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1 Introduction

Migration is among the most effective ways for people to improve their economic conditions.

Yet, even within countries, migration rates are low compared to the spatial dispersion in

wages (Jia et al., 2023). Both information frictions and migration costs can depress mi-

gration, but research to date has been unable to disentangle their roles because migrants’

information is rarely observed. As a result, most studies place strong assumptions on work-

ers’ information and focus on estimating migration costs, sometimes interpreting them as

accounting for information frictions. Estimates of migration costs tend to be high, suggest-

ing that reducing physical barriers is key to facilitating migration. However, information

frictions affect migration differently than migration costs. Costs affect how beneficial a move

is, while information frictions affect how people choose a location and can lead to mistakes.

Hence, information frictions may limit the benefits of reducing migration costs, and increas-

ing access to information may be an important policy lever to improve workers’ location

choices.

We introduce a new method to separately identify the role of information frictions and mi-

gration costs in workers’ location choices. Our method is applicable even when the researcher

does not observe workers’ information. We use it to address several questions. What do work-

ers know about wages in different locations? How does allowing for incomplete information

affect estimates of how workers value economic opportunities elsewhere, and of the distri-

bution of migration costs? How would workers’ location choices change if their information

changed? How does workers’ information mediate the impact of changes in migration costs?

Our answers rely on a methodological contribution that allows both information frictions

and migration costs to vary flexibly between individuals, locations, and over time. We extend

the treatment of information sets in the moment inequality literature (Pakes, 2010; Pakes

et al., 2015) to multinomial logit models, static or dynamic, with arbitrarily large choice

sets and choice-specific fixed effects. We then apply our moment inequality estimator to

administrative data from Brazil, obtaining four main results. First, workers only have coarse

information about wages in most local markets. However, workers in areas with higher

internet access and larger populations have better information. Second, our estimates of

the migration elasticity to expected wages are three times larger than those obtained using

common estimation procedures, whereas our migration cost estimates are, on average, 21%

lower. Third, counterfactuals from our estimated model indicate workers’ migration rates and

welfare increase as their wage information becomes more precise. Fourth, the welfare impacts

of changes in migration costs (e.g., due to improvements in transportation infrastructure) are

biased upwards when the researcher assumes workers’ information is better than it truly is.
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Our baseline analysis relies on a static migration model that incorporates workers’ ex-

pected real wages, migration costs, amenities, and worker-by-location specific idiosyncratic

preferences as the drivers of their location choices. Workers differ in observable types that im-

pact their wages in each location. Types may be exogenous (e.g., determined by demograph-

ics) or chosen by the worker simultaneously with their location (e.g., sector or occupation).

Within each type, workers are heterogeneous in both their expectations of location-specific

wages and their idiosyncratic preferences for locations. We assume these preferences follow

a type I extreme value distribution but impose no restriction on the distribution of workers’

wage expectations, beyond assuming these are rational.1 While our baseline analysis focuses

on a static model, we show how to extend our moment inequality estimator to a dynamic

setting with one-time migration costs and forward-looking workers.

We model migration costs, amenities, and prices as terms unobserved by the researcher

that vary flexibly by origin, destination, and period, but not by worker type. They thus can

be represented by choice-specific fixed effects that vary over time and across workers depend-

ing on their prior location. This approach, in combination with the large set of labor markets

workers may choose from, implies a large number of parameters to estimate in most applica-

tions. Specifically, our empirical analysis features 50 locations, leading to 2,500 parameters

per year to account for migration costs alone. Estimating high-dimensional parameter vec-

tors using moment inequalities is computationally challenging when using standard inference

procedures (Canay et al., 2023). Our key methodological contribution is to show how to

calculate confidence intervals on each parameter in multinomial logit models featuring large

choice sets, choice-specific fixed effects, and unrestricted variation in information sets.

We derive a new type of moment inequality that we call bounding inequality. By com-

paring workers’ expected utility in two locations, we derive a moment equality that depends

on a concave function of the worker’s expected utility difference between both locations. We

derive an inequality from this moment by bounding this concave function from above by its

tangent at any chosen point. This inequality is linear in the worker’s expected utility differ-

ence between the two locations, offering two advantages to our estimation procedure. First,

it allows to substitute workers’ unobserved wage expectations with their observed ex-post

wage realizations. While this introduces workers’ expectational errors in the moment func-

tion, under the rational expectations assumption, they have mean zero conditional on any

variable in the worker’s information set, leaving the inequality unaffected. Second, it provides

a two-step estimation procedure that is feasible even in the presence of many choice-specific

fixed effects.2

1The model with endogenous types is a nested logit model, with each type corresponding to a nest. Thus,
the cross-location distribution of idiosyncratic preferences within a type follows a multinomial logit model.

2An existing literature has derived linear moment inequalities in the context of models with limited

2



The first step in our estimation procedure provides bounds for the parameter determining

how responsive migration is to expected wage differences. We derive a moment inequality

that compares the expected utility in two destinations for two workers with the same origin

but distinct wage types, in the spirit of Ho and Pakes (2014). This comparison is, thus,

specific to that origin, period, and two destinations, allowing to difference out migration costs,

amenities, and price levels. The resulting inequality depends only on idiosyncratic preferences

and the difference in expected wages between the two destinations for each type, multiplied

by a preference parameter. We prove this moment inequality partially identifies the true

parameter value as long as it conditions only on variables that belong to workers’ information

set, and we characterize the conditions under which point identification is achieved.

In the second step, we use the first-step estimates to derive moment inequalities that

bound the choice-specific fixed effects. We combine our bounding inequalities with odds-

based moment inequalities of the type initially introduced in Dickstein and Morales (2018)

and recently applied in Bombardini et al. (2023) and Dickstein et al. (2023). Our inequalities

yield bounds on the choice-specific fixed effects one at a time. Thus, instead of aiming to

estimate a joint confidence set for all choice-specific fixed effects, which is infeasible in settings

with many choices, we estimate one-dimensional confidence intervals for each fixed effect.

Intuitively, the second step uses moments expressed for a chosen origin and period that

compare the worker’s expected utility in two destinations. We thus infer the destinations’

relative attractiveness from the number of workers who choose them, conditional on the

expected wage difference. Intuitively, a migration choice that many workers make despite low

expected wage gains must be due to the destination offering higher amenities or lower prices.

Conversely, a migration choice expected to offer high wage gains but that is rarely observed

implies the destination has lower amenities or higher prices, or that migration costs specific

to that origin-destination are high. We prove our estimator generally partially identifies the

location-specific fixed effects and characterize the stricter conditions under which it point

identifies them.

We use a simulation exercise to illustrate our estimators’ performance relative to other

typical estimators. Consistent with our theoretical results, our moment inequalities success-

fully bound the true parameter values as long as the researcher correctly identifies a variable

that belongs to the agent’s information set. Furthermore, in some settings, our moment

inequalities point identify the parameters. Conversely, maximum likelihood estimators are

biased unless the researcher perfectly observes every agent’s entire information set. When

the maximum likelihood estimates are biased, these are often outside of the bounds of the

heterogeneity in idiosyncratic preferences (Pakes, 2010; Morales et al., 2019) or that assume their distribution
is bounded (Eizenberg, 2014). We do so in the context of a multinomial logit model.
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identified sets defined by our moment inequalities.

The second part of the paper uses our moment inequality estimator to study internal

migration across labor markets in Brazil. We use linked employer-employee data from the

Relação Anual de Informações Sociais (RAIS) and focus on a sample of workers with a

high school degree identified as male and white. We define local labor markets as sector-

region pairs and study the 1,000 markets formed by the largest 50 regions and 20 sectors.

We identify worker types as their sector of employment and build a proxy for sector-by-

region specific wages by estimating a wage function that depends flexibly on observed worker

characteristics, an unobserved individual ability in each sector (individual-by-sector specific

fixed effects), and a sector-by-location-by-period specific unobserved aggregate labor market

shifter. This wage function approximates realized wages well, with a median R2 of 0.83 across

sectors. Under our assumption that worker characteristics are portable across locations, the

migration decision only requires predicting the aggregate labor market shifter.3

Our empirical analysis provides three main conclusions. First, workers face substantial

and heterogeneous information frictions. We do not reject that workers know the wage

quartile to which each labor market belonged the previous year, but reject that workers in

general have more precise information than that. That is, we cannot reject that workers

can determine whether the previous year’s wages in a labor market are in the top 25% of

markets by its aggregate labor market-specific shifter, in the 50-75% bracket, in the 25-50%

bracket, or in the bottom 25%, but we can reject that they can classify markets according to

finer partitions. However, workers located in regions with a higher level of internet access or

larger populations have more precise information overall, and workers in general have more

accurate information about wages in nearby areas.

Second, the assumptions on workers’ information imposed in the prior literature yield

downward-biased estimates of the migration wage elasticity, and upward-biased migration

cost estimates. Our moment inequality confidence interval for the elasticity of migration

to expected wages is centered at 1.52, and does not include the Poisson Pseudo-Maximum

Likelihood (PPML) estimate of 0.5. In addition, our migration cost estimates (measured in

utility terms) are centered around values 21% lower than the PPML estimates.4

Third, the information frictions we infer also affect the partial-equilibrium welfare gains

3While our wage equation allows for worker-specific comparative advantage across sectors (as in Dix-
Carneiro, 2014), it does not include an unobserved (to the researcher) location-specific individual effect that
may be known by workers prior to determining their migration decisions. Kennan and Walker (2011) evaluate
the importance of such a term and conclude that its impact on migration decisions in their setting is negligible.

4We implement the PPML estimator in Artuç and McLaren (2015), which yields consistent estimates
of worker preference parameters if their expectations are rational and information sets are common to all
workers. The difference between the PPML estimates and our moment inequality estimates is thus consistent
with our finding that information sets are heterogeneous by worker locations.
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from counterfactual policies that reduce migration costs.5 We show this by simulating our

model calibrated to the 1,000 labor markets in our sample, making the additional assumption

that wages follow an AR(1) process with parameters we estimate. A 10% decline in migration

costs increases welfare by about 5% if workers are fully informed about current wages, but

only by 2.5% if they only observe the quartiles of the previous year’s wages. Finally, we

estimate substantial gains from improving workers’ information. Welfare increases by about

3% when the precision of workers’ information improves from only discerning quartiles of

lagged wages to having perfect information on current wages.

Our paper is related to three strands of the literature. First, it contributes to work study-

ing workers’ mobility decisions in the face of large differences in income levels across locations.

Our baseline static model incorporates worker location-specific idiosyncratic preferences and

fixed migration costs, as in Tombe and Zhu (2019) and Morten and Oliveira (2024). In the

dynamic extension to our model, we further allow for forward-looking workers and one-time

migration costs, as in Kennan and Walker (2011).6 Our contribution is to show how to esti-

mate static and dynamic migration models without fully specifying workers’ information, and

to illustrate the impact on model estimates and counterfactual predictions of misspecifying

workers’ information sets.

Second, we contribute to the literature on the relevance of information frictions for mi-

gration. Recent work uses either randomized or natural experiments to evaluate the impact

of migrants’ information sets on their location decisions; e.g., Bryan et al. (2014); Bergman

et al. (2020, 2023); Wilson (2021); Baseler (2023). In the absence of exogenous variation in

information sets, other studies follow a structural approach. Kaplan and Schulhofer-Wohl

(2017) introduce a model in which workers acquire information on location characteristics

through a Bayesian learning process with specific parametric assumptions on the distribution

of priors and signals. Porcher (2022) extends this approach by endogenizing the information

acquisition process of workers who are rationally inattentive. Our contribution is to infer

the importance of information frictions for migration choices while neither observing exoge-

nous determinants of agents’ information sets nor imposing any parametric restriction on the

stochastic process determining these information sets.

Third, our paper contributes to studies using choice data to identify agents’ preferences

when their expectations of choice characteristics are rational but unobserved. In the absence

of direct measures of agents’ subjective expectations (Manski, 2004), it is common to assume

that the researcher observes agents’ entire information sets and can thus construct a perfect

proxy of their expectations (Manski, 1991). An alternative approach estimates discrete-

5Examples of such policies include infrastructure improvements as in Morten and Oliveira (2024).
6Our analysis is partial equilibrium. For general equilibrium models of labor mobility, see, e.g., Artuç and

McLaren (2015); Desmet et al. (2018); Caliendo et al. (2019, 2021).
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choice models under the assumption that agents’ information sets are identical across agents

of the same observable type, while allowing the content of these information sets to be

partly unobserved to the researcher (Traiberman, 2019). We allow information sets to vary

across agents in unobservable ways, and use moment inequalities to partially identify agents’

preferences in a multinomial logit model, static or dynamic, with arbitrarily large choice sets

and choice-specific fixed effects. To deal with the large number of parameters to estimate, we

introduce a novel way of deriving moment inequalities, the bounding inequalities, and show

how to combine them with odds-based inequalities (Dickstein and Morales, 2018; Bombardini

et al., 2023; Dickstein et al., 2023) to provide bounds that are informative and simple to

compute.

The paper is organized as follows. Section 2 develops a static model of workers’ location

choices with incomplete information. Section 3 describes our two-step moment inequality

estimator, and Section 4 illustrates its properties on simulated data. Section 5 discusses our

empirical application. Section 6 shows how to extend our estimator to a dynamic model.

2 Model of Migration with Incomplete Information

We model the static location choice of workers in a population of interest. Workers are

classified into S types indexed by s or r, and are indexed by i or j within each type.7 While

the model in this section assumes the worker’s type is exogenous, we introduce in Appendix

G a model in which their type is a choice the worker determines jointly with their location.

Define a variable ylis that equals one if worker i of type s chooses location l (and zero

otherwise). We assume that

ylis ” 1tl “ argmax
l1“1,...,L

ErU l1

is|Jissu for l “ 1, . . . , L, (1)

where 1tAu is an indicator function that equals 1 if A is true, U l
is P R denotes the worker’s

utility of choosing l, Jis is their information set, and Er¨|Jiss is a conditional expectation op-

erator reflecting their beliefs. We impose the following assumptions on the worker’s expected

utility of choosing any l “ 1, . . . , L.

First, we assume the worker’s expectations are rational. That is, for any vector Xis,

denoting F p¨|Jisq as the distribution of Xis conditional on Jis, it holds that

ErXis|Jiss “

ż

x

xdF px|Jisq. (2)

7In our empirical application (see Section 5), we focus on populations of interest defined by the worker’s
demographic characteristics and prior location, and identify the worker’s type with the sector of employment.
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Second, the utility of choosing location l for worker i of type s is:

U l
is “ ulis ` εlis, (3a)

ulis “ κl ` αwlis, (3b)

where wlis is the natural logarithm of the nominal wage that worker i would earn if they

chose location l, and α captures the relative importance of wages in workers’ utility. The

terms κl and εlis are the common and idiosyncratic components of all other determinants of

a worker’s location choice.8 For simplicity, we refer to κl and εlis as location l’s amenity level

and idiosyncratic preferences, respectively.

Third, defining the vector of idiosyncratic preferences εis “ pε1is, . . . , ε
L
isq and the vector

of amenity levels κ “ pκ1, . . . , κLq, we assume that, for worker i of type s, it holds that

pεis, α, κq Ď Jis, (4)

where, for random vectors X and X 1, X Ď X 1 indicates that the distribution of X conditional

on X 1 is degenerate. Equation (4) imposes that when making their location choice, worker i

knows their idiosyncratic preferences εis, the wage sensitivity α, and the amenity vector κ.

It does not restrict which other variables may also belong to the vector Jis.
Fourth, for any types s and r, locations l and l1, and worker indices i and j, it holds that

Er∆wll
1

is |Jis,Jjrs “ Er∆wll
1

is |Jiss “ Er∆wll
1

is |Wiss “ Er∆wll
1

s |Wiss, (5)

where ∆wll
1

is ” wlis ´ wl
1

is and Wis is a vector that includes all elements of Jis other than

idiosyncratic preferences εis. The first equality in equation (5) imposes that a worker of

a type s has at least as much information as any worker of a different type r about the

differences in the wages they would earn in other locations. The second equality imposes

that, once we condition on all other elements of the worker’s information set, idiosyncratic

preferences do not further help the worker forecast wages. Finally, the third equality imposes

that the worker’s expected wage difference between locations l and l1 only depends on the

expected difference between two terms that are common to all workers of type s.

The first equality in equation (5) naturally holds if we assume all workers in the population

of interest have the same information; i.e., if Jis “ Jjr for any i, j, s, and r. While assuming

homogeneous information sets is common in location-choice models (e.g., Diamond et al.,

8By defining the population of interest by workers’ prior location, our framework allows κl to vary across
workers with different origin locations. Thus, κl may account for several unobserved determinants of a
worker’s location choice, such as migration costs and (log) prices.
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2019), this equality also holds if workers of a given type s know more about their type-

specific wage differences than any worker of a different type r. This maintains the possibility

for unobservable variation in the information sets of workers of different types and leaves the

variation in information sets between workers of the same type completely unrestricted.

The second equality in equation (5) is an implication of the exogeneity of individual-

specific shocks often assumed in migration models. These models often assume—besides

perfect information on wages—that wages and preference shocks are independent, which

implies the second equality. Importantly, our model allows for any pattern of correlation

between location-specific amenities and wages, as we do not restrict the correlation between

κ and the wage vector wis “ pw1
is, . . . , w

L
isq.

The third equality in equation (5) is imposed by data limitations. Our estimation ap-

proach allows us to model flexibly the information workers have about payoff-relevant vari-

ables that we either observe or for which we have consistent estimates. Our data allows us

to estimate several individual-specific factors affecting wages (such as demographics or ex-

perience in a sector) that are common across locations and, therefore, do not enter the wage

difference ∆wll
1

is between any two locations l and l1. It does not, however, allow us to esti-

mate, for every worker and location, a wage component that is location- and worker-specific.

Hence, we impose that workers’ wages may contain idiosyncratic location components, but

workers do not make location choices based on those.9 While equation (5) limits the worker’s

information about their own idiosyncratic location-specific wage components, it does not re-

strict their information about their type-specific comparative advantage. Thus, when types

are equated to sectors or occupations, it is consistent with the findings in Dix-Carneiro (2014)

and Traiberman (2019), which show that workers choosing their sector or occupation do so

based on worker-specific wage components.

Fifth, we assume εis is iid across workers and, denoting as Fεp¨q the cumulative distribution

function of εis, we assume that, for any workers i and j of types s and r, respectively, it holds

Fεpεis|Wis,Wjrq “ Fεpεisq “ exp
´

´

L
ÿ

l“1

expp´εlisq
¯

. (6)

The first equality in equation (6) imposes that worker i’s idiosyncratic preferences are in-

dependent of all other elements of their, and of worker j’s, information sets. The second

equality imposes that εlis is iid across all l “ 1, . . . , L, and follows a type I extreme value

distribution with location parameter equal to zero and scale parameter equal to one.

9In our empirical application, 83% of the variation in individual wages across locations can be explained by
the contribution of sector-location effects and individual-sector effects, therefore limiting how much residual
variation at the individual-sector level could effectively influence migration choices.
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Equations (1) to (6) are the only assumptions we impose on agents’ behavior and infor-

mation sets. Hence, we not only let workers’ wage information vary flexibly across workers

and locations in unobservable ways, but we also leave the data-generating process of wages

completely unrestricted. In contrast, most studies of location choice estimating preference

parameters assume wages are known to agents (Redding and Rossi-Hansberg, 2017) or, alter-

natively, specify both a stochastic process for wages and workers’ information sets (Kennan

and Walker, 2011), or assume these information sets arise from a particular learning process

(Kaplan and Schulhofer-Wohl, 2017; Porcher, 2022). As workers’ information is likely het-

erogeneous, unobserved to researchers and difficult to model correctly, we view the absence

of restrictions on the wage process and information sets as an important advantage.

We consider a setting in which the researcher observes a random sample of workers of size

Is of each type s. For the i-th sampled worker of type s, the researcher observes the location

choice, yis “ py1is, . . . , y
L
isq. Additionally, for every type s, the researcher observes the vector

of wage components ws “ pw1
s , . . . , w

L
s q and a vector of covariates zs “ pz1s , . . . , z

L
s q, with zls

a vector that may be used to predict wls. In practice, ws may not be directly observed, but

estimated; see Appendix E.1 for details. Crucially, we do not assume the researcher observes

Wis for any worker i of any sector s.

Only pairwise differences between the elements of κ are identified. Thus, without loss

of generality, we impose the normalization κ1 “ 0. Given this normalization, the goal of

estimation is to recover pκ2, . . . , κLq and α, and to learn about the content of workers’ infor-

mation sets. To acquire knowledge about workers’ information, we test the null hypothesis

that, for a subset of locations L, a particular wage predictor zls belongs to the information

set for every worker of type s in a group of interest. We denote by θ ” pθα, θ2, . . . , θLq the

unknown parameter vector whose true value is θ˚ ” pα, κ2, . . . , κLq. We denote by Θα the set

of possible values of θα, Θl the set of possible values of θl, l “ 2, . . . , L, and Θ the parameter

space; i.e., Θ “ Θα ˆ Θ2 ˆ ¨ ¨ ¨ ˆ ΘL.

3 Estimation Through Moment Inequalities

We describe here the estimation of θ. Given the large number L of choices in our setting,

θ has high dimensionality. Commonly applied inference procedures for moment inequalities

rely on computing a confidence set at each point in a grid covering the parameter space,

limiting their applicability to settings with a small number of parameters. We propose a

novel two-step procedure that circumvents these computational limitations and produces a

confidence interval for each parameter individually.

In the first step, we compute a confidence interval for θα using inequalities that difference
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out the parameters in pθ2, . . . , θLq. In the second step, for each l “ 2, . . . , L, we derive in-

equalities that depend exclusively on the parameters θα and θl, and combine these inequalities

with the first-step confidence interval for θα to compute a confidence interval for θl.

The moment inequalities we use in the first step combine the inequalities we use in the

second step. Thus, for exposition purposes, we first describe the second-step inequalities in

Section 3.1. We then describe how we build the first-step inequalities in Section 3.2. Section

3.3 explains how we use these inequalities to estimate confidence sets.

3.1 Second-Step Moment Inequalities

Given knowledge of the wage coefficient α, we use two types of inequalities to identify bounds

on the amenity parameter κl for every l “ 2, . . . , L. In Section 3.1.1, we introduce a new

type of moment inequalities that we name bounding inequalities. In Section 3.1.2, we describe

how to apply odds-based inequalities (Dickstein and Morales, 2018; Bombardini et al., 2023;

Dickstein et al., 2023) to our estimation problem.

3.1.1 Bounding Moment Inequalities

For any two locations l and l1, we denote by ∆θll1 ” θl ´ θl1 the unknown parameter whose

true value is ∆κll
1

” κl ´ κl
1

, and as Θll1 the set of possible values of ∆θll1 . Then, for any

worker i of type s, random vector zs with support Zs, locations l and l
1, and deterministic

function hll
1

is : Zs ˆ Θll1 Ñ R, we define the moment

m
ll1

is pzs,∆θll1 , h
ll1

is p¨qq ”

Eryl
1

is ´ ylis expp´hll
1

is pzs,∆θll1qqp1 ` hll
1

is pzs,∆θll1q ´ p∆θll1 ` α∆wll
1

s qq|zss. (7)

This moment is derived by comparing the expected utilities of choosing locations l and l1 for

a worker i of type s. The indices ll1 reflect that the moment mll1

is p¨q varies across location

pairs as it depends on the distribution of the wage difference ∆wll
1

s conditional on zs. Since

the model in Section 2 does not specify the stochastic process for wages, this distribution

may vary across location pairs l and l1 for any type s.

Similarly, the indices is reveal that the moment mll1

is p¨q may vary across workers, even

within a type, as it depends on the distribution of ylis and y
l1

is conditional on zs. By equation

(1), these choice variables are functions of the information set of worker i of type s, Jis. Since
the list of variables in the worker’s information set may be heterogeneous across workers, its

distribution, and that of ylis and y
l1

is, conditional on zs, may also vary across workers.

Theorem 1 establishes a key property of the moment mll1

is p¨q if evaluated at ∆θll1 “ ∆κll
1

.
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Theorem 1 Assume equations (1) to (6) hold and zs Ă Jis. Then, mll1

is pzs,∆κ
ll1 , hll

1

is p¨qq ě 0

for any locations l and l1, worker i of type s, zs P Zs, and deterministic function hll
1

is : Zs ˆ

Θll1 Ñ R.

We prove Theorem 1 in Appendix A.1. Theorem 1 states that, given equations (1) to (6) and

a vector zs that belongs to the information set of worker i of type s, the moment in equation

(7) is positive when evaluated at ∆θll1 “ ∆κll
1

. For any pair of locations l and l1, we may

then compute the set of values of ∆θll1 for which

m
ll1

is pzs,∆θll1 , h
ll1

is p¨qq ě 0, (8)

and if equations (1) to (6) hold and zs Ă Jis, ∆κll
1

will belong to this set regardless of the

value of zs on which the moment conditions. Given locations l and l1, a worker i of type s,

and a value of zs, the set of values of ∆θll1 other than ∆κll
1

that satisfy the inequality in

equation (8) depend on the function hll
1

is p¨q entering the moment mll1

is p¨q. Appendix B.1 shows

that, for any zs P Zs, the function h
ll1

is pzs,∆θll1q that minimizes the set of values of ∆θll1 that

satisfy the inequality in equation (8) is:

hll
1

is pzs,∆θll1q “ ∆θll1 ` αEr∆wll
1

s |zs, y
l
is “ 1s. (9)

The subindices is in this function reflect that, for any two locations l and l1, the expectation

of ∆wll
1

s conditional on zs and y
l
is may vary across workers, with this variation being due to

potential cross-worker heterogeneity in the content of their information sets.

Appendix B.1 shows the inequality implied by equations (7) to (9) can be written as

Erylis|zss

Eryl
1

is|zss
expp´αEr∆wll

1

s |zs, y
l
is “ 1sq ď expp∆θll1q. (10)

By swapping the identity of locations l and l1 in equations (7) to (9), we obtain the inequality

Erylis|zss

Eryl
1

is|zss
expp´αEr∆wll

1

s |zs, y
l1

is “ 1sq ě expp∆θll1q. (11)

Equations (10) and (11) identify lower and upper bounds on ∆θll1 , respectively. Intuitively,

equation (10) reveals that if workers are more likely to choose l over l1, as represented by a high

ratio Erylis|zss{Eryl
1

is|zss, even when they expect low wages in l relative to l1, as represented by

a high value of ´αEr∆wll
1

s |zs, y
l
is “ 1s, then it must be that the amenity difference between

l and l1, ∆θll1 , is sufficiently large. The intuition for equation (11) is analogous.

One may derive bounds similar to those in equations (10) and (11) for any zs P Zs.
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The parameter ∆θll1 will generally be partially identified. However, the following corollary

describes a case where the lower and upper bounds for ∆θll1 in equations (10) and (11)

coincide, implying that this parameter is point identified.

Corollary 1 Assume equations (1) to (6) hold, zs Ă Jis, and Er∆wll
1

s |zss “ Er∆wll
1

s |Jiss.
Then, the bounds in equations (10) and (11) imply ∆θll1 “ ∆κll

1

.

We prove Corollary 1 in Appendix B.2. Corollary 1 strengthens the assumptions in Theorem 1

by requiring that Er∆wll
1

s |zss “ Er∆wll
1

s |Jiss. This additional requirement implies the vector

zs contains all the information worker i has about the wage difference between locations l

and l1. When this additional assumption holds, the moment inequality defined by equations

(7) to (9) only holds when the unknown parameter ∆θll1 equals its true value ∆κll
1

.

Theorem 1 holds for any two locations l and l1. Given the normalization κ1 “ 0, choosing

l1 “ 1 yields ∆θl1 “ θl, and equations (10) and (11) identify bounds on the amenity component

θl, with point identification if the assumptions in Corollary 1 hold for l1 “ 1.

3.1.2 Odds-based Moment Inequalities

For any locations l and l1, worker i of type s, and value zs P Zs, we define the moment

m
ll1

is,opzs,∆θll1q ” Erylis expp´p∆θll1 ` α∆wll
1

s qq ´ yl
1

is|zss. (12)

The index o differentiates this odds-based moment from the bounding moment in equation

(7). Theorem 2 establishes a key property of this moment when evaluated at ∆θll1 “ ∆κll
1

.

Theorem 2 Assume equations (1) to (6) hold and zs Ă Jis. Then, mll1

is,opzs,∆κ
ll1q ě 0 for

any locations l and l1, worker i of type s, and zs P Zs.

We prove Theorem 2 in Appendix A.2. Theorem 2 states that, given equations (1) to (6)

and a vector zs that belongs to the information set of worker i of type s, the moment in

equation (12) is positive when evaluated at ∆θll1 “ ∆κll
1

. For any locations l and l1, we may

then compute the set of values of ∆θll1 for which

m
ll1

is,opzs,∆θll1q ě 0, (13)

and if equations (1) to (6) hold and zs Ă Jis, ∆κll
1

will belong to this set for any of zs. As

we show in Appendix B.3, the inequality (13) can be written as

Erylis|zss

Eryl
1

is|zss
Erexpp´α∆wll

1

s q|zs, y
l
is “ 1s ě expp∆θll1q. (14)

12



By swapping the identity of locations l and l1 in equation (14), we obtain the inequality

Erylis|zss

Eryl
1

is|zss
pErexpp´α∆wl

1l
s q|zs, y

l1

is “ 1sq
´1

ď expp∆θll1q. (15)

Equations (14) and (15) identify upper and lower bounds on ∆θll1 , respectively, with a similar

intuition as the bounding inequality; see Section 3.1.1. These equations generally partially

identify ∆θll1 . However, the following corollary describes a case where the lower and upper

bounds for ∆θll1 in equations (14) and (15) coincide, implying they point identify ∆θll1 .

Corollary 2 Assume equations (1) to (6) hold, zs Ă Jis, and ∆wll
1

s “ Er∆wll
1

s |Wiss. Then,

the bounds in equations (14) and (15) imply ∆θll1 “ ∆κll
1

.

We prove Corollary 2 in Appendix B.4. Corollary 2 strengthens the assumptions in Theorem

2 by requiring that worker i has perfect information on ∆wll
1

s , ∆w
ll1

s “ Er∆wll
1

s |Wiss. When

this is satisfied, the inequality in equation (13) only holds if ∆θll1 equals its true value ∆κ
ll1 .

Theorem 2 and Corollary 2 hold for any locations l and l1. Setting l1 “ 1, they indicate

when the moment in equation (13) partially or point identifies location l’s amenity term, θl.

3.2 First-Step Moment Inequalities

For any locations l and l1, any workers i of type s and j of type r, any vectors zs P Zs and

zr P Zr, and any deterministic function gll
1

ijsr : Zs ˆ Zr ˆ Θα Ñ R, we define the moment

M
ll1

ijsrpzs, zr, θα, g
ll1

ijsrp¨qq ” (16)

Erylisy
l
jr`yl

1

isy
l1

jr´ylisy
l1

jr expp´gll
1

ijsrpzs, zr, θαqqp2`2gll
1

ijsrpzs, zr, θαq´θαp∆wll
1

s `∆wl
1l
r qq|zs, zrs.

This moment is derived from a comparison of the expected utilities of choosing locations l

and l1 for workers i and j. For reasons analogous to those discussed when describing equation

(7), the expectation in equation (16) may vary across pairs of workers is and jr, and across

pairs of locations l and l1; hence the indices in the moment definition. Theorem 3 establishes

a key property of this moment when evaluated at θα “ α.

Theorem 3 Assume equations (1) to (6) hold, zs Ă Jis for worker i of type s, and zr Ă Jjr
for worker j of type r. Then, Mll1

ijsrpzs, zr, θα, g
ll1

ijsrp¨qq ě 0 for any l and l1, workers i of type

s and j of type r, zs P Zs, zr P Zr, and deterministic function gll
1

ijsr : Zs ˆ Zr ˆ Θα Ñ R.

We prove Theorem 3 in Appendix A.3. Theorem 3 states that, given equations (1) to (6), the

assumption that zs belongs to the information set of worker i of type s, and the assumption
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that zr belongs to the information set of worker j of type r, the moment in equation (16) is

positive when evaluated at θα “ α. We may then compute the set of values of θα that satisfy

M
ll1

ijsrpzs, zr, θα, g
ll1

ijsrp¨qq ě 0, (17)

and if equations (1) to (6) hold, zs Ă Jis, and zr Ă Jjr, then α will belong to this set. By

minimizing the moment in equation (16) with respect to gll
1

ijsrp¨q, we compute the function

that minimizes the set of values of θα that satisfy the inequality in equation (17). Appendix

B.5 shows that, for any zs P Zs and zr P Zr this function is

gll
1

ijsrpzs, zr, θαq “ θαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1s. (18)

As shown in Appendix B.5, the inequality represented in equation (17) with the function in

equation (18) can be written as

Erylisy
l1

jr|zs, zrs

Er0.5pylisy
l
jr ` yl

1

isy
l1
jrq|zs, zrs

ď exppθαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sq. (19)

This inequality yields lower and upper bounds on θα when its right-hand side is increasing

or decreasing in θα, respectively. Intuitively, if worker i of type s is likely to choose location

l whereas worker j of type r is likely to choose l1, as represented by a high value of the ratio

on the left-hand side of equation (19), and both workers expect the wage to be high in their

chosen location relative to the alternative, as represented by a positive value of Er0.5p∆wll
1

s `

∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1s, then the wage coefficient θα cannot be too low. Conversely, if both

workers is and jr are still likely to choose locations l and l1, respectively, but now the workers

expect the wage to be low in their chosen locations relative to the alternative, as represented

by a negative value of Er0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1s, then θα cannot be too high.

Hence, positive and negative wage differences between locations identify opposite bounds.

The parameter θα is generally partially identified. The following corollary describes a

case where moment inequalities of the type in equation (19) point identify θα.

Corollary 3 Assume equations (1) to (6) hold, ∆κll
1

“ 0, and Er∆wll
1

s |zss “ Er∆wll
1

s |Jiss “

Er∆wl
1l
r |zrs “ Er∆wl

1l
r |Jirs “ ∆w̄, where ∆w̄ is a common constant. Then, the combination

of two moment inequalities of the type in equation (19), one with ∆w̄ ą 0 and the other one

with ∆w̄ ă 0, point identifies θα.

We prove Corollary 3 in Appendix B.6. According to Corollary 3, the conditions that must

be satisfied for inequalities of the type in equation (19) to point identify θα are even stronger

than those required in Corollary 1 to point identify ∆θll1 for locations l and l
1 given knowledge
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of α. Intuitively, the moment inequality in equation (16) results from adding two inequalities,

one for worker i of type s that compares their expected utility of location l to that of location

l1, and one for worker j of type r that compares their expected utility of l1 to that of l; see

Appendix A.3 for details. Combining the two inequalities is useful because the resulting

inequality does not depend on the amenity parameters κl and κl
1

, which cancel since they are

the same for workers of types s and r. However, the combined inequality is naturally weaker

than each of the two inequalities that are combined into it, and the conditions required for

it to point identify the parameter of interest are stronger.

3.3 Using the Inequalities for Estimation

Given a confidence set for θα, we describe here how we use the moment inequalities introduced

in Section 3.1 to compute a confidence set for the amenity term θl for a location l. The

procedure we follow to compute a confidence set for θα using the inequalities in Section 3.2 is

analogous; see Appendix B.7. To simplify the exposition, we describe our inference procedure

in terms of the bounding inequalities in equation (8); in practice, we combine these with the

odds-based inequalities in equation (13).

The moment inequality in equation (8) is conditional on a vector zs. In our setting, zs

includes predictors of the wage difference ∆wll
1

s between any two locations. When computing

confidence sets, we use unconditional moments that multiply the corresponding moment

function by an instrument vector. We denote by ∆xll
1

s the instrument vector we use to build

moment inequalities that compare the utility of workers of type s between locations l and l1.

We compute ∆xll
1

s as follows. Given q P N and a predictor ∆zll
1

s of ∆wll
1

s , we compute

a vector pQq
0, . . . , Q

q
qq of q-quantiles of the distribution of ∆zll

1

s across all types and location

pairs. The vector ∆xll
1

s then groups observations with values of ∆zll
1

s between the same two

quantiles, weighting each observation by the absolute value of ∆zll
1

s to the power of d P Z:

∆xll
1

s “ p∆xll
1

s,1, . . . ,∆x
ll1

s,qq
1 with ∆xll

1

s,k ” 1tQq
k´1 ă ∆zll

1

s ď Qq
ku|∆zll

1

s |
d for k P r1, qs. (20)

If, for example, q “ 2, ∆xll
1

s partitions all combinations of location pairs and types pl, l1, sq into

two sets depending on whether the ∆zll
1

s is above or below its median across all combinations.

The elements of ∆xll
1

s in equation (20) are weakly positive and a function of zs. Thus,

Theorem 1 and the Law of Iterated Expectations (LIE) imply that, for any locations l and

l1, worker i of type s, and deterministic function hll
1

is : Zs ˆ Θll1 Ñ R, the q ˆ 1 vector of

unconditional moment inequalities

Erm
ll1

is pzs,∆θll1 , h
ll1

is p¨qq∆xll
1

s s ě 0, (21)
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holds for ∆θll1 “ ∆κll
1

if zll
1

s Ă Jis, where mll1

is p¨q is defined in equation (7).

The empirical setting described in Section 2 includes one observation per worker. The

sample analogue of the moment inequality in equation (21) thus averages over only one

observation. However, as this inequality is valid for every worker i of every type s, it holds

that, for any locations l and l1 and function hll
1

is : ZsˆΘll1 Ñ R, the qˆ1 vector of inequalities

S
ÿ

s“1

Is
ÿ

i“1

Erm
ll1

is pzs,∆θll1 , h
ll1

is p¨qq∆xll
1

s s ě 0 (22)

is satisfied at ∆θll1 “ ∆κll
1

if zs Ă Jis for every worker i “ 1, . . . , Is of every type s “ 1, . . . , S.

Given the normalization of the amenity in location l “ 1 (i.e., κ1 “ 0), the inequality in

equation (22) can be used to compute a confidence set for θl in any location l ‰ 1, by fixing

the pair of locations pl, l1q to both pl, 1q and p1, lq. The inequalities in equation (22) with

indices pl, 1q identify an upper bound on θl; those with indices p1, lq identify a lower bound.

To compute a 95% confidence interval for θl, we first compute 96% confidence intervals

for θl conditional on each value of θα in a 99% confidence interval for this parameter. We

denote these confidence intervals as Θ̂l
.96pθαq. We compute them by applying the procedure

in Andrews and Soares (2010) to the sample analogue of the inequalities in equation (22)

for the appropriate choice of location indices; see Appendix B.8. We then compute the 95%

confidence interval for θl as the union of Θ̂l
.96pθαq for each value of θα in its 99% confidence

interval. As discussed in Bei (2024), the resulting confidence interval for θl is valid.

4 Properties of Moment Inequalities: Simulation

This section uses simulations to illustrate the properties of the two-step estimator described

in Section 3. We study its performance as the precision of workers’ and the researcher’s

wage information varies. Three main insights emerge. First, our estimator yields an interval

that contains the true parameters even when both the agents and the researcher imperfectly

observe the realized wages. Second, the Maximum Likelihood Estimator (MLE) is downward

biased and generally not contained in our estimator’s identified set. Third, our estimator

often yields empty identified sets when the researcher assumes incorrect information sets,

demonstrating its potential to test for the true content of agents’ information sets.

4.1 Simulation Set-up

Workers choose between three locations l “ t1, 2, 3u according to the model in Section 2. We

simulate data for 6, 000, 000 workers, each of them of a different type. We index observations
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by s, and set the wage coefficient to α “ 1 and the location-specific amenities to κ1 “ κ2 “ 0

and κ3 “ 1.10 The estimator described in Section 3 requires specifying neither a stochastic

process for wages nor workers’ information sets. However, specifying these aspects of the

model is needed to generate the model-implied choice for all sampled individuals.

We assume the wage vector ws “ twlsu
3
l“1 is iid, and each element wls is determined as

wls “ zl1s ` zl2s ` zl3s, (23)

with zlks independent across l “ t1, 2, 3u and k “ t1, 2, 3u, and distributed uniformly with

support rµlk´σk, µ
l
k`σks. We set µl1 “ µl3 “ 0 for l “ t1, 2, 3u and pµ1

2, µ
2
2, µ

3
2q “ p0,´0.5,´1q;

thus, mean wages decline in order from l “ 1 to l “ 3. We set the dispersion of zl2s to σ2 “ 4

and study cases for different values of σ1 and σ3.

We assume workers observe pz1s, z2sq “ tpzl1s, z
l
2squ3l“1 but not z3s “ tzl3su

3
l“1. Therefore,

Erz1s, z2s|Wss “ pz1s, z2sq and Erz3s|Wss “ Erz3ss “ 0 for all s, and, as a result, it holds for

any two locations l and l1 that worker s’s expected wage difference is

Er∆wll
1

s |Wss “ ∆zll
1

1s ` ∆zll
1

2s. (24)

where, for all k, ∆zll
1

ks “ zlks ´ zl
1

ks. The variable ∆zll
1

3s thus equals the expectational error

worker smakes when forecasting ∆wll
1

s . By changing σ3, we then evaluate the impact workers’

imperfect wage information has on the performance of the different estimators we consider.

We assume the researcher observes pyls, w
l
s, z

l
2sq for l “ t1, 2, 3u and s “ 1, . . . , S. Thus,

z1s “ tzl1su
3
l“1 belongs to worker s’s information set but is unobserved by the researcher. By

changing σ1, we then evaluate the impact that unobserved (by the researcher) components

of a worker’s information set have on different estimators.

4.2 Simulation Results

We report the main simulation results in Table 1. We describe in Section 4.2.1 the 95%

confidence intervals for the wage coefficient θα, displayed in the column labeled First Step.

We describe in Section 4.2.2 the 95% confidence intervals for the amenities θ2 and θ3, dis-

played in the columns labeled Second Step. We provide a detailed description of the moment

inequalities we use in this simulation exercise in Appendix C.1.

10As expected wages vary by type according to equation (5), the large S limits the impact of noise in our
simulation. The confidence sets we report are thus similar to the identified sets implied by our inequalities.
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4.2.1 Confidence Intervals for the Wage Coefficient

We compute confidence intervals for θα using sample analogues of the inequalities introduced

in Section 3.2. We build separate inequalities for each pair of locations l and l1. When building

each inequality, we combine each observation s with an observation r selected to reproduce

the conditions under which, according to Corollary 3, the resulting inequality would point

identify θα if the restriction Er∆wll
1

s |zss “ Er∆wll
1

s |Jiss were to hold for all s “ 1, . . . , S.

In cases 1 and 2, we set σ1 “ 0 and, thus, zl1s “ 0 for every location l and worker s. That

is, the researcher observes all wage predictors on which the agent bases their decision. Hence,

Er∆wll
1

s |z2ss “ Er∆wll
1

s |Jiss for every location pair and type s. Consistently with Corollary

3, the resulting 95% confidence interval for θα is very tight around its true value α. This is

true even in case 2, where the agent makes errors when forecasting wages in every location,

indicated by a nonzero value of σ3.

Two key characteristics of our simulation setting ensure a tight confidence interval for θα

in cases 1 and 2. First, Corollary 3 requires for point-identification of θα that the locations

l and l1 being compared have equal amenity levels; i.e., ∆κll
1

“ 0. This holds for locations 1

and 2, since we set κ1 “ κ2 “ 0. We illustrate the importance of this condition in Table C.1

in Appendix C.2 by varying the value of the amenity terms κ1, κ2 and κ3. The confidence

interval for θα remains tight as long as ∆κll
1

“ 0 for two locations l and l1, and becomes

wider as the differences in κl across all three locations l “ t1, 2, 3u increase.

Second, Corollary 3 also requires that the observations s and r combined in equation (16)

verify Er∆wll
1

s |zss “ Er∆wl
1l
r |zrs. In our setting, wages and their predictors are continuous

variables, so the predicted wages Er∆wll
1

s |zss and Er∆wl
1l
r |zrs never coincide exactly. This

explains why the confidence interval for θα reported in Table 1 includes values other than

α even when all other sufficient conditions in Corollary 3 are satisfied. As Table C.2 in

Appendix C.3 reveals, the confidence interval for θα becomes wider as the average difference

between Er∆wll
1

s |zss and Er∆wl
1l
r |zrs for the matched types s and r increases.

Cases 3 and 4 share the feature that σ1 ą 0 and, thus, the researcher only observes part

of the agent’s information set—the true information set is pz1s, z2sq for every type s, but

the researcher only observes z2s. By using information on only a subset of the agent’s true

information set, the researcher obtains a wider confidence interval for θα. In case 5, the

researcher wrongly assumes the agent has perfect information on wages. In this case, the

confidence interval for θα only includes one value (θα “ 0.87), different from the true value

α “ 1.11 We show in Table C.5 in Appendix C.6 that θα “ 0.87 can be ruled out as the true

11Molinari (2020) and Andrews and Kwon (2024) point out that moment inequality models, when they are
misspecified, may yield confidence sets that are tight but do not include the true parameter value.
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Table 1: Simulation Results - Moment Inequality Confidence Intervals

Case σ1 σ3 zs
First Step Second Step

α Mom. Ineq. κ2 κ3

1 0 0 z2s [1 , 1.02]
Bounding [0 , 0] [1 , 1]
Odds-based [0 , 0] [1 , 1]

Both [0 , 0] [1 , 1]

2 0 1 z2s [1 , 1.01]
Bounding [0 , 0] [1 , 1]
Odds-based [-0.33 , 0.32] [0.68 , 1.33]

Both [0 , 0] [1 , 1]

3 1 0 z2s [0.82 , 1.29]
Bounding [-0.31 , 0.31] [0.70 , 1.30]
Odds-based [0 , 0] [1 , 1.01]

Both [0 , 0] [1 , 1.01]

4 1 1 z2s [0.82 , 1.31]
Bounding [-0.31 , 0.31] [0.69 , 1.31]
Odds-based [-0.38 , 0.39] [0.68 , 1.45]

Both [-0.31 , 0.31] [0.69 , 1.31]

5 0 1 ws [0.87 , 0.87]
Bounding [-0.05 , -0.10] [0.85 , 0.88]
Odds-based H H

Both H H

The true parameter values are α “ 1, κ2 “ 0, and κ3 “ 1. The column α contains a 95% confidence interval
for θα based on the estimator introduced in Section 3.2 and described in Appendix C.1. The columns κ2 and
κ3 contain 95% confidence intervals for θ2 and θ3 based on the estimators introduced in Section 3.1. The
confidence intervals for θ2 and θ3 in the rows labeled Bounding use the inequalities introduced in Section
3.1.1; those in the row labeled Odds-based use the inequalities introduced in Section 3.1.2; and those in
the row labeled Both combine both inequalities. Confidence sets are computed following the procedure in
Andrews and Soares (2010) and using grids over r0.5, 1.5s for α, r´0.5, 0.5s for κ2 and r0.5, 1.5s for κ3.

parameter value by increasing the number of instruments.12

4.2.2 Confidence Intervals for Amenities

Given a confidence interval for θα, we then compute confidence intervals for θ2 and θ3 one at

a time, using the inequalities introduced in sections 3.1.1 and 3.1.2.

Consistently with Corollary 1, the bounding inequalities point identify θ2 and θ3 when

the agent’s information set is perfectly observed by the researcher; i.e., when σ1 “ 0. As

σ1 increases, the confidence intervals built using the bounding inequalities alone still contain

the true amenities, in line with Theorem 1, but widen to include other parameter values.

In contrast, the odds-based inequalities perform best when workers make no expectational

errors (i.e., when σ3 “ 0). If this holds, the odds-based inequalities point identify the

amenities as long as the first-step confidence interval for the wage coefficient equals its true

12Increasing the number of quantiles q into which we divide the support of the predictor ∆zll
1

2s from q “ 2
to q “ 4 is enough to yield an empty confidence interval in case 5.
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value α, as predicted by Corollary 2, or the value of σ1 is also equal to zero, this being true

in case 1. When the confidence interval for θα includes values other than α and σ1 ą 0, the

odds-based inequalities may still point identify amenities, as in case 3, but they will not do

so in general.13

Since the bounding inequalities are insensitive to agents’ expectational errors (i.e., in-

sensitive to σ3) and the odds-based inequalities are partially insensitive to agents having

information the researcher does not observe (i.e., insensitive to σ1), there are advantages

from combining both types of inequalities in estimation. Cases 2 and 3 show that, when

either σ1 “ 0 or σ3 “ 0, combining bounding and odds-based inequalities point identifies

amenities, although neither of these two inequalities point identifies amenities in both cases

when considered in isolation.14

Case 4 is likely the most empirically relevant. In this setting, the agent’s information set is

partly unobserved (i.e., σ1 ą 0), and the agent predicts wages with error (i.e., σ3 ą 0). Even

in this scenario, our estimator yields confidence intervals that contain the true parameter

values. In this particular case where σ1 and σ3 are equal, the odds-based inequalities are

redundant, as they yield larger intervals than those obtained from the bounding inequalities.

Case 5 shows the bounding inequalities may fail to produce an empty confidence set

when the researcher wrongly assumes that workers have complete information—although,

as discussed above, the set is empty when we use more detailed instruments. Conversely,

the confidence intervals defined by the odds-based inequalities alone, or by both types used

jointly, are empty.

4.3 Alternative Estimators

Maximum Likelihood. To compare our moment inequality estimator with more traditional

estimation approaches, we report in Table 2 maximum likelihood estimates (MLEs) computed

under the assumption that all variables in the agent’s information set are observed by the

researcher. Given a choice of wage predictor zs, we compute MLEs of pθα, θ2, θ3q assuming

zs is all information worker s has on ws; that is,

argmax
pθα,θ2,θ3q

#

S
ÿ

s“1

3
ÿ

l“1

1tyls “ 1u ln

˜

exppθl ` θαErwls|zssq
ř3
l1“1 exppθl1 ` θαErwl1s |zssq

¸+

, with θ1 “ 0.

13For example, in unreported results, we observe that the confidence set for the amenities defined by the
odds-based inequalities is not a singleton when σ1 “ 2 and σ3 “ 0.

14In Appendix C.4, we illustrate in plots why the confidence intervals for θ2 and θ3 obtained from combining
bounding and odds-based inequalities are smaller than when each inequality is considered in isolation.
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Table 2: Simulation Results - Maximum Likelihood Estimator

Case σ1 σ3 zs α κ2 κ3

1 0 0 z2s 1 0 1

2 0 1 z2s 1 0 1

3 1 0 z2s 0.91 0 0.92

4 1 1 z2s 0.91 0 0.92

5 0 1 ws 0.87 -0.03 0.87

The true parameter values are α “ 1, κ3 “ 0, and κ2 “ 1.

If zs “ z2s and, thus, Erws|zss “ z2s, the MLE is consistent if and only if σ1 “ 0, as in

cases 1 and 2, as only then does the worker’s wage expectation coincide with the researcher’s

assumed expectation. Conversely, if zs “ z2s and σ1 ą 0, as in cases 3 and 4, the worker’s

true expectation and the researcher’s assumed one do not coincide and, as a result, the

MLE of all parameters is biased towards zero. In case 5, the researcher assumes workers have

perfect information (i.e., zs “ ws and, thus, Erws|zss “ ws) but, contrary to that assumption,

workers make forecasting errors (i.e., σ3 ą 0), and the MLE is also biased.15

Comparing the estimates in tables 1 and 2 yields two conclusions. When the researcher

observes a subset of the worker’s true information set (i.e., if σ1 ą 0), the MLE is biased and

our moment inequality estimator yields confidence intervals that contain the true parameter

value. Moreover, as illustrated by cases 3 and 5, the confidence intervals produced by our

moment inequality estimator may not include the corresponding MLEs.

Alternative moment inequality estimator. In Table C.4 in Appendix C.5, we apply an

alternative inference procedure that only relies on the second-step inequalities described in

Section 3.1. Specifically, we compute confidence intervals for the vector pθα, θlq for each

location l “ 2, . . . , L using the inequalities in equations (8) and (13). We obtain in this way

L ´ 1 two-dimensional confidence sets. After projecting them on each of their elements, we

obtain a confidence interval for each amenity term pθ2, . . . , θLq and L´1 intervals for θα. We

can then report a randomly chosen confidence interval for θα among the L´1 available ones.

This alternative procedure yields results similar to those in Table 1 except in case 3, where

adding information from the odds-based inequalities for the identification of θα results in a

tighter confidence interval for this parameter.16

15Cases 3 and 5 show that, when the difference between the worker’s true expectation and the researcher’s
assumed expectation have identical marginal distribution (i.e., if σ1 “ σ3), the bias in the MLE is smaller if
the researcher assigns workers an information set that is too small than if she assigns them an information
set that is too large. Dickstein and Morales (2018) find a similar pattern in their setting.

16Although for all cases considered in Tables 1 and C.4 this alternative estimator yields weakly smaller
confidence sets, unreported simulation results show that, when the agent’s information set is heterogeneous
across choices, its results are sensitive to which of the L ´ 1 available intervals is chosen.
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5 Empirical Application

We study individual migration events across local labor markets in Brazil between 2002 and

2011. We describe the data we use in Section 5.1, present estimates of the wage coefficient

and migration cost in Section 5.2, and discuss tests of the content of workers’ information

sets in Section 5.3. We evaluate the effect of counterfactual changes in information sets and

migration costs in Section 5.4.

5.1 Data

Our main data source is the Relação Anual de Informações Sociais (RAIS), an administrative

dataset maintained by the Brazilian Ministry of Labor. It contains information on workers

and establishments in the Brazilian formal labor market. We use the establishment’s location

(microregion, the closest equivalent to a commuting zone) and sector (industry) to define

labor markets and measure workers’ wages by their average monthly earnings.

Since our application will primarily explore workers’ heterogeneous information sets ac-

cording to their location, we restrict our sample to workers with similar demographic char-

acteristics. Specifically, we study workers aged 25-64 with at least a high school degree

identified as male and white.17 Since RAIS only covers formal employment, a worker may be

absent from the dataset because they are out of the labor force, unemployed, or informally

employed. Hence, our conclusions will only refer to formal workers, and we restrict our sam-

ple to individuals with a persistent attachment to the formal labor market, selecting only

those recorded in RAIS for at least seven years during our ten-year analysis period.18

To ensure that we observe a large number of individuals per market, we focus on 1,000

labor markets consisting of all combinations of the 50 microregions (out of 558) and 20 sectors

(out of 51) with the largest total employment reported in RAIS. We then obtain our working

sample by randomly sampling one million individuals per year among those employed in the

1,000 labor markets of interest. Appendix D provides more details on the RAIS data and the

construction of our sample, and reports summary statistics on migration rates, wages, and

other characteristics of the selected individuals and labor markets.

5.2 Estimation of Model Parameters

In Section 5.2.1, we describe the implementation of our moment inequality estimator. In

Section 5.2.2, we discuss our estimates and compare them to the estimates we obtain using

17These are, respectively, the largest education, gender, and race categories in RAIS.
18Our estimation approach only requires the researcher to observe a subset of the labor markets that

workers choose from; the informal sector can thus be conceived as part of the worker’s unobserved choice set.
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alternative estimation procedures.

5.2.1 Implementation of Moment Inequalities

To map our empirical setting to the model described in Section 2, we consider multiple

subpopulations of interest defined as the workers present in a given location n during a year

t ´ 1. We study their location decision at period t and equate the type s of a worker to

their sector. While we assume that the wage coefficient α is constant across all sampled

workers, we let the location-specific fixed effects in the vector κ vary across subpopulations.

Hence, the location-specific parameter κl for any given l varies depending on the worker’s

prior location and the time period, thus accommodating time-varying unobserved migration

costs, amenities, and price levels. For simplicity, we refer to these below simply as amenities.

We implement the two-step moment inequality estimation procedure described in Section

3. A key variable entering our moment inequalities is the wage difference ∆wll
1

s for any

locations l and l1 and sector s. While our data contain worker- and year-specific wages for

the sector-location pair in which the worker is employed, they naturally do not include any

information on the wage they would have earned in other labor markets. We construct a

proxy for these unobserved wages. We allow the log wage that a worker would obtain if

employed in a particular sector and location to depend on individual worker characteristics

(age and sectoral experience) with year-specific coefficients, on location-sector-year-specific

fixed effects, on worker-sector-specific fixed effects, and a residual. Appendix E.1 provides

details on the specification of the wage equation and reports the corresponding estimates. For

each sector s and period t in our sample, these wage regressions yield estimates of the vector

of labor market-specific wage shifters wst “ pw1
st, . . . , w

L
stq entering our moment inequalities.

These shifters account for labor supply and demand factors that impact the wages of all

workers in a labor market. Since every other term in the wage equation is portable across

locations, these shifters fully determine the differences in the wages that workers can receive

in different labor markets. Thus, for simplicity, we refer to these below simply as wages.

As discussed in Section 3.3, building moment inequalities that bound the model parame-

ters’ true value requires specifying wage predictors zst “ pz1st, . . . , z
L
stq assumed to belong to

the information set of all workers entering our inequalities. We present moment inequality

estimates that use different wage predictors. Some of our estimates rely on assuming that

workers know the previous year’s relevant wages (i.e., zst “ wst´1), while others only rely

on assuming that workers are at least capable of indicating whether the lagged wages in a

particular labor market belongs to one of b P N quantiles, or bins, of the lagged wage distri-

bution. To compute wage predictors consistent with these assumptions, we first compute the

vector pBb
0, . . . , B

b
bq of b-quantiles of the distribution of wlst´1 across all sectors and locations,
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Figure 1: Migration Elasticity and Amenities from Moment Inequalities vs. PPML-IV
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Panel (a) reports 95% confidence intervals of the wage coefficient α under different estimation procedures and
informational assumptions. The blue circles delimit the moment inequality confidence intervals. The absence
of circles for cases above 4 bins reflects that the associated confidence intervals are empty. The orange squares
mark the PPML-IV confidence intervals. Informational assumptions are stronger as we move towards the
right along the horizontal axis. In panel (b), each point equals the midpoint of a 95% confidence interval for
a parameter κl

nt, for t “ 2011. The blue circles indicate the midpoints of the moment inequality confidence
interval, and the orange squares indicate the PPML-IV estimates. The fit lines are kernel-weighted local
polynomial estimates, with the shaded area representing 95% confidence bands.

and then define the wage predictors as

zlst ”

b
ÿ

k“1

1tBb
k´1 ă wlst´1 ď Bb

kuErwlst´1|Bb
k´1 ă wlst´1 ď Bb

ks. (25)

We refer to b as the precision of workers’ information. As b increases, the predictor in equation

(25) becomes closer to wlst´1. Given a wage predictor zst, we use the formula in equation

(20) to compute eight instruments ∆xll
1

st for every location pair l and l1, sector s, and sample

period t.19 We provide additional details on the implementation of the moment inequalities

in Appendix E.2.

5.2.2 Estimation Results

First-step estimates: wage coefficient. Panel (a) in Figure 1 reports 95% confidence inter-

vals for the wage coefficient α under different informational assumptions. When we assume

workers can only determine whether lagged wages in any given location are above or below

the median of the distribution of wages across all labor markets, we obtain a 95% confidence

19The eight instruments result from setting q “ 4 and d P t´1, 1u.
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interval for α that equals [0.24, 2.44]. The width of this interval reflects that the dummy

variable indicating whether lagged wages are below or above the median is only loosely cor-

related with current wages. When we increase the assumed precision of workers’ information

and impose instead that workers can determine the quartile to which lagged market-specific

wages belong, we obtain a tighter interval equal to [1.21, 1.83]. Assuming workers can classify

locations according to more detailed quantiles of the distribution of wages, or that they know

lagged or current wages without error, yields empty confidence sets. This leads us to reject

that workers know lagged location-specific wages with any level of precision above quartiles.

Thus, from now on, we use [1.21, 1.83] as our preferred set estimator of α.

For comparison, we also include 95% confidence intervals computed using the two-step

PPML-IV estimator in Artuç and McLaren (2015). As discussed in Appendix E.3, this

alternative estimation method yields point estimates of the wage coefficient at the expense

of assuming that all workers employed in the same sector in a period t (regardless of their

location of residence) have exactly the same information set, and consequently also the same

wage expectations. This is a stronger assumption than the one required for our moment

inequalities to bound the true parameter value, which requires the researcher to specify

a (possibly different) variable that belongs to every worker information set, but does not

restrict the additional information each worker may have, which may vary flexibly across

workers and labor markets.20 It is thus not surprising that the PPML-IV estimator yields

confidence intervals for the wage coefficient that generally do not overlap with those generated

by our moment inequality estimator: while the PPML-IV estimator yields confidence intervals

between 0.3 and 0.6, the lowest value in our preferred moment inequality estimator is 1.21.

The PPML-IV estimator of the wage coefficient is thus downward biased, underestimating

the value workers assign to the expected monetary returns of migration relative to other

non-income location payoffs.

Second-step estimates: amenities. Panel (b) in Figure 1 illustrates the moment inequality

estimates of the parameters κlnt for the year t “ 2011 and all origin n and destination l loca-

tions in our sample. Specifically, this panel displays midpoints of the 95% moment inequality

confidence interval for each amenity term κlnt.
21 For comparison, we also display estimates

of these amenities computed using the PPML-IV estimator. Although we estimate each pa-

rameter κlnt without imposing any restriction on their variability, our estimated parameters

tend to increase in the distance between locations n and l, consistently with these parameters

20E.g., the moment inequality confidence interval that uses quartiles of lagged wages as the relevant wage
predictor is valid if workers, even within the same sector, location, and period, have different information, as
long as all workers can at least classify labor markets into quartiles according to lagged market wages.

21For any two locations n and l and period t, we compute a 95% confidence interval for κl
nt as the union of

96% confidence intervals for κl
nt computed conditional on each value of θα in its 99% confidence interval; see

Section 3.3. As shown in Appendix E.4, the resulting confidence intervals for the parameters κl
nt are tight.
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accounting for migration costs in our model. The differences in levels between the PPML-IV

estimates and the moment inequalities estimates are substantial, with the latter being on

average 21% smaller than the former. Moreover, if we convert migration costs into their

log-wage equivalents by dividing them by the estimates of the wage coefficient α produced

by each estimation method, we find that the moment inequality estimates are 74% smaller.

In sum, our empirical analysis indicates that estimation procedures commonly used in the

migration literature yield upward biased estimates of migration costs or, more generally, of

the relative importance of non-wage variables in workers’ migration decisions.

5.3 Tests of Information Heterogeneity

As panel (a) in Figure 1 showed, the moment inequality 95% confidence interval for the wage

coefficient α is non-empty when we assume all workers know the quartile to which lagged

wages belong, but becomes empty when we assume all workers can classify all markets into

eight (or more) bins. It is possible, however, that some workers are more informed than

others, or that they have more information about some markets than others.

In this section, we explore whether the migration patterns in our sample are consistent

with workers having more precise information about wages in some, but not all, locations.

We do so by testing whether the identified set for α defined by our moment inequalities

becomes empty when we assume that some worker groups have additional wage information

about specific groups of labor markets. We consider worker groups defined by the population

and internet penetration in their prior location of residence, and groups of labor markets

defined by their distance and past migration flows from the worker’s location, as well as by

the population and internet penetration in the market’s location.22

We implement a similar testing approach for each dimension of heterogeneity described

above. First, we classify workers and markets into six intervals delimited by the 10th, 25th,

50th, 75th, and 90th percentiles of the distribution of workers and markets along the corre-

sponding dimension. Then, we order these intervals according to the direction along which

we suspect information may be more precise. For example, we classify workers into intervals

depending on the internet penetration in the location of residence and order these intervals

from higher to lower internet penetration. Consistently with our finding in panel (a) in Fig-

ure 1, we start from a baseline information set according to which all workers can classify

22The distance between any two locations equals the geodesic distance between their centroids. Past
migration flows are measured as the total number of workers recorded in RAIS as having migrated between
any two locations in the three years prior to our sample period (1999-2001). The population of each location
is computed as the total employment in RAIS in the period 1999-2001. The share of households with internet
access in each location equals the average share of households with broadband internet access between 2007
and 2011, the period for which this information is available (see Appendix D).
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Figure 2: Testing for Heterogeneous Information Sets
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This figure displays patterns of information precision that can and cannot be rejected in the data. Each
panel shows how these patterns vary along a key dimension, including distance, past migration flows, the
population of origin and destination, and the share of households with internet access in the origin and
destination. Patterns of information precision that can be rejected are shown in dotted lines, while patterns
that cannot be rejected are shown in solid lines. We test each hypothesis by building an instrument function
that defines wage proxies according to the assumed precision of information. These wage proxies reflect the
characteristics of the origin and destination labor markets. For example, in the case of distance, the non-
rejected pattern is tested by defining the wage predictor in a far-away labor market (beyond the 25th quantile
of distance) with lower precision (4 bins of lagged wages) than wage predictor in a nearby labor market (16
bins). We report the estimated 95% confidence interval of the migration elasticity that is consistent with the
information assumption in each test.
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all markets into quartiles, and test whether workers in the first interval can further classify

markets into eight bins. This translates into wage predictors with different levels of precision

across different combinations of workers and markets, affecting the values of the instruments

in equation (20) and, thus, changing our moment inequalities. If the resulting 95% confidence

interval for α is empty, we reject that assumption and end the testing procedure. If it is not

empty, we increase the level of precision to 16 bins on that first interval and perform a new

test. Calling Bj the maximum precision level tested and not rejected for the jth interval, the

next iteration maintains Bj on that interval and searches for the maximum level of precision

in the interval j`1, up to precision Bj. This procedure yields a weakly monotone information

schedule along each dimension.

Figure 2 displays our results. Panel (a) shows we cannot reject workers are well informed

about wages in labor markets that are within the 25th percentile of distance (383 km) of

their location of residence. As discussed in Section 5.4.1, migration rates increase in workers’

information. Thus, the well-known fact that migration rates decrease in distance (Beine

et al., 2016) may be due less than previously thought to migration costs increasing in this

dimension, and more to the role that information frictions play in migration choices. In panel

(b), we observe that past migration flows between two locations are positively correlated

with the information residents in one location have about wages in the other one. Given

the impact information frictions have on the decision to migrate, this finding can partly

explain the fact that workers from a particular origin tend to persistently migrate to the

same destinations, providing an explanation for the impact that enclaves and social networks

have on migration flows (e.g., Munshi, 2020). Panels (c) and (d) show that workers living in

the five largest microregions by population have better information, and that all workers have

more information about wages in the top quartile of regions by population. The information

premium from living in highly populated areas adds to the skill-accumulation benefits of

cities discussed in the prior literature (e.g., Glaeser and Maré, 2001; De la Roca and Puga,

2017). Finally, panels (e) and (f) provide evidence from one particular mechanism that may

explain the findings in panels (c) and (d): workers living in regions with higher internet

access have better information, and all workers have better information about regions with

high internet access. This finding is consistent with the evidence on the informational impact

of broadband internet access documented in the prior literature (e.g., Akerman et al., 2022;

Grubanov-Boskovic et al., 2022).

5.4 Counterfactuals

The findings above indicate migrants face substantial information frictions. We now use our

estimated model to predict how changes in the worker’s information set and migration costs
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affect their migration choices and expected utility. In this analysis, we keep all elements of

the economic environment constant and focus on workers’ individual responses, ignoring the

impact that widespread changes in workers’ information and costs would have on migration

flows through changes in equilibrium wages and prices (see Porcher, 2022, for such analysis).

We simulate the migration decisions made by agents facing wages that follow an AR(1)

process with sector and location drifts. We calibrate this process using observed wages in

our sample of 50 regions and 20 sectors over the period 2002-2011. Our estimates indicate

wages are strongly serially correlated (with a persistence estimate of 0.93). Thus, the key

potential source of workers’ imperfect wage information is not the prevalence of unpredictable

time-varying wage shocks but the lack of precise information on past wages. While our two-

step estimation procedure makes it computationally feasible to obtain confidence intervals

for all model parameters, computing model predictions that account for uncertainty in all

parameter estimates is computationally very costly, as it requires building a multidimensional

grid that spans all confidence intervals and evaluating our model at each point in that grid.

As an alternative, we consider all points in the confidence interval for the wage coefficient α,

but calibrate amenities by regressing the midpoint of the corresponding moment inequality

confidence intervals (see Figure E.2 in Appendix E.4) on a constant and log distance.

For each scenario, we evaluate the predictions of our estimated model for an economy

that includes one million individuals drawn from the 2002 empirical distribution of workers

across the 50 locations and 20 sectors in our estimation sample. We simulate the choices

of these individuals for the period 2002-2011 and for 100 different simulation draws of the

wage process. For each outcome variable of interest, we report the average value across all

individuals and simulation draws.

5.4.1 Changes in Information Sets

We evaluate the impact on migration choices and welfare of giving workers information on

market wages in all locations. Specifically, we focus on the impact of improving workers’

information on both the migration probability, measured as the probability a worker changes

locations in two consecutive periods, and welfare. We measure welfare as the average utility

across simulated workers and periods, including the contribution of idiosyncratic tastes for

locations and, importantly, using ex-post wages as the income measure. Hence, workers with

perfect wage information choose locations exactly maximizing their utility, while workers with

incomplete information maximize expected utility, and may choose locations that, ex-post,

do not offer the highest utility.

The results are displayed in Figure 3. Panel (a) shows that the largest welfare gains are

obtained by workers whose initial information only allows them to determine whether lagged
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Figure 3: Effects of Providing Full Information About Wages
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This figure displays counterfactual changes in welfare (panel (a)) and migration rates (panel (b)) as a result
of giving workers perfect wage information. The intervals correspond to the range of model predictions
consistent with value of α in the 95% confidence interval r1.21, 1.83s; see Section 5.2.2.

wages are above or below median. In this case, welfare gains are between 3.5% and 5.2%,

with the highest gains generated by the model that sets the wage coefficient α to the largest

value within its 95% confidence interval. The gains decrease but remain sizeable for workers

who were initially better informed. Even if workers observed lagged wages perfectly—a

hypothesis we reject in Panel (a) in Figure 5.2.2—the gains from observing contemporaneous

wages perfectly would still range between 1.5 and 2.3%.

Panel (b) reports migration rates for workers with different information. Migration rates

increase in the precision of the worker’s wage information. They are below 5% for workers

with the coarsest information set we consider, and between 9 and 14% when information

is complete. This finding is in contradiction with the predictions of the model in Kaplan

and Schulhofer-Wohl (2017), where workers improve their location-specific information by

migrating, and tend to migrate more the worse their initial information is. Importantly, for

our baseline information set according to which workers can discern the quartile to which

lagged market wages belong, our estimated model predicts a migration rate between 4.2 and

6.9%, which aligns well with the migration rate of approximately 6% observed in the actual

sample in 2002; see Figure D.1a in Appendix D.2.2.

5.4.2 Reducing Barriers to Mobility

Reducing barriers to geographic mobility within a country is one of the main policy levers

available to alleviate spatial misallocation (Morten and Oliveira, 2024). However, the benefits
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Figure 4: Effects of Reducing Migration Costs, by Information Level
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This figure displays counterfactual changes in welfare (panel (a)) and migration rates (panel (b)) from a 10%
reduction in migration costs, depending on workers’ information. The intervals correspond to the range of
model predictions consistent with a value of α in the 95% confidence interval r1.21, 1.83s; see Section 5.2.2.

of reducing mobility frictions likely depend on whether agents are well-informed about the

economic opportunities in the newly accessible regions. In this section, we evaluate how the

effects of such policies depend on the information available to potential migrants. Specifically,

for several information sets, we compute the predictions of our estimated model for a 10%

reduction in our calibrated migration costs.

Figure 4 displays the results. Panel (a) reveals that the welfare gains from a 10% reduction

in migration costs increase greatly with the precision of workers’ information on market

wages. When workers are fully informed about wages in all locations, the welfare gains range

from 4.2 to 5.7%, depending on the estimate of α. However, when workers can only discern

whether lagged wages in each location are above or below median wages, the same reduction

in migration costs only yields 1.2 to 1.8% welfare gains.

Panel (b) illustrates the increases in migration rates from reducing migration costs at

each information level. The migration rates increase significantly for all information levels,

and more so in relative terms for workers with a lower level of information precision. How-

ever, those larger increases in mobility have a higher rate of mistakes when the information

precision is low, leading to the lower welfare gains reported in panel (a).
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6 Extension: Dynamic Model of Location Choice

Our analysis so far allows for completely flexible migration costs, but assumes that agents

are myopic. In this section, we describe how to extend our estimation method to settings

with forward-looking agents facing one-time migration costs. In Section 6.1, we describe the

assumptions of our dynamic migration model. In Section 6.2, we briefly describe how to

adapt the procedure in Section 3 to the estimation of the parameters of the dynamic model.

Appendix F provides additional details.

6.1 Theoretical Framework

The key departure from the model in Section 2 is that workers now determine their optimal

choice at a period t internalizing its impact on future utility. Defining a variable ylist that

equals one if worker i of type s chooses location l at period t, and zero otherwise, we assume

ylist ” 1tl “ argmax
l1“1,...,L

ErV l1ist|Jistsu for l “ 1, . . . , L, (26)

with V list the choice-specific value function and Er¨s defined as in equation (2). We impose:

V list “ vlist ` εlist, (27a)

vlist “ βxlnt ` λlt ` αwlist ` δVpltq
ist`1, (27b)

where n indexes the location of worker i of type s and period t ´ 1, and

Vpltq
ist`1 ” max

l1“1,...,L
ErVpltql1

ist`1|J pltq
ist`1s. (28)

Equation (27a) splits the choice-specific value function into the idiosyncratic component εlist

and a variable vlist that equation (27b) defines as the sum of four terms. First, the migration

costs between locations n and l, modeled as a function of observed covariates xlnt and a vector

of parameters β. Second, a location- and period-specific term λlt, which captures a location’s

amenities and (log) price index. Third, the wage component αwlist. Fourth, the product

of the discount factor δ and a variable Vpltq
ist`1 that, according to equation (28), equals the

worker’s period-t ` 1 value function conditional on choosing alternative l at period t.23.24

23We assume for simplicity that types are exogenous, but one may apply our inequalities to a model in
which workers optimally choose their type subject to transition costs as in, e.g., Caliendo et al. (2019, 2021).

24A comparison of equations (3) and (27) shows that, at the expense of assuming δ “ 0, the static model
allows for a more flexible specification of migration costs, which may vary freely across locations and periods.
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Defining λt “ pλ1t , . . . , λ
L
t q and εist “ pε1ist, . . . , ε

L
istq, we assume that

pεist, λt, α, β, δq Ď Jist. (29)

Thus, when making their choice at period t, workers know the vectors of contemporaneous

idiosyncratic preferences εist and amenities λt, and the preference parameters α, β and δ.

Equation (29) does not restrict the information workers have about the wage vector wist1 “

pw1
ist1 , . . . , w

L
ist1q for any t1 ě t or the amenity vector λt1 for any t

1 ą t.

While we do not specify the full content of workers’ information sets, we limit the processes

that determine them and assume that, for any t1 ą t,

Jist1 KK yist|Jist. (30)

Thus, conditional on the worker’s information set at a period t, the worker’s information set

in subsequent periods does not depend on the worker’s choice at t. Our framework thus does

not allow for endogenous learning, understood as the process through which the worker’s

information set at t may depend on the history of locations visited by the worker.25

Defining ∆vll
1

ist ” vlist ´ vl
1

ist, we impose that for any period t, locations l and l1, types s

and r, and workers i and j that share a common prior location n,

Er∆vll
1

ist|Jist,Jjrts “ Er∆vll
1

ist|Jists “ Er∆vll
1

ist|Wists. (31)

The first equality imposes that every worker has at least as much information as any other

worker of a different type r with whom it shares prior location n about differences in their

own location-specific value functions. The second equality imposes that, once we condition

on all other elements of the information set of worker i of type s at period t, the idiosyncratic

preferences in εist do not contain any information on ∆vll
1

ist for any two locations l and l1. The

variable ∆vll
1

ist depends on the worker’s future choices, which will depend on εist1 for t
1 ą t;

thus, equation (31) will generally not hold unless εist is independent over time.

As in the static model, data limitations force us to restrict the information workers have on

location-specific wages. For any workers i and j of types s and r, respectively, and locations

l and l1, it holds that

Er∆wll
1

ist|Wist,Wjrts “ Er∆wll
1

st |Wists. (32)

Thus, the worker’s period-t expectation of the contemporaneous wage difference between two

25We thus do not allow for the type of learning specified in Kennan and Walker (2011), where workers are
assumed to know the wage of a location if they had lived in it in the past.
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locations l and l1 equals the expectation of terms that do not vary across workers of the same

type s. We do not restrict the information workers have about the difference in type- and

location-specific wages ∆wll
1

st1 between any two locations l and l1 and in any period t1.

Finally, as in equation (6), we assume that, for workers i and j of types s and r,

Fεpεist, εjrt|Wist,Wjrtq “ FεpεistqFεpεjrtq “ exp

ˆ

´

L
ÿ

l“1

pexpp´εlistq ` expp´εljrtqq

˙

. (33)

That is, the vectors εist and εjrt are independent of pWist,Wjrtq and of each other, and each

of their elements is iid according to a type I extreme value distribution.

The elements of λt are identified up to a location parameter. Thus, we normalize λ1t “ 0

for all t. Given this normalization, the model parameters are pλ2t , . . . , λ
L
t q for all sample

periods, the wage coefficient α, and the migration cost parameters β.

6.2 Estimation With Moment Inequalities

We provide a two-step estimation procedure. In the first step, we compute a confidence set

for pα, βq using moment inequalities that difference out the amenity λlt for any l and t. In

the second step, for each l “ 2, . . . , L and sample period t, we derive inequalities that depend

only on the parameters α, β, and λlt, and combine these inequalities with the confidence set

for pα, βq to compute a confidence interval for λlt. We summarize here the approach to derive

the second-step inequalities and provide further details in Appendix F.1.

We describe here how to apply bounding inequalities of the type introduced in Section

3.1.1 to the dynamic model in Section 6.1.26 Following steps analogous to those taken to

derive the static bounding inequality in equation (8), we obtain the following inequality,

Eryl
1

ist ´ ylist expp´hll
1

istpzst,∆λ
ll1

t qqp1 ` hll
1

istpzst,∆λ
ll1

t q ´ pvlist ´ vl
1

istqq|zsts ě 0. (34)

This inequality cannot be used for estimation as the value function difference vlist ´vl
1

ist is not

a function only of observed covariates and parameters.

We follow Morales et al. (2019) and implement a discrete analogue of Euler’s perturbation

method to derive an inequality that can be used for estimation. Specifically, we substitute

vl
1

ist in equation (34) by a function ṽl
1

ist, where v
l1

ist and ṽ
l1

ist differ in that the latter conditions

on the choices that, from period t ` 1 onwards, would be optimal for worker i of type s if

they had chosen alternative l at t. As our dynamic model exhibits one-period dependence,

vlist ´ ṽl
1

ist is a function exclusively of the difference in static utilities at period t and the

26While it may be feasible to use the odds-based moment inequalities introduced in Section 3.1.2 in the
context of our dynamic model, we have not found the way of doing so.

34



discounted difference in static utilities at period t ` 1 that are due to whether the worker

chooses alternatives l or l1 at period t. Specifically,

vlist ´ ṽl
1

ist “ ulist ´ ul
1

ist ` δβ
L
ÿ

l2“1

y
pltql2

ist`1px
l2

lt`1 ´ xl
2

l1t`1q, (35)

where y
pltql2

ist`1 is the optimal choice at period t` 1 of worker i of type s if they were to choose

alternative l at t. The expression in equation (35) is a function of observed covariates and

parameters. Moreover, vl
1

ist ě ṽl
1

ist for every worker, period, and choices l and l1. Thus, the

sign of the moment inequality in equation (34) is preserved if ṽl
1

ist takes the place of vl
1

ist. We

show formally in Appendix F.1.2 that the resulting inequality bounds the amenity λlt for all

l “ 2, . . . , L and period t. Appendix F.1.1 shows how to derive moment inequalities that are

informative about pα, βq.

7 Conclusion

We introduce a new method to estimate discrete choice models when agents’ information

sets are unobserved to the researcher and potentially heterogeneous between individuals, and

when the choice set is arbitrarily large and payoffs are parameterized with choice-specific

fixed effects. In the context of location choice, our method allows both information frictions

and migration costs to vary flexibly between individuals, locations, and over time, and lets us

separately identify the role of information frictions and migration costs in workers’ location

choices.

The application of our moment inequality estimator to data on internal migration choices

in Brazil yields four takeaways. First, workers have coarse and heterogeneous information

about wages in other local markets. In particular, workers’ location choices are consistent

with them observing wages in nearby labor markets with higher precision. Second, account-

ing for this incomplete information substantially alters the mapping from observed location

choices and wages to workers’ preferences for wages and non-wage attributes. Our wage

preference estimates are three times larger than those from common estimation procedures,

whereas our migration cost estimates are, on average, 21% lower. Third, providing workers

with complete information in our estimated model would increase both migration rates and

average welfare. Fourth, policies that reduce migration costs by improving transportation

infrastructure or reducing regulatory barriers are much less effective at inducing mobility

and improving migrants’ welfare when workers face information frictions of the magnitude

we recover.
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Our results emphasize that information frictions affect people’s behavior and, thus, ob-

served choices do not reflect their preferences alone. Moreover, even with correct estimates

of people’s preferences, information frictions affect the predicted effects of policy proposals,

including those that do not target information frictions directly. These insights, as well as

our method, apply beyond the context of location choice. Deciding which schools to apply to

and which health insurance plan to select are examples of other economically consequential

decisions that most people make with limited information. We view the application of our

method to study these other decisions as a promising avenue for research.
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A Main Proofs

A.1 Proof of Theorem 1

Equation (1) implies that, for any worker i of type s and locations l and l1, it holds that

pylis ` yl
1

isqp1tErU l
is ´ U l1

is|Jiss ě 0u ´ ylisq “ 0.

Equations (3) to (5) imply we can rewrite this equality as

pylis ` yl
1

isqp1t∆κll
1

` αEr∆wll
1

is |Wiss ` ∆εll
1

is ě 0u ´ ylisq “ 0, (A.1)

where ∆κll
1

“ κl ´ κl
1

, ∆wll
1

is “ wlis ´ wl
1

is, and ∆εll
1

is “ εlis ´ εl
1

is. Taking the expectation of

this equality conditional on Wis and a dummy variable that equals one if worker i of type s

chooses either location l or location l1, we obtain

Er1t∆κll
1

` αEr∆wll
1

is |Wiss ` ∆εll
1

is ě 0u ´ ylis|Wis, y
l
is ` yl

1

is “ 1s “ 0.

Equation (6) implies that ∆εll
1

is follows a Logit distribution, so integrating over ∆εll
1

is yields

Erp1 ` expp´∆κll
1

´ αEr∆wll
1

is |Wissqq
´1

´ ylis|Wis, y
l
is ` yl

1

is “ 1s “ 0.

Multiplying by 1 ` expp´∆κll
1

´ αEr∆wll
1

s |Wissq, we obtain

Er1 ´ ylis ´ ylis expp´∆κll
1

´ αEr∆wll
1

is |Wissq|Wis, y
l
is ` yl

1

is “ 1s “ 0.

Given the conditioning on the event ylis ` yl
1

is “ 1, we can rewrite this moment equality as

Eryl
1

is ` ylisp´ expp´p∆κll
1

` αEr∆wll
1

is |Wissqqq|Wiss “ 0. (A.2)

As ´ expp´xq is concave in x P R, a linear approximation to this function at any a P R

bounds it from above. The formula for this approximation is ´ expp´aqp1 ` a ´ xq. Thus,

given a function hll
1

is : Zs ˆ Θll1 Ñ R and equation (A.2), we derive the following inequality

Eryl
1

is ´ ylis expp´hll
1

is pzs,∆κ
ll1

qqp1 ` hll
1

is pzs,∆κ
ll1

q ´ ∆κll
1

´ αEr∆wll
1

is |Wissq|Wiss ě 0. (A.3)

Let’s consider the moment

Eryl
1

is ´ ylis expp´hll
1

is pzs,∆κ
ll1

qqp1 ` hll
1

is pzs,∆κ
ll1

q ´ ∆κll
1

´ α∆wll
1

is q|Wiss. (A.4)
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Define νll
1

is ” ∆wll
1

is ´Er∆wll
1

s |Wiss. As Wis Ă Jis, we use the LIE to write equation (A.4) as

ErEryl
1

is´y
l
is expp´hll

1

is pzs,∆κ
ll1qqp1`hll

1

is pzs,∆κ
ll1q´∆κll

1

´αpEr∆wll
1

is |Wiss´νll
1

is qq|Jiss|Wiss.

Equation (1) implies Erylis|Jiss “ ylis, equation (4) implies p∆κll
1

, αq Ă Jis, and, by definition,

Wis Ă Jis. Therefore, if zs Ď Wis and h
ll1

is p¨q is deterministic, the moment above equals

Eryl
1

is´y
l
is expp´hll

1

is pzs,∆κ
ll1qqp1`hll

1

is pzs,∆κ
ll1q´∆κll

1

´αErEr∆wll
1

is |Wiss`νll
1

is |Jissq|Wiss.

Equation (5) implies Er∆wll
1

is |Jiss “ Er∆wll
1

is |Wiss “ Er∆wll
1

s |Wiss and equation (2) implies

Erνll
1

is |Wiss “ 0, so we can rewrite the moment in equation (A.4) as

Eryl
1

is ` ylis expp´hll
1

is pzs,∆κ
ll1

qqp´p1 ` hll
1

is pzs,∆κ
ll1

qq ` ∆κll
1

` αEr∆wll
1

is |Wissq|Wiss.

However, this moment is exactly the same entering the moment inequality in equation (A.3),

which implies that the following inequality involving the moment in equation (A.4) is equiv-

alent to that in equation (A.3):

Eryl
1

is ` ylis expp´hll
1

is pzs,∆κ
ll1

qqp´p1 ` hll
1

is pzs,∆κ
ll1

qq ` ∆κll
1

` α∆wll
1

is q|Wiss ě 0.

Finally, if zs Ă Wis, we can use the LIE and conclude that

Eryl
1

is ` ylis expp´hll
1

is pzs,∆κ
ll1

qqp´p1 ` hll
1

is pzs,∆κ
ll1

qq ` ∆κll
1

` α∆wll
1

is q|zss ě 0. (A.5)

The moment in this inequality is precisely the moment in equation (7) when evaluated at

∆θll1 “ ∆κll
1

. Thus, equation (A.5) implies Theorem 1. ■

A.2 Proof of Theorem 2

To prove Theorem 2, we first consider equation (A.2). Let’s consider the moment

Eryl
1

is ` ylisp´ expp´p∆κll
1

` α∆wll
1

is qqq|Wiss (A.6)

or, equivalently,

Eryl
1

is ` ylisp´ expp´p∆κll
1

` αpEr∆wll
1

is |Wiss ` νll
1

is qqqq|Wiss,
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where νll
1

is ” ∆wll
1

is ´Er∆wll
1

s |Wiss. Given that Wis Ă Jis, we can use the LIE to rewrite this

moment as

ErEryl
1

is ` ylisp´ expp´p∆κll
1

` αpEr∆wll
1

is |Wiss ` νll
1

is qqqq|Jiss|Wiss.

Equation (1) implies Erylis|Jiss “ ylis. Consequently, we can further rewrite

Eryl
1

is ` ylisEr´ expp´p∆κll
1

` αpEr∆wll
1

is |Wiss ` νll
1

is qqq|Jiss|Wiss.

Equation (4) and the definition of Wis as including all elements of Jis other than εis implies

that p∆κll
1

, αq Ă Wis. As ∆wll
1

is “ Er∆wll
1

is |Wiss ` νll
1

is , equation (5) further implies that

ErEr∆wll
1

is |Wiss `νll
1

is |Jiss “ ErEr∆wll
1

is |Wiss `νll
1

is |Wiss. Thus, we rewrite the moment above,

Eryl
1

is ` ylisEr´ expp´p∆κll
1

` αpEr∆wll
1

is |Wiss ` νll
1

is qqq|Wiss|Wiss. (A.7)

As ´ exppxq is concave in x P R, equation (2) and Jensen’s inequality imply the inequality

Eryl
1

is ` ylisEr´ expp´p∆κll
1

` αpEr∆wll
1

is |Wiss ` νll
1

is qqq|Wiss|Wiss

ď

Eryl
1

is ` ylisp´ expp´p∆κll
1

` αEr∆wll
1

is |Wissqqq|Wiss.

The right-hand side of this inequality coincides with equation (A.2) and, thus, we conclude

Eryl
1

is ` ylisEr´ expp´p∆κll
1

` αpEr∆wll
1

is |Wiss ` νll
1

is qqq|Wiss|Wiss ď 0.

As the moments in equations (A.6) and (A.7) are equivalent, this inequality rewrites as

Eryl
1

is ` ylisp´ expp´p∆κll
1

` α∆wll
1

is qqq|Wiss ď 0.

Multiplying by ´1 on both sides of this equation, we obtain the following inequality

Erylis expp´p∆κll
1

` α∆wll
1

is qq ´ yl
1

is|Wiss ě 0.

Finally, if zs Ă Wis, we can use the LIE to conclude

Erylis expp´p∆κll
1

` α∆wll
1

is qq ´ yl
1

is|zss ě 0. (A.8)

The moment in this inequality is precisely the moment in equation (12) when evaluated at

∆θll1 “ ∆κll
1

. Thus, equation (A.8) implies Theorem 2. ■
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A.3 Proof of Theorem 3

For any locations l and l1 and any worker i of type s, equation (A.1) implies

pylis ` yl
1

isqp1t∆κll
1

` αEr∆wll
1

is |Wiss ` ∆εll
1

is ě 0u ´ ylisq “ 0.

For any locations l and l1, any worker i of type s, and any worker j of type r, we thus have

yl
1

jrpy
l
is ` yl

1

isqp1t∆κll
1

` αEr∆wll
1

is |Wiss ` ∆εll
1

is ě 0u ´ ylisq “ 0. (A.9)

Next, we take the expectation of this equality conditional on Wis, on Wjr, and on a dummy

variable that equals one if worker i of type s chooses either location l or location l1; i.e.,

Eryl
1

jrp1t∆κll
1

` αEr∆wll
1

is |Wiss ` ∆εll
1

is ě 0u ´ ylisq|Wis,Wjr, y
l
is ` yl

1

is “ 1s “ 0.

Given equations (1) and (6), we rewrite this moment equality, after integrating over ∆εll
1

is , as

Eryl
1

jrpp1 ` expp´∆κll
1

´ αEr∆wll
1

is |Wissqq
´1

´ ylisq|Wis,Wjr, y
l
is ` yl

1

is “ 1s “ 0.

Multiplying by 1 ` expp´∆κll
1

´ αEr∆wll
1

s |Wissq, we obtain

Eryl
1

jrp1 ´ ylisp1 ` expp´∆κll
1

´ αEr∆wll
1

is |Wissqqq|Wis,Wjr, y
l
is ` yl

1

is “ 1s “ 0,

or, equivalently,

Eryl
1

jrp1 ´ ylis ´ ylis expp´∆κll
1

´ αEr∆wll
1

is |Wissqq|Wis,Wjr, y
l
is ` yl

1

is “ 1s “ 0.

Given that this expectation conditions on the event ylis ` yl
1

is “ 1, we can further rewrite

Eryl
1

jrpy
l1

is ` ylisp´ expp´p∆κll
1

` αEr∆wll
1

is |Wissqqqq|Wis,Wjrs “ 0,

or, equivalently,

Eryl
1

isy
l1

jr ` ylisy
l1

jrp´ expp´p∆κll
1

` αEr∆wll
1

is |Wissqqq|Wis,Wjrs “ 0.

As the function ´ expp´xq is concave in x P R, given any deterministic function gll
1

ijsr : Zs ˆ

Zr ˆ Θα Ñ R, we can derive the following inequality

Eryl
1

isy
l1

jr ` ylisy
l1

jr expp´gll
1

ijsrpzs, zr, αqqˆ
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p´p1 ` gll
1

ijsrpzs, zr, αqq ` ∆κll
1

` αEr∆wll
1

is |Wissq|Wis,Wjrs ě 0. (A.10)

Let’s consider the moment

Eryl
1

isy
l1

jr ` ylisy
l1

jr expp´gll
1

ijsrpzs, zr, αqqp´p1 ` gll
1

ijsrpzs, zr, αqq ` ∆κll
1

` α∆wll
1

is q|Wis,Wjrs,

(A.11)

or, equivalently,

Eryl
1

isy
l1

jr ` ylisy
l1

jr expp´gll
1

ijsrpzs, zr, αqqˆ

p´p1 ` gll
1

ijsrpzs, zr, αqq ` ∆κll
1

` αpEr∆wll
1

is |Wiss ` νll
1

is qq|Wis,Wjrs,

where νll
1

is ” ∆wll
1

is ´ Er∆wll
1

s |Wiss. Equation (5) implies we can also write νll
1

is ” ∆wll
1

is ´

Er∆wll
1

s |Wis,Wjrs and conclude that Erνll
1

is |Wis,Wjrs “ 0. Given that Wis Ă Jis and Wjr Ă

Jjr, we can use the LIE to rewrite the moment inequality above as

ErEryl
1

isy
l1

jr ` ylisy
l1

jr expp´gll
1

ijsrpzs, zr, αqqˆ

p´p1 ` gll
1

ijsrpzs, zr, αqq ` ∆κll
1

` αpEr∆wll
1

is |Wiss ` νll
1

is qq|Jis,Jjrs|Wis,Wjrs.

Equation (1) implies Erylisy
l1

jr|Jis,Jjrs “ ylisy
l1

jr, and equation (4) implies p∆κll
1

, αq Ă pJis X

Jjrq. Consequently, if zs Ď Wis and zr Ď Wjr, it is then the case that zs Ă Jis and zr Ă Jjr,
and we can thus further rewrite

Eryl
1

isy
l1

jr ` ylisy
l1

jr expp´gll
1

ijsrpzs, zr, αqqˆ

p´p1 ` gll
1

ijsrpzs, zr, αqq ` ∆κll
1

` αErEr∆wll
1

is |Wiss ` νll
1

is |Jis,Jjrsq|Wis,Wjrs.

As ∆wll
1

is “ Er∆wll
1

is |Wiss ` νll
1

is , equation (5) further implies that

Eryl
1

isy
l1

jr ` ylisy
l1

jr expp´gll
1

ijsrpzs, zr, αqqˆ

p´p1 ` gll
1

ijsrpzs, zr, αqq ` ∆κll
1

` αErEr∆wll
1

is |Wiss ` νll
1

is |Wis,Wjrsq|Wis,Wjrs,

and Erνll
1

is |Wis,Wjrs “ 0 implies we can rewrite this moment as

Eryl
1

isy
l1

jr`ylisy
l1

jr expp´gll
1

ijsrpzs, zr, αqqp´p1`gll
1

ijsrpzs, zr, αqq`∆κll
1

`αEr∆wll
1

is |Wissq|Wis,Wjrs.

Given equation (5), we can further rewrite this moment as

Eryl
1

isy
l1

jr`ylisy
l1

jr expp´gll
1

ijsrpzs, zr, αqqp´p1`gll
1

ijsrpzs, zr, αqq`∆κll
1

`αEr∆wll
1

s |Wissq|Wis,Wjrs.
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This moment is the same as the one entering the inequality in equation (A.10), which implies

that the following inequality, written with the moment in (A.11), is equivalent to (A.10),

Eryl
1

isy
l1

jr ` ylisy
l1

jr expp´gll
1

ijsrpzs, zr, αqqp´p1 ` gll
1

ijsrpzs, zr, αqq ` ∆κll
1

` α∆wll
1

is q|Wis,Wjrs ě 0.

(A.12)

This moment inequality is one of the two that we will combine to obtain the inequality that

we use to bound the parameter α. To obtain the second moment inequality, we start from

ylispy
l
jr ` yl

1

jrqp1t∆κl
1l

` αEr∆wl
1l
jr|Wjrs ` ∆εl

1l
jr ě 0u ´ yl

1

jrq “ 0, (A.13)

which is analogous to that in equation (A.9). Following the same steps described above to

go from equation (A.9) to equation (A.12), we can derive the following inequality

Erylisy
l
jr ` ylisy

l1

jr expp´gll
1

ijsrpzs, zr, αqqp´p1 ` gll
1

ijsrpzs, zr, αqq ` ∆κl
1l

` α∆wl
1l
jrq|Wis,Wjrs ě 0.

(A.14)

As the moments in equations (A.12) and (A.14) have the same conditioning set, we can add

them, obtaining the following moment inequality:

Erylisy
l
jr ` yl

1

isy
l1

jr ` ylisy
l1

jr expp´gll
1

ijsrpzs, zr, αqqˆ

p´p1 ` gll
1

ijsrpzs, zr, αqq ` αp∆wll
1

is ` ∆wl
1l
is qq|Wis,Wjrs ě 0.

Finally, if zs Ă Wis and zr Ă Wjr, we can use the LIE and conclude that

Erylisy
l
jr ` yl

1

isy
l1

jr ` ylisy
l1

jr expp´gll
1

ijsrpzs, zr, αqqˆ

p´p1 ` gll
1

ijsrpzs, zr, αqq ` αp∆wll
1

is ` ∆wl
1l
is qq|zs, zrs ě 0. (A.15)

The moment in this inequality is the moment in equation (16) when evaluated at θα “ α.

Thus, equation (A.15) implies Theorem 3. ■
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B Other Proofs and Additional Derivations

In Appendix B.1, we show how we obtain several expressions appearing in Section 3.1.1.

In Appendix B.2, we prove Corollary 1. In Appendix B.3, we show how we obtain several

expressions appearing in Section 3.1.2. In Appendix B.4, we prove Corollary 2. In Appendix

B.5, we show how we obtain several expressions appearing in Section 3.2. In Appendix B.6,

we prove Corollary 3.

B.1 Second-Step Bounding Inequalities: Additional Derivations

Derivation of equation (9). Given zs P Zs, we compute the function in equation (9) by finding

the value of hll
1

is pzs,∆θllq that minimizes the moment in equation (7) at each value of ∆θll1 .

Specifically, given zs and ∆θll1 the first-order condition of the moment in equation (7) with

respect to the scalar hll
1

is pzs,∆θllq is

Erylisph
ll1

is pzs,∆θll1q ´ p∆θll1 ` α∆wll
1

s qq|zss,

or, equivalently,

Erhll
1

is pzs,∆θll1q ´ p∆θll1 ` α∆wll
1

s q|zs, y
l
is “ 1s.

Setting this moment condition to zero and bearing in mind that, according to equation (4),

α Ă Jis, we can solve for hll
1

is pzs,∆θll1q to obtain the solution in equation (9); i.e.,

hll
1

is pzs,∆θll1q “ ∆θll1 ` αEr∆wll
1

s |zs, y
l
is “ 1s. (B.1)

Derivation of equation (10). Equations (7) to (9) imply the following inequality

Eryl
1

is ´ ylis expp´p∆θll1 ` αEr∆wll
1

s |zs, y
l
is “ 1sqqp1 ´ αp∆wll

1

s ´Er∆wll
1

s |zs, y
l
is “ 1sqq|zss ě 0,

1



or, equivalently,

Eryl
1

is|zss ě Erylis expp´p∆θll1 `αEr∆wll
1

s |zs, y
l
is “ 1sqqp1´αp∆wll

1

s ´Er∆wll
1

s |zs, y
l
is “ 1sqq|zss.

We can simplify this inequality as

Eryl
1

is|zss ě expp´p∆θll1 `αEr∆wll
1

s |zs, y
l
is “ 1sqqErylisp1´αp∆wll

1

s ´Er∆wll
1

s |zs, y
l
is “ 1sqq|zss,

or, equivalently,

Eryl
1

is|zss ě expp´p∆θll1 ` αEr∆wll
1

s |zs, y
l
is “ 1sqq

ˆ pErylis|zss ´ αErylisp∆w
ll1

s ´Er∆wll
1

s |zs, y
l
is “ 1sq|zssq.

We can further rewrite this inequality as

Eryl
1

is|zss ě expp´p∆θll1 ` αEr∆wll
1

s |zs, y
l
is “ 1sqq

ˆ pErylis|zss ´ αpErylis∆w
ll1

s |zss ´Er∆wll
1

s |zs, y
l
is “ 1sErylis|zssqq,

or equivalently,

Eryl
1

is|zss ě expp´p∆θll1 ` αEr∆wll
1

s |zs, y
l
is “ 1sqq

ˆ pErylis|zss ´ αpEr∆wll
1

s |zs, y
l
is “ 1sErylis|zss ´Er∆wll

1

s |zs, y
l
is “ 1sErylis|zssqq,

Eliminating terms that cancel each other, we obtain the inequality

Eryl
1

is|zss ě expp´p∆θll1 ` αEr∆wll
1

s |zs, y
l
is “ 1sqqErylis|zss.

Rearranging terms, we obtain the expression in equation (10); i.e.,

Erylis|zss

Eryl
1

is|zss
expp´αEr∆wll

1

s |zs, y
l
is “ 1sq ď expp∆θll1q.

Derivation of equation (11). Swapping the indices l and l1 in equation (10) we obtain the

following inequality

Eryl
1

is|zss

Erylis|zss
expp´αEr∆wl

1l
s |zs, y

l1

is “ 1sq ď expp∆θl1lq.

2



Rearranging terms, we immediately obtain the inequality in equation (11); i.e.,

Erylis|zss

Eryl
1

is|zss
expp´αEr∆wll

1

s |zs, y
l1

is “ 1sq ě expp∆θll1q.

B.2 Second-Step Bounding Inequalities: Proof of Corollary 1

Equations (7) to (9) imply the following moment inequality:

Erylis expp´p∆θll1 ` αEr∆wll
1

s |zs, y
l
s “ 1sqq ´ yl

1

is|zss ě 0. (B.2)

As Corollary 1 assumes zs Ă Jis, the definition Wis ” Jis{εis implies zs Ď Wis. Using the

LIE, we write

ErErylis expp´p∆θll1 ` αEr∆wll
1

s |zs, y
l
s “ 1sqq ´ yl

1

is|Wiss|zss ě 0.

Given that zs Ď Wis, we can further rewrite

ErErylis|Wiss expp´p∆θll1 ` αEr∆wll
1

s |zs, y
l
s “ 1sqq ´Eryl

1

is|Wiss|zss ě 0. (B.3)

As yls is a function of pWis, εiq, equation (5) implies Er∆wll
1

s |zs,Wis, y
l
ss “ Er∆wll

1

s |zs,Wiss.

Given that Er∆wll
1

s |zss “ Er∆wll
1

s |Jiss according to Corollary 1, we rewrite equation (B.3) as

ErErylis|Wiss expp´p∆θll1 ` αEr∆wll
1

s |zssqq ´Eryl
1

is|Wiss|zss ě 0.

Given equation (6), we can further rewrite

E

«

expp∆κll1 ` αEr∆wll
1

s |Wissq
řL
l2“1 expp∆κl2l1 ` αEr∆wl2l1s |Wissq

expp´p∆θll1 ` αEr∆wll
1

s |zssqq ´Eryl
1

is|Wiss|zs

ff

ě 0.

Using a similar expression for the probability of choosing l1 conditional on Wis, we derive

E

»

–pexpp∆κll1 ´ ∆θll1q ´ 1q

˜

L
ÿ

l2“1

expp∆κl2l1 ` αEr∆wl
2l1

s |Wissq

¸´1

|zs

fi

fl ě 0,

3



where we have used the assumption (imposed in Corollary 1) thatEr∆wll
1

s |zss “ Er∆wll
1

s |Wiss.

We can rewrite this inequality as

pexpp∆κll1 ´ ∆θll1q ´ 1qE

»

–

˜

L
ÿ

l2“1

expp∆κl2l1 ` αEr∆wl
2l1

s |Wissq

¸´1

|zs

fi

fl ě 0.

The expectation in this inequality is always strictly positive. Thus, we rewrite it as

expp∆κll1 ´ ∆θll1q ´ 1 ě 0 ô ∆κll1 ě ∆θll1 . (B.4)

This inequality holds for any two locations l and l1. Thus, swapping the location indices l

and l1, we similarly obtain the following inequality:

∆κl1l ě ∆θl1l ô ∆κll1 ď ∆θll1 . (B.5)

Combining the inequalities in equations (B.4) and (B.5), we obtain the following equality:

∆κll1 “ ∆θll1 . (B.6)

Thus, Corollary 1 holds. ■

B.3 Second-Step Odds-Based Inequalities: Additional Derivations

Derivation of equation (14). Equation (12) and (13) imply the following inequality

Erylis expp´p∆θll1 ` α∆wll
1

is qq|zss ě Eryl
1

is|zss.

We can rewrite this inequality as

Erylis|zssErexpp´p∆θll1 ` α∆wll
1

is qq|zs, y
l
is “ 1s ě Eryl

1

is|zss,

or, equivalently,

Erylis|zss expp´∆θll1qErexpp´α∆wll
1

is q|zs, y
l
is “ 1s ě Eryl

1

is|zss.

Rearranging terms, we obtain the expression in equation (14); i.e.,

Erylis|zss

Eryl
1

is|zss
Erexpp´α∆wll

1

is q|zs, y
l
is “ 1s ě expp∆θll1q.

4



Derivation of equation (15). Swapping the indices l and l1 in equation (14), we obtain the

following inequality

Eryl
1

is|zss

Erylis|zss
Erexpp´α∆wl

1l
is q|zs, y

l1

is “ 1s ě expp∆θl1lq.

Rearranging terms, we immediately obtain the inequality in equation (15); i.e.,

Erylis|zss

Eryl
1

is|zss
pErexpp´α∆wl

1l
is q|zs, y

l1

is “ 1sq
´1

ď expp∆θll1q. (B.7)

B.4 Second-Step Odds-Based Inequalities: Proof of Corollary 2

Equations (12) and (13) imply the following moment inequality:

Erylis expp´p∆θll1 ` α∆wll
1

s qq ´ yl
1

is|zss ě 0. (B.8)

The assumption that zs Ă Jis in Corollary 2, and the definition of Wis ” Jis{εis, imply that

zs Ď Wis. Using the LIE, we can then write

ErErylis expp´p∆θll1 ` α∆wll
1

s qq ´ yl
1

is|Wiss|zss ě 0.

Given the assumption that ∆wll
1

s “ Er∆wll
1

s |Wiss in Corollary 2, we can rewrite

ErErylis expp´p∆θll1 ` αEr∆wll
1

s |Wissqq ´ yl
1

is|Wiss|zss ě 0,

or, equivalently,

ErErylis|Wiss expp´p∆θll1 ` αEr∆wll
1

s |Wissqq ´Eryl
1

is|Wiss|zss ě 0.

Given the expression for the probability of choosing l conditional on Wis, we further rewrite

E

«

expp∆κll1 ` αEr∆wll
1

s |Wissq
řL
l2“1 expp∆κl2l1 ` αEr∆wl2l1s |Wissq

expp´p∆θll1 `αEr∆wll
1

s |Wissqq´Eryl
1

is|Wiss|zs

ff

ě 0.

Using a similar expression for the probability of choosing l1 conditional on Wis, we derive

E

»

–pexpp∆κll1 ´ ∆θll1q ´ 1q

˜

L
ÿ

l2“1

expp∆κl2l1 ` αEr∆wl
2l1

s |Wissq

¸´1

|zs

fi

fl ě 0,

5



or, equivalently,

pexpp∆κll1 ´ ∆θll1q ´ 1qE

»

–

˜

L
ÿ

l2“1

expp∆κl2l1 ` αEr∆wl
2l1

s |Wissq

¸´1

|zs

fi

fl ě 0. (B.9)

The conditional expectation in this inequality will always be strictly positive. Thus, we can

rewrite the inequality in equation (B.9) as

expp∆κll1 ´ ∆θll1q ´ 1 ě 0 ô ∆κll1 ě ∆θll1 . (B.10)

This inequality holds for any two locations l and l1. Thus, swapping the location indices l

and l1, we similarly obtain the following inequality:

∆κl1l ě ∆θl1l ô ∆κll1 ď ∆θll1 , (B.11)

Combining the inequalities in equations (B.10) and (B.11), we obtain the following equality:

∆κl1l “ ∆θl1l. (B.12)

Thus, Corollary 2 holds. ■

B.5 First-Step Moment Inequalities: Additional Derivations

Derivation of equation (18). Given values zs P Zs and zr P Zr, we compute the function in

equation (18) by finding the value of gll
1

ijsrpzs, zr, θαq that minimizes the moment in equation

(16) at each value of θα. Specifically, given zs, zr, and θα, the first-order condition of the

moment in equation (16) with respect to the scalar gll
1

ijsrpzs, zr, θαq is

Erylisy
l1

jrp2g
ll1

ijsrpzs, zr, θαq ´ θαp∆wll
1

s ` ∆wl
1l
r qq|zs, zrs “ 0,

or, equivalently,

Er2gll
1

ijsrpzs, zr, θαq ´ θαp∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

is1 “ 1s.

Setting this moment condition to zero, we can solve for gll
1

ijsrpzs, zr, θαq to obtain the solution

in equation (18); i.e.,

gll
1

ijsrpzs, zr,∆θll1q “ θαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1s.
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Derivation of equation (19). Equations (16) to (18) imply the following inequality

Erylisy
l
jr ` yl

1

isy
l1

jr ´ ylisy
l1

jr expp´θαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sqˆ

p2 ´ θαpp∆wll
1

s ` ∆wl
1l
r q ´Er∆wll

1

s ` ∆wl
1l
r |zs, zr, y

l
isy

l1

jr “ 1sqq|zs, zrs ě 0,

or, equivalently,

Erylisy
l
jr ` yl

1

isy
l1

jr|zs, zrs ě Erylisy
l1

jr expp´θαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sqˆ

p2 ´ θαpp∆wll
1

s ` ∆wl
1l
r q ´Er∆wll

1

s ` ∆wl
1l
r |zs, zr, y

l
isy

l1

jr “ 1sqq|zs, zrs.

Using the LIE, we can rewrite this inequality as

Erylisy
l
jr ` yl

1

isy
l1

jr|zs, zrs ě Erexpp´θαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sqˆ

p2 ´ θαpp∆wll
1

s ` ∆wl
1l
r q ´Er∆wll

1

s ` ∆wl
1l
r |zs, zr, y

l
isy

l1

jr “ 1sqq|zs, zr, y
l
isy

l1

jr “ 1sˆ

Erylisy
l1

jr|zs, zrs ě 0.

Simplifying this expression, we obtain

Erylisy
l
jr ` yl

1

isy
l1

jr|zs, zrs ě 2Erexpp´θαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sqErylisy
l1

jr|zs, zrs.

Rearranging terms, we obtain the expression in equation (19); i.e.,

Erylisy
l1

jr|zs, zrs

Er0.5pylisy
l
jr ` yl

1

isy
l1
jrq|zs, zrs

ď exppθαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sq.

B.6 First-Step Moment Inequalities: Proof of Corollary 3

If zs Ă Wis and zr Ă Wjr, we can use the LIE to rewrite equation (19) as

ErErylisy
l1

jr|Wis,Wjrs|zs, zrs

Er0.5pErylisy
l
jr|Wis,Wjrs `Eryl

1

isy
l1
jr|Wis,Wjrsq|zs, zrs

ď

exppθαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sq.

Equations (5) and (6) further imply that we can rewrite this inequality as

ErErylis|WissEryl
1

jr|Wjrs|zs, zrs

Er0.5pErylis|WissEryljr|Wjrs `Eryl
1

is|WissEryl
1

jr|Wjrsq|zs, zrs
ď

exppθαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sq. (B.13)
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Given equations (1) to (6), it holds that, for any l1 “ 1, . . . , L and l2 “ 1, . . . , L, we can write

Eryl1is|Wiss “
expp∆κl1l2 ` αEr∆wl1l2s |Wissq

řL
l2“1 expp∆κl2l2 ` αEr∆wl

2l2
s |Wissq

,

and similarly for worker j of type r. We then rewrite the inequality in equation (B.13) as

Erexpp∆κll
1

` αEr∆wll
1

s |Wissq expp∆κl
1l ` αEr∆wl

1l
r |Wjrsq|zs, zrs

Er0.5pexpp∆κll1 ` αEr∆wll1s |Wissq ` expp∆κl1l ` αEr∆wl1lr |Wjrsqq|zs, zrs

ď exppθαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sq.

Simplifying this expression, we obtain

ErexppαEr∆wll
1

s |Wissq exppαEr∆wl
1l
r |Wjrsq|zs, zrs

Er0.5pexpp∆κll1 ` αEr∆wll1s |Wissq ` expp∆κl1l ` αEr∆wl1lr |Wjrsqq|zs, zrs

ď exppθαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sq.

If Er∆wll
1

s |zss “ Er∆wll
1

s |Jiss “ ∆w̄, and Er∆wl
1l
r |zrs “ Er∆wl

1l
r |Jirs “ ∆w̄, for a common

constant ∆w̄ P R this inequality becomes

exppα∆w̄q exppα∆w̄q

0.5pexpp∆κll1 ` α∆w̄q ` expp∆κl1l ` α∆w̄qq
ď exppθα∆w̄q.

If ∆κll
1

“ 0, then it becomes

exppα∆w̄q exppα∆w̄q

0.5pexppα∆w̄q ` exppα∆w̄qq
ď exppθα∆w̄q, ô

exppα∆w̄q exppα∆w̄q

exppα∆w̄q
ď exppθα∆w̄q,

and

exppα∆w̄q ď exppθα∆w̄q.

Thus, two inequalities of this type, one with ∆w̄ ą 0 and the other one with ∆w̄ ă 0, will

point identify α.

B.7 Using Inequalities for Estimation of the Wage Parameter

We describe here how we use the moment inequalities introduced in Section 3.2 to compute

a confidence set for the wage parameter θα.

The moment in equation (16) depends on instrument vectors zs and zr. We construct zs

and zr following equation (20). In our empirical application, we equate ∆zll
1

s and ∆zll
1

r to
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the one-year lag value of ∆wll
1

s and ∆wll
1

r , respectively, and build vectors of instruments ∆xll
1

s

and ∆xll
1

r for q P t2, 4, 8, 16u.

The instruments ∆xll
1

s and ∆xll
1

r in equation (20) are weakly positive. Hence, Theorem 3

and the LIE imply that, for any locations l and l1, worker i of type s, worker j of type r, and

and deterministic function gll
1

ijsr : Zs ˆZr ˆΘα Ñ R, the q2 ˆ1 vector of moment inequalities

ErM
ll1

ijsrpzs, zr, θα, g
ll1

ijsrp¨qqp∆xll
1

s b ∆xll
1

r qs ě 0, (B.14)

holds for ∆θll1 “ ∆κll
1

if zll
1

s Ă Jis and zll
1

r Ă Jjr. The choice of the number of intervals q is

consequential for the validity of the inequalities in equation (B.14). If q “ 2, ∆xll
1

s includes

the following two elements:

∆xll
1

s,1 “ 1t´8 ă ∆zll
1

s ď medp∆zll
1

s qu|∆zll
1

s |
d,

∆xll
1

s,2 “ 1tmedp∆zll
1

s q ă ∆zll
1

s ď 8u|∆zll
1

s |
d; (B.15)

and ∆xll
1

r includes the following two elements:

∆xll
1

r,1 “ 1t´8 ă ∆zll
1

r ď medp∆zll
1

r qu|∆zll
1

r |
d,

∆xll
1

r,2 “ 1tmedp∆zll
1

r q ă ∆zll
1

r ď 8u|∆zll
1

r |
d. (B.16)

Thus, if q “ 2, the set of values of ∆θll1 consistent with the inequalities in equation (B.14)

includes ∆κll
1

if, for locations l and l1, worker i of type s knows whether the realized value

of ∆zll
1

s is above or below the median of the distribution of sector-wage differences across

locations and sectors, and worker j of type r knows whether the realized value of ∆zll
1

r is

above or below the same median.

The setting described in Section 2 includes one observation per worker. The sample

analogue of the moment inequality in equation (21) thus averages over only one observation.

However, as this inequality is valid for every worker i of every type s, every worker j of every

type r, and every pair of locations l and l1, it holds that, for any function gll
1

ijsr : ZsˆZrˆΘα Ñ

R, the vector of moment inequalities

S
ÿ

s“1

Is
ÿ

i“1

ÿ

rąs

Ir
ÿ

j“1

ErM
ll1

ijsrpzs, zr, θα, g
ll1

ijsrp¨qqp∆xll
1

s b ∆xll
1

r qs ě 0, (B.17)

is satisfied at ∆θll1 “ ∆κll
1

if zll
1

s1 Ă Jis1 for every worker i “ 1, . . . , Is1 of every type s1 “

1, . . . , S.

If the number of worker types S is small, it may be convenient to further aggregate the
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inequality in equation (B.17) across all location pairs pl, l1q. However, it may be the case that

the instrument vector ∆xll
1

s1 belongs to the information set of every worker only for a subset

of location pairs pl, l1q; e.g., only for urban locations. If this is the case, we may aggregate

the inequality in equation (B.17) only over location pairs pl, l1q that belong to some subset

specified by the researcher.

Given any significance level, we compute a confidence interval for θα by applying the

inference procedure in Andrews and Soares (2010) to the sample analogue of the moment

inequalities in equation (B.17); see Appendix B.8 for details.

B.8 Inference Procedure: Andrews and Soares (2010)

We describe here our implementation of the asymptotic version of the Generalized Moment

Selection (GMS) test described on page 135 of Andrews and Soares (2010). The content of

this section follows closely that of Appendix A.7 in Dickstein and Morales (2018).

We base the construction of our confidence set for the true parameter on the modified

method of moments (MMM) statistic. Denote by γ a generic parameter for which we want

to compute a 1´α confidence set. In our context, the parameter γ may equal either θα or θl

for some location l. Assume we use K sample moment inequalities to compute a confidence

set for γ and denote each of these inequalities by

m̄kpγq ě 0, k “ 1, . . . , K. (B.18)

where, for each k “ 1, . . . , K,

m̄kpγq ”
1

N

C
ÿ

c“1

Nc
ÿ

n“1

mkpxnc, γq, (B.19)

and where observations are grouped into clusters c “ 1, . . . , C and indexed by n “ 1, . . . , Nc

within each cluster c. The variable xn is a generic vector of observed covariates. For example,

in the context of the moment in equation (22), each of the clusters c in equation (B.19)

corresponds to a sector s, and each observation n within a cluster c corresponds to a worker

i within a sector s. In the context of the moment in equation (B.17), each cluster may

correspond to a pair of sectors ps, rq and each observation n within a cluster may correspond

to a tuple of individual indices and location indices pi, j, l, l1q. Regardless of the definition of

what an observation is, the variable Nc denotes the number of sample observations within a

cluster c.
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The MMM statistic is defined as

T pγq “

K
ÿ

k“1

ˆ

min
␣

?
N
m̄kpγq

σ̂kpγq
, 0
(

˙2

, (B.20)

where σ̂kpγq “
a

σ̂2
kpγq and

σ̂2
kpγq “

1

N

C
ÿ

c“1

˜

Nc
ÿ

n“1

pmkpxnc, γq ´ m̄kpγqq

¸2

.

Given a set of K inequalities and a grid Γg covering the parameter space of γ, we implement

the following steps to compute a confidence set for this parameter:

Step 1: choose a point γp P Γg. Steps 2 to 8 test the null hypothesis that γ˚ equals γp:

H0 : γ
˚

“ γp vs. H0 : γ
˚

‰ γp.

Step 2: evaluate the MMM test statistic at γp:

T pγpq “

K
ÿ

k“1

ˆ

min
␣

?
N
m̄kpγpq

σ̂kpγpq
, 0
(

˙2

. (B.21)

Step 3: compute the correlation matrix of the moments evaluated at γp:

Ω̂pγpq “ Diag´ 1
2 pΣ̂pγpqqΣ̂pγpqDiag

´ 1
2 pΣ̂pγpqq, (B.22)

where DiagpΣ̂pγpqq is the LˆL diagonal matrix whose diagonal elements are equal to those of

Σ̂pγpq, Diag
´ 1

2 pΣ̂pγpqq is a matrix such that Diag´ 1
2 pΣ̂pγpqqDiag´ 1

2 pΣ̂pγpqq “ Diag´1pΣ̂pγpqq

and

Σ̂pγpq “
1

N

C
ÿ

c“1

˜

Nc
ÿ

n“1

pmpxnc, γpq ´ m̄pγpqq

¸˜

Nc
ÿ

i“1

pmpxic, γpq ´ m̄pγpqq

¸1

, (B.23)

where

mpxnc, γpq “ pm1pxnc, γpq, . . . ,mKpxnc, γpqq
1, (B.24)

m̄pγpq “ pm̄1pγpq, . . . , m̄Kpγpqq
1. (B.25)

Step 4: simulate the asymptotic distribution of T pγpq. Take D draws from the

multivariate normal distribution Np0K , IKq where 0K is a vector of 0s of dimension K and
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IK is the identity matrix of dimension L. Denote each of these draws as ζd. Define the

criterion function TAAd pγpq as

TAAd pγpq “

K
ÿ

k“1

!

pmintrΩ̂
1
2 pγpqζdsk, 0uq

2
ˆ 1t

?
N
m̄kpγpq

σ̂kpγpq
ď

?
lnNu

)

where rΩ̂
1
2 pγpqζdsk is the l-th element of the vector Ω̂

1
2 pγpqζr.

Step 5: compute critical value. The critical value ĉAApγp, 1 ´ δq is the p1 ´ δq-quantile

of the distribution of TAAd pγpq across the D draws taken in the previous step.

Step 6: accept/reject γp. Include γp in the p1 ´ δq% confidence set, Γ̂1´δ, if T pγpq ď

ĉAApγp, 1 ´ δq.

Step 7: repeat steps 2 to 6 for every γp in the grid Γg.

Step 8: compare Γ̂1´α to Γg. If none of the points in Γ̂1´α are at the boundary of Γg,

define Γ̂1´α as the 95% confidence set for γ˚. Otherwise, expand the limits of Θg and repeat

steps 1 to 8.

C Additional Simulation Results

In Appendix C.1, we describe the moment inequalities we use to compute the confidence

intervals in Table 1. In Appendix C.2, we explore the robustness of the results in Table 1

to the amenity terms κl differing across locations. In Appendix C.3, we explore alternative

ways of building the moment inequalities. In Table C.3, we compare our two-step estimator

to a one-step estimator that can be used in settings with small choice sets. In Table C.4,

we study the performance of a different estimator from that described in Section 3 that may

also be applied in settings with large choice sets. In Appendix C.6, we present estimates

analogous to those in Table 1, but computed using a larger set of instruments. In Appendix

C.4, we present figures that illustrate some of the results in Table 1.

C.1 Inequalities Used in Estimation in Table 1

First step: cases 1 to 4. To compute the confidence intervals for θα in cases 1 to 4 in Table

1, we use the following sample moment inequality for each pair of locations l “ t1, 2, 3u and

l1 ‰ l:

S
ÿ

s“1

pylsy
l
rpsq ` yl

1

s y
l1

rpsq ´ ylsy
l1

rpsq expp´gll
1

s pz2s, z2rpsq, θαqq

12



p2 ` 2gll
1

s pz2s, z2rpsq, θαq ´ θαp∆wll
1

s ` ∆wl
1l
rpsqqqqp∆xll

1

s b ∆xl
1l
rpsqq ě 0, (C.1)

where rpsq indexes the sector we match with sector s when computing the inequality in

equation (C.1). For each s “ 1, . . . , S, we select rpsq randomly among those that satisfy the

restriction

1t|Êr∆wll
1

s |∆zll
1

2s, y
l
s “ 1s ´ Êr∆wl

1l
rpsq|∆z

l1l
2rpsq, y

l1

rpsq “ 1s| ď τu “ 1, (C.2)

with τ “ 0.002. For any s, Êr∆wll
1

s |∆zll
1

2s, y
l
s “ 1s is the predicted value of ∆wll

1

s computed

using a linear regression of ∆wll
1

s on ∆zll
1

2s estimated on the subset of observations with yls “ 1.

To understand the restriction in equation (C.2), one should notice that the moment inequality

in equations (16) to (18) holds for any two sectors s and r. However, Corollary 3 indicates

this inequality has desirable properties when combined with other conditions, sectors s and

r satisfy

Er∆wll
1

s |Jss “ Er∆wl
1l
r |Jrs. (C.3)

We cannot directly impose this restriction as Js and Jr are unobserved. However, as a

feasible alternative, we impose the restriction in equation (C.2). In Appendix C.2, we show

that the confidence interval for θα we obtain when using the moment inequality in equations

(C.1) and (C.2) indeed increases as we increase the value of τ in equation (C.2).

To complete the description of the inequality in equation (C.1), we must determine the

function gll
1

s p¨q and the instruments ∆xll
1

s and ∆xl
1l
rpsq

. Building on the expression in equation

(18), we impose

gll
1

s pz2s, z2rpsq, θαq “ θα0.5pÊr∆wll
1

s |∆zll
1

2s, y
l
s “ 1s ` Êr∆wl

1l
rpsq|∆z

l1l
2rpsq, y

l1

rpsq “ 1sq. (C.4)

The instrument vectors ∆xll
1

s and ∆xl
1l
rpsq

are defined as follows

∆xll
1

s p” 1t´8 ă ∆zll
1

2s ď 0u,1t0 ă ∆zll
1

2s ď 8uq
1, (C.5a)

∆xl
1l
rpsq ” p1t´8 ă ∆zl

1l
2rpsq ď 0u,1t0 ă ∆zl

1l
2rpsq ď 8uq

1. (C.5b)

First step: case 5. To compute the confidence interval for θα for case 5 in Table 1, we use

the following sample moment inequality for each pair of locations l “ t1, 2, 3u and l1 ‰ l:

S
ÿ

s“1

pylsy
l
rpsq ` yl

1

s y
l1

rpsq ´ ylsy
l1

rpsq expp´gll
1

s pws, wrpsq, θαqq
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p2 ` 2gll
1

s pws, wrpsq, θαq ´ θαp∆wll
1

s ` ∆wl
1l
rpsqqqqp∆xll

1

s b ∆xl
1l
rpsqq ě 0, (C.6)

where, for each s “ 1, . . . , S, the sector rpsq is selected randomly among those that verify

1t|∆wll
1

s ´ ∆wl
1l
rpsq| ď 0.002u “ 1; (C.7)

the function gll
1

s p¨q is determined as

gll
1

s pws, wrpsq, θαq “ θα0.5p∆wll
1

s ` ∆wl
1l
rpsqq; (C.8)

and the instrument vectors ∆xll
1

s and ∆xl
1l
rpsq

are defined as follows

∆xll
1

s ” p1t´8 ă ∆wll
1

s ď 0u,1t0 ă ∆wll
1

s ď 8uq
1, (C.9a)

∆xll
1

rpsq ” p1t´8 ă ∆wl
1l
rpsq ď 0u,1t0 ă ∆wl

1l
rpsq ď 8uq

1. (C.9b)

Second step: bounding inequalities for cases 1 to 4. Given a value θ̌α of the parameter θα

and a location l “ 2, . . . , L, we use the following bounding moment inequalities to compute

the confidence interval for θl in cases 1 to 4 in Table 1:

S
ÿ

s“1

py1s ´ yls expp´hl1s pz2s, θlqqp1 ` hl1s pz2s, θlq ´ pθl ` θ̌α∆w
l1
s qqq∆xl1s ě 0, (C.10a)

S
ÿ

s“1

pyls ´ y1s expp´h1ls pz2s,´θlqqp1 ` h1ls pz2s,´θlq ` pθl ` θ̌α∆w
l1
s qqq∆x1ls ě 0; (C.10b)

with the instrument vectors ∆xl1s and ∆x1ls defined as

∆xl1s ” p1t´8 ă ∆zl12s ď 0u,1t0 ă ∆zl12s ď 8uq
1, (C.11a)

∆x1ls ” p1t´8 ă ∆z1l2s ď 0u,1t0 ă ∆z1l2s ď 8uq
1; (C.11b)

and

hl1s pz2s, θlq “ θl ` θ̌αÊr∆wl1s |∆zl12s, y
l
is “ 1s, (C.12a)

h1ls pz2s,´θlq “ ´θl ` θ̌αÊr∆w1l
s |∆z1l2s, y

1
is “ 1s. (C.12b)

For any s and locations l and l1, Êr∆wll
1

s |∆zll
1

2s, y
l
s “ 1s is the predicted value of ∆wll

1

s computed

using a linear regression of ∆wll
1

s1 on ∆zll
1

2s1 estimated on the subset of observations with yls “ 1.

Second step: bounding inequalities for case 5. Given a value θ̌α of θα and a location l ‰ 1,
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we use the inequalities below to compute the confidence interval for θl in case 5 in Table 1:

S
ÿ

s“1

py1s ´ yls expp´hl1s pws, θlqqp1 ` hl1s pws, θlq ´ pθl ` θ̌α∆w
l1
s qqq∆xl1s ě 0, (C.13a)

S
ÿ

s“1

pyls ´ y1s expp´h1ls pws, θlqqp1 ` h1ls pws, θlq ` pθl ` θ̌α∆w
l1
s qqq∆x1ls ě 0; (C.13b)

with the instrument vectors ∆xl1s and ∆x1ls defined as

∆xl1s ” p1t´8 ă ∆wl1s ď 0u,1t0 ă ∆wl1s ď 8uq
1, (C.14a)

∆x1ls ” p1t´8 ă ∆w1l
s ď 0u,1t0 ă ∆w1l

s ď 8uq
1; (C.14b)

and

hl1s pws, θlq “ θl ` θ̌α∆w
l1
s , (C.15)

with h1ls pws,´θlq “ ´hl1s pws, θlq.

Second step: odds-based inequalities for cases 1 to 4. Given a value θ̌α of the parameter

θα and a location l “ 2, . . . , L, we use the following odds-based inequalities to compute the

confidence interval for θl in cases 1 to 4 in Table 1:

S
ÿ

s“1

pyls expp´pθl ` θ̌α∆w
l1
s qq ´ y1sq∆xl1s ě 0, (C.16a)

S
ÿ

s“1

py1s exppθl ` θ̌α∆w
l1
s q ´ ylsq∆x

1l
s ě 0; (C.16b)

with the instrument vectors ∆xl1s and ∆x1ls defined as in equation (C.11).

Second step: odds-based inequalities for case 5. Given a value θ̌α of the parameter θα

and a location l ‰ 1, we compute the confidence interval for θl in case 5 in Table 1 using

inequalities analogous to those in equation (C.16), but with ∆xl1s and ∆x1ls defined as in

equation (C.14).
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C.2 Amenity Differences Across All Locations

Table C.1: Simulation Results - Confidence Intervals With Amenity Differences

Case σ1 σ3 zs pκ1, κ2, κ3q
1st Step

α

2 0 1 z2s p0, 0, 1q [1 , 1.01]

2 0 1 z2s p0, 0.5, 1q [0.92 , 1.09]

2 0 1 z2s p0, 0, 2q [1 , 1.02]

2 0 1 z2s p0, 1, 2q [0.73 , 1.29]

2 0 1 z2s p0, 0, 3q [1 , 1.02]

2 0 1 z2s p0, 1.5, 3q [0.55 , 1.49]

The column α contains a 95% confidence interval for θα based on the moment inequality estimator introduced

in Section 3.2 and described in detail in Appendix C.1. The column pκ1, κ2, κ3q displays the true value of

the location amenities in the simulated data. Confidence intervals are computed following the procedure in

Andrews and Soares (2010) using a 1-dimensional grid with limits r0.5, 1.5s.

C.3 First-step Moment Inequalities with Loose Sectoral Matches

Table C.2: Simulation Results - Moment Inequality Confidence Intervals With Loose Matches

Case σ1 σ3 zs τ
1st Step

α

2 0 1 z2s 8 [0.73 , 1.32]

2 0 1 z2s 4 [0.79 , 1.25]

2 0 1 z2s 2 [0.94 , 1.08]

2 0 1 z2s 1 [0.98 , 1.03]

2 0 1 z2s 0.8 [0.99 , 1.03]

2 0 1 z2s 0.08 [1 , 1.02]

2 0 1 z2s 0.008 [1 , 1.02]

2 0 1 z2s 0.002 [1 , 1.01]

The column α contains a 95% confidence interval for θα based on the moment inequality estimator introduced
in Section 3.2 and described in detail in Appendix C.1. The column τ displays the maximum feasible distance
between Er∆wll1

s |zss and Er∆wl1l
r |zrs in each moment inequality. Confidence sets are computed using a 1-

dimensional grid whose limits are r0.5, 1.5s. All confidence sets are computed following the procedure in
Andrews and Soares (2010). The case with τ “ 0.002 corresponds to the baseline case reported in Table 1.
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C.4 Combining Bounding and Odds-based Moment Inequalities

Figure C.1: Case 2 – σ1 “ 0 and σ3 “ 1

(a) Projected Confidence Set for pκ2, θq

Odds-based Ineq. Bounding Ineq. Both Types

(b) Projected Confidence Set for pκ3, θq

Odds-based Ineq. Bounding Ineq. Both Types

Figure C.2: Case 3 – σ1 “ 1 and σ3 “ 0

(a) Projected Confidence Set for pκ2, θq

Odds-based Ineq. Bounding Ineq. Both Types

(b) Projected Confidence Set for pκ3, θq

Odds-based Ineq. Bounding Ineq. Both Types
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C.5 Alternative Moment Inequality Estimators

One-step moment inequality estimator when the choice set is small. The key contribution of

the two-step estimator described in Section 3 is to yield confidence intervals for all parameters

in discrete-choice settings with many choice-specific fixed effects, as relevant in the migration

context. However, when the choice set is small, as in our simulation setting, the inequalities

in equations (8) and (13) in the second step of our estimator can be used alone to identify all

parameters in one step. This is the approach in Dickstein et al. (2023). The wage coefficient

is treated as an unknown parameter, and the bounding and the odds-based inequalities in

Section 3.1 are used jointly to estimate a confidence set for the parameter vector pθα, θ2, θ3q.

We report in Table C.3 the projection on each parameter of the three-dimensional confidence

set computed following that procedure. Tables 1 and C.3 show that our two-step procedure

yields similar confidence sets for the amenity parameters θ2 and θ3, but larger intervals for

θα when agents’ information sets are partly unobserved by the researcher (i.e., when σ1 ą 0).

This procedure is, however, not applicable in our empirical setting, given a large number of

choice-specific fixed effects.

Table C.3: Simulation Results - Confidence Intervals from One-Step Estimator

Case σ1 σ3 zi Mom. Ineq. α κ2 κ3

1 0 0 z2s

Bounding [1 , 1] [0 , 0] [1 , 1]
Odds-based [1 , 1] [0 , 0] [1 , 1]

Both [1 , 1] [0 , 0] [1 , 1]

2 0 1 z2s

Bounding [1 , 1] [0 , 0] [1 , 1]
Odds-based* [0.92 , 1.50] [-0.33 , 0.33] [0.67 , 1.33]

Both [1 , 1] [0 , 0] [1 , 1]

3 1 0 z2s

Bounding [0.80 , 1.10] [-0.30 , 0.30] [0.70 , 1.30]
Odds-based* [1 , 1] [0 , 0] [1 , 1]

Both [1 , 1] [0 , 0] [1 , 1]

4 1 1 z2s

Bounding [0.80 , 1.10] [-0.30 , 0.30] [0.70 , 1.30]
Odds-based* [0.92 , 1.50] [-0.48 , 0.50] [0.65 , 1.50]

Both [0.92 , 1.10] [-0.33 , 0.30] [0.70 , 1.30]

5 0 1 ws

Bounding [0.87 , 0.87] [-0.05 , -0.03] [0.85 , 0.88]
Odds-based H H H

Both H H H

This table contains projections of 95% confidence sets computed as in Andrews and Soares (2010) using
a 3-dimensional grid with sides r0.5, 1.5s (for α), r´0.5, 0.5s (for κ2) and r0.5, 1.5s (for κ3). We mark with
an asterisk when the confidence set includes points outside the grid. Results in this table are taken from
Dickstein et al. (2023).

Alternative moment inequality estimator when the choice set is large. In Table C.4, we

apply an alternative inference procedure that only relies on the second-step inequalities de-
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scribed in Section 3.1. We compute confidence intervals for the vector pθα, θlq for each location

l “ 2, . . . , L using the inequalities in equations (8) and (13). We obtain L´1 two-dimensional

confidence sets. After projecting them on each of their elements, we obtain a confidence in-

terval for each amenity term pθ2, . . . , θLq and L ´ 1 intervals for θα. We can then report a

randomly chosen confidence interval for θα among the L ´ 1 available ones. This procedure

yields results similar to those in Table 1, except in case 3, when adding information from the

odds-based inequalities for the identification of θα results in a tighter confidence interval for

this parameter. However, if information sets vary across destinations, the confidence interval

for θα may be very sensitive to which of the L ´ 1 available intervals is chosen.

Table C.4: Simulation Results - Alternative Confidence Intervals With Large Choice Set

Case σ1 σ3 zi Mom. Ineq. α κ2 κ3

1 0 0 z2s

Bounding [1 , 1] [0 , 0] [1 , 1]
Odds-based [1 , 1] [0 , 0] [1 , 1]

Both [1 , 1] [0 , 0] [1 , 1]

2 0 1 z2s

Bounding [1 , 1] [0 , 0] [1 , 1]
Odds-based* [0.91 , 1.50] [-0.33 , 0.32] [0.68 , 1.33]

Both [1 , 1] [0 , 0] [1 , 1]

3 1 0 z2s

Bounding [0.80 , 1.10] [-0.31 , 0.31] [0.70 , 1.30]
Odds-based* [1 , 1] [0 , 0] [1 , 1.01]

Both [1 , 1] [0 , 0] [1 , 1.01]

4 1 1 z2s

Bounding [0.79 , 1.10] [-0.31 , 0.31] [0.69 , 1.30]
Odds-based* [0.92 , 1.50] [-0.49 , 0.50] [0.64 , 1.50]

Both [0.92 , 1.10] [-0.31 , 0.31] [0.69 , 1.31]

5 0 1 ws

Bounding [0.87 , 0.88] [-0.05 , -0.01] [0.86 , 0.88]
Odds-based H H H

Both H H H

This table contains projections of 95% confidence sets computed as in Andrews and Soares (2010) using a
grids with sides r0.5, 1.5s (for α), r´0.5, 0.5s (for κ2) and r0.5, 1.5s (for κ3). We mark with an asterisk when
the confidence set includes points outside the grid.
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C.6 Two-step Moment Inequalities with Additional Instruments

Table C.5: Simulation Results - Confidence Intervals With Additional Instruments

Case σ1 σ3 zs
First Step Second Step

α Mom. Ineq. κ2 κ3

1 0 0 z2s [1 , 1.02]
Bounding [0 , 0] [1 , 1]
Odds-based [0 , 0] [1 , 1]

Both [0 , 0] [1 , 1]

2 0 1 z2s [1 , 1.01]
Bounding [0 , 0] [1 , 1]
Odds-based [-0.33 , 0.32] [0.68 , 1.33]

Both [0 , 0] [1 , 1]

3 1 0 z2s [0.91 , 1.15]
Bounding [-0.31 , 0.31] [0.70 , 1.30]
Odds-based [0 , 0] [1 , 1.01]

Both [0 , 0] [1 , 1.01]

4 1 1 z2s [0.91 , 1.19]
Bounding [-0.31 , 0.31] [0.70 , 1.30]
Odds-based [-0.32 , 0.32] [0.68 , 1.33]

Both [-0.31 , 0.31] [0.70 , 1.31]

5 0 1 ws H

Bounding H H

Odds-based H H

Both H H

The true parameter values are α “ 1, κ2 “ 0, and κ2 “ 1. The column α contains a 95% confidence interval
for θα based on the estimator introduced in Section 3.2 and described in detail in Appendix C.1. The columns
κ2 and κ3 contain 95% confidence intervals for θ2 and θ3 based on the estimators introduced in Section 3.1.
The confidence intervals for θ2 and θ3 in the rows labeled Bounding use the inequalities introduced in Section
3.1.1; those in the row labeled Odds-based use the inequalities introduced in Section 3.1.2; and those in
the row labeled Both combine both inequalities. Confidence sets are computed following the procedure in
Andrews and Soares (2010) and using a 1-dimensional grid whose sides are r0.5, 1.5s for α, r´0.5, 0.5s for κ2

and r0.5, 1.5s for κ3.
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D Data and Summary Statistics

D.1 Data Sources and Sample Construction

The RAIS data. Our primary data source is the Relação Anual de Informações Sociais

(RAIS), an administrative dataset maintained by Brazil’s Ministry of Labor and Employment

(local acronym MTE). It includes the universe of formal Brazilian employment spells in the

private and public sectors. Individual workers are identified by their government-issued

identification numbers (PIS/PASEP and CPF), allowing us to track them as they change

employers (and employment location). For all employment spells observed between 1993 and

2011, we use information on their start and end dates, average monthly wage, number of

work hours stipulated in the contract, 2-digit sector (industry) of production (according to

the Classificação Nacional de Atividades Econômicas, CNAE), as well as information on the

worker’s gender, age, race, and level of education. All information on RAIS is reported by

the employers.

RAIS only contains information on the formal employment of workers in Brazil. Thus,

we have no information on the location of workers without formal jobs in a given year. These

workers may be employed in the informal sector, self-employed, unemployed, or out of the

labor force. Based on the 2010 Census, which directly asks respondents about their job

status, 51% of the Brazilian labor force was in the formal sector. The implied total number

of formal sector workers in the Census also closely matches the number of individual workers

at RAIS.

Geography and wage definitions. To determine workers’ location and migration decisions,

we use the microregion of the establishment at which the worker is employed. This has the

advantage of correctly locating workers in cases where a firm has several establishments in

different locations. Microregions are groups of municipalities that span the entirety of the

Brazilian territory. They are defined by the Instituto Brasileiro de Geografia e Estat́ıstica

(IBGE). During our sample period, Brazil had 558 microregions. Microregions are also
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grouped into larger 136 mesoregions and are contained within 26 states and the federal

district. While RAIS does not contain information on the residence of workers, Dix-Carneiro

and Kovak (2017) use 2000 Census data to report that only 3.4% of individuals lived and

worked in different microregions.

Previous research has used microregions as local labor markets (similar to commuting

zones in the United States). For examples and further discussion, see Dix-Carneiro (2014),

Dix-Carneiro and Kovak (2017), Dix-Carneiro and Kovak (2019), Felix (2022), and Szerman

(2024).

Workers may hold multiple employment spells (jobs) in the same year. To obtain a

dataset in which each unit of observation corresponds to a worker and a year, we assign to

each worker-year pair the microregion and sector corresponding to the job that the worker

held for the most extended period during that year. We compute the total labor income

of a worker in a year by adding the labor income earned in every job this worker has been

employed in the corresponding year. We calculate the total labor income of a worker in each

of their jobs by transforming the average monthly wages reported in that job into a measure

of average daily wages and multiplying it by the total number of days worked in the job

reported in the data. If no start and end date is provided, we assume that these are January

1 and December 31, respectively.

Sample restrictions and sampling. We limit our data to workers between 25 and 64

years of age. This ensures we observe them after the vast majority of the population has

completed their education and limits the age before a large share retires. However, we use

the information from 1993-2001 to measure each worker’s experience in each sector and

microregion. To limit our data to workers with a sufficiently close labor relationship with the

formal sector, we restrict our sample to workers observed at RAIS for at least seven years in

the sample period.

Since we focus on studying heterogeneity in information sets due to workers’ location,

we restrict our sample to workers with similar demographic characteristics. Specifically, we

focus on workers with at least a high school degree identified as male and white.

For computational reasons, our empirical application uses a sample of 10 million worker-

year pairs. To ensure we observe a large enough number of individuals per market, we focus

on 1,000 labor markets consisting of all combinations of the 50 microregions (out of 558) and

20 sectors (out of 51) with the largest total employment reported in RAIS. We then obtain

our sample by randomly sampling 1 million individuals per year among those employed in

the 1,000 labor markets of interest. Our sample period covers 10 years, from 2002-2011, and

thus, our sample contains 10 million observations.

Additional data sources. Microregion population and demographic characteristics are
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from the 2000 and 2010 Censuses collected by the IBGE. We calculate distances between

microregions by using the geodesic distance between their population centroids and data from

the IBGE. Data on internet connections is from the Agência Nacional de Telecomunicações

(ANATEL), which provides the number of broadband connections by municipality and year

from 2007 onwards. We define internet access at the microregion level as the average share

of households with broadband internet access in the 2007-2011 period.

D.2 Summary Statistics

D.2.1 Summary Statistics by Microregion and Sector

Table D.1 lists the 20 sectors in our sample and provides their average wage shifter (wslt from

equation E.1, described in Appendix E.1) for the sample period (2002-2011) and the share

of the sample they represent. Wage shifters are measured in log units and are normalized so

the sector with the lowest wage shifter has a value of zero. There is substantial variation in

wage shifters across sectors.

Table D.2 lists the 50 microregions in our sample, and provides their average in-migration

and out-migration rates (share of workers moving into and out of them between two consec-

utive years), as well as their average wage shifter in the sample period (2002-2011). Wage

shifters are measured in log units and are normalized so the microregion with the lowest

wage shifter has a value of zero. Wage shifters vary by microregion, sector, and year and

are weighted by the number of workers in the sample in a microregion-sector-year cell. Thus

wage shifter differences across microregions also reflect differences in their sectoral compo-

sition of employment. There is substantial variation in migration rates and wage shifters

across microregions.

Table D.2 also provides the level of internet access for each microregion, their total popu-

lation from the 2010 Census, and the share of the sample they represent. Note the population

figure includes all persons residing in the microregion, while our sample only includes white

male workers in the formal sector in a subset of sectors (industries). Thus, the correlation

between a microregion population and its share of the sample is not equal to one.

D.2.2 Summary Statistics: Migration

This subsection provides summary statistics describing key migration patterns. Given our

sample definitions, it focuses on white male workers with at least a high school education in

the 2002-2011 period. All figures are constructed using all workers with such characteristics

(i.e., not only the sample focused on the 50 largest microregions and 20 largest sectors).
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Figure D.1a provides migration rates (the share of workers that change microregion of

employment between year t and t ´ 1) by year. It shows an upward trend over the sample

period, from close to 6% in 2002 to 8% in 2011. As a comparison, the overall migration rate in

our sample in the same period is 6.2%. Figure D.1a also provides migration rates conditional

on the distance between origin and destination microregions, indicating that about a third

of moves are to microregions within 100 km from the origin, and less than a sixth of moves

involve migration over a distance larger than 1,000 km. Figure D.1b provides a similar figure

for changes in the employment sector, which are more common. It also provides the share of

workers that change both microregion and sector of employment in a given year, indicating

that most changes in the employment sector are not accompanied by migration.

Figure D.2a depicts the distribution of distances between origin and destination microre-

gions for those who migrate. Although more than half of moves occur between microregions

within 200 km of distance, a sizable share of moves occur at larger distances, including sub-

stantial mass in distances over 500 km. Figure D.2b provides a scatter plot depicting the

distribution of in-migration and out-migration rates for the 50 largest microregions which

are the focus of our sample. Each marker represents one of these microregions, indicating its

overall out- and in-migration rates (share of workers moving into and out of it between two

consecutive years) in the sample period. In- and out-migration rates are strongly correlated

across microregions, varying close to one-to-one. Note the figure also depicts the distribution

of both variables. The bulk of microregions have migration rates in the 3 to 12% range

with four others with migration rates of roughly 14% and two outliers that experience large

migration flows. Figure D.3 provides similarly constructed figures exploring the relationship

between migration rates and microregion size (measured as the number of workers observed

in the data), indicating that their correlation is quite low.
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Figure D.1: Migration and Sector Changes, by Year

(a) Migration Rates by Year
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(b) Sector and Microregion Changes
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Panel (a) shows migration rates (share of individuals who changed microregion from the previous year)
for each year. Migration rates are further refined by distance (only including workers that moved between
microregions with a distance of 100km or more, 500km or more, and 1000km or more). Panel (b) shows the
share of workers that changed sectors from the previous year (top line) and the share that changed both sector
and migrated (bottom line). Data includes all white male workers with at least a high school education.

Figure D.2: Migration Patterns

(a) Histogram: Migration Distance

0

10

20

30

40

Pe
rc

en
t o

f M
ov

er
s

0 500 1000 1500 2000 2500 3000 3500 4000
Distance (km)

(b) Out- vs. In-Migration (sample)
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Panel (a) provides a histogram of the distribution of distance between origin and destination of all observed
migrations (changes in microregions between two consecutive years). In Panel (b), each marker represents one
of the 50 microregions in our sample. The y-axis measures the out-migration rate (share of workers that move
out of the microregion in a year), while the x-axis measures the in-migration (share of workers that move into
the microregion). It considers migration with origins and destinations to all microregions (including outside
the 50 largest ones). Dashed line represents the 45 degree line. In both panels, data includes all white male
workers with at least a high school education in the 2002-2011 period.
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Figure D.3: Migration and Microregion Size

(a) In-Migration Rates
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(b) Out-Migration Rates
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Each marker in the figure represents one of the 50 microregions in our sample. The y-axis measures the
in-migration and out-migration rates (share of workers that move into or out of a microregion between
two consecutive years), respectively. The x-axis measures the log of average yearly number of workers. All
variables are based on data including all white male workers with at least a high school degree in the 2002-2011
period.

Table D.1: Sector-level Summary Statistics

Sector Wage Share of
Sector Name Code Shifter (log) Sample (%)

Service Activities Mainly Provided to Businesses 74 0.140 20.52
Wholesale Trade in Goods and General Merchandise 51 0.055 8.28
Rail and Road Passengers Transportation 60 0.123 7.95
Construction Auxiliary Services and Installation Works 45 0.026 7.42
Motor Vehicle Parts and Accessories Manufacturing 34 0.207 6.28
Education and Teaching Activities 80 0.217 6.12
Household Appliance and Machinery Manufacturing 29 0.068 5.55
Food Processing and Manufacturing 15 0.120 4.74
Health Related Activities and Social Services 85 0.204 3.92
Metal Product Manufacturing 28 0.096 3.76
Software and Computer Development, Consulting 72 0.000 3.25
Plastics Product Manufacturing 25 0.110 3.08
Activities Related to the Organization of Freight Transport 63 0.027 2.99
Professional, Political Organizations and Trade Unions 91 0.258 2.91
Real Estate 70 0.007 2.77
Nonferrous Metal Foundries 27 0.268 2.76
Media Publishing, Printing, and Reproducing 22 0.354 2.14
Production and Distribution of Electricity, Energy 40 0.477 1.94
Performing, Arts, Sports and Leisure Activities 92 0.243 1.88
Electrical Machinery, and Supplies Manufacturing 31 0.072 1.75

This table presents the 20 sectors included in our sample, the share of the sample they represent, and
their average wage shifter (wsl

t from equation E.1) for the 2002-2011 period. Wage shifters are measured in
log units and are normalized so the sector with the smallest wage shifter has a value equal to zero. Wage
shifters vary by microregion, sector, and year and are weighted by the number of workers in the sample in a
microregion-sector-year cell.
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Table D.2: Microregion-level Summary Statistics

Wage In-Migration Out-Migration Internet Population Share of
Microregion Shifter (log) Rate (%) Rate (%) Access (%) (1000s) Sample (%)

São Paulo - SP 0.365 6.63 6.43 17.81 13805 25.49
Rio de Janeiro - RJ 0.242 3.72 3.71 9.38 11601 9.47
Curitiba - PR 0.253 4.05 4.01 13.11 3060 6.26
Porto Alegre - RS 0.308 2.65 2.74 12.31 3628 5.71
Belo Horizonte - MG 0.258 3.69 3.82 10.00 4773 5.00
Campinas - SP 0.341 8.78 7.80 12.31 2631 4.23
Osasco - SP 0.235 17.71 18.99 10.01 1775 3.09
Braśılia - DF 0.282 4.07 3.89 12.88 2570 2.24
São José dos Campos - SP 0.378 7.15 7.00 10.67 1415 2.23
Recife - PE 0.178 2.89 3.19 4.87 3259 2.21
Joinville - SC 0.085 3.20 3.01 11.26 843 2.05
Sorocaba - SP 0.323 7.38 6.70 8.51 1324 2.03
Guarulhos - SP 0.290 12.42 12.46 8.82 1347 1.85
Caxias do Sul - RS 0.213 2.57 2.20 8.59 770 1.47
Santos - SP 0.416 6.33 6.25 13.54 1471 1.46
Florianópolis - SC 0.136 6.16 5.31 16.70 878 1.37
Goiânia - GO 0.122 3.88 4.25 9.06 2117 1.36
Vitória - ES 0.203 4.32 4.07 8.70 1565 1.31
Fortaleza - CE 0.086 3.01 2.66 4.53 3351 1.21
Ribeirão Preto - SP 0.292 6.00 5.62 10.58 1033 1.19
Salvador - BA 0.240 7.69 7.70 6.04 3459 1.11
Moji das Cruzes - SP 0.228 14.89 17.42 6.55 1316 1.08
Jundiáı - SP 0.385 13.33 11.80 9.58 633 1.05
Itapecerica da Serra - SP 0.161 19.26 23.75 5.83 987 0.98
Londrina - PR 0.168 3.68 4.05 8.92 725 0.95
Piracicaba - SP 0.262 6.35 6.39 9.33 556 0.88
Blumenau - SC 0.061 4.94 4.59 10.21 677 0.80
Vale do Paráıba - RJ 0.338 5.85 6.19 4.99 680 0.79
Uberlândia - MG 0.228 4.35 4.52 9.18 820 0.74
São José do Rio Preto - SP 0.195 4.62 4.65 7.87 764 0.71
Limeira - SP 0.253 5.83 5.67 8.26 579 0.66
Bauru - SP 0.286 8.86 7.80 8.00 562 0.63
Maringá - PR 0.048 4.55 4.33 12.87 540 0.62
Bragança Paulista - SP 0.193 15.30 18.20 8.63 498 0.55
Itajáı - SC 0.084 7.36 6.37 10.23 571 0.53
Natal - RN 0.031 2.68 2.56 4.63 1031 0.52
Moji-Mirim - SP 0.255 7.68 7.51 7.98 383 0.52
Juiz de Fora - MG 0.253 4.52 5.52 6.35 729 0.52
Campo Grande - MS 0.148 4.03 4.98 9.55 874 0.52
Manaus - AM 0.284 4.27 3.43 2.66 2040 0.50
São Lúıs - MA 0.200 3.64 3.51 3.20 1309 0.48
Araraquara - SP 0.319 7.87 8.30 9.36 502 0.46
Ponta Grossa - PR 0.324 6.26 5.83 7.33 430 0.44
São Carlos - SP 0.379 5.05 5.51 9.68 309 0.44
Macaé - RJ 0.341 12.26 10.42 4.52 262 0.42
Passo Fundo - RS 0.270 2.72 3.14 14.85 328 0.41
João Pessoa - PB 0.023 3.12 3.09 5.55 1035 0.41
Cascavel - PR 0.109 4.72 4.89 7.76 433 0.39
Presidente Prudente - SP 0.327 4.52 5.78 6.27 573 0.36
Criciúma - SC 0.000 3.18 3.27 7.15 369 0.32

This table presents the 50 microregions included in our sample, the share of the sample they represent, their
population in 2010, their share of households with broadband internet access, as well as their average in-
migration rate, out-migration rate, and wage shifter (wsl

t from equation E.1) for the 2002-2011 period. Wage
shifters are measured in log units and are normalized so the microregion with the smallest wage shifter has
a value equal to zero. Wage shifters vary by microregion, sector, and year and are weighted by the number
of workers in the sample in a microregion-sector-year cell.
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E Appendix to Empirical Analysis

E.1 Wage Proxies

In this section, we compute proxies for the log wages in all labor markets for all individuals

in our sample. We consider a wage process that depends on an individual-by-sector-by-

year component that workers consider as constant when deciding which location to move

to. The relevant component of wages for their decision is then the location-by-sector-by-year

component of log wages. The objective is to obtain a wage proxy that is as precise as possible

after accounting for the individual and sector heterogeneity, in order to credibly interpret our

proxies as local labor market demand shifters.

Workers are indexed by i. We assume that a worker’s log wage wslit can be expressed as

the sum of a labor market-specific term wslt (which we label the wage shifter), common to all

agents, an individual skill for that sector that depends on a persistent match term and the

number of years of age and experience in the sector, and an unexpected wage shock,

wslit “ wslt ` αsi ` βseexp
s
it ` βseepexp

s
itq

2
` βsaageit ` βsaaage

2
it

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

sector-specific skill

` νslit , (E.1)

where we assume that the individual-sector skill is a function of age and age squared, and

of the number of years of experience individual i has accumulated in sector s from 1993,

the first year for which we collect individual employment information until the year they are

observed. Hence, by construction, our measure of experience is capped at 8 years at the

beginning of our analysis period in 2002 and at 17 years in 2011.

We estimate equation (E.1) on the universe of (white males with at least high school

education) workers in the selected 1,000 labor markets over the 10 years of analysis that

constitutes our sample (i.e., before sampling only 1 million individuals per year). This dataset

consists of 15,313,848 observations. The mean value of experience across the 20 sectors and

across the 10 years of our sample is 4.7 years, and the median is 3 years. The results from the

estimation of equation (E.1) for each of the 20 sectors are reported in Table E.1. The median

R2 across the 20 regressions is 0.83, the median standard deviation of the individual-sector

fixed effects is 1.20, and the median standard deviation of the labor market shifter is 0.48.

Figure E.1 provides maps depicting the geographic distribution of wslt in the first and

final year of our sample period. Since we observe different wslt for each sector s in each

microregion-year, the figure reports averages weighed by the number of workers in each

microregion-sector-year cell.
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Figure E.1: Geographic Distribution of Predicted Wages in Sample

(a) 2002 (b) 2011

The map presents the wage shifter (wsl
t from equation E.1) for each microregion in the sample of the 50

largest microregions in the years 2002 and 2011. Wage shifters vary by microregion, sector, and year and are
weighted by the number of workers in the sample in a microregion-sector-year cell. Microregions not included
in the sample are shaded white.

E.2 Implementation of Moment Inequalities

Computing the bounding moments in equations (7) and (16) requires specifying the functions

hll
1

is p¨q and gll
1

ijsrp¨q, respectively. Equations (9) and (18) provide functional forms that yield

the tightest identified sets. These expressions, however, depend on the expectation of specific

wage differences conditional on the wage predictor used to build the corresponding inequality.

Since we ignore the true value of those expectations, we use instead the following functions,

for different guessed values αm of α:

hll
1

istpzs,∆θll1q “ ∆θll1 ` αm∆z
ll1

st and gll
1

ijsrtpzst, zrt, θαq “ θα0.5p∆zll
1

st ` ∆zl
1l
rt q. (E.2)

Finally, the bounding moment inequality in equation (16) holds for any two locations

l and l1. To avoid inference problems related to using many moment inequalities in our

estimation procedure, we add these inequalities across location pairs. Our choice of which
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Table E.1: Log Wage Proxies

Sector and Code βs
e βs

ee βs
aa cons R2 Nobs σαs

i
σwsl

t

Business Services 74
0.365 -1.16e-2 -2.98e-5 6.66

0.81 6,682,555 1.28 0.32
(5.18e-4) (2.27e-5) (7.86e-6) (0.011)

Wholesale Trade in Goods 51
0.420 -1.18e-2 -9.85e-5 7.06

0.83 3,047,478 1.22 0.37
(7.71e-4) (3.17e-5) (1.19e-5) (0.017)

Rail and Road Transportation 60
0.414 -1.06e-2 7.28e-4 5.34

0.78 2,952,869 1.36 0.48
(7.98e-4) (2.68e-5) (1.12e-5) (0.017)

Construction Services 45
0.319 -8.94e-3 -2.89e-5 6.60

0.80 3,145,910 1.16 0.34
(7.78e-4) (3.27e-5) (1.03e-5) (0.016)

Motor Vehicle Manuf. 34
0.376 -9.12e-2 -1.49e-4 7.68

0.84 1,827,610 0.94 0.65
(1.04e-3) (2.79e-5) (1.35e-5) (0.019)

Education 80
0.330 -1.03e-2 -8.64e-4 9.34

0.86 2,092,113 1.58 0.94
(9.24e-4) (2.91e-5) (1.03e-5) (0.019)

Household Appliance Manuf. 29
0.417 -1.01e-2 -1.57e-4 7.35

0.83 1,760,708 1.07 0.49
(9.91e-4) (3.08e-5) (1.34e-5) (0.020)

Food Processing and Manuf. 15
0.412 -1.03e-2 1.43e-4 6.55

0.83 2,360,486 1.14 0.46
(9.02e-4) (2.86e-5) (1.31e-5) (0.017)

Health and Social Services 85
0.388 -1.13e-2 3.77e-4 6.47

0.82 1,211,780 1.11 0.50
(1.24e-3) (3.69e-5) (1.57e-5) (0.024)

Metal Product Manuf. 28
0.434 -1.08e-2 1.07e-4 6.69

0.82 1,184,199 1.15 0.46
(1.21e-3) (4.23e-5) (1.72e-5) (0.024)

Software and Consulting 72
0.426 -1.19e-2 -4.75e-6 7.43

0.82 1,052,428 1.07 0.42
(1.32e-3) (5.11e-5) (2.04e-5) (0.028)

Plastics Product Manuf. 25
0.454 -1.11e-2 2.01e-4 6.53

0.83 961,304 1.22 0.51
(1.41e-3) (4.33e-5) (1.95e-5) (0.027)

Freight Transport 63
0.420 -9.86e-3 1.13e-4 6.76

0.83 937,390 1.23 0.45
(1.52e-3) (5.01e-5) (2.02e-5) (0.030)

Political Org. and Unions 91
0.414 -1.26e-2 -5.38e-4 8.09

0.88 799,723 1.28 0.65
(1.51e-3) (4.60e-5) (1.69e-5) (0.028)

Real Estate 70
0.461 -1.26e-2 2.41e-4 6.07

0.81 839,026 1.20 0.42
(1.48e-3) (4.97e-5) (1.84e-5) (0.029)

Nonferrous Metal Foundries 27
0.411 -1.01e-2 -5.46e-5 7.31

0.87 903,982 0.98 0.74
(1.53e-3) (3.65e-5) (1.71e-5) (0.027)

Publishing and Printing 22
0.471 -1.10e-2 3.83e-4 5.93

0.81 569,433 1.41 0.61
(1.90e-3) (5.94e-5) (2.48e-5) (0.037)

Production of Electricity 40
0.366 -9.91e-3 -3.92e-4 8.69

0.90 553,837 1.08 1.01
(2.17e-3) (4.35e-5) (1.80e-5) (0.038)

Arts, Sports and Leisure 92
0.431 -1.16e-2 1.37e-4 6.56

0.84 525,962 1.21 0.50
(1.88e-3) (6.04e-5) (2.46e-5) (0.038)

Machinery Manuf. 31
0.410 -9.62e-3 -3.81e-4 7.68

0.85 528,438 1.11 0.56
(1.92e-3) (5.55e-5) (2.46e-5) (0.036)

This table summarizes the estimation of the wage proxies according to (E.1). We use all individuals in our
selected demographic group in the 1,000 selected labor markets from our initial sample (i.e., before selecting
10 million observations). The linear coefficient on age is collinear with the year fixed effects. The last two
columns report the standard deviation of the individual-sector fixed effects, αs

i , and of the labor market
shifters, wsl

t .

location pairs to combine is guided by the results in Corollary 3. This corollary indicates that

a requisite for the moment inequality in equation (16) to point identify the wage parameter

α is that the locations l and l1 entering the moment function offer the same amenity level

in the population of reference; when κlnt ´ κl
1

nt “ 0. Enforcing this condition is infeasible as
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these amenity levels are continuous variables that are only estimated later in our estimation

procedure. However, as κlnt accounts for migration costs in our setting, it is reasonable to

expect it will vary with the distance between locations n and l. Consequently, locations l

and l1 that are at a similar distance to the origin n are more likely to have similar amenity

levels and, when combined in the context of the moment inequality in equation (16), yield

smaller identified sets. Thus, we only form the moment function (16) for location l and l1

for which the difference between the distance from n to l and the distance from n to l1 is in

the lower tercile of all pairwise differences in distance to n. Given such location pairs, we

form the moment function in equation (16) by aggregating across all sector pairs s and r,

and across worker pairs within those sectors.

E.3 PPML-IV Estimator

We describe here the estimator in Artuç and McLaren (2015). To derive it in our setting,

we must assume all workers employed in the same sector s have the same information set in

any given period t, regardless of their location of residence. Thus, Jist “ Ji1st for any sector

s, period t, and any two workers i and i1 employed in s at t. Given the assumption that

all workers within a sector s and period t have identical information sets, we can write the

model-implied number of sector s workers that migrate between locations n and l at t as:

M l
nst “

exp
`

αErwlst|Jsts ´ κlnt
˘

ř

k exp
`

αErwkst|Jsts ´ κknt
˘Lnst´1

“ exp
`

αErwlst|Jsts ´ κlnt ` Γnst
˘

“ exp
`

αwlst ´ αξlst ´ κlnt ` Γnst
˘

“ exp
`

Λlst ` Γnst ` Ψl
nt

˘

, (E.3)

where Lnst´1 is the total number of workers in location n and sector s at period t ´ 1;

ξlst ” wlst ´ Erwlst|Jsts is these workers’ expectational error when predicting wages in sector

s, period t, and location l; and

Λlst ” αwlst ´ αξlst, Γnst ” ´ ln
´

ÿ

k

exp
`

αErwkst|Jsts ´ κknt
˘

¯

` lnLnst, Ψl
nt ” ´κlnt.

Using information on tM l
nstu

L,L
n“1,l“1 for a period t, sector s, and L origin and destination

locations, the procedure in Artuç and McLaren (2015) recovers estimates of α and tκlntu
L,L
n“1,l“1

in three steps. First, compute PPML estimates of tΛlstu
L
l“1, tΓnstu

L
n“1 and tΨl

ntu
L,L
n“1,l“1 using

the expression in the last line in equation (E.3). Second, under the assumption that a variable

zlst correlated with wlst belongs to the information set Jst, compute an IV estimate of α by

11



regressing Λ̂lst on w
l
st using z

l
st as an instrument, with Λ̂lst the first-step estimate of Λlst. Third,

recover κ̂lnt “ ´Ψ̂l
nt for every origin n and destination l.

E.4 Additional Results

Figure E.2: Migration Costs from Moment Inequalities with Confidence Intervals
2
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This figure displays the main estimates of the preference parameters from our working sample. Each point
shows the midpoint of the 95-percent confidence interval for a given bilateral migration cost tκl

ntu in the year
2011, expressed in utils, and the associated 95-percent confidence interval.
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F Dynamic Model: Proofs and Additional Derivations

F.1 Details on Two-Step Estimation Procedure

We denote by pθα, θβq the parameter vector with true value pα, βq, and by Θpα,βq the set of

possible values of pθα, θβq. Similarly, for each l “ 2, . . . , L and sample period t, we denote by

θlt the parameter with true value λlt and by Θl
t the set of possible values of θlt. In Appendix

F.1.1, we describe the estimation of the parameter vector pθα, θβq. In Appendix F.1.2, we

discuss the estimation of the parameter θlt for all l “ 2, . . . , L and sample period t.

F.1.1 First-Step: Estimating Migration Costs and Wage Coefficient

For any period t, any locations l and l1, any worker i of type s and any worker j of type r, any

vectors zst P Zst and zrt P Zrt, and any deterministic function gll
1

ijsrt : Zs ˆ Zr ˆ Θpα,βq Ñ R,

we define the moment

M̃
ll1

ijsrtpzst, zrt, θα, θβ, g
ll1

ijsrtp¨qq ” (F.1)

Erylisty
l
jrt ` yl

1

isty
l1

jrt ´ ylisty
l1

jrt expp´gll
1

ijsrtpzst, zrt, α, βqqˆ

p2 ` 2gll
1

ijsrtpzst, zrt, α, βq ´ p∆ṽll
1

ist ` ∆ṽl
1l
jrtqq|zs, zrs.

Theorem 4 establishes a property of this moment when evaluated at θα “ α and θβ “ β.

Theorem 4 Assume equations (26) to (33) hold, zst Ă Jist for worker i of type s at period

t, and zrt Ă Jjrt for worker j of type r at period t. Then, M̃ll1

ijsrtpzst, zrt, θα, θβ, g
ll1

ijsrtp¨qq ě 0

for any period t, locations l and l1, worker i of type s, worker j of type r, zst P Zst, zrt P Zrt,

and deterministic function gll
1

ijsrt : Zst ˆ Zrt ˆ Θpα,βq Ñ R.

We prove Theorem 4 in Appendix F.4. Theorem 4 states that, given equations (26) to (33),

the assumption that zst belongs to the information set of worker i of type s at period t, and

the assumption that zrt belongs to the information set of worker j of type r at period t,

the moment in equation (F.1) is positive when evaluated at pθα, θβq “ pα, βq. Furthermore,

this is true regardless of the period t, regardless of the two locations l and l1 we compare,

regardless of the workers is and jr we consider, regardless of the vectors zst and zrt on which

we condition, and regardless of the deterministic function gll
1

ijsrtp¨q we use to form the moment.

We thus may compute the set of values of pθα, θβq that satisfy

M̃
ll1

ijsrtpzst, zrt, θα, θβ, g
ll1

ijsrtp¨qq ě 0, (F.2)

and, if equations (26) to (33) hold, zst Ă Jist, and zrt Ă Jjrt, pα, βq will belong to this set.
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F.1.2 Second-Step: Estimating Location-Specific Amenities

Denote by ∆θll
1

t ” θlt ´ θl
1

t the parameter with true value ∆λll
1

t ” λlt ´ λl
1

t , and by Θll1

t the

set of possible values of ∆θll
1

t . For any type s and period t, denote by Zst the support of zst.

Then, for any zst P Zst and deterministic function hll
1

ist : ZstˆΘll1

t Ñ R, we define the moment

m̃
ll1

istpzst,∆θ
ll1

t , h
ll1

istp¨qq ”

Eryl
1

ist ´ ylist expp´hll
1

istpzst,∆θ
ll1

t qqp1 ` hll
1

istpzst,∆θ
ll1

t q ´ ∆ṽll
1

istp∆θ
ll1

t qq|zsts, (F.3)

with

∆ṽll
1

istp∆θ
ll1

t q “ β∆xll
1

nt ` ∆θll
1

t ` α∆wll
1

ist ` δβ
L
ÿ

l2“1

y
pltql2

ist`1px
l2

lt`1 ´ xl
2

l1t`1q. (F.4)

Theorem 5 establishes a property of this moment when evaluated at ∆θll
1

t “ ∆λll
1

t .

Theorem 5 Assume equations (26) to (33) hold and zst Ă Jist. Then, for any period t,

locations l and l1, worker i of type s, zst P Zst, and deterministic function hll
1

ist : ZstˆΘll1

t Ñ R,

m̃
ll1

istpzst,∆θ
ll1

t , h
ll1

istp¨qq ě 0.

We prove this theorem in Appendix F.2, and provide an expression for the optimal function

hll
1

istp¨q in Appendix F.3. Theorem 5 shows that, given knowledge of pα, βq, one may bound

the amenity difference ∆λll
1

t for any sample period t and locations l and l1. Appendix F.1.1

shows how to derive moment inequalities that are informative about pα, βq.

F.2 Second-Step Bounding Inequalities: Proof of Theorem 5

Equation (26) implies that, for any worker i of type s, period t, and locations l and l1,

pylist ` yl
1

istqp1tErV lis ´ V l1is|Jists ě 0u ´ ylistq “ 0.

Equations (27a) and (29) imply we can rewrite this inequality as

pylist ` yl
1

istqp1tEr∆vll
1

ist|Jists ` ∆εll
1

ist ě 0u ´ ylistq “ 0,

where ∆vll
1

ist “ vlist ´ vl
1

ist and ∆εll
1

ist “ εlist ´ εl
1

ist. Equation (31) implies we can further write

this equality as

pylist ` yl
1

istqp1tEr∆vll
1

ist|Wists ` ∆εll
1

ist ě 0u ´ ylistq “ 0. (F.5)
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This equality holds for any worker i of any type s, any period t, and any two locations l and

l1. As the next step, we take the expectation of both sides of this equality conditional on

a value of Wist and a dummy variable that equals one if worker i of type s chooses either

location l or location l1 at period t; i.e.,

Er1tEr∆vll
1

ist|Wists ` ∆εll
1

ist ě 0u ´ ylist|Wist, y
l
ist ` yl

1

ist “ 1s “ 0.

Equation (33) implies we can rewrite this moment equality as

E

„

exppEr∆vll
1

ist|Wistsq

1 ` exppEr∆vll
1

ist|Wistsq
´ ylist

ˇ

ˇ

ˇ

ˇ

Wist, y
l
ist ` yl

1

ist “ 1

ȷ

“ 0,

or, equivalently,

Erp1 ` expp´Er∆vll
1

ist|Wistsqq
´1

´ ylist|Wist, y
l
ist ` yl

1

ist “ 1s “ 0.

Multiplying by 1 ` expp´Er∆vll
1

ist|Wistsq, we obtain

Er1 ´ ylisp1 ` expp´Er∆vll
1

ist|Wistsqq|Wist, y
l
ist ` yl

1

ist “ 1s “ 0,

or, equivalently,

Er1 ´ ylist ´ ylist expp´Er∆vll
1

ist|Wistsq|Wist, y
l
ist ` yl

1

ist “ 1s “ 0.

Given the conditioning on the event ylist ` yl
1

ist “ 1, we can further rewrite

Eryl
1

ist ` ylistp´ expp´Er∆vll
1

ist|Wistsqq|Wists “ 0. (F.6)

As ´ expp´xq is concave in x P R, a linear approximation to this function at any value a P R

will bound it from above. The formula for this linear approximation is

´ expp´aq ` expp´aqpx ´ aq “ expp´aqp´p1 ` aq ` xq.

Thus, given any deterministic function hll
1

ist : ZstˆΘll1

t Ñ R and equation (F.6), we can derive

Eryl
1

ist ` ylist expp´hll
1

istpzst,∆λ
ll1

t qqp´p1 ` hll
1

istpzst,∆λ
ll1

t qq `Er∆vll
1

ist|Wistsq|Wists ě 0. (F.7)

Defining as νll
1

ist the expectational error worker i of type s makes when forecasting at period t

the variable ∆vllist, the assumption that workers expectations are rational (see equation (2))
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implies

νll
1

ist ” ∆vll
1

ist ´Er∆vll
1

ist|Wists, ùñ Erνll
1

ist|Wists “ 0. (F.8)

Let’s consider the moment

Eryl
1

ist ` ylist expp´hll
1

istpzst,∆λ
ll1

t qqp´p1 ` hll
1

istpzst,∆λ
ll1

t qq ` ∆vll
1

istq|Wists. (F.9)

or, equivalently,

Eryl
1

ist ` ylist expp´hll
1

istpzst,∆λ
ll1

t qqp´p1 ` hll
1

istpzst,∆λ
ll1

t qq ` pEr∆vll
1

ist|Wists ` νll
1

istqq|Wists.

Given that Wist Ă Jist, we can use the LIE to rewrite this moment as

ErEryl
1

ist`ylist expp´hll
1

istpzst,∆λ
ll1

t qqp´p1`hll
1

istpzst,∆λ
ll1

t qq`pEr∆vll
1

ist|Wists`νll
1

istqq|Jists|Wists.

Equation (26) implies Erylis|Jiss “ ylis. Consequently, if zs Ď Wis, it is then the case that

zs Ă Jis and we can further rewrite

Eryl
1

ist ` ylist expp´hll
1

istpzst,∆λ
ll1

t qqp´p1 ` hll
1

istpzst,∆λ
ll1

t qq `ErEr∆vll
1

ist|Wists ` νll
1

ist|Jistsq|Wists.

As ∆vll
1

ist “ Er∆vll
1

ist|Wists ` νll
1

ist, equation (31) further implies that

Eryl
1

ist`ylist expp´hll
1

istpzst,∆λ
ll1

t qqp´p1`hll
1

istpzst,∆λ
ll1

t qq`ErEr∆vll
1

ist|Wists`νll
1

ist|Wistsq|Wists,

and equation (F.8) implies we can rewrite this moment as

Eryl
1

ist ` ylist expp´hll
1

istpzst,∆λ
ll1

t qqp´p1 ` hll
1

istpzst,∆λ
ll1

t qq `Er∆vll
1

ist|Wistsq|Wists.

However, this moment is exactly the same entering the moment inequality in equation (F.7),

which implies that the following inequality involving the moment in equation (F.9) is equiv-

alent to that in equation (F.7):

Eryl
1

ist ` ylist expp´hll
1

istpzst,∆λ
ll1

t qqp´p1 ` hll
1

istpzst,∆λ
ll1

t qq ` ∆vll
1

istq|Wists ě 0.

Finally, if zst Ă Wist, we can use the LIE and conclude that

Eryl
1

ist ` ylist expp´hll
1

istpzst,∆λ
ll1

t qqp´p1 ` hll
1

istpzst,∆λ
ll1

t qq ` ∆vll
1

istq|zsts ě 0. (F.10)
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This moment is for the dynamic model described in Section 6 analogous to that in equation

(7) for the case of the static model described in Section 2. The only difference between both

moments is that the difference in the static utility between choosing alternatives l and l1

entering the moment in equation (7) (i.e., ∆θll1 ` α∆wll
1

s ) is substituted by the difference in

the corresponding choice-specific value functions (i.e., ∆vll
1

ist).

However, the moment inequality in equation (F.10) is not immediately useful for the

identification of the parameters of the dynamic model described in Section 6. To make

this point clear, rewrite ∆vll
1

ist “ vlist ´ vl
1

ist. Thus, the difference in the choice-specific value

functions ∆vll
1

ist depends on the optimal choices of the ith worker of type s in every period

t1 ą t both conditional on choosing l at period t (which matters for the value of vlist) and

conditional on choosing l1 at period t (which matters for the value of vl
1

ist). To derive from

the inequality in equation (F.10) a moment inequality that may be used for the (partial)

identification of the parameters of the model described in Section 6, we follow the approach

in Morales et al. (2019). Specifically, we substitute the difference in choice-specific value

functions ∆vll
1

ist by the variable

∆ṽll
1

ist ” vlist ´ ṽl
1

ist, (F.11)

where ṽl
1

ist is the discounted sum of static utilities from period t onwards (that is, in every

period t1 ě t) if worker i of types s chooses location l1 at period t but follows in every

subsequent every period t1 ą t the path of choices that would be optimal if they had instead

chosen location l at t. To define vlist, v
l1

ist, and ṽ
l1

ist formally, denote by

y
pltq
ist1 “ py

pltq1
ist1 , . . . , y

pltqL
ist1 q (F.12)

the vector that codes the optimal choice of worker i of type s at period t1 if they were to

choose alternative l at period t, i.e., y
pltql1

ist1 “ 1 if i would choose l1, zero otherwise. Similarly,

y
pl1tq
ist1 “ py

pl1tq1
ist1 , . . . , y

pl1tqL
ist1 q codes the optimal choice of worker i in period t1 if they were to

choose alternative l1 at period t. Then, we can write

vlist “ κlnt ` αwlst ` δ
L
ÿ

l2“1

y
pltql2

ist`1pκl
2

lt`1 ` αwl
2

st`1 ` εl
2

ist`1q

`
ÿ

t1ąt`1

δt
1´t

L
ÿ

n1“1

L
ÿ

l2“1

y
pltqn1

ist1 y
pltql2

ist1`1pκ
l2

n1t1`1 ` αwl
2

st1`1 ` εl
2

ist1`1q, (F.13a)

vl
1

ist “ κl
1

nt ` αwl
1

st ` δ
L
ÿ

l2“1

y
pl1tql2

ist`1 pκl
2

l1t`1 ` αwl
2

st`1 ` εl
2

ist`1q
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`
ÿ

t1ąt`1

δt
1´t

L
ÿ

n1“1

L
ÿ

l2“1

y
pl1tqn1

ist1 y
pl1tql2

ist1`1pκl
2

n1t1`1 ` αwl
2

st1`1 ` εl
2

ist1`1q, (F.13b)

ṽl
1

ist “ κl
1

nt ` αwl
1

st ` δ
L
ÿ

l2“1

y
pltql2

ist`1pκl
2

l1t`1 ` αwl
2

st`1 ` εl
2

ist`1q

`
ÿ

t1ąt`1

δt
1´t

L
ÿ

n1“1

L
ÿ

l2“1

y
pltqn1

ist1 y
pltql2

ist1`1pκ
l2

n1t1`1 ` αwl
2

st1`1 ` εl
2

ist1`1q. (F.13c)

Equations (26) and (30) imply that

Ervl
1

ist|Wists ě Erṽl
1

ist|Wists, (F.14)

and, consequently,

Er∆vll
1

ist|Wists ě Er∆ṽll
1

ist|Wists. (F.15)

Equations (F.10) and (F.15) imply the following moment inequality

Eryl
1

ist ` ylist expp´hll
1

istpzst,∆λ
ll1

t qqp´p1 ` hll
1

istpzst,∆λ
ll1

t qq ` ∆ṽll
1

istq|zsts ě 0. (F.16)

Comparing the expressions for vlist and ṽ
l1

ist in equations (F.13a) and (F.13c), we can write

∆ṽll
1

ist “ vlist ´ ṽl
1

ist “ pκlnt ´ κl
1

ntq ` αpwlst ´ wl
1

stq ` δ
L
ÿ

l2“1

y
pltql2

ist`1pκ
l2

lt`1 ´ κl
2

l1t`1q

“ βpxlnt ´ xl
1

ntq ` pλlt ´ λl
1

t q ` αpwlst ´ wl
1

stq ` δβ
L
ÿ

l2“1

y
pltql2

ist`1px
l2

lt`1 ´ xl
2

l1t`1q.

(F.17)

By plugging equation (F.17) into equation (F.16), we obtain a moment inequality whose

moment equals that in equation (F.3) when evaluated at ∆θll1 “ ∆λll
1

. Equations (F.16) and

(F.17) thus imply Theorem 5. ■

F.3 Second-Step Bounding Inequalities: Additional Derivations

Derivation of optimal function hll
1

istpzst,∆θllq. Given zst P Zst, we establish the value of

hll
1

istpzst,∆θllq that minimizes the moment in equation (F.3) at each value of ∆θll1 . Specifically,

given zst and ∆θll1 the first-order condition of the moment in equation (F.3) with respect to

18



the scalar hll
1

istpzst,∆θllq is

Erylistph
ll1

istpzst,∆θll1q ´ ∆ṽll
1

istq|zsts,

or, equivalently,

Erhll
1

istpzst,∆θll1q ´ ∆ṽll
1

ist|zst, y
l
ist “ 1s.

Setting this moment condition to zero, we solve for hll
1

istpzst,∆θll1q to obtain the following

solution:

hll
1

istpzst,∆θll1q “ Er∆ṽll
1

ist|zst, y
l
ist “ 1s, (F.18)

with ∆ṽll
1

ist defined as in equation (F.17).

F.4 First-Step Moment Inequalities: Proof of Theorem 4

For any locations l and l1, any period t, and any worker i of type s, equation (F.5) indicates

the following equality holds

pylist ` yl
1

istqp1tEr∆vll
1

ist|Wists ` ∆εll
1

ist ě 0u ´ ylistq “ 0.

For any locations l and l1, any period t, any worker i of type s, and any worker j of type r,

we can thus derive the following equality:

yl
1

jrtpy
l
ist ` yl

1

istqp1tEr∆vll
1

ist|Wists ` ∆εll
1

ist ě 0u ´ ylistq “ 0. (F.19)

Taking the expectation of both sides of this equality conditional onWist, Wjrt, and on dummy

variable that equals one if worker i of type s chooses either location l or location l1 at period

t, we obtain

Eryl
1

jrtpy
l
ist ` yl

1

istqp1tEr∆vll
1

ist|Wists ` ∆εll
1

ist ě 0u ´ ylistq|Wist,Wjrt, y
l
ist ` yl

1

ist “ 1s “ 0.

Given equations (26) and (33), we can rewrite this moment equality as

E

„

yl
1

jrt

ˆ

exppEr∆vll
1

ist|Wistsq

1 ` exppEr∆vll
1

ist|Wistsq
´ ylist

˙
ˇ

ˇ

ˇ

ˇ

Wist,Wjrt, y
l
ist ` yl

1

ist “ 1

ȷ

“ 0,
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or, equivalently,

Eryl
1

jrtpp1 ` expp´Er∆vll
1

ist|Wistsqq
´1

´ ylistq|Wist,Wjrt, y
l
ist ` yl

1

ist “ 1s “ 0.

Multiplying by 1 ` expp´Er∆vll
1

ist|Wistsq, we obtain

Eryl
1

jrtp1 ´ ylistp1 ` expp´Er∆vll
1

ist|Wistsqqq|Wist,Wjrt, y
l
ist ` yl

1

ist “ 1s “ 0,

or, equivalently,

Eryl
1

jrtp1 ´ ylist ´ ylist expp´Er∆vll
1

ist|Wistsqq|Wist,Wjrt, y
l
ist ` yl

1

ist “ 1s “ 0.

Given that this expectation conditions on the event ylist ` yl
1

ist “ 1, we can further rewrite

Eryl
1

jrtpy
l1

ist ` ylistp´ expp´Er∆vll
1

ist|Wistsqqq|Wist,Wjrts “ 0,

or, equivalently,

Eryl
1

isty
l1

jrt ` ylisty
l1

jrtp´ expp´Er∆vll
1

ist|Wistsqq|Wist,Wjrts “ 0.

Since the function ´ expp´xq is concave in x P R, we can derive the following inequality,

given any deterministic function gll
1

ijsrt : Zst ˆ Zrt ˆ Θpα,βq Ñ R,

Eryl
1

isty
l1

jrt ` ylisty
l1

jrt expp´gll
1

ijsrtpzst, zrt, α, βqqˆ

p´p1 ` gll
1

ijsrtpzst, zrt, α, βqq `Er∆vll
1

ist|Wistsq|Wist,Wjrts ě 0. (F.20)

Let’s consider the moment

Eryl
1

isty
l1

jrt ` ylisty
l1

jrt expp´gll
1

ijsrtpzst, zrt, α, βqqp´p1 ` gll
1

ijsrtpzst, zrt, α, βqq ` ∆vll
1

istq|Wist,Wjrts,

(F.21)

or, equivalently,

Eryl
1

isty
l1

jrt ` ylisty
l1

jrt expp´gll
1

ijsrtpzst, zrt, α, βqqˆ

p´p1 ` gll
1

ijsrtpzst, zrt, α, βqq `Er∆vll
1

ist|Wists ` νll
1

istq|Wist,Wjrts,

where νll
1

ist is defined as in equation (F.8).
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Equation (31) implies νll
1

ist “ ∆wll
1

ist ´Er∆wll
1

st |Wist,Wjrts and, thus, we can conclude that

Erνll
1

ist|Wist,Wjrts “ 0. (F.22)

As Wist Ă Jist and Wjrt Ă Jjrt, we use the LIE to rewrite the moment in equation (F.21) as

ErEryl
1

isty
l1

jrt ` ylisty
l1

jrt expp´gll
1

ijsrtpzst, zrt, α, βqqˆ

p´p1 ` gll
1

ijsrtpzst, zrt, α, βqq `Er∆vll
1

ist|Wists ` νll
1

istqq|Jist,Jjrts|Wist,Wjrts.

Equation (26) implies Erylisty
l1

jrt|Jist,Jjrts “ ylisty
l1

jrt. Consequently, if zst Ď Wist and zrt Ď

Wjrt, then zst Ă Jist and zr Ă Jjrt, and we can rewrite the moment in equation (F.21) as

Eryl
1

isty
l1

jrt ` ylisty
l1

jrt expp´gll
1

ijsrtpzst, zrt, α, βqqˆ

p´p1 ` gll
1

ijsrtpzst, zrt, α, βqq `ErEr∆vll
1

ist|Wists ` νll
1

ist|Jist,Jjrtsq|Wist,Wjrts.

Equation (31) further implies that

Eryl
1

isty
l1

jrt ` ylisty
l1

jrt expp´gll
1

ijsrtpzst, zrt, α, βqqˆ

p´p1 ` gll
1

ijsrtpzst, zrt, α, βqq `ErEr∆vll
1

ist|Wists ` νll
1

ist|Wist,Wjrtsq|Wist,Wjrts,

and equation (F.22) implies we can rewrite the moment in equation (F.21) as

Eryl
1

isty
l1

jrt ` ylisty
l1

jrt expp´gll
1

ijsrtpzst, zrt, α, βqqˆ

p´p1 ` gll
1

ijsrtpzst, zrt, α, βqq `Er∆vll
1

ist|Wistsq|Wist,Wjrts.

However, this moment is the same as that in equation (F.20), which implies that the following

inequality involving the moment in equation (F.21) is equivalent to that in equation (F.20):

Eryl
1

isty
l1

jrt`y
l
isty

l1

jrt expp´gll
1

ijsrtpzst, zrt, α, βqqp´p1`gll
1

ijsrtpzst, zrt, α, βqq`∆vll
1

istq|Wist,Wjrts ě 0.

(F.23)

Following steps analogous to those we follow to derive the inequality in equations (F.16) from

that in equation (F.10) (see Appendix Section F.2), we derive the following inequality from

that in equation (F.23):

Eryl
1

isty
l1

jrt`y
l
isty

l1

jrt expp´gll
1

ijsrtpzst, zrt, α, βqqp´p1`gll
1

ijsrtpzst, zrt, α, βqq`∆ṽll
1

istq|Wist,Wjrts ě 0.

(F.24)
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where ∆ṽll
1

ist is defined as in equation (F.17).

The inequality in equation (F.24) is one of the two moment inequalities we combine to

obtain the inequality that we use to bound the parameters α and β. To obtain the second

moment inequality, we start with the following expression

ylistpy
l
jrt ` yl

1

jrtqp1tEr∆vl
1l
jrt|Wjrts ` ∆εl

1l
jrt ě 0u ´ yl

1

jrtq “ 0, (F.25)

which is analogous to that in equation (F.19). Following the same steps we implement to go

from equation (F.19) to equation (F.24), we can derive from equation (F.25) the following

inequality

Eryl
1

isty
l1

jrt`y
l
isty

l1

jrt expp´gll
1

ijsrtpzst, zrt, α, βqqp´p1`gll
1

ijsrtpzst, zrt, α, βqq`∆ṽl
1l
jrtq|Wist,Wjrts ě 0.

(F.26)

As the moments in equations (F.23) and (F.26) share the same function gll
1

ijsrt : Zst ˆ Zrt ˆ

Θpα,βq Ñ R and have the same conditioning set and, we obtain the following moment in-

equality when we add them:

Erylisty
l
jrt ` yl

1

isty
l1

jrt ´ ylisty
l1

jrt expp´gll
1

ijsrtpzst, zrt, α, βqqˆ

p2 ` 2gll
1

ijsrtpzst, zrt, α, βq ´ p∆ṽll
1

ist ` ∆ṽl
1l
jrtqq|Wist,Wjrts ě 0,

with

∆ṽll
1

ist “ βpxlnt ´ xl
1

ntq ` pλlt ´ λl
1

t q ` αpwlst ´ wl
1

stq ` δβ
L
ÿ

l2“1

y
pltql2

ist`1px
l2

lt`1 ´ xl
2

l1t`1q, (F.27a)

∆ṽl
1l
jrt “ βpxl

1

nt ´ xlntq ` pλl
1

t ´ λltq ` αpwl
1

rt ´ wlrtq ` δβ
L
ÿ

l2“1

y
pltql2

ist`1px
l2

l1t`1 ´ xl
2

lt`1q. (F.27b)

Finally, if zst Ă Wist and zrt Ă Wjrt, we can use the LIE and conclude that

Erylisty
l
jrt ` yl

1

isty
l1

jrt ´ ylisty
l1

jrt expp´gll
1

ijsrtpzst, zrt, α, βqqˆ

p2 ` 2gll
1

ijsrtpzst, zrt, α, βq ´ p∆ṽll
1

ist ` ∆ṽl
1l
jrtqq|zst, zrts ě 0, (F.28)

with

∆ṽll
1

ist ` ∆ṽl
1l
jrt “ αpwlist ´ wl

1

ist ` wl
1

jrt ´ wljrtq ` δβ
L
ÿ

l2“1

y
pltql2

ist`1pxl
2

lt`1 ´ xl
2

l1t`1 ` xl
2

l1t`1 ´ xl
2

lt`1q

(F.29)
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By plugging equation (F.29) into equation (F.28), we obtain a moment inequality whose

moment equals that in equation (F.1) when evaluated at pθα, θβq “ pα, βq. Equations (F.28)

and (F.29) thus imply Theorem 4. ■

F.5 First-Step Moment Inequalities: Additional Derivations

Derivation of optimal function gll
1

ijsrtpzst, zrt, θα, θβq. We find the value of gll
1

ijsrtpzst, zrt, θα, θβq,

given zst P Zst and zrt P Zrt, minimizes the moment in equation (F.28) at each value of

pθα, θβq. Specifically, given zst, zrt, θα, and θβ, the first-order condition of the moment in

equation (F.28) with respect to the scalar gll
1

ijsrtpzst, zrt, θα, θβq is

Erylisty
l1

jrtp2g
ll1

ijsrtpzst, zrt, θα, θβq ´ p∆ṽll
1

ist ` ∆ṽl
1l
jrtqq|zs, zrs “ 0,

or, equivalently,

Er2gll
1

ijsrtpzst, zrt, θα, θβq ´ p∆ṽll
1

ist ` ∆ṽl
1l
jrtq|zst, zrt, y

l
isty

l1

jrt “ 1s.

Setting this moment condition to zero, we solve for gll
1

ijsrtpzst, zrt, θα, θβq to obtain:

gll
1

ijsrtpzst, zrt, θα, θβq “ Er∆ṽll
1

ist ` ∆ṽl
1l
jrt|zst, y

l
ist “ 1s, (F.30)

with ∆ṽll
1

ist ` ∆ṽl
1l
jrt defined as in equation (F.29).

G Model with Endogenous Worker Types

We model workers’ choice of market to supply labor. Each labor market is defined by a sector

s “ 1, . . . , S and a location l “ 1, . . . , L, and we index each market by the combination of

indices sl. We focus on the choice of workers in a population of interest defined by the worker’s

demographic characteristics and prior location and sector. Thus, we omit for simplicity any

index identifying the worker’s demographic group or prior location or sector of employment.

Defining a variable ysli that equals one if worker i chooses market sl (and zero otherwise),

we assume

ysli ” 1tl “ argmax
l1“1,...,L
s1“1,...,S

ErU s1l1

i |Jisu for any l “ 1, . . . , L and s “ 1, . . . , S.

We assume worker expectations are rational; that is, determined as in equation (2).
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Instead of equation (3), we assume the utility of choosing market sl for a worker i is:

U sl
i “ κl ` τ s ` αwsli ` εsli ,

where the new term τ s is a sector-specific unobserved term that accounts for sector-specific

amenities as well as for sector-specific switching costs.

The assumption in equation (4) extends directly to the model with endogenous worker

types. More specifically, defining εi “ tεsli u
S,L
s“1,l“1, κ “ tκluLl“1 and τ “ tτ suSs“1, we assume

pεi, α, κ, τq Ď Ji.

The assumption in equation (5) also extends naturally to the model considered here.

Specifically, for any sectors s and r, locations l and l1, and worker indices i and j, it holds:

Er∆wsll
1

i |Ji,Jjs “ Er∆wsll
1

i |Jis “ Er∆wsll
1

i |Wis “ Er∆wsll
1

|Wis,

where ∆wsll
1

i “ wsli ´ wsl
1

i and ∆wsll
1

“ wsl ´ wsl
1

, with wsl a market-level wage shifter.

Finally, instead of equation (6), we assume that, for any workers i and j, it holds that

Fεpεi, εj|Wi,Wjq “ FεpεiqFεpεjq “ exp

ˆ

´

S
ÿ

s“1

´

L
ÿ

l“1

expp´εsli q

¯ψ

´

S
ÿ

s“1

´

L
ÿ

l“1

expp´εslj q

¯ψ
˙

,

where ψ measures the extent to which the type I extreme value idiosyncratic shocks are

correlated across sectors within a location.
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