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1 Introduction

Rational expectations may be a useful modeling strategy in tranquil times like the

Great Moderation. This strategy is less appealing when people are confronted with

novel events, such as the Great Recession or the COVID-19 pandemic. This paper

analyzes the speed of learning and evolution of economic aggregates after a novel event.

We assume that people must learn about their environment by forming beliefs about

future economic outcomes and updating those beliefs as the data come in. Our analysis

focuses on characterizing the speed of convergence of a learning equilibrium to a rational

expectations equilibrium (REE). The critical issue is whether the speed of convergence

is fast enough to render the REE a useful guide for normative and positive analyses

after unusual events.

To address this question, we analytically characterize the speed of convergence

in a broad class of non-linear, non-stochastic learning models. That class of models

has two important characteristics. First, people learn using either standard Bayesian

methods or least-squares. Second, people’s beliefs about model outcomes are central

determinants of equilibrium outcomes.

We prove two propositions, which, taken together, show that a particular scalar

parameter, b, of the multivariate, non-linear system determines the asymptotic speed

of convergence to an REE.1 That parameter, which also determines E-stability of an

REE (b < 1), can be calculated from the solution to the model. A model exhibits slow

learning when b is less than but close to 1. We investigate the economic determinants

of that scalar variable, i.e., whether learning is fast or slow.

Our central finding is that when beliefs are partially self-fulfilling, learning equilib-

ria converge slowly to rational expectations. Indeed, learning can be extraordinarily

slow, with progress being measured in millennia. Under these circumstances, pol-

icy analyses based on rational expectations can be very misleading. As Vives (1993)

writes, in a changing world, for all practical purposes, “‘slow’ convergence may mean

no convergence.”

We apply our propositions to analyze speed of convergence of learning equilibria in

the non-linear new-Keynesian model when the zero lower bound (ZLB) is and is not

binding.2 We argue that when the ZLB is binding, the crucial parameter b is close

1Our results are consistent with those in Christopeit and Massmann (2018), who study a univariate,
linear, stochastic learning model.

2Much of the work in the initial aftermath of that event combined rational expectations with the
NK model. See, for example, Eggertsson and Woodford (2004), Christiano et al. (2011) and Del Negro
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to 1, so learning is very slow. It is so slow, that the ZLB would be over well before

the learning and rational expectations equilibria are reasonably similar. Moreover,

the e!ects of monetary and fiscal policies are very di!erent in the two equilibria. In

contrast, when the ZLB is not binding, b is much smaller, and the learning model

converges rapidly to an REE.

Convergence is slow when the ZLB is binding because the expectations of households

and firms are partially self-fulfilling. To understand why learning is slow, suppose that

firms and households expect lower inflation in the future. Because of price-setting

adjustment costs, firms are incentivized to cut prices today. In the ZLB, low inflation

expectations mean households believe the real interest rate is high. Consequently,

households reduce their demand for consumption, which leads to a fall in the marginal

cost of production. So, the actions of both households and firms lead to lower current

inflation, consistent with their initial beliefs. With learning, low current inflation shifts

expected inflation down in the next period. The previous mechanism repeats itself in

the next period so that actual inflation in the next period is also low. We conclude

that, in the ZLB, deflation expectations are partially self-fulfilling, and the NK model

behaves like a high b economy. In sharp contrast, when the ZLB is not binding and

monetary policy is governed by a Taylor rule, people’s expectations about inflation are

not self-fulfilling, and the parameter b is small.3

The speed of convergence plays a crucial in analyzing both the e!ects of shocks to

the economy and the e”cacy of various policies in dealing with those shocks. In the NK

model, when people have rational expectations, a shock that triggers a binding ZLB

leads to a sharp decline in inflation and output (see Eggertsson and Woodford (2004)).

The large e!ects arise because the shock triggers low expected inflation and high real

interest rates. Under learning the same shock leads only to a moderate and gradual

decline in inflation and a moderate rise in real interest rates because expectations are

partially backward-looking.

Turning to fiscal policy, we find that the e”cacy of a rise in government purchases

is much smaller under learning than under rational expectations. Under rational ex-

pectations, the multiplier is very large in the ZLB because an increase in government

purchases causes a rise in expected inflation (see Christiano et al. (2011)). Because the

nominal interest rate is fixed, this rise generates a fall in the real interest rate, a rise

et al. (2023).
3These results are consistent with results in Heemeijer et al. (2009) and Hommes (2011), who

analyzed the interactions between beliefs and outcomes in an experimental setting.
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in consumption, and a multiplier substantially larger than unity. Under learning, ex-

pected inflation is partially backward-looking and doesn’t move much after an increase

in government purchases. So, the real interest rate doesn’t fall by very much, the key

driver of the large REE multiplier is e!ectively eliminated, and the multiplier is close

to unity.

We also analyze the e!ects of forward guidance when the ZLB is binding. To

simplify the analysis, we consider a simple form of forward guidance: the monetary

authority commits to keeping the nominal interest rate at zero for one period after

the shock that makes the ZLB binding returns to its steady-state level. We show that

the number of REEs proliferates under forward guidance, but only one REE is stable

under learning. Consistent with the existing literature (for example, Del Negro et al.

(2023) and Woodford (2012)), we find that even this simple form of forward guidance

is powerful under rational expectations. As is well-known, the power of forward guid-

ance under rational expectations reflects its strong e!ect on expected inflation. Under

learning, expectations are partially backward-looking, and forward guidance is not very

powerful. So, as with fiscal policy, a REE-based analysis of monetary policy can be

very misleading.

Our propositions refer to the asymptotic rate of convergence. A natural question

is whether the propositions are useful for characterizing convergence speed over short

horizons. Based on our analysis of the NK model, we show that the answer is yes.

In our analysis, people fully integrate the fact that they are learning when they

solve their problems, that is, households and firms are internally rational in the sense

defined by Adam and Marcet (2011). Implementing internal rationality in the non-

linear solution of the model is computationally very challenging.4 The reason is that the

parameters characterizing beliefs are state variables, an e!ect that greatly exacerbates

the curse of dimensionality. The associated computational burden explains why much

of the learning literature works with a version of Kreps (1998)’s Anticipated Utility

approach. In this approach, people update their beliefs every period as new data come

in. But, when they make their decisions, people proceed as though their beliefs will

never be revised again.5

We simulate our model using internal rationality and anticipated utility. We find

4We solve our model using a compiled programming language (c++) and we make use of more
than 300 processors. See Appendix B for details.

5This approach has been criticized for its internal inconsistency (see Cogley and Sargent (2008)
and Adam and Marcet (2011)).
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that the results are qualitatively similar. However, for some experiments, there are im-

portant quantitative di!erences between the two approaches due to the more prominent

role played by uncertainty under internal rationality. These results are consistent with

those obtained by Cogley and Sargent (2008), who studied a stochastic endowment

economy with a storage technology.

The remainder of this paper is organized as follows. Section 2 discusses related

literature. Section 3 states the propositions, which characterize the asymptotic rate of

convergence of a learning equilibrium for a broad class of models (proofs are provided in

the appendix). Section 4 lays out the non-linear NK model under learning and rational

expectations. Section 5 analyzes multiplicity of REE in the non-linear NK model.

Section 6 analyzes the local and global learnability of those equilibria. In Section 7,

we analyze the speed of convergence of learning equilibria in the non-linear NK model.

Section 8 assesses the sensitivity of the e”cacy of fiscal policy and forward guidance

to learning. Section 9 establishes the value of b in the NK model. Section 10 contains

concluding remarks.

2 Related Literature

Our paper is related to several literatures. The first is a literature that studies the

conditions under which non-stochastic learning equilibria converge to an REE (see

Evans and Honkapohja (2000)). In contrast, we study the rate of convergence to an

REE in that class of models.

The second is the literature that studies the properties of recursive stochastic es-

timators in learning models. Ljung (1977) establishes that a recursive estimator, ω̂t,

converges almost surely to a limiting value, ω, if a particular ordinary di!erential equa-

tion (ODE), determined by the economic model, has eigenvalues with real parts that

are less than unity. Marcet and Sargent (1989b; 1989a), Woodford (1990), Evans and

Honkapohja (2000; 2001), and others build on Ljung (1977) to study the conditions

under which learning equilibria converge to an REE. Marcet and Sargent (1995) numer-

ically study the rate at which these learning equilibria converge to an REE. Christopeit

and Massmann (2018) provide analytic results in a linear, scalar stochastic model. In

contrast, we provide multivariate, non-stochastic results and apply them to the non-

linear NK model.

Ferrero (2007) discusses learning in the context of a linear NK model in which the
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ZLB on interest rates is not binding. He uses the simulation methods proposed by

Marcet and Sargent (1995) to study convergence rates of learning equilibria. Ferrero

(2007) adopts the so-called Euler-equation approach to learning as opposed to our

approach; see Evans (2021) for a definition of the Euler-equation approach to learning,

and see Preston (2005) and Adam and Marcet (2011) for a critique of that approach.6

Another di!erence with Ferrero (2007) is that we compare convergence rates in a non-

linear NK model when the ZLB on interest rates is and is not binding.

Cogley and Sargent (2008), Adam and Marcet (2011), and Adam et al. (2017)

numerically analyze endowment economies in which people learn and make decisions

in an internally rational way. Adam and Merkel (2019) use this approach to numerically

analyze a real business cycle model in which peoples’ beliefs do not nest an REE. In

contrast, we provide analytic results about rates of convergence for a broad class of

models and study a non-linear NK model in which peoples’ beliefs do nest an REE.

Preston (2005) and Eusepi et al. (2022) use the anticipated utility approach to study

the e!ects of monetary policies in linearized NK models under learning. In contrast,

we work with a non-linear model in which people make internally rational decisions.

ding fundamentals that are observed with noise.

A di!erent literature investigates the information content in prices regarding funda-

mentals that are observed with noise. In that context, Vives (1993) asks: how quickly

do people’s beliefs about an exogenous cost parameter converge? A large literature

also explores the speed with which people learn the parameters of exogenous stochastic

processes. For example, Erceg and Levin (2003), Gust et al. (2018), and Farmer et al.

(2021) describe an empirically relevant set of time series representations with hard-to-

learn low-frequency components. In contrast, we study convergence rates for beliefs

about objects whose values depend on those beliefs.

Heemeijer et al. (2009) and Hommes (2011) study positive and negative feedback

loops from expectations to outcomes using laboratory experiments and univariate mod-

els with constant gain. In contrast, we analytically characterize convergence rates of

beliefs for a broad class of models and numerically analyze rates of convergence in a

multivariate NK model under Bayesian learning.

Our paper is also related to a recent game-theoretic grounded literature that ana-

lyzes the implications of bounded rationality for the e!ectiveness of fiscal and monetary

policy. Farhi and Werning (2019) use k -level thinking models to study how deviations

6Our approach is an example of what Evans (2021) calls the agent-based approach to learning.
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from rational expectations a!ect the e!ectiveness of forward guidance. Garćıa-Schmidt

and Woodford (2019) study forward guidance and interest rate pegs using reflective

expectations. Iovino and Sergeyev (2023) apply k-level thinking and reflective expec-

tations to analyze the e!ects of quantitative easing. Angeletos and Lian (2017) develop

the idea that a lack of common knowledge can attenuate general-equilibrium e!ects and

damp the e!ects of government spending. Angeletos and Lian (2017; 2018) analyze the

consequences of bounded rationality for the size of fiscal multipliers.

Farhi and Werning (2019), Farhi et al. (2020) and Woodford and Xie (2019; 2022)

use di!erent models of bounded rationality to study the size of the government-spending

multiplier. Vimercati et al. (2021) assess the implications of bounded rationality for the

e!ectiveness of tax and government spending policy at the ZLB. They do so through

the lens of a standard NK model in which people are dynamic k-level thinkers.

In all of the papers just cited, individuals have a limited ability to understand the

general equilibrium consequences of monetary and fiscal policies. Like learning, this

type of deviation from rational expectations can limit the power of forward guidance.

Our paper studies a form of deviation from rational expectations di!erent from those

cited in the previous two paragraphs. Moreover, in contrast to our analysis, these

papers do not analyze rates of convergence to rational expectations.

3 Learning in a Non-Linear Environment

Here, we consider the speed of convergence of learning in the following non-linear

environment, which is very similar to that studied in Evans and Honkapohja (2000).

Let ωt be a k→dimensional vector of variables which summarizes people’s period t priors

about a set of variables that will be determined at time t + 1. We interpret ωt as a

deviation from a particular fixed point of beliefs in our learning algorithm.7 Given a

set of beliefs, ωt→1, the environment generates outcomes in period t according to the

non-linear function, M (ωt→1, εt) . The vector, ωt, evolves according to:

ωt = ωt→1 + εt [M (ωt→1, εt)→ ωt→1] (1)

for t = 1, 2, 3, . . . . Here, ω0 is given and εt =
1

c1+t for c1 ↑ 0 is the gain. This type of gain

parameter emerges from standard Bayesian learning as well as least squares learning.

7We do not require that this fixed point be unique.
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The vector-valued function, M : Rk ↓R ↔ Rk has the following properties: M (0, 0) =

0; M is continuously di!erentiable in a neighborhood of the origin; M (0, εt) = 0; and

M (0, εt) is continuously di!erentiable in a neighborhood of (0, εt). Let D1M denote

the derivative of M with respect to the vector ωt→1 (which means it is a k↓ k matrix).

We assume the real parts of the eigenvalues of D1M are strictly less than unity. The

scalar, b, denotes the largest real part of the eigenvalues of D1M .

Evans and Honkapohja (2000) consider the same environment as us, but with a more

general specification of εt.8 They establish that for, (i) b < 1, and (ii) ω0 su”ciently

close to 0, ωt converges to zero. Christopeit and Massmann (2018) consider a scalar,

linear, stochastic version of our environment. Their results imply that for the non-

stochastic environment studied here, ωt evolves as tb→1. We extend this result to a

multivariate, non-linear environment.9

To analyze rates of convergence it is convenient to adopt the following definition:

Definition 1. For b < 1, we say that xt ↗ tb→1 if for any 0 < ϑ, (1) limt↑↓
↔xt↔

tb→1+ω = 0,

and (2) limt↑↓
↔xt↔

tb→1→ω = ↘. If xt ↗ tb→1 then we say that xt asymptotically converges

to zero at the rate tb→1.

Here, ≃·≃ denotes a norm on Rk. The first part of definition 1 says that for any

positive ϑ, ≃xt≃ asymptotically converges no slower than tb→1+ω . The second part says

that ≃xt≃ asymptotically converges no faster than tb→1→ω. In this sense, b characterizes

the power rate of convergence. Importantly, two series that asymptotically converge to

zero at the rate tb→1 may behave very di!erently for finite T . Some examples of series

that are di!erent even for large t even though they asymptotically converge to zero

at the rate tb→1, include xt = log (t) tb→1, yt = tb→1/ log (t), and zt = [2 + sin (t)] tb→1.

These series asymptotically converge at the same rate when considering only rates of

power convergence, which is what our definition captures. There are, of course, series

that converge at a faster rate than power convergence, such as those that converge at

a geometric rate (for example, xt = ϖt for |ϖ| < 1). As it turns out, the NK model with

8They assume 1 > ωt > 0, ωt ↔ 0 and limT→↑
∑T

t=1 ωt diverges. Our specification of ωt satisfies
these conditions.

9Ljung (1977) showed that to determine whether εt converges, it is useful to consider the ordinary
di!erential equation, ε̇ (ϑ) = D1Mε (ϑ) → ε (ϑ), where ϑ evolves in continuous time. In the scalar
case, b = D1M and the solution to this equation is ε (ϑ) =

[
e(b↓1)

]ω
ε (0) . The same parameter,

b, determines whether ε (ϑ) and εt converge as well as their rates of convergence. But, the rates of
convergence of these variables are qualitatively di!erent: ε (ϑ) converges at a geometric rate in ϑ→time
while εt converges at a power rate in t→time. See the appendix for further discussion in the context
of a linear model.
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Bayesian learning (or any model whose reduced form satisfies equation 1) rate exhibits

power convergence.

We now state two propositions that are proved in the appendix. The first establishes

that there exists a neighborhood of the origin denoted by U ⇐ Rk so that for every

ω0 ⇐ U the implied sequence, ωt, converges to the origin and satisfies part (1) of

definition 1. The second proposition establishes that there exists a ω0 ⇐ U that implies

a sequence, ωt, that satisfies part (2) of definition 1. Both propositions are stated

under the assumptions related to equation (1) that are stated above and under the

assumption that b < 1.

Proposition 1. There exists a neighborhood U of 0 such that for any 0 < ϑ if ω0 ⇐ U

then limt↑↓ ≃ωt≃ = 0 and limt↑↓
↔εt↔

tb→1+ω = 0.

Proposition 2. For any 0 < ϑ and any neighborhood U of 0, there exists a ω0 ⇐ U so

that limt↑↓
↔εt↔

tb→1→ω = ↘.

The previous propositions establish that there exists a ω0 near the origin that gen-

erates a sequence, ωt ↗ tb→1. They also imply that there is a neighborhood of the origin

in which there is no ω0 that generates a sequence, ωt, that converges to zero at a rate

slower than tb→1.

In the remainder of the paper, we apply and discuss the implications of these

propositions for the New Keynesian model.

4 Learning in the New Keynesian Model

In this section, we describe a simple NK model that has been widely used to study the

e!ects of the ZLB. As in Eggertsson and Woodford (2003), we allow for a shock to the

household’s discount rate that can cause the ZLB on the interest rate to be binding.

It is convenient to express people’s problems in recursive form.

In the current period, households discount next period’s utility by 1/ (1 + r). In

steady state, r = rss > 0. We assume that initially the economy is in the unique

non-stochastic rational expectations steady state in which the nominal interest rate is

positive. Then, unexpectedly, r = rϑ < rss. People correctly understand that the next

period’s discount rate, r↗, is drawn from a two-state Markov chain, r↗ ⇐ [rϑ, rss] , with

9



an absorbing state:

Pr [r↗ = rϑ|r = rϑ] = p, Pr [r↗ = rss|r↗ = rϑ] = 1→ p, (2)

Pr [r↗ = rϑ|r = rss] = 0.

Once r = rss, the economy returns to the initial rational expectations steady state.

There is another rational expectations steady state in which there is deflation and the

nominal interest rate is unity (see Benhabib et al. (2001)). We abstract from that

steady state equilibrium because it is not stable under the learning models that we

consider.10 Moreover, focusing on one steady state greatly simplifies our analysis.

4.1 Monetary and Fiscal Policy

Monetary policy sets the gross nominal interest rate, R, according to

R = max {1, 1 + rss + ϱ (ς → 1)} , (3)

where ς is the gross rate of consumer price inflation, ϱ/ (1 + rss) > 1, and the max

operator reflects the ZLB constraint. Later, we discuss other variations on monetary

policy, including forward guidance.

Fiscal policy sets the level of real government purchases, G. We consider two

specifications for G. In the baseline specification, G is equal to its non-stochastic

steady-state value, GSS. We also consider a policy where G = Gϑ > Gss while r = rϑ.

The government also pays a wage subsidy to intermediate goods firms, which it picks

to o!set steady state monopoly distortions. The government finances its expenditures

with lump-sum taxes and balances its budget in each period.

4.2 Private Agents’ Problems

Below, we define the household and firm problems.

4.2.1 The Household’s Problem When r = rϑ

The household enters a period with a stock of bonds, bh = Bh,t→1/Pt→1. Here, Bh,t→1

denotes the beginning-of-period t payo! on nominal bonds acquired in the previous

10See Arifovic et al. (2018) for a discussion of stability for other learning models in which the
deflationary steady state is learnable.
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period, when the price of consumption goods was Pt→1. At the beginning of a pe-

riod, before markets open, the household also knows the value the vector, #, which

summarizes its beliefs about the distribution of a vector, x:

x=

[
C

ς

]
.

Here, C and ς denote the current period’s aggregate consumption and aggregate infla-

tion. The variable, ς, corresponds to Pt/Pt→1, where Pt and Pt→1 denote the current

and previous period’s aggregate price level, respectively.

In a standard recursive equilibrium, people know current-period market prices and

profits when they make their current decisions. Typically, when markets open in these

models, people can deduce the prices and profits from a small set of variables. In our

context, these variables are the two components of x. In this spirit, we assume that

people observe x when markets open, and they make their current consumption, saving,

and labor decisions. In making those decisions, households internalize the e!ect of x

on their beliefs about the distribution x↗–that is, the value of x in the next period.

Those beliefs, #↗, are given by

#↗ = L (#, x) . (4)

The form of L depends on the model of learning being analyzed. The household takes

into account uncertainty about the distribution of x and the fact that beliefs about that

distribution will evolve as new data arrive (see Section 4.3.2). That is, the household

is internally rational in the sense of Adam and Marcet (2011).

Let Ch, Nh, b↗h denote the representative household’s consumption, hours worked

and end-of-period bond holdings. The household solves

maxCh,Nh,b↑h

{
log (Ch)→

φ

2
(Nh)

2 (5)

+
1

1 + rϑ
[(1→ p)Vh,ss (b

↗
h) + pE!↑Vh (b

↗
h,#

↗, x↗)]

}

subject to

Ch +
b↗h

R (x)
⇒ bh

ς (x)
+ w (x)Nh + T (x) . (6)

Here, T (x) denotes profits net of lump-sum taxes, w (x) denotes the real wage, R (x)

11



denotes the nominal rate of interest, and ς (x) denotes the inflation rate.11 In equation

(5), Vh,ss (b↗h) denotes the value function of the household conditional on r↗ = rss,

and Vh (b↗h,#
↗, x↗) denotes the value conditional on r↗ = rϑ. The expectation operator,

E!↑ , is evaluated using the marginal data density for x↗ implied by #↗ = L (#, x)

and r↗ = rϑ. Using the first-order optimality condition for Nh and equation (6), we

reduce the household problem to finding an optimal decision rule, b↗h (bh,#, x), for bond

holdings.

The function, Vh,ss (bh), satisfies the following fixed point:

Vh,ss (bh) = max
Ch,Nh,b↑h

{
log (Ch)→

φ

2
(Nh)

2 +
1

1 + rss
Vh,ss (b

↗
h)

}
, (7)

subject to

Ch +
b↗h
Rss

⇒ bh
ςss

+ wssNh + Tss,

where Tss denotes steady-state profits, net of taxes, in steady state, wss denotes the

steady-state real wage, Rss denotes the steady-state nominal interest rate, and ςss

denotes the steady-state inflation rate.

The function, Vh, in equation (5) has the fixed point property:

Vh (bh,#, x) = max
Ch,Nh,b↑h

{
log (Ch)→

φ

2
(Nh)

2

+
1

1 + rϑ
[(1→ p)Vh,ss (b

↗
h) + pE!↑Vh (b

↗
h,#

↗, x↗)]

}
, (8)

where the maximization is subject to equation (6) and the law of motion for # in

equation (4).

4.2.2 The Firm’s Problem When r = rϑ

A final homogeneous good, Y, is produced by competitive and identical firms using the

technology

Y =

(∫ 1

0

Y
ε→1
ε

f df

) ε
ε→1

, (9)

11We constrain the choice of b↔h to a compact set
[
b, b

]
, which we discuss in Appendix B.
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where ↼ > 1. The representative firm chooses inputs, Yf , to maximize profits Y P →
∫ 1

0 YfPfdf , subject to (9). The firm’s first-order condition for the f th input is

Yf =

(
Pf

P

)→ϖ

Y. (10)

The f th intermediate good is produced by a monopolist with production technology

Yf = Nf , where Nf is labor hired by firm f . Let pf denote the f th firm’s price in the

previous period, scaled by that period’s aggregate price index–that is, Pf,t→1/Pt→1.

Also, let p↗f denote the firm’s current choice of price scaled by the current aggregate

price index. In our scaled notation,

p↗f
pf

ς =
Pf,t

Pf,t→1
. (11)

Firms value a unit of real profits by the marginal utility of consumption, 1/C.

Prices are sticky as in Rotemberg (1982). When r = rϑ the current-period problem of

firm f is to set its price p↗f so that

p↗f (pf ,#, x) = argmaxp↑f
1

C (x)

{(
p↗f → (1→ ↽)w (x)

) (
p↗f
)→ϖ

Y (x)

→⇀

2

(
p↗f
pf

ς (x)→ 1

)2

(C (x) +G (rϑ))



+
1

1 + rϑ

[
(1→ p)Vf,ss

(
p↗f
)
+ pE!↑Vf

(
p↗f ,#

↗, x↗)] . (12)

Here, Vf,ss

(
p↗f
)
denotes the value of the firm’s problem conditional on r↗ = rss and

Vf,ss

(
p↗f ,#

↗, x↗) denotes its value conditional on r↗ = rϑ.12 Firms and households have

the same information sets and update priors in the same way. Thus, the expectations

operator is the same as the one in the household’s problem. In equation (12), we

follow the literature by scaling price adjustment costs by real GDP.13 Also, ↽ is the

government’s tax subsidy on employment designed to eliminate the e!ect of monopoly

distortions in steady state.14

12We constrain the choice of log

p↔f


to a compact set

[
p, p

]
. See Appendix B for a discussion.

13See, for example, Kaplan and Violante (2018, page 711).
14That is, (1→ ϖ) ϱ/ (ϱ→ 1) = 1.
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The function, Vf,ss (pf ) , has the fixed-point property

Vf,ss (pf ) =max
p↑f

{
1

Css

(
p↗f → (1→ ↽)wss

) (
p↗f
)→ϖ

Y (x)


→ 1

Css

⇀

2

(
p↗f
pf

ςss → 1

)2

(Css +Gss) +
1

1 + rss
Vf.ss

(
p↗f
)

. (13)

The function, Vf , in equation (12) has the fixed point property

Vf (pf ,#, x) =max
p↑f

{
1

C (x)

(
p↗f → s

) (
p↗f
)→ϖ

Y (x)

→ 1

C (x)

⇀

2

(
p↗f
pf

ς (x)→ 1

)2

(C (x) +G (rϑ))

+
1

1 + rϑ

[
(1→ p)Vf,ss

(
p↗f
)
+ pE!↑Vf

(
p↗f ,#

↗, x↗)]
}
. (14)

The maximization takes into account the law of motion of#, controled by L, in equation

(4).

4.2.3 The Mapping from x to Aggregate Variables

For individual households’ and firms’ problems to be well defined, they must know

the values of seven aggregate variables,

C ς R Y N w T


. We assume that

each agent knows the model’s static equilibrium conditions so they can deduce those

variables from x =

C ς


. We denote this mapping by F (x). Households derive R

from ς using equation (3). The mappings from x and r to Y , N , and w are given by

Y = (C +G (r))

(
1 +

⇀

2
(ς → 1)2

)
, N = Y, w = φNC.

The first two equalities correspond to goods market clearing and the aggregate produc-

tion function. The third equality corresponds to the belief that the labor supply curve

of the individual household holds as an aggregate condition. These equalities hold in

every period of our learning equilibria (described in the next sub-section).

Aggregate firm profits net of taxes implied by x and r are

T = (1→ w)Y → ⇀

2
(ς → 1)2 (C +G (r))→G (r) .
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4.3 Equilibrium and Beliefs

The equilibrium for our model is a learning equilibrium for the duration of time that

r = rϑ, followed by a jump to the positive interest rate, steady state REE. The learning

equilibrium is a sequence of period equilibria.

4.3.1 Equilibrium Definitions

We now define a period equilibrium.

Definition 2. Given # and rϑ, a period equilibrium is a set of values of x and #↗ =

L (#, x) such that

(i) households and firms solve their optimization problems, defined in equations (5)

and (12), respectively

(ii) labor, goods and bond markets clear

(iii) p↗f = 1, Ch = C, Nh = N

Because firms are identical, in a learning equilibrium, no firm will ever inherit a

pf ⇑= 1. Then, equation (11) and the first part of condition (iii) imply that people’s

views about inflation, ς, are correct. The second and third parts of condition (iii)

imply that people’s views about C and N are correct.

The only new conditions in Definition 2 relative to those imposed by F (x) are that

bond markets clear (b↗h = 0), and firms choose p↗f = 1. These two conditions determine

the two elements of x.

Two comments about the period equilibrium are worth emphasizing. First, people

have perfect foresight regarding current aggregate variables. Second, they generally do

not have perfect foresight about future aggregates. It follows that the period equilib-

rium under learning is generally di!erent from what it would be if people had rational

expectations.

We now define a learning equilibrium.

Definition 3. A learning equilibrium is :

(i) a sequence of period equilibria in which beliefs are updated according to equation

(4) when r = rϑ,

(ii) a steady state REE with R > 1, when r = rss.

In a learning equilibrium, the value of # in the first period when r = rϑ is exoge-

nous. We assume that in the case of an unprecedented event, people’s priors about the
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economic variables, x, are very di!use. Below, we describe how our parameterization

of the initial # captures this property.

4.3.2 Beliefs and Equilibrium

We now describe how households’ and firms’ common beliefs evolve, starting in the first

period that r = rϑ. People assume that each of the two elements of log (x) is drawn

from a Normal distribution:

log (x) =

[
log (C)

log (ς)

]
=

[
µC

µϱ

]
+

[
↼C

↼ϱ

]
, (15)

E↼C = E↼ϱ = 0, E↼2C = ⇁2
C and E↼2ϱ = ⇁2

ϱ. These distributions are independent across

time and the elements of log (x). People are uncertain about the values of µi, ⇁2
i for

i ⇐ {C, ς}. Their prior about µi conditional on ⇁2
i is Normal, parameterized with a

mean, mi, and variance, ⇁2
i /λi, where λi characterizes the precision of the prior about

µi. The marginal density of their prior for ⇁2
i is proportional to an inverse-gamma

distribution, with shape and scale parameters, ϱi and (ψ2
i (ϱi + 1/2)), respectively. The

prior for ⇁2
i is not exactly an inverse-gamma distribution because we truncate the

support of ⇁2
i so that E [C] and E [ς] have finite values. We find it convenient to

express the scale parameter in this way because ψi is a consistent estimator for ⇁i. The

joint density of µi, ⇁2
i is proportional to the Normal inverse-gamma distribution. We

collect the parameters of the priors in the vector #:

# =


mC mϱ 1/λC 1/λϱ ψC ψϱ 1/ϱC 1/ϱϱ


. (16)

The posterior distribution is also proportional to the Normal inverse-gamma distribu-

tion, and the function, L, in equation (4) can be constructed using standard updating

formulas, which are detailed in Appendix B.

4.3.3 Anticipated Utility

Virtually all the related literature works with a version of Kreps’ Anticipated Utility

approach to how people integrate learning into their decisions. While this approach

has computational advantages, it has been criticized for being internally inconsistent

(see Cogley and Sargent (2008) and Adam and Marcet (2011)). We assess the ro-

bustness of our results to using the anticipated utility approach. In our context, that
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approach assumes that when households and firms make their state-x contingent deci-

sions, they assume that in the current and all future periods, log (x) will be drawn from

a Normal distribution with mean and variance fixed at the values of mi and ψ2
i from

the beginning-of-period #. We make two changes to the household and firm decision

problems to implement this assumption. First, we set #↗ = # in their next-period

value functions. Second, in evaluating the expectation operator, E!↑ , that appears in

the household and firm problems, we use the log Normal density for x with mean and

variance fixed at the values of mi and ψ2
i from #. Importantly, at the beginning of the

next period, firms and households set #↗ = L (#, x).

In sum, anticipated utility di!ers from internalized learning in two ways. First, in

making their state-x contingent decisions, people ignore that after they see current x,

they will update their views, using #↗ = L (#, x). Second, they ignore their uncertainty

about the mean and variance of the distribution of log (x), and the fact that they will

learn from future realizations of x.

5 Multiple Rational Expectations Equilibria

In this section, we describe the minimum state variable equilibria in our model when

agents have rational expectations.

An equilibrium is a set of values for output, employment, inflation, and consump-

tion, Yϑ, Nϑ, ςϑ, Cϑ, respectively, when r = rϑ. We assume that the economy reverts

to the unique rational equilibrium steady state, Yss, Nss, ςss, Css, with Rss > 1 when

r = rss.15

The four equilibrium conditions associated with the four unknowns, ςϑ, Cϑ, Rϑ, Nϑ,

15Throughout the paper, we only consider equilibria in which quantities and prices are constant for
a given value of r. For example, we do not consider sunspot equilibria.
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are

1 =
1

1 + rϑ


p
1

ςϑ
+ (1→ p)

Cϑ

Css


, (17)

(ςϑ → 1) ςϑ (Cϑ +Gϑ) =
↼→ 1

⇀
(φNϑCϑ → 1)Nϑ

+
1

1 + rϑ
p (ςϑ → 1) ςϑ (Cϑ +Gϑ) , (18)

Nϑ =(Cϑ +Gϑ)

(
1 +

⇀

2
(ςϑ → 1)2

)
, and (19)

Rϑ =max {1, 1 + rss + ϱ (ςϑ → 1)} . (20)

Equations (17) and (18) take into account that ςss = 1. In addition, we verify and use

the fact that Rϑ = 1. We compute Css using the steady state of the model. Equation

(18) can be expressed as one equation in the unknown, ςϑ, after using equations (17)

and (19), to express Cϑ and Nϑ as functions of ςϑ. Then, we can find a candidate

equilibrium by finding a value of ςϑ that sets a function, f (ςϑ) = 0. To verify that

a candidate value of ςϑ is an equilibrium, we must verify that the implied aggregate

quantities and firm values are non-negative.

Our baseline parameters are:

p = 0.80, rϑ = →0.0015, Gss = G (rss) = 0.20, ▷ = 0.995,

↼ = 4, ⇀ = 110, φ = 1.25, ϱ = 1.5

In the R > 1 steady-state REE, Css = 0.8, ςss = 1, Nss = 1. While r = rϑ, we

set Gϑ = G(rϑ) = Gss. We also consider an alternative specification for government

purchases, given by

Gϑ = G (rϑ) = 1.05↓G (rss) . (21)

Figure (1) displays the function f (ςϑ) for a range of values of ςϑ in the baseline

(solid blue line) and alternative (dashed blue line) cases. In each case, there are two

values of ςϑ for which f (ςϑ) = 0. Table 1 reports the values of Cϑ, wϑ, Nϑ, Rϑ and ςϑ

at these zeros of f . Each crossing corresponds to an interior equilibrium in which the

ZLB binds.

The economy’s response to a drop in r is the result of two countervailing forces.
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Figure 1: f (ς) Corresponding to the Target-Inflation Steady-State Equilibrium

Note: The function, f, is defined in the text. The dashed line is discussed in Section 8.1 below.
The range of ςε in the figure includes the two values of ςε that correspond to an equilibrium.
Source:Authors’ calculations.

First, the drop in r leads to an increase in desired savings. In the first best equi-

librium, the real interest rate would drop enough to undo the increased desire to save

completely, allowing market clearing in the bond and goods market without any change

in consumption and employment. When monetary policy is operated by a Taylor rule,

and prices are sticky, then we know that policy goes only part-way towards achieving

the first best equilibrium. The real interest rate falls, but not by enough so that market

clearing must be accomplished in part by a drop in output and income, which reduces

the desire to save, as long as the low-r spell is expected to be short enough (that is, p

is small enough).16 If the required fall in the nominal interest rate is su”ciently large,

then the ZLB on the nominal interest rate binds. When the ZLB binds, a form of

deflation spiral is triggered. The fall in output leads to a drop in marginal cost that

reduces actual and expected inflation. The latter raises the real interest rate, amplify-

ing the desire to save, leading to an additional drop in actual and expected inflation.

An important countervailing force limits the extent of this spiral. As output drops,

consumption smoothing leads people to save less. The lower is p, the shorter is the

expected duration of the ZLB and the stronger is the consumption smoothing motive.

Three observations about the ZLB follow. First, the logic of the deflation spiral

provides intuition into why the fall in output can be very large when the ZLB is binding.

The larger the expected deflation in an REE, the larger the drop in output. Second,

16Further discussion of this point appears below.
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Table 1: Equilibrium Values While rt = rϑ, Returning to Target-Inflation Steady State

Bad ZLB Good ZLB
Label A B

400(ςϑ → 1) -35.78 -6.60
400(Rϑ → 1) 0 0

Cϑ 0.48 0.74
N ϑ 0.98 0.95
wϑ 0.59 0.88

(a) Gε = Gss

Bad ZLB Good ZLB
Label A↗ B↗

400(ςϑ → 1) -36.99 -3.00
400(Rϑ → 1) 0 0

Cϑ 0.47 0.77
N ϑ 1.00 0.98
wϑ 0.58 0.95

”C+”G
”G -0.17 3.95

(b) Gε = 1.05↓Gss

Note: This table reports {ςε, Rε, Cε, Nε, wε} for two equilibria indicated by A and B when G = Gss

(2a) and when G = 1.05Gss (2b). Each equilibrium returns to the target-inflation steady state as soon
as r = rss. The government purchases multiplier reported in the last line of panel is the change in
GDP per unit increase in G within each of the type A and B equilibria. Source: Authors’ calculations.

the interplay between the deflationary spiral and consumption smoothing provides

intuition for why there can be multiple REEs in the ZLB. Third, if p is su”ciently

large, the consumption smoothing motive is very weak. When the deflationary spiral

is too dominant, an REE does not exist.17

Turning to the fiscal multiplier, we calculate the e!ect of an increase in G comparing

A to A↗ and B to B↗–that is, comparing two Bad-ZLB equilibria and two Good-ZLB

equilibria (see Figure 1). Table 1 shows that the multiplier is very large in the latter

case and very small in the former case. Consistent with this observation, expected

deflation is much larger at A↗ than at B↗.

In sum, this section highlights the central role that expected deflation plays in

determining the properties of an REE in the ZLB. We expect that because expectations

are backward looking, the properties of the learning equilibrium will be very di!erent

from those of the REE.

6 Equilibrium Selection

This section considers whether the multiplicity of REEs can be resolved by learnability.

We analyze the learnability of an REE by considering a small perturbation in the REE

beliefs. We consider these perturbations by analyzing learning equilibria with initial

values of # that are not REE beliefs but are close to the REE values. We say that an

17See Werning (2012), who also discusses the possibility of nonexistence of equilibrium in the ZLB.
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REE is learnable if learning equilibria that begin with beliefs in a neighborhood of the

REE beliefs converge to the REE. In this section, we conduct the analysis numerically

and consider initial values for # that have mC and mϱ equal to log (Cϑ) and log (ςϑ),

respectively, where Cϑ and ςϑ are the REE values of C and ς. Importantly, the variance

of the priors is greater than zero. If learning equilibria starting with these values of

# converge to the associated REE, then we say the REE is learnable. We have also

considered learning equilibria that begin with a vector # in which mC and mϱ are near,

but not equal to, the associated REE values. In these cases, we find similar results,

and our conclusions about learnability remain unchanged.

Other initial values of # are of particular interest. For example, beliefs withmC and

mϱ equal to log (Css) and log (ςss), respectively, are natural candidates in the initial

values of #. If an REE is learnable and learning equilibria beginning with these initial

values of # also converge to that REE, then we say that the REE is quasi-globally

learnable. Any particular REE cannot be globally learnable in a model with multiple

REEs (like the NK model). This result holds because if beliefs are consistent with

another REE, then beliefs will not diverge from that equilibrium.

We initially consider the learnability of the Bad-ZLB equilibrium by examining a

learning equilibrium withmi set to the Bad-ZLB equilibrium values. Figure 2a suggests

that the learning equilibrium deviates from the Bad-ZLB equilibrium. The red dot

shows where that equilibrium is after 10,000 periods and indicates that it is headed

toward the Good-ZLB equilibrium. In Section 9, we use linearization methods to prove

that at the assumed parameter values, the learning equilibrium cannot converge to the

Bad-ZLB equilibrium.18 We conclude that the Bad-ZLB equilibrium is not learnable.

18Our proof is by contradiction. We linearize our learning model around the Bad-ZLB equilibrium.
Suppose the Bad-ZLB equilibrium is stable. Then, the learning equilibrium would eventually (as
long as r = rε) arrive in an arbitrary small interval, U , about the Bad-ZLB equilibrium, where our
linearized system is arbitrarily accurate. We show that that model satisfies the conditions of Theorem
7.2 in Evans and Honkapohja (2001) for beliefs to leave U . This outcome contradicts the hypothesis
that the Bad-ZLB equilibrium is stable.
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Figure 2: Equilibrium Selection in the ZLB, by Learning

(a) Non-learnability of Bad-ZLB Equilibrium

(b) Learnability of Good-ZLB Equilibrium

(c) Learnability of Good ZLB Equilibrium

Note: In the panels (a) and (b), mi is initially set to the associated REE value. In panel (c) mi is
initially set to the steady state REE value. In all sub-figures, φi = 0.02, ↼i = 1, ↽i = 2. Source:
Authors’ calculations.

We next consider the learnability of the Good-ZLB equilibrium by examining a

learning equilibrium with mi set to the Good-ZLB equilibrium values. Figure 2b shows

that the learning equilibrium is converging to the Good-ZLB equilibrium. In Section

9, we use linearization methods to prove that at the assumed parameter values, the
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learning equilibrium will converge to the Good-ZLB equilibrium if beliefs start in a

neighborhood of that REE. Figure 2c shows that the learning equilibrium converges to

the Good-ZLB equilibrium when the beliefs are initially centered on the steady-state

REE. These results show that the Good-ZLB is quasi-globally learnable.

7 Speed of Convergence

This section analyzes how show quickly the learning equilibrium converges to the unique

learnable REE. In the first subsection, we consider our results for the baseline param-

eterization of the model. In the second subsection, we consider the e!ect of the ZLB

on the interest rate on the speed of convergence.

7.1 Baseline Results

Our baseseline assumption is that when people are confronted with an unprecedented

observation, they become very uncertain about how market-determined variables will

evolve. We set the initial value of # to the following vector:


mC mϱ 1/λC 1/λϱ ψC ψϱ 1/ϱC 1/ϱϱ

↗

=


log (Css) , log (ςss) , 1, 1, 0.02, 0.02, 1/2, 1/2
↗
.

Figure 3 displays the marginal density of logC and log ς associated with anticipated

utility (that is, the Normal distribution evaluated at the prior estimates of the means

and variances) and with internalized learning (that is, the marginal data density associ-

ated with the truncated Normal-inverse-gamma prior on the parameters of the Normal

distribution). Note the fatter tails on the density function associated with internal-

ized learning. The tails are fatter for consumption than inflation because we set a

higher upper bound on ⇁C (0.05) than on ⇁ϱ (0.025). The bounds on the standard

deviations correspond to typical period-by-period shock sizes equal to about 6 percent

for aggregate consumption and about 10 percentage points for annualized aggregate

inflation.
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Figure 3: Data Density Under Two Models of the Interaction of Beliefs and Decisions

Note: The dashed line corresponds to Normal density functions with meansmi and standard deviations
φi. The solid line corresponds to the marginal data density of log (x) at time one, using ” before it
is updated by the time one value of x is realized. Source: Authors’ calculations.

The thin and thick solid lines in Figure 4 display the evolution of inflation, consump-

tion, and the real interest rate after the drop in r under REE and learning, respectively.

Consider Figure 4a, which reports results for the REE and internalized learning. Two

key features are worth noting. First, in the REE, there is a very large drop in inflation

and consumption, and the real interest rate rises sharply. The fall in inflation and

consumption and the rise in the real rate are much smaller under learning. Second, the

learning economy converges very slowly to the REE. After people initially change their

views somewhat quickly, the rate at which they change their views slows dramatically

(see Figure 2c). For example, the dot labeled T = 10, 000 displays people’s views about

the variables after 10,000 quarters. Given our value, p = 0.8, r is only expected to be

low for about five quarters. Whether convergence to the REE happens after 20 quarters

or 10,000 quarters is irrelevant because the ZLB is likely to be over well before that

time. The crucial point is that in a typical ZLB episode, people’s beliefs are very far

from rational expectations, and the associated REE is very di!erent from the learning

equilibrium.

Now consider Figure 4b. This figure compares the evolution of the learning equilib-

rium under anticipated utility (dashed line) and internalized learning (solid line). The

key takeaway is that we obtain the same slow-learning result qualitatively regardless of
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which approach we take to learning. However, consumption and inflation fall somewhat

more under internalized learning.

Figure 4: Simulations of Benchmark Model

(a) Speed of Convergence in the Benchmark Model

(b) Comparison, Speed of Convergence Under Anticipated Utility and Benchmark

Source: Authors’ calculations.

7.2 The Role of the ZLB in the Baseline Results

Figure 5 reports a simulation of our benchmark model in which the ZLB on the interest

rate is ignored. For convenience, we reproduce the results from Figure 4 in which the

ZLB is binding. The key result is that the learning economy converges very quickly

when the ZLB is not binding. The reason is that the Taylor rule weakens the connection

between expected and realized inflation. To understand why, suppose people’s prior

is that inflation will be high in the next period, causing firms to want to raise prices

in the current period. When the Taylor principle is operative, the central bank takes

action in the current period to lower actual inflation. Because expectations are less

self-fulfilling, people will quickly adjust their beliefs. The speed with which they do so

depends very much on the value of ϱ, a point that we return to in Section 9.
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Figure 5: Benchmark Simulations with and without Binding ZLB

Source: Authors’ calculations.

8 Learning and Government Policy

In this section, we analyze the sensitivity of monetary and fiscal policy analysis in the

ZLB to deviations from rational expectations. We juxtapose that sensitivity to the

lack of sensitivity when the ZLB is not binding.

8.1 Government Purchases Multiplier

We begin by analyzing the e!ect of learning on the government purchases multiplier

when the ZLB binds. We compute the multiplier by considering the e!ect on GDP,

C + G, of a 5 percent rise in government purchases relative to its steady-state level,

G (rϑ) = 1.05 ↓ G (rss). We denote the di!erence in consumption and government

purchases across the two equilibria by $C and $G = 0.05 ↓ G (rss). Because the

Bad-ZLB equilibrium is not stable under learning, we focus on ◁C across Good-ZLB

equilibria. We define the multiplier as

◁C +◁G

◁G
. (22)

In the REE, the multiplier in the ZLB is equal to 3.95 (see Figure 6b). The multiplier

is large when the ZLB is binding because the rise in G generates an increase in expected

inflation (see the left panel in Figure 6a). Because R is fixed, this rise generates a fall

in the real interest rate and a rise in C (see the middle panel). So, in this case, the

multiplier is bigger than one.
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Figure 6: Equilibria with and without Jump in G

(a) Increase in Government Purchases During ZLB

(b) Government Purchases Multiplier in ZLB

Notes: The solid lines in Figure 6a reproduce the results based on G = Gss in Figure 4a. The dashed
lines report the simulation of the model when G = 1.05 ↓ Gss. Figure 6b displays the government
purchases multiplier under internalized learning and in the REE. That figure reports results for the
case in which the ZLB is imposed and not imposed (‘no ZLB’).

Under learning, expected inflation is partially backward-looking and does not move

much with a rise in G. As a result, the real interest rate does not fall very much, and

the response in consumption is small.

Figure 6b displays the value of the multiplier over time in the REE and under

learning in the ZLB. Consistent with the results above, the multiplier under learning

is small compared with what it is in the REE. Significantly, the multiplier in the

learning equilibrium is very di!erent from the multiplier in the REE over the 20 quarters

displayed.

We now turn to the case when the ZLB is not binding. In this case, the REE

multiplier, 0.80, is much smaller when the ZLB is binding (see Figure 6b). When the
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ZLB is not binding, the rise in inflation causes the monetary authority to raise the real

interest rate, which leads to a fall in C. That rise is why the REE multiplier is less

than unity outside the ZLB. Figure 6b displays the government purchases multiplier in

the learning equilibrium when we ignore the ZLB. Significantly, multiplier values are

very similar in the learning equilibrium and the REE. This is consistent with our result

that the learning equilibrium converges quite quickly to the REE when the ZLB is not

binding.

8.2 Forward Guidance

In this subsection, we consider the sensitivity of the e!ects of forward guidance to

learning. Under such a policy, the monetary authority commits to keeping the nominal

interest rate at the ZLB for J periods after the discount rate has returned to its steady-

state level. To make our point as simply as possible, we consider the case J = 1. In the

first subsection we show that the number of REE proliferates under forward guidance.

However, only one of those equilibria is stable under learning. Second, we analyze the

e!ect of forward guidance.

8.2.1 Rational Expectations Equilibria

We construct the REEs with forward guidance by working backward in three steps.

First, we compute the unique non-stochastic steady state with R > 1. Second, we

compute the continuation equilibrium in the period, I, in which r switches from rϑ to

rss, where I ⇐ [2, 3, ...]. Third, we compute the equilibrium allocations in the periods

before I, denoted by I→1.

In period I, R = 1 even though r = rss. People know that the economy will

transition to steady state in period I + 1. The equilibrium conditions in period I are

equations (17) through (19) adjusted for forward guidance:

1 =
1

1 + rss

CI

ςssCss
(23)

(ςI → 1) ςI (CI +Gss)→
↼→ 1

⇀
(φNICI → 1)NI = 0 (24)

NI = (CI +Gss)

(
1 +

⇀

2
(ςI → 1)2

)
. (25)
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Equations (23) and (25) define functions mapping ςI to CI and NI . These functions

allow us to express the left-hand side of equation (24) as a function of ςI . We denote

this function by fI (ςI) . A candidate continuation equilibrium in period I is a value

of ςI such that fI (ςI) = 0 along with the associated values of CI , NI , wI , and the

present value of the intermediate good firm in period I. The four variables must be

non-negative for a candidate equilibrium to be an equilibrium. Figure 7 displays the fI

function for a range of values of ςI . We find two continuation equilibria corresponding

to the two zeros of fI displayed in the figure (see points A and B).19

Figure 7: Equilibria in Period of Switch from r = rϑ to r = rss Under One-Period
Forward Guidance

Notes: Graph of the function, fI (ςI) , discussed after equation (25). The two crossings with the zero
line correspond to equilibria in period I, the date when r switches from r = rε to r = rss. Monetary
policy in period I corresponds to one-period forward guidance–that is, the interest rate is held at
zero in period I and then reverts to Rss. The red star indicates the level of inflation in period I in
the absence of forward guidance.

We now compute the equilibrium allocations in the periods before I, which we

denote by I→1, conditional on the continuation equilibrium starting in period I. The

period I→1 equilibrium conditions are the appropriate analog of equations (17) through

(19):

1 =
1

1 + rϑ


p

Cϑ

ςϑCϑ
+ (1→ p)

Cϑ

ςICI


(26)

19From equation (23) we see that CI does not vary with ςI . It follows that fI is quadratic function
of ςI , so that the two solutions displayed in Figure 7 are the only zeros of fI .
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(ςϑ → 1) ςϑ (Cϑ +Gϑ)→
↼→ 1

⇀
(φNϑCϑ → 1)Nϑ

→ 1

1 + rϑ


p (ςϑ → 1) ςϑ

(
Cϑ +Gϑ

)
+ (1→ p) (ςI → 1) ςI

Cϑ

CI
(CI +Gss)


= 0 (27)

Nϑ =
(
Cϑ +Gϑ

)(
1 +

⇀

2
(ςϑ → 1)2

)
(28)

Here, we impose the condition that Rϑ = 1. In e!ect, we assume that the ZLB is

binding in periods I→1, and the Taylor rule holds. This assumption is satisfied in all of

the examples we have studied.

Given CI and ςI , equations (26) through (28) define a mapping from ςϑ to Cϑ and

Nϑ. Now, we can express the left-hand side of equation (27) as a function of ςϑ. We

denote this function by fI→1 (ςϑ; ςI , CI). There are two functions, fI→1 , conditional on

the ςI , CI associated with the period I continuation equilibria, A and B.
Figure 8 displays both fI→1 functions for a range of values of ςϑ; see the dotted and

dot-dashed lines. We chose the range of ςϑ so that the graph only displays zeros of

fI→1 that correspond to equilibria. We find two equilibria corresponding to the fI→1

associated with A (see A and B in Figure 8) and one associated with B (see C in Figure

8). So there are three REEs with forward guidance. The two REEs without forward

guidance can be seen in the solid line in Figure 8 (we take this curve from Figure 1).
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Figure 8: REE Equilibria at the ZLB with and without Forward Guidance

Notes: The solid line reproduces the solid line in Figure 1 and corresponds to the case of no forward guidance. The
dashed and dot-dashed lines correspond to the case of forward guidance. The dashed line corresponds to the case in
which the economy goes to point B in the period of the switch in r to rss (that is, period I). It crosses the zero line
more than once, but the other crossing involves very high inflation and is not an equilibrium because the present value
of intermediate goods monopolists is negative. The dot-dashed line corresponds to the case in which the economy goes
to point A in period I (see Figure 7).

8.2.2 Learning Equilibria

In the period of forward guidance, r = rss, R = 1. In all periods when r = rϑ (that

is, I→1), people understand that the economy reverts to an REE when r = rss. As

discussed, there are two REEs starting in period I, the first date when r = rss (see

points A and B in Figure 7).

We begin by analyzing whether any of the learning equilibria converge to a par-

ticular REE in I→1. Two of the three REEs in I→1 are not learnable. These are the

equilibria associated with points A and C in Figure 8. In contrast, the equilibrium

represented by B is learnable. Thus, learnability selects a unique REE.

We next consider the learning equilibrium using the same initial values for # as in

Section 7.1. The learning equilibrium under forward guidance is indistinguishable from

the learning equilibrium without forward guidance, as shown in Figure 9. The reason

is that forward guiance has small e!ects on inflation and consumption in period I. In

turn, these small e!ects have almost no e!ect on the learning equilibrium where beliefs

about ςϑ and Cϑ are partially backward looking. Clearly, there is no forward guidance

puzzle under learning.20 That puzzle emerges under RE because of the strong e!ect of

20For a discussion of the forward guidance puzzle, see Del Negro et al. (2023). Under anticipated
utility (not displayed) forward guidance has a slight e!ect, but not large enough to be economically
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forward guidance on expected inflation. Under learning, expectations are backward-

looking, and forward guidance has little influence on expected inflation. Note that the

learning equilibria with and without forward guidance converge slowly.

Figure 9: Forward Guidance Under Learning and REE

9 The value of b in the NK Model

In this section, we accomplish two tasks. First, we demonstrate that b (from propo-

sitions 1 and 2) is large in a linearized solution of our NK model when the ZLB is

binding. Second, we argue that the asymptotic rate of convergence is a good guide to

the small t rate of convergence.

We base our analysis below on linearized versions of the policy functions defined

using equations (5) and (12). Here, we find using time notation (rather than recursive

notation) convenient. The details of our linearization appear in Appendix C. Recall

that the household problem can be reduced to finding an optimal decision rule for bond

holdings, b↗ (bh,#, x), denoted here by bh,t. Log-linearizing this decision rule, we obtain

b̂h,t = εb,bb̂h,t→1 + εb,ϱς̂t + εb,CĈt + εb,µϑm̂ϱ,t + εb,µCm̂C,t. (29)

With one exception, the hat notation, q̂t, denotes log (qt/q), and q is the REE value

of qt about which the linearization is done. The exception is household bond holdings,

bh,t, where b̂h,t = bh,t → bh . Also, µ̂t = [m̂ϱ,t, m̂C,t] represents the log deviation of

people’s time t posterior of Etxt+1 and the REE value of Ext+1 conditional on rt+1 =

meaningful.
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rϑ.21 We use the posterior means (Etxt+1) rather than the prior means (Et→1xt+1)

because households and firms can compute #↗ using # and x. Variances of beliefs

do not appear because of the certainty equivalence implied by the linearization. The

parameters in equation (29) are functions of model parameters and the point about

which the linearization is done. The linearized price decision rule, p↗f (pf ,#, x), of the

firm (denoted by p̂f,t) is given by

p̂f,t = εp,pp̂f,t→1 + εp,ϱς̂t + εp,CĈt + εp,µϑm̂ϱ,t + εp,µCm̂C,t. (30)

The time t realized value of x̂t enters the decision rules, equations (29) and (30),

by two channels. The first channel reflects that people use x̂t to determine the period

t values of the exogenous variables in their period t budget constraint. The second

channel reflects that µ̂t depends on x̂t, µ̂t→1, and the gain in the Bayesian updating

equation.

In each period, we compute a linearized period equilibrium (see Definition 2), so

that (i) b̂h,t→1 = p̂f,t→1 = 0 and (ii) x̂t is determined by the requirements, b̂h,t = 0 and

p̂f,t = 0:

0 = εb,ϱς̂t + εb,CĈt + εb,µϑm̂ϱ,t + εb,µCm̂C,t

0 = εp,ϱς̂t + εp,CĈt + εp,µϑm̂ϱ,t + εp,µCm̂C,t.

Assuming the relevant matrix inverse exists, x̂t is given by

x̂t = Bµ̂t, (31)

where22

B = →
[

εb,ϱ εb,C

εp,ϱ εp,C

]→1 [
εb,µϑ εb,µC

εp,µϑ εp,µC

]
.

The law of motion of µ̂t is a stacked version of the updating expressions in equation

(??). For simplicity, we assume εt = 1/ (λ0 + t) in both equations. Here, λ0 denotes

21Note that the only exogenous random variable in our model is the natural rate of interest. Given
the model structure, in the REE, E

(
xt+1|rt+1 = rε

)
is equal to the value of xt while rt = rε. We

discuss posterior and prior means because when the natural rate of interest is low households and
firms believe that there are additional sources of variation (see equation 15). See Mayer (2021) for a
discussion of rates of convergence in univariate learning models with additional stochastic regressors.

22In the examples that we have considered, we have not encountered an exception to the invertibility
assumption.

33



the initial precision of beliefs about the mean of inflation and consumption. Combining

the vector Bayesian updating expression with equation (31), we obtain:

µ̂t = µ̂t→1 + εt
[
B (1→ εt) (I → εtB)→1 µ̂t→1 → µ̂t→1

]
. (32)

This equation is of the same form as equation 1, with

M (µ̂t→1, εt) = B (1→ εt) (I → εtB)→1 µ̂t→1.

So, propositions 1 and 2 apply to this system.

Table 2 displays the eigenvalues of D1M (0, 0) corresponding to the Good- and

Bad - ZLB equilibria for the benchmark parameter values. The maximal eigenvalue

(‘Eigenvalue 1’), b, associated with the Good-ZLB and Bad-ZLB equilibria are 0.92 and

1.26, respectively. Consistent with Section 6, the Bad-ZLB equilibrium is not locally

learnable because b > 1. The Good-ZLB equilibrium is locally learnable because the

corresponding value of b is less than one.

Asymptotic convergence to the Good-ZLB REE is slow because b is large. According

to Propositions 1 and 2, the asymptotic rate of convergence of ≃µ̂t≃ is tb→1. Using tb→1

as an approximation to ≃µ̂t≃, the amount of time, T1, it takes to close two-thirds of

a gap, ≃µ̂0≃, is given by T1 = (1/3)
1

b→1 . Table 2 reports values of T1 for di!erent

variants of the model. In the benchmark model where the ZLB is binding, b = 0.92

and T1 = 920, 482. This large value of T1 is qualitatively consistent with the basic

prediction of the non-linear solution to the model–namely that the rate of convergence

is quite slow (see Figure 4a). Similarly, the small value of T1 reported in the table for

the case in which the ZLB is not binding and ϱ = 1.5 is qualitatively consistent with

the finding for the non-linear solution to the model (see Figure 5). In this sense, the

asymptotic results in Propositions 1 and 2 are useful guides for the rate of convergence

when t is small.

A di!erent way to assess the usefulness of the asymptotics is to calculate the actual

amount of time, T, required to close two-thirds of the initial gap between priors and

steady state according to the linearized solution to the model.23 To this end, we

simulate the linearized solution to the model when the ZLB is binding and when we

23The initial gap in log xi, i = 1, 2, corresponds to the log-deviation of xi in the initial steady state
and the REE while r = rε.
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ignore the ZLB. In the latter case, we consider ϱ = 1.5 and 3. The results are reported

in Table 2. We find that, for the benchmark model, when the ZLB is binding, T =

944, 710. In sharp contrast, when the ZLB is not binding and ϱ = 1.5 and 3, we find

T = 3 and 1 periods, respectively. The importance of the ZLB and the value of ϱ in

determining the speed of convergence are qualitatively the same as our results using

T1.

Table 2: Eigenvalues of B

Eigenvalue 1 Eigenvalue 2 T1 T
Good ZLB 0.92 -0.48 920,482 944,710
Bad ZLB 1.26 -1.21 NA NA

No ZLB, ϱ = 1.5 0.054+0.44i 0.054-0.44i 2 3
No ZLB, ϱ = 3 -0.135+0.84i -0.135-0.84i 2 1

Note: The matrix, B, is defined in equation (31). The scalar, b, discussed in the text is the largest real part of the
eigenvalues of B. The reported values of T are based on simulations of the linearized solution to the model. For the
definitions of T and T1 see the text.

10 Conclusion

In this paper, we consider the speed with which people learn about their environment

after an unusual event. We do so in a non-linear NK model with internally rational

households and firms that are learning about how the economy will evolve after the

event. To characterize the speed of convergence of people’s beliefs, we analytically

extend results in the literature to characterize the asymptotic convergence rate of mul-

tivariate systems. We argue that the slow convergence result arises naturally in the

NK model when the ZLB is binding. Under these circumstances, analyses of fiscal

and monetary policies under rational expectations can be very misleading. It would

be interesting to pursue this possibility in an empirically plausible version of the NK

model of the sort considered by Christiano et al. (2016) or Del Negro et al. (2023).

Finally, we note that there are other circumstances in which slow learning could

arise. For example, plausible parameterizations of Cagan (1956)’s model of money de-

mand under hyperinflation map into high b economies. Results in Marcet and Sargent

(1995, Table 6.3) imply that estimates of the elasticity of money demand in hyperin-

flations (see, for example, Christiano (1987) and Taylor (1991)) map into high values

of b. More generally, our results suggests that any model with strong strategic comple-

mentarities could exhibit slow convergence to rational expectations under learning.
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