
NBER WORKING PAPER SERIES

THE CONCAVE PHILLIPS CURVE

Narayana R. Kocherlakota

Working Paper 32528
http://www.nber.org/papers/w32528

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
May 2024

I thank David Baqaee and Eugenio Gonzalez Flores for many thoughtful comments. The views 
expressed herein are those of the author and do not necessarily reflect the views of the National 
Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2024 by Narayana R. Kocherlakota. All rights reserved. Short sections of text, not to exceed 
two paragraphs, may be quoted without explicit permission provided that full credit, including © 
notice, is given to the source.



The Concave Phillips Curve
Narayana R. Kocherlakota
NBER Working Paper No. 32528
May 2024
JEL No. E31,E52

ABSTRACT

This paper derives the curvature properties of the short-run Phillips curve in a class of canonical 
models of price-setting frictions. Contrary to conventional thinking, the Phillips curve is 
asymptotically horizontal for high levels of economic activity and asymptotically vertical for low 
levels of economic activity. Moreover, it is globally concave for a wide class of models, 
including many in which average real marginal cost is an unbounded convex function of 
economic activity. Intuitively, when economic activity is very high (low), substitution effects 
within the model-implied true price index imply that inflation behaves as if prices are nearly fully 
sticky (flexible). Using (conventional) measures of inflation that understate the relevant 
substitution effects may lead to misleading conclusions about the curvature of the Phillips curve, 
and to corresponding errors in the formulation of monetary policy.

Narayana R. Kocherlakota
Department of Economics
University of Rochester
238B Harkness Hall
P.O. Box 270156
Rochester, NY 14627
and NBER
nkocherl@ur.rochester.edu



1 Introduction

Figure 1 depicts (what I perceive to be) the dominant conventional wisdom about the curva-

ture of the short-run Phillips curve1, drawn as a positive relationship with a measure of real

economic activity on the x-axis and inflation on the y-axis. The curve is globally convex - the

inflation costs of generating a given increase in economic activity are higher in booms than in

recessions. The curve becomes extremely steep for high levels of economic activity, capturing

a basic intuition that, even in the short run, there are limits to what monetary policy can

accomplish in terms of real stimulus. The curve is flatter for low levels of economic activity,

which corresponds to the idea that nominal or real wages are costly to adjust downward.

This conventional thinking about the curvature of the Phillips curve enjoys some empir-

ical support. Phillips’ (1958) original estimates of the relationship between British nominal

wage inflation and unemployment imply that it has the characteristics described in the above

paragraph. (Indeed, my Figure 1 was motivated in large part by Phillips’ Figure 1.) Samuel-

son and Solow’s seminal (1960) piece on the relationship between US price inflation and

unemployment also describe a convex curve that is near-vertical at high levels of economic

activity. More recently, Forbes, et al. (2022) have argued that the Phillips curve in the

US and other countries does indeed become flatter at low levels of inflation.2 In a similar

vein, Babb and Detmeister (2017) find using data from US cities that the Phillips curve is

steeper when the unemployment rate is low. However, I would say that the more dominant

perspective from the past forty years of research is that it is hard to estimate even the first

derivative of the Phillips curve with precision (see, for example, Mavroeidis, et al. (2014)).3

1By “short-run Phillips curve”, I mean to refer, as did Samuelson and Solow (1960), to the locus of
possible real economic activity and inflation outcomes achievable by a central bank through different choices
of monetary policy. As is true of almost all important economic relationships, including commodity demand
functions (Moore (1914, Chapter V)), shifts due to unobservable variables may mean that the Phillips curve
is not immediately apparent in observational data. However, as we shall see, the mathematical properties of
this fundamental policy trade-off are readily identifiable within the context of a specific model.

2In a (very funny) satirical piece, Smith (2006) highlights this kind of convexity in the Phillips curve for
Japan.

3Relatedly, McLeay and Tenreyro (2020) have highlighted the challenges associated with estimating the
Phillips curve in the presence of an inflation-targeting central bank. Hazell, et al. (2022) use state-level data
to sidestep this problem. They find that the slope of the Phillips curve has consistently low (-0.34 when
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This paper investigates the implications of macroeconomic theory for the curvature prop-

erties of the short-run Phillips curve. It derives the full nonlinear Phillips curve in a class of

basic canonical models of price-setting frictions in which households have CES preferences

over a large number of goods. If the households’ common elasticity of substitution is larger

than 2, then the implied Phillips curve is globally concave in a wide class of models (including

ones in which the marginal cost of production increases without bound along with economic

activity). As illustrated in Figure 2, the concavity is, in some sense, extreme: The curve is

asymptotically horizontal for high levels of economic activity and asymptotically vertical for

low levels of economic activity.

The intuition behind these characterizations is quite simple. The model-implied Phillips

curve uses a measure of inflation that is based on the rate of growth of the true (or Konüs

(1924)) price index that fully incorporates substitution effects. When economic activity and

inflation are high, consumers allocate almost all of their spending to (the cheaper) goods with

sticky prices. The Phillips curve looks like one from a world in which prices are constant over

time - that is, horizontal. When economic activity and inflation are low, consumers allocate

almost all of their expenditures to (the cheaper) goods with flexible prices. The Phillips

curve looks like one from a world without nominal rigidities - that is, vertical.

The concavity may seem to contravene the (limited) statistical evidence noted above.

However, there is a critical measurement issue. The theoretical characterizations described

in the preceding paragraph apply to what I will call the true Phillips curve, since it is based on

the true price index. I also derive the models’ implications for the Laspeyres-Phillips curve, in

which inflation is measured (like the (unchained) Consumer Price Index in the US) using the

rate of increase of a Laspeyres price index. I find that the Laspeyres-Phillips curve is typically

concavo-convex (and, in a plausible numerical example, convex whenever inflation is positive).

Like the true Phillips curve, it is asymptotically vertical for low levels of economic activity

and low levels of inflation. But, as depicted in Figure 3, it is also asymptotically vertical for

unemployment is used as the measure of economic activity) for over forty years.

3



-0
.1

0.
0

0.
1

0.
2

0.
3

-6-4-202

Fi
gu

re
 2

: T
he

 T
ru

e 
Ph

ill
ip

s 
C

ur
ve

 
in

fla
tio

n 
(%

)

x

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

U
nd

er
 th

e 
tr

ue
 P

hi
lli

ps
 c

ur
ve

, i
nf

la
tio

n 
is

 a
 c

on
ca

ve
 in

cr
ea

si
ng

 fu
nc

tio
n 

of
 re

al
 e

co
no

m
ic

 a
ct

iv
ity

 (l
ab

el
le

d 
x)

. 

Its
 s

lo
pe

 c
on

ve
rg

es
 to

 z
er

o 
as

 x
 g

ro
w

s 
to

 in
fin

ity
, a

nd
 to

 in
fin

ity
 a

s 
x 

fa
lls

 to
 it

s 
lo

w
es

t l
ev

el
.

4



-0
.1

0.
0

0.
1

0.
2

0.
3

-50510

Tr
ue

 P
hi

llip
s 

C
ur

ve
La

sp
ey

re
s-

Ph
illi

ps
 C

ur
ve

 
Fi

gu
re

 3
: T

he
 T

ru
e 

Ph
ill

ip
s 

C
ur

ve
 a

nd
 th

e 
La

sp
ey

re
s-

Ph
ill

ip
s 

C
ur

ve

 
in

fla
tio

n 
(%

)

x

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

U
nl

ik
e 

th
e 

tr
ue

 P
hi

lli
ps

 c
ur

ve
, t

he
 L

as
pe

yr
es

-P
hi

lli
ps

 C
ur

ve
 is

 c
on

ve
x 

fo
r s

uf
fic

ie
nt

ly
 la

rg
e 

le
ve

ls
 

of
 re

al
 e

co
no

m
ic

 a
ct

iv
ity

 (x
) a

nd
 c

on
ca

ve
 o

nl
y 

fo
r s

uf
fic

ie
nt

ly
 lo

w
 le

ve
ls

 o
f e

co
no

m
ic

 a
ct

iv
ity

.

5



high levels of economic activity and high levels of inflation. Intuitively, when real economic

activity is high, high flexible-goods inflation translates into high overall (Laspeyres) price

inflation. This effect is not present with the true inflation rate, because households respond

to high flexible firm prices by substituting toward sticky firms with low prices.

Thus, the substitution bias in standard measures of inflation mean that estimated Phillips

curves may display convexity that is not present in the true Phillips curves. This error in

estimation could lead to errors in policy. Yellen and Akerlof (2006) point out that, with a

convex Phillips curve, it is optimal to run the economy “hot” on average. I show that with

a concave Phillips curve, their argument is reversed. The central bank can only offset an

adverse shock to economic activity by incurring a large increase in inflation. As a result, it

is optimal for the average level of economic activity to be low relative to what would prevail

in a world without pricing frictions.

The rest of the paper is organized as follows. In the next section, I set forth a simple

model of pricing rigidities in which, a la Dixit-Stiglitz (1977), households have common CES

preferences over a large number of goods. I use the model to define the marginal cost Phillips

curve, which maps the average real marginal cost of production into the true inflation rate.

(As is true throughout the paper, I focus on the short-run or within-period Phillips curve.)

In Section 3, I analyze the curvature properties of the marginal cost Phillips curve. When

the households’ elasticity of substitution is larger than 2, the marginal cost Phillips curve

is concave, with a slope that nears infinity for low marginal costs and nears zero for high

marginal costs. In Section 4, I add an abstract activity cost function that maps the level of

economic activity into a corresponding real marginal cost. By combining this function with

the marginal cost Phillips curve, I obtain the real activity Phillips curve, which maps the level

of economic activity into the true inflation rate. A key result is that, under relatively weak

conditions on the activity cost function, the real activity Phillips curve inherits the concavity

properties of the marginal cost Phillips curve.4 In Section 5, I explore the properties of

4One of these “relatively weak” conditions is differentiability. Benigno and Eggertsson (2023) present a
New Keynesian model in which the Phillips curve is nonlinear in a first-order approximation around the
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the Laspeyres-Phillips curve and show that, under the same conditions on the activity cost

function, it is asymptotically vertical for sufficiently high levels of economic activity. Section

6 discusses policy considerations. Section 7 concludes.

All proofs are in the Appendix.

2 The Marginal Cost Phillips Curve

This section defines the marginal cost Phillips curve. The idea is that a policymaker can

vary the average real marginal cost of production mt through different policy choices at date

t. Given two key assumptions on firm pricing behavior, there is a policy-invariant function

that maps mt into the realized inflation rate. It is this relationship that will be termed the

marginal cost Phillips curve.

2.1 Firm Pricing

I focus on two periods indexed by {t− 1, t}, although the economy may well last indefinitely.

There is a fixed population of firms (and so there is no entry or exit). Let the distribution

of prices across firms in period τ ∈ {t− 1, t} be given by Fτ . Then, the price index in period

τ is defined to be:

Pτ ≡ (

∫ ∞
0

p1−ηdFτ (p))
1

1−η , η > 1. (1)

This is the true (or Konüs (1924)) price index in a Dixit-Stiglitz (1977) model economy in

which households have CES preferences over a continuum of goods. Here, the parameter η

represents the typical household’s elasticity of substitution across the various goods in the

economy. The incorporation of substitution effects in the definition of Pτ is critical in what

steady-state. The non-differentiability emerges because of a kink in the aggregate labor supply curve driven
by what they term “wage norms” that prevent wages from adjusting upward in response to excess labor
demand (or under-supply). Importantly, these norms apply to all workers in all occupations. Hence, there is
no way for the economy to substitute to “non-kinked” forms of labor (such as, for example, so-called travel
nurses). Benigno and Eggertsson do not study the curvature properties of the Phillips curve in their model
away from the steady-state.
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follows.

In period t, a fraction θt of firms are sticky and a fraction (1 − θt) of firms are flexible.

Each sticky firm sets its period t price equal to its period (t − 1) price. The prices among

the sticky firms conform to the following assumption.

Assumption 1: The distribution of period (t− 1) prices among the sticky firms is Ft−1

- that is, the same as the overall distribution of prices in period (t− 1).

Assumption 1 is exactly satisfied in the Calvo (1983) model, in which firms are randomly

assigned to being sticky or flexible, or in the generalizations of that model described most

recently by Auclert, et al. (2024, p. 131-32). It would be approximately satisfied in menu

cost models a la Gertler and Leahy (2008) or Midrigan (2011) in which firms’ decisions about

whether to change prices is shaped primarily by large idiosyncratic shocks, as opposed to

current aggregate conditions.5

The flexible firms set their period t prices as follows. Let Mt be the average nominal

marginal cost across all firms. Consider a flexible firm ω. The firm ω sets its period t price

equal to:

pωt = Mtξωt (2)

where the cross-firm distribution of ξωt, conditional on the firm being flexible, is given by Gt.

The pricing behavior in (2) is readily justified as being optimal if the firm is myopic. More

generally, though, the firm may anticipate that its price will remain fixed in future periods.

In that context, the pricing behavior (2) is optimal if the firm expects that average nominal

marginal cost will grow at a constant rate over time. The term ξωt can then be viewed as

capturing a host of firm-specific factors, including its prediction of the growth rate of average

nominal marginal cost, its current/expected relative productivities, its demand elasticity, and

any output subsidies (being used to offset monopolistic distortions).

5Conversely, Assumption 1 is not a good description of what happens in the models of Caplin and Spulber
(1989) or Golosov and Lucas (2007). Those models imply (arguably counterfactually) that the Phillips curve
is vertical (in the case of Caplin and Spulber), or nearly so (in the case of Golosov and Lucas).

8



Define the average real marginal cost in the economy in period t as:

mt ≡
Mt

Pt
.

where Pt is the price index in period t as defined above. Then, I assume that Gt and θt are

exogenous in the following sense.

Assumption 2: It is possible for policymakers to make choices that vary average real

marginal cost mt without affecting the fraction θt or the distribution Gt.

Assumption 2 says that there are variations in (monetary) policy that impact overall

period t aggregate demand and thereby mt. But those policy choices do not affect the fraction

of flexible firms or the firm-specific factors that influence their period t pricing relative to the

current level of average nominal marginal cost Mt.

2.2 Deriving the Marginal Cost Phillips Curve

In this subsection, we use the price index to derive a relationship, called the marginal cost

Phillips curve, between mt and inflation in period t. The restriction is invariant to any policy

changes that satisfy Assumption 2.

The price index in period t was defined as:

Pt = (

∫ ∞
0

p1−ηdFt(p))
1

1−η .

where Ft is the distribution of prices across firms in period t. We can split the integral into

two pieces:

P 1−η
t = θt

∫ ∞
0

p1−ηdF sticky
t (p) + (1− θt)

∫ ∞
0

p1−ηdF flex
t (p).

Here, F sticky
t is the distribution of prices across sticky firms, and F flex

t is the distribution of

prices across flexible firms.

9



From Assumption 1, we know that F sticky
t = Ft−1 and so:

∫ ∞
0

p1−ηdF sticky
t (p) =

∫ ∞
0

p1−ηdFt−1(p) = P 1−η
t−1 .

From Assumption 2, we know that:

∫ ∞
0

p1−ηdF flex
t (p) = M1−η

t

∫ ∞
0

ξ1−ηdGt(ξ)

= P 1−η
t m1−η

t ξ̄1−ηηt

where mt was defined above to be the average real marginal cost Mt

Pt
. Here, the final term ξ̄ηt

summarizes the impact of the exogenous distribution Gt on prices:

ξ̄ηt ≡ (

∫ ∞
0

ξ1−ηdGt(ξ))
1

1−η .

It follows from these observations that we can rewrite the price index in period t as:

P 1−η
t = θtP

1−η
t−1 + (1− θt)P 1−η

t m1−η
t ξ̄1−ηηt (3)

Let the gross inflation rate be defined as:

πt ≡ (
Pt
Pt−1

)

Dividing through (3) by P 1−η
t−1 , we get:

π1−η
t = θt + (1− θt)π1−η

t m1−η
t ξ̄1−ηηt .

We can then re-arrange to obtain the marginal cost Phillips curve.

πt = (
1− (1− θ)ξ̄1−ηηt m1−η

t

θ
)1/(η−1) (4)

10



2.3 Meaning of the Marginal Cost Phillips Curve

Why is the marginal cost Phillips curve important? Recall that the variable mt is the average

real marginal cost of production:

mt =
Mt

Pt
.

The variable mt is real because its units are in terms of consumption goods not dollars.

Hence, the marginal cost Phillips curve forges a (non-classical) connection between the real

side of the economy and inflation.

The marginal cost Phillips curve is entirely a product of price stickiness. In particular,

suppose θt were to equal zero. Then (3) becomes:

P 1−η
t = P 1−η

t m1−η
t ξ̄1−ηηt

The frictionless monopolistic competition among firms then pins down average real marginal

cost to have the same value:

1/ξ̄ηt

regardless of inflation. Accordingly, we shall refer to:

mflex
t ≡ 1

ξ̄ηt
(5)

as the flexible benchmark value for mt.

3 Curvature of the Marginal Cost Phillips Curve

This section develops the curvature properties of the marginal cost Phillips curve derived in

the prior section:

Γ(m) ≡ (
1− (1− θ)m1−η ξ̄1−ηη

θ
)

1
η−1 . (6)

11



Note that there are no time subscripts in (6). I drop these in the remainder of this section

as the past and future play no (further) role in the analysis.

3.1 High and Low Levels of Real Marginal Cost

The first two propositions concern the properties of the marginal cost Phillips curve when

real marginal cost is near its lowest possible level and when real marginal cost is very high.

They establish that, in these contexts, the marginal cost Phillips curve is “very” concave,

in the sense that its slope is infinite when (gross) inflation is zero and its slope is near zero

when inflation is near its maximal level.

Proposition 1. The marginal cost Phillips curve Γ implies that m must satisfy a lower

bound:

m ≥ mLB(θ) ≡ (1− θ)1/(η−1)

ξ̄η
.

If η > 2, the slope of the marginal cost Phillips curve approaches infinity as m nears mLB(θ).

If the real marginal cost is low, then the flexible firms set relatively low prices compared

to the sticky firms. In the extreme, consumers buy goods only from the flexible firms. The

economy acts as if prices are fully flexible and so the marginal cost Phillips curve is vertical.

Note that mLB(θ) is close to mflex when θ is small.

The next proposition shows that the marginal cost Phillips curve has a finite horizontal

asymptote for large values of m.

Proposition 2. As m nears infinity, then Γ(m) approaches an upper bound:

πmax(θ) ≡ (
1

θ
)1/(η−1)

and its slope nears zero:

limm→∞Γ′(m) = 0

12



The upper bound πmax(θ) converges to infinity as θ approaches zero (that is, for economies

that are nearly fully flexible).

When real marginal costs are high, the flexible firms’ prices are high relative to those of

the sticky firms. The consumers switch to buying from the latter, and the economy behaves

as if all prices are sticky. As a result, inflation is independent of cost conditions, and the

Phillips curve becomes horizontal.

3.2 Global Properties

We have seen that the marginal cost Phillips curve is increasing and concave when the average

real marginal cost is near its lowest level and when it is near infinity. This subsection proves

that, if η ≥ 2, these properties are valid for the entire domain of the curve.

Proposition 3. The marginal cost Phillips curve is strictly increasing and, if η ≥ 2, strictly

concave over its domain (mLB(θ),∞).

As m rises, the flexible monopolists set higher prices and so inflation rises. But this effect

is dampened by the flexible monopolists’ loss of market share to the monopolists with fixed

prices. If η ≥ 2, the loss of market share is sufficiently large to ensure that the curve is

globally concave.

3.3 Local to a Flexible Benchmark

Recall from (5) that m = mflex = ξ̄−1η when prices are flexible. This subsection sets forth

the properties of the marginal cost Phillips curve in the neighborhood of this flexible price

benchmark. This local characterization is analogous to the textbook linearization of the New

Keynesian Phillips curve.

Proposition 4. The marginal cost Phillips curve implies that the gross inflation rate is 1

if m = mflex. When m = mflex and ξ̄η = 1, the slope of the marginal cost Phillips curve is

Γ′(mflex) = (1−θ)
θ
.

13



As in the standard New Keynesian model, the (net) inflation rate is zero when real

marginal cost is the same as in a fully flexible world. The slope of the Phillips curve is an

increasing function of price flexibility, and is close to infinity when the economy is nearly

fully flexible.

4 Curvature of the Real Activity Phillips Curve

The previous section describes the curvature properties of the marginal cost Phillips curve.

However, it is more typical to think of the Phillips curve as describing a relationship between

measures of real economic activity and inflation. This section uses the notion of a policy-

invariant activity cost function to translate the results about the real marginal cost Phillips

curve into characterizations of the real activity Phillips curve.

4.1 Building Up the Real Activity Phillips Curve

Let xt be a measure of real activity in period t that (like an employment gap) takes on values

over the entire real line. There is an activity cost function:

Φt : R→ (0,∞)

that maps real activity xt into average real marginal cost mt. I make the following exogeneity

assumption about Φt :

Assumption 3: It is possible for policymakers to make choices that vary xt without

affecting the activity cost function Φt, the fraction θt of sticky firms, or the distribution Gt

of firm-specific pricing factors.

Mathematically, I assume the activity cost function Φt is twice differentiable over its

domain and that its derivative is everywhere positive (although it can become vanishingly

small for low or high values of xt). I assume too that Φt is onto, meaning that for any

14



mt ∈ (0,∞), there exists xt ∈ R such that mt = Φt(xt). There are no restrictions on the

second derivative of Φt - the activity cost function can be convex or concave.6

Here’s one example of how Φt works. Consider an economy in which labor markets are

competitive. Let production be such that Nt units of labor translate into Nt units of output,

and that there is a representative agent whose disutility of labor takes the form:

v(N) =
Nγ+1

1 + γ
, γ > 0

Then, assuming that there are no income effects, optimality in a representative household

setting implies that:

Wt

Pt
= Nγ

t

Let nt = ln(Nt). Then, the function Φ(nt) = exp(γnt) satisfies the conditions described

above. Note that its slope is unbounded from above and is arbitrarily near zero for large

negative values of n.

I next define the real activity Phillips curve PC. (As in Section 3, I suppress the time

subscripts in the remainder of this section as inessential.) Recall that mflex = ξ̄−1η is the real

marginal cost when all firms are flexible and that for any θ, the real marginal cost cannot

fall below:

mLB(θ) ≡ (1− θ)1/(η−1)

ξ̄η
.

Define:

xLB(θ) ≡ Φ−1(mLB(θ))

to be the level of economic activity associated with the lowest real marginal cost. (Note that

xLB(θ) is well-defined because Φ is onto.)

Then, the real activity Phillips curve is defined as the composition of the activity cost

6I abstract from the possible effects of inflation on this mapping.
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function Φ and the marginal cost Phillips curve:

PC :(xLB(θ),∞)→ R+

PC(x) = Γ(Φ(x))

The idea here is that Φ maps a level of economic activity x into real marginal cost m, and

that translates into inflation via Γ. As noted above, real activity is meant to proxy for the

(log of the) host of possible quantity variables that are typically used in Phillips curves. The

goal in what follows is to learn when (that is, under what condition on Φ) the prior results

about Γ translate into similar characterizations about PC.

4.2 Low and High Levels of Economic Activity

This section uses Propositions 1 and 2 to show that the real activity Phillips curve is “very”

concave at high and low levels of economic activity.

Proposition 5 proves that there is a lower bound on real activity, and that the Phillips

curve is close to vertical when real activity is near that lower bound.

Proposition 5. The real activity Phillips curve PC satisfies PC(xLB(θ)) = 0 and if η > 2,

the derivative of the Phillips curve approaches infinity as x nears xLB(θ).

What about for high levels of economic activity? Regardless of how convex Φ is, the real

activity Phillips curve is asymptotically horizontal when x is large.

Proposition 6. Suppose that limx→∞Φ′(x) exists as an element of the extended reals (so it

is possibly infinite). Then:

limx→∞PC(x) = πmax(θ)

limx→∞PC
′(x) = 0

16



Thus, like the marginal cost Phillips curve, the real activity Phillips curve is nearly vertical

for low levels of economic activity and nearly horizontal for high levels of economic activity.

4.3 Global Curvature Properties

The real activity Phillips curve is strictly increasing, because it is the composition of two

strictly increasing functions. The following proposition provides a sufficient condition on the

activity cost function Φ for the real activity Phillips curve PC to inherit the concavity of the

marginal cost Phillips curve Γ.

Proposition 7. Suppose η ≥ 2 and that:

Φ′′(x)

Φ′(x)
< 2

Φ′(x)

Φ(x)
(7)

for all x ∈ (0,∞). Then the real activity Phillips curve PC is concave over its domain

(xLB(θ),∞).

The condition in Proposition 7 applies to a wide range of functions, including the follow-

ing.

Corollary 1. Suppose Φ(x) = Cexp(γx), γ > 0, C > 0. Then:

Φ′′(x)

Φ′(x)
< 2

Φ′(x)

Φ(x)
.

5 The Laspeyres-Phillips Curve

The argument in the last two section relies on the impact of substitution effects within the

price index. But those effects are imperfectly measured in the official data. This section

considers the curvature of a (real activity) Laspeyres-Phillips curve. For this curve, the

inflation measure is constructed using a Laspeyres price index that systematically understates
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substitution effects. Unlike the true real activity Phillips curve, the real activity Laspeyres-

Phillips curve is near-vertical for high levels of economic activity.

I simplify the analysis by assuming that all flexible firms in period t set prices so that

their markups are equal to zero, which means that that the distribution Gt of firm pricing

factors (the ξ’s) assigns a unit mass to 1. This restriction is readily relaxed, but doing so

adds notation without adding insight.

5.1 Laspeyres Inflation

We return to the same pricing model described in Section 2. As before, let Fτ be the cross-

firm distribution of prices in period τ, where τ ∈ {t−1, t}. In addition, let F̂t be the cross-firm

joint distribution of (pt−1, pt).

We define the Laspeyres inflation rate using period (t − 1) quantities as the relevant

bundle. Hence, the period (t − 1) Laspeyres price index is the same as the true price index

(1) in period (t− 1) :

PL
t−1 = (

∫ ∞
0

(
p

Pt−1
)−ηpdFt−1(p))

=

∫∞
0
p1−ηdFt−1(p)

P−ηt−1

= Pt−1.

The period t Laspeyres price index is then given by:

PL
t =

∫ ∞
0

∫ ∞
0

(
p

Pt−1
)−ηp′dF̂t(p, p

′).

Here, we need to use the joint distribution of prices, because the period t price index is

calculated using period (t− 1) quantities.

As in Section 2, a fraction θt of firms in period t set their prices to be the same as in the

prior period. Since Gt is a point mass at 1, the remaining fraction (1− θt) of firms in period

18



t set their prices equal to (nominal) marginal cost Mt. Hence:

PL
t = θt

∫ ∞
0

(
p

Pt−1
)−ηpdFt−1(p) + (1− θt)Mt

= θtPt−1 + (1− θt)Mt.

It follows that we can define the (gross) Laspeyres inflation rate as:

πLt ≡
PL
t

PL
t−1

= θt + (1− θt)
Mt

Pt−1
(8)

We can rewrite the last term of (8) as:

Mt

Pt

Pt
Pt−1

.

Critically, Pt represents the true price index described in Section 2, not the Laspeyres price

index (there is no difference between the two in period (t − 1)). Then, the gross Laspeyres

inflation rate satisfies:

πLt = θt + (1− θt)mtπt (9)

As in Section 3, the variable mt is the real marginal cost in period t, and the term πt is the

true (gross) rate of inflation.

5.2 The Laspeyres-Phillips Curve

In this subsection, I provide a formal definition and characterization of the Laspeyres-Phillips

Curve. Throughout the remainder of Section 5, I drop the time subscripts as they are

inessential.

From Section 3, we know that the true inflation rate π satisfies:

π = Γ(m)
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where:

Γ(m) = (
(1− (1− θ)m1−η)

θ
)

1
η−1

is the marginal cost Phillips curve. It follows that the Laspeyres inflation rate can be written

as:

πL = ΓL(m) ≡ θ + (1− θ)mΓ(m)

Intuitively, the gross Laspeyres inflation rate is defined in (9) as a weighted average of

1 (the inflation rate for sticky price goods) and the inflation rate (mΓ(m)) for flexible price

goods. The weights are, by definition, fixed. Hence, the substitution bias in Laspeyres

inflation implies that it behaves like a product of real marginal cost and true inflation. When

mt is near its lower bound, this product is highly sensitive to mt (just like true inflation).

However, when real marginal cost is large, the product is a linear function of mt. This linearity

means that, unlike the true inflation rate, the Laspeyres inflation rate is unbounded from

above.

We now turn to the construction of a real activity Phillips curve defined in terms of the

Laspeyres inflation rate. Because the average real marginal cost m is defined in terms of

the true (not Laspeyres) price index, the same policy-invariant activity cost function Φ as in

Section 4 maps real economic activity x into average real marginal cost m. Then, we define

the Laspeyres-Phillips curve as the composition of ΓL and Φ:

PCL : (xLB(θ),∞)→ (0,∞)

PCL(x) = ΓL(Φ(x))

where:

xLB(θ) ≡ Φ−1(mLB(θ)) = Φ−1((1− θ)
1

η−1 ).

The domain of PCL is the same as the domain of the true real activity Phillips curve PC.

What differs is how the Laspeyres-Phillips curve PCL maps real economic activity into an
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inflation rate with substitution bias.

The following proposition establishes that the Laspeyres-Phillips curve and the true

Phillips curve are the same up to first order in a neighborhood of a flexible price bench-

mark. It justifies the typical practice of treating the two as equivalent.

Proposition 8. Let xflex = Φ−1(mflex), where mflex = 1 (since ξ̄η was assumed to equal 1

in this section). Then:

PCL(xflex) = PC(xflex) = 1

PCL′(xflex) = PC ′(xflex) =
(1− θ)
θ

Φ′(xflex)

Hence, the properties of the curves are the same for x sufficiently close to xflex. However,

the substitution bias in PCL matters considerably for other values of x. Proposition 6 showed

that the true Phillips curve is near-horizontal for high levels of economic activity, even if the

activity cost function Φ is nearly vertical. But the result is a consequence of the upper bound

on true inflation derived in Proposition 2. As we have seen, there is no such upper bound on

Laspeyres inflation, and, as the following proposition7 shows, the Laspeyres-Phillips curve

inherits the verticality of Φ for large values of x.

Proposition 9. Suppose that η > 2 and that:

limx→∞Φ′(x) =∞.

Then, the Laspeyres-Phillips curve PCL is near-vertical when economic activity is high or

7In a recent paper, Blanco, Boar, Jones, and Midrigan (2024) report that the Phillips curve is convex in
a parameterized version of a sophisticated menu cost multi-product model. Their intuition for their result is
that more firms change prices in response to larger monetary shocks, which is a force that I do not capture
in my analysis. Importantly, though, they use a Laspeyres measure of inflation, rather the one based on the
true price index. The substitution effects that I emphasize would tend to concavify the Phillips curve in their
model relative to, for example, what they plot on page 38.
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when it is low:

limx→∞PC
L′(x) =∞

limx→xLB(θ)PC
L′(x) =∞

The following proposition considers the same class of convex activity cost functions as in

Corollary 1. In combination with Proposition 7, that corollary showed that the true Phillips

curve PC is globally concave for any such Φ. In contrast, Proposition 9 implies that the

(mismeasured) Laspeyres-Phillips curve PCL is necessarily (highly) convex at high levels of

economic activity. Proposition 10 demonstrates that the area of convexity includes xflex (the

level of economic activity in a fully flexible economy) if:

• goods demand is relatively inelastic (η sufficiently small)

• prices are not all that flexible (θ is sufficiently large).

Proposition 10. Suppose Φ(x) = exp(γx), γ > 0. The Laspeyres-Phillips curve PCL is

convex at xflex(= 0) if (η, θ) satisfy:

1 > (η − 2)
(1− θ)
θ

.

5.3 Numerical Example

The following numerical example illustrate the differences between the true (real activity)

Phillips curve and the mismeasured Laspeyres-Phillips curve. Consider a parameterization

in which:

η = 6

Φ(x) = exp(2x)
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The setting of η corresponds to a markup of 20%. If we interpret exp(x) as labor input, then

the specification of Φ translates into a Frisch elasticity equal to 1/2.

It remains to parameterize θ. At the flexible benchmark value of xflex = 0, the slope of

either Phillips curve is:

2
(1− θ)
θ

Using vastly different methods, Blanchard, et al. (2015) and Hazell, et al. (2022) both

estimate that the slope of the Phillips curve in the US is around -0.3 with respect to unem-

ployment. Given a labor force participation rate of around 0.65, this unemployment slope

translates into an employment slope of about 0.46. Accordingly, I set θ = 0.81.

Figure 4 shows the difference between the true Phillips curve and the Laspeyres-Phillips

curve. As suggested by Proposition 10, the Laspeyres-Phillips curve is convex whenever

inflation is positive (since 1 > (η − 2) (1−θ)
θ

= 0.92). The true Phillips curve is concave over

its full domain. Figure 5 shows that, as indicated by Proposition 9, there is also a region of

concavity for the Laspeyres-Phillips curve for low levels of economic activity.

Figure 4 also illustrates that the curvature of the Laspeyres-Phillips curve is not all that

pronounced for low levels of inflation. Recall that the slope of the curve is set to be 0.46

when inflation is zero. The curve is still less than 5% inflation when x = 0.1, suggesting that

its slope is rising only gradually.

In contrast, the curvature of the true Phillips curve is much more striking. Inflation is

well under 5% when x = 0.1, meaning that the slope of the curve has fallen sharply. In this

sense, the main take-away from Figures 4-5 is that, for this parameterization, substitution

bias leads the Phillips curve to appear much less concave than it is in reality.

6 Policy Considerations

This section discusses why the curvature of the true Phillips curve may (or may not) matter

for monetary policy.
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6.1 Optimal Average Slack

This subsection shows that the concavity of the true Phillips curve has an important policy

implication: if average inflation equals the central bank’s target, the the activity gap is

negative on average. The argument is the reverse of one advanced by Yellen and Akerlof

(2006) for convex Phillip curves.

Consider a central bank which has a policy instrument with which to vary the level of

economic activity x. Suppose too that the (true) Phillips curve PC is affected by additive

shocks, so that inflation in any period is given by:

π = PC(x) + ε.

Here, ε can be positive or negative. The central bank has an inflation target πTAR. It is

unable to commit to future policy choices. Hence, it seeks to find a level x of economic

activity, conditional on its observation of ε, so as to minimize the quadratic objective:

(π − πTAR)2 + λ(x− xflex)2

where xflex is the level of real activity in an economy in which all prices are flexible. Given

any ε, the central bank chooses x∗(ε) so as to satisfy the condition:

(π∗(ε)− πTAR) =
λ(xflex − x∗(ε))
PC ′(x∗(ε))

,

where π∗(ε) = PC(x∗(ε)) + ε. Notice that the central bank’s optimality condition implies

that inflation is above target if and only if there is a negative activity gap (Qvigstad (2006)).

So far, I have imposed no probability structure on the ε’s. However, the following propo-

sition considers an arbitrary sequence (ε1, ..., εN) such that the implied average inflation is
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at target:

N−1
N∑
n=1

π∗(εn) = πTAR.

It shows that for any such sequence, the average activity gap (x∗−xflex) is negative (positive)

if PC is concave (convex).

Proposition 11. Consider (ε1, ..., εN) such that (π∗(εn), x∗(εn))Nn=1 has at least two distinct

values, satisfies the central bank’s optimality condition:

(π∗(εn)− πTAR) =
λ(xflex − x∗(εn))

PC ′(x∗(εn))
, n = 1, ..., N

and the average inflation is equal to target:

N−1
N∑
n=1

π∗(εn) = πTAR.

Then N−1
∑N

n=1(x
∗(εn) − xflex) > 0 if PC ′′ > 0 and N−1

∑N
n=1(x

∗(εn) − xflex) < 0 if

PC ′′ < 0.

The intuition behind the proposition is simple. When the Phillips curve is concave, it is

expensive in inflation terms to vary x when it is low and cheap to vary x when it is high.

As a consequence, the central bank is willing to tolerate large negative activity gaps, and so

x is low on average relative to xflex. A policymaker who thought that the Phillips curve is

convex would run the argument in reverse to reach the opposite conclusion.

6.2 Measuring Inflation: A Possible Caveat

Economists have suggested a number of costs of inflation. For example, if prices are sticky,

non-zero inflation leads to an inefficient dispersion in relative prices (Woodford (2001, p. 22-

23)). Shocks to inflation also lead to unanticipated re-allocations of wealth between parties

who have agreed to an employment or financial contract that is risk-free in nominal terms.
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For these kinds of purely economic costs, the correct measure of inflation is based on the

Konüs price index.

However, monetary policymakers are often concerned about the linkage between realized

inflation and inflation expectations. Here it is less clear that the relevant inflation measure

should be based on the Konüs price index. Thus, Figure 4 illustrates that an economy with

relatively similar true inflation rates might have quite different Laspeyres inflation rates.

Would agents’ inflation expectations be stable across these different inflation states, because

the growth rate of their true cost of living is not actually changing all that much? Or would

agents’ inflation expectations respond more dramatically to the variation in Laspeyres infla-

tion? An affirmative answer to the latter question would presumably provide a justification

for policymakers viewing the trade-off between economic activity and inflation through the

lens of the Laspeyres-Phillips curve.

7 Conclusions

The main contribution of this paper is theoretical. It demonstrates that, from the perspective

of the class of canonical models used in this paper, Figure 2 is the correct way to draw the

Phillips Curve and Figure 1 is not. The paper also shows that substitution biases in official

measures of inflation could lead the estimated Phillips Curve to look more like Figure 1 rather

than the correct Figure 2.

There are at least of couple of ways to build on the results in this paper. The first has

to do with data. The paper underscores the importance of incorporating substitution effects

between sticky and flexible price goods in building appropriate measures of inflation for use

by macroeconomists and policymakers. Chained price indices (reported in the US since the

beginning of the century) are a potentially important step forward in this regard. But, given

the costs of collecting item-specific expenditure data, the chaining is at a relatively high

level8 and so is not well-designed to capture substitution patterns between goods/services

8For details, see https://www.bls.gov/cpi/additional-resources/chained-cpi-questions-and-
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produced by sticky versus flexible firms. The paper shows that it may be important to build

up model-consistent measures of inflation from disaggregated data on prices, and use those

model-consistent measures as the basis of analysis and policy.

The second has to do with theory. The results in this paper are limited to settings in

which households have identical CES preferences and (implicitly) consume the same bundle

of underlying non-durable goods and services. It would be useful, although far from trivial,

to extend the analysis to include other preferences and to allow for taste-driven and wealth-

driven differences in consumptions of (potentially durable) goods.

answers.htm#Question 4. It is worth emphasizing that chaining at a more disaggregated level may
be more prone to the well-known of problem of chain drift (see, for example, Diewert (2021)).
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Appendix

This appendix contains the proofs of the various propositions.

Proof of Proposition 1

The marginal cost Phillips curve is defined as:

Γ(m) = (
1− (1− θ)ξ̄ηm1−η

θ
)

1
η−1 .

This is only well-defined if the argument in the parentheses is positive, so that:

m1−η ≤ (1− θ)−1ξ̄−1η

or:

m ≥ mLB(θ).

The derivative of Γ is:

(
1−m1−η ξ̄1−ηη (1− θ)

θ
)1/(η−1)−1

(1− θ)
θ

ξ̄1−ηη m−η

= Γ(m)2−η
(1− θ)
θ

ξ̄1−ηη m−η.

Since η > 2, then limm→mLB(θ)Γ
′(m) =∞ because Γ(mLB(θ)) = 0.

Proof of Proposition 2

The formula for Γ(m) is:

Γ(m) = (
1−m1−η ξ̄1−ηη (1− θ)

θ
)1/(η−1)

≤ (
1

θ
)1/(η−1) = πmax(θ).
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It is straightforward to verify that since η > 1:

limm→∞Γ(m) = πmax(θ).

The derivative Γ′ can be calculated as:

Γ′(m) = Γ(m)2−ηm−η ξ̄η(1− θ)/θ.

Hence:

limm→∞Γ′(m) = 0.

Proof of Proposition 3

As in the proof of Proposition 1, the derivatives of Γ are given by:

Γ′(m) = Γ(m)2−η
(1− θ)
θ

ξ̄1−ηη m−η

This expression is positive for all m ∈ (mLB(θ),∞) and so Γ is strictly increasing. Since Γ is

strictly increasing, and since η ≥ 2, Γ′ is strictly decreasing.

Proof of Proposition 4

The formula for the marginal cost Phillips curve is:

Γ(m) ≡ (
1−m1−η ξ̄1−ηη (1− θ)

θ
)1/(η−1).

If we plug m = mflex into this formula, we get Γ(mflex) = 1.

The derivative of the marginal cost Phillips curve is:

Γ′(m) = Γ(m)2−η
(1− θ)
θ

ξ̄1−ηη m−η.
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Plugging in m = mflexand ξ̄η = 1 into this formula, we get:

Γ′(mflex) =
(1− θ)
θ

.

Proof of Proposition 5

It is readily seen that:

PC(xLB(θ)) = Γ(Φ(xLB(θ))) = Γ(mLB(θ)) = 0.

The derivative of PC is:

PC ′(x) = Γ′(Φ(x))Φ′(x).

We know from Proposition 1 that if η > 2:

limx→xLB(θ)Γ
′(Φ(x)) = limm→mLB(θ)Γ

′(m) =∞.

Since Φ is continuously differentiable and Φ′(xLB(θ)) > 0:

limx→xLB(θ)Φ
′(x) > 0.

It follows that:

limx→xLB(θ)PC
′(x) =∞.
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Proof of Proposition 6

The first limit can be rewritten as:

limx→∞PC(x) = limx→∞Γ(Φ(x))

= limm→∞Γ(m)

= πmax(θ).

The restriction on the limit of Φ′ ensures that the limit:

limx→∞PC
′(x) = limx→∞Γ′(Φ(x))Φ′(x)

is well-defined as an element of the extended reals. I claim that limit is zero. Suppose it is

instead k > 0. Then, there exists x∗ > 0 such that PC ′(x) ≥ k/2 for all x ≥ x∗. It follows

that for any y > x∗,(PC(y)−PC(x∗)) ≥ (k/2)(y−x∗). But this contradicts the earlier result

that:

limy→∞PC(y) = πmax(θ).

Proof of Proposition 7

The real activity Phillips curve PC is the composition of Γ and Φ. Hence:

PC ′′(x) = Γ′′(Φ(x))Φ′(x)2 + Γ′(Φ(x))Φ′′(x)

Since the first derivatives are positive, PC ′′(x) ≤ 0 iff:

Φ′′(x)

Φ′(x)
≤ −Γ′′(Φ(x))

Γ′(Φ(x))
Φ′(x). (10)

We now show that the inequality (7) implies the inequality (10). We have seen in the
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proof of Proposition 1 that the derivative Γ′(m) is given by:

Γ′(m) = Γ(m)2−η
(1− θ)
θ

ξ̄1−ηη m−η

and so:

Γ′′(m) = (2− η)Γ(m)1−ηΓ′(m)
(1− θ)
θ

ξ̄1−ηη m−η

− ηΓ(m)2−η
(1− θ)
θ

ξ̄1−ηη m−η−1.

The right hand side of (10) is then bounded below by:

−Γ′′(Φ(x))

Γ′(Φ(x))
Φ′(x) = (η − 2)Φ′(x)Γ(Φ(x))1−η

(1− θ)
θ

ξ̄1−ηη Φ(x)−η

+ ηΦ(x)−1Φ′(x)

= Φ′(x)[(η − 2)Γ(Φ(x))1−η
(1− θ)
θ

ξ̄1−ηη Φ(x)−η +
η

Φ(x)
]

≥ 2Φ′(x)

Φ(x)
since η ≥ 2

>
Φ′′(x)

Φ′(x)
from (7)

Hence, we have verified (10).

Proof of Corollary 1

The left-hand side ratio is:

γ

and the right-hand side ratio is:

2γ.

The right-hand side ratio is larger.
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Proof of Proposition 8

From the definition of xflex, Φ(xflex) = 1. Hence:

PC(xflex) = Γ(1) = 1

PCL(xflex) = θ + (1− θ)PC(xflex)Φ(xflex)

= 1.

The derivative of PC is given by:

PC ′(xflex) = Γ′(Φ(xflex))Φ′(xflex)

= Γ(Φ(xflex))2−ηΦ(xflex)−η
1− θ
θ

Φ′(xflex).

But Φ(xflex) = 1 and Γ(1) = 1.

The derivative of PCL is given by:

PCL′(xflex) = (1− θ)Φ′(xflex)PC(xflex) + (1− θ)Φ(xflex)PC ′(xflex)

= (1− θ)Φ′(xflex) + (1− θ)2Φ′(xflex)/θ

=
(1− θ)
θ

Φ′(xflex).

Proof of Proposition 9

The derivative is:

PCL′(x) = ΓL′(Φ(x))Φ′(x)

= Φ′(x)(1− θ)(Γ(Φ(x)) + Φ(x)Γ′(Φ(x)))

= Φ′(x)(1− θ)(Γ(Φ(x)) + Γ(Φ(x))2−ηΦ(x)1−η
(1− θ)
θ

)
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Since Φ is onto, and η > 2, limx→∞Φ(x)1−η = 0. It follows that:

limx→∞(Γ(Φ(x)) + Φ(x)Γ′(Φ(x))) = πmax(θ)

Hence:

limx→∞PC
L′(x) = limx→∞Φ′(x)(1− θ)πmax(θ) =∞.

On the other hand, since η > 2 and Γ(xLB(θ)) = 0 :

limx→xLB(θ)PC
L′(x)

= Φ′(xLB(θ))limx→xLB(θ)(Γ(Φ(x)) + Γ(Φ(x))2−ηΦ(x)1−η
(1− θ)
θ

)

=∞.

Proof of Proposition 10

Recall that PCL is given by:

θ + (1− θ)Γ(Φ(x))Φ(x)

The first derivative of PCL with respect to x is then given by:

Φ′(x)(1− θ)(Γ(Φ(x)) + Γ(Φ(x))2−ηΦ(x)1−η
(1− θ)
θ

)

Hence, the second derivative of PCL is given by:

PCL′′(x) = Φ′′(x)(1− θ)(Γ(Φ(x)) + Γ(Φ(x))2−ηΦ(x)1−η
(1− θ)
θ

)

+ Φ′(x)(1− θ)Γ′(Φ(x))Φ′(x)

+ Φ′(x)(1− θ)(2− η)Γ(Φ(x))1−ηΓ′(Φ(x))Φ′(x)Φ(x)1−η
(1− θ)
θ

+ Φ′(x)(1− θ)(1− η)Γ(Φ(x))2−ηΦ(x)−ηΦ′(x)
(1− θ)
θ

.
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Recall from Proposition 4 that:

Γ(1) = 1

Γ′(1) =
1− θ
θ

.

Define xflex = 0, so that Φ(xflex) = 1. It follows that:

Φ′(xflex) = γ

Φ′′(xflex) = γ2.

Hence:

PCL′′(x) = γ2(1− θ)(1 + (1− θ)/θ)

+ γ2((1− θ)/θ)(1− θ)

+ γ2
(1− θ)2

θ
(2− η)

(1− θ)
θ

+ γ2(1− θ)(1− η)
(1− θ)
θ

.

=
γ2(1− θ)

θ
(1 + (1− θ) +

(2− η)(1− θ)2

θ
+ (1− η)(1− θ))

=
γ2(1− θ)

θ
(1 +

(2− η)(1− θ)2

θ
+ (2− η)(1− θ))

=
γ2(1− θ)

θ
(1 +

(2− η)(1− θ)
θ

).

This is positive under the parametric conditions in the proposition.

Proof of Proposition 11

[I thank Eugenio Gonzalez Flores for his help in simplifying this proof.]

We will prove the proposition for the case in which PC ′′ < 0. Without loss of generality,
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assume:

x∗(εn) ≤ x∗(εn+1), n = 1, ..., N − 1.

The two hypotheses imply that:

0 = N−1
N∑
n=1

(xflex − x∗(εn))

PC ′(x∗(εn))
. (11)

Since there are at least two distinct values of x∗(εn), (11) implies that there exists N∗ < N

such that:

x∗(εn) ≤ xflex, n ≤ N∗

x∗(εn) > xflex, n > N∗.

and so we can rewrite (11) as:

0 = N−1[
N∗∑
n=1

(xflex − x∗(εn))

PC ′(x∗(εn))
−

N∑
n=N∗+1

(x∗(εn)− xflex)
PC ′(x∗(εn))

]. (12)

where both terms are positive. Since PC ′′ < 0, we know that;

PC ′(xflex) ≤ PC ′(x∗(εn)), n ≤ N∗

PC ′(xflex) > PC ′(x∗(εn)), n > N∗.

and so:

N∗∑
n=1

(xflex − x∗(εn))

PC ′(x∗(εn))
≤

N∗∑
n=1

(xflex − x∗(εn))

PC ′(xflex)

N∑
n=N∗+1

(x∗(εn)− xflex)
PC ′(x∗(εn))

] >
N∑

n=N∗+1

(x∗(εn)− xflex)
PC ′(xflex)

.
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Substituting into (12), we obtain:

0 < N−1[
N∗∑
n=1

(xflex − x∗(εn))

PC ′(xflex)
−

N∗∑
n=1

(x∗(εn)− xflex)
PC ′(xflex)

]

=
1

PC ′(xflex)
N−1

N∑
n=1

(xflex − x∗(εn))

which proves the proposition.
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