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1 Introduction

Transparency vs. opacity is an important dimension of college admission policy. Admis-
sions offices may extract useful information from subjective or holistic reviews of students’
essays, letters, and other materials. Requiring these materials, however, imposes costs on
applicants, and their use may contribute to uncertainty about admissions chances. This
uncertainty may discourage applications among some highly qualified potential applicants
who in fact would likely be admitted. The effect may be more severe for those with less
information about the process. When the broader process is opaque, policies that commit to
admit some students transparently—as a known function of known inputs—may encourage
strong students with poor information to submit applications.

The goal of this paper is to quantify the impacts of transparency in college admissions
when college seats are scarce, applications are costly, and potential applicants may have
noisy and heterogeneous information about admissions and financial aid. I do so in the
context of Texas’ “top ten percent” plan. This policy guaranteed admission to all Texas
public colleges and universities to all in-state students in the top decile of their high school
class. Importantly, the relevant class-rank measure was made known to applicants before
applications were due, providing a guarantee of admission to students who might otherwise
have faced subjective uncertainty about their chances.

I focus on four-year and flagship university enrollment in Texas, estimating a model that
considers the demographics, class rank, and exam scores of colleges’ entering cohorts, and
these students’ post-enrollment outcomes: persistence, GPA, and major choice. To isolate
the impact of information, I first decompose the impacts of the percent plan into mechanical
(via increases in the objective admissions chances of top-decile applicants), informative
(via application decisions), and equilibrium channels. Next, I use the model to consider
a hypothetical financial-aid awareness intervention [Dynarski et al., 2018] and quantify
complementarities between admissions transparency and financial-aid information. Finally,
class rank alone is just one way to provide transparency, and under the percent plan the
universities considered a broader set of characteristics for discretionary admissions. To
the extent that the percent plan “pulled in” able students [Black et al., 2023], did it do
so because class rank is a better predictor of academic success than the indices used for
discretionary admissions, or was it the transparency that mattered? I isolate the role of
transparency by considering alternative percent plans in which the weights on grades, test
scores, and other observables used for discretionary and guaranteed admissions are aligned.



My main finding is that the informative effect of the percent plan on the diversity and
academic outcomes of flagships’ entering classes is large, comprises the majority of the
total effect, and is a robust feature of the informational environment. According to esti-
mates, students from poorer high schools had little information about how the subjective
components of their applications would be evaluated, and faced greater uncertainty than
did students from affluent high schools, leading to large effects of the percent plan: a 9.1
point increase in top-decile students’ probability of attending a flagship university—two
thirds of which is due to information—or 9.6 points if complemented by financial-aid in-
formation. Moreover, students induced to apply by transparent admission commitments
earn higher grades, and are more likely to persist and to major in STEM, than the students
they displace. The presence and relative importance of informative effects, and the impacts
on enrolled students’ academic outcomes, are not driven by the use of class rank alone
nor by misalignment between the rules used for automatic and non-automatic admissions.
A “percent plan” that uses the same weights on observables as in discretionary admission
decisions would also improve academic outcomes at flagships, but would do so without
lowering colleges’ payoffs.

Addressing the research questions requires isolating the informative effects of the Top
Ten Percent plan and then extrapolating to related policies. To do so, I construct and es-
timate a model of supply and demand for seats in four-year colleges with heterogeneous
imperfect information. The model incorporates colleges’ admissions rules, students’ choice
of application portfolios, financial-aid applications, and matriculation decisions, and stu-
dents’ academic performance in college. On the supply side, admissions offices value
students’ class rank, exam scores, and high-school characteristics, as well as a term not
observed by the econometrician, which I term “caliber”. Admissions standards adjust to
satisfy capacity constraints when policies change, leading to spillovers to non-top-decile
students. On the demand side, three frictions may lead to unequal access to colleges: appli-
cation costs may discourage some students from applying; individuals may be unaware of
financial aid opportunities; and individuals may be imperfectly informed about their admis-
sions chances. Low-income and minority applicants may face higher (or lower) effective
application costs, and may have worse (or better) information about aid availability and
their admissions “caliber”.

I estimate the model using a survey of high-school seniors in Texas public high schools
from 2002—when the percent plan was in place—together with administrative data from
Texas colleges and universities. I then perform counterfactual experiments, solving for the
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new admissions rules that colleges would choose, the applications that students would sub-
mit, the choices that they would make, and the distributions of post-enrollment outcomes
that would realize.

The research design uses variation induced by the top 10% threshold, together with
data on application portfolios, admissions outcomes, and matriculation decisions, to learn
about key objects of interest. The Texas Top Ten policy introduces a discontinuity in ad-
missions chances—and in subjective perceptions of these chances—as students just above
the 10% threshold face a different distribution over sets of offers than those just below.
The locally-exogenous variation in admissions chances around the top-decile cutoff shifts
the distribution of choice sets available to otherwise similar students. I use it to identify
applicants’ preferences.

Identifying the role of information makes use of applicants’ application portfolios, ad-
missions outcomes, and admissions-relevant observables. Students’ exam scores and high-
school characteristics shift the extent to which top-decile threshold-crossing effects are due
to information. For instance, the average student with top SAT scores has an admissions
chance close to 100% even if his GPA is just outside the top decile, while a student with
lower exam scores has a larger gain in admissions chances. For the former student, for
whom the impact on objective admission chances is small, threshold-crossing effects re-
veal the extent of imperfect information about admissions chances.

Data on application portfolios reveals heterogeneity in taste for characteristics of col-
leges, as well as the extent of application costs. Within-portfolio correlation in colleges’
characteristics pins down the variance of random tastes for characteristics. The statisti-
cal relationship between the “aggressiveness” of students’ application portfolios and their
admissions outcomes reveals the extent of private information about admissions. For exam-
ple, students applying to UT-Austin and highly selective institutions reveal either a strong
preference for those institutions or a belief that they are likely to be admitted. To the extent
that these students are in fact more likely to be admitted to UT-Austin than those apply-
ing to portfolios consisting of UT-Austin and less selective programs, one may infer that
applicants hold private information about admissions chances.

I model awareness of financial aid in the spirit of “consideration sets” [Goeree, 2008].
Identification exploits variation in application decisions, together with the fact that these
consideration sets are partially observed, separately from application decisions. In partic-
ular, I see financial-aid application portfolios, including decisions not to apply for aid, at
schools to which students have applied for admission. For students likely to receive some
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aid, the latter reveal imperfect awareness of aid.
I do not assume that admissions offices maximize grades, nor that they ought to do

so. To understand the determinants of students’ grades, persistence, and major, and how
these factors relate to what admissions offices value, the paper again makes use of the 10%
threshold. Students just below this threshold have flagship admissions probabilities that are
increasing in “caliber”, in contrast to those just above who are always admitted. Therefore,
conditional on enrolling in a flagship university, caliber is higher on average for students
below the cutoff. Additionally, I use the availability of a scholarship at Texas A&M as
an excluded shifter of student unobservables conditional on enrolling at UT Austin, and
vice versa. This variation reveals the extent to which caliber and other admissions-relevant
variables also contribute to grades, persistence, and major choice.

Crucially, the model allows colleges to adjust their admissions policies in response to
policy changes. In contrast to most prior race-based affirmative action programs, Texas
Top Ten had large effects on admissions chances for all students, not just the “treated”
top-decile students. In 2009, 81% of students attending the University of Texas at Austin
were admitted automatically under Texas Top Ten, while students outside the top decile
competed for fewer seats. Indeed, the main criticism made by opponents of the plan is
that the rule displaced many non-automatically-admitted students from the University of
Texas.1 In the model, colleges make admissions decisions subject to bounds on the size of
their entering classes and the constraints of the Top Ten law.

This paper builds on prior work on Texas Top Ten and contributes to literatures on
“percent plans”, affirmative action, information problems in higher education, and mar-
ket equilibrium in higher education markets. RDD and difference-in-differences designs
indicate that, consistent with a reduction in uncertainty, Texas Top Ten made top-decile
students less likely to submit large application portfolios and more likely to apply to UT
Austin [Andrews et al., 2010, Daugherty et al., 2014], leading to discontinuities in the
characteristics of applicants by class rank [Fletcher and Mayer, 2013]. These effects led to
positive enrollment impacts for Hispanic students [Niu and Tienda, 2010], and enrollment
and persistence gains for students from an urban school district [Daugherty et al., 2014]. I
show that the model’s predictions match the key estimates of overall impacts.

In contemporaneous work, Black et al. [2023] provide evidence that Texas Top Ten
increased enrollment, graduation rates, and earnings of top students at poor schools, but did
not decrease college enrollment, graduation, or earnings of students from “feeder” schools

1See e.g. “New Law in Texas Preserves Racial Mix in State’s Colleges”, New York Times, November 24 1999.
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who were displaced to out-of-state and non-flagship programs. While I lack earnings data,
I use data on application portfolios and admissions outcomes to decompose these effects.2

In subsequent work, Bleemer [2024] pursues related questions in California.
This paper builds on prior studies of education markets in equilibrium [Arcidiacono,

2005, Howell, 2010, Epple et al., 2006, 2008, 2014]. I extend Howell [2010] and Arcidia-
cono [2005] by endogenizing colleges’ admissions thresholds. Like Fu [2014], I consider
selection on applicants’ private information, but I allow the informativeness of the signals
to vary across students. Methodologically, my demand system is closest to Walters [2018]
on charter schools. A key difference is that charter school admissions are determined by
independent random lotteries, about which private information is impossible. I extend that
paper’s approach to allow for private information about admissions chances.

My model of applicants’ beliefs and awareness draws on a literature documenting ap-
plicants’ imperfect information about admissions and aid and responsiveness to interven-
tions [Avery and Hoxby, 2003, Card and Krueger, 2005, Pallais, 2009, Bowen et al., 2009,
Thibaud, 2019]. Many high-achieving low-income high school students do not apply to
selective colleges [Hoxby and Avery, 2012], but information and application-fee waivers
[Hoxby and Turner, 2014] and financial-aid assistance [Dynarski and Scott-Clayton, 2006,
Bettinger et al., 2012] can lead them to do so. Dynarski et al. [2018] find large enrollment
impacts in a large-scale RCT of an intervention that encouraged students to apply to the
University of Michigan largely by informing students about the availability of aid. Embed-
ding these frictions in a model allows investigating their interactions and joint effects.

Finally, this paper relates to a literature on affirmative action [Antonovics and Backes,
2013a, Backes, 2012, Antonovics and Backes, 2013b, Arcidiacono et al., 2014, Arcidia-
cono and Lovenheim, 2016] and the use of imperfect proxies for race [Fryer Jr et al., 2008,
Ellison and Pathak, 2016]. Consistent with descriptive and difference-in-differences ev-
idence [Cortes, 2010, Flores and Horn, 2016, Niu et al., 2006], my estimates show that
Texas Top Ten did not provide meaningful affirmative action for URM applicants.

2 Background

While elite universities in many countries rank all or most applicants according to linear
functions of a small set of scores and grades known to the applicants, selective U.S. univer-

2For estimates of labor-market returns to Texas higher-education institutions, see Andrews et al. [2012] and Mountjoy
and Hickman [2020].
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sities evaluate applicants’ materials according to criteria that are not explicitly disclosed.
Moreover, policies intended to promote equitable access to these institutions, such as holis-
tic admission and affirmative action policies, typically involve opacity as well—as required
by law if they considered applicants’ race.3 The percent plan is a notable exception.

College Admissions Policy in Texas: The Top Ten Percent policy was introduced in
response to a court decision banning the consideration of race in college admissions. In
1996, the Fifth Circuit Court of Appeals ruled in Hopwood v. Texas that race could not
be used as a factor in admissions decisions at the University of Texas School of Law nor,
by extension, at any Texas public universities. The “Texas Top Ten” law, formally Texas
House Bill 588, was passed in 1997 and first took effect for the cohort entering college in
Fall 1998. Importantly, the relevant class-rank measure for Texas Top Ten is that of the
final grading period before applications are due. In addition, the law required schools to
construct class-rank measures and to inform the top 25% of their rank. As a result, Top Ten
status was known at the time of applications.

Flagship universities—The University of Texas at Austin and Texas A&M University—
ranked non-top-decile applicants on the basis of both personal and academic characteris-
tics. Here I provide details about UT Austin, the most selective institution. In 1996 and
previous years, the university admitted students on the basis of predicted first-year grades,
together with a race-based affirmative action policy. Since the initial prohibition of af-
firmative action in 1997, this institution has computed two scores for each applicant, an
“academic index” and a “personal achievement index”. The academic index is a linear
function of grades and class rank, with parameters that depend on the applicant’s intended
major. The “personal achievement index” reflects personal characteristics including the
extent to which the applicant took advantage of opportunities, and includes the student’s
essays as well as quantitative factors including the ratio of the applicant’s SAT scores to his
high school’s mean score.4 After admitting top-decile students, the university assigns the
remaining positions using (up to discretization into “cells”) a cutoff in a weighted sum of
the two indices.5

3Gratz v. Bollinger, 539 U.S. 244. In the years 2003-2023 it was illegal for institutions that considered applicants’
race to do so via a publicly known formula or points system. On the use of private criteria at elite universities, see also
Karabel [2005].

4This personal score was introduced in 1997, one year before Texas Top Ten took effect. In 2001 the Texas legislature
amended the law to include coursework requirements, but these rules first took effect with the 2004-2005 ninth-grade
class. The data in this paper predate this change.

5See 570 U.S. ___ (2013) page 4, for a brief discussion. The court’s decision is available at
http://www.supremecourt.gov/opinions/12pdf/11-345_l5gm.pdf.
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Importantly, non-top-decile admissions involved uncertainty. In particular, UT Austin
listed the components of the personal index, but did not publicly specify the formula or
weights used to construct a score from these inputs in any year.

Texas Top Ten had been the subject of political controversy because of its scope. In the
years after 1997, the University of Texas at Austin expanded in order to meet rising demand
caused in part by the program. However, this expansion stopped by 2002 while demand
continued to rise. For this reason I take capacities in 2002 as given. In 2009, a legislative
compromise capped automatic admissions UT Austin at 75% of its entering class beginning
in 2010 (it had been 81% in 2009).6 The data in this paper predate this change.

When the 2002 cohort that is the focus of this paper entered college, the flagship in-
stitutions did not consider race. In 2003, a pair of Supreme Court decisions, Grutter v.

Bollinger and Gratz v. Bollinger respectively, allowed the use of race in admissions, pro-
vided that race was not part of an explicit formula. I include URM status in my model
of admissions, although universities could not explicitly condition on it, as they may have
attempted to proxy for it.

Prices, Scholarships, Financial Aid: While not my focus, I account for the presence
of scholarship and mentoring programs that existed at the time. The Longhorn and Cen-
tury Scholars programs were introduced in 1999 and 2000, respectively, and operated at
partially overlapping sets of predominantly low-income urban high schools, 110 in total.
Both programs provided grants of $4000-$5000 to students from designated high schools
who enrolled in the relevant flagship university. These grants typically substituted one-
for-one with loans. In addition to financial aid, the programs involved mentorship and
academic support on campus, as well as information sessions in high schools and visits to
high schools by current college students.7

In each year, 90% of matriculating students at UT Austin are categorized as “in-state”
and pay in-state tuition. Texas’ flagship universities’ admissions offices did not choose
among in-state students on the basis of ability to pay. Moreover, in the year that the sur-
veyed students entered college, public institutions’ tuition levels were set by the state.8 My

6See the university’s announcement, http://www.utexas.edu/news/2009/09/16/top8_percent/ posted on Sept. 16, 2009.
7The Longhorn Scholarship increased enrollment, graduation rates, and earnings of scholarship recipients at UT

Austin [Andrews et al., 2020]. Estimated impacts of the Century Scholars program were not significant. As with similar
programs outside of Texas [Angrist et al., 2009, Clotfelter et al., 2018, Page et al., 2019], neither program affected
admissions chances or otherwise interacted with the admissions process.

8In 2003, Texas House Bill 3015 deregulated tuition in Texas universities beginning in the 2003-04 academic year.
See http://www.utexas.edu/tuition/history.html.
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model is designed to match the public institutions’ policies in 2002. For this reason, unlike
Fu [2014] and Fillmore [2016], I take list prices as given and do not consider “optimal”
pricing.

This paper focuses on high school seniors applying as first-time freshman applicants. I
abstract from transfers [Andrews et al., 2011] and from pre-college investments and choices
[Hickman and Bodoh-Creed, 2018]. The percent plan provided incentives for students to
choose high schools strategically [Cullen et al., 2013], but the share of students who moved
in response to incentives was small relative to the direct and informative effects.9 I abstract
from this channel, taking students’ high schools as exogenous.

The data in this paper contain outcomes from the first few years of college: GPA,
persistence, and major choice. In 2002, certain majors at flagships, such as engineering
and business at the University of Texas at Austin, required their own applications. The
percent plan did not provide automatic admission to these majors. I revisit this issue when
discussing impacts on major choice.

3 Data

This paper uses administrative records of Texas colleges and universities, and a set of sur-
veys of high school students conducted by the Texas Higher Education Opportunity Project.
My primary dataset is a survey of seniors (final-year students) in Texas public high schools.
I use a followup survey conducted in 2003 as well. I supplement this data with adminis-
trative data from the state’s flagship universities on admissions, matriculation, and enrolled
students’ grades, persistence, and major choice.

THEOP survey: THEOP selected 105 Texas public high schools at random in the spring
of 2002. Of these, 86 high schools gave permission for in-class surveys; all seniors and
sophomores who were present in school on “survey” day filled out a paper-and-pencil sur-
vey. These “survey days” took place between March 4, 2002 and May 27, 2002. At 12
additional schools, students completed surveys by mail in May 2002.

The initial wave surveyed 13,803 seniors: for cost reasons, the survey designers fol-
lowed up with a randomly selected subsample, interviewing 5,836 of the original seniors

9Cullen et al. [2013] focus on the small fraction of students who have multiple available public schools, and would
stand to increase their chances of guaranteed admission the most by changing schools without changing their residential
location. A statistically significantly higher fraction of such students indeed change schools post-reform. Effects are
likely smaller for students for whom changing schools would require moving residences.
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the following year in the survey’s second wave.10

The data include the year and term an applicant desired to enroll, demographics includ-
ing gender, ethnicity, citizenship and Texas residency, and academic characteristics includ-
ing high school class rank (by decile), SAT/ACT score, high-school average SAT scores,
and whether a student has ever qualified for free or reduced-price lunch (“ever FRPL”).

As outcomes, the student-level data include up to five college applications, together
with indicators, for each application, for financial aid applications and for admissions. I ob-
serve whether students receive financial-aid offers, but do not observe individual financial-
aid amounts. I do not see the student’s matriculation choice in wave one, but if a student
appears in wave two I see which institution, if any, she is currently attending, as well as
any college or university the student attended within the past year.

The data do not provide household income, but I observe parents’ education and oc-
cupational category. In estimation I treat income and expected family contribution (EFC),
which is used for determining family aid, as unobserved random variables. I sample house-
hold income from the March CPS distribution conditional on living in Texas and the house-
hold head’s education and occupation. I then construct each household’s EFC using the
official formula. I provide details in the data appendix.

I restrict the dataset to students who have taken the SAT or ACT. The final dataset
consists of 4,143 high school seniors. Of these, 1,975 were tracked in wave two of the
survey and hence have observable college choices.

Table 1 provides summary statistics at the student level.11 On average, each student
submits 1.4 applications, and 1.0 applications for aid. Roughly 85% of students submit at
least one application. Because I condition on students who have taken a college entrance
exam, average class rank (with lower numbers better) is 27%. I rescale SAT scores (raw
scores go from 200 to 1600) so that the maximum possible score is 1.0. Roughly 18%
of students come from schools with greater than 60% of peers ever qualifying for free or
reduced-price lunch. About 9% come from schools that participate in the Longhorn Op-
portunity Scholars (LOS) program, which provides funding at UT Austin. About 1/4 of
students come from affluent schools with low poverty rates. Of students whose matricu-
lation decision is observed because they are surveyed in wave two, about 70% enroll in a

10The survey designers included in wave two all Black and Asian students in the original sample, as well
as random samples of Hispanics and non-Hispanic whites. The 5,836 students who completed the wave
two survey represent a 70 percent response rate. See the “Senior Wave 2 Survey Methodology Report” at
http://theop.princeton.edu/surveys/senior_w2/senior_w2_methods_pu.pdf for details.

11This table reports unweighted means. The survey intentionally oversampled high-poverty schools. In table S1 in the
online appendix, I report a version which uses the survey’s population weights.

9



Table 1: Sample Means: Students (Unweighted)
Variable Mean Std. Dev. Min. Max.

Participates in Century Scholars Program 0.057 0.232 0 1
Participates in Longhorn Opp. Scholars Program 0.087 0.282 0 1
White 0.572 0.495 0 1
Black 0.095 0.293 0 1
Latino 0.201 0.401 0 1
Asian 0.063 0.244 0 1
Female 0.562 0.496 0 1
Num. Guardians 1.711 0.560 0 2
Class Rank 0.268 0.181 0.1 1
SAT* 0.666 0.119 0.006 1
HS mean SAT 0.676 0.051 0.431 0.806
SAT / HS mean SAT 0.985 0.167 0.008 1.553
HS Poverty (share ever FRPL) 0.345 0.253 0.023 1
High Poverty HS 0.181 0.385 0 1
Affluent HS 0.263 0.44 0 1
Applied Anywhere 0.854 0.353 0 1
Applications 1.437 1.138 0 5
Admissions Offers 1.06 0.993 0 5
Aid Applications 1.034 1.053 0 5
Enrolled 0.334 0.472 0 1
Did Not Enroll in 4-year Institution 0.143 0.35 0 1
Not in Wave 2 0.523 0.5 0 1

N 4143

four-year college.
On average, students live approximately 190 miles from colleges to which they could

potentially apply. However, actual applications are to closer universities, approximately
105 miles from home. Matriculations in four-year institutions are closer still, with students
traveling approximately 90 miles from home on average.12

I examine differences in demographics and behavior by top-decile status, participation
in wave 2, and participation in the Longhorn Opportunity Scholars program. Results are
given in Appendix tables S3 through S4, respectively. Wave-2 students are disproportion-
ately Black and Asian. These differences reflect an intentional decision by survey designers
to oversample Black and Asian students. They are similar to wave-1 students in SAT scores
and high school poverty rates. Top-decile applicants are about 6 percentage points more

12A full set of results are available in appendix table S2, which shows sample means at the level of potential applica-
tions, observed applications, admissions offers, and matriculations.
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female than non-top-decile students. They are more likely to be Asian, and less likely to
be Black, than non-top-decile students, but are equally likely to be White and/or Hispanic.
They are much more likely to apply to UT-Austin, to apply for aid there, and to be admitted
there. LOS participants are more likely to be Black, equally likely to be Hispanic, and less
likely to be White or Asian, than the general population. They come from poorer schools
than average and have lower SAT scores.

Comparison to administrative data: In addition to the survey, THEOP provides admis-
sions, enrollment, and demographic data for the universe of first-time freshman applicants
to nine colleges and universities in Texas, including the two flagship institutions from the
early 1990s (before Texas Top Ten) through the year of the survey. Table A1 in the Ap-
pendix provides the list of colleges and years covered. I restrict attention to the flagship
institutions, at which I observe more detailed data, including exact class rank. There I ob-
serve the year and term an applicant desired to enroll. I also see demographics: gender,
ethnicity, citizenship, TX residency; and academic characteristics: high school class rank,
SAT/ACT score, AP classes taken, as well as characteristics of the student’s school includ-
ing high school mean SAT scores and fraction eligible for free/reduced lunch. By semester,
for enrolled students, I observe credit hours earned, semester GPA, department and field of
study.

4 Model

This section describes the model of applications, admissions, enrollment and outcomes.
Timing is as follows. First, high-school seniors who have taken a college entrance exam
simultaneously choose which colleges to apply to and whether to apply for financial aid
at those colleges. Second, colleges observe applications and choose whom to accept.
Third, students observe their admissions outcomes, as well as matriculation-time prefer-
ence shocks, and choose where to matriculate among the colleges that admit them. Finally,
persistence/dropout, major choice, and college grades realize.

I begin by presenting the matriculation stage, then work backwards, describing admis-
sions and applications. Finally, I discuss post-enrollment outcomes. Let i = 1 . . . , I denote
the set of students, and j = 1, . . . ,J the set of four-year colleges and universities. In esti-
mation I consider J = 7 inside options, consisting of the two flagship universities and five
aggregate options spanning the set of other four-year institutions. Section 5.2 gives details.

11



4.1 Students’ preferences and matriculation decisions

At the time of matriculation decisions, student i picks the college j ∈ Bi ⊆ {0,1, . . . ,J}
offering the highest value Ui j, where

Ui j ≡ δ j +w jβ
w
i + xi jβ

x + zadmit
i β

z + pi jβ
p
i (yi)+νi j + ε

enroll
i j . (1)

The choice set Bi consists of all four-year programs to which i has applied and gained
admission, as well as the outside option of not attending any four-year college immediately,
which gives utility Ui0 = εenroll

i0 .

For “inside” options j ∈ {1, . . . ,J}, the mean utility term δ j captures college-level de-
mand shifters. The variables w j, zadmit

i , and xi j are observables, discussed below. Student-
level characteristics zadmit

i enter students’ preferences for colleges. They will also enter
colleges’ preferences over students as described in the next section. In the empirical speci-
fication, we have

zadmit
i = (SATi,classranki,SATi/SAT h(i),povertyh(i),urmi), (2)

where h(i) denotes i’s high school, SATi is student i’s standardized college entrance exam
score, SATi/SAT h(i) the ratio of i’s exam score to the mean score at h(i), urmi is an indicator
equal to 1 if the student is Black or Hispanic, and povertyh(i) is the share of i’s high school
peers who have ever qualified for free or reduced-price lunch, a common proxy for poverty
in U.S. educational settings.

Preference shifters xi j, which do not affect admissions decisions, consist of the presence
of targeted scholarships LOSi ×1( j = UT Austin) and Centuryi ×1( j = TAMU), distance
to college, and an indicator for nearby (distance < 25 miles) colleges. In addition, to allow
flexible substitution patterns under changes in the percent plan, xi j includes interactions
of indicators for each flagship with high school poverty, with minority status, and with
SAT scores, as well as an interaction between the student’s exam score and an indicator for
private institutions.

Terms w j with random coefficients are student/faculty ratio (S/F ratio j), an indicator
for all inside options, and a term equal to 1 for UT Austin and -1 for Texas A&M, allowing
negative correlation.13 Without loss E(β w

i ) = 0, as mean effects of college-level observ-
ables w j are subsumed by college effects δ j. I assume that the random coefficients β w

i are

13I have also estimated specifications with an indicator for public institutions, and have found very small variance of
the associated random coefficient.
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independently normally distributed with variance σ2
rc.

The term pi j captures the net price that i expects to pay if enrolled in j. Person i’s dis-
taste for price, β

p
i (yi), varies with their family income, yi, as β

p
i (y) =− log(1+ exp(β

p
0 +

β
p
y y)). This functional form guarantees that price is a “bad”.

There are two unobserved preference shocks, νi j and εenroll
i j . The key distinction is that

applicants are endowed with knowledge of νi j before they choose applications, but observe
the vector εenroll

i ≡ (εenroll
i0 ,εenroll

i1 , . . . ,εenroll
iJ ) only once they have received admission of-

fers. Two shocks are needed to fit data that include application and enrollment decisions;
sufficiently high draws of εenroll

i0 or low draws of εenroll
i j for j > 0 rationalize the event that

a person applies to and receives offers from colleges but then does not enroll.
The application-time shocks νi j are normally distributed, independently across people

and colleges, with mean zero and heteroskedastic variance σ2
j . I assume that they are inde-

pendent of (zi,xi j) and of potential financial-aid awards, discussed below. This restriction is
innocuous for my counterfactuals, which hold zi, xi j, w j, and list prices fixed, but would be
restrictive if I were to consider changes in colleges’ prices or characteristics, or endogenous
choices of high school or study effort by students that might affect elements of zi.

I model εenroll
i as a nested logit, with all inside goods in a common nest with parameter

λ , and the outside option as its own nest. This specification allows for common shocks to
all inside goods relative to the outside good, such as a shock to the value of entering the
labor force immediately or staying home to care for a family member.

Let Ci ∈ {0, . . . ,J} denote the element of Bi that maximizes i’s utility Ui j. If offer sets
were randomly assigned, one could estimate demand using the choice of Ci only. A chal-
lenge is that the choice set Bi may be selected on applicants’ beliefs about net prices and
admissions chances, and on applicants’ preferences, via application decisions. To address
this challenge, I model these sources of selection, as described next.

4.2 Prices and financial aid

Colleges post list prices but offer discounts—financial aid—to low-income applicants as
follows. In order to complete Free Application for Federal Student Aid (FAFSA), a form
that is required for applications for need-based financial aid, an applicant must calculate
their expected family contribution EFCi ≥ 0. The quantity EFCi is a nonlinear function
of the income and assets of i’s parents, i’s own income if any, and characteristics of i’s
household. Federal student aid eligibility in the U.S. is based on the difference between
the cost of attendance and EFCi. In practice, many universities, including the University

13



of Texas at Austin, determine institutional financial aid awards as a function of students’
federal EFC. In doing so, however, universities may fail to provide sufficient aid to match
the student’s need as specified by the federal formula.

The total aid that i may receive in the model is given by

Aidi j = max{α
aid
j (pmax

j −EFCi), pmax
j ,0},

where pmax
j is the list price. The term αaid

j captures the amount of “need” that the college
meets. I assume that colleges do not price-discriminate on the basis of students’ prefer-
ences.

When i is choosing where to enroll, i observes the price pi j, net of financial-aid, for all
j ∈ Bi. In the event that i has not applied for financial aid, or is not eligible for aid, i will
pay the full list price if enrolled in j. Thus we have:

pi j =

pmax
j −Aidi j if i receives aid

pmax
j otherwise.

Because Longhorn and Century Scholarship programs involved mentoring and on-
campus programs as well as the possibility of grants that typically substituted one for one
with aid, I model these programs as directly entering payoffs. In particular, I include an
indicator for the “own” program (e.g. the Century Scholarship, for students enrolling in
Texas A&M) as an element of xi j. As discussed below, these programs may also directly
affect students’ grades, persistence, and major choice. Later, in estimation, I will use the
availability of the “opposite” program (e.g. a scholarship at UT Austin, for students who
enroll at Texas A&M) as a shifter of enrollment that is excluded from potential outcomes
at the chosen program.

4.3 Colleges’ preferences

Each college j maximizes the expected quality of its entering class subject to the constraint
that its expected enrollment is less than its capacity k j. From the perspective of college j,
the quality of student i is given by

πi j = zadmit
i γ

admit +qi +µ
admit
i j , (3)
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where zadmit
i are the admissions-relevant observables defined in equation (2), and qi is a

student-level “caliber” term, commonly observed by colleges and capturing the general
quality of i’s background, essays, transcript, and other application materials. It is not es-
sential that the admissions shifters zadmit

i do not vary at the college-by-individual (i j) level.
The current specification is chosen to match UT Austin’s practices, but one could include
match-level observables. The term µadmit

i j ∼ N(0,1) is a match-level shock, independent
across (i, j), and privately observed by college j in the event that i applies to j.

I assume that each college admits those applicants whose quality πi j is greater than
a cutoff π j. The Top Ten Percent policy is a constraint on admissions at in-state public
institutions: if student i applies to j, i is in the top decile of his class, and j is a Texas
public institution, then i must receive an offer from j. Otherwise, if πi j < π j, the applicant
is rejected.

A college is said to be “selective” if its cutoff is determined by a capacity constraint.
For each selective college j, the cutoff π j must be such that, given rivals’ cutoffs π− j,
the expected number of students matriculating at j is equal to its capacity k j. I take k j

as exogenous, but colleges’ cutoffs π are equilibrium objects. Under a shift in demand
or a change in the rules, these cutoffs will adjust so as to just satisfy capacity constraints.
In Appendix B.1, under the assumption that colleges’ preferences are additively separable
across students, I prove that cutoff strategies are optimal among a broad class of strategies.

I maintain the following assumptions. First, as in Avery and Levin [2010] I assume that
colleges cannot commit to ex-post suboptimal admissions rules. A college might want to
publicly commit to favoring certain applicants in order to induce them to apply, or to not
apply to competitors. In this case, the weights γadmit need not reflect its preferences. Other
than via a law such as Texas Top Ten, it’s not clear that U.S. colleges are able to credibly
do so. In particular, since the “soft” information that I am modeling with caliber q and
shocks µ is not verifiable, it seems implausible to commit to using it in a specific ex-post-
suboptimal way. Second, I abstract from “yield management”, a preference for admitting
students who are likely to accept an offer. A college that wants to do so might deviate from
a cutoff rule by rejecting applicants it believes are unlikely to matriculate. The flagship
institutions at the time did not engage in this practice.

Third, for the main results, I treat parameters γadmit as structural. A college might want
to fill some share of seats with students with high personal scores, however, but hold other
seats for high academic achievers. The percent plan forces colleges to admit students with
high class rank, an academic characteristic. Universities with such preferences might down-
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weight academic characteristics for the remaining applicants. If there were no percent plan,
they might place greater weight on academic characteristics and less weight on personal
characteristics.14 In Appendix E.6 I simulate counterfactuals in which colleges do so.

4.4 Students’ information and application decisions

Information about Admissions Chances: Students have limited information about their
admissions chances. They observe their own objective characteristics zadmit

i , but do not
observe match-level shocks µadmit

i j , and observe only a noisy, potentially uninformative
signal of qi, denoted si.

The signal si ∈ R is distributed jointly normally with qi for each applicant and is inde-
pendent across applicants, according to:(

qi

si

)
∼ N

((
0
0

)
,

(
σ2

q (z
info
i ) σ2

s (z
info
i )

σ2
s (z

info
i ) σ2

s (z
info
i )

))
,

where zinfo
i is a vector of observables affecting the quality of students’ information. Here

σ2
s (z

info
i ) is the variance of the component of i’s admissions caliber that is known to i, and

σ2
q (z

info
i ) is the full variance of qi. Because the informational content of s is invariant to any

monotone transformation, it is without loss to fix the covariance equal to the variance of
s.15 This normalization admits a convenient interpretation, in which we partition qi into the
component that is observed by i and the residual, which is not. We may write the marginal
distribution of s and the conditional distribution of q as follows:

si ∼ N(0,σ2
s (z

info
i ))

qi|si ∼ N(si,σ
2
q|s(z

info
i )),

where
σ

2
q|s(z

info
i ) = σ

2
q (z

info
i )−σ

2
s (z

info
i ).

σ2
s can be interpreted as the strength of i’s private information about his admissions chances.

When σ2
s (z

info
i ) is large, there is a large component of i′s admissions chances (relative to

the impacts of observables such as SAT scores and to idiosyncratic shocks µadmit
i j ) which

is known to i but not to the econometrician. When σ2
q|s(z

info
i ) is large, in contrast, i faces a

14Antonovics and Backes [2013a] argue that the University of California changed the relative importance of academic
characteristics after the end of affirmative action.

15One may work instead with s̃ ≡ s/σs, which has variance 1 and covariance with q given by σs.
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large amount of uncertainty about admissions chances after conditioning on his signal. An
informative signal structure is one in which σ2

s is large and σ2
q|s is small.

Importantly, the quality of students’ information, as well as the importance of unob-
served quality relative to the information provided by SAT scores and grades, may vary
across students. In the data, we have16

zinfo
i ≡ (1,povertyh(i),urmi).

I specify the following functional forms, which guarantee that variances remain positive
but are approximately linear in zinfo

i for large values of the index:

σs(zinfo
i ) = log(1+ exp(γszinfo

i ))

σq|s(z
info
i ) = log(1+ exp(γq|szinfo

i )).

This information structure allows for correlation in admissions outcomes conditional on
observed characteristics and, through the signal, it allows for selection on an econometrician-
unobserved admissions-relevant characteristic in the application decision.

I assume (qi,si) are orthogonal to the idiosyncratic admissions preferences µadmit
i j . The

restriction qi ⊥ µadmit
i imposes a factor structure on admissions chances with one latent

common factor. This restriction to a single factor is not essential, but it is important that
students’ information si is about common terms rather than idiosyncratic match values.
The model rules out private information about admission to a specific university that is
unrelated to admissions chances elsewhere, for example via a legacy preference.

I make the additional restriction that (µadmit
i ,qi,si) are mean-independent of (β w

i ,νi,ε
enroll
i ).

That is, conditional on observables, applicants who prefer college j are not more likely to
be admitted. This restriction rules out legacy status at elite private institutions, for exam-
ple, which may enter students’ and colleges’ preferences. Fewer than 2% of students in the
sample, weighted by population weights, matriculate at elite private institutions.

Financial Aid Awareness: Many students fail to complete financial aid applications,
even where it appears that those applications would be likely to succeed and to have large
effects on net price. Accordingly, the model allows imperfect awareness of financial aid.

Awarei j is a latent variable which determines whether i is able to apply for financial

16In principle one may include all elements of zadmit
i . Finite data motivate the inclusion of fewer variables in indices

for variances, such as zinfo
i .
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aid at college j. If Awarei j = 1 then i is said to be aware of financial aid at college j.
Conditional on applying to j a student completes an application for financial aid at j if and
only if Awarei j = 1.

Awarei j = 0 need not be taken literally as unawareness, but may reflect difficulty in
completing the FAFSA, unawareness of deadlines, difficulty obtaining prior-year tax re-
turns, or other frictions. Students are aware of financial aid at college j with probability

Pr(Awarei j = 1) = Φ(αaware
i +α

aware
j +(xi j,zadmit

i )′αaware
x,z + yα

aware
y ), (4)

where αaware
i ∼ N(0,σ2

aware) is an individual random effect. Awareness at j may vary with
all variables that enter preferences for j.

A student’s awareness of financial aid at j means that she understands that the college’s
list price is not necessarily the price she will pay if she matriculates. Students who are
not aware of financial aid at college j, in contrast, assume that they will pay the full cost
of attendance when calculating the expected value of application portfolios. Students who
would qualify for non-zero financial aid will therefore be less likely to apply to colleges
where they are unaware of aid. An implication is that matriculation choices Ci and choice
sets Bi, described next, may be selected on awareness of aid.

Application Costs and Optimal Application Portfolios: At the time of applications,
students know all terms that will determine their utilities from attending each college except
for their matriculation-time shocks εenroll

i . Let ui j ≡Ui j − εenroll
i j denote the portion that is

known. The value of a choice set B before these shocks are known17 is given by

UB ≡ log

1+

(
∑
j∈B

exp(ui j/λ )

)λ
 .

Students trade off the gain in expected utility from college applications against the
applications’ cost. The cost of applications depends on the number of colleges to which a
student applies. Let

C(A,zinfo
i ,ε

app
i ) = c f ixed

zinfo
i

+ cvar
zinfo

i
|A|− ε

app
iA , (5)

17The expression for UB follows from the nested logit error specification. See Train, “Discrete Choice Methods with
Simulation” (2009), chapter 4. Without loss I subtract Euler’s constant, k, from the value of each portfolio including the
empty portfolio.
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be the cost of applying to portfolio A ⊆ {1, . . . ,J} for a student with observables zinfo
i and

application-cost shocks ε
app
i ∼ Gumbel(0,λ app). In estimation, I assume

c f ixed
zinfo

i
= γ

f ixed
z zinfo

i

cvar
ziinfo = γ

var
z zinfo

i

λ
app = log(1+ exp(γshock

z zinfo
i ))

That is, there is a fixed cost of submitting any applications, plus a marginal cost per ap-
plication that does not vary with the size of the portfolio, and a portfolio-level shock. To
capture heterogeneity in access to college counselors or other resources, I allow the appli-
cation costs and variance of shocks to vary with the same parameters zinfo

i that shift the
information structure.

In the main specification, for each applicant, these shocks are independent and iden-
tically distributed across portfolios. Specifications in which λ is fixed at a small value
give similar results. From the student’s perspective, the chance of admission to a set
B ⊆ A ⊆ {1, . . . ,J}, having applied to A, is:

Pi(B;A) =
∫

∞

−∞
∏
j∈B

(
Φ(zadmit

i j γ
admit
j +qi −π j)

)
∏

j∈A\B

(
1−Φ(zadmit

i j γ
admit
j +qi −π j)

)
φ(qi;si,σ

2
q|s)dqi,

where Φ(·) is the standard normal CDF, and φ(·; µ,σ2) the density of a normal random
variable with mean µ and variance σ2. Students do not observe their residual quality qi

or match-specific shocks µadmit
i j , but integrate over the conditional distribution of qi given

their signals. The expected value of an application portfolio A ⊆ {1, . . . ,J} is given by

Vi(A)≡ ∑
B⊆A

Pi(B;A) log

1+

(
∑
j∈B

exp(ui j/λ )

)λ
 .

Students choose a portfolio to maximize Vi(A)−C(A,zinfo
i ,ε

app
i ).

Conceptually, application cost terms (cfixed,cvar,ε
app
i ) differ from preferences in that the

costs are sunk at the time of matriculation decisions. The shocks ε
app
i may be interpreted

as capturing optimization noise, behavioral heuristics, and limited strategic sophistication,
as well as any preferences over applications per se that lead individuals to depart from the
application that maximizes the expected value of the offer set Bi, provided that these are
invariant under counterfactuals. To the extent that disadvantaged students may be more (or
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less) subject to frictions and heuristics, we may expect the scale parameter λ to vary.

4.5 Equilibrium

An equilibrium can be written as a tuple,
{
{Ai}i∈I ,{π j} j∈J

}
, where Ai ∈ A is the ap-

plication portfolio that solves maxA∈A Vi(A), given cutoffs π , for each student i ∈ I, and
the cutoffs {π j} ∈ RJ are those that solve each college’s problem given the matriculation
probabilities induced by {Ai}i∈I , π− j, and students’ preferences.

In appendix D, I provide a formal definition of a rational-expectations equilibrium of
the college market which does not impose cutoff strategies, prove that an equilibrium exists,
and show that all equilibria can be written as tuples of this form.

Equilibrium need not be unique. The estimation strategy described in the next section
conditions on the equilibrium that is being played in the data. Thus non-uniqueness is not
a problem for estimation, but may present challenges in counterfactuals. In the Appendix
I prove that, conditional on applications, there is a unique vector of cutoffs

{
π j
}

j∈J
that

solves each college’s problem. This “limited multiplicity” result shows that strategic inter-
action among colleges, conditional on applications, is not itself a source of multiplicity.

4.6 Post-Enrollment Outcomes

If student i enrolls in college j, he obtains outcomes of the form

outcomei j = zoutcome
i γ

outcome
z, j +qiγ

outcome
q, j +µ

outcome
i j . (6)

The outcomes of interest consist of cumulative GPA, persistence after two years, and an
indicator for choosing a STEM major.

Observables zoutcome
i consist of all elements of zadmit

i , as well as an indicator for the
availability of a LOS/Century scholarship (which is also an element of xi j): we have
scholarshipi j = 1 if i’s high school has a targeted scholarship at college j. The term µoutcome

i j

is an idiosyncratic shock which has mean zero conditional on covariates.
Coefficients γoutcome

z, j and γoutcome
q, j differ by outcome, and by college j among the two

flagship institutions, allowing for match effects on observables. The model allows for
selection on ability levels. For instance, outcome indices may be identical to the weights
on z and q in admissions, in which case students with higher potential outcomes will be
sorted to more-selective institutions. The model is also consistent with assortativity—the
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impacts of q on grades or persistence being larger at the most selective institutions—or the
reverse, or no such pattern.

An important restriction, however, is that potential outcomes at flagship universities
are correlated with application and admissions outcomes via a single index, qi. I rule
out selection on idiosyncratic factors privately observed by admissions offices, such as a
perception that a student is uniquely suited to Texas A&M. In addition, I rule out selection
on students’ preferences, as might arise from students preferring institutions where they
know that they will perform especially well, or via a causal effect of (un)happiness.

In Appendix E.7 I relax this second restriction, estimating an extension in which out-
comes may be selected on students’ preference shocks as well as their caliber. If students
value grades, for instance, know that they will earn higher grades at some institutions than
others, and choose accordingly, then we will recover a positive relationship between prefer-
ence shocks and grades conditional on caliber. I find that predictions under counterfactuals
in this extension are essentially unchanged.

Other empirical studies of Texas colleges (Mountjoy and Hickman (2020)) and of K-
12 schools (Abdulkadiroglu, Pathak, Schellenberg, Walters) find that application portfolios
and colleges’ admissions decisions contain information about future outcomes beyond that
provided by other observables, but consistently with my assumptions and findings they do
not find evidence of significant unobserved “match effects” on which applicants are able to
select.

Finally, Equation (6) is consistent with selection on students’ gains from flagship en-
rollment that is due to heterogeneity in the institutions that students would attend otherwise.
For example, high-SES students, who may be more likely to attend flagships if there is no
percent plan, may also have fallback options with relatively high returns in the event they
do not attend a flagship university. I discuss this issue further in Appendix E.3.

5 Estimation

I estimate cutoffs
{

π j
}

j=1,...,J under the percent plan, and all parameters except the out-
come production function parameters, jointly via the generalized method of moments. In a
second stage, I estimate outcome equations.

I use two sets of moments in the first stage of the procedure. The first set of moments
is the score of the likelihood of all observables in the THEOP survey. For students in the
first wave of the survey only, we see application sets Ai, admission sets Bi, and financial aid
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applications. For students who are in both waves of the survey, we observe matriculation
decisions as well. The second set of moments matches average aid awards in IPEDS to
values predicted by the model at each college.18

In the second stage, I require that the observed distributions of outcomes in the flagship
administrative data match model-predicted outcomes of surveyed students conditional on
the event that those students enroll in flagships. I do so with indirect inference strategy.

5.1 Identification in practice

This paper faces three key empirical challenges: (1) disentangling students’ payoffs over
colleges, colleges’ preferences over students, and the quality of students’ and colleges’ in-
formation when these objects jointly determine applications, admissions, and matriculation
decisions, (2) identifying aid (un)awareness and its impact on students’ payoffs, and (3) es-
timating outcome production functions in the presence of selection into college enrollment.

Students’ preferences and costs: To identify demand parameters, I use students’ ap-
plication and matriculation decisions. The initial choice of application portfolios depends
on students’ utilities and beliefs about admissions chances, as each application portfolio
induces a lottery over choice sets. To pin down preferences it is helpful to have a source
of exogenous variation in choice sets. The Texas Top Ten law serves this purpose, as it
exposes similar students on either side of the class rank cutoff to different lotteries over
admissions outcomes.

Importantly, the size of the discontinuity in “true” admissions chances at the 10%
threshold depends on students’ characteristics. At many schools the median second-decile
student would be very likely to gain admission to UT Austin, even in the presence of the
Top Ten Percent plan. Differences in application rates across the threshold reveal imperfect
information about admissions chances.

In addition, in order to identify the parameters that affect substitution patterns, it is
especially useful to observe application portfolios. If a particular form of preference het-
erogeneity (such as heterogeneity in taste for low student/faculty ratio) is important, there
will be correlation in the relevant characteristic within application portfolios.

Texas-top-ten-induced variation in admissions chances, and the existence of multiple
measurements of preferences—I observe initial application and final enrollment decisions—

18I construct average awards for each college using the IPEDS 2003 financial aid supplement. Aid totals include loans
as well as federal, state, and institutional grant aid.
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also helps distinguish application costs from utilities. Intuitively, costs are incurred by all
applicants, but utilities can be realized only if applicants are admitted. Enrollment decisions
do not depend on costs, or on information about admissions chances, except via selection.

Admissions parameters: To identify colleges’ preferences, I make use of admissions
outcomes. A challenge is that application decisions depend in part on students’ private
information about admissions chances, and I observe admissions outcomes only at those
colleges to which students apply. Distance to college shifts application decisions but (fol-
lowing the literature, and based on my knowledge of flagship universities’ admissions rules)
is excluded from admissions offices’ preferences. Moreover, because colleges are substi-
tutes, distance to other colleges is also an excluded shifter of applications to college j.

The presence of a targeted scholarship, which may affect grades directly, is excluded
from admissions offices’ decisions, which are made independently from financial-aid deci-
sions. This restriction is consistent with Texas flagships’ admissions policies.

Information structure: Data on applications portfolios and associated admissions out-
comes make it possible to allow for private information about admissions chances. Marginals
of admissions probabilities at particular colleges, taken as a function of z, provide informa-
tion about admissions parameters γ . The importance of unobserved student-level attributes
(summarized by q) is recovered from the correlation of admissions outcomes within an in-
dividual’s application portfolio that remains after conditioning on observables. If outcomes
remain highly correlated, then caliber is important.

The joint distribution of applications and admissions is used to recover the quality of
students’ signals s. If students have private information about their admissions chances,
students with aggressive application portfolios will have relatively high probabilities of
admission conditional on observables. To illustrate, consider a portfolio consisting of a
flagship and a highly selective private university, and an alternative consisting of a flagship
and a regional public campus. The strength of the signal s is pinned down by the extent
to which observably identical students who apply to the riskier portfolio are more likely to
gain admission to schools that are common to both portfolios.

Moreover, the relation between application decisions and matriculation choices pro-
vides information about beliefs. For intuition, consider a student considering applying to a
college at which the econometrician predicts that he has a very low chance of admission. If
the econometrician is correct, the student must have had a very strong taste for this college
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in order for the application to have been worthwhile, and if admitted, should therefore be
very likely to attend. In contrast, if the variance of s is high, some students with weak
preferences may apply to apparent “reach” schools because these schools are not in fact
unlikely for them given their information.

Awareness of Aid: As mentioned in the introduction, I exploit the fact that awareness of
aid is partially observed. In the event that a school belongs to a student’s application set, I
observe the decision to apply, or not apply, for aid. Identification exploits this data together
with variation in application decisions that is excluded from awareness.

To illustrate, consider the case of independence. If application sets Ai were independent
of latent aid awareness Awarei conditional on observables, then one could simply observe
the share of students with a given value of observables who are aware of aid at college j.
The key identification challenge is that students who choose a given application set Ai may
select into that set on the basis of the latent financial-aid awareness.19

Identification of the marginal distribution of awareness of aid at college j exploits vari-
ation in admissions applications Ai j that is excluded from Awarei j, analogous to identifi-
cation in the Roy Model via a choice shifter that is excluded from outcomes (in this case,
aid applications). This variation comes from policy variation and from the nature of the
portfolio problem. For instance, local to the top 10% cutoff, crossing the threshold raises
admissions chances at flagship institutions, making it more attractive to apply to them—and
via the nature of the portfolio problem, less attractive to apply to private institutions—but
does not directly affect aid awareness. More generally, as institutions tend to be substitutes
in the portfolio problem, preference shifters for school k that are excluded from preferences
and awareness at j ̸= k, such as distance to k, are also implicitly used in the estimation pro-
cedure.

Correlation in awareness across institutions then pins down the scale of random effects
in aid awareness. Because I may observe a student applying to an institution without ap-
plying for aid, the setting differs from the classic “consideration set” setup (e.g. Goeree
[2008]) in which belonging to a consideration set is a necessary condition for a product
to be chosen. Identification in such settings typically relies on a shifter of “consideration”
that is assumed to be excluded from payoffs, such as advertising [Goeree, 2008]. I do not
assume such an exclusion restriction.

19One may think of awareness of aid at college j, denoted Awarei j, as a potential outcome that is observed in the event
Ai j > 0. The terms Ai j and Awarei j may be correlated via mutual dependence on unobserved income yi, as a lower price
is desirable.

24



Post-Enrollment Outcomes: To recover outcome parameters, I rely on variation induced
by Texas Top Ten, together with individual outcomes. I assume that grading policies,
persistence rates, and major choice probabilities are continuous in high school class rank,
conditional on enrolling in college j and on all admissions-relevant variables including
caliber q. Because caliber is relevant for discretionary admissions only, top-decile students
have systematically lower caliber than those just below the top decile, conditional on having
enrolled in a public institution.As a result, differences between the marginal automatically-
admitted student and the marginal non-automatically-enrolled student provide information
about the impact of admissions caliber on outcomes.

In addition, to estimate an outcome equation at program j in the presence of selection
into attending j, I exploit the presence of characteristics that enter students’ preferences for
other programs but are excluded from outcomes at program j. In particular, the Longhorn
Scholarship raises a student’s payoff from attending UT Austin, but is excluded from pref-
erences for, and outcomes at Texas A&M. Students who enroll in Texas A&M despite
attending a Longhorn-Scholarship high school may be selected on caliber and tastes. The
case of the Century Scholarship and UT Austin is analogous.

Other restrictions: Some other restrictions are not essential. One could extend the em-
pirical model to allow richer heterogeneity in colleges’ and students’ preferences. It is in
principle possible to let γ coefficients differ by college, and/or to allow a full set of in-
teractions of z with dummies for each college in preferences. Limited data motivate the
current specification. Intuitively, γ is pinned down by the marginal distribution of admis-
sions offers at each college, while information about the variance of q and the quality of
students’ signals s come from the covariance of admissions offers within a portfolio and
from covariances of admissions offers and students’ behavior, respectively.

I have chosen to include interaction terms in students’ payoffs which help with pre-
dicting demand and substitution patterns at flagships. Importantly, all terms which enter
information, cost, admissions or outcome indices also enter preferences, and all terms that
enter preferences also enter aid awareness indices.

5.2 Choice set

I restrict portfolios to contain a maximum of five colleges. In the final survey dataset, most
individuals apply to no more than five colleges; among students in our final dataset, 97.9%
submit five or fewer applications.
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I aggregate colleges which receive relatively few applications. I consider the two flag-
ship universities separately, as well as five aggregate institutions: non-flagship Texas public
institutions, secular private institutions, religious institutions, out-of-state public colleges
and universities, and highly selective institutions. I provide details and lists of institutions
in data appendix B. Students may apply to multiple copies of an aggregate institution. For
instance a student may submit five applications to in-state non-flagship colleges and uni-
versities.

To further speed computation, I restrict the possible set of portfolios: while I allow
all portfolios of up to three colleges, I restrict the set of possible large portfolios. Among
portfolios containing five applications, I allow only those that some applicant in the data
was observed to have chosen. I allow portfolios of four colleges that are subsets of the
allowed 5-college portfolios as well as all portfolios of four colleges which appeared in the
data. This restriction reduces the choice set from |A|= 560 to |A|= 281 possible portfolios.
It rules out certain unlikely combinations of colleges; for instance a student cannot apply
to three highly selective private institutions and two of the smaller regional non-flagship
public colleges.

5.3 First-stage GMM estimator

The first stage of estimation use two sets of moments. The first set of moment conditions
in the first stage is given by the score of the likelihood of all data in the survey:

gsurv(θ) =
1

Nsurvey
∇θ ∑

i
logℓi(θ),

where Nsurvey denotes the number of surveyed students, and

ℓi(θ) =
∫

s

∫
ωi

ℓA
i (θ ,ωi,s)ℓ

Aware|A
i (θ ,ωi)ℓ

B|A
i (θ ,s)ℓC|B

i (θ ,ωi)dFi(s;θ)dGi(ωi;θ)

is the likelihood of individual i’s application set Ai ⊂ {1, . . . ,J}, aid applications Awarei ⊂
Ai, offer set Bi ⊂ Ai, and choice Ci ∈ Bi ∪ {0} given parameters θ , integrating out the
signals s and other terms—income, EFC, random coefficients, and random aid-awareness
shocks—denoted ω> I provide details in Appendix C.1.

The second set of moment conditions matches moments of the aid distribution in IPEDs
to model-generated values conditional on enrolling in each college. In particular, I match
average aid awards at each college j = 1, . . . ,J. I provide details in Appendix D.
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Evaluating the likelihood and moments requires computing the value of each applica-
tion portfolio, which in turn requires computing admissions chances ℓB|A

i (θ ,s) for portfo-
lios A and subsets B, for each s and θ . Doing so may be computationally expensive. In
Appendix D, I provide a method for computing admissions chances for all A and all B ⊆ A,
based on the inclusion-exclusion principle, which requires integrating over shocks only for
the “diagonal” terms ℓA|A

i (θ ,s).

5.4 Outcome moments

In the second stage, I estimate the parameters that affect post-enrollment outcomes via
indirect inference. I first define the auxiliary regression specification:

outcomei j = woutcome
i j γ̃

outcome
w j + µ̃

outcome
i j , (7)

where wi is a vector of variables including all the variables except q which enter the out-
come equation (6), as well as indicators for top-decile status and for a scholarship at the
other flagship (i.e., if j is UT Austin, then the school’s participation in the Century Schol-
ars program which funds students to attend Texas A&M), and quadratic and cubic terms
in class rank. I estimate the auxiliary models separately by college (UT Austin and Texas
A&M) and outcome (GPA, persistence, and STEM major) that I consider, comprising six
specifications in total.

Let ̂outcomei j(γ
outcome
j ,θ) denote the expected value of outcomei j for person i, condi-

tional on outcome parameters γoutcome
j first-stage estimates θ , and the event i enrolls in j.20

I compute the value of γoutcome
j that minimizes the GMM criterion,

Goutcome(γoutcome
j )=∑

r

[
∑

i
weighti j(θ)

(
̂outcomei j(γ

outcome
j ,θ)−woutcome

i j γ̃
outcome
w j

)
wi jr

]2

,

where wi jr = 1, . . . ,R denotes elements of woutcome
i j , and weights satisfy

weighti j(θ) = (pop. weight)iPr(enrolli j;θ).

20My approach is related to control function approaches to RDDs. For instance if outcomei j is a linear function of
q, then computing ̂outcomei j(γ

outcome
j ,θ) consists of plugging in the value of E(q|enrolli j) implied by the model at

parameters θ . However, for my purposes it is important to fit well globally. Accordingly, I include a polynomial in the
running variable and an indicator for threshold crossing, but the sample contains all students not in the bottom decile. I
do not restrict to a narrow bandwidth around the discontinuity. See also Bertanha and Imbens [2020].
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The coefficients γoutcome
j = [γoutcome

z, j ,γoutcome
q, j ] may also differ arbitrarily between the

two flagships and across the three outcomes. To understand this criterion function, ob-
serve that, for each outcome, flagship university j and element γ̃outcome

w jr , the OLS estimates
ˆ̃γoutcome
w jr satisfy

∑
{i:Ci= j}

(
outcomei j −woutcome

i j
ˆ̃γw, j
)

wi jr = 0,

for each element wi jr of the vector woutcome
i j , where the summation is over students ma-

triculating in j. The moments impose that these OLS orthogonality conditions hold in the
simulated data as well. Intuitively, the weights weighti j(θ) make the sample of surveyed
potential applicants comparable to the administrative dataset of enrollees.

6 Results

This section proceeds in three steps. I begin with descriptive analyses of Texas Top Ten
and causal impacts of “threshold crossing”. I revisit results from the literature to describe
the total impacts of the policy, and to show that the model matches key patterns in the
data. Next I present key parameters relevant for decomposing the percent plan, isolating
informative effects, and extrapolating to other rules. Finally, I turn to the main results.

6.1 Descriptive Analyses, Total Impacts, and Model Fit

RDD estimates of the impact of crossing the 10% threshold, in the THEOP dataset used
in this paper, show increases on flagship enrollment, especially for Latino students. Niu
and Tienda [2010] obtain a point estimate of a nine percentage point increase in the prob-
ability of attending a flagship university for the average student near the tenth percentile
of class rank. The results are stronger and significant for Latino students and students
from majority-minority schools. Taken together, these results suggest that Texas Top Ten
affected these students’ application and matriculation decisions.

Of course, this threshold-crossing effect is not the total effect of the ten percent plan,
which must include the impact of changes in admissions standards, a topic addressed in the
next section. Using the model to simulate the impact of threshold crossing all else fixed,
however, I find a 13.8 percentage point increase in the probability of flagship enrollment.21

This estimate is within the 95% confidence bounds of Niu and Tienda’s estimate.
21I simulate turning automatic admissions off, holding cutoffs fixed. I report the change in probability of flagship

enrollment for top-decile students.
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Figure 1: Model Fit, Flagship Universities

Note: This table shows expected number of applications to flagships, offers from flagships, and enrollment at Flagships, as well as

outcome means conditional on enrollment, by decile of class rank. Model: as simulated at point estimates. Survey: population-weighted

survey means. Model Drop TTT: turn off automatic admissions; hold cutoffs fixed.

I describe the data, decompose this threshold-crossing effect, and present model fit in
Figure 1. I pool the flagship universities. Analogous figures for Texas A&M and UT Austin
separately, as well figures for all public institutions and for all colleges, are provided in
Online Appendix E, and other comparisons to the literature are given in Appendices E.3
and E.5.

Each panel of Figure 1 shows model-predicted and observed values of a given outcome
by class-rank decile (in these figures only, ordered so that higher is better). Model outcomes
are evaluated at the point estimates for each student. Model-predicted outcomes, and survey
outcomes where available, are then averaged over students in the THEOP survey dataset,
weighted by the survey’s population weights. Administrative data, where available, are
simple averages.

Panel A shows mean application probability by class-rank decile. This probability is
rising in class rank for deciles below the top, then jumps approximately 17.7 percentage
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points in survey data (23.8 points according to model estimates) for top-decile applicants,
with roughly 53.9% of top-decile students submitting applications.22 Decomposing the
threshold-crossing effect, the red “×” shows model-predicted top-decile application prob-
abilities in the event there were no automatic admissions, holding admissions cutoffs fixed.
Application probabilities would fall by roughly 13.7 points. This result is close to the high
end of RD estimates from Daugherty et al. [2014] in an urban school district in Texas (IK
optimal bandwidth specifications give point estimates of 13.6% and 11.0%) but is larger
than the analogous impact on applications to UC campuses in California [Bleemer, 2024],
where a similar “percent plan” guaranteed access to certain non-flagship UC campuses.23

Panel B of figure 1 shows the expected number of admission offers from flagships, and
panel C shows the probability of enrolling in a flagship. The majority of applicants, and the
vast majority of admitted students, come from the top four deciles. Cells with fewer than
10 students are not shown. The admissions model fits well. I slightly overestimate offers
and matriculation probabilities of students with very low class rank relative to administra-
tive data. This comparison to administrative data in panels B and C is out of sample, as
administrative data on acceptances and enrollment decisions is not used in estimation.24

The final three panels show fit of post-enrollment outcomes conditional on enroll-
ment. GPA and persistence fit well. Panel E considers the joint probability of majoring
in STEM and persisting through 5 semesters. Here, the model fits the top three deciles
reasonably well, but then underpredicts low-class-rank students’ STEM participation. For
transparency, this figure does not control for other covariates.

6.2 Selected Estimates

Table 2 presents admissions and outcome parameters. I estimate linear models for GPA, and
for persistence and STEM indicators, which I use for counterfactuals. Admission chances
are higher for students with high SAT scores (normalized to a 0-1 scale) and top class rank
(the top decile has rank=.1). Admissions offices prefer students from high-poverty schools

22These numbers include an overestimate of the jump at Texas A&M relative to survey data. At UT Austin, the
application probability jumps 14.1 percentage points in survey data (14.4 points according to model estimates) for top-
decile applicants, with 29.9% of top-decile students submitting applications.

23See his Figure 3; Bleemer estimates a 6.5% increase in applications on a baseline of just over 60%.
24I observe administrative data only for students submitting an application. To construct the “administrative data”

series in panels B and C, it is necessary to adjust for the proportion of students in each class-rank decile. While ex ante
this share is 10% in each decile, I restrict the sample to students who have taken a college entrance exam. To construct
the administrative series in panels B and C, I compute the proportion of applicants in each decile receiving an offer
(enrolling), then multiply by the population-weighted measure of surveyed students in each decile.
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but penalize students from schools with low SAT scores, as indicated by the coefficient
on “SAT ratio”. Weights on URM status are close to zero. Coefficients on scholarship
availability and caliber are 0 and 1 by construction.

Turning to outcomes, SAT scores and class rank have the expected signs as well, but
SAT ratio predicts majoring in STEM and is not significantly associated with lower persis-
tence. “Caliber,” as valued by admissions offices, predicts lower GPA and has smaller or
zero effects on other outcomes. The availability of the Longhorn Opportunity Scholars pro-
gram raises GPA and persistence for students from participating high schools who attend
UT Austin, consistent with Andrews et al. [2020].

In Appendix table A4, I present probit specifications for binary outcomes. In Appendix
E.7 I present estimates from an extension in which students’ preferences, as well as their
caliber, may correlate with potential outcomes.

Table 2: Admissions and Outcome Parameters

LPM LPM LPM LPM
UTA UTA UTA TAMU TAMU TAMU

γadmit GPA Persist STEM GPA Persist STEM
Constant 0.0 2.611 0.941 -0.27 2.606 1.013 -0.295

(0.0) (0.077) (0.064) (0.043) (0.105) (0.052) (0.069)
SAT 5.624 4.737 0.188 0.229 3.724 0.129 0.399

(0.929) (0.381) (0.577) (0.024) (0.703) (0.024) (0.256)
Class Rank -2.435 -0.781 -0.445 -0.242 -0.356 -0.458 -0.274

(0.193) (0.299) (0.133) (0.167) (0.295) (0.205) (0.194)
SAT Ratio -1.2 -2.692 -0.104 0.266 -2.122 -0.09 0.384

(0.477) (0.255) (0.384) (0.031) (0.444) (0.04) (0.166)
Poverty 0.278 -0.235 -0.241 -0.163 -0.278 -0.232 -0.32

(0.239) (0.074) (0.105) (0.032) (0.137) (0.036) (0.068)
URM 0.011 0.055 0.008 0.055 -0.006 0.001 0.082

(0.073) (0.029) (0.016) (0.014) (0.032) (0.014) (0.019)
Scholarship 0.0 0.193 0.086 0.022 0.093 0.01 0.215

(0.0) (0.043) (0.026) (0.029) (0.12) (0.078) (0.089)
Caliber (q) 1.0 -0.988 -0.002 0.152 -1.018 -0.1 -0.118

(0.0) (0.304) (0.094) (0.135) (0.26) (0.158) (0.158)
Note: This table shows admissions-index parameters γadmit (Equation (3)) and outcome indices (Equation (6)). By assumption the

elements of γadmit multiplying Scholarship (LOS for UT-Austin, CS for Texas A&M) are zero and one, respectively.

Figure 2 describes information, application costs, and admission chances. Panels A and
B of figure plot standard deviations of signals (panel A) and means and standard deviations

31



Figure 2: Costs, Information, and Admission Parameters

Note: Panels A and B show estimated standard deviations of signal and caliber, and application cost terms, by poverty rate and URM

status. Panel C shows average true admissions chance at UT Austin by top-decile status and poverty rate (for top-decile students, model-

predicted discretionary admissions chance is shown). Panel D: similar to panel C, but conditions on having the value of qi that makes

admissions chance at UT Austin exactly equal to .95.

of costs (panel B) as functions of high school poverty rates. Panel A indicates that appli-
cants face larger uncertainty in caliber q, conditional on their signal s, if they come from
higher-poverty high schools. While the variance of the signal is also increasing at the point
estimates, reflecting a greater extent of private information, the variance of q conditional on
s is considerably larger. An interpretation is that students from poorer schools face greater
residual uncertainty. Conditional on poverty rate, URM applicants’ private signals s are
marginally informative, but they face greater residual uncertainty q|s. Hence these students
may benefit more from an admissions guarantee.

Panel B of figure 2 shows that application costs, unlike uncertainty, do not seem to be
increasing in poverty rate or URM status. While mean costs fall somewhat in poverty rate,
so does the variance of shocks εapp that might explain application “mistakes”. Underly-
ing information and application-cost parameter estimates and standard errors are given in

32



Figure 3: Preferences and Awareness

Note: This figure shows average choice probabilities when Bi contains one copy of each institution (Panel A), and when elite private

schools are excluded (Panels C and D). Panel B shows the share of students aware of aid at each institution. Panels A and C: all students

fully aware of aid. Panel D: aid awareness is set to zero for all students. Top-decile class rank and other students shown separately.

Institutions: (1) Non-Flagship In-State Public; (2) Private Secular; (3) Religious; (4) Out-of-State Public; (5) Elite Private; (6) Texas

A&M; (7) UT Austin.

Appendix Table A2.
The remainder of the figure shows that applicants from higher-poverty high schools face

(or would face) lower admissions chances if not guaranteed admission, and that even if they
are very likely to be admitted, they tend not to know it. Panel C shows mean admissions
chances at UT Austin, by poverty-rate decile, separately for top-decile and non-top-decile
applicants. For top-decile applicants, admissions chances via the discretionary channel
(i.e. if Texas Top Ten were not available, but all else was held fixed) are shown. Points
are means within a HS poverty decile; bars show 95% bootstrap confidence intervals. The
average top-decile applicant from the most affluent high school would have a roughly 90%
admissions chance; this figure falls to roughly 65% at the poorest schools. Chances for
average non-top-decile students are lower, although not vanishing.

Panel D shows subjective admissions chances conditional on having a true admission
chance of 95%, i.e. having caliber q∗i such that Pr(zadmit

i γ + q∗i − πUTA) = .95. For non-
top-decile students i from affluent schools, this value of q∗i is large, and students hold some
private information. In contrast, at low-poverty schools students update very little. Students
from the poorest high schools whose true admissions chances at UT Austin without Texas
Top Ten would be 95% believe, on average, that their chances would be below 70%. This
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mean includes some students with even lower perceived chances. Because even students
with very high admissions chances face subjective uncertainty, there may be room for an
admissions guarantee to affect their application decisions.

Figure 3 summarizes preferences and awareness, plotting first-choice probabilities if
Bi consisted of one copy of each college (Panel A; Panels C and D if j = 5 is excluded)
and awareness probabilities (Panel B). Estimates indicate that students would tend to prefer
highly-selective private institutions (panel A), to which admissions are unlikely. Excluding
these options from the choice set, the leading choices are UT Austin, non-flagship public
institutions, and Texas A&M, each with roughly 20% share. (Preferences sum to less than
1, as some students prefer the outside option). Most top-decile students are aware of aid,
while awareness rates are lower for non-top-decile students. If students were not aware of
aid, the relative popularity of UT Austin would fall and the non-flagship share and outside-
option share would grow.

Accounting for selection matters. Estimates based on final choices only, ignoring se-
lection on applications and admissions, would have underestimated the share of students
preferring elite private universities and non-flagship public institutions, and overestimated
the share preferring flagships. I provide details in Appendix Figure A4.

6.3 Main Results

Having shown that roughly 40% of students prefer a flagship to other available options,
and that students from high-poverty high schools with high objective chances of admis-
sion would face admissions uncertainty, we turn to the main results. I first decompose the
percent plan as implemented in 2002. Second, I consider a hypothetical ideal financial-aid
awareness intervention in which all students are made fully aware of aid at all institutions.
Third, to isolate the role of transparency, I consider hypothetical “aligned” percent plans in
which in-state public institutions commit to admit students on the basis of observables, but
use the same weights on those observables as in their preferences.

In each case, I take as the baseline the (counterfactual) scenario in which there is no
percent plan, holding college capacities and the population of high-school students in 2002
fixed. I decompose the effects of percent plans in the following order. First, I present
mechanical effects, holding the baseline applicant pool fixed but admitting all “treated” ap-
plicants. Second, I add information effects, allowing the applications of treated students—
those receiving an admissions guarantee—to respond. Third, I solve for equilibrium, al-
lowing cutoffs and non-top-decile students’ application decisions to adjust.
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For the financial-aid awareness intervention, timing is as follows. I first make all stu-
dents fully aware of financial aid, allowing applications to adjust but holding cutoffs fixed.
This step can be interpreted as the informative effects of financial-aid information. Sec-
ond, I solve for equilibrium, letting cutoffs adjust. Third, I introduce the percent plan in
this scenario, and present mechanical, information, and equilibrium effects in order. This
sequence makes it clear whether the effects of the percent plan are larger in the presence of
better information about aid. However, other decompositions would be possible as well.

The “aligned” plans automatically admit the students with the highest values of zadmitγadmit.
Recall that student i is admitted if πi j = zadmit

i γadmit+qi+µadmit
i j is greater than a cutoff. In

effect, these plans commit to admit students with high observables in a way that is aligned
with discretionary admissions, simply ignoring the components (qi,µ

admit
i j ) that are not ob-

served by students. I consider a sequence of plans of varying sizes, admitting the top 5%,
10%, 15%, and 20% in this way.

Table 3 presents the main results, decomposing changes in flagship-university enroll-
ment of students receiving an admissions guarantee into mechanical and informative ef-
fects, and showing impacts on post-enrollment outcomes. Bootstrap standard errors are
given in parentheses beneath point estimates.

Isolating informative effects: Row 1 of Table 3 shows that the top ten percent plan,
as implemented in 2002, raised the share of top-decile students enrolling in flagships by
about 9 percentage points, mainly via information, while improving academic outcomes
at flagships. Columns 1 through 4 show probabilities of enrolling in a flagship university
among the group targeted by the percent plan. The first column, “Base,” indicates the share
of such students who would enroll in a flagship university in equilibrium if there were no
percent plan. I estimate that 24.7% of top-decile students would have done so. The second
column, “Mech.”, indicates that an additional 2.8 percent of the population of top-decile
students would have enrolled in flagships via mechanical effects. Columns three and four
respectively show that the informative effect would contribute a further 6.3 points, which
would represent 69% of the total impact of the plan on top-decile enrollment.

Academic outcomes: Columns 5 through 7 of Table 3 show average differences in post-
enrollment outcomes between the students who were “pulled in” and the non-top-decile
students that they displaced from flagships in equilibrium. I report cumulative GPA, an
indicator for persistence through two years, an indicator for persistence and majoring in
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Table 3: Main Results

Pr(Enroll in Flagship), Treated Group Average Effect on Outcomes
Base + Mech. + Info % Info ∆GPA ∆Persist ∆STEM ∆Payoff

A. Texas Top Ten
(1): TTP 24.72 2.81 6.33 69.23 0.71 15.66 10.46 -0.56

(1.05) (0.19) (0.4) (1.98) (0.06) (2.8) (3.29) (0.1)

(2) +Aware 24.5 3.01 6.82 69.36 0.72 15.45 9.74 -0.59
(1.03) (0.25) (0.57) (1.97) (0.07) (2.94) (3.51) (0.08)

B. Automatic Admission By zadmitγ

(3): Top 5% 42.84 1.88 3.21 62.98 0.2 3.02 4.56 0.02
(2.41) (0.25) (0.41) (2.38) (0.11) (7.3) (12.19) (1.54)

(4): Top 10% 39.35 2.39 4.4 64.79 0.38 6.16 8.53 0.0
(1.97) (0.25) (0.42) (2.3) (0.06) (5.05) (7.43) (0.88)

(5): Top 15% 36.81 2.66 5.07 65.6 0.53 8.69 11.57 -0.05
(1.73) (0.24) (0.42) (2.23) (0.07) (3.96) (5.16) (0.56)

(6): Top 20% 34.67 2.88 5.7 66.39 0.68 11.42 14.71 -0.13
(1.49) (0.24) (0.42) (2.14) (0.07) (2.74) (3.21) (0.3)

Note: This table shows a decomposition of changes in flagship enrollment for treated households, and average impacts on academic out-

comes and programs’ payoffs. “Base”: Share of “treated” group enrolling at baseline. “Mech”: mechanical effect. “Info”: information

effect. “% Info”: Share of total increase in treated-group enrollment due to information. Outcomes: total change in outcome (GPA,

1(Persist), 1(Persist and major in STEM), college payoff) / measure of top-decile students induced to enroll in flagships by mechanical

and informative effects; this is equivalent to the average difference in outcomes between these students and the students they displaced.

STEM. Top-decile students induced to enroll by the mechanical and informative effects
earn higher GPAs, are 16 percentage points more likely to persist, and 10 percentage points
more likely to persist and choose a STEM major, than are the students that they displaced.25

Past studies have found that less-prepared students may select out of STEM majors
[Arcidiacono et al., 2016], and that state merit aid programs’ GPA eligibility programs
may also cause students to select out of STEM [Sjoquist and Winters, 2015]. I do not find
that this is the case for the percent plan. In practice, the University of Texas at Austin had
a separate, selective admissions process for engineering majors. I abstract from this in my
estimates. However, if lower demand would lead to lower admissions standards for those
majors in a world without the percent plan, then my results might overstate the impacts of

25This calculation considers students enrolling in flagships. In Appendix E.4 I present evidence of overall gains in
persistence across all institutions.
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the percent plan on the number of STEM majors.
The final column of Table 3 considers the average payoff E(πi j) that the program re-

ceives. Flagship program payoffs πi j would fall when top-decile students are automatically
admitted, suggesting the presence of a trade-off.26

Financial-Aid Information: The second row of Table 3 considers an ideal financial-aid
awareness intervention in which all students are made fully aware of aid at all institutions.
In the absence of the percent plan, in equilibrium, providing this information would have no
effect on the share of top-decile students who attend flagships.27 However, the mechanical
and informative effects of the percent plan would be larger, indicating that information
about pricing and about admissions are complementary, with the introduction of the percent
plan leading to a 0.47 percentage-point greater increase in the share of top-decile students
than if aid information had not been provided.28 Per-student impacts on outcomes are
similar.

Aligned “percent plans”: Next we turn to “aligned” percent plans which use observ-
ables exactly as in discretionary admissions, but simply commit to ignore unobservables
for students with sufficiently high values of the observable index. Just as in the original
percent plan, moderate-sized such plans would lead to enrollment changes roughly two-
thirds due to information, and to improvements in academic outcomes. However, unlike
the percent plan as implemented, they would not lead to significant decreases in programs’
payoffs πi j. Rows (3)-(6) of Table 3 show results as the size of the “aligned” percent plan
increases from 5% to 20% of the population. In each case, the “treated group” is the set of
students who will receive an admissions guarantee. For instance, row (6) shows that 35%
of top-20% students would attend a flagship at baseline. This number would increase by
2.88+5.70 = 8.58 percentage points under the percent plan, with 70% of this change due
to information rather than mechanical effects. While the estimated impact on program’s
payoffs E(πi j) is negative, one cannot reject zero change. Indeed, point estimates of im-
pacts on program payoffs are positive (but noisy) for small aligned percent plans. This
result implies that the impacts of the percent plan are not driven by the use of class rank
alone, and that a small or moderate “percent plan” may improve academic outcomes at no

26The coefficient γclassrank is approximately -.24 per decile; hence program payoffs fall by the equivalent of admitting
a top-40% rather than top-decile student all else equal.

27The point estimate, 24.50%, is not statistically distinguishable from 24.72% in the baseline scenario.
28A bootstrap 95% confidence interval for this difference is (0.013,2.192).
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cost to programs.

Demographics and Diversity: Figure 4 shows impacts on top-decile enrollment and on
measures of diversity under these counterfactuals, decomposing the effects into mechani-
cal, information and equilibrium channels.

Panel A visually displays the changes in top-decile enrollment shares shown in Table
3. At baseline, a quarter of top-decile students enrolled in flagships. The direct effect of
aid information would have been a 1.55% increase in this share. However, because aid in-
formation would have encouraged additional students to submit applications, universities’
cutoffs would have to rise in equilibrium. This equilibrium response would lead to a 2.46%
drop in the share of top-decile students, entirely reversing these gains, so that aid infor-
mation alone, unaccompanied by admissions transparency, would provide zero additional
access to flagships.

Panels B and C consider changes in the flagship enrollment share of URM (Black and
Hispanic) students, and in students from high schools in the top quartile of poverty rates,
as proxied by the share receiving free/reduced-price lunch.

As with top-decile students, financial-aid awareness alone would not raise these shares.
At baseline, 8.4% of exam-taking URM students and 6.56% of exam-taking students from
high-poverty high schools attend flagship universities. Providing information about aid
without a percent plan, cutoffs fixed, would lead to small or negligible changes, 0.7% and
roughly zero respectively, in the share attending flagships. Equilibrium responses would
then more than undo these gains.

Turning to the impacts of percent plans, however, panel C shows that students from
high-poverty high schools would experience large gains—12% and 29% respectively, from
the mechanical and informative effects of the percent plan. About a third of this total effect
would be clawed back in equilibrium as cutoffs for non-top-decile students rise.

Under the alternative percent plan that does not reserve seats by high school, in contrast,
mechanical and direct effects would be smaller, and would be entirely undone in equilib-
rium. Thus, while the “aligned” percent plan leads to small losses in universities’ payoffs,
it does not raise enrollment shares from high-poverty schools.

Patterns for URM students (panel B) are similar, except that a larger share of the me-
chanical and direct effects would be reversed by equilibrium changes in admissions stan-
dards, suggesting that Texas Top Ten is an inefficient way to provide affirmative action.29

29Kain et al. [2005] show that most of the increases in URM enrollment at selective public universities post-1998 was
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Panels D and E show impacts on affluent (bottom quartile of poverty rate) schools, and
on a Theil index of high-school concentration. This index takes values between 0 and 1. If
a fraction p of all students attend flagships, then this index takes value 0 if each high school
sends a proportion p if its class, and equals 1 if a fraction p of high schools send all students
to flagships while the remaining high schools send none. Patterns for affluent high schools
contrast with those of high-poverty high schools: direct and mechanical effects would be
relatively small, and more than reversed by changes in equilibrium. The Theil index falls
with each step: mechanical and informative effects bring in students from underrepresented
high schools, while the displaced students in equilibrium come from schools that were
overrepresented.

Extensions: In Appendix E.5 I consider the targeted scholarship programs, showing that
estimated impacts are similar to results from the literature, and that, much like aid aware-
ness, the LOS program and the percent plan have complementary effects.30 In Appendix
E.6 I consider robustness to a form of “class balancing” in which the weights on “personal”
and “academic” characteristics change as the percent plan is introduced. If universities
were to place more weight on academic characteristics in the absence of the percent plan,
its effects on academic outcomes would shrink but not disappear, and impacts on diversity
would be larger. In Appendix E.7 I extend the model of outcomes to allow for selection on
students’ private preferences as well as their caliber. Counterfactual results are essentially
unchanged.

Summary: Taken together, the results indicate that there are many students who can be
induced to enroll in flagship universities by resolving uncertainty about their admissions
chances before they apply. The percent plan as implemented raised the share of top-decile
students attending flagship universities by 9 percentage points, two thirds of which was due
to information. these students earned higher grades, and were more likely to to persist and
to major in STEM, than the students they displaced. Moreover, the percent plan increased
economic diversity and attracted students from a broader range of high schools, primarily
via information rather than mechanically, but at the cost of a lower payoff according to
admissions offices’ preferences.

driven by LOS schools. I provide more details on the impacts of scholarship programs, consistent with this finding, in
Appendix E.5.

30This finding is consistent with evidence from the literature that multiple dimensions of programs intended to promote
degree completion have complementary effects [Evans et al., 2019, Clotfelter et al., 2018].
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Figure 4: Demographics and Diversity

Note: This figure decomposes impacts on enrollment and diversity measures, in percentage changes relative to baseline, due to mechani-

cal, informative, and equilibrium effects. Blue bars (“TTP”) show percent plan as implemented. Orange (“TTT+Aid Awareness”) shows

combined aid-information and percent plan counterfactual. Green (“Alternative Weights, Top 20%”) shows aligned “top 20%” plan.

“Aid Info: Direct”: effect of aid intervention, cutoffs fixed (aid-awareness intervention only). “Aid Info: Eqbm”: effect of subsequent

change in cutoffs (aid-awareness intervention only.) “Mechanical,” “Information,” “Eqbm.”: mechanical, informative, and equilibrium

effects of percent plan, respectively.

An admissions guarantee that uses observables in the same way that they are used for
discretionary admissions, however, but simply ignores student-unobserved components of
applications, would also draw in students and achieve gains in academic outcomes, primar-
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ily via the information channel. Unlike the percent plan as implemented, this alternative
plan would not draw more students from high-poverty schools, but it would also have small
to zero impacts on colleges’ payoffs. These results suggests that colleges may face a trade-
off between “caliber” and attracting students from a wider range of high schools. However,
informative effects of transparency are sufficiently large that there is no such tradeoff be-
tween payoffs and academic outcomes: the payoff cost to Texas’ flagship institutions to
providing an admissions guarantee to a small to moderate number of top students is zero.

Additional Analyses: In Appendix E.3 I decompose academic outcomes and discuss
selection. In Appendix E.4 I investigate outcomes at non-flagship universities and estimate
student-level impacts. I find that students “pulled in” to flagships by informative effects are
similar to, or slightly better-prepared than, “always-enrolling” students, and outperform the
students they displace. Moreover, consistent with Black et al. [2023], top-decile students’
fallback options are more likely to be no college or two-year programs, while non-top-
decile students displaced from flagships are likely to attend non-flagship public institutions.
In turn, these students displace other students. Nonetheless, accounting for these indirect
effects, I find evidence that the percent plan led to overall gains in persistence.

7 Conclusions

How can Texas Top Ten improve outcomes if it acts as a constraint on colleges? One can
imagine two reasons. First, admissions offices trade off personal and academic character-
istics. They do not maximize the expected GPA of entering cohorts. Texas Top Ten forces
colleges to admit students with high class rank, which predicts academic success. Second,
the Texas Top Ten law is a credible promise of admission, which induced academically
strong applicants with poor information to submit applications to flagship universities.

In order to define and then quantify the role of this promise, a model of imperfect in-
formation, and of selection on that information, is necessary. Using such a model, I show
that this second effect drives the results. Roughly two thirds of the students drawn into
flagship universities responded to the information provided by the percent plan. When they
enrolled, they persisted and earned high grades, but in the plan’s absence they would not
have submitted applications. These findings are robust to alternative rules for calculating
the “top X%” in which the same index is used for automatic and discretionary admissions.
This result indicates that impacts on post-enrollment outcomes are not driven by misalign-
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ment between those outcomes and the observable indices used in discretionary admissions.
Moreover, effects of the percent plan are larger if complemented by information about aid
availability. These results suggest that it may be valuable for universities or university sys-
tems to commit to admissions policies which induce strong candidates to apply, and that
transparency about admissions and pricing may be important elements of such policies.

Because capacity is limited at the flagship universities, one must be careful to account
for the impacts of changes in universities’ admissions standards. We may misstate the ef-
fects of large policy changes such as changes in the percent plan if we do not model or
otherwise account for spillovers. For academic outcomes and high-school diversity, equi-
librium effects reinforce the mechanical and informative effects of the policy. Pulled-in
students come from underrepresented high schools, while the students displaced from flag-
ships come from schools with a greater-than-average share of students attending flagships.
In contrast, equilibrium responses undo the direct and informative effects of the percent
plan on racial diversity. A caveat is that I hold colleges’ capacities fixed in equilibrium,
consistent with UT Austin having stopped expanding in the early 2000s. It would be an
interesting extension to consider universities’ choice to grow.

In evaluating the informative impacts of pre-commitment to admit certain students, I
take the colleges’ preferences and students’ “caliber” as given. In practice, “caliber” is
constructed from the inputs that these colleges choose to collect. I do not take a stand on
what colleges ought to do, or consider what information they should collect, or how to
optimally combine multiple signals to make admissions decisions. Collecting additional
materials may impose costs on students, which may then interact with uncertainty to affect
application decisions. I take applicants’ costs, and the form of admissions uncertainty, as
given as well. Under a substantial change in admissions policy, in equilibrium, students’
might gather information differently. I leave these questions for future research.

Finally, this paper begins with SAT-taking and/or ACT-taking high school seniors, and
ends after the first years of college. I take as exogenous the the decision to take a standard-
ized test, the environment within high schools, and the high schools attended by students.
While the Top Ten Percent plan ruled out some types manipulations by schools—in par-
ticular, at most 10% of students can be in the top decile— the use of observables such
as scores, grades, and high-school characteristics can in general affect students’ choice of
schools and time allocation, and schools’ incentives. I find that Texas Top Ten increases
diversity in college and improves early academic outcomes at flagship universities, but a
full assessment of the policy would consider the impact of information on students’ human
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capital investment and on long-run outcomes.
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A Data Appendix [Online]

This section provides additional details on the construction of the dataset.

ACT scores: Some students take the ACT instead of the SAT; if a student took both
exams, I keep that student’s SAT scores. Otherwise, I convert ACT composite scores to
SAT combined scores using the College board’s 1999 ACT-SAT concordance tables.31

Average SAT scores: Raw SAT scores range from 0 (all questions answered incorrectly)
to 1600. After converting ACT scores to SAT scores, I rescale SAT scores by dividing by
1600. The standard deviation of the rescaled measure is 0.119.

To construct the ratio of student i’s SAT scores to their high school’s average score, I
use school-level average scores reported by THEOP. I found and corrected one outlier in the
school-level score data. Between 10 and 20 students at a single high school have a reported
school-average score of 29 points out of 1600. Because students can obtain a score of 200
by leaving the exam blank, this value seems implausible. The next-lowest school average
score is greater than 690 points out of 1600. I replace the (presumably erroneous) 29-point
school average with the mean score of surveyed students at this high school, which is 933
points out of 1600. At other schools, I have confirmed that the means of surveyed students’
scores are close to the reported school mean scores.32

Income: The data do not provide i’s household income; I do, however, observe the ed-
ucation and occupational category of each of i’s parents. I draw incomes from the March
CPS. To do so, for each household I construct the household head’s education and occupa-
tional category. For each simulation draw, I then draw from incomes in the 2002 and 2003
March CPS samples of Texas residents with the same occupational category and education.
Because the THEOP dataset uses a different encoding of occupations, I convert the CPS
sample occupation codes to 1990 CPS codes as described in the data appendix. If either
parents’ occupation category or education is missing in the THEOP data, but one variable
is present, I draw from the March CPS conditional on the variable that is present.

31http://research.collegeboard.org/sites/default/files/publications/2012/7/researchnote-1999-7-concordance-sat-act-
students.pdf

32The numbers may differ because of survey nonparticipation and because of the use of converted ACT scores for
students who took only the ACT. The mean and variance of the difference between the within-school mean student score
and the mean school score are 17 and 52 points out of 1600, respectively.
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Table A1: Administrative dataset
Application Data College Transcript Data

Institution N Years N Years

Texas A&M 163,027 1992-2002 637,018 1992-2007

Texas A&M Kingsville∗ 18,872 1992-2002 91,106 1992-2004

UT Arlington 29,844 1994-2002 51,315 1994-2002

UT Austin 210,006 1991-2003 659,102 1991-2004

UT Pan American∗∗ 44,747 1995-2002 115,812 1995-2005

UT San Antonio# 61,221 1990-2004 160,604 1990-2004

Texas Tech 81,153 1995-2003 211,771 1995-2004

Rice 36,190 2000-2004 18,149 2000-2005

SMU 45,549 1998-2005 60,607 1998-2005
* Applicant data for enrollees only: 1992-1994
** Limited variables provided
# Applicant data for enrollees only, 1990-1997

http://www.texastop10.princeton.edu/admin_overview.html

Expected family contribution: In estimation, I use the family’s expected family con-
tribution (EFC) as a measure of the amount of financial aid the student is likely to receive.
I use the federal government’s “simplified EFC formula worksheet A” from the 2002-2003
FAFSA, using parents’ income, the number of parents/guardians who live with the appli-
cant, and the number who work full-time, if the applicant lives with two parents.

In estimation, I draw a large number of income draws for each student from the CPS.
For each income draw, I calculate the EFC using the formula. I integrate over these draws
when calculating the likelihood and moments. Details are provided in the computational
appendix.

Administrative dataset: Table A1 provides a list of all institutions for which THEOP
provided administrative data, together with the years covered and number of applications
(in application data), or semester-individual observations (in transcript data).

The THEOP survey is based on a stratified sampling design that placed unequal weights
on different types of high schools. Using the population weights, however, one obtains pat-
terns very similar to those in the administrative data. A sequence of papers by Marta
Tienda and coauthors describes the survey design and findings. I have confirmed that
population-weighted mean SAT scores, class rank, and high school characteristics (poverty,
SAT scores) of students in the survey who attend flagship universities closely match the ac-
tual numbers in the administrative data.
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B Model Appendix [Online]

B.1 Optimality of cutoff rules

This section shows that cutoff rules are optimal for colleges.
As before, each college j maximizes the expected quality of its entering class subject

to the constraint that its expected enrollment is less than its capacity. The quality of a class
C( j)⊂ I, denoted Π j(C j), is the sum of the quality of enrolled students:

Π j(C( j)) = ∑
i∈C( j)

πi j.

Each college j chooses an offer probability for each applicant, B( j) ∈ [0,1]A( j) where A( j)

denotes the set of applicants to j, in order to solve

max
B( j)∈[0,1]A( j)

EΠ j(C( j)|A( j)) s.t. E(C( j)|A( j))≤ K j.

college j observes (zi,qi,µi j) for all applicants before choosing who to admit. College j

does not observe µi j′ for j′ ̸= j. Colleges cannot commit to an admission rule for non-
automatically-admitted students that is not optimal given applications.

A college is said to be nonselective (given students’ and other colleges’ decisions) if
its capacity constraint does not bind when it admits all students with πi j > 0. Nonselective
colleges admit all students for whom πi j > 0.

Colleges whose capacity constraints bind are said to be selective. It is also optimal for
selective colleges to employ cutoff rules, a result stated in the following Lemma:

Lemma 1. Colleges’ optimal admissions rules consist of cutoffs {π j} j∈J such that an

applicant is admitted to j if and only if πi j > π j, and either ∑i:πi j>π j, j∈Ai Pr(Ci = j) = k j

or π j = 0.

Proof. Consider a selective college. Let B( j) be an admissions rule that satisfies the ex-
pected capacity constraint, and suppose it is not a cutoff rule. Then there are two applicants
i and i′ such that πi j < πi′ j but B( j)(i) > 0 and B( j)(i′) < 1. If admitted, i attends j with
probability Pi j and i′ attends with probability Pi′ j, for some Pi j,Pi′ j ∈ (0,1). It is feasible
and profitable for j to reduce B( j)(i) by ε

Pi j
and increase B( j)(i′) by ε

Pi′ j
for some ε.
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B.2 Rational-Expectations Equilibrium

A rational-expectations equilibrium is a tuple

{
{Ai}i∈I ,{Admit( j)} j∈J

}
that satisfies the following properties:

1. Ai ∈ A solves i’s application problem

max
A∈A

Vi(A)

given admissions rules Admit( j)and i’s characteristics, where A is the set of feasible
portfolios.

2. For each college j, Admit( j)⊂ I maximizes

E
(
Π j|xi,zi,qi,µi,Admit− j

)
subject to

∑
i∈Admit( j)

Pr(Ci = j|xi,zi,qi,Admit− j)≤ k j,

where Pr(Ci = j|xi,zi,qi,µi;Admit− j) are the matriculation probabilities induced by
A, integrating over the distribution of the student’s other applications and admissions
offers given the characteristics xi,zi,qi,µi observed by college j and the other col-
leges’ policies Admit− j.

3. i ∈ Admit j if and only j ∈ Bi.

Because optimal admissions rules are cutoffs, I identify admissions rules with the cor-
responding cutoffs and consider equilibria of the form:

{
{Ai}i∈I ,{π j} j∈J

}
.

B.3 Existence of Equilibrium

Suppose there is a continuum of students with type ω ∈ Ω ⊆ RN and measure F(ω) with
density f with respect to Lebesgue measure. (In the model, an individual is defined by
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his observables zi, his preference terms and random coefficients, and his caliber and signal
(q,s).) Each cutoff vector π induces a joint distribution of application portfolios A ∈ A

and types ω. In particular, for almost all ω there is a unique portfolio A(π,ω) ∈ A that is
optimal.

To prove existence, we need to show that there is a cutoff π such that Ai is a best
response to π for all i, and that π maximizes quality subject to capacity constraints given
applications A(π,ω)ω∈Ω.

Let Ã(π) denote the joint distribution of (A ∈ A ,ω ∈ Ω) induced by students’ best
responses to π . Because ω admits a density and the indirect utility U(A ;π) is continuous
in π , the share of applicants to each portfolio A ∈A changes continuously in π . Moreover,
the share of students with admission set B given application set A changes continuously in
π , for all A,B ∈ A . Conditional on admission set B, application set A, and j’s information
about ω , the probability of attending j ∈ B is continuous in π . As a result the best-response
cutoff function h(π)≡ π∗(Ã(π)) : RJ → RJ is continuous in π .

We now show that h(·) is bounded, i.e. we can restrict attention to the map h(·) on a box
in RJ . For each j, taking the distribution of applications A that has every student apply to
{ j} with probability 1 gives an upper bound π

high
j ≤ π∗(E(A)). There exists a cutoff π low

j

such that j strictly prefers empty seats to students with caliber less than π low
j .

From Brouwer’s fixed point theorem, h has a fixed point π∗. By construction π∗ is a set
of market-clearing cutoffs given applications Ã(π), and applications Ã are optimal given
π∗.

B.4 Limited multiplicity of equilibria

In general, there is no guarantee that equilibrium is unique.33 In this section, I show that
given fixed distribution of application portfolio choices, there is a unique mutual best re-
sponse by colleges. That is, there is precisely one vector of cutoffs π such that each π j is
optimal given π− j and applications.

To show these results, I show that holding applications fixed, students’ matriculation
probabilities are isotone in π . As a result, market-clearing cutoffs π form a complete lattice.
As a corollary, for any set of applications, cutoffs exist that satisfy the colleges’ problems.
Letting πL denote the lowest cutoff and πH denote the highest, When students’ choice
probabilities satisfy a substitutes property, I show that πL ̸= πH leads to a contradiction,

33See Chade, Lewis, and Smith (2014).
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as the share of students attending the outside option and/or nonselective colleges must
be strictly higher under πH than under πL, but the share at each selective college cannot
decrease.

Let Pr(Ci = j|B) denote the probability that student i enrolls in college j given admis-
sion to a set of colleges B ⊆ A . Let Pr(Ci = 0|B) denote the probability that i chooses the
outside option.

Condition (Substitutes). For each individual, the following condition holds:

B ⊆ B′ =⇒ Pr(Ci = 0|B′)< Pr(Ci = 0|B).

This condition holds generally whenever the outside option is a possible substitute for
each college.34 In particular it is satisfied for the nested logit specification of utility in this
model conditional on random coefficients, and hence for the mixed nested logit specifica-
tion.

Proposition 2. If the substitutes condition holds, then conditional on applications there is

a unique cutoff vector π that satisfies equilibrium condition (3).

Proof. For each set B ⊆ A and and B′ ⊆ A with B ⊆ B′, each agent’s choice probabilities
must satisfy35

Pr(Ci = j|B′)≤ Pr(Ci = j|B). (*)

Define π∗(π) : R|J| → R|J| by π∗
j(π) = π∗

j(π− j). That is, the jth component of π∗ is the
cutoff that college j optimally chooses given (fixed) applications and student preferences,
and the cutoffs of other colleges. By (*), the function π∗ is isotone in R|J|. Its fixed points
therefore form a complete lattice.

Let π∗
L be the lowest equilibrium cutoffs, and π∗

H be the highest. Let Ju ⊆ J denote
the set of schools that are not selective at πL, i.e. the union of the outside option and the
set of schools for which π∗

L j = π0
j . For a contradiction, suppose Bi(π

∗
H) ̸= Bi(π

∗
L) for some

student i.
The share of students attending the outside option must strictly increase. Moreover, in

any random utility model the the share of students attending other colleges in Ju must also

34The condition is related to the “connected substitutes” condition of Berry, Gandhi and Haile with continuous prices.
In my setting, what is needed is that when a capacity-constrained college is removed from the choice set, the probability
of not attending a capacity-constrained college strictly increases.

35This result is due to Block and Marshak (1960) and Falmagne (1978). See also Haile, Hortacsu and Kosenok
(2008). In particular, a direct application of Theorem 1 of Falmagne (1978) gives that for any sets B0,B1 ⊆ A , we have
Pr(Ci = j|B0)−Pr(Ci = j|B0 ∪B1)≥ 0.
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weakly increase.36 Therefore the share of students attending colleges in Ju must strictly
increase:

∑
i

Pr(Ci ∈ Ju|π∗
H)> ∑

i
Pr(Ci ∈ Ju|π∗

L).

Cutoffs of college in J \Ju are weakly higher under π∗
H , however, implying that they

are at full capacity in both π∗
L and π∗

H , i.e.

∑
i

Pr(Ci /∈ Ju|π∗
H) = ∑

i
Pr(Ci /∈ Ju|π∗

L),

which is a contradiction.

C Estimation Appendix [Online]

C.1 Likelihood

Let θ ∈ Θ ⊂ RN be a vector of parameters, where Θ is the set of allowed parameter
values. Recall that Ai j,Bi j,Ci j denote applications, admission, and matriculation respec-
tively for student i and college j. Awareobs

i j ∈ {0,1} is an indicator for completing an
application for financial aid at college j and is observed only if Ai j > 0. Awareobs

i j =

1(i applied for financial aid at j) is generally not the full vector of financial-aid awareness,
because we do not observe whether i would have completed an application for aid at col-
leges outside his application set.

Let ωi denote the vector of random coefficients βi of individual i as well as income yi,
expected family contribution EFCi, random terms in aid, and shocks νi.

The likelihood of applications ℓAp
i is the measure of the set of preference and signal

draws such that the observed application portfolio maximizes expected utility among all
application portfolios net of costs:

P(Ai) =
expλ app

(
ViA − c f ixed

zapp
i

− cvar
zapp

i
|A|
)

∑A∈A expλ app
(

ViA − c f ixed
zapp

i
− cvar

zapp
i
|A|
) .

36For j ∈Ju, if π∗
H j = π∗

L j then the share must weakly increase by (*). Alternatively, π∗
H j > π∗

L j if and only if college
j has filled its capacity under π∗

H .
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The following expression is the likelihood of admissions conditional on a signal s:

ℓ
B|A
i (θ ,s) =

∫
∏
j∈B

(
Φ(zi jγ j +qi −π j)

)
∏

j∈A\B

(
1−Φ(zi j′γ j′ +qi −π j′)

)
dFi(q|s;σq|s).

The likelihood of financial-aid awareness ℓAware|A
i is analogous to the term above, except

that a double integral is taken over the distribution of income y and random coefficient
αaware

i rather than an integral over q, and coefficients on y, x, zadmit
i , and program indicators

are estimated.
The likelihood of matriculation is the nested-logit choice probability of school j condi-

tional on i’s characteristics:

ℓ
C|B
i (θ ,ωi) =

exp(ui j(ωi)/λ )
(
∑ j′∈B exp(ui j′(ωi)/λ

)λ−1

1+
(
∑ j′∈B exp(ui j′(ωi)/λ

)λ
.

The dependence on aid awareness is implicit, via the impact of awareness at j on ui j. For
students who appear in wave 1 of the survey, I set ℓC|B

i = 1, as matriculation decisions are
not observed. The likelihood of all observables in the data is given by

ℓi(θ) =
∫

s

∫
ωi

ℓA
i (θ ,ωi,s)ℓ

Aware|A
i (θ ,ωi)ℓ

B|A
i (θ ,s)ℓC|B

i (θ ,ωi)dFi(s;θ)dGi(ωi;θ).

C.2 Calculating the objective

Consider the optimization problem

max
θ

1
N

N

∑
i=1

logℓi(θ)+g(θ)Wgg(θ)T , (8)

where
g(θ) =

1
N ∑

i
gi(θ)

are non-likelihood moments, logℓi(·) is the log-likelihood, and Wg is a weighting matrix.
Suppose that the objective in 8 is maximized at θ0. Then the FOC of objective (8) is

given by
1
N ∑

i
∇θ logℓi(θ0)+2g(θ)Wg(∇θ g(θ0))

T = 0. (FOC1)
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Define the matrix W by

W =

(
1
2

[ 1
N ∑i

(
(∇θ logℓi(θ0))

T ∗ (∇θ logℓi(θ0))
)]−1

0
0 Wg

)

=

(
1
2 ·I

−1
θ0

0

0 Wg

)

=

 −1
2

[
1
N ∑i

∂ 2

∂θ∂θ ′ logℓi(θ0)
]−1

0

0 Wg

 ,

where Iθ0 is the Fisher information matrix evaluated at θ0. Define loglik(θ)=∑i logℓi(θ).

Then FOC1 is also the first-order condition of the following GMM objective function:

min
θ

[
1
N

∇θ logℓ(θ),g(θ)]W [
1
N

∇θ logℓ(θ),g(θ)]T , (9)

Hence the solution to 8 will also satisfy 9. The advantage of 8 for my purposes is
that it is possible to use gradient-based optimization methods without needing to calculate
second derivatives of logℓ(θ). Therefore, 8 is a relatively computationally inexpensive way
to optimize the GMM objective 9.

The weight matrix is not known in advance; however it is a fixed function of the param-
eters θ0 that optimize the penalized-likelihood objective.

C.3 Standard errors

I estimate standard errors via the bootstrap. I resample applicants with replacement from
the survey data, and draw new draws of financial-aid awareness, random coefficients,
shocks, and other latent variables in order to allow my procedure to account for simula-
tion error as well as sampling error. Using this new resampled dataset, and taking the point
estimates as starting values, I re-estimate the “first step” parameters θ .

Population weights are needed for second-step estimation and counterfactuals. I con-
struct new population weights proportional to the weights of each resampled individual,
but summing to one.

Next, I redraw auxiliary-model parameters using their asymptotic mean and covariance
matrix as estimated on the administrative datasets, then re-estimate the indirect-inference
outcome specifications. Finally, I re-solve the model in counterfactuals and compute out-
comes.
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D Computation [Online]

D.1 Computing the value of application sets via the inclusion-exclusion
principle

Computing the value of an application set A ⊂ A requires integrating over all possible
outcomes B ⊆ A, as the value depends on the probabilities and utilities of each admissions
set B that is possible given application to A.

In principle, and dropping i subscripts, computing V (A) for all A requires comput-
ing |A | utility terms {U(B)}B∈A , and O(|A |2) multivariate normal CDF evaluations
{P(B|A)}B⊆A,A∈A . It would be expensive to compute all of these probabilities directly
for each draw for each individual at each trial parameter value. In what follows, I show that
one needs only evaluate |A | multivariate normal CDFs and perform some matrix multipli-
cation.

The argument does not rely on the presence of a single common correlating factor, q.
Therefore, this method may be useful in cases beyond this paper where it is necessary to
compute all conditional admissions probabilities under a complicated correlation structure.

Define
PB =

∫
q
∏
j∈B

Φ(qi + zadmit
i j γ j −π j)dF(q|s)

as the probability of admission to every school in B given application set B and a realization
of the applicant’s information qs. Let XB be the event that i is admitted to all schools in B.
Let XA;B denote the event that i is admitted to all schools in B and rejected from all schools
in A\B, and PA;B the probability of this event. If B ̸⊆ A then let XA;B be empty and PA;B = 0.
Let P be the probability measure associated with i’s characteristics and signal s, so that
PA;B = P(XA;B).

Proposition. (inclusion-exclusion formula) Given the above definitions, the following re-

sult holds:

PA;B = ∑
B′:B⊆B′⊆A

PB′ · (−1)|A|−|B′| for all sets A,B ∈ A with B ⊆ A.
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Proof.

PA;B = P
(
XB\

(
∪ j∈A\B

(
XB∪{ j}

)))
= P(XB)−P

(
∪ j∈A\B

(
XB∪{ j}

))
= PB − ∑

j∈B\A
P(XB∪{ j})+ ∑

j1, j2∈B\A
P(XB∪{ j1}∩XB∪{ j2})− . . .+P(∩ j∈A\BXB∪{ j})

= PB − ∑
B′:B⊆B′⊆A

PB′ · (−1)|A|−|B′|+1.

The second line follows because XB∪{ j} ⊆ XB and the third line is the standard inclusion-
exclusion formula.

List all the portfolios A0,A1, . . . ,A|A | in some order, and define the matrix T by

Tkl = 1Ak⊆Al ∏
j∈Ak

(
Al j

Ak j

)
,

where Al j is the number of applications to j in portfolio Al . Similarly, define the matrix
S = T−1. We have

Skl = (−1)|Al |−|Ak|Tkl.

It follows that PAk;Al = ∑Ak⊆Ar⊆Al
TkrPr

Corollary. Let P be the diagonal matrix with kth entry PAk . The vector V = {VA}A∈A is

given by

V = T ∗Diag(P)∗S∗U.

Computing only the admissions probabilities PB rather than all PA;B simplifies compu-
tation. As an example, if A = {{1},{2},{1,2}} we have the following calculation:

 V{1}

V{2}

V{1,2}

=

 1 0 0
0 1 0
1 1 1

∗

 P{1} 0 0
0 P{2} 0
0 0 P{1,2}

∗

 1 0 0
0 1 0
−1 −1 1

∗

 U{1}

U{2}

U{1,2}

 .

By using the inclusion-exclusion principle, we avoid having to compute P{1,2};{1} or P{1,2};{2}

by integrating over multivariate normal densities.
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D.2 Discretization

To compute integrals over s, and over the residual uncertainty q|s, I use Gauss-Hermite
quadrature with 9 nodes.

I draw M = 384 draws ωi,m for each individual i, which contain random coefficients,
income yim, EFC e f cim, and preference shocks ν . The construction of income and EFC
draws is described in the data appendix. To draw random coefficients and shocks ν , I
fix a set of iid standard Normal draws. I use an importance-sampling procedure, which I
describe below to integrate over financial-aid awareness draws.

D.3 Simulation of financial-aid awareness

I observe financial-aid application or failure to apply for aid only at schools to which i

submits an application. In order to compute the likelihood that i chooses his observed
application portfolio, however, we need to calculate the value of all application portfolios he
could have chosen. Therefore calculating the likelihood requires integrating over financial-
aid awareness at colleges to which i did not apply.

In order to obtain an estimator that is smooth in θ , I draw financial-aid awareness
for student i using an importance sampling procedure. Before searching over parameter
values, I draw a vector of outcomes awarei jm ∈ {0,1} once for each simulation draw, for
all colleges j to which i did not submit an application. I estimate weights on each vector
for each parameter vector θ . These weights are then smooth functions of θ .

Initially, I estimate the parameters of equation (4), taking the set of observed applica-
tions as given, ignoring selection, and integrating over the distribution of the random effect
αaware

i .
for each individual i and simulation draw m, I then draw a vector of financial-aid aware-

ness outcomes for the schools to which i did not apply, according to their distribution given
the parameters estimated above, and the agent’s observed financial-aid awareness, subject
to the constraint that, at colleges to which i applied, awareness must take its observed value.

Let Paware
0i denote the probability of the vector of financial aid awareness draws under{

Pr0i jm
}

j∈J
for simulation draws m = 1, . . . ,M.

For each trial parameter value θ in estimation, I calculate the probability of financial-aid
awareness,

Paware
im (θ) =

∫
α

∏
j∈J

[(
Pr(Awarei j = 1|θ ,αaware

i )
)awarei jm

(
Pr(Awarei j = 0|θ ,αaware

i )
)1−awarei jm dF(αaware

i |θ)
]
.
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Note that the probability of the financial aid awareness draw under parameters θ includes
the probability of awarei jm for j ∈ Ai.

The likelihood of financial aid awareness is then approximated by

ℓ̂
Faware|A,B
i (θ ,m)≈

Paware
im (θ)

Paware
0im

.

In estimation, I obtain a starting guess for financial-aid awareness parameters as de-
scribed above, which forms part of the starting values θ 0. I draw financial-aid awareness
according to these parameters. I then run the estimation procedure, arriving at estimates
θ 1, and use the estimated values as new initial parameters for constructing paware

0im . I then
run the estimation procedure again to obtain estimates θ 2. Finally, I redraw financial-aid
awareness again, and rerun the estimation procedure, to obtain final point estimate θ ∗.

D.4 Implementation

The first-stage estimation procedure uses an implementation of the L-BFGS algorithm pro-
vided by the NLopt solver package. I provide efficient analytic first derivatives to the solver
for first-stage estimation.

The second-stage uses the L-BFGS algorithm as well. I use automatic differentiation
to obtain gradients for the outcome equations in the second stage.

Counterfactuals require solving for a vector of new cutoffs at three programs. I use
the baseline cutoffs, recovered during estimation, as starting values. I use the L-BFGS
algorithm to minimize the sum of squared differences between total enrollments in the
counterfactual and at baseline, using automatic differentiation to obtain the gradient. In
practice this procedure converges rapidly.

E Additional Estimates and Results [Online]

This section provides additional model-fit results, results on the importance of accounting
for selection, and additional counterfactuals and extensions.

E.1 Additional Model-Fit Figures

Figures A1 and A2 show the analogues of Figure 1, separately for each flagship institution.
Figure A3 shows fit of applications, admissions, and matriculation by class rank decile for
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all public institutions, and for all four-year institutions. Results are similar to those in the
main text.

Figure A1: Model Fit: UT Austin

E.2 Parameter Estimates

This section provides additional information on parameters. A full set of estimates is given
in the supplementary material. Table A2 shows cost and information parameters. While
estimates of information parameters γs are noisy, we can reject large values of σ s. Table
A3 shows the estimated change in cutoffs across counterfactual scenarios. Table A4 shows
probit versions of the linear specifications reported in Table 2 for binary outcomes.

E.3 Additional Results

This section provides additional results and context. I first consider the importance of ac-
counting for selection. I then decompose post-enrollment outcomes at flagship universities.
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Figure A2: Model Fit: Texas A&M

Table A2: Information Parameters

Student Info. γs Uncertainty γq|s Fixed Cost γc
0 Var. Cost γc

1 Var. Shocks γεapp

Constant -10.0 -0.692 0.31 1.038 -0.88
(0.556) (0.353) (0.091) (0.053) (0.094)

Poverty 1.563 1.625 -0.239 -0.219 -0.592
(8.376) (0.763) (0.111) (0.119) (0.21)

URM 5.748 0.545 0.047 -0.176 -0.075
(6.26) (0.305) (0.06) (0.045) (0.079)

Note: this table shows information and cost parameter estimates.

Figure A4 shows the impact of accounting for selection on applications and admissions.
Estimates using matriculation choices only, taking choice sets as given, would have under-
estimated demand for non-flagship institutions and overstated the popularity of flagships.
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Figure A3: Model Fit: Public Institutions and All Four-Year Institutions

While I estimate that top-decile applicants are generally well-informed about aid avail-
ability, Panel B of A4 shows that naive estimates ignoring selection would have slightly
overestimated aid awareness among non-top-decile students at elite private institutions, at
out-of-state institutions, and at Texas A&M.

In Figure A5 I show means of students enrolled at baseline, of students “pulled in”
[Black et al., 2023] by mechanical and informative effects, and of students “pushed out”
by equilibrium responses. I show decompositions of the percent plan as implemented (blue
bars), of the percent plan combined with aid information (orange bars), and of the “top
20%” aligned percent plan (green bars). The leftmost column, “baseline,” shows means of
students enrolled in flagships at baseline. “Aid info” shows means among students pulled in
by aid information without the percent plan (e.g. 3.051 GPA, top panel) and means among
students “pushed out” by equililbrium cutoff changes (2.926 GPA, top panel). The next
columns, “Mechanical” and “informative,” show means of students pulled in by mechanical
and informative effects respectively. Finally, the last column, “Eqbm,” shows means of
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Table A3: Change in Cutoffs Relative to Baseline

Policy UT Austin Texas A&M Other Public
TTP 0.404 0.382 0.124

(0.03) (0.03) (0.01)

Aid Awareness Only 0.092 0.021 0.062
(0.03) (0.05) (0.06)

Aid Awareness + TTP 0.537 0.387 0.185
(0.06) (0.09) (0.06)

Top 5% zg 0.029 0.019 0.007
(0.12) (0.12) (0.04)

Top 10% zg 0.08 0.061 0.018
(0.11) (0.11) (0.04)

Top 15% zg 0.138 0.109 0.03
(0.09) (0.09) (0.03)

Top 20% zg 0.221 0.181 0.046
(0.07) (0.06) (0.03)

Note: This table shows estimates of changes in program cutoffs relative to baseline. Lower cutoffs denote lower admissions standards.

Table A4: Outcome Probit Models

Probit Probit Probit Probit
UTA UTA TAMU TAMU

Persist STEM Persist STEM
Constant 1.403 -3.098 1.755 -2.542

(0.218) (0.313) (0.34) (0.305)
SAT 0.314 1.088 0.214 1.155

(0.112) (0.177) (0.108) (0.492)
Class Rank -0.714 -1.661 -0.845 -0.923

(0.518) (1.188) (0.569) (0.962)
SAT Ratio -0.208 1.35 -0.25 1.41

(0.141) (0.207) (0.212) (0.369)
Poverty -0.953 -0.855 -0.908 -1.118

(0.109) (0.229) (0.179) (0.173)
URM 0.067 0.252 0.095 0.238

(0.065) (0.073) (0.08) (0.061)
Scholarship 0.333 0.104 -0.227 0.703

(0.101) (0.228) (0.236) (0.317)
Caliber (q) -0.773 1.137 -1.314 -0.383

(0.346) (1.002) (0.581) (0.593)

Note: This table shows probit specifications for outcome equations (Equation (6)).
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Figure A4: Preferences and Awareness, Estimates vs. Naive Models

Note: This figure shows average choice probabilities when Bi contains one copy of each institution (Panel A), and when elite private

schools are excluded (Panels C and D). Panel B shows the share of students aware of aid at each institution. Panels A and C: all students

fully aware of aid. Panel D: aid awareness is set to zero for all students. “Ignore selection”: In panels A, C and D, use estimates

from a random-coefficients nested-logit specification estimated on final enrollment decisions only, taking choice sets as given; in Panel

B, use observed aid awareness only, ignoring selection into applications. Top-decile class rank and other students shown separately.

Institutions: (1) Non-Flagship In-State Public; (2) Private Secular; (3) Religious; (4) Out-of-State Public; (5) Elite Private; (6) Texas

A&M; (7) UT Austin.

students “pushed out” by cutoff changes due to the percent plan.
In all academic measures, students pulled in by either the mechanical or informative

channels outperform those pushed out.
Those induced to enroll by information are comparable to those enrolled at baseline

in propensity to enroll in STEM, and are slightly more likely to persist and to earn high
grades. Those pulled in mechanically earn even higher GPAs, but are less likely to major in
STEM. Unsurprisingly, given that they were below the bar, those pulled in by mechanical
effects provide very low payoffs to colleges.

Interestingly, when only aid information is provided, students “pulled in” by this infor-
mation earn slightly higher GPAs but are less likely to persist and to major in STEM than
the average student or the students they displace.
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Figure A5: Decomposition of Post-Enrollment Outcomes

Note: This table shows mean post-enrollment outcomes of students enrolled in flagships, and of students shifted into or out of flagships

by mechanical, informative, and equilibrium effects. “Baseline”: means of students enrolled in flagships at baseline. “Aid info”: left

column shows means among students pulled in by aid information without the percent plan; right column shows means among students

in turn “pushed out” by equililbrium cutoff changes. “Mechanical” and “informative”: means of students pulled in by mechanical and

informative effects respectively. “Eqbm”: means of students “pushed out” by cutoff changes due to the percent plan.

E.4 Enrollment, Match Effects, and Student-Level Impacts

So far, I have focused on outcomes at flagship institutions. These are of interest in evalu-
ating transparency. For instance, if the students shifted into flagships by the percent plan
were to drop out at high rates, this would provide an argument against the percent plan.
To quantify impacts on students, however, one needs to understand what would have hap-
pened had they not attended flagship institutions. This in turn depends on two factors: (1)
where students would counterfactually enroll, and (2) the presence or absence of “match
effects”. In this section I first show impacts on enrollment, then discuss the possibility of
match effects. Finally, I present estimated impacts of policy changes on the number of
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students persisting two years across all institutions, not just flagships. I find that the gains
for top-decile students were larger than the losses for those displaced, leading to an overall
increase in persistence.

Enrollment impacts: Figure A6 describes counterfactual enrollment, comparing equi-
librium under the percent plan to the baseline scenario, in equilibrium, in which there is
no such plan. Blue bars show the gains in enrollment at each institution in equilibrium
under the percent plan, relative to baseline, among top-decile students, as a percentage of
the total measure of top-decile students. Orange bars show decreases in enrollment at each
institution in equilibrium under the percent plan, relative to baseline, among non-top-decile
students. To make the scale comparable, changes are divided by the measure of top-decile
students. This figure shows that the probability of enrollment at each flagship institution
among top-decile students increases by roughly 4.5 points. At UT Austin, this is compara-
ble to the 5.3-point increase among “pulled in” students estimated in Black et al. [2023]. In
contrast, top-decile enrollment at other institutions falls. In particular, despite the presence
of an admissions guarantee at non-flagship in-state public institutions, in fact the proba-
bility of enrollment there among top-decile students falls slightly with the percent plan, as
some of these students substitute to flagships.37

Importantly, Under my counterfactuals, total four-year college enrollment essentially
does not change. Because capacities are held fixed, necessarily an equal measure of non-
top-decile students is displaced from flagships and from public non-flagship institutions.
Moreover, while I do not hold capacities at the remaining four options fixed, aggregate
changes in enrollment there are negligible. The total increase in four-year college enroll-
ment among top-decile students is equal to 5.26% of top-decile students. The total decrease
in four-year college enrollment among non-decile students is equal to 2.38% of non-top-
decile students. In total these changes essentially offset, leading to a 0.01% increase in
total four-year enrollment.

My results here differ from those of Black et al. [2023] because, in addition to the direct
effects of admissions changes at flagships, I am including indirect effects in which students
who are displaced from flagships in turn displace other students, who then displace others,
and so on. By solving for equilibrium, I am accounting for the possibility that non-top-

37I estimate a 5.26 point increase in overall four-year college enrollment for this group, comprising decreases in out-
of-state and private institution enrollment and a 8.36 point increase in in-state public university enrollment. This latter
number is larger than the 6.6 point increase in public four-year college enrollment estimated by Black et al. [2023] (p.49),
and is driven by larger estimated enrollment increases at Texas A&M University, which may be due to differences in the
population being considered.
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decile students whom the percent plan pulled out of flagships set off chains of displacement.
Alternatively, one may wish to focus on specific groups of students defined by their

potential assignments, as in Black et al. [2023]. There, “Pulled In” students are those who
attend a flagship if the percent plan is in place and otherwise do not. Conversely, “Pushed
Out” students attend a flagship if and only if the percent plan is not in place. Most students
who will in turn be displaced from non-flagship institutions by the “Pushed Out” group
would not have attended flagships under either scenario. They are therefore not part of
either the “pulled in” or “pushed out” group.

To make my analysis comparable to Black et al. [2023], I compute a counterfactual in
which flagships (only) provide automatic admission, and flagship programs’ cutoffs adjust
to their equilibrium values, but there is no automatic admission at non-flagship institutions,
and cutoffs at non-flagship institutions are held fixed at their baseline values. This coun-
terfactual captures the direct effect of the guarantee at flagships, holding the probability of
having an option to attend a non-flagship institution fixed at its baseline value for every
student.

Figure A6: Equilibrium Changes in Enrollment

Note: This figure shows gains in enrollment shares in equilibrium under the percent plan, relative to baseline, for top-decile students

(blue bars), and decreases in enrollment shares in equilibrium, relative to baseline, for non-top-decile students (orange bars).

Figure A7 provides results, showing the institutions that top-decile students who are
“pulled in” to flagship institutions come from (blue bars), and the institutions that non-
top-decile students “pushed out” of flagships attend (orange bars). I find that 34 percent
of students “pulled in” substitute into flagships from the outside option, while only 24%
of students “pushed out” substitute into the outside option (leftmost column). Instead,
non-top-decile students displaced by the percent plan are more likely to substitute to non-
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flagship in-state institutions. These substitution patterns are broadly consistent with Black
et al. [2023]. They find that about two thirds of “pushed out” students substitute into non-
flagship institutions, while one third substitute into community colleges, while “pulled in”
students are more likely to have been pulled into the public four-year sector from outside.
Differences between Figures A7 and A6 are due to the subsequent adjustments in programs’
cutoffs, and chains of rejections, set off by non-top-decile students’ moves.

Figure A7: Where do Students Substitute From/To?

Note: This figure considers a counterfactual in which automatic enrollment is provided to top-decile students at flagships only. It shows

enrollment shares, under this counterfactual, for top-decile students who attend flagship universities under this counterfactual but not at

baseline (blue bars), and enrollment shares under the percent plan of students who attend flagships at baseline but are displaced when

flagships’ cutoffs adjust after the percent plan is introduced (orange bars).

Match Effects: The previous results suggest that, if there are gains or losses in aggregate
human capital production, they will have to be driven by match effects. While students
“pushed out” of flagships are more likely to attend other four-year institutions than those
“pulled in” in the event they do not attend a flagship, the “pushed out” students in turn
displace other students, so that overall effects on enrollment at any institution type are
close to zero in equilibrium.

Estimating these effects requires estimating outcomes at non-flagship universities. To
do so, I use THEOP public data from the non-flagship universities listed in Table A1.
I restrict to Texas-resident students from public schools entering in Fall 2002, and drop
institutions that do not have transcript data through at least 2004. As an outcome, I focus
on two-year persistence.
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I pool Rice University and SMU, and ascribe potential outcomes estimated at those uni-
versities to students enrolling in options 2 (“Secular Private”), 4 (“Religious”), and 5 (“Elite
Private”). The remaining institutions, which are public, are used to estimate persistence at
college 1 (“In-State Non-Flagship Public”). In addition, as I lack data on out-of-state in-
stitutions, I use the outcome equation estimated there to predict persistence for students
matched to out-of-state public institutions.

Estimation is as described in Section 5.4. However, the auxiliary-model covariates
woutcome

i j in Equation (7) differ. I observe high schools’ poverty quartile, but not exact
FRPL rate, mean SAT scores, or the availability of the LOS or CS programs. Hence,
for non-flagship options j, the auxiliary-model covariates include indicators for poverty
quartiles, and do not include “SAT ratio”:

woutcome
i j =

(
1,SATi,classranki,1((poverty quartile)h(i)),classrank2

i ,classrank3
i , topdecilei,urmi

)
.

A second difference is that I do not include scholarships among the outcome covariates, as
there were no targeted scholarship programs for these institutions comparable to the LOS
or CS programs.

Table A5: Persistence Parameters, Non-Flagship Institutions

Non-Flagship Public Private
Constant 0.22 0.578
SAT -2.754 1.433
Class Rank 0.14 -0.311
SAT Ratio 2.193 -0.681
Poverty -0.142 0.015
URM 0.152 0.005
Caliber (q) -0.89 0.032

Note: This table shows outcome indices (Equation (6)) for non-flagship institutions. As these institutions do not have targeted (LOS or

Century Scholars) scholarships, “Scholarship” is omitted.

Table A5 gives estimates of persistence parameters. While the coefficient on SAT is
negative at public institutions, the coefficient on SAT ratio is also highly positive, leading
to positive effects of increases in SAT scores all else equal (for the mean student enrolling
in non-flagship public institutions, the peer-average SAT score at baseline is equal to 0.68.)
Caliber is negatively associated with persistence at public institutions but not relevant at
private institutions.
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Figure A8 shows the share of students who enroll and persist at least two years in
some four-year institution under my counterfactuals of interest overall (Panel A) and by
subgroups (Panels B-F).

Overall persistence is roughly half a point higher under the percent plan than at baseline,
and would be a further half-point higher if accompanied by aid information. Persistence
under the “aligned” percent plan is similar to baseline, however.

Turning to subgroups, as the percent plan raises top-decile enrollment, the fraction of
top-decile students enrolling and persisting grows, from 50% at baseline to 57.5% with
the percent plan and aid-information intervention. The percent plan, with or without the
aid intervention, would also raise the share of URM students (Panel C) and students from
lowest-quartile schools (Panel D) who enroll and persist.

In sum, this evidence suggests that the percent plan raised total persistence, and im-
proved outcomes for disadvantaged subgroups, by assigning students to colleges who were
more likely to benefit. However, in equilibrium, tracing chains of rejection, some non-top-
decile students were crowded out.

A caveat is that I am holding capacity at non-flagship in-state institutions fixed. If there
is slack at some of those institutions, then total enrollment could increase with the percent
plan (See Figure A7). This in turn would mechanically lead to further increases in the
number of students persisting.

Black et al. [2023] conjecture that “Pushed Out students are likely to come from fam-
ilies with more support for college success, so may be less dependent on inputs received
from the college itself.”(p.30) My results are consistent with this conjecture. Conversely,
Bleemer [2024] argues that gains from selectivity may be larger for students who are less
well prepared. In contrast to the setting of Bleemer [2024], “Pulled In” students in my
setting earn higher grades, and are more likely to persist, than the average student at the
institutions they are pulled into.

E.5 Effects of the Longhorn Opportunity Scholars (LOS) Program

This section provides an analysis of the effects of the LOS program, under the assumption
that the assignment of the program to high schools was “as good as random” conditional
on schools’ poverty rates, average SAT scores, and other observables. I first show that esti-
mated effects are consistent with results from the literature. I then provide further evidence
of complementarities between admissions transparency and other forms of support—in this
case, the availability of scholarship and mentorship programs.
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Figure A8: Two-Year Persistence, All Institutions

Panel A: Percentage of all students (population-weighted) who enroll in a four-year college and persist at least two years. Panels B

through F: share of students in given subgroup who enroll in a four-year college and persist at least two years. “Top Decile”: top 10%

by class rank; “URM”: Black or Hispanic; “High Poverty”: top quartile of HS ever-received-FRPL; “Affluent Schools”: bottom quartile

of HS ever-received-FRPL; “Non-Top Decile”: class rank outside of top decile.

Panel A of Figure A9 decomposes differences between my equilibrium and baseline
counterfactuals, showing percentage growth in URM enrollment at UT Austin, relative to
baseline enrollment numbers, separately by LOS schools—defined as those schools that
participated in the LOS program in 2002—and other schools. At the baseline admissions
cutoffs that I estimate, if there were no LOS program, 13.0% of URM students at UT Austin
would have come from LOS schools. I estimate that the percent plan and the LOS program
combined caused this share to grow by 51.8%. In contrast, the share of minority students
from other high schools would have grown by 7.0%. As such, most of the growth in URM
enrollment at UT Austin was driven by LOS schools.
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This result is consistent with the argument and descriptive evidence in Kain et al. [2005]
that effects were driven by LOS schools. Those authors argue that apparent increases in
minority enrollment at UT Austin elsewhere may be due to other demographic changes,
such as increases in the share of minority students at suburban high schools over the years
1998-2002, which were not caused by the percent plan. An advantage of my model-based
approach is that it is able to evaluate policy changes while holding demographics fixed.

Figure A9: Effects of LOS Program

Note: Panel A shows growth in URM enrollment, relative to baseline total among students from LOS schools (left column) and other

schools (right column), when the percent plan is introduced. Results come from model simulations, comparing “baseline” and “equilib-

rium” (with TTT) scenarios. In both cases, the LOS program is present at LOS schools. Panel B shows the impacts of the LOS program.

Left column: baseline (no TTP) and mechanical+information effects of percent plan, taking LOS as given, among students from LOS

schools. Right column: baseline (no TTP) and mechanical+information effects of percent plan on UT Austin enrollment among students

from LOS schools, if there were no LOS program.

Panel B of Figure A9 shows baseline shares of students from LOS schools attending UT
Austin (blue), and baseline shares + mechanical and informative effects (orange). The left
column, “as estimated,” reports mean estimated propensities to enroll at UT Austin from the
main specification, restricting to students from LOS schools. In the right column, “Remove
LOS”, I consider the same set of students, but counterfactually remove the LOS program.
I find that the LOS program would have increases UT Austin enrollment even without the
percent plan, with 4.8% of students from LOS schools attending UT Austin, as opposed
to 4.1% if there were no LOS program. Moreover, enrollment effects of the percent plan
and the LOS program are complementary. UT-Austin enrollment would have increased by
2.1 points, in this population, if LOS and the percent plan were both introduced, as they
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were in the data (left column). If only the percent plan had been introduced, the increase
in enrollment would have been 1.8 points, which is smaller. Hence, in the same way that
admissions transparency and aid information are complements, admissions transparency
and targeted scholarship/mentorship programs are complementary as well.

There are two important caveats to this analysis. First, for simplicity, and to isolate com-
plementarities holding all else fixed, I am using previously-estimated baseline and equilib-
rium cutoffs which held the presence of the LOS program fixed. It would be possible to
solve for equilibrium without the LOS program. Second, I am not modeling school-level
unobservables with which LOS participation might be correlated. If LOS schools were
negatively selected on baseline share of students sent to UT Austin, then my estimates of
these complementarities may be lower bounds.

E.6 Extension: Class balancing

In this section I consider robustness to a form of class balancing. Indices for GPA and
persistence load heavily on class rank and exam scores. Because the Top Ten Percent plan
forces colleges to admit students with high class rank, a college that wants some students
with strong personal scores might place additional weight on personal characteristics for
the remaining seats when the percent plan is in effect. In the absence of the percent plan, it
might stop doing so [Antonovics and Backes, 2013b].

Accordingly, I allow admissions offices to place additional weight on academic char-
acteristics in the baseline scenario in which there is no percent plan. To operationalize
this idea, I take γ

persist
UTA , the coefficients on (z,q) in equation (6), as the academic index

(results are similar for Texas A&M’s indices, and for GPA indices). I define γpersonal ≡
(γadmit,γadmit

q )− (γ
persist
UTA,z,γ

persist
UTA,q), where γadmit

q = 1. Table A6 provides results. In the first
row, at baseline, the admissions index is given by γpersonal + 4γ

persist
UTA . (I also consider a

2× weight). Once top-decile students are automatically admitted, colleges return to their
estimated preferences for the remaining applicants.

In this case, mechanical effects on top decile students’ enrollment are not distinguish-
able from zero, and (unsurprisingly) impacts on persistence and other outcomes are atten-
uated. However, informative effects remain large and would raise enrollment of top-decile
students by up to eight percentage points.
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Table A6: Effects of TTP with Class Balancing
Pr(Enroll in Flagship), Treated Group Average Effect on Outcomes
Base + Mech. + Info % Info ∆GPA ∆Persist ∆STEM

Class Balance: Additional Weight on Acad. Index
(7): 4× 26.13 1.41 6.33 81.78 0.52 7.51 1.88

(2.74) (2.73) (0.4) (13.75) (0.33) (6.5) (8.43)

(8): 2× 25.22 2.32 6.33 73.21 0.66 13.08 7.68
(2.04) (1.93) (0.4) (9.87) (0.12) (5.72) (7.32)

Note: This table shows average impacts on academic outcomes, allowing for increased weight on an academic index in the baseline

scenario. “Base”: Share of “treated” group enrolling at baseline. “Mech”: mechanical effect. “Info”: information effect. “% Info”:

Share of total increase in treated-group enrollment due to information. Outcomes: total change in outcome (GPA, 1(Persist), 1(Persist

and major in STEM), college payoff) / measure of top-decile students induced to enroll in flagships by mechanical and informative

effects; this is equivalent to the average difference in outcomes between these students and the students they displaced.

E.7 Extension: Selection on student preferences and caliber

In this section I extend the model of outcomes to include selection on students’ prefer-
ences. Let ṽi j = νi j +w jβ

w
i denote the value of preference unobservables—application-

time shocks plus terms arising from random coefficients—that i will receive if she enrolls
in j. I assume:

outcomei j = zoutcome
i γ

outcome
z, j +qiγ

outcome
q, j + ṽi jγ

outcome
v, j +µ

outcome
i j . (10)

Thus outcomes may be selected both on “caliber,” which is observed by colleges, and on
students’ preferences.38 For instance, the model allows students with a stronger preference
for Texas A&M University to be more likely to persist if enrolled there, conditional on
caliber. Estimation is as before. Implicitly, the indirect-inference procedure is making
use of the “opposite” scholarship, e.g. the availability of the Longhorn Scholarship for
students who enroll at Texas A&M. Intuitively, because the LOS program makes UT Austin
observably more appealing, if a student from a LOS school attends Texas A&M this student
must have had a higher preference shock for Texas A&M, in expectation, all else equal.

I hold the application-admissions-matriculation model parameters fixed, so that pat-
terns of enrollment are as in the main specification. Table A7 presents parameters of the

38I have also estimated specifications of the form

outcomei j = zoutcome
i γ

outcome
z, j +qiγ

outcome
q, j +νi jγ

outcome
v, j +µ

outcome
i j

in which selection on preferences occurs only through the match-level shock ν . Results are similar.
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outcome equations, and Table A8 presents post-enrollment outcomes under counterfactu-
als, analogous to the main results in Table 3.

Table A7: Outcome Parameters Allowing Selection on Preferences

LPM LPM Probit Probit LPM LPM Probit Probit
UTA UTA UTA UTA UTA TAMU TAMU TAMU TAMU TAMU
GPA Persist STEM Persist STEM GPA Persist STEM Persist STEM

Constant 2.646 0.598 0.964 -0.095 -1.586 2.718 0.962 1.635 -0.299 -2.327
(0.382) (0.194) (0.071) (0.263) (0.739) (0.492) (0.098) (0.146) (0.372) (0.535)

SAT 4.748 0.251 0.541 0.191 0.522 3.866 0.132 0.215 0.34 1.586
(0.357) (0.536) (0.03) (0.117) (0.205) (0.856) (0.026) (0.248) (0.307) (0.822)

Class Rank -0.787 -0.394 -1.202 -0.267 -0.424 -0.38 -0.454 -0.805 -0.18 -1.799
(0.325) (0.152) (0.164) (0.502) (1.809) (0.493) (0.178) (0.208) (0.536) (0.797)

SAT Ratio -2.714 0.005 -0.121 0.215 0.951 -2.223 -0.088 -0.244 0.436 1.161
(0.239) (0.393) (0.032) (0.135) (0.3) (0.459) (0.044) (0.229) (0.317) (0.501)

Poverty -0.22 -0.342 -1.124 -0.111 -0.346 -0.176 -0.262 -0.974 -0.296 -0.961
(0.157) (0.145) (0.031) (0.148) (0.264) (0.511) (0.085) (0.105) (0.224) (0.273)

URM 0.053 0.028 0.08 0.045 0.184 -0.009 0.002 0.098 0.085 0.227
(0.038) (0.023) (0.014) (0.064) (0.087) (0.071) (0.022) (0.024) (0.087) (0.094)

Scholarship 0.192 0.094 0.345 0.018 0.073 0.077 0.016 -0.217 0.15 0.586
(0.054) (0.03) (0.029) (0.1) (0.197) (0.137) (0.072) (0.1) (2.207) (0.275)

Caliber (q) -0.991 0.042 -0.298 0.129 -0.129 -1.097 -0.062 -1.25 -0.199 0.128
(0.349) (0.124) (0.126) (0.367) (1.113) (0.479) (0.141) (0.211) (0.493) (0.565)

Pref. Shock -0.043 0.389 0.543 -0.202 -1.837 -0.51 0.21 0.489 -0.096 -0.827
(0.71) (0.253) (0.059) (0.243) (0.579) (1.499) (0.149) (0.489) (0.326) (0.835)

Note: This table shows outcome indices (Equation (10)), extending the model to allow selection on unobserved components of utility.

GPA parameters are nearly unchanged. Persistence and STEM parameters are similar
to the main estimates, but there is evidence of selection on match quality, although the
preference coefficients (final row) are noisily estimated. However, even though preferences
appear to matter for persistence in this specification—i.e. students who like their matched
programs more indeed are more likely to persist—the counterfactual results are statistically
indistinguishable from those of the main specification.

Turning to counterfactuals in Table A8, estimated impacts on GPA are nearly identi-
cal to those of the main specification, reported in Table 3. Point estimates of impacts on
persistence and STEM major are slightly smaller and slightly larger, respectively, than in
the main specification, but estimates here are not statistically distinguishable from the main
estimates.

An implication of outcomes’ dependence on preference shocks is that, to the extent
that colleges value those outcomes, they would now face a selection problem in their ad-
missions decisions. If colleges were to maximize persistence, and this in turn depended
on νi j, then the conditional expectation of outcome-relevant unobservables, conditional on
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Table A8: Changes in Outcomes, Allowing Selection on Preferences
∆GPA ∆Persist ∆STEM

A. Texas Top Ten
(1): TTP 0.72 13.1 11.96

(0.08) (2.77) (3.25)

(2) +Aware 0.73 13.32 11.01
(0.08) (2.81) (3.43)

B. Automatic Admission By zadmitγ

(3): Top 5% 0.21 2.02 5.15
(0.12) (6.98) (13.04)

(4): Top 10% 0.39 4.36 9.58
(0.05) (4.81) (8.08)

(5): Top 15% 0.54 6.34 12.97
(0.06) (3.82) (5.62)

(6): Top 20% 0.69 8.5 16.51
(0.07) (2.75) (3.49)

Note: This table shows a decomposition of changes in flagship enrollment for treated households, and average impacts on academic

outcomes and programs’ payoffs, allowing academic outcomes to be selected on preference shocks. “Base”: Share of “treated” group

enrolling at baseline. “Mech”: mechanical effect. “Info”: information effect. “% Info”: Share of total increase in treated-group

enrollment due to information. Outcomes: total change in outcome (GPA, 1(Persist), 1(Persist and major in STEM), college payoff)

/ measure of top-decile students induced to enroll in flagships by mechanical and informative effects; this is equivalent to the average

difference in outcomes between these students and the students they displaced.

students’ observables and accepting the offer, could differ across counterfactuals or policy
changes. For instance, top-decile students might be more positively selected on prefer-
ence shocks if there were no top-ten-percent plan. Put differently, if colleges did not also
observe preference shocks, they would no longer have private values. For this reason, in
counterfactuals the score πi j or relative ranking of students could change in principle, in
addition to changes in “cutoffs”.

As one obtains essentially the same impacts on counterfactual persistence, grades, and
STEM majors abstracting from this source of selection, I abstract from it in the main spec-
ification.

30



F Supplementary Materials [Not For Publication]

F.1 Additional Descriptives

Table S1 reports THEOP sample means, using the population weights provided by the sur-
vey. According to these weights, about 7% of students attend a LOS school, and 15%
attend a school with a poverty rate greater than 60%. Table S2 shows sample means at the
student-by-college level. Tables S3 through S5 study how students’ demographic covari-
ates and application behavior differ by survey wave 2 participation, top-decile status, and
participation in the Longhorn Opportunity Scholars program, respectively. Wave-2 students
are disproportionately Black and Asian. These differences reflect an intentional decision
by survey designers to oversample Black and Asian students. They are similar to wave-1
students in SAT scores and high school poverty rates. Top-decile applicants are about 6
percentage points more female than non-top-decile students. They are more likely to be
Asian, and less likely to be Black, than non-top-decile students, but are equally likely to
be White and/or Hispanic. They are much more likely to apply to UT-Austin, to apply for
aid there, and to be admitted there. LOS participants are more likely to be Black, equally
likely to be Hispanic, and less likely to be White or Asian, than the general population.
They come from poorer schools than average and have lower SAT scores.

Table S6 provides statistics on admissions and matriculations by in-state and out-of-
state applicants at UT Austin over the years 1991 through 2003 as given in the administra-
tive data. The fraction of the enrolled students whom the university classified as in-state
applicants remained slightly above 90% in each year with the exception of 1997, where
89.9% of first-time freshmen were in-state. The share of students from in-state public high
schools is also nearly constant.

F.2 Parameter Estimates

Tables S7 through S9 provide estimates from the main specification.
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Table S1: Sample Means: Students (Pop. Weighted)
Variable Mean Std. Dev. Min. Max.

Participates in Century Scholars Program 0.025 0.157 0 1
Participates in Longhorn Opp. Scholars Program 0.069 0.253 0 1
White 0.626 0.484 0 1
Black 0.077 0.266 0 1
Latino 0.192 0.394 0 1
Asian 0.049 0.215 0 1
Female 0.567 0.496 0 1
Num. Guardians 1.714 0.546 0 2
Class Rank 0.268 0.181 0.1 1
SAT* 0.67 0.117 0.006 1
HS mean SAT 0.682 0.055 0.431 0.806
SAT / HS mean SAT 0.984 0.161 0.008 1.553
HS Poverty (share ever FRPL) 0.323 0.244 0.023 1
High Poverty HS 0.147 0.354 0 1
Affluent HS 0.283 0.45 0 1
Applied Anywhere 0.861 0.346 0 1
Applications 1.417 1.142 0 5
Admissions Offers 1.085 0.998 0 5
Aid Applications 1.041 1.067 0 5
Enrolled 0.326 0.469 0 1
Did Not Enroll in 4-year Institution 0.14 0.347 0 1
Not in Wave 2 0.534 0.499 0 1

N 4143
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Table S2: Sample Means: Applications

All Potential Applications Applications Offers Matriculations

Distance (100mi) 188.32 104.07 97.79 86.39
Cost of Attendance ($10000) 1.83 1.53 1.49 1.39
Frac. minority 0.20 0.28 0.28 0.29
Frac. own race 0.55 0.69 0.69 0.70
1(Top Ten) 0.12 0.23 0.28 0.30
Applied for aid 0.13 0.86 0.91 0.93
Applications 0.18 1.20 1.22 1.20
Admitted 0.26 0.89 1.16 1.01
In Wave 2 0.48 0.49 0.49 1.00
Enrolled 0.06 0.27 0.31 1.00
N 33,144 4,945 3,780 1,382

Table S3: Sample Balance, Wave 2 Participation

Variable Mean, Not wv2 Increase if wv2 P-value N

Female 0.57 0.01 0.54 4,143
Black 0.04 0.09*** 0.00 4,143
Hispanic 0.20 -0.02 0.15 4,143
White 0.67 -0.12*** 0.00 4,143
Asian 0.02 0.07*** 0.00 4,143
SAT 0.67 0.01** 0.05 4,143
SAT / HS mean SAT 0.98 0.01*** 0.01 4,143
HS poverty rate 0.32 0.01* 0.06 4,143
Apply Anywhere 0.85 0.03*** 0.00 4,143
Num. Apps 2.37 0.20*** 0.00 4,143
Apply to UT-A 0.14 0.04*** 0.00 4,143
Apply for aid at UT-A 0.09 0.04*** 0.00 4,143
Admitted to UT-A 0.12 0.04*** 0.00 4,143

Note: this table shows means among surveyed students not participating in Survey Wave 2, and differences in means between Wave 2

and non-Wave 2 students. Wave 1 population weights are used. Oversampling of Black students in Wave 2 reflects an intentional choice

on the part of the survey designers. *** indicates p < 0.01. ** indicates p < 0.05. * indicates p < 0.1.
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Table S4: Sample Balance, Top-Decile Status

Variable Mean, Not ttt Increase if ttt P-value N

Female 0.54 0.06*** 0.00 4,143
Black 0.09 -0.05*** 0.00 4,143
Hispanic 0.19 0.01 0.43 4,143
White 0.63 -0.01 0.45 4,143
Asian 0.03 0.06*** 0.00 4,143
SAT 0.64 0.10*** 0.00 4,143
SAT / HS mean SAT 0.94 0.16*** 0.00 4,143
HS poverty rate 0.31 0.05*** 0.00 4,143
Apply Anywhere 0.82 0.11*** 0.00 4,143
Num. Apps 2.34 0.32*** 0.00 4,143
Apply to UT-A 0.11 0.19*** 0.00 4,143
Apply for aid at UT-A 0.06 0.17*** 0.00 4,143
Admitted to UT-A 0.07 0.22*** 0.00 4,143

Note: this table shows means among surveyed students not placing in the top decile of their class, and differences in means between

top-decile and non-top-decile students. Wave 1 population weights are used. *** indicates p < 0.01. ** indicates p < 0.05. * indicates

p < 0.1.

F.3 Data Supplement

Calculating EFC

Matching THEOP and CPS datasets In order to draw incomes from the CPS, I recode
parents’ education in the THEOP survey to match the CPS dataset. I then draw incomes
for each student in THEOP from the distribution of income given parents’ occupation and
the education of the most-educated parent.

1. THEOP senior survey

• Mother’s education: q71

• Father’s education: q67

• label list q71

q71:

1 No Schooling

2 Elementary School
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Table S5: Sample Balance, LOS Participation

Variable Mean, Not longhorn Increase if longhorn P-value N

Female 0.56 -0.01 0.63 4,143
Black 0.06 0.28*** 0.00 4,143
Hispanic 0.17 0.29*** 0.00 4,143
White 0.67 -0.55*** 0.00 4,143
Asian 0.05 -0.05*** 0.00 4,143
SAT 0.68 -0.09*** 0.00 4,143
SAT / HS mean SAT 0.98 0.02** 0.03 4,143
HS poverty rate 0.29 0.51*** 0.00 4,143
Apply Anywhere 0.86 -0.07*** 0.00 4,143
Num. Apps 2.45 -0.11 0.34 4,143
Apply to UT-A 0.16 -0.06*** 0.00 4,143
Apply for aid at UT-A 0.11 -0.03 0.12 4,143
Admitted to UT-A 0.13 -0.05*** 0.00 4,143

Note: this table shows means among surveyed students whose high schools do not participate in the Longhorn Opportunity Scholars

program, and differences in means between students whose schools participate and those who don’t. Wave 1 population weights are

used. *** indicates p < 0.01. ** indicates p < 0.05. * indicates p < 0.1.

Table S6: Fraction of admissions and matriculations from in-state applicants, UT Austin

year admitted (total) enrolled (total) % admitted (in-state) (TX public) % enrolled (in-state) (TX public)
1991 10403 5818 85.0 71.8 90.4 84.1
1992 9726 5613 85.0 71.5 90.9 84.2
1993 10085 5861 86.0 72.3 91.6 84.3
1994 10278 6156 84.0 74.3 89.6 81.7
1995 10506 6346 84.3 74.3 90.9 82.8
1996 11041 6381 81.7 71.7 90.1 81.7
1997 11352 7138 82.2 72.8 89.9 82.2
1998 10693 6833 84.9 75.7 92.0 83.2
1999 10990 7288 89.1 79.4 93.5 84.6
2000 13061 8118 87.5 77.8 93.1 84.7
2001 12564 7243 85.0 76.7 91.1 83.8
2002 14138 7868 86.3 77.7 90.9 83.6
2003 10820 6493 87.1 80.0 92.9 86.9

Note: this table shows the fraction of admissions and matriculations from in-state appli-
cants and from in-state applicants who attended public schools at the University of Texas
at Austin.

3 Some High School

4 High School Graduate
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Table S7: Parameters 1/3

Parameter Estimate SE p5 p95
1 π Eqbm. (In-State Public) 0.373 0.354 -0.039 1.104
2 π Eqbm. (Private) 1.626 0.44 1.182 2.405
3 π Eqbm. (Out-of-State Public) 0.717 0.363 0.328 1.54
4 π Eqbm. (Relig.) 0.901 0.377 0.433 1.654
5 π Eqbm. (Elite Private) 4.529 0.418 3.987 5.354
6 π Eqbm. (Texas A&M) 1.669 0.372 1.243 2.526
7 π Eqbm. (UT Austin) 1.573 0.38 1.153 2.423
8 γ (SAT) 5.624 0.948 4.318 7.43
9 γ (Class Rank) -2.435 0.197 -2.73 -2.11
10 γ (SAT/HS mean SAT) -1.2 0.486 -1.929 -0.318
11 γ (Poverty) 0.278 0.244 -0.123 0.683
12 γ (URM) 0.011 0.074 -0.108 0.104
13 γs (Const) -10.0 0.556 -10.0 -8.715
14 γs (Poverty) 1.563 8.376 -10.0 10.0
15 γs (URM) 5.748 6.26 -10.0 6.596
16 γq|s (Const) -0.692 0.353 -1.217 -0.31
17 γq|s (Poverty) 1.625 0.763 0.442 2.705
18 γq|s (URM) 0.545 0.305 0.145 1.045
19 λ (Matric. shock scale) 10.0 0.0 10.0 10.0
20 γ f ixed (Const) 0.31 0.091 0.19 0.44
21 γ f ixed (Poverty) -0.239 0.111 -0.361 -0.062
22 γ f ixed (URM) 0.047 0.06 -0.077 0.122
23 γvar (Const) 1.038 0.053 0.95 1.099
24 γvar (Poverty) -0.219 0.119 -0.46 -0.064
25 γvar (URM) -0.176 0.045 -0.225 -0.098
26 γshock (Const) -0.88 0.094 -1.044 -0.795
27 γshock (Poverty) -0.592 0.21 -0.965 -0.272
28 γshock (URM) -0.075 0.079 -0.168 0.088
29 β p (Const) 2.808 0.555 2.57 4.309
30 β p (income) -0.422 0.055 -0.534 -0.369
31 β (w,x,z) (In-State Public) 3.058 0.398 2.876 4.034
32 β (w,x,z) (Private) -0.898 1.03 -1.442 0.798

Note: This table shows all estimated parameters (Part 1 of 3).

5 Some College

6 Two-Year College

7 Four-Year College

8 Master's Degree

9 Professional Degree

2. 2002 March CPS

• Education of household head

• label list EDUC_HEAD
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Table S8: Parameters 2/3

Parameter Estimate SE p5 p95
33 β (w,x,z) (Out-of-State Public) 0.937 0.583 0.493 2.112
34 β (w,x,z) (Relig.) 2.822 0.613 2.076 4.049
35 β (w,x,z) (Elite Private) 1.798 2.688 -0.611 5.286
36 β (w,x,z) (Texas A&M) 2.888 0.605 2.362 4.175
37 β (w,x,z) (UT Austin) 0.208 0.707 -0.422 1.898
38 β (w,x,z) (Dist < 25) 0.17 0.07 0.053 0.27
39 β (w,x,z) (Distance) -0.184 0.028 -0.229 -0.14
40 β (w,x,z) (URM) -0.108 0.133 -0.346 0.101
41 β (w,x,z) (URM X UTA) 0.127 0.095 -0.011 0.268
42 β (w,x,z) (URM X TAMU) -0.367 0.19 -0.732 -0.148
43 β (w,x,z) (Poverty) -0.7 0.397 -1.374 -0.147
44 β (w,x,z) (Poverty X UTA) -0.354 0.188 -0.745 -0.174
45 β (w,x,z) (Poverty X TAMU) -0.708 0.353 -1.401 -0.423
46 β (w,x,z) (LOS X UTA) 0.099 0.175 -0.217 0.289
47 β (w,x,z) (Century X TAMU) -0.203 0.3 -0.763 0.1
48 β (w,x,z) (SAT) -1.141 0.647 -2.047 -0.277
49 β (w,x,z) (Class Rank) -0.098 0.545 -0.926 0.683
50 β (w,x,z) (SAT / HS Mean SAT) -0.222 0.377 -0.702 0.338
51 β (w,x,z) (SAT X TAMU) 1.296 0.532 0.094 1.782
52 β (w,x,z) (SAT X UTA) 4.485 0.637 3.186 5.174
53 β (w,x,z) (SAT X Private) 2.502 0.533 1.617 3.251
54 log(σ rc) (Distance) -0.61 3.104 -10.0 -0.249
55 log(σ rc) (S/F Ratio) -10.0 0.005 -10.0 -10.0
56 log(σ rc) (UTA vs TAMU) -10.0 1.529 -10.0 -10.0
57 β aware (In-State Public) 4.014 2.686 -1.403 5.895
58 β aware (Private) -0.261 3.455 -7.282 0.251
59 β aware (Out-of-State Public) 0.832 2.873 -5.287 2.077
60 β aware (Relig.) 3.542 2.549 -1.723 5.399
61 β aware (Elite Private) -1.675 4.038 -10.0 0.208
62 β aware (Texas A&M) -3.733 3.42 -10.0 -0.113
63 β aware (UT Austin) 1.023 3.602 -9.453 0.791
64 β aware (Dist < 25) -0.421 0.706 -0.884 0.886

Note: This table shows all estimated parameters (Part 2 of 3).

EDUC_HEAD:

0 NIU or no schooling

1 niu

2 None or preschool

10 Grades 1, 2, 3, or 4

11 Grade 1

12 Grade 2

13 Grade 3

14 Grade 4
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Table S9: Parameters 3/3

Parameter Estimate SE p5 p95
65 β aware (Distance) -0.05 0.194 -0.334 0.157
66 β aware (URM) 0.779 0.55 0.327 1.797
67 β aware (URM X UTA) 1.168 1.15 -0.342 3.156
68 β aware (URM X TAMU) -0.404 1.806 -1.535 3.772
69 β aware (Poverty) 2.319 1.111 1.683 5.004
70 β aware (Poverty X UTA) 0.749 3.027 -1.792 7.566
71 β aware (Poverty X TAMU) 7.591 2.649 3.327 10.0
72 β aware (LOS X UTA) 10.0 1.853 5.345 10.0
73 β aware (Century X TAMU) -3.785 3.652 -9.571 1.994
74 β aware (SAT) 3.394 3.351 0.643 10.0
75 β aware (Class Rank) -10.0 0.0 -10.0 -10.0
76 β aware (SAT / HS Mean SAT) -2.208 1.664 -3.99 0.722
77 β aware (SAT X TAMU) 7.162 3.461 0.963 10.0
78 β aware (SAT X UTA) 1.775 4.757 -2.407 10.0
79 β aware (SAT X Private) 6.043 2.662 2.119 10.0
80 β aware (income) -0.066 0.112 -0.155 0.233
81 log(σ)(β 0

i ) 0.667 0.219 0.711 1.492
82 αaid (In-State Public) -0.505 0.128 -0.604 -0.207
83 αaid (Private) -0.332 0.077 -0.423 -0.187
84 αaid (Out-of-State Public) -0.175 0.039 -0.181 -0.079
85 αaid (Relig.) -0.461 0.084 -0.497 -0.252
86 αaid (Elite Private) -0.55 0.195 -0.817 -0.297
87 αaid (Texas A&M) -1.044 0.245 -1.246 -0.514
88 αaid (UT Austin) -0.405 0.123 -0.437 -0.094
89 log(σ e) (In-State Public) -10.0 1.646 -10.0 -10.0
90 log(σ e) (Private) 0.732 0.242 0.274 1.087
91 log(σ e) (Out-of-State Public) -0.309 2.665 -8.246 -0.046
92 log(σ e) (Relig.) -0.262 2.763 -8.744 0.288
93 log(σ e) (Elite Private) 1.699 0.503 0.864 2.321
94 log(σ e) (Texas A&M) -1.075 4.125 -10.0 -0.13
95 log(σ e) (UT Austin) -0.578 3.074 -10.0 -0.187

Note: This table shows all estimated parameters (Part 3 of 3).

20 Grades 5 or 6

21 Grade 5

22 Grade 6

30 Grades 7 or 8

31 Grade 7

32 Grade 8

40 Grade 9

50 Grade 10

60 Grade 11

70 Grade 12
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71 12th grade, no diploma

72 12th grade, diploma unclear

73 High school diploma or equivalent

80 1 year of college

81 Some college but no degree

90 2 years of college

91 Associate's degree, occupational/vocational program

92 Associate's degree, academic program

100 3 years of college

110 4 years of college

111 Bachelor's degree

120 5+ years of college

121 5 years of college

122 6+ years of college

123 Master's degree

124 Professional school degree

125 Doctorate degree

999 Missing/Unknown

3. Matching procedure:

• EDUC_HEAD ∈ {0,1}: Ed = 1

• EDUC_HEAD ∈ {10, ...,32}: Ed = 2

• EDUC_HEAD ∈ {40, ...,71} 7→ Ed = 3.

– Note that in the 2002 March CPS, TX subsample there are no household
heads with unclear graduation status EDUC_HEAD=72.

EDUC_HEAD ∈ {73} 7→ Ed = 4.

• EDUC_HEAD ∈ {81} 7→ Ed = 5.

• EDUC_HEAD ∈ {91,92} 7→ Ed = 6.

• EDUC_HEAD ∈ {111} 7→ Ed = 7.

• EDUC_HEAD ∈ {123} 7→ Ed = 8.

• EDUC_HEAD ∈ {124} 7→ Ed = 9.
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4. Administrative data: UT Austin codes parents’ education similarly to the THEOP
survey.

Aggregate colleges

In this section I provide lists of the colleges and universities that make up each aggregate
college. The data use agreement requires me to aggregate each college that has fewer than
ten applicants in the data.

Institution Sum
apply admit

ANGELO STATE UNIVERSITY 148 119
Institutions with ten or fewer apps 10 9
LAMAR UNIVERSITY-BEAUMONT 80 61
MIDWESTERN STATE UNIVERSITY 30 24
PRAIRIE VIEW A & M UNIVERSITY 95 49
SAM HOUSTON STATE UNIVERSITY 187 143
SOUTHWEST TEXAS STATE UNIVERSITY 329 266
STEPHEN F AUSTIN STATE UNIVERSITY 282 227
SUL ROSS STATE UNIVERSITY 27 15
TARLETON STATE UNIVERSITY 71 49
TEXAS A & M INTERNATIONAL UNIVERSITY 56 37
TEXAS A & M UNIVERSITY-CORPUS CHRISTI 55 43
TEXAS A & M UNIVERSITY-GALVESTON 26 21
TEXAS A & M UNIVERSITY-KINGSVILLE 77 61
TEXAS A&M UNIVERSITY-COMMERCE 47 30
TEXAS SOUTHERN UNIVERSITY 125 79
TEXAS TECH UNIVERSITY 425 360
TEXAS WOMAN’S UNIVERSITY 38 27
THE UNIVERSITY OF TEXAS AT ARLINGTON 170 120
THE UNIVERSITY OF TEXAS AT BROWNSVILLE 62 40
THE UNIVERSITY OF TEXAS AT DALLAS 86 61
THE UNIVERSITY OF TEXAS AT EL PASO 275 183
THE UNIVERSITY OF TEXAS AT SAN ANTONIO 166 121
THE UNIVERSITY OF TEXAS AT TYLER 27 17
THE UNIVERSITY OF TEXAS OF THE PERMIAN BASIN 30 22
THE UNIVERSITY OF TEXAS-PAN AMERICAN 194 165
UNIVERSITY OF HOUSTON-DOWNTOWN 37 18
UNIVERSITY OF HOUSTON-UNIVERSITY PARK 470 305
UNIVERSITY OF NORTH TEXAS 317 231
WEST TEXAS A & M UNIVERSITY 42 37
Total 3,984 2,940

Colleges comprising OTHER TX PUBLIC 4-YEAR

Institution Sum
apply admit

EMBRY-RIDDLE AERONAUTICAL UNIVERSITY 12 10
Institutions with ten or fewer apps 235 190
NEW YORK UNIVERSITY 29 21
NORTHWOOD UNIVERSITY 21 17
TULANE UNIVERSITY OF LOUISIANA 17 16
UNIVERSITY OF SOUTHERN CALIFORNIA 23 22
VANDERBILT UNIVERSITY 12 11
Total 349 287

Colleges comprising PRIVATE NONRELIGIOUS
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Institution Sum
apply admit

ABILENE CHRISTIAN UNIVERSITY 60 53
AUSTIN COLLEGE 16 15
BAYLOR UNIVERSITY 242 213
BRIGHAM YOUNG UNIVERSITY 28 24
DILLARD UNIVERSITY 18 14
EAST TEXAS BAPTIST UNIVERSITY 29 21
HARDIN-SIMMONS UNIVERSITY 21 19
HOUSTON BAPTIST UNIVERSITY 41 29
HOWARD PAYNE UNIVERSITY 27 19
Institutions with 15 or fewer apps 383 310
LUBBOCK CHRISTIAN UNIVERSITY 17 14
MCMURRY UNIVERSITY 19 17
OUR LADY OF THE LAKE UNIVERSITY-SAN ANTONIO 53 42
SAINT EDWARDS UNIVERSITY 35 29
SOUTHERN METHODIST UNIVERSITY 58 50
SOUTHWESTERN UNIVERSITY 33 32
ST MARYS UNIVERSITY 59 47
TEXAS CHRISTIAN UNIVERSITY 126 106
TRINITY UNIVERSITY 40 39
UNIVERSITY OF MARY HARDIN BAYLOR 19 13
UNIVERSITY OF SAINT THOMAS 28 23
UNIVERSITY OF THE INCARNATE WORD 25 23
XAVIER UNIVERSITY OF LOUISIANA 20 16
Total 1,397 1,168

Colleges comprising RELIGIOUS

Institution Sum
apply admit

ARIZONA STATE UNIVERSITY-MAIN CAMPUS 30 27
COLORADO STATE UNIVERSITY 14 12
FLORIDA AGRICULTURAL AND MECHANICAL UNIVERSITY 11 10
FLORIDA STATE UNIVERSITY 14 12
GRAMBLING STATE UNIVERSITY 11 6
Institutions with ten or fewer apps 421 346
KANSAS STATE UNIVERSITY OF AGRICULTURE AND APP SCI 11 9
LOUISIANA ST UNIV & AGRL & MECH & HEBERT LAWS CTR 64 51
NEW MEXICO STATE UNIVERSITY-MAIN CAMPUS 102 76
OKLAHOMA STATE UNIVERSITY-MAIN CAMPUS 45 42
PURDUE UNIVERSITY-MAIN CAMPUS 12 12
SOUTHERN UNIVERSITY-NEW ORLEANS 10 3
THE UNIVERSITY OF ALABAMA 13 12
UNITED STATES AIR FORCE ACADEMY 13 12
UNITED STATES NAVAL ACADEMY 11 8
UNIVERSITY OF CALIFORNIA-BERKELEY 16 14
UNIVERSITY OF COLORADO AT BOULDER 15 15
UNIVERSITY OF GEORGIA 12 10
UNIVERSITY OF MISSISSIPPI MAIN CAMPUS 11 10
UNIVERSITY OF NEW MEXICO-MAIN CAMPUS 17 9
UNIVERSITY OF OKLAHOMA NORMAN CAMPUS 36 32
Total 889 728

Colleges comprising NON-TX PUBLIC
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Institution Sum
apply admit

HARVARD UNIVERSITY 16 12
Institutions with ten or fewer apps 55 41
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 12 11
NORTHWESTERN UNIVERSITY 13 12
PRINCETON UNIVERSITY 14 10
RICE UNIVERSITY 52 44
STANFORD UNIVERSITY 19 17
WASHINGTON UNIVERSITY 19 17
YALE UNIVERSITY 11 7
Total 211 171

Colleges comprising SELECTIVE PRIVATE
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