1(mLB)

to be the level of economic activity associated with the lowest real marginal cost. (Note that

xLB is well-defined because Φ is onto.)

Then, the real activity Phillips curve is defined as the composition of the activity cost

function Φ and the marginal cost Phillips curve:

PC :(xLB,∞)→ R+

PC(x) = Γ(Φ(x))

The idea here is that Φ maps a level of economic activity x into real marginal cost m, and

that translates into inflation via Γ. As noted above, real activity is meant to proxy for the
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(log of the) host of possible quantity variables that are typically used in Phillips curves. The

goal in what follows is to learn when (that is, under what condition on Φ) the prior results

about Γ translate into similar characterizations about PC.

4.2 Low and High Levels of Economic Activity

This section uses Propositions 1 and 2 to show that, regardless of the curvature of the real

activity function Φ, the real activity Phillips curve is “very” concave at high and low levels

of economic activity.

Proposition 4 proves that, under the conditions used in Proposition 1, there is a lower

bound on real activity and the Phillips curve is close to vertical when real activity is near

that lower bound.

Proposition 4. Suppose η > 2. The real activity Phillips curve PC satisfies PC(xLB) = 0

and the derivative of the Phillips curve approaches infinity as x nears xLB.

What about for high levels of economic activity? Regardless of how convex Φ is, the real

activity Phillips curve is asymptotically horizontal when x is large. Like Proposition 2, it

does not require η to be larger than 2.

Proposition 5. Suppose that limx→∞Φ′(x) exists as an element of the extended reals (so it

is possibly infinite). Then:

limx→∞PC(x) = πmax.

limx→∞PC
′(x) = 0

Thus, like the marginal cost Phillips curve, the real activity Phillips curve is nearly vertical

for low levels of economic activity and nearly horizontal for high levels of economic activity.
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4.3 Global Curvature Properties

The real activity Phillips curve is strictly increasing, because it is the composition of two

strictly increasing functions. The following proposition provides sufficient conditions on the

activity cost function Φ for the real activity Phillips curve PC to inherit the concavity of the

marginal cost Phillips curve Γ.

Proposition 6. Suppose η > 3 and that:

χ

(1− θ)1/(η−1)
< (

η − 1

η − 2
)(
η − 3

η − 2
)
η−2
η−1 (11)

Suppose too that:

Φ′′(x)

Φ′(x)2
≤ 1

Φ(x)
. (12)

for all x ∈ (0,∞). Then the real activity Phillips curve PC is strictly concave over its domain

(xLB,∞).

Recall that earlier we imposed the restriction (10) on (χ, η, θ),which implies that:

χ

(1− θ)1/(η−1)
< 1.

The following Table shows that the condition (11) on (η, χ, θ) in Proposition 6 is only a

modest tightening of (10) if η ≥ 3.5.

Table 1: The Condition in Proposition 6

η RHS of (11)

3.5 0.862

4 0.945

5 0.984

6 0.993

7 0.996
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The condition in Proposition 6 on the function Φ is satisfied by a wide range of (highly)

convex functions, including the following.

Corollary 1. Suppose Φ(x) = Dexp((γ + 1)x), γ > 0, D > 0. Then:

Φ′′(x)

Φ′(x)2
=

1

Φ(x)
.

5 The Laspeyres-Phillips Curve

The argument in the last two sections relies on the impact of substitution effects within the

price index. But those effects are imperfectly measured in the official data. This section

considers the curvature of a (real activity) Laspeyres-Phillips curve. For this curve, the

inflation measure is constructed using a Laspeyres price index that systematically understates

substitution effects. Unlike the true real activity Phillips curve, the real activity Laspeyres-

Phillips curve is near-vertical for high levels of economic activity.

Throughout this section, I restrict attention to the Calvo case in which qτ = θ ∈ (0, 1)

for all τ ≥ 0. The key result in this section (Proposition 7) can be established without this

restriction. However, doing so complicates the notation without adding much in the way of

insight.

5.1 Laspeyres Inflation

As in Section 2, we let Fτ be the cross-firm distribution of prices in period τ, where τ ∈

{t−1, t}. We define the Laspeyres inflation rate using period (t−1) quantities as the relevant

bundle. Hence, the period (t − 1) Laspeyres price index is the same as the true price index
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in period (t− 1) :

PL
t−1 = (

∫ ∞
0

(
p

Pt−1
)−ηpdFt−1(p))

=

∫∞
0
p1−ηdFt−1(p)

P−ηt−1

= Pt−1.

As in Section 2, and under the Calvo assumption imposed above, a measure θ of the firms

are sticky in period t and the remaining measure (1 − θ) are flexible. The sticky firms set

their prices to be the same as in the prior period, and the remaining fraction (1− θ) of firms

in period t set their prices optimally to be equal to:

αtMt + χtPt

where Pt represents the true price index in period t, not the Laspeyres price index. The

independence embedded in the Calvo assumption means that the distribution of period (t−1)

prices over the the period t sticky (or period t flexible) firms is given by Ft−1. Hence, the

Laspeyres price index at date t takes the form:

PL
t = θ

∫ ∞
0

p1−η

P−ηt−1
dFt−1(p) + (1− θ)(αtMt + χtPt)

∫ ∞
0

(
p

Pt−1
)−ηdFt−1(p)

= θPt−1 + (1− θ)(αtMt + χtPt)

It follows that. since PL
t−1 = Pt−1, we can define the (gross) Laspeyres inflation rate as:

πLt ≡
PL
t

PL
t−1

= θ + (1− θ)αtMt + χtPt
Pt−1

(13)
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We can rewrite the last term as:

(αtmt + χt)
Pt
Pt−1

Then the Laspeyres inflation rate πLt satisfies:

πLt = θ + (1− θ)(αtmt + χt)πt (14)

As in Section 3, the variable mt is the real marginal cost in period t, and the term πt is the

true (gross) rate of inflation.

5.2 The Laspeyres-Phillips Curve

In this subsection, I provide a formal definition and characterization of the Laspeyres-Phillips

Curve. Throughout the remainder of Section 5, I drop the time subscripts as they are

inessential.

From Section 3, we know that the true inflation rate π satisfies:

π = Γ(m)

where:

Γ(m) = (
(1− (1− θ)(αm+ χ)1−η)

θ
)

1
η−1

is the marginal cost Phillips curve. (Here, we exploit the implication of the Calvo model that

π̄ = 1.) It follows that the Laspeyres inflation rate can be written as:

πL = ΓL(m) ≡ θ + (1− θ)Γ(m)(αm+ χ)

Intuitively, the gross Laspeyres inflation rate is defined in (14) as a weighted average of

1 (the inflation rate for goods with fixed prices) and the inflation rate for firms that can
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adjust their prices. The weights are, by definition, fixed. Hence, the substitution bias in

Laspeyres inflation implies that it behaves like a product of real marginal cost and true

inflation. When mt is near its lower bound, this product is highly sensitive to mt (just like

true inflation). However, when real marginal cost is large, the product is a linear function of

mt. This linearity means that, unlike the true inflation rate, the Laspeyres inflation rate is

unbounded from above.

We now turn to the construction of a real activity Phillips curve defined in terms of the

Laspeyres inflation rate. Because the real marginal cost m is defined in terms of the true (not

Laspeyres) price index, the same policy-invariant activity cost function Φ as in Section 4 maps

real economic activity x into real marginal cost m. Then, we define the Laspeyres-Phillips

curve as the composition of ΓL and Φ:

PCL : (xLB,∞)→ (0,∞)

PCL(x) = ΓL(Φ(x))

where:

xLB ≡ Φ−1(mLB).

The domain of PCL is the same as the domain of the true real activity Phillips curve PC.

What differs is how the Laspeyres-Phillips curve PCL maps real economic activity into an

inflation rate with substitution bias.

The following Proposition shows that substitution bias in the Laspeyres-Phillips curve is

spuriously convex for high levels of economic activity, even when the true Phillips curve is

not.

Proposition 7. Suppose that:

limx→∞Φ′(x) =∞.
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Then, the Laspeyres-Phillips curve PCL is near-vertical when economic activity is high.

limx→∞PC
L′(x) =∞.

Suppose that η > 2. Then the Laspeyres-Phillips curve PCL is near-vertical when economic

activity is low:

limx→xLBPC
L′(x) =∞.

In combination with Proposition 6, Corollary 1 shows that the true Phillips curve PC is

globally concave for any Φ such that:

Φ(x) = Dexp((γ + 1)x)

In contrast, Proposition 7 implies that for any such Φ, the (mismeasured) Laspeyres-Phillips

curve PCL is necessarily (highly) convex at high levels of economic activity.

5.3 Numerical Example

The following numerical example illustrate the differences between the true (real activity)

Phillips curve and the mismeasured Laspeyres-Phillips curve.

Consider a parameterization:

β = 0.99

θ = 2/3

η = 6

Φ(x) = exp(3x)

The setting of η corresponds to a markup of 20%. If we interpret exp(x) as labor input, then

the specification of Φ translates (through the example in Section 5.1) into a Frisch elasticity
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(1/γ) equal to 1/2. The setting for β is standard, given that a period is interpreted as one

quarter. The specification of θ implies that prices stay fixed for an average of three periods,

which is again standard for a quarterly model.

Assume that firms have optimal monetary policy beliefs (as defined in Section 2.3). Then:

αt = (1− βθ) = 0.34

χt = βθ = 0.66.

Note that this parameterization satisfies (10):

(1− θ)1/(η−1) = 0.8 > 0.66 = χt.

Figure 4 shows the difference between the true Phillips curve and the Laspeyres-Phillips

curve for this parameterization. The true Phillips curve is concave over its full domain. The

Laspeyres-Phillips curve is convex whenever x is above -0.1 and inflation is above -5%, before

switching to being concave for lower values of real activity and inflation. It should not be

surprising, given Figure 4, that estimated Laspeyres-Phillips curves are (slightly) convex even

though the true Phillips curve is concave.

6 Policy Considerations

This section considers a central bank that looks to trade off economic activity and inflation

given markup shocks. It shows that, in this context, the concavity of the true Phillips curve

has an important policy implication: if average inflation equals the central bank’s target, the

activity gap is negative on average.

Consider a central bank which has a policy instrument with which to vary the level of

economic activity x. Suppose too that the price-setting firms are affected by shocks to their

27



-0
.2

-0
.1

0.
0

0.
1

0.
2

-3
0

-2
0

-1
0010

Tr
ue

 P
hi

llip
s 

C
ur

ve
La

sp
ey

re
s-

Ph
illi

ps
 C

ur
ve

Fi
gu

re
 4

: T
he

 T
ru

e 
Ph

ill
ip

s 
an

d 
La

sp
ey

re
s-

Ph
ill

ip
s 

C
ur

ve
s

 

x

Th
e 

tr
ue

 P
hi

lli
ps

 a
nd

 L
as

pe
yr

es
-P

hi
lli

ps
 c

ur
ve

s 
fo

r t
he

 p
ar

am
et

er
iz

at
io

n 
de

sc
rib

ed
 in

 th
e 

te
xt

.

in
fla
tio
n 
(%
)

28



markups, so that inflation in any period is given by:

π = PC(x+ ν).

Here, ν can be positive or negative. The central bank has an inflation target πTAR. This

inflation target in turn implies a target level xTAR = PC−1(πTAR) for economic activity

associated with the instance in which ν = 0.

I assume that the central bank is unable to commit to future policy choices and so, as

in Gali (2015, p. 129), it solves a static problem. Specifically, it seeks to find a level x

of economic activity, conditional on its observation of ν, so as to minimize the quadratic

objective10:

(π − πTAR)2 + Λ(x− xTAR)2 (15)

where Λ > 0. Given any ν, the central bank chooses x∗(ν) so as to satisfy the condition:

(π∗(ν)− πTAR) =
Λ(xTAR − x∗(ν))

PC ′(x∗(ν) + ν)
,

where π∗(ν) = PC(x∗(ν) + ν). Notice that the central bank’s optimality condition implies

that inflation is above target if and only if there is a negative activity gap (Qvigstad (2006)).

So far, I have imposed no probability structure on the ν’s. However, the following propo-

sition considers an arbitrary sequence (ν1, ..., νN) such that the implied average inflation is

at target:

N−1
N∑
n=1

π∗(νn) = πTAR.

It shows that for any such sequence, the average activity gap (x∗−xTAR) is negative (positive)

if PC is concave (convex).

Proposition 8. Consider (ν1, ..., νN) such that (π∗(νn))Nn=1 has at least two distinct values,

10Woodford (2001, p. 22-23) provides an explicit theoretical foundation for the quadratic objective (15).
It is important to note that his second-order argument is a justification for targeting true inflation, not
Laspeyres inflation.
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(π∗(νn), x∗(νn))Nn=1 satisfies the central bank’s optimality condition:

(π∗(νn)− πTAR) =
Λ(xTAR − x∗(νn))

PC ′(x∗(νn) + νn)
, n = 1, ..., N

and the average inflation rate is equal to target:

N−1
N∑
n=1

π∗(νn) = πTAR.

Then N−1
∑N

n=1(x
∗(νn) − xTAR) > 0 if PC ′′ > 0 and N−1

∑N
n=1(x

∗(νn) − xTAR) < 0 if

PC ′′ < 0.

The intuition behind the proposition is simple. When the Phillips curve is concave, it is

expensive in inflation terms to vary x when it is low and cheap to vary x when it is high.

As a consequence, the central bank is willing to tolerate large negative activity gaps, and so

x is low on average relative to xTAR. A policymaker who thought that the Phillips curve is

convex would run the argument in reverse to reach the opposite conclusion and seek to keep

x high on average relative to xTAR.

The above proposition considers a central bank that is responding optimally over time

to random shifts in the Phillips curve due to markup shocks. Yellen and Akerlof (2007)

instead focus on a central bank facing a fixed Phillips curve. They argue that if the Phillips

curve is convex, then reducing the volatility of real economic activity, while keeping average

inflation at target, leads to an increase in the average level of real economic activity. If the

Phillips curve is concave, then their argument is reversed: reducing the volatility of real

economic activity, while keeping average inflation at target, leads to an increase in average

real economic activity. However, it can be shown that this benefit in terms of a higher average

does not outweigh the cost of a higher variance. Put another way, given a fixed Phillips curve,

the central bank with a quadratic objective (15) should seek to eliminate volatility in both

inflation and economic activity, regardless of whether the curve is concave or convex.
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7 Conclusions

The main contribution of this paper is theoretical. It demonstrates that, from the perspective

of time-dependent pricing models, Figure 2 is the correct way to draw the Phillips curve and

Figure 1 is not. The paper also shows that substitution biases in official measures of inflation

could lead the estimated Phillips curve to look more like Figure 1 rather than the correct

Figure 2.

There are a number of ways to build on the results in this paper. From a theoretical

perspective, it would seem useful to consider to what extent the results carry over to settings

with real rigidities and state-dependent pricing. For real rigidities, the analysis is likely to

depend on the specification of higher derivatives of how firm markups respond to their rela-

tive demands. For state-dependent pricing, the exact structure of firm-specific idiosyncratic

shocks is likely to matter (as Golosov and Lucas (2007) and Midrigan (2011), among others,

have shown for the first derivative of the Phillips curve).11. From a data perspective, the

paper suggests that it may be important to build up model-consistent measures of inflation

from (even more) disaggregated data on prices, and use those model-consistent measures as

the basis of analysis and policy.

11In a recent paper, Blanco, Boar, Jones, and Midrigan (2024) report that the Phillips curve is convex in
a parameterized version of a sophisticated menu cost multi-product model. Importantly, though, they use a
Laspeyres measure of inflation, rather the one based on the true price index. The substitution effects that I
emphasize would tend to concavify the Phillips curve in their model relative to, for example, what they plot
on page 38.
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Appendix

This appendix contains the proofs of the various propositions.

Proof of Proposition 1

The marginal cost Phillips curve is defined as:

Γ(m) = (
1− (1− θ)(αm+ χ)1−η

θ
)

1
η−1 .

This is only well-defined if the argument in the parentheses is non-negative so that:

(αm+ χ)1−η ≤ (1− θ)

which immediately implies that:

m ≥ mLB.

The derivative of Γ is:

(
1− (1− θ)(αm+ χ)1−η)

θ
)1/(η−1)−1

(1− θ)
θ

(αm+ χ)−ηα

= Γ(m)2−η
(1− θ)
θ

α(αm+ χ)−η.

Since η > 2, then limm→mLBΓ′(m) =∞ because Γ(mLB) = 0.

Proof of Proposition 2

The formula for Γ(m) is:

Γ(m) = (
1− (1− θ)(αm+ χ)1−η

θ
)1/(η−1)π̄

≤ (
1

θ
)1/(η−1)π̄ = πmax.
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It is straightforward to verify that since η > 1:

limm→∞Γ(m) = πmax.

The derivative Γ′ can be calculated as in the proof of Proposition 1 to be:

Γ′(m) =
(1− θ)
θ

Γ(m)2−ηα(αm+ χ)−ηπ̄η−1

Hence:

limm→∞Γ′(m) = 0.

Proof of Proposition 3

As in the proof of Proposition 1, the derivative of Γ is given by:

Γ′(m) = Γ(m)2−η
(1− θ)
θ

α(αm+ χ)−ηπ̄η−1

This expression is positive for all m ∈ (mLB,∞) and so Γ is strictly increasing. Since Γ is

strictly increasing, and since η ≥ 2, Γ′ is strictly decreasing.

Proof of Proposition 4

It is readily seen that if mLB > 0, then:

PC(xLB) = Γ(Φ(xLB)) = Γ(mLB) = 0.

The derivative of PC is:

PC ′(x) = Γ′(Φ(x))Φ′(x).
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We know from Proposition 1 that if η > 2:

limx→xLBΓ′(Φ(x)) = limm→mLBΓ′(m) =∞.

Since Φ is continuously differentiable and Φ′(xLB) > 0:

limx→xLBΦ′(x) > 0.

It follows that:

limx→xLBPC
′(x) =∞.

Proof of Proposition 5

The first limit can be rewritten as:

limx→∞PC(x) = limx→∞Γ(Φ(x))

= limm→∞Γ(m)

= πmax.

The restriction on the limit of Φ′ ensures that (since Φ′ and Γ′(Φ) are continuous) the limit:

limx→∞PC
′(x) = limx→∞Γ′(Φ(x))Φ′(x)

is well-defined as an element of the extended reals. I claim that limit is zero. Suppose it is

instead k > 0. Then, there exists x∗ > 0 such that PC ′(x) ≥ k/2 for all x ≥ x∗. It follows

that for any y > x∗,(PC(y)−PC(x∗)) ≥ (k/2)(y−x∗). But this contradicts the earlier result

that:

limy→∞PC(y) = πmax.
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Proof of Proposition 6

The real activity Phillips curve PC is the composition of Γ and Φ. Hence:

PC ′′(x) = Γ′′(Φ(x))Φ′(x)2 + Γ′(Φ(x))Φ′′(x)

Since the first derivatives are positive, PC ′′(x) ≤ 0 iff:

Φ′′(x)

Φ′(x)2
≤ −Γ′′(Φ(x))

Γ′(Φ(x))
. (16)

Our goal then is to show that:

−Γ′′(m)

Γ′(m)
≥ 1

m

for all m ≥ mLB.

We have seen in the proof of Proposition 1 that the derivative Γ′(m) is given by:

Γ′(m) = Γ(m)2−η
(1− θ)
θ

(αm+ χ)−ηαπ̄η−1

and so:

Γ′′(m) = (2− η)Γ(m)1−ηΓ′(m)
(1− θ)
θ

(αm+ χ)−ηαπ̄η−1

− ηΓ(m)2−η
(1− θ)
θ

(αm+ χ)−η−1α2π̄η−1.
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Taking ratios:

−Γ′′(m)

Γ′(m)
− 1

m
= (η − 2)Γ(m)1−η

(1− θ)
θ

(αm+ χ)−ηαπ̄η−1 +
αη

(αm+ χ)
− 1

m

=
α(η − 2)(1− θ)(αm+ χ)−η

1− (1− θ)(αm+ χ)1−η
+

αη

αm+ χ
− 1

m

= α(η − 2)
(1− θ)(αm+ χ)1−η + 1− (1− θ)(αm+ χ)1−η

αm+ χ− (1− θ)(αm+ χ)2−η
− 1

m
+

2α

αm+ χ

(17)

>
α(η − 2)m− (αm+ χ) + (1− θ)(αm+ χ)2−η

αm+ χ− (1− θ)(αm+ χ)2−η
(18)

Note that the denominator of (18) is positive because m > mLB.

Now consider the numerator of (18). Its derivative with respect to m is:

α(η − 3)− (η − 2)(1− θ)α(αm+ χ)1−η

This derivative is strictly increasing in m. It is −α when m is close to mLB and, since η > 3,

positive when m is large. Hence, there is a unique m that minimizes the numerator of (18).

We can solve for that unique m∗ as:

(αm∗ + χ)1−η = (
η − 3

η − 2
)

1

(1− θ)

⇒ (αm∗ + χ) = (
η − 2

η − 3
)

1
η−1 (1− θ)

1
η−1

⇒ (αm∗ + χ)2−η = (
η − 2

η − 3
)
2−η
η−1 (1− θ)

2−η
η−1

⇒ (αm∗ + χ)2−η(1− θ) = (
η − 2

η − 3
)
2−η
η−1 (1− θ)

1
η−1
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Now plug that minimizing m∗ into the numerator of (18). We obtain:

α(η − 2)m∗ − (αm∗ + χ) + (1− θ)(αm∗ + χ)2−η

= (η − 3)(αm∗ + χ) + (1− θ)(αm∗ + χ)2−η − χ(η − 2)

= (1− θ)
1

η−1 (η − 3)(
η − 2

η − 3
)

1
η−1 + (

η − 2

η − 3
)
2−η
η−1 (1− θ)

1
η−1 − χ(η − 2)

This is positive if:

χ <
(η − 3)(η−2

η−3)1/(η−1) + (η−2
η−3)

2−η
η−1

η − 2
(1− θ)

1
η−1

= [(η − 2)
2−η
η−1 + (η − 2)

3−2η
η−1 ](η − 3)

η−2
η−1 (1− θ)

1
η−1

= [1 + (η − 2)
3−2η
η−1

+ η−2
η−1 ](1− θ)

1
η−1 (

η − 3

η − 2
)
η−2
η−1

= [1 +
1

η − 2
](1− θ)

1
η−1 (

η − 3

η − 2
)
η−2
η−1

= (
η − 1

η − 2
)(1− θ)

1
η−1 (

η − 3

η − 2
)
η−2
η−1

Hence, under the condition on η, χ, and Φ in the proposition, it follows that:

−Γ′′(Φ(x))

Γ′(Φ(x))
>

1

Φ(x)

≥ Φ′′(x)

Φ′(x)

Hence, we have verified (16).

Proof of Corollary 1

The left-hand side ratio is:

1

Dexp(γx)

and the right-hand side ratio is:

1

Dexp(γx)
.
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Proof of Proposition 7

Recall that:

PCL(x) = θ + (1− θ)(αΦ(x) + χ)Γ(Φ(x)).

The derivative is:

PCL′(x) = (1− θ)Γ′(Φ(x))Φ′(x)(αΦ(x) + χ) + (1− θ)αΦ′(x)Γ(Φ(x))

=
(1− θ)2

θ
Γ(Φ(x))2−ηα(αΦ(x) + χ)1−ηΦ′(x) + (1− θ)αΦ′(x)Γ(Φ(x))

It follows that:

limx→∞PC
L′(x) ≥ limx→∞αΦ′(x)(1− θ)πmax =∞.

On the other hand, since η > 2 and Γ(Φ(xLB)) = 0 :

limx→xLBPC
L′(x)

≥ Φ′(xLB)limx→xLB
(1− θ)2

θ
Γ(Φ(x))2−ηα(αΦ(x) + χ)1−ηΦ′(x)

=∞.

Proof of Proposition 8

[I thank Eugenio Gonzalez Flores for his help in simplifying this proof.]

We will prove the proposition for the case in which PC ′′ < 0. Without loss of generality,

assume:

π∗(νn) ≤ π∗(νn+1), n = 1, ..., N − 1.
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The assumption of optimality implies that:

N−1
N∑
n=1

(x∗(νn)− xTAR) (19)

= −N−1
N∑
n=1

Λ−1PC ′(x∗(νn) + νn)(π∗(νn)− πTAR) (20)

= Λ−1N−1
N∑
n=1

PC ′(PC−1(π∗(νn)))(πTAR − π∗(νn)) (21)

Hence, to prove the proposition, we need only establish that (21) is less than zero.

Since there are at least two distinct values of π∗(νn), (19) implies that there exists N∗ < N

such that:

π∗(νn) ≤ πTAR, n ≤ N∗

π∗(νn) > πTAR, n > N∗.

and so we can rewrite (21) as:

N−1Λ−1
N∗∑
n=1

PC ′(PC−1(π∗(νn)))(πTAR − π∗(νn)) (22)

−N−1Λ−1
N∑

n=N∗+1

PC ′(PC−1(π∗(νn)))(π∗(νn)− πTAR) (23)

where both terms are positive. Since PC ′ > 0 and PC ′′ < 0, we know that:

PC ′(PC−1))

is a strictly decreasing function. It follows that:

PC ′(PC−1(πTAR)) ≤ PC ′(PC−1(π∗(νn)), n ≤ N∗

PC ′(PC−1(πTAR)) > PC ′(PC−1(π∗(νn)), n > N∗.
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We can conclude that (22) is less than:

N−1Λ−1PC ′(PC−1(πTAR))
N∗∑
n=1

(πTAR − π∗(νn)) (24)

−N−1Λ−1PC ′(PC−1(πTAR))
N∑

n=N∗+1

(π∗(νn)− πTAR) (25)

which equals zero because:

N−1
N∑
n=1

(π∗(νn)− πTAR)) = 0.

The proposition follows.
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